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THE ∞-WASSERSTEIN DISTANCE: LOCAL SOLUTIONS AND
EXISTENCE OF OPTIMAL TRANSPORT MAPS∗

THIERRY CHAMPION† , LUIGI DE PASCALE‡ , AND PETRI JUUTINEN§

Abstract. We consider the non-nonlinear optimal transportation problem of minimizing the
cost functional C∞(λ) = λ-ess sup(x,y)∈Ω2 |y − x| in the set of probability measures on Ω2 having
prescribed marginals. This corresponds to the question of characterizing the measures that realize
the infinite Wasserstein distance. We establish the existence of “local” solutions and characterize
this class with the aid of an adequate version of cyclical monotonicity. Moreover, under natural
assumptions, we show that local solutions are induced by transport maps.
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1. Introduction. In this paper, we consider the non-nonlinear optimal trans-
portation problem that can be mathematically stated as the problem of minimizing
the cost functional

(1.1) C∞(λ) := λ-ess sup
(x,y)∈Ω2

|y − x|

in the set of probability measures on Ω2 having prescribed marginals. Here, and
throughout the paper, we assume that Ω is a compact subset of R

d, d ≥ 1, | · | denotes
the usual Euclidean norm in R

d, μ, ν are the two (given) Borel probability measures
on Ω, and Π(μ, ν) denotes the set of admissible transport plans, i.e., the set of Borel
probability measures λ on Ω2 := Ω × Ω with first marginal π1 #λ = μ and second
marginal π2 #λ = ν. Informally, if λ is induced by a transport map T : Ω → Ω,
i.e., λ = (id × T )#μ, then C∞(λ) is simply the maximum of the transport distances
|T (x) − x|.

The problem formulated above corresponds to the question of characterizing the
measures that realize the infinite Wasserstein distance

(P∞) W∞(μ, ν) = inf
{
C∞(λ) = λ-ess sup

(x,y)∈Ω2

|y − x| : λ ∈ Π(μ, ν)
}
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between μ and ν. Clearly, this is the limiting case, as p → ∞, of the more familiar
(see, e.g., [1, 2, 32]) p-Wasserstein distance problem

(Pp) Wp(μ, ν) = inf

{(∫
Ω2

|y − x|pdλ(x, y)

) 1
p

: λ ∈ Π(μ, ν)

}
, 1 ≤ p < ∞,

which is a model example of a Monge–Kantorovich-type optimal transport problem.
Despite the close relationship, there are fundamental differences between these two
problems. Most importantly, while (Pp) is linear in λ (removing the 1/p-power does
not change the solution set), the mapping λ �→ C∞(λ) is not even convex. In particu-
lar, the problem (P∞) is not additive, which implies that, unlike in the case of (Pp),
a restriction of an optimal transport plan need not be optimal for its own marginals.

In view of simple examples, it turns out that only imposing this “local optimality”
property can lead to a satisfactory class of solutions. Hence we introduce in this paper
the notion of restrictable solutions; this subclass of minimizers of (1.1) is characterized
by the property that every portion of μ is transported onto its target in an optimal
way; see Definition 4.1 below. The existence of a restrictable solution is obtained with
the aid of approximating (P∞) by the problems (Pp). The same strategy also provides
us with the notion of infinite cyclical monotonicity, which is derived from the standard
c-cyclical monotonicity by applying it to the sequence of costs cp(x, y) = |x− y|p and
then taking the limit as p → ∞. A reader familiar with the theory of infinity Laplacian
and related problems [5] should recognize the analogy between restrictable solutions
and absolute minimizers of supremum functionals.

It is one of the main results of this paper that restrictable and infinitely cyclically
monotone solutions coincide; see Theorems 3.4 and 4.4 below. We would like to
emphasize that although both of these notions are derived via an approximation
argument, the proof for their equivalence is completely independent of the derivation.
Moreover, this result holds without any further assumptions on the marginals μ and
ν. The second principal question we address in this paper is existence and uniqueness
of an optimal transport map. Our main result in this direction, Theorem 5.5, states
that if μ � Ld, then any infinitely cyclically monotone solution γ to (P∞) is induced
by a map T : Ω → Ω, i.e., γ = (id × T )#μ. Regarding the question of uniqueness, we
are able to show that if, in addition to the previous assumptions, the second marginal
ν is discrete, then the infinitely cyclically monotone solution to (P∞) is unique.

A major technical difficulty that we are facing in the proofs is the absence of a
useful duality theory, which is due to the nonconvexity of the objective functional
(see section 5.4). As a consequence, we must rely on ad hoc arguments designed for
the problem at hand. On the other hand, it is quite clear from the proofs that the
machinery we are developing applies to more general problems than just (P∞). In
fact, we could have just as well considered a functional λ �→ λ-ess sup(x,y)∈Ω2 c(x, y),
where c(x, y) is, say, nonnegative and lower semicontinuous to begin with. In this
work we concentrate on the model case c(x, y) = |y − x| so as to identify the useful
tools and notions without coping with the additional technical difficulties required by
a more general cost c, which seems to be the natural next step in this study.

Let us finish this introduction by discussing some applications in which the infinite
Wasserstein distance W∞ appears. First on our list is the optimal design problem

(1.2) sup

{
W∞(μ, ν)p+d

Wp(μ, ν)p‖(dμdx )−1‖L∞(U)

: (μ, ν) ∈ Pa.c.(U) × P(U)

}
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that appears in [9] in connection with stability estimates for optimal transport maps;
here P and Pa.c. denote the spaces of probability measures and absolutely continuous
probability measures, respectively, and dμ

dx is the Radon–Nikodym derivative of μ with
respect to the Lebesgue measure. In [9], the authors prove that if U ⊂ R

d is a bounded
Lipschitz domain, then the estimate

(1.3) W∞(μ, ν)p+d ≤ Cp,d(U)‖(dμdx )−1‖L∞(U)Wp(μ, ν)p

holds for every p > 1. The inequality (1.3) is an intrinsic counterpart of a beautiful
uniform estimate for the optimal transport maps proved in [9] under stronger regu-
larity assumptions. The optimal constant in (1.3) is given by the supremum in (1.2),
and it is conjectured (based on 1-dimensional examples and remarks on increasing
transport maps) that it does not blow up when p → 1.

Second, during the last few years, models of branching processes using in one
way or another tools from the optimal transportation theory have been proposed by
several authors; see, for example, [8, 10, 23, 34]. Roughly speaking, these models
favor joint transportation, which in many real world situations, such as in the de-
sign of communication or irrigation networks, is more economical than individualized
transportation. In particular, in [10] the authors propose minimizing a certain cost
functional (which penalizes diffused measures) on the p-Wasserstein space of proba-
bility measures. It is remarked in [29] that this model is somewhat less realistic than
the others cited above, but it has the advantage of being mathematically simpler.
Moreover, as pointed out in Remark 6.2.7, Chapter 4, and section 0.2 of [29], the use
of the infinite Wasserstein distance W∞ in the model of [10] produces results which
are closer to the ones derived from the other models.

Then there are applications to PDEs. The metric structure associated with the
∞-Wasserstein distance is a crucial tool in proving the existence of stable solutions for
a compressible fluid model of rotating binary stars in [24]. The same metric was used
also to bound the growth of the wetted regions in the porous medium flow [13] and to
study the long time asymptotics of nonlinear scalar conservation laws [12]. Moreover,
the ∞-Wasserstein distance is being used in some N -particle approximations of the
Vlaslov equations [21, 22].

Finally, in [11] the authors have considered a mathematical model of the optimal
pricing policy for the use of a public transportation network. This model assumes that
the price of a ticket (for the use of the network) is a function of the distance traveled.
This seems reasonable in the case when each citizen is associated with a single journey,
but it is not so realistic if we allow multiple journeys and an inexpensive season ticket
is available. In the latter case, the price of a season ticket could be assumed to be
a piecewise constant function of the maximal distance traveled, and hence it might
be a good idea to insert a component similar to the functional we have considered
into the model. It is also quite easy to imagine that in many other transportation
problems a significant portion of the total cost is in one way or another connected with
the maximal transportation distance. For example, if we assume that the physical
transportation device (airplane, car, etc.) is the same for all distances, then it has to
be chosen so that the longest transportation can be handled.

2. Existence of global solutions. As pointed out in the introduction, the
objective functional

λ �→ C∞(λ) := λ-ess sup
(x,y)∈Ω2

|y − x|

= inf
{
t ≥ 0 : λ({(x, y) ∈ Ω2 : |y − x| > t}) = 0

}
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is not linear (and not even convex) in λ, contrary to what is usually the case in
classical optimal transport problems. However, it is, quite interestingly, level convex
in the sense that if λ1, λ2 ∈ Π(μ, ν), then

C∞(tλ1 + (1 − t)λ2) ≤ max{C∞(λ1), C∞(λ2)} for all t ∈ (0, 1).

Note that this implies that the set of solutions to (P∞) is convex. Moreover, it should
be observed that C∞(λ) depends on the measure λ only via its support. More precisely,
one has

(2.1) C∞(λ) = sup{|y − x| : (x, y) ∈ supp(λ)}.

Thanks to this last property, we are in position to give the following existence
result.

Proposition 2.1. Assume that Ω is a compact subset of R
d and μ, ν are two

probability measures on Ω. Then the problem

(P∞) W∞(μ, ν) = inf
{
C∞(λ) := λ-ess sup

(x,y)∈Ω2

|y − x| : λ ∈ Π(μ, ν)
}

admits at least one solution λ ∈ Π(μ, ν).
The optimal set of (P∞) may be very large thanks to (2.1).
Example 2.2. Let μ := 1

2 L2�[0,1]2∪[2,3]2 and ν := 1
2 (δ(2,1) +δ(1,2)). Then it is clear

that the value of (P∞) is
√

5 and that any admissible transport plan λ ∈ Π(μ, ν) is a
solution of (P∞).

In the proof of Proposition 2.1, we shall use the following lemma.
Lemma 2.3. If the sequence (λn)n converges weakly to λ in Π(μ, ν), then for any

(x, y) ∈ supp(λ) there exists a sequence ((xn, yn))n∈N such that

(2.2) (xn, yn) → (x, y) as n → ∞ and (xn, yn) ∈ supp(λn) for all n ∈ N.

Proof. Suppose (x, y) ∈ Ω is such that (2.2) does not hold. Then we may assume
without loss of generality that there exists r > 0 such that B((x, y), r)∩ supp(λn) = ∅
for any n ∈ N. It then obviously follows from the weak convergence that B((x, y), r)∩
supp(λ) = ∅, which concludes the proof.

Proof of Proposition 2.1. Since the set Ω is a compact subset of R
d and the

measures μ and ν are probability measures on Ω, the nonempty set Π(μ, ν) is compact
for the weak convergence of measures (cf. [32, p. 49]). To apply the direct method of
the calculus of variations, it remains to notice that λ �→ C∞(λ) is lower semicontinuous
for this topology: this is a direct consequence of (2.1) and Lemma 2.3.

3. Infinitely cyclically monotone solutions. The proof of the existence of a
solution to (P∞) given in Proposition 2.1 is intrinsic, but one may obtain this result
also via an approximation argument involving the family of problems (Pp)p≥1 given
by

(Pp) Wp(μ, ν) = inf

{
Cp(λ) :=

(∫
Ω2

|y − x|pdλ(x, y)

) 1
p

: λ ∈ Π(μ, ν)

}
;

that is, the functional λ �→ Cp(λ) is being minimized over the set Π(μ, ν).
Alternative Proof of Proposition 2.1. Under the assumptions made on Ω, μ, and

ν, for any p ≥ 1 the problem (Pp) admits at least one solution γp ∈ Π(μ, ν); see, e.g.,
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[32, Theorem 1.3]. Since Π(μ, ν) is compact, we infer that (γp)p≥1 converges weakly
(up to a subsequence) to some γ∞ ∈ Π(μ, ν) as p → ∞. Then, for any λ ∈ Π(μ, ν),
we have by the optimality of γp and Hölder’s inequality that

Cq(γp) =

(∫
Ω2

|y − x|qdγp(x, y)
) 1

q

≤ Cp(γp) ≤ Cp(λ)

for any p ≥ q ≥ 1. For a fixed q ≥ 1, since the function (x, y) �→ |y−x|q is continuous
and bounded on Ω2 one has Cq(γp) → Cq(γ∞) as p → ∞. Therefore, taking the limit
in p and then in q in the above inequality we obtain C∞(γ∞) ≤ C∞(λ). Since this
holds for any λ ∈ Π(μ, ν), γ∞ is a minimizer of (P∞).

The reason for considering the problems (Pp) in this context is not merely the
fact that they provide an alternative route to the existence. Namely, it is known that
an element γp ∈ Π(μ, ν) is a solution of (Pp) if and only if its support is p-cyclically
monotone; that is,

(3.1)

n∑
i=1

|yi − xi|p ≤
n∑

i=1

|yσ(i) − xi|p

for every n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ supp(γp), and for every permutation σ ∈ Sn.
We refer the reader, for example, to Theorem 3.2 in [2] (or to [20, 28, 33]).

By analogy with the p-cyclical monotonicity when 1 ≤ p < ∞, we introduce the
corresponding notion for the case p = ∞ obtained by taking the limit in (3.1).

Definition 3.1. A transport plan γ ∈ Π(μ, ν) is infinitely cyclically monotone
if

max
1≤i≤n

|yi − xi| ≤ max
1≤i≤n

|yσ(i) − xi|

for every n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ supp(γ), and σ ∈ Sn.
Using again the approximation of (P∞) by the problems (Pp), we obtain the

existence of an infinitely cyclically monotone solution to (P∞).
Theorem 3.2. For 1 ≤ p < ∞, let γp ∈ Π(μ, ν) be a solution to (Pp). Then any

cluster point γ∞ of (γp)p≥1 in Π(μ, ν) as p → ∞ is an infinitely cyclically monotone
solution to (P∞).

Proof. For simplicity, let us assume that the entire family (γp)p≥1 converges
weakly to γ∞ ∈ Π(μ, ν). It suffices to show that γ∞ is infinitely cyclically monotone.
To this end, let n ≥ 2, (x1, y1), . . . , (xn, yn) ∈ supp(γ), and σ ∈ Sn. We apply
Lemma 2.3 to each pair (xi, yi) to obtain the existence of sequences (xp

1, y
p
1), . . . ,

(xp
n, y

p
n) such that (xp

i , y
p
i ) → (xi, yi) for any i as p → ∞, and (xp

i , y
p
i ) ∈ supp(γp) for

all 1 ≤ p < ∞ and i = 1, . . . , n. Since the support of γp is p-cyclically monotone, one
has

n∑
i=1

|ypi − xp
i |

p ≤
n∑

i=1

|ypσ(i) − xp
i |

p
for all 1 < p < ∞.

Taking the 1/p-power on both sides and letting p go to ∞, one obtains the desired
inequality.

Since for any 1 ≤ p < ∞ an admissible transport plan λ ∈ Π(μ, ν) is a minimizer
of (Pp) if and only if it is p-cyclically monotone, it is natural to ask whether this still
holds for p = ∞. It is, however, quite clear that a generic minimizer of (P∞) need



6 T. CHAMPION, L. DE PASCALE, AND P. JUUTINEN

not be infinitely cyclically monotone; the following gives a counterexample for this
implication.

Example 3.3. As an admissible transport plan for the measures μ and ν in
Example 2.2 one may take

λ :=
1

2
(L2�[0,1]2 × δ(2,1) + L2�[2,3]2 × δ(1,2)).

Then λ is a minimizer of (P∞), but it is not infinitely cyclically monotone: for example,
((0, 1), (2, 1)) and ((3, 2), (1, 2)) belong to supp(λ), and

max{|(0, 1) − (1, 2)|, |(3, 2) − (2, 1)|} < max{|(0, 1) − (2, 1)|, |(3, 2) − (1, 2)|}.

Notice that in this case, for any 1 < p < ∞, problem (Pp) admits a unique solution
(up to a μ-negligible set) (see [20]), which in fact does not depend on p.

On the other hand, the following result shows that the reverse implication does
hold: infinite cyclical monotonicity is indeed a sufficient condition for an admissible
plan to be a minimizer of (P∞).

Theorem 3.4. Any infinitely cyclically monotone transport plan γ ∈ Π(μ, ν) is
a solution of the problem (P∞).

Proof. We make a proof by contradiction. Let γ ∈ Π(μ, ν) be infinitely cyclically
monotone, and assume that

(3.2) γ-ess sup
(x,y)∈Ω2

|y − x| ≥ 10 ε + γ̃-ess sup
(x,y)∈Ω2

|y − x|

for some γ̃ ∈ Π(μ, ν) and ε > 0.

Since Ω is compact, there exists a finite family (ci)1≤i≤k such that Ω ⊂
⋃k

i=1 B(ci, ε).
We shall denote C := {c1, . . . , ck} and V1 := B(c1, ε), and for any i ∈ {2, . . . , k} we

set Vi := B(ci, ε) \
⋃i−1

j=1 Vj ; without loss of generality, we assume that Vi �= ∅ for all
i ∈ {1, . . . , k}.

Next we define two discrete measures γε and γ̃ε on Ω2 by

γε :=
∑

1≤i,j≤k

γ(Vi × Vj) δ(ci,cj)

and

γ̃ε :=
∑

1≤i,j≤k

γ̃(Vi × Vj) δ(ci,cj).

Notice that since γ and γ̃ have the same marginals, the same holds for γε and γ̃ε. In
particular, one has

(3.3) (x, y) ∈ supp(γε) ⇒ there exists x̃ ∈ C such that (x̃, y) ∈ supp(γ̃ε)

and

(3.4) (x̃, ỹ) ∈ supp(γ̃ε) ⇒ there exists y ∈ C such that (x̃, y) ∈ supp(γε).

The following properties will also be useful in our argument.
Claim 1. There exists (x0, y0) in the support of γε such that

|y0 − x0| ≥ 5 ε + max
{
|y − x| : (x, y) ∈ supp(γ̃ε)

}
.
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Claim 2. For any n ≥ 1, (x1, y1), . . . , (xn, yn) ∈ supp(γε), and σ ∈ Sn,

max
1≤i≤n

|yi − xi| ≤ 4 ε + max
1≤i≤n

|yσ(i) − xi|.

Above, the first claim is simply a counterpart of the antithesis (3.2) for the dis-
cretized measures, while the second says that γε is “almost” infinitely cyclically mono-
tone. We postpone the verification of these two claims until the end of this proof.

Let (x0, y0) ∈ supp(γε) be given by Claim 1. Owing to (3.3) and (3.4), we can
recursively define two sequences (Dm)m≥1 and (Em)m≥0 of subsets of C by setting
E0 := {y0}, and for m ≥ 1,

Dm := {x̃ : there exists y ∈ Em−1 such that (x̃, y) ∈ supp(γ̃ε)}

and

Em := {y : there exists x̃ ∈ Dm such that (x̃, y) ∈ supp(γε)} .

We then set D :=
⋃

m≥1 Dm and E :=
⋃

m≥0 Em.
There are now two alternatives: either x0 belongs to D or not.
First case: x0 ∈ D. In this case, there exists m ≥ 1 such that x0 ∈ Dm, and by

going backwards from Dm to E0 it is possible to define two finite families (xi)0≤i≤m

and (yi)0≤i≤m−1 such that

for all i ∈ {0, . . . ,m− 1}, (xi, yi) ∈ supp(γε) and (xi+1, yi) ∈ supp(γ̃ε),

where we have set xm := x0. Claim 2 then yields

max
0≤i≤m−1

|yi − xi| − 4 ε ≤ max
0≤i≤m−1

|yi − xi+1|.

Since max0≤i≤m−1 |yi − xi| ≥ |y0 − x0|, we infer from Claim 1 and the previous
inequality that

max
{
|y − x| : (x, y) ∈ supp(γ̃ε)

}
+ ε ≤ max

0≤i≤m−1
|yi − xi+1|.

Since (xi+1, yi) ∈ supp(γ̃ε) for any i ∈ {0, . . . ,m− 1}, this yields a contradiction.
Second case: x0 /∈ D. From the definitions of D and E, we notice the following

two facts:

(3.5) x ∈ D, (x, y) ∈ supp(γε) ⇒ y ∈ E

and

(3.6) ỹ ∈ E, (x̃, ỹ) ∈ supp(γ̃ε) ⇒ x̃ ∈ D.

As a consequence of (3.5) and since γε and γ̃ε have the same marginals, one has

γε(D × E) = γε(D × C) = γ̃ε(D × C).

Similarly, one has

γ̃ε(D × E) = γ̃ε(C × E) = γε(C × E).
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We then obtain

γε(D × E) = γ̃ε(D × C) ≥ γ̃ε(D × E) = γε(C × E).

This implies that γε((C \ D) × E) = 0, whereas by hypothesis one has (x0, y0) ∈
(C \ D) × E and γε({(x0, y0)}) > 0 since (x0, y0) belongs to the support of the
discrete measure γε. This yields a contradiction.

To complete the proof of Theorem 3.4, it remains to prove Claims 1 and 2.
Proof of Claim 1. We infer from (3.2) that

γ
({

(x, y) : |y − x| ≥ 9 ε + γ̃-ess sup
(x,y)∈Ω2

|y − x|
})

> 0.

As a consequence, there exist i1, i2 ∈ {1, . . . , k} such that

γ
(
(Vi1 × Vi2) ∩

{
(x, y) : |y − x| ≥ 9 ε + γ̃-ess sup

(x,y)∈Ω2

|y − x|
})

> 0.

Since Vm ⊂ B(cm, ε) for m = i1, i2, one then has

(3.7) |ci2 − ci1 | ≥ 7 ε + γ̃-ess sup
(x,y)∈Ω2

|y − x|,

and (ci1 , ci2) belongs to the support of γε. On the other hand, if (cj1 , cj2) belongs to
the support of γ̃ε, then γ̃(Vj1 × Vj2) > 0, and thus

|cj2 − cj1 | ≤ 2 ε + γ̃-ess sup
(x,y)∈Ω2

|y − x|.

Since this inequality holds whenever (cj1 , cj2) ∈ supp(γ̃ε), one has

max {|y − x| : (x, y) ∈ supp(γ̃ε)} ≤ 2 ε + γ̃-ess sup
(x,y)∈Ω2

|y − x|.

This together with (3.7) shows that (x0, y0) := (ci1 , ci2) has the desired property.
Proof of Claim 2. Let n ≥ 1, σ ∈ Sn, and (xi, yi) belong to the support of γε for

i ∈ {1, . . . , n}. For any i ∈ {1, . . . , n}, one has (xi, yi) = (cj1 , cj2) for some j1, j2 ∈
{1, . . . , k} with γ(Vj1 ×Vj2) > 0, and thus there exists (x′

i, y
′
i) ∈ (Vj1 ×Vj2)∩ supp(γ).

As a consequence,

| |y′r − x′
s| − |yr − xs| | ≤ 2 ε for all r, s ∈ {1, . . . , n}.

Since γ is infinitely cyclically monotone, we have

max
1≤i≤n

|y′σ(i) − x′
i| ≥ max

1≤i≤n
|y′i − x′

i|.

It follows that

4 ε + max
1≤i≤n

|yσ(i) − xi| ≥ max
1≤i≤n

|yi − xi|,

which proves the claim.
Remark 3.5. Observe that in the proof above, we in fact always have x0 ∈ D;

that is, the first case always occurs. This is a consequence of the conservation of the
masses: all the mass transported to E by γ̃ε originates from D, while all the mass in
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D is transported to E by γε. Since γε and γ̃ε have the same marginals, this implies
that both plans transport D exactly to E. The fact that the second case never occurs
in the above proof also underlies the recursive construction of Step II in the proof of
Theorem A in [25], even if the arguments are different. That paper deals with the
sufficiency of cyclical monotonicity for optimality in the classical case (see also [31]).

Remark 3.6. There is a variation of the self-contained proof given above that
relies directly on the fact that the total cost C∞(λ) = λ-ess sup(x,y)∈Ω2 |y−x| depends
only on the support of λ and not on its density. In the discrete case this means that,
as far as the total cost is concerned, the exact amount of mass transferred from any
given point to another is irrelevant: it matters only whether the amount is positive or
not. Hence in the proof we are allowed to change the transport plans γε and γ̃ε, along
with their marginals, as long as we do not change their supports and make sure that
the marginals of the new transport plans agree with each other. Now assuming that
we can change the measures in such a way that all the point masses are of integer
size, the problem can be interpreted as a pairing problem in which the infinite cyclical
monotonicity is both a necessary and sufficient condition for optimality.

The existence of the required integer transport plans with given supports is non-
trivial and follows from Dines’ algorithm [17], which provides positive solutions for a
system of linear equations.

4. Restrictable solutions. In the previous section, we derived the notion of
infinitely cyclically monotone plans from the approximation of the problem (P∞) by
the family of problems (Pp). Another interesting notion may be derived in the same
way: let 1 ≤ p < ∞ and γp ∈ Π(μ, ν) be a solution to (Pp). Then it follows from the
linearity of the functional

γ �→ Cp(γ)p =

∫
Ω2

|y − x|pdλ(x, y)

that any nonzero measure γ′ that is majorized by γp, i.e., γ′(B) ≤ γp(B) for all Borel
sets B ⊂ Ω × Ω, is an optimal transport plan for the problem

Cp(γ′) = inf {Cp(γ) : γ ∈ Π(μ′, ν′)} ,

where μ′ := π1 #γ′ and ν′ := π2 #γ′. In other words, optimality is automatically
inherited by restriction, and hence we may say that a solution γp ∈ Π(μ, ν) of (Pp) is
a restrictable solution of this problem. By analogy, we may define a similar notion of
restrictable solutions for problem (P∞) as follows.

Definition 4.1. A transport plan γ ∈ Π(μ, ν) is a restrictable solution of (P∞)
if any nonzero Borel measure γ′ in Ω × Ω that is majorized by γ is a solution to the
problem

(P ′
∞) inf

{
λ-ess sup
(x,y)∈Ω2

|y − x| : λ ∈ Π(μ′, ν′)
}
,

where μ′ := π1 #γ′ and ν′ := π2 #γ′.
The reader should notice the obvious abuse of notation above, as the measures μ′

and ν′ in (P ′
∞) are not, in general, probability measures. However, μ′(Ω) = ν′(Ω) > 0,

and that is really all that is needed.
Example 4.2. It is quite clear that not every solution of (P∞) is restrictable.

Indeed, the optimal plan λ considered in Example 3.3 admits the following restriction:

λ′ :=
1

2
(L2�S1 × 1

2δ(2,1) + L2�S2 × 1
2δ(1,2)),
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where S1 := [0, 1
2 ] × [ 12 , 1] and S2 := [52 , 3] × [2, 5

2 ]. But λ′ is not optimal for its own
marginals: a better transport plan is the one that takes all the mass that lies in S1

to (1, 2) and the mass in S2 to (2, 1).
Remark 4.3. The notion of a restrictable solution bears a strong resemblance to

that of an absolute minimizer used in connection with the L∞ variational problems.
We recall that a locally Lipschitz continuous function u : D → R

m, m ≥ 1, is called
an absolute minimizer of the functional S(ϕ,D) := ess supx∈D H(x, ϕ(x), Dϕ(x)) if

S(u, V ) ≤ S(v, V )

for every open V ⊂⊂ D and v ∈ W 1,∞(V ) ∩ C(V )) such that v|∂V = u|∂V . Abso-
lute minimizers were introduced by Aronsson [3, 4]. It has turned out that this is
the proper notion of a solution for this type of minimization problem in the sense
that important properties such as uniqueness, regularity, and characterization via an
Euler–Lagrange equation can be obtained for this class of functions. Absolute mini-
mizers were introduced by Aronsson [3]; see also, e.g., [6, 5, 30, 14] for further details
and background.

It is natural to ask whether any cluster point γ∞ of (γp)p≥1 in Π(μ, ν) as p → ∞
is a restrictable solution of (P∞). In view of Theorem 3.2, this can be established by
showing that the restrictable solutions coincide with the class of infinitely cyclically
monotone solutions.

Theorem 4.4. A transport plan γ ∈ Π(μ, ν) is infinitely cyclically monotone if
and only if it is a restrictable solution of the problem (P∞).

Notice that Theorem 3.2 provides the existence of restrictable solutions to (P∞).
Proof. If γ ∈ Π(μ, ν) is infinitely cyclically monotone, then the same holds for

any restriction γ′ ≤ γ, and Theorem 3.4 then yields that such a restriction γ′ is a
solution of the corresponding problem (P ′

∞).
We now turn to the proof of the sufficiency. Let γ ∈ Π(μ, ν) be a restrictable

solution to (P∞), and let us fix points (x1, y1), . . . , (xm, ym) ∈ supp(γ), m ≥ 2,
and a permutation σ of {1, . . . ,m}. Without loss of generality, we may assume that
(xi, yi) �= (xj , yj) whenever i �= j. Then there is ε0 > 0 such that for all 0 < ε ≤ ε0, the
sets Bi := B(xi, ε) ×B(yi, ε) are pairwise disjoint and γ(Bi) > 0 for all i = 1, . . . ,m.

We define two measures γ′ and γσ by setting

γ′ :=

m∑
i=1

ciγ�Bi and γσ :=

m∑
i=1

ciT
i
#γ�Bi .

Here T i
#γ�Bi is the push-forward of γ�Bi by the mapping T i(x, y) := (x, y+yσ(i)−yi),

and the positive numbers

ci :=
mink γ(Bk)

γ(Bi)

are chosen so that γ′(Bi) = mink γ(Bk) > 0 is independent of i. Observe that the
support of T i

#γ�Bi
lies in Bσ

i := B(xi, ε)×B(yσ(i), ε) and γσ(Bσ
i ) = γ′(Bi). Moreover,

the first marginals μ′ = π1 #γ′ and μσ = π1 #γσ are equal.
Since γ′ is majorized by the restrictable solution γ, we have

γ′-ess sup
(x,y)∈Ω2

|x− y| = W∞(μ′, ν′) = inf
{
γ̃-ess sup
(x,y)∈Ω2

|x− y| : γ̃ ∈ Π(μ′, ν′)
}
,
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where ν′ = π2 #γ′. On the other hand, since the supports of both ν′ and νσ = π2 #γσ
are contained in the union of the balls B(yi, ε) and ν′(B(yi, ε)) = νσ(B(yi, ε)) for
every i by the construction of γ′ and γσ, we can rearrange ν′ to νσ by transporting
mass only within the balls B(yi, ε). Thereby we obtain that W∞(ν′, νσ) ≤ 2ε, and
hence

γ′-ess sup
(x,y)∈Ω2

|x− y| = W∞(μ′, ν′) ≤ W∞(μσ, νσ) + W∞(νσ, ν
′)

≤ 2ε + γσ-ess sup
(x,y)∈Ω2

|x− y|.

Now clearly

γ′-ess sup
(x,y)∈Ω2

|x− y| ≥ max
1≤i≤m

|xi − yi|

and

γσ-ess sup
(x,y)∈Ω2

|x− y| ≤ max
1≤i≤m

|xi − yσ(i)| + 2ε,

and thus the preceding inequality yields

max
1≤i≤m

|xi − yi| ≤ max
1≤i≤m

|xi − yσ(i)| + 4ε.

Since this holds for all ε > 0 small enough we are done.
Observe that for any γ ∈ Π(μ, ν) and any Borel set B ⊂ Ω×Ω such that γ(B) > 0,

the measure γ�B is majorized by γ. Thus, if γ is a restrictable solution of (P∞), then
each such measure γ�B is an optimal transport plan for its own marginals. It turns
out that in general the converse is false; that is, this family of measures alone does not
suffice for characterizing the restrictable solutions, as shown in Example 4.5. Notice
that this is another difference with the case of integral costs functionals (like the
costs Cp), since for those functionals the converse would be true: if γ�B is an optimal
transport plan for its own marginals for any B ⊂ Ω × Ω with γ(B) > 0, then γ is a
restrictable solution.

Example 4.5. Take Ω = [0, 1], and let

μ :=
1

3
δ0 +

2

3
δ1 and ν :=

2

3
δ0 +

1

3
δ1.

Then the plan γ := 1
3δ(0,1) + 2

3δ(1,0) is not a restrictable solution since γ′ := 1
3δ(0,1) +

1
3δ(1,0) is majorized by γ, and it is clearly not an optimal transport plan for its own

marginals μ′ = 1
3δ0 + 1

3δ1 and ν′ = 1
3δ0 + 1

3δ1. On the other hand, one can check that
γ�B is an optimal transport plan, for its own marginals, for each Borel set B ⊂ Ω2.
Notice that the only restrictable solution of (P∞) in this case (which is also the unique
solution to (Pp) when p ≥ 1) is γ∞ = 1

3δ(0,0) + 1
3δ(1,0) + 1

3δ(1,1).
In view of the above example, and under some regularity assumption on the

measures μ and ν, it is possible to obtain the following refined version of Theorem 4.4.
Proposition 4.6. Let γ ∈ Π(μ, ν) be an optimal transport plan, and assume

that neither μ nor ν concentrates on sets of dimension d− 1. Then the following are
equivalent:

(1) γ is infinitely cyclically monotone;
(2) for each Borel set B ⊂ Ω × Ω, γ�B is optimal between its projections.
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Proof. We need only prove that under these assumptions (2) implies (1). Assume
by contradiction that γ is not infinitely cyclically monotone. Then there exist a family
{(xi, yi)}i=1,...,n in supp(γ) and a permutation σ ∈ Sn such that

max{|x1 − yσ(1)|, . . . , |xn − yσ(n)|} < max{|x1 − y1|, . . . , |xn − yn|}.

By continuity, the same inequality holds true for any family {(x′
i, y

′
i)}i=1,...,n for which

(x′
i, y

′
i) ∈ B(xi, ε) × B(yi, ε) for all i = 1, . . . , n and for some small enough ε > 0.

Notice that γ(B(xi, ε) ×B(yi, ε)) is positive for any i.

For each i we define gi : [0, ε] → R
+ by gi(r) := γ(B(xi, r) × B(yi, r)). Since μ

and ν do not concentrate on sets of dimension d − 1, the function gi is continuous.
Let α = mini γ(B(xi, ε) × B(yi, ε)), and choose 0 < ε̃i ≤ ε so that gi(ε̃i) = α for all
i; this is possible since limr→0 gi(r) = 0.

Following now the proof of sufficiency of the previous theorem we obtain that
γ�B for B =

⋃n
i=1 B(xi, ε̃i) × B(yi, ε̃i) and for ε > 0 small enough is not an optimal

transport between its marginals, which contradicts (2).

Remark 4.7. It is natural to ask what happens if |x − y| is replaced by a more
general (real-valued) cost function c(x, y); that is, we consider the functional

γ �→ γ-ess sup
(x,y)∈Ω2

c(x, y).

As expected, the basic existence results, Proposition 2.1 and Theorem 3.2, remain
valid, provided that c is nonnegative and lower semicontinuous with all the relevant
concepts appropriately redefined: in particular, in the definition of infinite cyclical
monotonicity one should replace the support of γ with some appropriate set on which
γ is concentrated. Moreover, the proof of the equivalence of restrictable and infinitely
cyclically monotone solutions works in this generality if c(x, y) is (uniformly) contin-
uous.

5. Existence and uniqueness of an optimal transport map. In this sec-
tion, we prove that under reasonably weak assumptions an infinitely cyclically mono-
tone transport plan is induced by a transport map. Moreover, we start the analysis
of the uniqueness of such transport maps and then comment on our method of proof
in light of the duality issue for problem (P∞).

5.1. Properties of transport plans. We begin by considering some generic
properties of transport plans. This subsection is largely independent of the cost,
and the technique detailed below has applications also in the framework of classical
transportation problems involving cost functionals in integral form; see [15].

Definition 5.1. Let y ∈ Ω and r > 0, and let γ ∈ Π(μ, ν) be a transport plan.
We define

γ−1(B(y, r)) := π1((Ω ×B(y, r)) ∩ supp γ).

In other words, γ−1(B(y, r)) is the set of points whose mass is partially or com-
pletely transported to B(y, r) by γ. We recognize the slight abuse of notation, but if
γ is thought of as a device that transports mass, then this seems justifiable. Notice
also that γ−1(B(y, r)) is a Borel set. In fact, it is a countable union of compact sets
as shown by the equation
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π1((Ω ×B(y, r)) ∩ supp γ) = π1

(⋃
n

(Ω ×B(y, r − 1/n)) ∩ supp γ

)

=
⋃
n

π1((Ω ×B(y, r − 1/n)) ∩ supp γ).

Since this notion is important in what follows, we recall that when A is Ld-
measurable, one has

lim
r→0

Ld(A ∩B(x, r))

Ld(B(x, r))
= 1

for almost every x in A: we shall call such a point x a Lebesgue point of A, this
terminology deriving from the fact that such a point may also be considered as a
Lebesgue point of χA.

The following lemma, although quite simple, is the cornerstone of the proof of
Theorem 5.5 below.

Lemma 5.2. Let γ ∈ Π(μ, ν), and assume that μ � Ld. Then γ is concentrated
on a σ-compact set R(γ) such that for all (x, y) ∈ R(γ) the point x is a Lebesgue
point of γ−1(B(y, r)) for all r > 0.

Proof. In the following, we shall denote by Leb(E) the set of points x ∈ E which
are Lebesgue points of E. Let

A := {(x, y) ∈ supp(γ) : x /∈ Leb(γ−1(B(y, r))) for some r > 0};

we first intend to show that γ(A) = 0. To this end, for each positive integer n we
consider a finite covering Ω ⊂

⋃
i∈I(n) B(yni ,

1
2n ) by balls of radius 1

2n . We notice that

if (x, y) ∈ supp(γ) and x is not a Lebesgue point of γ−1(B(y, r)) for some r > 0, then
for any n ≥ 1

r and yni such that |yni − y| < 1
2n the point x belongs to γ−1(B(yni ,

1
2n ))

but is not a Lebesgue point of this set. Then

π1(A) ⊂
⋃
n≥1

⋃
i∈I(n)

(
γ−1

(
B

(
yni ,

1

2n

))∖
Leb

(
γ−1

(
Bγ

(
yni ,

1

2n

))))
.

Notice that the set on the right-hand side has Lebesgue measure 0 and thus μ-measure
0. It follows that γ(A) ≤ γ(π1(A) × Ω) = μ(π1(A)) = 0.

Finally, since Ld(π1(A)) = 0, there exists a sequence (Uk)k≥0 of open sets such
that

for all k ≥ 0, π1(A) ⊂ Uk and lim
k→∞

Ld(Uk) = 0.

Then the set R(γ) := supp(γ) ∩ (
⋃

k≥0(Ω \ Uk)×Ω) has the desired properties.
The above lemma yields the introduction of the following notion.
Definition 5.3. The couple (x, y) ∈ Ω×Ω is a γ-regular point if x ∈ γ−1(B(y, r))

is a Lebesgue point of this set for any positive r.
Notice that any element of the set R(γ) of Lemma 5.2 is a γ-regular point.
For future use, we introduce a suitable notation to indicate a cone: let x0, ξ ∈ R

d

with |ξ| = 1, and let δ ∈ [0, 2]. Then we define

C(x0, ξ, δ) :=

{
x ∈ R

d \ {x0} :
x− x0

|x− x0|
· ξ ≥ 1 − δ

}
.
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Notice that if δ = 0, C(x0, ξ, 0) degenerates to a half-line, while in the case δ = 2,
C(x0, ξ, 2) is R

d \ {x0}.
We now remark the following property for the regular points of a transport plan.
Proposition 5.4. Let (x0, y0) be a γ-regular point, r > 0, α ∈ (0, 1), and

δ > 0. Then for ε > 0 sufficiently small the set of points x ∈ γ−1(B(y0, r)) such that
x ∈ C(x0, ξ, δ) ∩ (B(x0, ε) \B(x0, αε)) has positive Ld measure.

Proof. It is enough to remark that x0 ∈ Leb(γ−1(B(y0, r))) and then

lim
ε→0

Ld((B(x0, ε) \B(x0, αε)) ∩ C(x0, ξ, δ) ∩ γ−1(B(y0, r)))

Ld(B(x0, ε))
= c(α, δ),

where c(α, δ) := Ld((B(x0,1)\B(x0,α))∩C(x0,ξ,δ))
Ld(B(x0,1))

> 0.

5.2. Existence of an optimal transport map. Our main result in this sub-
section is the following theorem, which states that under the hypothesis that μ is ab-
solutely continuous with respect to the Lebesgue measure Ld, any optimal infinitely
cyclically monotone transport plan for (P∞) is induced by a transport map. This
generalizes the corresponding result for the problem (Pp) when p ∈ ]1,∞[ : if one
assumes that

(5.1) μ(B) = 0 whenever Hd−1(B) < ∞,

then any p-cyclically monotone transport plan is induced by a transport map (see
Remark 4.7 in [20]).

It is in doubt whether (5.1) is sufficient to ensure that the conclusion of Theo-
rem 5.5 holds. In the case p = 1, the hypothesis (5.1) is not sufficient to ensure that
any 1-cyclically monotone transport plan is induced by a transport map. Even worse,
for μ = L1�[0,1] and ν = 1

2L1�[0,2] there exists an optimal (and hence 1-cyclically
monotone) transport plan which is not induced by a transport map; see [2, p. 125].

We now state the main result of this section and refer the reader to section 5.4
for further comments.

Theorem 5.5. Assume that μ � Ld, and let γ ∈ Π(μ, ν) be an infinitely cycli-
cally monotone transport plan. Then there exists a Borel transport map T : Ω → Ω
such that γ = (id × T )#μ.

Proof. By Proposition 2.1 in [1], it is sufficient to prove that γ is concentrated
on a γ-measurable graph. In view of Lemma 5.2, it is then sufficient to prove that
R(γ) is included in a graph, or more generally that if (x0, y0) and (x0, y

′
0) are both

γ-regular points, then y0 = y′0.
We divide the proof into two parts and first show that |x0−y0| = |x0−y′0|. Arguing

by contradiction, we assume that |x0 − y0| < |x0 − y′0| and suppose for the time being

that x0 �= y0. Let ξ′ =
y′
0−x0

|y′
0−x0| , 0 < ε < |x0 − y0|, and 0 < r < |y′0 − x0| − |y0 − x0|.

We claim that for δ := 1 − |x0−y0|
|x0−y′

0|
one has

(5.2) max{|x− y′0|, |x0 − y|} < max{|x− y|, |x0 − y′0|}

for any (x, y) such that x ∈ C(x0, ξ
′, δ)∩B(x0, ε)\B(x0,

1
2ε) and y ∈ B(y0, r). Indeed,

take (x, y) as above; it then follows from the choice of r that |x0 − y| < |x0 − y′0|,
while on the other hand

|x− y′0|2 = |x− x0|
(
|x− x0| − 2

x− x0

|x− x0|
· (y′0 − x0)

)
+ |x0 − y′0|2

≤ |x− x0| (|x0 − y0| − 2(1 − δ)|x0 − y′0|) + |x0 − y′0|2 < |x0 − y′0|2.
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This proves the claim. We now infer from Proposition 5.4 that the set of points
x ∈ γ−1(B(y0, r)) such that x ∈ C(x0, ξ

′, δ)∩B(x0, ε)\B(x0,
1
2ε) has positive measure

when ε is small enough. In particular, this set is nonempty for small ε, and (5.2)
then clearly contradicts the infinite cyclical monotonicity of γ. As a consequence,
|x0 − y0| = |x0 − y′0| in the case x0 �= y0.

If x0 = y0, we repeat the argument above with the choices 0 < ε < 1
4 |x0 − y′0|,

0 < r < 1
4 |y′0 − x0|, and δ = 1

2 . Then for any (x, y) such that x ∈ C(x0, ξ
′, δ) ∩

B(x0, ε) \ B(x0,
1
2ε) and y ∈ B(y0, r), we clearly have |x0 − y| < |x0 − y′0|, and the

other inequality |x− y′0|2 < |x0 − y′0|2 follows as above.
We now prove by contradiction that y0 = y′0. Note that since we already know

that |x0 − y0| = |x0 − y′0|, we may assume that |x0 − y0| = |x0 − y′0| > 0. If y0 �= y′0,
we can find ξ ∈ R

d such that

ξ · x0 − y0

|x0 − y0|
< 0 and ξ · x0 − y′0

|x0 − y′0|
> 0.

Next we choose r > 0 such that

sup

{
ξ · x0 − y

|x0 − y| : y ∈ B(y0, r)

}
< 0

and δ > 0 such that

(5.3) α := inf

{
x0 − x

|x0 − x| ·
x0 − y′0
|x0 − y′0|

: x ∈ C(x0, ξ, δ)

}
> 0

as well as

(5.4) sup

{
x0 − x

|x0 − x| ·
x0 − y

|x0 − y| : x ∈ C(x0, ξ, δ), y ∈ B(y0, r)

}
< 0.

We now claim that for ε > 0 small enough, (5.2) holds for any (x, y) such that
x ∈ C(x0, ξ, δ)∩B(x0, ε)\B(x0,

1
2ε) and y ∈ B(y0, r). Notice that this claim concludes

the proof of y0 = y′0 modulo applying Proposition 5.4 as before. To verify that (5.2)
holds, we first notice that (5.4) implies that

(5.5) for all x ∈ C(x0, ξ, δ), y ∈ B(y0, r), |x0 − y| < |x− y|

since |x − y|2 = |x − x0|2 − 2(x0 − x) · (x0 − y) + |x0 − y|2. We can also infer from
(5.3) that

|x− y′0|2 ≤ |x− x0| (|x0 − x| − 2α|x0 − y′0|) + |x0 − y′0|2

for any x ∈ C(x0, ξ, δ). It follows that

(5.6) for all x ∈ C(x0, ξ, δ) ∩B(x0, ε), |x− y′0| < |x0 − y′0|

whenever 0 < ε < 2α|x0−y′0|. We then get (5.2) from (5.5) and (5.6), which concludes
the proof.

5.3. Uniqueness of the infinitely cyclically monotone transport map.
We now consider the question of the uniqueness of the infinitely cyclically monotone
transport map obtained in the preceding section. We recall that when (5.1) holds
and p ∈ ]1,∞[ , problem (Pp) admits a unique (up to a μ negligible set) p-cyclically
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monotone transport map (see, for example, [20] and section 5.4). Notice that in
contrast this result does not hold for p = 1, not even under the stronger hypothesis
that μ � Ld, as shown by Example 1.3 in [1]: when μ = L1�[0,1] and ν = L1�[1,2],
both transport maps t �→ t + 1 and t �→ 2 − t are optimal.

In the case of problem (P∞), the question of uniqueness is largely open. At
the moment, we have only the following partial result stating the uniqueness of the
infinitely cyclically monotone transport map under the hypothesis that ν is purely
atomic with finite support.

Theorem 5.6. Suppose that μ � Ld and ν =
∑k

i=0 ai δyi for some (yi)0≤i≤k ⊂ Ω
and positive numbers a0, . . . , ak. Then there exists a unique (up to a μ-negligible set)
infinitely cyclically monotone Borel transport map T from μ to ν.

Proof. Suppose that there are two distinct infinitely cyclically monotone Borel
transport maps T and T̃ , and let us introduce the sets

U i
j = T−1(yj) ∩ T̃−1(yi).

We first claim that it is possible to define a sequence of integers (i(p))p≥0 such that

for all p ≥ 0, i(p) �= i(p + 1) and μ
(
U

i(p+1)
i(p)

)
> 0.

Indeed, the fact that the two transport maps are distinct means that it is possible to

choose two indices i(0) �= i(1) such that μ
(
U

i(1)
i(0)

)
> 0. Next we notice that since T̃

maps μ to ν,

ν({yi(1)}) =

k∑
p=0

μ
(
U i(1)
p

)
≥ μ

(
U

i(1)
i(0)

)
+ μ

(
U

i(1)
i(1)

)
> μ

(
U

i(1)
i(1)

)
.

Since T also maps μ to ν, we infer from the above inequality that there exists p �= i(1)

such that μ
(
Up
i(1)

)
> 0: we then set i(2) = p and start again from U

i(2)
i(1) . By repeating

the above argument we can build recursively the sequence (i(p))p≥0 with the desired
properties.

Since the sequence (i(p))p≥0 takes its values in the finite set {0, . . . , k}, we may
assume that there exists some m ≥ 2 such that i(m) = i(0). For any p ∈ {0, . . . ,m−1},
the set U

i(p+1)
i(p) has nonzero Lebesgue measure, so we may choose a Lebesgue point xp

of U
i(p+1)
i(p) for which |yi(p+1) − xp| �= |yi(p) − xp| and then set xm = x0. By definition,

T (xp) = yi(p) and T̃ (xp) = yi(p+1) for all p ∈ {0, . . . ,m− 1}.

Since T and T̃ are infinitely cyclically monotone, we have

max
0≤p≤m−1

|yi(p) − xp| ≤ max
0≤p≤m−1

|yi(p+1) − xp| ≤ max
0≤p≤m−1

|yi(p) − xp|,

so that

(5.7) max
0≤p≤m−1

|yi(p) − xp| = max
0≤p≤m−1

|yi(p+1) − xp|.
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Then let I := {q : |yi(q) − xq| = max0≤p≤m−1 |yi(p) − xp|}. We infer from (5.7) and
the choice of the points xp that for any q ∈ I one has |yi(q) − xq| > |yi(q+1) − xq|.
Since xq is a Lebesgue point of U

i(q+1)
i(q) , there exists x̃ ∈ U

i(q+1)
i(q) arbitrarily close to

xq for which

|yi(q) − x̃| > |yi(q) − xq|,

and thus we can choose x̃ ∈ U
i(q+1)
i(q) such that

(5.8) |yi(q) − x̃| > max{|yi(q+1) − x̃|, |yi(q) − xq|}.

We now set x̃q := x̃ as well as x̃p := xp for p �= q and notice that (5.7) should in fact

also hold for this new choice of elements x̃p in U
i(p+1)
i(p) . This leads to a contradiction

since we can infer from the definition of I, the choice of q, and (5.8) that

max
0≤p≤m−1

|yi(p) − x̃p| = |yi(q) − x̃|

> max{|yi(q+1) − x̃|, |yi(q) − xq|} ≥ max
0≤p≤m−1

|yi(p+1) − x̃p|.

This is in contradiction with (5.7) and concludes the proof of the theorem.
Remark 5.7. The construction of the sequence (xp)0≤p≤m is close to that pro-

posed in the proof of Theorem 3.4, but it is easier since we do not need that it loops
at x0. Indeed, in the above proof we do not really need that xm = x0, and we assume
this only for convenience of notation, while in the course of the proof of Theorem 3.4
we intended to use Claim 1 and then had to start from the special x0 found there.

At the moment we are not able to generalize this result to the case where ν is any
probability measure on Ω. On the other hand, it is clear that the above uniqueness
theorem requires that μ does not concentrate, as the following example shows.

Example 5.8. Assume that μ := H1�[0,1]×{0}, while ν := 1
2

(
δ(0,−1) + δ(0,1)

)
.

Then any transport map T (i.e., any μ-measurable function for which T#μ = ν) is an
infinitely cyclically monotone optimal transport map from μ to ν.

5.4. Comments around duality. For 1 ≤ p < ∞, the mass transport prob-
lem (Pp) may be rewritten as

(Pp) W p
p (μ, ν) = inf

{
Cp
p(λ) =

∫
Ω2

|y − x|pdλ(x, y) : λ ∈ Π(μ, ν)

}
.

In this form, the objective functional λ �→ Cp
p(λ) is linear over the compact convex set

Π(μ, ν), and it is then quite natural to associate with (Pp) its dual problem

(Dp) sup

{∫
Ω

φ(x)dμ(x) +

∫
Ω

ψ(y)dν(y) : φ(x) + ψ(y) ≤ |y − x|p
}
,

where φ ∈ L1(dμ), ψ ∈ L1(dν), and the constraint is required to hold for μ a.e. x and
ν a.e. y. Due to the regularity of the integrand cp(x, y) := |y − x|p, the supremum
of (Dp) is achieved for a couple (ϕ,ϕcp) where the Kantorovich potential ϕ is con-
tinuous and cp-concave. We refer the reader, for example, to section 3 of [2], Part I
of [20], section 3.3 of [26], or section 2.4 of [32] for more on the related concepts and
results.

The Kantorovich dual problem (Dp) appears to be a fundamental tool in under-
standing and solving the problems of the characterization, existence, and uniqueness
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for an optimal transport map for (Pp). For example, the notion of p-cyclical mono-
tonicity (3.1) naturally appears via the equality sup(Dp) = inf(Pp); see, e.g., the proof
of Theorem 3.2 in [2] (an alternative and direct proofis, for example, that of Theo-
rem 2.3 in [20]). Moreover, a key point in the construction of an optimal transport
map Tp : supp(μ) → supp(ν) for (Pp) is to identify the directions of transportation
(known as transport rays for p = 1), that is, to associate with μ a.e. x ∈ supp(μ)

the direction
Tp(x)−x
|Tp(x)−x| to which the mass present at x is transferred. It is now well

understood that this direction may be obtained as the adequate cp-gradient of an op-
timal Kantorovich potential ϕ (see, e.g., [20, 19, 27] or section 2.4 of [32]). In fact, the
definition as well as the regularity properties of the transport rays are deeply linked
with the fact that the support of an optimal transport plan γp for (Pp) is p-cyclically
monotone and thus inherits good properties from being included in the subdifferential
of a cp-concave function (which, in turn, turns out to be a Kantorovich potential; see,
e.g., section 2.4 of [32]).

In light of the preceding discussion, it is natural to try to develop a duality theory
for the problem (P∞) as well. We hereafter informally discuss this issue.

First, in view of the Example 3.3, it does not seem realistic that one could obtain
useful information from an intrinsic approach. Indeed, the optimal transport plan λ
proposed in Example 3.3 is not induced by any transport map, so we cannot expect
that a dual problem directly associated with (P∞) via some general construction gives
information on the geometry of the optimal transport plans. On the other hand, notice
that Theorems 5.5 and 5.6 do indicate that there exists a unique infinitely cyclically
monotone optimal transport map for the particular problem of Example 3.3.

In view of the results of the two preceding sections, and since the notion of
infinitely cyclically monotone plan was at first obtained via a limiting argument,
one is led to study the asymptotic behavior of the family of dual problems (Dp)
as p → ∞. But as mentioned above, (Dp) is not directly related to (Pp) but to a
reformulation of (Pp) which requires taking the p-power of the objective functional
Cp. As a consequence, one should in fact take the 1

p -power of the objective functional

of (Dp) and then study the limiting problem as p → ∞; unfortunately, our research
in this direction has been unfruitful up to now. Finally, since the functional Cp is
not convex in λ, the convex duality theory does not apply directly to (Pp). But one
may wonder whether it is possible to overcome this difficulty and associate with (Pp) a
dual problem with a structure similar to that of (Dp): this is a quite involved question
known as Dudley’s problem (see, e.g., equation (1.1.10) and Remark 2.6.2 in [26]),
and it is out of the scope of the present study.

Despite the above difficulties, we believe that developing a duality theory for the
problem (P∞) is an important issue since it would yield a deeper understanding of
the problem of the existence and uniqueness for a particular optimal transport map.
Further explorations in this direction could follow the methods of [7, 16, 18].

Acknowledgments. The authors would like to thank Guy Bouchitté for propos-
ing the problem and for several fruitful discussions. The authors also thank Jouni
Parkkonen for bringing [17] to their attention.
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REGULARITY UP TO THE BOUNDARY FOR NONLINEAR
ELLIPTIC SYSTEMS ARISING IN TIME-INCREMENTAL

INFINITESIMAL ELASTO-PLASTICITY∗

PATRIZIO NEFF† AND DOROTHEE KNEES‡

Abstract. In this paper we investigate the question of higher regularity up to the boundary for
quasi-linear elliptic systems which originate from the time discretization of models from infinitesimal
elasto-plasticity. Our main focus lies on an elasto-plastic Cosserat model. More specifically we show
that the time discretization renders H2-regularity of the displacement and H1-regularity for the
symmetric plastic strain εp up to the boundary, provided that the plastic strain of the previous time
step is in H1 as well. This result contrasts with classical Hencky and Prandtl–Reuss formulations
where it is known not to hold due to the occurrence of slip lines and shear bands. Similar regularity
statements are obtained for other regularizations of ideal plasticity such as viscosity or isotropic
hardening. In the first part we recall the time continuous Cosserat elasto-plasticity problem, provide
the update functional for one time step, and show various preliminary results for the update functional
(Legendre–Hadamard/monotonicity). Using nonstandard difference quotient techniques we are able
to show the higher global regularity. Higher regularity is crucial for qualitative statements of finite
element convergence. As a result we may obtain estimates linear in the mesh-width h in error
estimates.

Key words. polar materials, perfect plasticity, higher global regularity, quasi-linear elliptic
systems, error estimates, time increments
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1. Introduction.

1.1. Plasticity and Cosserat models. This article addresses the regularity
question for time-incremental formulations of geometrically linear elasto-plasticity.
As a representative model problem we consider generalized continua of Cosserat-
micropolar type.

The basic difference of a Cosserat model as compared with classical continuum
models is the appearance of a nonsymmetric stress tensor which is augmented by a
generalized balance of angular momentum equation allowing one to model interaction
of particles not only by surface forces (classical Cauchy continuum) but also through
surface couples (Cosserat continuum). General continuum models involving indepen-
dent rotations as additional degrees of freedom were first introduced by the Cosserat
brothers in [15]. For an introduction to the theory of Cosserat and micropolar models
we refer the reader to the introduction in [49, 43, 45, 44, 48]; see also [22, 9].

There are a great many proposals for extensions of the elastic Cosserat framework
to infinitesimal elasto-plasticity. We mention only [17, 19, 31, 55]. Recently the finite-
strain formulation has been put into focus; see, e.g., [56, 62, 23] and the references
therein.
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The first author has also proposed an elasto-plastic Cosserat model [45, 44] in a
finite-strain framework. A geometrical linearization of this model has been investi-
gated in [46, 48] and is shown to be well-posed also in the rate-independent limit for
both quasi-static and dynamic processes.

When it comes to numerically solving problems in elasto-plasticity, then it is
common practice to discretize the time evolution in the flow rule for the plastic vari-
able with a backward Euler method and to consider a sequence of discrete-in-time
problems [50]. Provided that the elasto-plastic model has certain variational features
(hyperelasticity of the elastic response, associative flow rule) it is possible to recast
the problem for one time step (called the update problem in the following) itself into a
variational framework: the updated displacement is obtained as a minimizer of some
update functional; see, e.g., [61, 60, 2, 66, 67]. This line of thought can be nicely ex-
tended to finite-strain multiplicative plasticity; see [52, 37, 36, 38] and the references
therein. In the geometrically linear setting the resulting variational update problem
usually has the form of a quasi-linear elliptic system whose corresponding energy has
only linear growth (in case of perfect plasticity).

For qualitative statements on the rate of convergence of finite element methods
it is necessary to know precisely the regularity of the function to be approximated.
This then is the question on the regularity of the solution of the quasi-linear elliptic
system constituting the update problem.

As far as classical rate-independent (perfect) elasto-plasticity is concerned we
remark that global existence for the displacement has been shown only in a very weak,
measure-valued sense, while the stresses could be shown to remain in L2(Ω), provided
that a safe load condition is assumed. For these results we refer the reader, for
example, to [3, 13, 64]. If hardening or viscosity is added, then global H1-displacement
solutions are found (see, e.g., [1, 12, 11]), already without safe load assumption. A
complete theory for the classical rate-independent case remains, however, elusive; see
also the remarks in [13].

Since classical perfect plasticity is, therefore, notoriously ill-posed (the updated
displacements have derivatives only in a measure-valued sense) we focus in our in-
vestigation of higher regularity on certain modified update functionals which might
allow for more regular updates. The Cosserat elasto-plastic model in [46] is our basic
candidate. Based on this time-continuous model we investigate the time-incremental
formulation and study the global regularity of minimizers of the corresponding update
functional. In [49] this time-incremental formulation is the basis of a finite element
approximation.

Our focus on Cosserat models is justified by the fact that the Cosserat-type models
are today increasingly advocated as a means to regularize the pathological mesh size
dependence of localization computations where shear failure mechanisms [14, 40, 4]
play a dominant role; for applications in plasticity, see the nonexhaustive list [31, 19,
55, 17].

1.2. Outline of this contribution. Our contribution is organized as follows:
first, we recall the time-continuous geometrically linear elasto-plastic Cosserat model
as introduced in [45, 44] and investigated mathematically in [46, 48, 47].

Referring to the development in [49] we provide in section 2 the corresponding
time-discretized formulation based on a fully implicit backward Euler discretization
of the plastic flow rule in time. It is shown in [49] that at each time step tn the
updated displacement field un and the updated “Cosserat-microrotation-matrix” An

can equivalently be obtained from a convex minimization problem which involves only
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data from the previous time step. The plastic strain εnp is then derived from An and un

via a simple update formula. Furthermore, in [49] it has been shown that the update
problem admits unique minimizers un ∈ H1(Ω,R3), An ∈ H1(Ω, so(3)), and εnp ∈
L2(Ω,Sym(3)), provided that the data coming from the previous time step are smooth
enough. In order to quantify the rate of convergence of corresponding finite element
methods for the update problem we investigate the regularity of the displacements
un by studying the corresponding weak Euler–Lagrange equations. These equations
form a quasi-linear elliptic system of partial differential equations. The main result of
this paper is Theorem 5.2 in section 5, where we formulate a global regularity result
for weak solutions of a rather general class of quasi-linear elliptic systems of second
order. The time-incremental Cosserat plasticity formulation satisfies all the necessary
assumptions of the regularity result, which allows us to show higher regularity to
the extent that for all n ∈ N : un ∈ H2(Ω,R3), An ∈ H2(Ω, so(3)), and εnp ∈
H1(Ω,Sym(3)) if pure Dirichlet data are assumed. Let us remark that it remains an
open problem whether a similar regularity result is also valid for the time-continuous
Cosserat model or other regularized time-continuous plasticity formulations.

The general quasi-linear elliptic systems, which we study in section 5, are of the
following type: Find u ∈ H1

0 (Ω) such that for every v ∈ H1
0 (Ω)∫

Ω

〈M(x,∇u(x), z(x)),∇v(x)〉dx =

∫
Ω

〈f, v〉dx.

Here, z ∈ L2(Ω,RN ) and f ∈ L2(Ω,R3) are the given data. For the Cosserat model,
z is identified with (εnp , A

n); the explicit structure of M = MC is given in section 2.4.
It is shown that MC is rank-one monotone in ∇u and Lipschitz continuous but
not differentiable. Consequently, we assume in the general case that the function
M : Ω×M

m×d ×R
N → M

m×d is Lipschitz continuous, is rank-one monotone in ∇u,
and induces a G̊arding inequality. The precise conditions on M are formulated as
R1–R3 in section 5.1. Our main result is Theorem 5.2, where we prove for smooth
domains that u ∈ H2(Ω), provided that z ∈ H1(Ω) and f ∈ L2(Ω). We emphasize
that we do not need the differentiability of M and that we require M to be rank-one
monotone, only, instead of uniformly or strongly monotone. A further new aspect
compared to systems studied in the literature is the presence of the function z in the
definition of the differential operator.

Let us give a short overview on global regularity results for quasi-linear second
order systems. Systems with quadratic growth or, more generally, with p growth are
studied by several authors. We mention here the books [42, 39, 6] and the paper [53],
where global regularity results for systems of the type

DivM(x,∇u(x)) + f(x) = 0, u
∣∣
∂Ω

= gD,

are shown for smooth domains assuming that M is differentiable and strongly mono-
tone. Further results for Lipschitz domains were obtained in [21, 20, 57], again as-
suming that M is strongly monotone (or uniformly monotone if p �= 2), that it is
differentiable, and that there is a function W such that M = DW . These results
are proved with a difference quotient technique which relies on the standard finite
differences δhu(x) := u(x + h) − u(x).

In [16] the authors study systems where M(x, u,∇u) = B(x)∇u + h(x, u,∇u).
The main assumption in [16] is that B is uniformly positive definite, h is Hölder-
continuous with respect to ∇u, and h(x, u, ·) is uniformly monotone in zero. They
prove that the gradient of solutions belongs locally to certain Campanato–Spanne
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spaces. With our main result we can treat the case where h does not depend on u,
where it is Lipschitz continuous and monotone but not necessarily uniformly mono-
tone, and where B induces a rank-one positive quadratic form. We obtain u ∈ H2(Ω)
globally.

In [58] a nonlinear elliptic system is studied which is more related to our Cosserat

model. There, M is chosen as M(∇u) = h(|ε(u)|)
|ε(u)| ε(u), where ε(u) is the linearized

strain tensor, and it is assumed that h is differentiable except for a finite number of
points and that h is strongly monotone. It is shown for smooth domains that u ∈
H2(Ω) by investigating the regularity of functions uδ with Div(δε(uδ) +M(ε(uδ))) +
f = 0 for δ ↘ 0. The results for uδ are obtained with standard finite differences.
Further results for related models were obtained in [54, 7]. Let us remark that the
quasi-linear system we are interested in contains the above described systems as special
cases (if p = 2) and that our main result is not covered by the above references. The
local and global regularity of the stress fields of a class of degenerated quasi-linear
elliptic systems is investigated in the papers [10, 33].

Note that higher regularity is not known to hold for the displacements of the
classical limit of our formulation, which is the classical time-incremental Prandtl–
Reuss model. In the first update step this model in turn is nothing else than the total
deformation Hencky plasticity model. The Hencky model does not allow for regular
displacements. Here, it is known that the displacement u ∈ L

3
2 (Ω,R3) (see, e.g., [6,

p. 423]), while the classical symmetric stresses satisfy σ ∈ H1
loc(Ω,Sym(3))∩H

1
2−δ(Ω)

for every δ > 0 if the data are sufficiently regular and if Ω is a Lipschitz domain. See
[59, 24, 5, 51, 18] for the local and [32] for the global result.

The proof of our own regularity result is split into the three classical steps. In the
first step we investigate the tangential regularity of weak solutions in the case where
Ω is a cube. Since we assumed rank-one monotonicity, only, we cannot apply the
standard difference quotient technique in this step. Instead, we use finite differences
which are based on inner variations: 
hu(x) = u(τh(x)) − u(x), where τh(x) =
x + ϕ2(x)h for h ∈ R

d and a cut-off function ϕ. This will be explained in more
detail in Remark 5.5. Let us note that these nonstandard differences were recently
applied by Nesenenko [51] in order to obtain higher local regularity for models from
elasto-plasticity with linear hardening. In the second step we prove higher regularity in
directions normal to the boundary. Due to the lack of differentiability of M we cannot
apply the usual arguments (i.e., solving the equation for the normal derivatives) to
obtain the differentiability of ∇u in the normal direction. Instead, we exploit the rank-
one monotonicity of M in order to get more information on the missing derivative.
In the final step we prove the result for arbitrary bounded C1,1-smooth domains by
the usual localization procedure. The notation is found in the appendix.

2. The infinitesimal elasto-plastic Cosserat model. In this section we re-
call the specific isotropic infinitesimal elasto-plastic Cosserat model which has been
proposed in a finite-strain setting in [44] and which was analyzed in [46]. Moreover,
we derive a discrete formulation. This section does not contain new results; it serves
to provide the clear definition of the problem and to introduce some of the notation.

2.1. Time-continuous infinitesimal elasto-plastic Cosserat model. The
geometrically linear time continuous system in variational form with nondissipative
Cosserat effects reads as follows: for given body forces f(t) ∈ L2(Ω,R3) and given
Dirichlet data find the displacement u(t) ∈ H1(Ω,R3), the skew-symmetric microro-
tation A(t) ∈ H1(Ω, so(3)), and the symmetric plastic strain εp(t) ∈ L2(Ω,Sym(3))
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with ∫
Ω

W (∇u,A, εp(t)) − 〈f(t), u〉dx �→ min w.r.t. (u,A) at fixed εp(t),

W (∇u,A, εp) = μ ‖sym∇u− εp‖2

+ μc ‖skew(∇u−A)‖2
+

λ

2
tr [∇u]

2
+ 2μL2

c ‖∇ axl(A)‖2
,

ε̇p(t) ∈ ∂χ(TE(t)), TE = 2μ (ε− εp), εp ∈ Sym(3) ∩ sl(3), εp(0) = ε0
p,

u|ΓD
= gD(t, x) − x, A|ΓD

= skew(∇gD(t, x))|ΓD
.(2.1)

Here, Ω ⊂ R
3 is a bounded smooth domain and ΓD ⊂ ∂Ω is that part of the boundary

where Dirichlet data are prescribed. The parameters μ, λ > 0 are the Lamé constants
of isotropic linear elasticity, μc > 0 is the Cosserat couple modulus, and Lc > 0 is an
internal length parameter.1 The classical symmetric elastic strain sym∇u is denoted
by ε. The linear operator axl : so(3) → R

3 provides the canonical identification
between the Lie algebra so(3) of skew-symmetric matrices and vectors in R

3. The Lie
algebra of trace-free matrices is denoted by sl(3), and dev : M

3×3 → sl(3), devX =
X− 1

311 is the orthogonal projection onto sl(3). As regards the plastic flow rule, ∂χ is
the subdifferential of a convex flow potential χ : M

3×3 → R
+ acting on the generalized

conjugate forces, i.e., the Eshelby stress tensor TE = −∂εpW (∇u,A, εp), where W is
the free energy used in (2.1).2

The corresponding system of partial differential equations coupled with the flow
rule is given by (note that ‖A‖2

M3×3 = 2 ‖axl(A)‖2
R3 for A ∈ so(3,R))

Div σ = −f, x ∈ Ω, balance of forces,

σ = 2μ (ε− εp) + 2μc (skew(∇u) −A) + λ tr [ε] · 11,
−μL2

c Δ axl(A) = μc axl(skew(∇u) −A), balance of angular momentum,

ε̇p(t) ∈ ∂χ(TE), TE = 2μ (ε− εp),

u|ΓD
(t, x) = gD(t, x) − x, A|ΓD

= skew(∇gD(t, x))|ΓD
,

σ.
n|∂Ω\ΓD
(t, x) = 0, μL2

c∇ axl(A).
n|∂Ω\ΓD
(t, x) = 0,

εp(0) ∈ Sym(3) ∩ sl(3).

Note that in this model the force stresses σ need not be symmetric and that the
Cosserat effects, active through the microrotations A, appear only in the balance
equations but not in the plastic flow rule since TE does not depend on A. It is worth
noting that this model is intrinsically thermodynamically correct. If ΓD = ∂Ω, then
the model admits global weak solutions with the regularity [46]:

u ∈ L∞([0, T ], H1(Ω,R3)), A ∈ L∞([0, T ], H1(Ω, so(3))),

εp ∈ L∞([0, T ], L2(Ω,Sym(3) ∩ sl(3))).

2.2. Backward Euler time discretization of the flow rule. For a numerical
treatment we consider the time discretization of the flow rule with the fully implicit
backward Euler scheme. Let 0 = t0 < t1 < · · · < tN = T be a subdivision of the

1Observe that for μc = 0 or Lc = 0 one recovers the classical Prandtl–Reuss formulation for the
displacement u.

2The specification χ = IK as indicator function of some elastic domain is not necessary at this
point.
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time interval [0, T ] with tj − tj−1 = Δt. Let fn(x) = f(x, tn), and assume that at
time tn−1 a sufficiently regular plastic strain field εn−1

p ∈ Sym(3) ∩ sl(3) is given.
We want to determine the updated displacement un ∈ H1(Ω,R3), the updated skew-
symmetric microrotation An ∈ H1(Ω, so(3)) and the updated symmetric plastic strain
εnp ∈ L2(Ω,Sym(3) ∩ sl(3)) satisfying

Div σn = −fn, x ∈ Ω,

σn = 2μ (εn − εnp ) + 2μc (skew(∇un) −An) + λ tr [εn] · 11,
−μL2

c Δ axl(An) = μc axl(skew(∇un) −An),(2.2)

εnp − εn−1
p

Δt
∈ ∂χ(Tn

E), Tn
E = 2μ (εn − εnp ),

un
|ΓD

(x) = gnD(x) − x, An
|ΓD

= skew(∇gnD(x)),

σn.
n|∂Ω\ΓD
(x) = 0, μL2

c∇ axl(A)n.
n|∂Ω\ΓD
(x) = 0,

εn−1
p ∈ L2(Ω,Sym(3) ∩ sl(3)).

It is possible to explicitly solve the discretized flow rule (2.2)4 for εnp in terms of εn−1
p ,

εn, and Δt. To see this, consider

εnp − εn−1
p

Δt
∈ ∂χ(2μ (εn − εnp )) ⇔ 0 ∈ ∂χ(2μ (εn − εnp )) −

εnp − εn−1
p

Δt
(2.3)

⇔ 0 ∈ ∂εnp

(
μ
∥∥εnp − εn−1

p

∥∥2
+ Δt χ(2μ (εn − εnp ))

)
.

Thus we can define the local potential for the local flow rule

(2.4) V time(εn, εnp , ε
n−1
p ,Δt) := μ

∥∥εnp − εn−1
p

∥∥2
+ Δt χ(2μ (εn − εnp )).

It is easy to see that V time is strictly convex in εnp ; thus V time admits a unique
minimizer satisfying (2.3)3. Moreover, we have

V time(εn, εnp , ε
n−1
p ,Δt) = μ

∥∥εnp − εn−1
p

∥∥2
+ Δt χ(2μ (εn − εnp ))

=
1

4μ

∥∥2μ(εnp − εn + εn − εn−1
p )

∥∥2
+ Δt χ(2μ (εn − εnp ))

=
1

4μ
‖Σn − Σn

trial‖
2

+ Δt χ(Σn) = Ṽ (Σn,Σn
trial),

where Σn = 2μ (εn − εnp ) and the so-called trial stresses Σn
trial = 2μ (εn − εn−1

p ).

Minimizing V time with respect to εnp is equivalent to minimizing Ṽ with respect to
Σn. Proceeding further, we specialize χ. Let us define the elastic domain in stress
space

K := {Σ ∈ M
3×3 | ‖dev Σ‖ ≤ σy},

with initial yield stress σy, [σy] = [MPa], and corresponding indicator function

IK(Σ) =

{
0, ‖dev Σ‖ ≤ σy,

∞, ‖dev Σ‖ > σy,

and let χ = IK . We have therefore ∂χ = ∂IK in the sense of the subdifferential. With
this choice, the unique minimizer of Ṽ is simply characterized by

inf
Σn∈K

‖Σn − Σn
trial‖

2
,
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independent of Δt. The solution is the orthogonal projection of Σn
trial onto the convex

set K, denoted by

Σn = PK(Σn
trial) ⇒ 2μ (εn − εnp ) = PK(2μ (εn − εn−1

p )).

Reintroducing the last result into the balance of forces equation (2.2)1 delivers

Div σn = −fn, x ∈ Ω,

σn = PK(2μ (εn − εn−1
p )) + 2μc (skew(∇un) −An) + λ tr [εn] · 11.(2.5)

This step is called return mapping [61, 60] in an engineering context of classical
plasticity. At the given plastic strain of the previous time step εn−1

p this equation is
the strong form of the update problem for the force-balance equation.

Gathering the previous development the formal problem for the update consists
of determining un ∈ H1(Ω,R3), An ∈ H1(Ω, so(3)), and εnp ∈ L2(Ω,Sym(3) ∩ sl(3))
satisfying

Div σn = −fn, x ∈ Ω,

σn = PK(2μ (εn − εn−1
p )) + 2μc (skew(∇un) −An) + λ tr [εn] · 11,(2.6)

−μL2
c Δ axl(An) = μc axl(skew(∇un) −An).

The updated plastic strain field is then given by

εnp = εn − 1

2μ
PK(2μ (εn − εn−1

p )).(2.7)

For the precise formulation of this system we need the projection operator onto the
yield surface which we recall in the following.

2.3. The projection onto the yield surface. Let K be a convex domain in
stress space defined as

(2.8) K :=
{
Σ ∈ M

3×3 | ‖dev Σ‖ ≤ σy

}
.

The orthogonal projection PK : M
3×3 → K onto this set is uniquely given by (see,

e.g., [29, 30])

PK(Σ) =

{
Σ, Σ ∈ K,

Σ − (‖dev Σ‖ − σy)
dev Σ

‖dev Σ‖ , Σ /∈ K

=

{
Σ, ‖dev Σ‖ ≤ σy,
1
3 tr [Σ] 11 +

σy

‖dev Σ‖ dev Σ, ‖dev Σ‖ > σy.

It is easy to see that PK is Lipschitz continuous but not differentiable at Σ with
‖dev Σ‖ = σy.

3 From convex analysis it is clear that PK represents a monotone
operator which is nonexpansive. Therefore, PK has Lipschitz constant 1. Observe
also that

(2.10) PK(Σ) =
1

3
tr [Σ] 11 + PK(dev Σ).

3Consider the simple example p : R → R,

(2.9) p(x) =

{
x, |x| ≤ σy,

σy
x
|x| , |x| > σy.
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For future reference we calculate also

Σ − PK(Σ) =

{
0, ‖dev Σ‖ ≤ σy,

dev Σ
(
1 − σy

‖dev Σ‖

)
, ‖dev Σ‖ > σy

= [‖dev Σ‖ − σy]+
dev Σ

‖dev Σ‖ ,(2.11)

‖Σ − PK(Σ)‖2
= [‖dev Σ‖ − σy]

2
+ ,

where [x]+ := max{0, x}.
2.4. Weak form of the reduced update problem. From now onwards we

take ΓD = ∂Ω and assume gD = x; i.e., the body is fixed everywhere on its boundary
and subject only to body forces. This assumption allows us to confine attention to
the simpler setting in H1

0 (Ω). We introduce the nonlinear mapping

MC : M
3×3 × Sym(3) × so(3) → M

3×3,

MC(X, εp, A) := PK(2μ(symX − εp)) + λ tr [X] 11 + 2μc(skew(X) −A).(2.12)

The weak form of the update problem (2.6) now reads as follows: for given fn ∈
L2(Ω,R3) and εn−1

p ∈ L2(Ω,Sym(3)∩ sl(3)) find (un, An) ∈ H1
0 (Ω,R3)×H1

0 (Ω, so(3))
satisfying for all v ∈ H1

0 (Ω,R3) and all B ∈ H1
0 (Ω, so(3))∫

Ω

〈MC(∇un, εnp , A
n),∇v〉dx =

∫
Ω

〈fn, v〉dx,(2.13)

μL2
c

∫
Ω

〈DAn, DB〉dx = μc

∫
Ω

〈skew∇un−An, B〉dx.(2.14)

The updated plastic strain field εnp is then obtained by (2.7). It is shown in [49] that
for every n the system (2.13)–(2.14) admits a unique weak solution un ∈ H1

0 (Ω,R3)
and An ∈ H1

0 (Ω, so(3)). Equation (2.13) represents the quasi-linear elliptic system
for determining un, which will be discussed with respect to regularity. Together with
εn−1
p , εn ∈ H1(Ω,Sym(3)), which we will obtain from the regularity result to be proven

below, using (2.7) we see that εnp ∈ H1(Ω,Sym(3)).
Lemma 2.1 (strong Legendre–Hadamard ellipticity). Let μ > 0, 2μ + 3λ > 0,

and 0 < μc. Then the matrix-valued function MC is strongly rank-one monotone;
i.e., there exists a constant c+LH > 0 such that for every X ∈ M

3×3, εp ∈ Sym(3),
A ∈ so(3) and for all ξ, η ∈ R

3 we have

(2.15) 〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉 ≥ c+LH ‖ξ‖2 ‖η‖2
.

Proof. The projection PK itself is monotone, and for μ > 0 there is no sign
change. Thus the map X → PK(2μ(symX−εp)) is also monotone in X. Since (2.10)
holds we have

〈PK(2μ(symX + ξ ⊗ η − εp)) − PK(2μ(symX − εp)), ξ ⊗ η〉 ≥ 2μ

3
tr [ξ ⊗ η]

2
.

For the remaining linear contribution we have

〈λ tr [X + ξ ⊗ η] 11 + 2μc skew(X + ξ ⊗ η −A) − [λ tr [X] 11 + 2μc skew(X −A)] , ξ ⊗ η〉
= λ tr [ξ ⊗ η]

2
+ 2μc ‖skew(ξ ⊗ η)‖2

.
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Thus

〈MC(X + ξ ⊗ η, εp, A) −MC(X, εp, A), ξ ⊗ η〉

(2.16)

≥ 2μ+3λ
3 tr [ξ ⊗ η]

2
+ 2μc ‖skew(ξ ⊗ η)‖2

= 2μ+3λ
3 〈ξ, η〉2 + μc

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)
split μ1

c + μ2
c = μc

=
(

2μ+3λ
3 − μ1

c

)
〈ξ, η〉2 + μ1

c ‖ξ‖
2 ‖η‖2

+ μ2
c

(
‖ξ‖2 ‖η‖2 − 〈ξ, η〉2

)
︸ ︷︷ ︸

≥0

≥
(

2μ+3λ
3 − μ1

c

)
〈ξ, η〉2 + μ1

c ‖ξ‖
2 ‖η‖2 ≥ μ1

c ‖ξ‖
2 ‖η‖2

if 0 < μ1
c < 3λ+2μ

3 . Thus MC generates a strongly Legendre–Hadamard elliptic

operator with ellipticity constant c+LH = min(μc,
2μ+3λ

3 ).
Obviously, M is Lipschitz continuous: for every Xi ∈ M

3×3, Pi ∈ Sym(3), Ai ∈
so(3) we have

‖MC(X1, P1, A1)−MC(X2, P2, A2)‖ ≤ LMC
(‖X1 −X2‖+ ‖P1 −P2‖+ ‖A1 −A2‖) .

Lemma 2.2. Let μ > 0, 2μ + 3λ > 0, and μc > 0. The operator MC generates
a strongly monotone operator on H1

0 (Ω,R3); that is, there exists a constant cMC
> 0

such that for every v1, v2 ∈ H1
0 (Ω,R3) and for all εp ∈ L2(Ω,Sym(3)) and A ∈

L2(Ω, so(3)) we have
(2.17)∫

Ω

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉dx ≥ cMC
‖v1 − v2‖2

H1
0 (Ω,R3) .

Proof. The same calculation as in the proof of Lemma 2.1 yields the estimate

〈MC(∇v1, εp, A) −MC(∇v2, εp, A),∇v1 −∇v2〉

≥ 2μ + 3λ

3
tr [∇v1 −∇v2]

2
+ 2μc ‖skew(∇v1 −∇v2)‖2

.

Set u = v1 − v2 and consider

(2.18)
2μ + 3λ

3
tr [∇u]

2
+ 2μc ‖skew∇u‖2

=
2μ + 3λ

3
|Div u|2 + μc ‖curlu‖2

.

The Div/Curl inequality on the space H1
0 (Ω) guarantees that there exists C+ > 0

such that

(2.19) ∀ u ∈ H1
0 (Ω,R3) :

∫
Ω

|Div u|2 + ‖curlu‖2
dx ≥ C+ ‖u‖2

H1
0 (Ω,R3) ;

see, for example, [28]. Applying this inequality to (2.18) implies finally (2.17).
It is instructive to realize that although the quadratic form (2.18) is formally

positive in the sense of Nečas [41] and strongly Legendre–Hadamard elliptic with
constant coefficients it is impossible to extend the analysis to Dirichlet boundary
conditions given only on a part of the boundary ∂Ω. We observe that

(2.20)

∥∥∥∥√μc skewX +
√

λ
2·3 tr [X] 11

∥∥∥∥
2

=
λ

2
tr [X]

2
+ μc ‖skewX‖2

.
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Let Â be the constant-coefficient first order differential operator

Â.∇u =
√
μc skew(∇u) +

√
λ

2·3 tr [∇u] 11.

The corresponding Fourier symbol is given as a linear operator A(ξ) : C
3 → C

3×3

with

(2.21) A(ξ).û :=
√
μc skew(ξ ⊗ û) +

√
λ

2·3 tr [ξ ⊗ û] 11.

From (2.20) it follows that

‖A(ξ).û‖2
=

λ

2
tr [ξ ⊗ û]

2
+ μc ‖skew ξ ⊗ û‖2

.

By algebraic completeness of the symbol A(ξ) : C
3 → C

3×3 it is meant

∀ ξ ∈ C
3, ξ �= 0 : A(ξ).û = 0C3×3 ⇒ û = 0C3 .

Recall that the corresponding statement for real ξ, i.e.,

∀ ξ ∈ R
3, ξ �= 0 : A(ξ).û = 0R3×3 ⇒ û = 0R3 ,

is a consequence of strict Legendre–Hadamard ellipticity of Â. If the symbol is alge-
braically complete, then, using the result in Nečas [41] the induced quadratic form∫

Ω

∥∥Â.∇u
∥∥2

+ ‖u‖2
dx

is an equivalent norm on H1(Ω,R3). However, we proceed to show that A as defined
in (2.21) corresponding to our quadratic form (2.18) is not algebraically complete.

Proof. To this end we write

A(ξ).û = 0 ⇒ tr [ξ ⊗ û] = 0, and skew(ξ ⊗ û) = 0 ⇒ ξ = û, tr [ξ ⊗ ξ] = 0.

Consider for simplicity the two-dimensional case:

ξ =

(
α1 + i β1

α2 + i β2

)
, ξ ⊗ ξ =

(
ξ1 ξ1 ξ1 ξ2
ξ2 ξ1 ξ2 ξ2

)
,

tr [ξ ⊗ ξ] = ξ1ξ1 + ξ2ξ2 = α2
1 + α2

2 − (β2
1 + β2

2) + 2i(α1β1 + α2β2) = 0.

Choosing ξ = (i, 1)T shows that tr [ξ ⊗ ξ] = 0, which proves the claim.
Thence, the quadratic form is not algebraically complete, and this excludes the

treatment of mixed boundary conditions on u in the following: we are forced to assume
ΓD = ∂Ω. However, inhomogeneous Dirichlet conditions may be prescribed as far as
the use of the Div/Curl estimate is concerned.

2.5. Variational form of the update problem. Due to the underlying vari-
ational formulation, the weak form (2.13) of the time-incremental Cosserat problem
still has a variational structure. In [49] it is shown that solving (2.13)–(2.14) is equiva-
lent to the following minimization problem: find (un, An) ∈ H1

0 (Ω,R3)×H1
0 (Ω, so(3))

which minimize the functional

(2.22) Inincr(u,A) = Eincr(u,A, ε
n−1
p ) −

∫
Ω

〈fn, u〉dx
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in H1
0 (Ω,R3) × H1

0 (Ω, so(3)). Here, Eincr denotes the free energy of the incremental
problem defined by

Eincr(u,A, εp) =
1

2μ

∫
Ω

Ψ
(
2μ(sym(∇u) − εp)

)
dx +

λ

2

∫
Ω

tr [∇u]
2
dx

+ μc

∫
Ω

‖skew(∇u) −A‖2
dx + μL2

c

∫
Ω

‖DA‖2
dx,(2.23)

with a potential function Ψ : M
3×3 → R

+ of the form

Ψ(X) :=

⎧⎨
⎩

1
2 ‖X‖2

, ‖devX‖ ≤ σy,

1
2

(
1
3 tr [X]

2
+ 2σy ‖devX‖ − σ2

y

)
, ‖devX‖ > σy

=
1

2
‖X‖2 − 1

2
[‖devX‖ − σy]

2
+ .(2.24)

Clearly, Ψ is convex but not strongly convex outside the yield surface. Moreover, it
has only linear growth outside the yield surface. Note that for the first time step
n = 1 and ε0

p = 0, μc = 0, Lc = 0 the functional I1
incr(u, 0) reduces to the primal

plastic functional of static perfect plasticity (Hencky plasticity) [35, 63, 24, 25, 6].
Calculating the subdifferential of the convex potential shows that

∂Ψ(Σ).H =

{
〈Σ, H〉, ‖dev Σ‖ ≤ σy,
1
3 tr [Σ] tr [H] +

σy

‖dev Σ‖ 〈dev Σ,devH〉, ‖dev Σ‖ > σy

= 〈PK(Σ), H〉.(2.25)

Hence ∂Ψ(Σ) = PK(Σ), motivating the variational structure. The following relation-
ship between the potential Ψ and the projection PK is also valid:

Ψ(X) = 1
2 ‖X‖2 − 1

2 ‖X − PK(X)‖2
.

For future reference the second differential of the potential Ψ can be calculated in
those points where the potential is differentiable. It holds that

D2
XΨ(X).(H,H) =

⎧⎪⎪⎨
⎪⎪⎩
‖H‖2

, ‖devX‖ < σy,

does not exist, ‖devX‖ = σy,
1
3 tr [H]

2
+ σy

(
‖devH‖2

‖devX‖ − 〈devX,H〉2
‖devX‖3

)
, ‖devX‖ > σy.

(2.26)

The potential Ψ is not strictly rank-one convex in X, since taking H = ξ ⊗ η with
〈ξ, η〉 = 0 yields

D2
XΨ(X).(ξ ⊗ η, ξ ⊗ η) =

⎧⎨
⎩
‖ξ‖2 ‖η‖2

, ‖devX‖ ≤ σy,

σy

(
‖dev ξ⊗η‖2

‖devX‖ − 〈devX,ξ⊗η〉2
‖devX‖3

)
, ‖devX‖ > σy.

Taking X = ξ ⊗ η shows finally

D2
XΨ(X).(ξ ⊗ η, ξ ⊗ η) =

{
‖ξ‖2 ‖η‖2

, ‖devX‖ ≤ σy,

0, ‖devX‖ > σy.
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3. Improved error estimates for Cosserat plasticity. Let h > 0 be the
mesh size of a finite element method, and let Vh ⊂ H1

0 (Ω,R3) be a corresponding
discrete finite element space. Let us concentrate on the displacement approximation
only. In [49, Thm. 8] the following error estimate for the discrete solution uμc,n

h ∈ Vh

of the Galerkin approximation of (2.23) in Vh has been shown:

(3.1) ‖uμc,n − uμc,n
h ‖

H1
0 (Ω)

≤ C1

μc
inf

vh∈Vh

‖uμc,n − vh‖H1
0 (Ω) ,

with a constant C1 > 0. Here, uμc,n = un is the exact solution of (2.13).
Using our regularity result from section 5, i.e., uμc,n ∈ H2(Ω,R3), the right-hand

side can be estimated qualitatively. If Vh is chosen to be the space of piecewise linear
finite elements, then it holds [8, p. 107] that

(3.2) ‖uμc,n − uμc,n
h ‖

H1
0 (Ω)

≤ C2

μc
h ‖uμc,n‖H2(Ω) .

In [49] it has also been shown that for μc → 0 the classical Prandtl–Reuss symmetric
Cauchy stresses σ0 are approximated by the sequence of nonsymmetric stresses σμc

whenever a safe load condition is satisfied. The estimate (3.2) strongly suggests
therefore to balance h against μc to obtain optimal rates of convergence to the classical
solution as in [54], where hardening-type approximations have been considered.

4. Higher regularity for alternative regularized update potentials. Our
regularity result can also be applied to many other problems arising in the context of
infinitesimal plasticity. There exist several other possibilities to regularize the classical
update problem for the Prandtl–Reuss model. We recall the classical update problem:
find a minimizer un ∈ BD(Ω,R3) of the functional

(4.1) Iclass
incr (u) = Eclass

incr (u, εn−1
p ) −

∫
Ω

〈fn, u〉dx,

where Eclass
incr denotes the free energy of the classical incremental problem defined by

(4.2) Eclass
incr (u, εp) =

1

2μ

∫
Ω

Ψ
(
2μ(sym(∇u) − εp)

)
dx +

∫
Ω

λ

2
tr [∇u]

2
dx,

with the potential Ψ as in (2.24). There is a vast literature on this Prandtl–Reuss
update problem, mostly for the first time step n = 1, in which case it is the classical
Hencky problem of total deformation plasticity [63, 54, 24, 25]. In this case, the
plastic strain field εp is a symmetric bounded measure [63, 6]. The classical symmetric
Cauchy stresses σ = 2μ (sym∇u− εp)+λ tr [∇u] 11 satisfy σ ∈ L2(Ω,Sym(3)); indeed
higher regularity for the stresses can be shown in the sense that σ ∈ H1

loc(Ω,Sym(3))∩
H

1
2−δ(Ω).

For regularization purposes the following proposals are usually made:

(4.3) Ereg
incr(u, εp) =

1

2μ

∫
Ω

Ψ
(
2μ(sym(∇u)−εp)

)
dx+

∫
Ω

λ

2
tr [∇u]

2
+Reg(∇u, εp) dx,

with the function Reg in the form

(4.4)

Reg(∇u, εp) =
μ δ

2
‖dev sym∇u− εp‖2

, Fuchs and Seregin [24, p. 60],
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Reg(∇u, εp) =
1

2μ (1 + Δt
η )

[‖μ(dev sym∇u− εp)‖ − σy]
2
+ , linear viscosity η,

Reg(∇u, εp) =
μ δ

2
‖∇u− εp‖2

, locally strictly convex in ∇u.

In each case, for δ > 0 the density of the update problem is then uniformly convex in
the symmetric strain ε = sym∇u. Moreover,

(4.5) Reg(∇u, εp) +
λ

2
tr [∇u]

2 ≥ c+ ‖ε− εp‖2
,

Korn’s first inequality establishes quadratic growth, and we have uniform convexity
for the regularized problem. Our main regularity result applies therefore also to these
models.

In the case with linear hardening it is simpler to write the update potential
directly. We consider as an example isotropic hardening with the hardening variable
α ≥ 0 (a measure for the accumulated plastic strain in the previous time step). Here,
the energy Eincr can be expressed as (cf. [60, p. 124])

(4.6) Ehard
incr (u, εp, α) =

1

2μ

∫
Ω

Ψhard

(
2μ(sym(∇u) − εp), α

)
dx +

∫
Ω

λ

2
tr [∇u]

2
dx,

with (cf. (2.24))

Ψhard(X,α) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 ‖X‖2

, ‖devX‖ ≤ σy + H α,
1

2 (1+ H
1[MPa] )

(
H

1[MPa] ‖X‖2
+ 1

3 tr [X]
2

+ 2 (σy + H α) ‖devX‖ − (σy + H α)2
)
, ‖devX‖ > σy + H α

=
1

2
‖X‖2 − 1

2 (1 + H
1[MPa] )

[
‖devX‖ − (σy + H α)

]2
+
,(4.7)

whose second derivative coincides with the consistent tangent method introduced al-
ready in [61]. The constant H > 0 is the hardening modulus with dimension [MPa].
In this form it is easy to see that for positive hardening modulus H > 0 the isotropic
hardening update potential is uniformly convex in sym∇u with quadratic growth and
has a Lipschitz continuous derivative. Therefore, our main regularity result applies
also to this functional.4 The relative merits of each individual regularization scheme
depend on their ability to balance regularization and approximation. Linear viscosity
and hardening can be justified on physical grounds, but the (small) viscosity param-
eter η > 0 is difficult to estimate, as is the linear hardening modulus H > 0. The
physically motivated regularization terms have the property to control only the sym-
metric part of the displacement gradient. The regularization (4.4)3, however, does
not satisfy the linearized frame-indifference condition.

All alternative regularization procedures thus establish local coercivity in the
strains. In contrast, the Cosserat regularization is weaker in the sense that only strong
Legendre–Hadamard ellipticity is reestablished, which, provided that displacement
boundary data are prescribed, suffices for existence, uniqueness, and higher regularity.
Thus the Cosserat approach appears as the weakest regularization among the ones
considered.

4Repin [54, eq. (2.3)] calls (4.4)2 linear hardening and shows the regularity uδ ∈ H2
loc(Ω,R3),

while for the planar case n = 2 he obtains uδ ∈ H2(Ω,R2) if Γ = ∂Ω is smooth.
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5. The regularity theorem. We know already that problem (2.22) has solu-
tions un ∈ H1(Ω,R3). Looking at the system for the microrotations An at given
∇un ∈ L2(Ω,M3×3) we realize at once that the linearity in An together with the
Laplacian structure allows us to use standard elliptic regularity results for linear sys-
tems, which yields higher regularity for the microrotations: An ∈ H2(Ω, so(3)). In
this section we study the regularity of the displacement field un, which is determined
through (2.13).

5.1. Higher regularity for a quasi-linear elliptic system. The quasi-linear
elliptic system introduced in section 2.4 is a special case of the systems which we
define here below. For d,m,N ≥ 1 and Ω ⊂ R

d let M : Ω × M
m×d × R

N → M
m×d

be a matrix-valued function with the following properties.
R1. The mapping M : Ω × M

m×d × R
N → M

m×d is a Carathéodory function
which is Lipschitz continuous in the following sense: there exist constants
L1, L2 > 0 such that for every x, xi ∈ Ω, a, ai ∈ M

m×d, and z, zi ∈ R
N we

have

‖M(x1, a, z) −M(x2, a, z)‖ ≤ L1(‖a‖ + ‖z‖) ‖x1 − x2‖ ,
‖M(x, a1, z1) −M(x, a2, z2)‖ ≤ L2(‖a1 − a2‖ + ‖z1 − z2‖),

M(x, 0, 0) = 0.

Assumption R1 implies the useful estimate

‖M(x1, a1, z1) −M(x2, a2, z2)‖
≤ L1(‖a1‖ + ‖z1‖) ‖x1 − x2‖ + L2(‖a1 − a2‖ + ‖z1 − z2‖).(5.1)

R2. The mapping M is strongly rank-one monotone. That means that there exists
a constant cLH > 0 such that for every x ∈ Ω, a ∈ M

m×d, z ∈ R
N , ξ ∈ R

m,
and η ∈ R

d we have

(5.2) 〈M(x, a + ξ ⊗ η, z) −M(x, a, z), ξ ⊗ η〉 ≥ cLH ‖ξ‖2 ‖η‖2
.

R3. The G̊arding inequality shall be satisfied: there exist constants CG > 0,
cG ∈ R such that for every u1, u2 ∈ H1(Ω) with u1 − u2 ∈ H1

0 (Ω) and for
every z ∈ L2(Ω) the following inequality is valid:

∫
Ω

〈M(x,∇u1, z) −M(x,∇u2, z),∇(u1 − u2)〉dx

≥ CG ‖∇(u1 − u2)‖2
L2(Ω) − cG ‖u1 − u2‖2

L2(Ω) .

Remark 5.1. If M is differentiable, then the G̊arding inequality already implies
that M is rank-one monotone; see, for example, [65, Thm. 6.1].

We investigate the regularity properties of weak solutions to the following quasi-
linear elliptic boundary value problem. For given g ∈ H

1
2 (∂Ω), z ∈ L2(Ω,RN ), and

f ∈ L2(Ω,Rm) find u ∈ H1(Ω,Rm) with u|∂Ω = g such that for every v ∈ H1
0 (Ω,Rm)

we have

(5.3)

∫
Ω

〈M(x,∇u(x), z(x)),∇v(x)〉dx =

∫
Ω

〈f, v〉dx.

Theorem 5.2. Let Ω ⊂ R
d be a bounded C1,1-smooth domain, m ≥ 1, and N ≥ 1,

and assume that M : Ω × M
m×d × R

N → M
m×d satisfies R1–R3. Furthermore, let
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g ∈ H
3
2 (∂Ω), z ∈ H1(Ω), and f ∈ L2(Ω). Every weak solution u ∈ H1(Ω) of (5.3)

with u|∂Ω = g is an element of H2(Ω) and satisfies

‖u‖H2(Ω) ≤ c
(
‖g‖

H
3
2 (∂Ω)

+ ‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
.

Before we prove Theorem 5.2, we apply it to the situation described in section 2.4.
There, m = d = 3 and R

N is identified with Sym(3) × so(3) so that z = (εp, A).
Moreover,

M(x,∇u, z) = MC(∇u, εp, A)

= PK(2μ(sym∇u− εp)) + λ(tr [∇u])11 + 2μc(skew(∇u) −A).

Since PK is a Lipschitz continuous mapping, we see immediately that assumption R1
is satisfied. R2 is proved in Lemma 2.1, and the G̊arding inequality is satisfied since
MC generates a strongly monotone operator on H1

0 (Ω); see Lemma 2.2. Therefore,
we have the following result for the reduced update problem (2.6).

Theorem 5.3. Let Ω be C1,1-smooth, fn ∈ L2(Ω), and εn−1
p ∈ H1(Ω). Then

un ∈ H2(Ω), An ∈ H2(Ω), and εnp ∈ H1(Ω).
The proof of Theorem 5.2 is carried out with a difference quotient technique. We

cover the boundary of Ω with a finite number of domains and map each of these do-
mains with a C1,1 diffeomorphism onto the unit cube in such a way that the image of
the boundary of Ω lies on the midplane of the unit cube. We first prove higher regu-
larity in directions tangential to the midplane by estimating difference quotients. The
regularity in the normal direction is then obtained on the basis of the tangential regu-
larity and by using the differential equation together with the rank-one monotonicity
of M.

Since M is nonlinear and since we assumed rank-one monotonicity instead of
strong monotonicity, we cannot use as test functions the usual finite differences of
the type h−1ϕ2(x)(u(x + h) − u(x)), where ϕ is a cut-off function. Instead, we use
differences which are based on inner variations. We begin the proof of Theorem 5.2
by studying a model problem on a half cube.

5.2. A model problem on a half cube. Let Cr = {x ∈ R
d; |xi| < r, 1 ≤ i ≤ d}

be a cube with side length 2r, C±
r the upper and lower half cube, respectively, and

Mr = {x ∈ Cr; xd = 0} the midplane.
Lemma 5.4. Let Ω = C−

1 , f ∈ L2(C−
1 ), and z ∈ H1(C−

1 ), and assume that u ∈
H1(C−

1 ) with u|M1 = 0 satisfies (5.3). Then for every r ∈ (0, 1) and for 1 ≤ i ≤ d−1
we have ∂iu ∈ H1(C−

r ). Moreover, there is a constant cr > 0 such that

(5.4) ‖∂iu‖H1(C−
r ) ≤ cr

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
.

Proof. Let r ∈ (0, 1) and ϕ ∈ C∞
0 (C1) with ϕ(x) = 1 on Cr. For h ∈ R

d we
introduce the mapping

τh : C1 → R
d : x → τh(x) = x + ϕ(x)h.

Let h0 = ‖ϕ‖−1
W 1,∞(C1)

min
{
1,dist(suppϕ, ∂C1)

}
. For every h ∈ R

d with |h| < h0 and

h parallel to the plane M1, the mapping τh is a diffeomorphism from C1 onto itself
with τh(C±

1 ) = C±
1 , τh(M1) = M1, and τh(x) = x for every x ∈ ∂C1; see, e.g., [26].

Moreover, τh has the following properties (if |h| < h0):

∇τh(x) =
(
11 + h⊗∇ϕ(x)

)
, det[∇τh(x)] = 1 + 〈h,∇ϕ(x)〉,

∇yτ
−1
h (y) =

(
11 + h⊗∇ϕ

)−1∣∣
τ−1
h (y)

= 11 −
(
(1 + 〈h,∇ϕ〉)−1h⊗∇ϕ

)∣∣
τ−1
h (y)

.
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For a function v : C−
1 → R

s we introduce


hv = v ◦ τh − v, 
hv = v − v ◦ τ−1
h .

For f, g ∈ L2(C−
1 ), |h| < h0 and h ‖ M1 the following product rule is valid:

(5.5)

∫
C−

1

f 
hg dx = −
∫
C−

1

g
hf dx −
∫
C−

1

(f ◦ τh g) 〈h,∇ϕ〉dx.

This identity can be shown by a transformation of coordinates y = τh(x) in the term
(g ◦ τ−1

h )f . Let u ∈ H1
0 (C−

1 ) be a solution of (5.3). For h ∈ R
d with |h| < h0

and h ‖ M1 we define the double difference vh(x) = 
h(
hu(x)). In view of the
assumptions on ϕ, h0, and h it follows that vh ∈ H1

0 (C−
1 ). Inserting vh into (5.3)

yields

(5.6)

∫
C−

1

〈M(x,∇u, z),∇vh〉dx =

∫
C−

1

〈f, vh〉dx.

Note that ∇vh = 
h∇(
hu) + [(det[∇τh])−1(∇
hu)h ⊗ ∇ϕ] ◦ τ−1
h , and therefore

(5.6) is equivalent to∫
C−

1

〈M(x,∇u, z),
h∇(
hu)〉dx

= −
∫
C−

1

〈
M(x,∇u, z),

(
det[∇τh]−1(∇
hu)h⊗∇ϕ

)
◦ τ−1

h

〉
dx +

∫
C−

1

〈f,
h
hu〉dx.

Furthermore, the product rule (5.5) entails∫
C−

1

〈
hM(x,∇u, z),∇
hu〉dx = −
∫
C−

1

〈M(x,∇u, z) ◦ τh,∇
hu〉〈h,∇ϕ〉dx

+

∫
C−

1

〈
M(x,∇u, z),

(
(det[∇τh])−1(∇
hu)h⊗∇ϕ

)
◦ τ−1

h

〉
dx

+

∫
C−

1

〈f,
h
hu〉dx

=: S1 + S2 + S3.(5.7)

Finally we have∫
C−

1

〈M(x,∇(u ◦ τh), z) −M(x,∇u, z),∇
hu〉dx

=

∫
C−

1

〈
hM(x,∇u, z),∇
hu〉dx

+

∫
C−

1

〈M(x,∇(u ◦ τh), z) −M(x,∇u, z) ◦ τh,∇
hu〉dx

(5.7)
= S1 + S2 + S3 +

∫
C−

1

〈M(x,∇(u ◦ τh), z) −M(x,∇u, z) ◦ τh,∇
hu〉dx

= S1 + · · · + S4.(5.8)

The next task is to show that there is a constant c > 0, which does not depend on h,
such that

(5.9) |S1 + · · · + S4| ≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
‖
hu‖H1(C−

1 ) .
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Due to the Lipschitz assumptions on M we have

|S1| + |S2| ≤ c |h| ‖M(·,∇u, z)‖L2(C−
1 ) ‖
hu‖H1(C−

1 )

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖L2(C−
1 )

)
‖
hu‖H1(C−

1 ) .

Moreover, since f ∈ L2(C−
1 ), the term S3 can be estimated as

|S3| ≤ c |h| ‖f‖L2(C−
1 ) ‖
hu‖H1(C−

1 ) .

By inequality (5.1) we see that

|S4| ≤ cL1 |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 )

)
‖
hu‖H1(C−

1 )

+ cL2

(
‖∇(u ◦ τh) − (∇u) ◦ τh‖L2(C−

1 ) + c |h| ‖z‖H1(C−
1 )

)
‖
hu‖H1(C−

1 ) .

The identity ∇(u ◦ τh) − (∇u) ◦ τh = (∇u) ◦ τh (h⊗∇ϕ) leads to

|S4| ≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 )

)
‖
hu‖H1(C−

1 ) .

Collecting all the above estimates we finally arrive at inequality (5.9). G̊arding’s
inequality (see R3) and Poincaré’s inequality imply that∫

C−
1

〈M(x,∇(u ◦ τh), z) −M(x,∇u, z),∇
hu〉dx

≥ CG ‖∇
hu‖2
L2(C−

1 ) − cG ‖
hu‖2
L2(C−

1 )

≥ c
(
‖
hu‖2

H1(C−
1 ) − |h|2 ‖u‖2

H1(C−
1 )

)
.

Combining the above estimates with (5.8) and (5.9) results finally in

‖
hu‖2
H1(C−

1 ) ≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
‖
hu‖H1(C−

1 )

+ c |h|2 ‖u‖2
H1(C−

1 ) ,

and the constant c is independent of h. From Young’s inequality we obtain

(5.10) |h|−1 ‖
hu‖H1(C−
1 ) ≤ c

(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) + ‖f‖L2(C−

1 )

)
.

It follows from this inequality that ∂iu ∈ H1(C−
r ) for 1 ≤ i ≤ d − 1 and that

‖∂iu‖H1(C−
r ) is bounded by the right-hand side in (5.10); see, e.g., [34].

Remark 5.5. If we choose the usual finite differences as test functions, i.e., ṽh(x) =
δ−h(ϕ2δhu), where δhu = u(x + h) − u(x), then similar calculations as those for vh
lead to the estimate∫

C−
1

ϕ2(x)〈M(x,∇u(x + h), z(x)) −M(x,∇u(x), z(x)), δh∇u〉dx

≤ c |h|
∥∥ϕ2δhu

∥∥
H1(C−

1 )
;(5.11)

compare also (5.8) and (5.9). But now neither R2 nor R3 helps us to find a lower
bound for the left-hand side of (5.11) in terms of ‖ϕ2δh∇u‖2

L2(C−
1 )

, since in general

δh∇u is not a rank-one matrix, and since we cannot interchange ϕ and M due to the
nonlinearity of M.
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Lemma 5.6 (regularity in the normal direction). With the same assumptions as
in Lemma 5.4 it follows for every r ∈ (0, 1) that ∂du ∈ H1(C−

r ). Furthermore, there
exists a constant cr > 0 such that

(5.12) ‖u‖H2(C−
r ) ≤ cr

(
‖z‖H1(C−

1 ) + ‖f‖L2(C−
1 ) + ‖u‖H1(C−

1 )

)
.

Proof. Let r ∈ (0, 1). Equation (5.3) implies that

(5.13) DivM(x,∇u(x), z(x)) + f(x) = 0

for almost every x ∈ C−
1 . Let Mi denote the columns of the matrix-valued function

M, i.e., Mi(x, a, z) = (Mα
i (x, a, z))1≤α≤m ∈ R

m for 1 ≤ i ≤ d. The Lipschitz
continuity of M and the tangential regularity proved in Lemma 5.4 guarantee that
∂iMi(·,∇u, z) ∈ L2(C−

r ) for 1 ≤ i ≤ d− 1 and is bounded by the right-hand side in
(5.4). Together with (5.13) we obtain therefore

∂dMd(·,∇u, z) = −f −
d−1∑
i=1

∂iMi(·,∇u, z) ∈ L2(C−
r ).

By Lemma 7.23 in [27] the derivative ∂d can be replaced with a finite difference in
the following way: For every Ω′ ⊂⊂ C−

r and every h ∈ R
d with |h| < dist(Ω′, ∂C−

r )
and h ⊥ M1 we have

‖δhMd(·,∇u, z)‖L2(Ω′) ≤
(
‖f‖L2(C−

r ) +

d−1∑
i=1

‖∂iMi(·,∇u, z)‖L2(C−
r )

)
|h|

=: c0 |h| .(5.14)

Here, δhv(x) := v(x + h) − v(x) for h ∈ R
d. Thus, for every h ⊥ M1 with |h| <

dist(Ω′, ∂C−
r ) we have

(5.15)

∫
Ω′

〈δhMd(x,∇u, z), δh∂du〉dx ≤ c0 |h| ‖δh∂du‖L2(Ω′) ,

where c0 is the constant from (5.14). We now split the left-hand side into a term
which can be estimated from below due to the rank-one monotonicity of M and
into terms which may be estimated from above using the Lipschitz continuity of M
and the regularity results from Lemma 5.4. For functions v : C−

1 → R
m we define

∇̃v(x) = (∂1v(x), . . . , ∂d−1v(x), 0) ∈ M
m×d. Furthermore, vh(x) := v(x + h) and

ed = (0, . . . , 0, 1)
 ∈ R
d. With these notations we have∫

Ω′
〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉dx

=

∫
Ω′

〈δhMd(x,∇u, z), δh∂du〉dx

+

∫
Ω′

〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x + h,∇uh, zh), δh∂du〉dx

= S1 + S2.(5.16)

The term S1 is already estimated in (5.15). From the Lipschitz continuity of M
(see (5.1)) and the regularity results of Lemma 5.4 we obtain by straightforward



REGULARITY FOR NONLINEAR ELLIPTIC SYSTEMS 39

calculations

|S2| ≤ c ‖δh∂du‖L2(Ω′)

((∥∥∇̃u + ∂duh ⊗ ed
∥∥
L2(Ω′)

+ ‖z‖H1(C−
1 )

)
|h| +

∥∥δh∇̃u
∥∥
L2(Ω′)

)(5.17)

≤ c |h|
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) +

∥∥∂d∇̃u
∥∥
L2(C−

r )

)
‖δh∂du‖L2(Ω′) ,

and the constant c is independent of Ω′ and h. Moreover, choosing ξ = ∂duh and
η = ed in (5.2), we obtain for the left-hand side in (5.16) from the rank-one mono-
tonicity of M that∫

Ω′
〈Md(x, ∇̃u + ∂duh ⊗ ed, z) −Md(x,∇u, z), δh∂du〉dx

≥ cLH ‖δh∂du‖2
L2(Ω′) .(5.18)

Estimates (5.15)–(5.18) together with Young’s inequality finally imply that

(5.19) |h|−1 ‖δh∂du‖L2(Ω′) ≤ c
(
‖u‖H1(C−

1 ) + ‖z‖H1(C−
1 ) +

∥∥∂d∇̃u
∥∥
L2(C−

r )

)
for every h ⊥ M1. The constant c is independent of h and Ω′ � C−

r . This implies
that ∂2

du ∈ L2(C−
r ) and that ‖∂2

du‖L2(c−r ) is bounded by the right-hand side in (5.19).

Estimate (5.12) is a combination of (5.19) and (5.4).

5.3. Proof of Theorem 5.2. Let the assumptions of Theorem 5.2 be valid, and
assume that g = 0. Choose x0 ∈ ∂Ω, and let Ux0

be a neighborhood of x0 such that
there exists a C1,1 diffeomorphism Φx0 : Ux0 → C1, where C1 is the unit cube in R

d,
with the following properties (we omit the index x0): Φ(U) = C1, Φ(U ∩ Ω) = C−

1 ,
Φ(U\Ω) = C+

1 , Φ(U ∩ ∂Ω) = M1, and Φ(x0) = 0. Let u ∈ H1
0 (Ω) be a solution for

(5.3) with the data f ∈ L2(Ω) and z ∈ H1(Ω). It follows that∫
U∩Ω

〈M(x,∇u, z),∇v〉dx =

∫
U∩Ω

〈f, v〉dx

for every v ∈ H1
0 (Ω ∩ U). After a transformation of coordinates with y = Φ(x) and

Ψ := Φ−1, the previous equation can be written as follows: Let ũ(y) = u(Ψ(y)). For
every v ∈ H1

0 (C−
1 ) we have∫

C−
1

〈M̃(y,∇ũ, z̃),∇v〉dy =

∫
C−

1

〈f̃ , v〉dy.

Here, we use the abbreviations

M̃(y, a, ζ) = |det[∇Ψ(y)]|M(Ψ(y), a(∇Ψ(y))−1, ζ)(∇Ψ(y))−
,(5.20)

f̃(y) = |det[∇Ψ(y)]| f(Ψ(y)),(5.21)

z̃(y) = z(Ψ(y))(5.22)

for y ∈ C−
1 , a ∈ M

m×d, and ζ ∈ R
N . It follows immediately from the properties of the

diffeomorphism Φ and from those of M that M̃ satisfies R1–R3 with respect to C−
1 .

Furthermore, f̃ and z̃ have the smoothness required in Lemma 5.4. Thus, Lemmata
5.4 and 5.6 guarantee that ũ ∈ H2(C−

r ) for every r < 1 and that estimate (5.12) is
valid. After applying the inverse transformation Ψ : C−

1 → U ∩ Ω, we have finally
shown the following: For every x0 ∈ Ω there exists an open neighborhood Ũx0

such
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that u|Ũx0
∩Ω ∈ H2(Ũx0

∩Ω) and estimate (5.12) is valid with respect to Ũx0
∩Ω. The

constants may depend on x0. Since Ω is assumed to be bounded, we can cover Ω by
a finite number of the domains Ũx0

and obtain finally that u ∈ H2(Ω) with

(5.23) ‖u‖H2(Ω) ≤ c
(
‖z‖H1(Ω) + ‖f‖L2(Ω) + ‖u‖H1(Ω)

)
.

This proves Theorem 5.2 for the case of vanishing Dirichlet conditions. The general
case can be seen as follows. There exists a linear and continuous extension operator
F : H

3
2 (∂Ω) → H2(Ω) with (F (g))

∣∣
∂Ω

= g for every g ∈ H
3
2 (Ω); see, for example,

[68]. Then u ∈ H1(Ω) with u|∂Ω = g for some g ∈ H
3
2 (∂Ω) is a solution to (5.3) if and

only if there exists an element ũ ∈ H1
0 (Ω) with u = ũ+F (g) and for every v ∈ H1

0 (Ω),
ũ satisfies ∫

Ω

〈M̂(x,∇ũ, z̃),∇v〉dx =

∫
Ω

〈f, v〉dx,

where z̃ = (F (g), z) and M̂(x, a, z̃) = M(x, a + F (g)(x), z). Clearly, M̂ satisfies
R1–R3 as well, and by the first part of this proof it follows that ũ ∈ H2(Ω). This
finishes the proof of Theorem 5.2.

6. Discussion. We have shown that the time-incremental Cosserat elasto-
plasticity problem admits H1(Ω)-regular updates of the symmetric plastic strain εnp ,
provided that the previous plastic strain εn−1

p is in H1(Ω) and the domain and data
are suitably regular. Altogether, the time-incremental problem allows the regularity
for all n ∈ N : un ∈ H2(Ω,R3), εnp ∈ H1(Ω,Sym(3)), and An ∈ H2(Ω, so(3)). Uniform
bounds in time are missing, and it is an open question whether a similar result holds
for the time-continuous problem.

The presented method of proof for higher regularity uses a difference quotient
method which is based on inner variations and can be extended to more general
problems. This will be the subject of further investigations.

Appendix. Notation. We denote by M
3×3 the set of real 3 × 3 second order

tensors, written with capital letters. The standard Euclidean scalar product on M
3×3

is given by 〈X,Y 〉M3×3 = tr
[
XY T

]
, and thus the Frobenius tensor norm is ‖X‖2 =

〈X,X〉M3×3 (we use these symbols indifferently for tensors and vectors). The identity
tensor on M

3×3 will be denoted by 11, so that tr [X] = 〈X, 11〉. We let Sym and PSym
denote the symmetric and positive definite symmetric tensors, respectively. We adopt
the usual abbreviations of Lie algebra theory; i.e., so(3) := {X ∈ M

3×3 | XT = −X}
are skew symmetric second order tensors, and sl(3) := {X ∈ M

3×3 | tr [X] = 0}
are traceless tensors. We set sym(X) = 1

2 (XT + X) and skew(X) = 1
2 (X − XT )

such that X = sym(X) + skew(X). For X ∈ M
3×3 we set for the deviatoric part

devX = X − 1
3 tr [X] 11 ∈ sl(3).

For a second order tensor X we let X.ei be the application of the tensor X to
the column vector ei. The first and second differential of a scalar-valued function
W (F ) are written DFW (F ).H and D2

FW (F ).(H,H), respectively. Sometimes we use
also ∂XW (X) to denote the first derivative of W with respect to X. We employ
the standard notation of Sobolev spaces, i.e., L2(Ω), H1,2(Ω), H1,2

◦ (Ω), which we use
indifferently for scalar-valued functions as well as for vector-valued and tensor-valued
functions.
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mann et Fils (Translation: Theory of Deformable Bodies, NASA TT F-11 561, Washington,
DC, 1968), Paris, 1909.
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[42] J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner Verlagsge-
sellschaft, Leipzig, 1983.

[43] P. Neff, Existence of minimizers for a finite-strain micromorphic elastic solid, Proc. Roy.
Soc. Edinburgh Sect. A, 136 (2006), pp. 997–1012.

[44] P. Neff, A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations,
Internat. J. Engrg. Sci., 44 (2006), pp. 574–594.

[45] P. Neff, Finite Multiplicative Elastic-Viscoplastic Cosserat Micropolar Theory for Poly-
crystals with Grain Rotations. Modelling and Mathematical Analysis, Preprint 2297;
http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp03.html.
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Sändig, W. Schiehlen, and W. L. Wendland, eds., Springer, Berlin, 2000, pp. 209–216.
[68] J. Wloka, Partielle Differentialgleichungen, Teubner Verlag, Stuttgart, 1982.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 40, No. 1, pp. 44–69

GLOBAL EXISTENCE RESULTS AND UNIQUENESS FOR
DISLOCATION EQUATIONS∗
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Abstract. We are interested in nonlocal eikonal equations arising in the study of the dynamics
of dislocation lines in crystals. For these nonlocal but also nonmonotone equations, only the existence
and uniqueness of Lipschitz and local-in-time solutions were available in some particular cases. In
this paper, we propose a definition of weak solutions for which we are able to prove the existence for
all time. Then we discuss the uniqueness of such solutions in several situations, both in the monotone
and the nonmonotone case.
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1. Introduction. In this article we are interested in the dynamics of defects in
crystals, called dislocations. The dynamics of these dislocations is the main micro-
scopic explanation of the macroscopic behavior of metallic crystals (see, for instance,
the physical monographs of Nabarro [24], Hirth and Lothe [19], or Lardner [21] for
a mathematical presentation). A dislocation is a line moving in a crystallographic
plane, called a slip plane. The typical length of such a dislocation line is of the
order of 10−6 m. Its dynamics is given by a normal velocity proportional to the
Peach–Koehler force acting on this line.

This Peach–Koehler force may have two possible contributions: the first one is
the self-force created by the elastic field generated by the dislocation line itself (i.e.,
this self-force is a nonlocal function of the shape of the dislocation line); the second
one is the force created by everything exterior to the dislocation line, such as the
exterior stress applied on the material, or the force created by other defects. In this
paper, we study a particular model introduced in Rodney, Le Bouar, and Finel [27].

More precisely, if, at time t, the dislocation line is the boundary of an open set
Ωt ⊂ R

N with N = 2 for the physical application, the normal velocity to the set Ωt

is given by

(1) Vn = c0 � 11Ωt
+ c1,

where 11Ωt
(x) is the indicator function of the set Ωt, which is equal to 1 if x ∈ Ωt

and equal to 0 otherwise. The function c0(x, t) is a kernel which depends only on
the physical properties of the crystal and on the choice of the dislocation line, whose
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evolution we follow. In the special case of application to dislocations, the kernel c0
does not depend on time, but to keep a general setting we allow here a dependence
on the time variable. Here � denotes the convolution is space, namely

(2) (c0(·, t) � 11Ωt
)(x) =

∫
RN

c0(x− y, t)11Ωt
(y)dy,

and this term appears to be the Peach–Koehler self-force created by the dislocation
itself, while c1(x, t) is an additional contribution to the velocity, created by everything
exterior to the dislocation line. We refer the reader to Alvarez et al. [3] for a detailed
presentation and a derivation of this model.

We proceed as in the level-set approach to derive an equation for the dislocation
line. We replace the evolution of a set Ωt (the strong solution) by the evolution of
a function u such that Ωt = {u(·, t) > 0}. Roughly speaking the dislocation line is
represented by the zero level-set of the function u which solves the following equation:

(3)

⎧⎨
⎩

∂u

∂t
= (c0(·, t) � 11{u(·,t)≥0}(x) + c1(x, t))|Du| in R

N × (0, T ),

u(·, 0) = u0 in R
N ,

where (2) now reads

c0(·, t) � 11{u(·,t)≥0}(x) =

∫
RN

c0(x− y, t)11{u(·,t)≥0}(y)dy.(4)

Note that (3) is not really a level-set equation since it is not invariant under non-
decreasing changes of functions u → ϕ(u), where ϕ is nondecreasing. As noticed by
Slepčev [28], the natural level-set equation should be (11); see section 1.2.

Although (3) seems very simple, there are only a few known results. Under
suitable assumptions on the initial data and on c0, c1, the existence and uniqueness
of the solution is known in two particular cases: either for short time (see [3]), or
for all time under the additional assumption that Vn ≥ 0, which is, for instance,
always satisfied for c1 satisfying c1(x, t) ≥ |c0(·, t)|L1(RN ) (see [2, 12, 5] for a level-set
formulation).

In the general case, the existence for all time of solutions to (3) is not known
and, in particular, in the case when the kernel c0 has negative values; indeed, in this
case, the front propagation problem (3) does not satisfy any monotonicity property
(preservation of inclusions), and therefore, even if a level-set-type equation can be
derived, viscosity solution theory cannot be readily used. At this point, it is worth
pointing out that a key property in the level-set approach is the comparison principle
for viscosity solutions which is almost equivalent to this monotonicity property (see,
for instance, Giga’s monograph [18]). On the other hand, one may try to partly use
viscosity solution theory together with some other approximation and/or compactness
arguments to prove at least the existence of weak solutions (in a suitable sense). But
here also the bad sign of the kernel creates difficulties since one cannot readily use
the classical half-relaxed limits techniques to pass to the limit in the approximate
problems. Additional arguments are needed to obtain weak solutions.

The aim of this paper is to describe a general approach of these dislocations’
dynamics, based on the level-set approach, which allows us to introduce a suitable
notion of weak solutions, to prove the existence of these weak solutions for all time,
and to analyze the uniqueness (or nonuniqueness) of these solutions.
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1.1. Weak solutions of the dislocation equation. We introduce the fol-
lowing definition of weak solutions, which itself uses the definition of L1-viscosity
solutions, recalled in Appendix A.

Definition 1.1 (classical and weak solutions). For any T > 0, we say that a
function u ∈ W 1,∞(RN × [0, T )) is a weak solution of (3) on the time interval [0, T ) if
there is some measurable map χ : R

N × (0, T ) → [0, 1] such that u is an L1-viscosity
solution of

(5)

⎧⎨
⎩

∂u

∂t
= c̄(x, t)|Du| in R

N × (0, T ),

u(·, 0) = u0 in R
N ,

where

(6) c̄(x, t) = c0(·, t) � χ(·, t)(x) + c1(x, t)

and

(7) 11{u(·,t)>0}(x) ≤ χ(x, t) ≤ 11{u(·,t)≥0}(x)

for almost all (x, t) ∈ R
N × [0, T ]. We say that u is a classical solution of (3) if u is

a weak solution to (5) and if

(8) 11{u(·,t)>0}(x) = 11{u(·,t)≥0}(x)

for almost all (x, t) ∈ R
N × [0, T ].

Note that we have χ(x, t) = 11{u(·,t)>0}(x) = 11{u(·,t)≥0}(x) for almost all (x, t) ∈
R

N × [0, T ] for classical solutions.
To state our first existence result, we use the following assumptions.
(H0) u0 ∈ W 1,∞(RN ), −1 ≤ u0 ≤ 1, and there exists R0 > 0 such that u0(x) ≡ −1

for |x| ≥ R0,
(H1) c0 ∈ C([0, T );L1

(
R

N
)
), Dxc0 ∈ L∞([0, T );L1

(
R

N
)
), c1 ∈ C(RN × [0, T )),

and there exist constants M1, L1 such that, for any x, y ∈ R
N and t ∈ [0, T ],

|c1(x, t)| ≤ M1 and |c1(x, t) − c1(y, t)| ≤ L1|x− y|.

In what follows, we denote by M0, L0 constants such that, for any (or almost
every) t ∈ [0, T ), we have

|c0(·, t)|L1(RN ) ≤ M0 and |Dxc0(·, t)|L1(RN ) ≤ L0.

Our first main result is the following.
Theorem 1.2 (existence of weak solutions). Under assumptions (H0)–(H1), for

any T > 0 and for any initial data u0, there exists a weak solution of (3) on the time
interval [0, T ) in the sense of Definition 1.1.

Our second main result states that a weak solution is a classical one if the evolving
set is expanding and if the following additional condition is fulfilled

(H2) c1 and c0 satisfy (H1), and there exist constants m0, N1 and a positive
function N0 ∈ L1(RN ) such that, for any x, h ∈ R

N , t ∈ [0, T ), we have

|c0(x, t)| ≤ m0,

|c1(x + h, t) + c1(x− h, t) − 2c1(x, t)| ≤ N1|h|2,

|c0(x + h, t) + c0(x− h, t) − 2c0(x, t)| ≤ N0(x)|h|2.
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Theorem 1.3 (some links between weak solutions and classical continuous vis-
cosity solutions and uniqueness results). Assume (H0)–(H1), and suppose that there
is some δ ≥ 0 such that, for all measurable maps χ : R

N × (0, T ) → [0, 1],

(9) for all (x, t) ∈ R
N × [0, T ], c0(·, t) � χ(·, t)(x) + c1(x, t) ≥ δ,

and that the initial data u0 satisfies (in the viscosity sense)

−|u0| − |Du0| ≤ −η0 in R
N(10)

for some η0 > 0. Then any weak solution u of (3) in the sense of Definition 1.1 is
a classical continuous viscosity solution of (3). This solution is unique if (H2) holds
and

(i) either δ > 0,
(ii) or δ = 0 and u0 is semiconvex, i.e., satisfies for some constant C > 0

u0(x + h) + u0(x− h) − 2u0(x) ≥ −C|h|2 for all x, h ∈ R
N .

Assumption (9) ensures that the velocity Vn in (1) is positive for positive δ. Of
course, we can state similar results in the case of negative velocity. Assumption (10)
means that u0 is a viscosity subsolution of −|v(x)| − |Dv(x)| + η0 ≤ 0. When u0 is
C1, it follows that the gradient of u0 does not vanish on the set {u0 = 0} (see [22]
for details). Point (ii) of the theorem is the main result of [2, 5]. We also point out
that, with adapted proofs, only a bound from below could be required in (H2) on
c1(x + h, t) + c1(x− h, t) − 2c1(x, t) and c0(x + h, t) + c0(x− h, t) − 2c0(x, t).

Remark 1.1. In particular Theorem 1.3 implies uniqueness in the case c0 ≥ 0 and
c1 ≡ 0. The general study of nonnegative kernels is provided below (see Theorem 1.5
and Remark 1.3).

1.2. Nonnegative kernel c0 ≥ 0. In the special case where the kernel c0
is nonnegative, an inclusion principle for the dislocation lines, or equivalently a
comparison principle for the functions of the level-set formulations, is expected (cf.
Cardaliaguet [11] and Slepčev [28]).

Moreover, in the classical level-set approach, all the level-sets of u should have
the same type of normal velocity, and Slepčev [28] remarked that a formulation with
a nonlocal term of the form {u(·, t) ≥ u(x, t)} is more appropriate. Therefore it is
natural to start studying the following equation (which replaces (3)):

(11)

⎧⎨
⎩

∂u

∂t
= (c0(·, t) � 11{u(·,t)≥u(x,t)}(x) + c1(x, t))|Du| in R

N × (0, T ) ,

u(·, 0) = u0 in R
N ,

where � denotes the convolution in space as in (4).
The precise meaning of a viscosity solution of (11) is given in Definition 5.1.
In this context, assumption (H0) can be weakened into the following condition,

which allows us to consider unbounded evolving sets:
(H0′) u0 ∈ BUC(RN ).
Our main result for this equation is the following.
Theorem 1.4 (existence and uniqueness). Assume that c0 ≥ 0 on R

N × [0, T ]
and that (H0′)–(H1) hold. Then there exists a unique viscosity solution u of (11).

Remark 1.2. The comparison principle for this equation (see Theorem 5.2) is a
generalization of [28, Theorem 2.3]: indeed, in [28], everything takes place in a fixed
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bounded set, whereas here one has to deal with unbounded sets. See also [15] for
related results.

Now we turn to the connections with weak solutions. To do so, if u is the unique
continuous solution of (11) given by Theorem 1.4, we introduce the functions ρ+, ρ− :
R

N × [0, T ] → R defined by

ρ+ := 11{u≥0} and ρ− := 11{u>0} .

Our result is the following.
Theorem 1.5 (maximal and minimal weak solutions). Under the assumptions

of Theorem 1.4, the maximal and minimal weak solutions of (3) are the continuous
functions v+, v− which are the unique L1-viscosity solutions of the equations

(12)

⎧⎨
⎩

∂v±

∂t
= c[ρ±](x, t)|Dv±| in R

N × (0, T ),

v±(x, 0) = u0(x) in R
N ,

where

c[ρ](x, t) := c0(·, t) � ρ(·, t)(x) + c1(x, t) in R
N × (0, T ).

The functions v± satisfy {v+(·, t) ≥ 0} = {u(·, t) ≥ 0} and {v−(·, t) > 0} = {u(·, t) >
0}, where u is the solution of (11).

Moreover, if the set {u(·, t) = 0} has a zero-Lebesgue measure for almost all
t ∈ (0, T ), then problem (3) has a unique weak solution which is also a classical one.

Remark 1.3. 1. Theorem 1.5 shows that, in the case when c0 ≥ 0, Slepčev’s
approach allows us to identify the maximal and minimal weak solutions as being
associated with ρ±.

2. Equalities {v−(·, t) ≥ 0} = {u(·, t) ≥ 0} and {v+(·, t) > 0} = {u(·, t) > 0} do
not hold in general (see, for instance, Example 3.1 in section 3).

3. If the set {v±(·, t) = 0} develops an interior, a dramatic loss of uniqueness for
the weak solution of (3) may occur. This is illustrated by Example 3.1 below, where
we are able to build infinitely many solutions after the onset of fattening.

4. We have uniqueness for (3) if {u(·, t) = 0} has a zero-Lebesgue measure for
almost all t ∈ (0, T ). This condition is fulfilled when, for instance, c[ρ] ≥ 0 holds for
any indicator function ρ and (10) holds (see also Remark 1.1).

1.3. Organization of the paper. In section 2, we recall basic results for the
classical eikonal equation which are used throughout the paper. In section 3, we prove
the existence of weak solutions for (3), namely Theorem 1.2, and give a counterexam-
ple to the uniqueness in general. Let us mention that this first part of the paper, even
if it requires rather deep results of viscosity solution theory, is of a general interest
for a wide audience and can be read without having an expertise in this theory since
one just needs to apply the results which, anyway, are rather natural. In section 4,
we prove Theorem 1.3 in the case of expanding dislocations. The arguments we use
here are far more involved from a technical point of view: in particular we need some
fine estimates of the perimeter of the evolving sets. In section 5, we study the Slepčev
formulation in the case of nonnegative kernels and prove Theorems 1.4 and 1.5. In
spirit, this section is closely related to the classical level-set approach but is more
technical. Finally, for sake of completeness, we recall in Appendix A the definition of
L1-viscosity solutions and a new stability result proved by Barles in [4].



EXISTENCE AND UNIQUENESS FOR DISLOCATION EQUATIONS 49

2. Some basic results for the classical (local) eikonal equation. We want
to recall in this section some basic results on the level-set equation

(13)

⎧⎨
⎩

∂v

∂t
= a(x, t)|Dv| in R

N × (0, T ),

v(·, 0) = u0 in R
N ,

where T > 0 and a : R
N × [0, T ] → R is, at least, a continuous function.

We provide some classical estimates on the solutions to (13) when a satisfies
suitable assumptions. Our result is the following.

Theorem 2.1. If u0 satisfies (H0) and a satisfies the assumptions of c1 in
(H1), then (13) has a unique continuous solution v which is Lipschitz continuous in
R

N × [0, T ] and which satisfies
(i) −1 ≤ v ≤ 1 in R

N × (0, T ), v(x, t) ≡ −1 for |x| ≥ R0 + M1t,
(ii) |Dv(·, t)|∞ ≤ |Du0|∞ eL1t,
(iii) |vt(·, t)|∞ ≤ M1|Du0|∞ eL1t .
We skip the very classical proof of Theorem 2.1; we just point out that the first

point comes from the comparison result for (13) and the “finite speed of propagation
property” (see Crandall and Lions [14]), while the second one is a basic gradient
estimate (see, for example, Ley [22]), and the last one comes directly from the fact
that the equation is satisfied almost everywhere.

The main consequence of this result is that the solution remains in a compact
subset of the Banach space (C(RN×[0, T ]), |·|∞) as long as u0 and a satisfy (H0)–(H1)
with fixed constants.

Let us introduce the following.
Definition 2.2 (interior ball property). We say that a closed set K ⊂ R

N has
an interior ball property of radius r > 0 if, for any x ∈ K, there exists p ∈ R

N\ {0}
such that B(x− r p

|p| , r) ⊂ K.

We will also use the following result, due to Cannarsa and Frankowska [10], the
proof of which is given in Appendix B for the sake of completeness.

Lemma 2.3 (interior ball regularization). Suppose (H0) and that a satisfies the
assumptions of c1 in (H1)–(H2) and there exists a constant δ > 0 such that

c1 ≥ δ > 0 on R
N × [0, T ].

Then there exists a constant γ (depending in particular on δ > 0 and T and on the
other constants of the problem) such that for the solution v of (13), the set {v(·, t) ≥ 0}
has an interior ball property of radius rt ≥ γt for t ∈ (0, T ).

3. Existence of weak solutions for (3). We aim to solve (3), i.e.,⎧⎨
⎩

∂u

∂t
= (c0(·, t) � 11{u(·,t)≥0}(x) + c1(x, t))|Du| in R

N × (0, T ),

u(·, 0) = u0 in R
N ,

proving Theorem 1.2, which states the existence of weak solutions as introduced in
Definition 1.1.

A key difficulty in solving (3) comes from the fact that, in this kind of level-set
equation, one may face the so-called nonempty interior difficulty, i.e., that the 0–level-
set of the solution is “fat,” which may mean that it has either a nonempty interior
or a nonzero Lebesgue measure. Clearly, in both cases, 11{u(·,t)≥0} is different from
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11{u(·,t)>0}, and this leads to rather bad stability properties for (3) and therefore to
difficulties in proving the existence of a solution (and even more for the uniqueness).
The notion of weak solution (5)–(7) emphasizes this difficulty. On the contrary, if
c̄(x, t) ≥ 0 in R

N × [0, T ], it is known that the “nonempty interior difficulty” cannot
happen (see Barles, Soner, and Souganidis [6] and Ley [22]), and we recover a more
classical formulation. We discuss this question in the next section as well as some
uniqueness issues for our weak solutions. Let us finally note that weak solutions for
(3) satisfy the following inequalities.

Proposition 3.1. Let u be a weak solution to (3). Then u also satisfies in the
L1-sense

∂u

∂t
≤
(
c+0 (·, t) � 11{u(·,t)≥0}(x) − c−0 (·, t) � 11{u(·,t)>0}(x) + c1(x, t)

)
|Du|,(14)

∂u

∂t
≥
(
c+0 (·, t) � 11{u(·,t)>0}(x) − c−0 (·, t) � 11{u(·,t)≥0}(x) + c1(x, t)

)
|Du|(15)

in R
N × (0, T ), where c+0 = max(0, c0) and c−0 = max(0,−c0).

Proof of Proposition 3.1. Let c̄ be associated with u as in (5)–(7). Then we have

c̄(x, t) ≥ c+0 (·, t) � 11{u(·,t)>0}(x) − c−0 (·, t) � 11{u(·,t)≥0}(x) + c1(x, t)

for every x ∈ R
N and almost every t ∈ (0, T ). We note that the right-hand side of

the inequality is lower semicontinuous. Following Lions and Perthame [23], u then
solves (15) in the usual viscosity sense. The proof of (14) can be achieved in a similar
way.

Proof of Theorem 1.2. 1. Introduction of a perturbated equation. First we are
going to solve the equation

∂u

∂t
= (c0(·, t) � ψε(u(·, t))(x) + c1(x, t)) |Du| in R

N × (0, T ) ,(16)

where ψε : R → R is a sequence of continuous functions such that ψε(t) ≡ 0 for
t ≤ −ε, ψε(t) ≡ 1 for t ≥ 0, and ψε is an affine function on [−ε, 0].

We aim at applying Schauder’s fixed point theorem to a suitable map. We note
that an alternative proof could be given by using techniques developed by Alibaud in
[1].

2. Definition of a map T . We introduce the convex and compact (by Ascoli’s
theorem) subset

X = {u ∈ C(RN × [0, T ]) : u ≡ −1 in R
N\B(0, R0 + MT ),

|Du|, |ut|/M ≤ |Du0|∞eLT }

of (C(RN×[0, T ]), |·|∞), for M = M0+M1 and L = L0+L1, and the map T : X → X
defined as follows: if u ∈ C(RN × [0, T ]), then T (u) is the unique solution v of (13) for

cε(x, t) = c0(·, t) � ψε(u(·, t))(x) + c1(x, t)

=

∫
RN

c0(x− z, t)ψε(u(z, t))dz + c1(x, t).
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This definition is justified by the fact that, under assumption (H1) on c1 and c0, cε
satisfies (H1) with fixed constants M = M0 + M1 and L = L0 + L1; indeed M is a
bound on sup[0,T ] |c0(·, t)|L1 + M1, while L is estimated by the following calculation:

for all x, y ∈ R
N , t ∈ [0, T ], and u ∈ X, we have

cε(x, t) − cε(y, t)(17)

=

∫
RN

(c0(x− z, t) − c0(y − z, t))ψε(u(z, t))dz + c1(x, t) − c1(y, t)

≤
∫

RN

|c0(x− z, t) − c0(y − z, t)|dz + |c1(x, t) − c1(y, t)|

≤ (L0 + L1)|x− y|,

since 0 ≤ ψε ≤ 1.
Finally, under assumptions (H0)–(H1), for any u ∈ X, the results of Theorem 2.1

apply to (16), which imply that T (u) ∈ X. It follows that T is well defined.
3. Application of Schauder’s fixed point theorem to T . The map T is continuous

since ψε is continuous by using the classical stability result for viscosity solutions (see,
for instance, (30) in section 4). Therefore T has a fixed point uε which is bounded in
W 1,∞(RN × [0, T ]) uniformly with respect to ε (since M and L are independent of ε).

4. Convergence of the fixed point when ε → 0. From Ascoli’s theorem, we extract
a subsequence (uε′)ε′ which converges locally uniformly to a function denoted by u
(in fact globally since the uε′ are equal to −1 outside a fixed compact subset).

The functions χε′ := ψε′(uε′) satisfy 0 ≤ χε′ ≤ 1. Therefore we can extract a
subsequence—still denoted (χε′)—which converges weakly−∗ in L∞

loc(R
N × [0, T ]) to

some function χ : R
N × (0, T ) → [0, 1]. Therefore, for all ϕ ∈ L1

loc(R
N × [0, T ]),

∫ T

0

∫
RN

ϕχε′dxdt →
∫ T

0

∫
RN

ϕχdxdt.(18)

From Fatou’s lemma, if ϕ is nonnegative, it follows that∫ T

0

∫
RN

ϕ(x, t)χ(x, t)dxdt ≤
∫ T

0

∫
RN

ϕ(x, t) lim sup
ε′→0

χε′(x, t)dxdt

≤
∫ T

0

∫
RN

ϕ(x, t) lim sup
ε′→0,x′→x,t′→t

χε′(x
′, t′)dxdt

≤
∫ T

0

∫
RN

ϕ(x, t)11{u(·,t)≥0}(x)dxdt.

Since the previous inequalities hold for any nonnegative ϕ ∈ L1
loc(R

N × [0, T ]), we
obtain that, for almost every (x, t) ∈ R

N × (0, T ),

χ(x, t) ≤ 11{u(·,t)≥0}(x).

Similarly we get

11{u(·,t)>0}(x) ≤ χ(x, t).
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Furthermore, setting cε′ = c0 �χε′ +c1, from (18), we have, for all (x, t) ∈ R
N × [0, T ],∫ t

0

cε′(x, s)ds =

∫ t

0

∫
RN

c0(x− y, s)χε′(y, s)dyds +

∫ t

0

c1(x, s)ds

→
∫ t

0

c̄(x, s)ds,

where c̄(x, t) = c0(·, t) � χ(·, t)(x) + c1(x, t). The above convergence is pointwise, but,
noticing that cε′ satisfies (H3) (with M := M0 + M1 and L := L0 + L1) and using
Remark A.1, we can apply the stability theorem (Theorem A.3) given in Appendix A.
We obtain that u is an L1-viscosity solution to (5) with c̄ satisfying (6)–(7).

The following example is inspired from [6].
Example 3.1 (counterexample to the uniqueness of weak solutions). Let us con-

sider, in dimension N = 1, the following equation of type (3),

(19)

⎧⎨
⎩

∂U

∂t
= (1 � 11{U(·,t)≥0}(x) + c1(t))|DU | in R × (0, 2],

U(·, 0) = u0 in R,

where we set c0(x, t) := 1, c1(x, t) := c1(t) = 2(t− 1)(2− t), and u0(x) = 1−|x|. Note
that 1 � 11A = L1(A) for any measurable set A ⊂ R, where L1(A) is the Lebesgue
measure on R.

We start by solving auxiliary problems for time in [0, 1] and [1, 2] in order to
produce a family of solutions for the original problem in [0, 2].

1. Construction of a solution for 0 ≤ t ≤ 1. The function x1(t) = (t − 1)2 is the
solution of the ODE

ẋ1(t) = c1(t) + 2x1(t) for 0 ≤ t ≤ 1, and x(0) = 1

(note that ẋ1 ≤ 0 in [0, 1]). Consider⎧⎪⎨
⎪⎩

∂u

∂t
= ẋ1(t)

∣∣∣∣∂u∂x
∣∣∣∣ in R × (0, 1],

u(·, 0) = u0 in R.

(20)

There exists a unique continuous viscosity solution u of (20). Looking for u under the
form u(x, t) = v(x,Γ(t)) with Γ(0) = 0, we obtain that v satisfies

∂v

∂t
Γ̇(t) = ẋ1(t)

∣∣∣∣∂v∂x
∣∣∣∣ .

Choosing Γ(t) = −x1(t) + 1, we get that v is the solution of⎧⎪⎨
⎪⎩

∂v

∂t
= −

∣∣∣∣∂v∂x
∣∣∣∣ in R × (0, 1],

v(·, 0) = u0 in R.

By the Oleinik–Lax formula, v(x, t) = inf |x−y|≤t u0(y). Since u0 is even, we have, for
all (x, t) ∈ R × [0, 1],

u(x, t) = inf
|x−y|≤Γ(t)

u0(y) = u0(|x| + Γ(t)) = u0(|x| − x1(t) + 1).
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Therefore, for 0 ≤ t ≤ 1,

(21) {u(·, t) > 0} = (−x1(t), x1(t)) and {u(·, t) ≥ 0} = [−x1(t), x1(t)].

We will see in step 3 that u is a solution of (19) in [0, 1].
2. Construction of solutions for 1 ≤ t ≤ 2. Consider now, for any measurable

function 0 ≤ γ(t) ≤ 1, the unique solution yγ of the ODE

ẏγ(t) = c1(t) + 2γ(t)yγ(t) for 1 ≤ t ≤ 2, and yγ(1) = 0.(22)

By comparison, we have 0 ≤ y0(t) ≤ yγ(t) ≤ y1(t) for 1 ≤ t ≤ 2, where y0, y1 are
the solutions of (22) obtained with γ(t) ≡ 0, 1. In particular, it follows that ẏγ ≥ 0 in
[1, 2]. Consider ⎧⎪⎨

⎪⎩
∂uγ

∂t
= ẏγ(t)

∣∣∣∣∂uγ

∂x

∣∣∣∣ in R × (1, 2],

uγ(·, 1) = u(·, 1) in R,

where u is the solution of (20). Again, this problem has a unique continuous viscosity
solution uγ , and setting Γγ(t) = yγ(t) ≥ 0 for 1 ≤ t ≤ 2, we obtain that vγ defined by
vγ(x,Γγ(t)) = uγ(x, t) is the unique continuous viscosity solution of⎧⎪⎨

⎪⎩
∂vγ
∂t

=

∣∣∣∣∂vγ∂x

∣∣∣∣ in R × (0,Γγ(2)],

vγ(·, 0) = u(·, 1) in R.

Therefore, for all (x, t) ∈ R × [1, 2], we have

uγ(x, t) = sup
|x−y|≤yγ(t)

u(y, 1) =

{
0 if |x| ≤ yγ(t),

u(|x| − yγ(t), 1) otherwise.

(Note that u(−x, t) = u(x, t) since u0 is even and, since u(·, 1) ≤ 0, by the maximum
principle, we have uγ ≤ 0 in R × [1, 2].) It follows that, for all 1 ≤ t ≤ 2,

(23) {uγ(·, t) > 0} = ∅ and {uγ(·, t) ≥ 0} = {uγ(·, t) = 0} = [−yγ(t), yγ(t)].

3. There are several weak solutions of (19). Set, for 0 ≤ γ(t) ≤ 1,

cγ(t) = c1(t) + 2x1(t), Uγ(x, t) = u(x, t) if (x, t) ∈ R × [0, 1],

cγ(t) = c1(t) + 2γ(t)yγ(t), Uγ(x, t) = uγ(x, t) if (x, t) ∈ R × [1, 2].

Then, from steps 1 and 2, Uγ is the unique continuous viscosity solution of⎧⎪⎨
⎪⎩

∂Uγ

∂t
= cγ(t)

∣∣∣∣∂Uγ

∂x

∣∣∣∣ in R × (0, 2],

Uγ(·, 0) = u0 in R.

(24)

Taking χγ(·, t) = γ(t)11[−yγ(t),yγ(t)] for 1 ≤ t ≤ 2, from (21) and (23), we have

11{Uγ(·,t)>0} ≤ χγ(·, t) ≤ 11{Uγ(·,t)≥0}
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x1(t)

Uγ = 0

Uγ < 0 Uγ < 0

Uγ < 0 Uγ < 0

Uγ > 0
Uγ = 0

yγ(t)

y1(t)

0 1 2
t

x

−1

1

︸ ︷︷ ︸
cγ>0

︸ ︷︷ ︸
cγ<0

Fig. 1. Fattening phenomenon for the functions Uγ .

(see Figure 1). It follows that all the Uγ ’s, for measurable 0 ≤ γ(t) ≤ 1, are all weak
solutions of (19), so we do not have uniqueness and the set of solutions is quite large.

Let us complete this counterexample by pointing out the following:
(i) As in [6], nonuniqueness comes from the fattening phenomenon for the front

which is due to the fact that cγ in (24) changes its sign at t = 1. It is even possible to
build an autonomous counterexample up to start with a front with several connected
components.

(ii) c0 ≥ 0, and therefore it also complements the results of section 5; indeed the
unique solution u of (11) has the same 0–level-set as U1 (obtained with γ(t) ≡ 1),
and, with the notation of Theorem 1.5, ρ+ = 11{U1(·,t)≥0} and ρ− = 11{U1(·,t)>0}. In
particular, for t ≥ 1,

{v+(·, t) ≥ 0} = {U1(·, t) ≥ 0} = [−y1(t), y1(t)]

and

{v−(·, t) > 0} = {U1(·, t) > 0} = ∅.

Finally, we note that there are no strong solutions since (8) is obviously never satisfied.
(iii) c0 = 1 does not satisfies (H1), but because of the finite speed of propagation

property, it is possible to keep the same solution on a large ball in space and for
t ∈ (0, T ) if we replace c0 by a function with compact support in space such that
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c0(x, t) = 1 for |x| ≤ R with R large enough. In this way, it is possible for c0 to
satisfy (H1).

4. Uniqueness results for weak solutions of (3). Uniqueness of weak so-
lutions of (3) is false in general, as shown in the counterexample of the previous
section for sign changing velocities c1. This is in particular related to the “fattening
phenomenon.” In [2] and [5] the authors proved that there is a unique “classical”
viscosity solution for (3) under the assumptions that the initial set {u(·, 0) ≥ 0} has
the “interior sphere property” and that c1(·, t) ≥ |c0(·, t)|L1 for any t ≥ 0—a con-
dition which ensures that the velocity c̄ is nonnegative. By “classical” continuous
viscosity solutions we mean that t → 11{u(·,t)≥0} is continuous in L1, which entails
that (x, t) 
→ c̄(x, t) is continuous, and that (3) holds in the usual viscosity sense.

Here we prove Theorem 1.3. If the condition c1(·, t) ≥ |c0(·, t)|L1 is satisfied,
then weak solutions are viscosity solutions. We also prove that the weak solution
is unique if we suppose, moreover, either that the initial condition has the interior
sphere property or that the strict inequality c1(·, t) > |c0(·, t)|L1 holds for any t ≥ 0.

Proof of Theorem 1.3. 1. Weak solutions are classical continuous viscosity solu-
tions. Let u be a weak solution, and let c̄ be associated with u as in Definition 1.1.
Then, for any x ∈ R

N and for almost all t ∈ [0, T ], we have

c̄(x, t) ≥ c1(x, t) + c+0 (·, t) � 11{u(·,t)>0}(x) − c−0 (·, t) � 11{u(·,t)≥0}(x)

≥ c1(x, t) − |c−0 (·, t)|L1

≥ δ ≥ 0 .

From [22, Theorem 4.2], there exists a constant η which depends on T such that (10)
implies

(25) −|u| − |Du| ≤ −η on R
N × (0, T )

when we assume, moreover, that c̄ is continuous. In our case, where c̄ is not assumed
continuous in time, (10) follows from the L1-stability result, Theorem A.3, where we
approximate c̄ by a continuous function, and from the usual stability for L1-viscosity
subsolutions.

Let us note that from the proof of [5, Corollary 2.5] we have in the viscosity sense

(26) −|u(·, t)| − |Du(·, t)| ≤ −η on R
N for every t ∈ (0, T ) .

Following [5, Corollary 2.5], we get that, for every t ∈ (0, T ), the 0–level-set of u(·, t)
has a zero-Lebesgue measure. Then we deduce that

χ(x, t) = 11{u(·,t)≥0}(x) for a.e. x ∈ R
N and for all t ∈ (0, T ),

which (with (7)) entails that

c̄(x, t) = c1 + c0 � 11{u(·,t)≥0}

for any (x, t). Moreover, t 
→ 11{u(·,t)≥0} is also continuous in L1, and then c̄ is
continuous. Therefore u is a classical viscosity solution of (3).

2. Uniqueness when u0 is semiconvex (part (ii)). If we assume that (9) and (10)
hold and that u0 is semiconvex, then weak solutions are viscosity solutions, and we can
apply the uniqueness result for viscosity solutions given in [5], namely Theorem 4.2
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(which remains true under our assumptions), which requires, in particular, semicon-
vexity of the velocity; see assumption (H2).

3. A Gronwall-type inequality (part (i)). From now on we assume that δ > 0, and
we aim to prove that the solution to (3) is unique. Let u1, u2 be two solutions. We
set

ρi = 11{ui(·,t)≥0} and c̄i(x, t) = c0 � ρi + c1 for i = 1, 2.

We want to prove in a first step the following Gronwall-type inequality for any t
sufficiently small:

(27)

|ρ1(·, t) − ρ2(·, t)|L1

≤ C [per({u1(·, t) ≥ 0}) + per({u2(·, t) ≥ 0})]
∫ t

0

|ρ1(·, s) − ρ2(·, s)|L1ds,

where C is a constant depending on the constants of the problem, where per({ui(·, t) ≥
0}) is the HN−1 measure of the set ∂{ui(·, t) ≥ 0}) (for i = 1, 2).

We have

(28) |ρ1(·, t) − ρ2(·, t)|L1 ≤ LN ({−αt ≤ u1(·, t) < 0}) + LN ({−αt ≤ u2(·, t) < 0}) ,

where LN is the Lebesgue measure in R
N and

(29) αt = sup
s∈[0,t]

|(u1 − u2)(·, s)|∞ for any t ∈ (0, T ).

In order to estimate the right-hand side of inequality (28), as in the proof of [5,
Theorem 4.2], we need a lower-gradient bound as well as a semiconvexity property for
u1 and u2. We already know from step 1 that c̄i is continuous for i = 1, 2.

Let us start to estimate the right-hand side of (28). From the “stability estimates”
on the solutions with respect to variations of the velocity (see [5, Lemma 2.2]), we
have

(30) αt ≤ |Du0|∞eLt

∫ t

0

|(c̄1 − c̄2)(·, s)|∞ds ,

where L = L0 + L1. Therefore

(31) αt ≤ m0 |Du0|∞eLt

∫ t

0

|(ρ1 − ρ2)(·, s)|L1ds .

where the constant m0 is given in (H2). In particular, since the ρi(·, t) are continuous
in L1 and equal at time t = 0 for i = 1, 2, we have αt/t → 0 as t → 0+.

From now on, we mimic the proof of [5, Proposition 4.5]. Using the lower-gradient
bound (25) for ui(·, t) combined with the increase principle (see [5, Lemma 2.3]), we
obtain for αt < η/2 that

{−αt ≤ ui(·, t) < 0} ⊂ {ui(·, t) ≥ 0} + (2αt/η)B(0, 1)

for i = 1, 2. From the interior ball regularization lemma (Lemma 2.3), the set
{ui(·, t) ≥ 0} satisfies for t ∈ (0, T ) the interior ball property of radius rt = ηt/C0.
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Applying [2, Lemmas 2.5 and 2.6], we obtain for σt = 2αt/η that

LN ({−αt ≤ ui(·, t) < 0}) ≤ LN
(
({ui(·, t) ≥ 0} + σt B(0, 1))\{ui(·, t) ≥ 0}

)
≤ rt

N

[(
1 +

σt

rt

)N

− 1

]
per({ui(·, t) ≥ 0})

≤ 2Nαt

η
per({ui(·, t) ≥ 0})

(using (1 + a)N − 1 ≤ aN(1 + a)N−1 for a ≥ 0) for t ∈ [0, τ ], where 0 < τ ≤ T is
defined by

τ = sup

{
t > 0 : αt <

η

2
and 2

C0

η2

αt

t
≤ 1

}
.(32)

Putting together (31), (28), and the previous inequality proves (27).
4. Uniqueness when δ > 0 (part (i)). We now complete the uniqueness proof

under the assumption δ > 0. For this we first show that ρ1 = ρ2 in [0, τ ]. In order to
apply the Gronwall lemma to the L1-estimate (27) obtained in step 3, it is enough to
prove that the functions t 
→ per({ui(·, t) ≥ 0}) belong to L1. For this, let us set

wi(x) = inf{t ≥ 0 : ui(x, t) ≥ 0} .

Since ui solves the eikonal equation (ui)t = c̄i(x, t)|Dui|, from classical representation
formulae, we have

{ui(·, t) ≥ 0} = {x : ∃y(·), |ẏ(s)| ≤ c(y(s), s), 0 ≤ s ≤ t,

u0(y(0)) ≥ 0 and y(t) = x}.

Therefore

wi(x) = inf{t ≥ 0 : ∃y(·), |ẏ(s)| ≤ c(y(s), s), 0 ≤ s ≤ t,

u0(y(0)) ≥ 0 and y(t) = x}.

Applying the dynamic programming principle, since c̄i ≥ δ > 0, we obtain that
wi is Lipschitz continuous and is a viscosity solution of the autonomous equation
c̄i(x,wi(x))|Dwi(x)| = 1. Note that {ui(·, t) ≥ 0} = {wi ≤ t}. In particular, by
Theorem 2.1(i), {wi ≤ t} ⊂ B(0, R0 + (M0 + M1)T ) is bounded for any t. From the
coarea formula, we have∫ t

0

per({ui(·, s) ≥ 0})ds =

∫ t

0

per({wi ≤ s})ds

=

∫
{wi≤t}

|Dwi(x)|dx,

which is finite since wi is Lipschitz continuous. Therefore we have proved that
t 
→ per({ui(·, t) ≥ 0}) belongs to L1([0, τ ]), which entails from the Gronwall lemma
that ρ1 = ρ2 in [0, τ ] since ρ1(·, 0) = ρ2(·, 0). Hence c̄1 = c̄2 and u1 = u2 in [0, τ ].
From the definition of αt and τ (see (29) and (32)), necessarily τ = T. It completes
the proof.
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5. Nonnegative kernel c0 and Slepčev formulation for the nonlocal
term. In this section, we deal with nonnegative kernels c0 ≥ 0. In this monotone
framework, inclusion principles for evolving sets and comparison for solutions to the
dislocation equation are expected (see Cardaliaguet [11] for related results). We start
by studying the right level-set equation using a Slepčev formulation with the con-
volution term using all the level-sets {u(·, t) ≥ u(x, t)} instead of only one level-set
{u(·, t) ≥ 0}. This choice is motivated by the good stability properties of the Slepčev
formulation.

The equation we are concerned with is

(33)

⎧⎨
⎩

∂u

∂t
= c+[u](x, t)|Du| in R

N × (0, T ),

u(·, 0) = u0 in R
N ,

where the nonlocal velocity is

(34)

c+[u](x, t) = c1(x, t) + c0(·, t) � 11{u(·,t)≥u(x,t)}(x)

= c1(x, t) +

∫
RN

c0(x− z, t)11{u(·,t)≥u(x,t)}(z)dz

and the additional velocity c1 has no particular sign.
We denote

c−[u](x, t) = c1(x, t) +

∫
RN

c0(x− z, t)11{u(·,t)>u(x,t)}(z)dz.

We recall the notion of viscosity solutions for (33) as it appears in [28].
Definition 5.1 (Slepčev viscosity solutions). An upper semicontinuous function

u : R
N × [0, T ] → R is a viscosity subsolution of (33) if, for any ϕ ∈ C1(RN × [0, T ]),

for any maximum point (x̄, t̄) of u− ϕ, if t̄ > 0, then

∂ϕ

∂t
(x̄, t̄) ≤ c+[u](x̄, t̄)|Dϕ(x̄, t̄)|

and u(x̄, 0) ≤ u0(x̄) if t̄ = 0.
A lower semicontinuous function u : R

N × [0, T ] → R is a viscosity supersolution
of (33) if, for any ϕ ∈ C1(RN × [0, T ]), for any minimum point (x̄, t̄) of u − ϕ, if
t̄ > 0, then

∂ϕ

∂t
(x̄, t̄) ≥ c−[u](x̄, t̄)|Dϕ(x̄, t̄)|

and u(x̄, 0) ≥ u0(x̄) if t̄ = 0.
A locally bounded function is a viscosity solution of (33) if its upper semicontinu-

ous envelope is a subsolution and its lower semicontinuous envelope is a supersolution
of (33).

Note that for the supersolution, we require the viscosity inequality with c− instead
of c+. It is the definition providing the expected stability results (see [28]).

Theorem 5.2 (comparison principle). Assume (H0′) and that the kernels c0 ≥
0 and c1 satisfy (H1). Let u (respectively, v) be a bounded upper semicontinuous
subsolution (respectively, a bounded lower semicontinuous supersolution) of (33). Then
u ≤ v in R

N × [0, T ].
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Remark 5.1. We could deal with second-order terms in (33) (for instance we can
add the mean curvature to the velocity (1)). See Forcadel [17] and Srour [29] for
related results.

Before giving the proof of Theorem 5.2, let us note the following consequence.
Proof of Theorem 1.4. The uniqueness of a continuous viscosity solution to (33)

is an immediate consequence of Theorem 5.2. Then existence is proved by Perron’s
method using classical arguments (see, for instance, [16, Theorem 1.2]), so we skip
the details.

Proof of Theorem 5.2. 1. The test function. Since u − v is a bounded upper
semicontinuous function, for any ε, η, α > 0 and K = 2(L0 + L1) ≥ 0, the supremum

Mε,η,α = sup
(x,y,t)∈(RN )2×[0,T ]

{
u(x, t) − v(y, t) − eKt

(
|x− y|2

ε2
+ α|x|2 + α|y|2

)
− ηt

}

is finite and achieved at a point (x̄, ȳ, t̄). Classical arguments show that

lim inf
ε,η,α→0

Mε,η,α = sup
RN×[0,T ]

{u− v}

and that

|x̄− ȳ|2
ε2

, α|x̄|2, α|ȳ|2 ≤ M∞,(35)

where M∞ = |u|∞ + |v|∞.
2. Viscosity inequalities when t̄ > 0. Writing the viscosity inequalities for the

subsolution u and the supersolution v, we obtain

(36) KeKt̄

(
|x̄− ȳ|2

ε2
+ α|x̄|2 + α|ȳ|2

)
+ η ≤ c+[u](x̄, t̄)|p̄ + q̄x| − c−[v](ȳ, t̄)|p̄− q̄y|,

where p̄ = 2eKt̄(x̄− ȳ)/ε2, q̄x = 2eKt̄αx̄, and q̄y = 2eKt̄αȳ. We point out a difficulty
in obtaining this inequality: in general, one gets it by doubling the time variable first
and then by passing to the limit in the time penalization. This is not straightforward
here because of the dependence with respect to time of the nonlocal terms. But the
stability arguments of the Slepčev formulation take care of this difficulty.

3. Difference between {u(·, t̄) ≥ u(x̄, t̄)} and {v(·, t̄) > v(ȳ, t̄)}. We have

{u(·, t̄) ≥ u(x̄, t̄)} ⊂ {v(·, t̄) > v(ȳ, t̄)} ∪ E ,(37)

where E = {u(·, t̄) ≥ u(x̄, t̄)} ∩ {v(·, t̄) ≤ v(ȳ, t̄)}. If x ∈ E , then u(x̄, t̄) − v(ȳ, t̄) ≤
u(x, t̄) − v(x, t̄). But from the definition of Mε,η,α,

u(x, t̄) − v(x, t̄) − eKt̄2α|x|2 − ηt̄

≤ u(x̄, t̄) − v(ȳ, t̄) − eKt̄

(
|x̄− ȳ|2

ε2
+ α|x̄|2 + α|ȳ|2

)
− ηt̄.

It follows that

E ⊂
{
x ∈ R

N : |x|2 ≥ 1

2
(|x̄|2 + |ȳ|2) +

|x̄− ȳ|2
2αε2

}
.
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4. Upper bound for c+[u](x̄, t̄). We have

c+[u](x̄, t̄) =

∫
RN

c0(x̄− z, t̄)11{u(·,t̄)≥u(x̄,t̄)}(z)dz + c1(x̄, t̄)(38)

≤
∫

RN

(c0(x̄− z, t̄) − c0(ȳ − z, t̄))11{u(·,t̄)≥u(x̄,t̄)}(z)dz

+

∫
RN

c0(ȳ − z, t̄)11{u(·,t̄)≥u(x̄,t̄)}(z)dz + c1(x̄, t̄).

Using that c0 ≥ 0 and (37), we obtain∫
RN

c0(ȳ − z, t̄)11{u(·,t̄)≥u(x̄,t̄)}(z)dz ≤
∫
{v(·,t̄)>v(ȳ,t̄)}∪E

c0(ȳ − z, t̄)dz.

From (38), we get

(39) c+[u](x̄, t̄) ≤ c−[v](ȳ, t̄) + I1 + I2 + c1(x̄, t̄) − c1(ȳ, t̄),

where

I1 =

∫
RN

(c0(x̄− z, t̄) − c0(ȳ − z, t̄))11{u(·,t̄)≥u(x̄,t̄)}(z)dz

and

I2 =

∫
E
c0(ȳ − z, t̄)dz.

5. Estimate of I1 using (H1). We have

c0(x̄− z, t) − c0(ȳ − z, t) =

∫ 1

0

Dxc0((1 − λ)(ȳ − z) + λ(x̄− z), t̄)(x̄− ȳ)dλ.

It follows that

|I1| ≤
∫

RN

∫ 1

0

|Dxc0((1 − λ)(ȳ − z) + λ(x̄− z), t̄)||x̄− ȳ|dλdz

≤ |Dxc0(·, t̄)|L1 |x̄− ȳ|

≤ L0|x̄− ȳ|.(40)

6. Estimate of the right-hand side of inequality (36). Noticing that |p̄||x̄ − ȳ| =
2eKt̄|x̄− ȳ|2/ε2 and using (40), (39), and (H1), we have

c+[u](x̄, t̄)|p̄ + q̄x| − c−[v](ȳ, t̄)|p̄− q̄y|

≤ (c−[v](ȳ, t̄) + I1 + I2 + c1(x̄, t̄) − c1(ȳ, t̄))|p̄ + q̄x| − c−[v](ȳ, t̄)|p̄− q̄y|

≤
∣∣c−[v](ȳ, t̄)

∣∣ |q̄x + q̄y| + (L0 + L1)|x̄− ȳ||p̄ + q̄x| + I2|p̄ + q̄x|

≤ (M0 + M1)(|q̄x| + |q̄y|) + 2eKt̄(L0 + L1)
|x̄− ȳ|2

ε2

+(L0 + L1)|x̄− ȳ||q̄x| + I2

(
|q̄x| + 2eKt̄ |x̄− ȳ|

ε2

)
.
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Since |q̄x|, |q̄y| → 0 as α → 0 (see (35)) and I2 is bounded by |c0(·, t̄)|L1 ≤ L0, there
exists a modulus mε(α) → 0 as α → 0 such that (36) becomes

KeKt̄

(
|x̄− ȳ|2

ε2
+ α|x̄|2 + α|ȳ|2

)
+ η

≤ mε(α) + 2(L0 + L1)e
Kt̄ |x̄− ȳ|2

ε2
+ 2 I2 eKt̄ |x̄− ȳ|

ε2
.

Recalling that we chose K ≥ 2(L0 + L1), we finally obtain

0 < η ≤ mε(α) + 2 I2 eKt̄ |x̄− ȳ|
ε2

.(41)

7. Limit when α → 0. First, suppose that

|x̄− ȳ|2
ε2

→ 0 as α → 0.(42)

It follows that |x̄ − ȳ| → 0 as α → 0. Passing to the limit in (41), we obtain a
contradiction. Therefore, (42) cannot hold, and, up to extracting a subsequence,
there exists δ > 0 such that

|x̄− ȳ|2
ε2

≥ δ > 0 for α > 0 small enough.(43)

From (41) and (35), we get

η ≤ lim sup
α→0

2 I2 eKt̄ |x̄− ȳ|
ε2

≤ 2eKt̄M
1/2
∞

ε
lim sup
α→0

I2.(44)

To obtain a contradiction, it suffices to show that lim supα→0I2 = 0.
8. Convergence of I2 to 0 when α → 0. By a change of variable, we have

I2 =

∫
E
c0(ȳ − z, t̄)dz ≤

∫
Ē
c0(z, t̄)dz,

where

Ē =

{
x ∈ R

N : |x− ȳ|2 ≥ 1

2
(|x̄|2 + |ȳ|2) +

|x̄− ȳ|2
2αε2

}
.

Since |c0(·, t̄)|L1 ≤ L0, to prove that I2 → 0, it suffices to show that Ē ⊂ R
N\B(0, Rα)

with Rα → +∞. From (43), if x ∈ Ē , then

|x|2 ≥ −2|x||ȳ| + 1

2
|x̄|2 − 1

2
|ȳ|2 +

δ

2α

≥ −2|x||ȳ| − |ȳ||x̄− ȳ| + δ

2α

≥ 1

2α
(δ − 2(C2 + 2C|x|)

√
α),

since by (35), there exists C > 0 such that |x̄|, |ȳ| ≤ C/
√
α and |x̄− ȳ| ≤ C. It follows

that

|x| ≥ 1√
α

(
−C +

√
C2 + δ/2 − C2

√
α

)
:= Rα −→

α→0
+∞.
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9. End of the proof. Finally, for every ε, if α = αε is small enough, the supremum
Mε,η,α is necessarily achieved for t̄ = 0. It follows that

Mε,η,α ≤ u(x̄, 0) − v(ȳ, 0) − |x̄− ȳ|2
ε2

≤ u0(x̄, 0) − u0(ȳ, 0) − |x̄− ȳ|2
ε2

.

Since u0 is uniformly continuous, for all ρ > 0, there exists Cρ > 0 such that

Mε,η,α ≤ ρ + Cρ|x̄− ȳ| − |x̄− ȳ|2
ε2

≤ ρ +
C2

ρε
2

4
.

Passing to the limits ε → 0 and then ρ, α, η → 0, we obtain that sup{u − v} ≤
0.

Now we turn to the connections with discontinuous solutions and weak solutions,
which are closely connected. To do so, if u is the unique continuous solution of (33)
given by Theorem 1.4, we recall that we use the notation

ρ+ := 11{u≥0}, ρ− := 11{u>0}, and c[ρ](x, t) = c0(·, t) � ρ(·, t)(x) + c1(x, t).

Proof of Theorem 1.5. 1. Claim: Under the assumptions of Theorem 1.5, the
functions ρ+ and ρ− are L1-viscosity solutions of the equation{

ρt = c[ρ]|Dρ| in R
N × [0, T ) ,

ρ(x, 0) = 11{u0≥0} in R
N .

(45)

We consider two sequences of smooth nondecreasing functions (ψα)α, (ψα)α, taking
values in [0, 1], such that, for any s ∈ R,

ψα(s) ≤ 11{x>0}(s) ≤ 11{x≥0}(s) ≤ ψα(s) ,

and such that, as α → 0, ψα ↑ 11{x>0}, ψ
α ↓ 11{x≥0}.

We first remark that u satisfies, in the sense of Definition 5.1,

ut ≤ c[ψα(u(·, t) − u(x, t))]|Du| in R
N × (0, T ) ,

ut ≥ c[ψα(u(·, t) − u(x, t))]|Du| in R
N × (0, T )

since u is a continuous solution of (33), c+[u](x, t) ≤ c[ψα(u(·, t) − u(x, t))], and
c−[u](x, t) ≥ c[ψα(u(·, t) − u(x, t))]. The point for doing that is that the functions
c[ψα(u(·, t) − u(x, t))], c[ψα(u(·, t) − u(x, t))] are now continuous in x and t.

Then we show that ρ+, ρ− satisfy the same inequalities, the functions c[ψα(u(·, t)−
u(x, t))], c[ψα(u(·, t)−u(x, t))] being considered as fixed functions (in other words, we
forget that they depend on u). In fact, we just provide the proof in detail for ρ+, the
one for ρ− being analogous. Following the proof of [6], we set

uε(x, t) :=
1

2

(
1 + tanh

(
ε−1(u(x, t) + ε1/2)

))
.

Noticing that uε = φε(u) for an increasing function φε, we have that the function uε

still satisfies the two above inequalities. It is easy to see that

ρ+ = lim sup∗ uε and (ρ+)∗ = lim inf∗ uε ,
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and the half-relaxed limits method indeed shows that

(ρ+)∗t ≤ c[ψα(u(·, t) − u(x, t))]|D(ρ+)∗| in R
N × (0, T ) ,

((ρ+)∗)t ≥ c[ψα(u(·, t) − u(x, t))]|D(ρ+)∗| in R
N × (0, T ) .

The next step consists of remarking that the viscosity sub- and supersolution
inequalities for ρ+ are obviously satisfied in the complementary of ∂{u ≥ 0} since ρ+

is locally constant there, and therefore it is a classical solution of the problem. The
only nontrivial viscosity sub- and supersolution inequalities we have to check are at
points (x, t) ∈ ∂{u ≥ 0}, i.e., such that u(x, t) = 0 since u is continuous. For such
points, as α → 0,

c[ψα(u(·, t) − u(x, t))] → c[ρ+](x, t) = c[(ρ+)∗](x, t)

since ρ+ is upper semicontinuous, and

c[ψα(u(·, t) − u(x, t))] → c[ρ−](x, t).

The stability result for equations with an L1-dependence in time yields the inequalities

(ρ+)∗t ≤ c[(ρ+)∗]|D(ρ+)∗| in R
N × (0, T ),

((ρ+)∗)t ≥ c[ρ−]|D(ρ+)∗| in R
N × (0, T ).(46)

The second inequality is weaker than the one we claim: to obtain c[(ρ+)∗] instead
of c[ρ−], we have to play with the different level-sets of u: for β > 0 small, we set
ρ+
β = 11{u≥−β}. Since u is a solution of (33) and ψα,β := ψα(· + β) is nondecreasing,

then ψα,β(u) is a (continuous) supersolution of

(ψα,β(u))t ≥ c−[ψα,β(u)]|Dψα,β(u)| in R
N × (0, T ).

By stability we get, as α → 0,

((ρ+
β )∗)t ≥ c−[(ρ+

β )∗]|D(ρ+
β )∗| in R

N × (0, T ).

But, for (x, t) ∈ ∂{u ≥ −β},

(47) c−[(ρ+
β )∗](x, t) = c[11{(ρ+

β )∗(·,t)>0}](x, t) = c[(ρ+
β )∗](x, t) ≥ c[ρ+](x, t).

It follows that (ρ+
β )∗ is a supersolution of the eikonal equation with c[ρ+](x, t) (as

before, the only nontrivial inequalities we have to check are on ∂{u ≥ −β}, and they
are true because of (47)). Letting β tend to 0 and using that (ρ+)∗ = lim inf∗ (ρ+

β )∗,
we obtain the expected inequality (even something better since (46) holds actually
with c[ρ+](x, t)). In particular, we get that ρ+ is a solution of{

ρt = c[ρ+]|Dρ| in R
N × [0, T ),

ρ(x, 0) = 11{u0≥0} in R
N .

(48)

The proof of the claim is complete.
2. The functions v± are weak solutions of (3). Let us start with the “+” case. We

first remark that the existence and uniqueness of v+ follows from the standard theory
for equations with an L1-dependence in time (see Appendix A).
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To prove that v+ is a weak solution of (3), it remains to prove that (7) holds. It
is sufficient to show that

(49) {v+(·, t) > 0} ⊂ {u(·, t) ≥ 0} ⊂ {v+(·, t) ≥ 0} .

We use again the functions ψα, ψ
α introduced above. We remark that

ψα(u0) ≤ ρ+(x, 0) ≤ ψα(u0) in R
N .

Moreover, v+ and ρ+ are solutions of the same equation, namely (48) with c[ρ+],
which is considered as a fixed function, and so are ψα(v+) and ψα(v+) because the
equation is geometric. Therefore, a standard comparison result implies

ψα(v+) ≤ (ρ+)∗ ≤ ρ+ = (ρ+)∗ ≤ ψα(v+) in R
N × [0, T ) .

Letting α tend to 0, these inequalities imply (49).
We can prove the symmetric result for v−, the only difference being that inclusion

(49) has to be replaced by

(50) {v−(·, t) > 0} ⊂ {u(·, t) > 0} ⊂ {v−(·, t) ≥ 0} .

3. Claim: If v is a weak solution of (3), then 11{v(·,t)≥0} is an L1-subsolution of
(45). From Proposition 3.1 and since c0 ≥ 0, v satisfies in the L1-sense

vt ≤ c[11{v(·,t)≥0}]|Dv| in R
N × [0, T ) .(51)

By similar arguments as we used above, the function 11{v(·,t)≥0} satisfies the same
inequality which gives the result.

4. The function ρ+ is the maximal L1-subsolution of (45). Let w be an L1-(upper
semicontinuous) subsolution of (45). First we have w ≤ 1 in R

N×[0, T ) by comparison
with the constant supersolution 1 for the equation with c[w] fixed. By considering
max(w, 0) we may assume that 0 ≤ w ≤ 1 in R

N × [0, T ). By similar arguments as
we already used in step 1, we can show that 11{w(·,t)>0} is also an L1-subsolution of
(45); thus we can assume that w is a characteristic function.

Then we remark that w is also a subsolution of (33): indeed, again, the only
nontrivial viscosity inequalities are on the boundary of the set {w = 1}, and if (x, t)
is such a point, we have w(x, t) = 1 because w is upper semicontinuous and w =
11{w(·,t)≥w(x,t)}. Since u is a solution of the geometric equation (33), ψα(u) is still a
solution which satisfies ψα(u)(x, 0) ≥ 11{u0≥0} ≥ w(x, 0) in R

N . By Theorem 5.2 we
obtain

w ≤ ψα(u) in R
N × [0, T ) .

Letting α tend to 0 provides w ≤ ρ+, which proves that ρ+ is the maximal subsolution
of (45).

5. The function v+ is the maximal weak solution of (3). Let v be a weak solution
of (3). From steps 3 and 4, we get 11{v(·,t)≥0} ≤ ρ+(·, t) in R

N×[0, T ), and (51) implies

vt ≤ c[ρ+]|Dv| in R
N × [0, T ) .

Therefore v is a subsolution of (12), and by a standard comparison result, this leads
to v ≤ v+ in R

N × [0, T ), which proves the result.
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6. We have {v+(·, t) ≥ 0} = {u(·, t) ≥ 0} and {v−(·, t) > 0} = {u(·, t) > 0}. From
step 5, we get 11{v+(·,t)≥0} ≤ ρ+(·, t) = 11{u(·,t)≥0}. The conclusion follows for v+ using
(49). The inclusion for v− uses symmetric arguments.

7. Uniqueness when {u(·, t) = 0} has Lebesgue measure 0. If LN ({u(·, t) = 0}) = 0,
then c[ρ+] = c[ρ−]. Hence v+ = v− is the unique weak solution of (3), and it is
obviously a classical one.

Appendix A. A stability result for eikonal equations with L1-depen-
dence in time. The aim of this appendix is to provide a self-contained presentation
of a stability result for viscosity solutions of eikonal equations with L1-dependences
in time which handles the case of weak convergence of the equations instead of the
classical strong L1-convergence. This stability result is a particular case of a general
stability result proved by Barles in [4].

For T > 0, we are interested in solutions of the following equation:

(52)

⎧⎨
⎩

∂v

∂t
= c̄(x, t)|Dv| in R

N × (0, T ),

v(·, 0) = u0 in R
N ,

where the velocity c̄ : R
N × (0, T ) → R is defined for almost every t ∈ (0, T ). We also

assume that c̄ satisfies the following.
(H3) The function c̄ is continuous with respect to x ∈ R

N and measurable in t.
For all x, y ∈ R

N and almost all t ∈ [0, T ],

|c̄(x, t)| ≤ M and |c̄(x, t) − c̄(y, t)| ≤ L|x− y|.

Let us underline that we do not assume any continuity in time of c̄. We recall the
following (under assumption (H0)).

Definition A.1 (L1-viscosity solutions). An upper semicontinuous (respectively,
lower semicontinuous) function v on R

N × [0, T ] is an L1-viscosity subsolution (re-
spectively, supersolution) of (52) if

v(0, ·) ≤ u0 (respectively, v(0, ·) ≥ u0)

and if for every (x0, t0) ∈ R
N × [0, T ], b ∈ L1(0, T ), ϕ ∈ C∞(RN × (0, T )), and

continuous function G : R
N × (0, T ) × R

N → R such that
(i) the function

(x, t) 
−→ v(x, t) −
∫ t

0

b(s)ds− ϕ(x, t)

has a local maximum (respectively, minimum) at (x0, t0) over R
N × (0, T ) and such

that
(ii) for almost every t ∈ (0, T ) in some neighborhood of t0 and for every (x, p) in

some neighborhood of (x0, p0) with p0 = ∇ϕ(x0, t0), we have

c̄(x, t)|p| − b(t) ≤ G(x, t, p) (respectively, c̄(x, t)|p| − b(t) ≥ G(x, t, p)),

then

∂ϕ

∂t
(x0, t0) ≤ G(x0, t0, p0)

(
respectively,

∂ϕ

∂t
(x0, t0) ≥ G(x0, t0, p0)

)
.
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Finally, we say that a locally bounded function v defined on R
N × [0, T ] is an L1-

viscosity solution of (52) if its upper semicontinuous (respectively, lower semicontin-
uous) envelope is an L1-viscosity subsolution (respectively, supersolution).

Let us recall that viscosity solutions in the L1-sense were introduced in Ishii’s
paper [20]. We refer the reader to Nunziante [25, 26] and Bourgoing [7, 8] for a
complete presentation of the theory.

Then we have the following result.
Theorem A.2 (existence and uniqueness). For any T > 0, under assumptions

(H0) and (H3), there exists a unique L1-viscosity solution to (52).
Finally, let us consider the solutions vε to the following equation:

(53)

⎧⎨
⎩

∂vε

∂t
= c̄ε(x, t)|Dvε| in R

N × (0, T ),

vε(·, 0) = u0 in R
N .

Then we have the following.
Theorem A.3 (L1-stability [4]). Under assumption (H0), let us assume that the

velocity c̄ε satisfies (H3) (with some constants M,L independent of ε). Let us consider
the L1-viscosity solution vε to (53). Assume that vε converges locally uniformly to a
function v and, for all x ∈ R

N ,∫ t

0

c̄ε(x, s)ds →
∫ t

0

c̄(x, s)ds locally uniformly in (0, T ).(54)

Then v is a L1-viscosity solution of (52).
Remark A.1. Theorem A.3 is stated as in [4], but note that, under (H3), assump-

tion (54) is automatically satisfied as soon as the convergence is merely pointwise.
Indeed, since∣∣∣∣

∫ t

0

c̄ε(x, s)ds

∣∣∣∣ ≤ MT and

∣∣∣∣∣
∫ t

0

c̄ε(x, s)ds−
∫ t′

0

c̄ε(x, s)ds

∣∣∣∣∣ ≤ M |t− t′|,

from Ascoli’s theorem, the convergence is uniform.

Appendix B. Interior ball regularization (proof of Lemma 2.3). The
proof of this result can be adapted from those of Cannarsa and Frankowska [10] or
[2] (see also [9] for related perimeter estimates for general equations). For the sake
of completeness, we give a proof close to the one of [10] (this latter holds for much
more general, but time-independent, dynamics). The unique (and small) contribution
of this part amounts to explaining how this proof can be simplified in the particular
case of dynamics of the form (55) and to point out that the time dependence is not
an issue for the results of [10] to hold.

We first prove that the reachable set for controlled dynamics of the form

(55) ẋ(t) = c(x(t), t)u(t), u ∈ L∞([0, T ], B(0, 1)),

enjoys the interior ball property for positive time. We assume that c : [0, T ]×R
N → R

satisfies, for any x, y ∈ R
N and t ∈ [0, T ],⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) c is Borel measurable,
differentiable with respect to the space variable for a.e. time,

(ii) |c(x, t) − c(y, t)| ≤ L1|x− y|,
(iii) |Dxc(x, t) −Dxc(y, t)| ≤ N1|x− y|,
(iv) M1 ≥ c(x, t) ≥ δ > 0,
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where L1, N1 ≥ 0 and M1, δ > 0 are given constants. Let K0 ⊂ R
N be the initial set.

We define the reachable set R(t) from K0 for (55) at time t by

R(t) = {x(t) , x(·) solution to (55) with x(0) ∈ K0}.

It is known that R(t) is a closed subset of R
N . Let y0 be an extremal solution on the

time interval [0, T ], i.e., a solution of (55) such that

y0(0) ∈ K0 and y0(T ) ∈ ∂R(T ).

From the Pontryagin maximum principle for extremal trajectories (see, for instance,
[13]), there is some adjoint function p0 : [0, T ] → R

N\{0} such that (y0, p0) is a
solution to ⎧⎪⎨

⎪⎩
ẏ0(t) = c(y0(t), t)

p0(t)

|p0(t)|
,

−ṗ0(t) = Dxc(y0(t), t)|p0(t)|.

Since the system is positively homogeneous with respect to p, we can assume, without
loss of generality, that |p0(T )| = 1, and we set θ0 := p0(T ).

Let P be the matrix-valued solution to⎧⎪⎨
⎪⎩

Ṗ (t) =
p0(t)

|p0(t)|
[Dxc(y0(t), t)]

∗P (t),

P (T ) = Id.

A straightforward computation shows that P ∗(t)p0(t) = θ0 for any t ∈ [0, T ].
Let us fix some parameter γ > 0 to be chosen later, θ ∈ B(0, 1) and let us set, for

all t ∈ [0, T ],

yθ(t) = y0(t) − γtP (t)(θ0 − θ).

Our aim is to show that yθ is a solution to (55). Indeed we have

|ẏθ|2 =

∣∣∣∣c(y0, t)
p0

|p0|
− γP (θ0 − θ) − γt

p0

|p0|
Dxc

∗P (θ0 − θ)

∣∣∣∣2

= |c(yθ, t)|2 − 2γc(y0, t)

〈
p0

|p0|
, P (θ0 − θ)

〉

+|c(y0, t)|2 − |c(yθ, t)|2 − 2γtc(y0, t)

〈
p0

|p0|
,
p0

|p0|
Dxc

∗P (θ0 − θ)

〉

+γ2

∣∣∣∣P (θ0 − θ) + t
p0

|p0|
Dxc

∗P (θ0 − θ)

∣∣∣∣2

≤ |c(yθ, t)|2 − 2γ
c(y0, t)

|p0|
〈θ0, θ0 − θ〉 (because P ∗p0 = θ0)

+c2(y0, t) − c2(yθ, t) − 〈Dx(c2)(y0, t), y0 − yθ〉 + γ2M |θ0 − θ|2

≤ |c(yθ, t)|2 − γ
δ

|p0|
|θ0 − θ|2 + M ′

1|y0 − yθ|2 + γ2M |θ0 − θ|2

≤ |c(yθ, t)|2 − γ
δ

|p0|
|θ0 − θ|2 + γ2M ′|θ0 − θ|2,
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with M ′
1 = L2

1 + M1N1, and where M and M ′ depend only on T,L1, N1,M1 because
|p0(t)| is bounded from below by a constant depending only on T,L1. Hence, for
γ sufficiently small, yθ is a solution of (55) starting from y0(0) ∈ K0 and therefore
yθ(T ) ∈ R(T ).

Finally, R(T ) contains all the yθ(T ) for θ ∈ B(0, 1), i.e., the ball centered at
y0(T ) − γTθ0 and of radius γT (since P (T ) = Id).

We apply the previous result with c = c1 and K0 = {v(·, 0) ≥ 0}. Then {v(·, t) ≥
0} = R(t) for all t > 0.

We end with a remark: in the statement of Lemma 2.3, c1 is assumed to be
continuous in time. As we have seen, it is not necessary; c1 can be merely measurable
in time up to considering the L1-solution v of (13), as recalled in Appendix A.
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REFINABLE FUNCTIONS AND CASCADE ALGORITHMS IN
WEIGHTED SPACES WITH HÖLDER CONTINUOUS MASKS∗

BIN HAN†

Abstract. Refinable functions and cascade algorithms play a fundamental role in wavelet anal-
ysis, which is useful in many applications. In this paper we shall study several properties of re-
finable functions, cascade algorithms, and wavelets, associated with Hölder continuous masks, in
the weighted subspaces L2,p,γ(R) of L2(R), where 1 � p � ∞, γ � 0 and f ∈ L2,p,γ(R) means

‖f‖L2,p,γ(R) := ‖
∑

k∈Z
|̂eγ|·|f(·+2πk)|2‖1/2

Lp(T)
< ∞. In particular, ‖f‖L2,1,γ(R) = ‖feγ|·|‖L2(R) and

‖f‖L2,∞,0(R) = ‖
∑

k∈Z
|f̂(· + 2πk)|2||1/2

L∞(T)
. For a mask â ∈ Cβ(T) with β > 0 and â(0) = 1 (that

is, â is a Hölder continuous mask with Hölder exponent β), we prove that the cascade algorithm
associated with the mask â converges in the space L2,∞,0(R) if and only if ν2(â) > 0, where the
quantity ν2(â) will be defined in this paper and plays an important role in our study of refinable
functions and cascade algorithms with Hölder continuous masks. In particular, if the shifts of a
refinable function φ, satisfying φ̂(2·) = âφ̂, are stable in L2(R), then we must have ν2(â) > 0, and
therefore the cascade algorithm associated with mask â converges in the space L2,∞,0(R). Based
on this result, we are able to settle several problems on refinable functions, cascade algorithms, and
wavelets associated with masks having infinitely many nonzero Fourier coefficients. As an application
of the characterization of the convergence of a cascade algorithm in the space L2,∞,0(R), we are able
to show that for a mask â having exponential decay of order r > 0, the cascade algorithm associated
with mask â converges in the weighted space L2,1,γ(R) for 0 < γ < 2r if and only if ν2(â) > 0.
Consequently, if a mask â has exponential decay of order r > 0 and ν2(â) > 0, then its standard

refinable function φ, defined by φ̂(ξ) :=
∏∞

j=1 â(2−jξ), must have exponential decay of order 2r in

L2(R); that is, ‖φ‖2
L2,1,γ(R) =

∫
R
|φ(x)|2e2γ|x| dx < ∞ for all 0 < γ < 2r. As another applica-

tion of the characterization of the convergence of a cascade algorithm in the space L2,∞,0(R), we
completely characterize biorthogonal wavelets and Riesz wavelets in L2(R), which are derived from
refinable functions and whose involved wavelet filters in the frequency domain are Hölder continuous.
We shall also investigate some basic properties of the quantity ν2(â) and discuss how to calculate
and estimate ν2(â). Examples using fractional splines and the Butterworth filters will be given to
illustrate the results in this paper.
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infinitely many nonzero Fourier coefficients, transition operator, weighted L2 spaces, biorthogonal
wavelets, Riesz wavelets, exponential decay
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1. Introduction and motivation. A wavelet system is generally derived from
a refinable function via a multiresolution analysis (MRA). We say that φ is a refinable
function if it satisfies the refinement equation:

(1.1) φ̂(2ξ) = â(ξ)φ̂(ξ) a.e. ξ ∈ R,

where â is a 2π-periodic function, called the mask (or filter) for φ, and the Fourier

transform is defined to be f̂(ξ) :=
∫

R
f(x)e−ixξ dx for f ∈ L1(R).
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For a 2π-periodic function â, we say that â has exponential decay of order r if â
is the restriction of a 2π-periodic function â(z) on the real line Im(z) = 0 such that
â(z) is holomorphic in the strip {z ∈ C : |Im(z)| < r}, where Im(z) denotes the
imaginary part of the complex number z. Write â(ξ) =

∑
k∈Z

ake
−ikξ in terms of its

Fourier series. It is easy to check that â has exponential decay of order r if and only
if for every 0 � γ < r, there is a positive constant Cγ such that |ak| � Cγe

−γ|k| for
all k ∈ Z. A particular family of masks with exponential decay consists of rational
masks that can be written in the form of b̂(ξ)/ĉ(ξ) for some 2π-periodic trigonometric

polynomials b̂ and ĉ such that ĉ(ξ) �= 0 for all ξ ∈ R. For example, the well-known
Butterworth filters are rational masks [5, 11, 18, 25].

Masks with infinitely many nonzero Fourier coefficients, or equivalently, filters
with infinite support, are called infinite impulse response (IIR) filters in electrical
engineering. Due to some desirable properties, IIR filters, including masks with expo-
nential decay and masks for bandlimited wavelets [7] and fractional splines [27], are of
interest in some applications and have been extensively designed for various purposes
in the area of digital signal processing in electrical engineering [3, 5, 18, 25, 27]. In
contrast to the case of trigonometric polynomial masks whose various mathematical
properties have been extensively studied and more or less well understood in the lit-
erature (see [1, 4, 6, 7, 8, 10, 15, 19, 26, 28] and the references therein), there are
still several unsolved questions related to refinable functions and wavelets with masks
having infinitely many nonzero Fourier coefficients. For example, Daubechies and
Huang in [9] showed that if the standard refinable function φ, defined by

(1.2) φ̂(ξ) :=
∞∏
j=1

â(2−jξ), ξ ∈ R,

lies in L1(R) with a mask â having an absolutely summable sequence of Fourier
coefficients, and if φ has exponential decay, then the mask â must have exponential
decay. But to the best of our knowledge, there are very few results on the converse
direction, and it is widely believed that for a mask â with exponential decay, its
standard refinable function φ in (1.2) should also have exponential decay in certain
spaces in some sense. This is one of our motivations to study refinable functions and
cascade algorithms, associated with masks having infinitely many nonzero Fourier
coefficients, in some weighted subspaces of L2(R).

Before proceeding further, let us introduce some definitions and notation. Let
T := R/[2πZ] and Lp(T) denote the linear space of all 2π-periodic measurable func-
tions f : R �→ C such that 2π‖f‖pLp(T) :=

∫ π

−π
|f(x)|p dx < ∞ for 1 � p < ∞ and

‖f‖L∞(T) denotes its essential upper bound. For γ � 0 and 1 � p � ∞, throughout
the paper, the space L2,p,γ(R) denotes the subspace of all f ∈ L2(R) such that

(1.3) ‖f‖L2,p,γ(R) :=
∥∥∥[êγ|·|f, êγ|·|f]∥∥∥1/2

Lp(T)
< ∞,

where the bracket product [20] is defined to be

(1.4) [f, g](ξ) :=
∑
k∈Z

f(ξ + 2πk)g(ξ + 2πk), ξ ∈ R, f, g ∈ L2(R).

It is easy to verify that [f, g] ∈ L2(T) for f, g ∈ L2(R) and L2,p,γ(R) is a Banach
space. In particular, by Plancherel’s theorem, we have

‖f‖2
L2,1,γ(R) = ‖eγ|·|f‖2

L2(R) =

∫
R

|f(x)|2e2γ|x| dx.
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Therefore, L2,1,γ(R) is a weighted subspace of L2(R), and it is a natural candidate
of subspaces to measure the exponential decay of a function in L2(R). Note that
L2,1,0(R) = L2(R).

We say that the shifts of a function f are stable in L2(R) if there exists a positive

constant C such that C−1 � [f̂ , f̂ ](ξ) � C for almost every ξ ∈ R. It is well known that
stability plays an important role in wavelet analysis [3, 4, 7]. If the shifts of a function
f are stable in L2(R), then it is obvious that f ∈ L2,∞,0(R), since ‖f‖L2,∞,0(R) :=

‖[f̂ , f̂ ]‖1/2
L∞(T) < ∞. On the other hand, we shall see in Proposition 6.1 that L2,1,γ(R) ⊆

L2,∞,0(R) for any γ > 0. In particular, all compactly supported functions in L2(R)
are included in L2,∞,0(R). Therefore, the space L2,∞,0(R) is a large enough subspace
of L2(R) and includes most interesting functions in wavelet analysis. In this paper,
we are particularly interested in the subspaces L2,∞,0(R) and L2,1,γ(R) for γ > 0.

In the following, let us introduce a basic quantity ν2(â), which plays a critical
role in our study of refinable functions, cascade algorithms, and wavelets with masks
having infinitely many nonzero Fourier coefficients. For 2π-periodic functions â and
f , the transition operator Tâ is defined to be

(1.5) [Tâf ](ξ) := |â(ξ/2)|2f(ξ/2) + |â(ξ/2 + π)|2f(ξ/2 + π), ξ ∈ R.

For τ ∈ R and 1 � p � ∞, we define a quantity

(1.6) ρτ (â, p) := lim sup
n→∞

‖Tn
â (|sin(·/2)|τ )‖1/n

Lp(T) .

Now we define the quantity ν2(â) in this paper as follows:

(1.7) ν2(â) := −[log2 ρ(â)]/2,

where

(1.8) ρ(â) := inf{ρτ (â,∞) : |â(· + π)|2/| sin(·/2)|τ ∈ L∞(T) and τ � 0}.

When â is a 2π-periodic trigonometric polynomial, the quantity ν2(â) in (1.7) agrees
with the one in [13] and can be calculated by finding the spectral radius of an as-
sociated finite matrix generated by â. See section 4 for details on calculating and
estimating the quantity ν2(â). The quantity ν2(â) in (1.7), whose definition appears
to be a little bit technical in its nature, plays a very important role in investigating
many problems in wavelet analysis. See [13] for applications and the importance of
ν2(â) in wavelet analysis with 2π-periodic trigonometric polynomial masks â.

We say that f belongs to the Hölder class Cβ(T) with β > 0 if f is a 2π-periodic
continuous function such that f ∈ Cn(T) and there exists a positive constant C
satisfying |f (n)(x) − f (n)(y)| � C|x − y|β−n for all x, y ∈ T, where n is the largest
integer such that n � β and f (n) denotes the nth derivative of f . Throughout the
paper, we say that â is a Hölder continuous mask if â ∈ Cβ(T) for some β > 0 and
â(0) = 1. That â is a Hölder continuous mask is a very natural and weak condition
to guarantee that as the Fourier transform of the standard refinable function φ with
mask â, the function φ̂, which is defined through the infinite product in (1.2), is well
defined.

In section 2, we shall present a necessary and sufficient condition in Theorem 2.1
for the convergence of a cascade algorithm in the space L2,∞,0(R). Theorem 2.1 plays
a central role in our study of refinable functions with exponential decay in L2(R) and
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of MRA Riesz wavelet bases in L2(R). More precisely, we prove in Theorem 2.1 that
for a mask â ∈ Cβ(T) with â(0) = 1 and β > 0 (that is, â is a Hölder continuous mask),
the cascade algorithm associated with mask â converges in the space L2,∞,0(R) if and
only if ν2(â) > 0. As a direct consequence of Theorem 2.1, we show in Corollary 2.2

that if the refinement equation φ̂(2·) = âφ̂ has a solution φ such that the shifts of φ
are stable in L2(R), then we must have ν2(â) > 0, and therefore the cascade algorithm
associated with mask â converges in the space L2,∞,0(R).

Cascade algorithms in l2(R) and other spaces with 2π-periodic trigonometric poly-
nomial masks have been extensively studied in the literature. To cite only a few
references here, we refer the reader to [1, 4, 6, 7, 8, 10, 15, 19, 22, 26, 28] and the
references therein, where the property of the masks being 2π-periodic trigonometric
polynomials plays a critical role. The study of cascade algorithms and refinable func-
tions with Hölder continuous masks in this paper is not a trivial generalization of the
known results in the literature, as we shall see in sections 4–6.

As an application of Theorem 2.1, we are able to prove in Theorem 2.3 that for a
mask â having exponential decay of order r > 0, the cascade algorithm associated with
the mask â converges in the space L2,1,γ(R) for 0 < γ < 2r if and only if ν2(â) > 0.
Consequently, the standard refinable function φ associated with mask â in (1.2) must
have exponential decay of order 2r, namely,

(1.9) ‖φ‖2
L2,1,γ(R) =

∫
R

|φ(x)|2e2γ|x| dx < ∞ ∀ 0 � γ < 2r.

An MRA wavelet function ψ is obtained from a refinable function φ with mask â
via

(1.10) ψ̂(2ξ) := b̂(ξ)φ̂(ξ), ξ ∈ R,

for some 2π-periodic measurable function b̂. We say that ψ generates a Riesz wavelet
basis in L2(R) if span{ψj,k := 2j/2ψ(2j · −k) : j, k ∈ Z} is dense in L2(R) and there
exists a positive constant C such that

(1.11) C−1
∑
j∈Z

∑
k∈Z

|cj,k|2 �

∥∥∥∥∥∥
∑
j∈Z

∑
k∈Z

cj,kψj,k

∥∥∥∥∥∥
2

L2(R)

� C
∑
j∈Z

∑
k∈Z

|cj,k|2

for all finitely supported sequences {cj,k}j,k∈Z. MRA Riesz wavelet bases in L2(R) are
of interest in some applications [2, 5, 17, 21, 24]. A natural and important question
here is when ψ generates a Riesz wavelet basis in L2(R). MRA Riesz wavelet bases
with compact support have been investigated in [5, 14, 16, 17, 21, 24], where some
necessary and sufficient conditions have been obtained for trigonometric polynomial
masks. Most approaches in these papers rely largely on an interesting result of Cohen
and Daubechies in [5] saying that for a mask â with exponential decay, the transition
operator Tâ acting on some weighted subspaces of �2(Z) is a compact operator. Built
on this interesting result of [5], a characterization of Riesz wavelets with trigonometric
polynomial masks is obtained in [16] (also cf. [5]) in terms of the spectrum of Tâ.
However, the approach in [5, 16, 24] seems difficult, if not impossible, to be generalized
to masks without exponential decay, since the compactness of the operator Tâ may
be lost.

In order to study biorthogonal wavelets and Riesz wavelets with Hölder contin-
uous masks, using a quite different approach in this paper, as another application
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of Theorem 2.1, we shall prove in Theorem 3.2 that for â, b̂ ∈ Cβ(T) with β > 0,
assuming that the shifts of the standard refinable function φ with mask â are stable
in L2(R), then ψ in (1.10) generates a Riesz wavelet basis in L2(R) if and only if (i)

b̂(0) = 0 and d(ξ) := â(ξ)b̂(ξ + π) − â(ξ + π)b̂(ξ) �= 0 for all ξ ∈ R; (ii) ν2(â) > 0 and

ν2(ˆ̃a) > 0, where ˆ̃a(ξ) := b̂(ξ + π)/d(ξ). Moreover, in the case that â is a 2π-periodic
trigonometric polynomial, we prove that the shifts of φ ∈ L2(R) must be stable in
L2(R) if ψ generates a Riesz wavelet basis in L2(R). Even for the case that both â

and b̂ are 2π-periodic trigonometric polynomials, the mask ˆ̃a is generally not a 2π-
periodic trigonometric polynomial, and consequently refinable functions with masks
being nontrigonometric polynomials will naturally appear in our study of MRA Riesz
wavelet bases in L2(R). This is another motivation for us to study refinable functions,
cascade algorithms, and wavelets with masks having infinitely many nonzero Fourier
coefficients.

To illustrate the results in this paper, we shall apply the results in sections 2
and 3 to a family of Hölder continuous masks ̂aβ1,β2,β3 and | ̂aβ1,β2,β3 |, where

(1.12) ̂aβ1,β2,β3
(ξ) :=

2−2β1(1 + e−iξ)2β1(
| cos(ξ/2)|2β2 + | sin(ξ/2)|2β2

)β3
, β1, β2, β3 > 0.

In fact, the masks for the B-splines correspond to the case ̂aβ1,β2,β3
with β2 = 1

and 2β1 ∈ N. The masks for various types of fractional splines in [27] correspond
to the case ̂aβ1,β2,β3

or | ̂aβ1,β2,β3
| with β2 = 1. The classical Butterworth filters in

[5, 11, 18, 25] correspond to the case | ̂aβ1,β2,β3 | with β3 = 1 and β1 = β2 ∈ N. To
illustrate the main results in sections 2 and 3, we shall study the convergence of
cascade algorithms and MRA Riesz wavelet bases associated with the masks given in
(1.12).

Since the quantity ν2(â) plays a very important role in our study of refinable
functions, cascade algorithms, and wavelets with Hölder continuous masks, we shall
investigate in section 4 some basic properties of the quantity ν2(â) and discuss how
to calculate and estimate the quantity ν2(â) for a mask â being a general Lebesgue
measurable 2π-periodic function. In section 4, we shall generalize a well-known result
on ν2(â), whose proof in the general case of Hölder continuous masks is nontrivial
and will be presented in the last section of this paper. The general discussion on the
quantity ν2(â) in section 4 is of interest in its own right, and the results in section 4
may be useful elsewhere.

For simplicity of presentation and readability of this paper, the proofs of The-
orems 2.1 and 2.3 in section 2, which are a little bit technical in their nature, will
be postponed to sections 5 and 6, respectively. The results in this paper can be
nontrivially generalized to high dimensions and multiwavelets, which we shall discuss
elsewhere.

2. Convergence of cascade algorithms in subspaces of L2(R). In this
section, we shall present the main results on the convergence of cascade algorithms in
the subspaces L2,∞,0(R) and L2,1,γ(R). For simplicity of presentation, the proofs of
the main results in this section will be postponed to sections 5 and 6. To illustrate
the results in this section, we shall apply these results to the masks in (1.12), which
include the Butterworth filters in [25] and the masks for fractional splines in [27] as
special cases.

For a quotient function f/g, throughout the paper, we use the convention that
(f/g)(ξ) is equal to f(ξ)/g(ξ) if g(ξ) �= 0, 1 if f(ξ) = g(ξ) = 0, or +∞ if g(ξ) = 0 but
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f(ξ) �= 0. We say that a function f ∈ L2(R) is admissible with respect to â if there
exists a positive number τ > 0 such that

(2.1) [â(·/2)f̂(·/2) − f̂ , â(·/2)f̂(·/2) − f̂ ]/| sin(·/2)|τ ∈ L∞(T).

Note that all compactly supported functions in L2(R) belong to L2,1,γ(R) for all γ > 0.

For every f ∈ L2,1,γ(R) with γ > 0 such that f̂(2πk) = 0 for all k ∈ Z\{0}, we shall
show in Proposition 6.2 that f is admissible with respect to â for any â ∈ Cβ(T) with
â(0) = 1, â(π) = 0, and β > 0.

For 0 < β � 1, we say that f belongs to the Lipschitz class Λβ(T) if there is a
positive constant C such that |f(x) − f(y)| � C|x− y|β for all x, y ∈ T.

Now we have the following result on the convergence of cascade algorithms in the
space L2,∞,0(R), which plays a central role in this paper and whose proof will be given
in section 5.

Theorem 2.1. Let â ∈ Cβ(T) with â(0) = 1 and β > 0 (that is, â is a Hölder
continuous mask). Then the following are equivalent:

(i) â(π) = 0, and for every admissible function f ∈ L2,∞,0(R) with respect to
â, {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R), where the functions fn are
defined by

(2.2) f̂n(ξ) := â(ξ/2)f̂n−1(ξ/2) = f̂(2−nξ)

n∏
j=1

â(2−jξ), ξ ∈ R, n ∈ N.

(ii) For one admissible function f ∈ L2,∞,0(R) with respect to â such that the
shifts of f are stable, {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R).

(iii) For every τ > 0, ρτ (â,∞) < 1, where ρτ (â,∞) is defined in (1.6).
(iv) ν2(â) > 0; that is, ρ(â) < 1, where ν2(â) and ρ(â) are defined in (1.7) and

(1.8), respectively.
(v) For at least one τ > 0, ρτ (â,∞) < 1 and |â(· + π)|2/| sin(·/2)|τ ∈ L∞(T).

Let φ denote the standard refinable function associated with the mask â in (1.2). If

ν2(â) > 0, then φ̂ belongs to the Lipschitz class Λmin(1,β)(R), [φ̂, φ̂] ∈ Λmin(1,β)(T),
and for any 0 � ν < ν2(â),

(2.3) [φ̂, φ̂]ν :=
∑
k∈Z

(1 + | · +2πk|2)ν |φ̂(· + 2πk)|2 ∈ C(T).

In fact, by a more complicated argument, we could show in Theorem 2.1 that
φ̂ ∈ Cβ(R) and [φ̂, φ̂] ∈ Cβ(T), which we shall address elsewhere. According to the
proof of Theorem 2.1 in section 5, (ii) implies ν2(â) > 0 without the admissibility
condition on f ; that is, if {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R) for a function
f ∈ L2,∞,0(R) with stability, then ν2(â) > 0. We say that the cascade algorithm
associated with a mask â converges in a given function space if for every admissible
function f in that space with respect to â, the sequence {fn}∞n=1 defined in (2.2) is a
Cauchy sequence in that space.

As a direct consequence of Theorem 2.1, we have the following corollary.
Corollary 2.2. Let â ∈ Cβ(T) with â(0) = 1 and β > 0. Suppose that φ is a

(not necessarily the standard) refinable function such that φ̂(2ξ) = â(ξ)φ̂(ξ) a.e. ξ ∈ R

and the shifts of φ are stable in L2(R). Then ν2(â) > 0 and the cascade algorithm
associated with mask â must converge in the space L2,∞,0(R).

Proof. Since the shifts of φ are stable in L2(R), we have [φ̂, φ̂] ∈ L∞(T), and so

φ ∈ L2,∞,0(R). Since â(·/2)φ̂(·/2) − φ̂ = 0, φ is an admissible function in L2,∞,0(R)
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with respect to â. So, for f = φ, (ii) of Theorem 2.1 holds since fn = φ for all n ∈ N.
Now by Theorem 2.1, ν2(â) > 0.

For a mask with exponential decay, using Theorem 2.1, we characterize the con-
vergence of a cascade algorithm with an exponentially decaying mask in the spaces
L2,p,γ(R) in the following result, whose proof will be given in section 6.

Theorem 2.3. Let â be a mask such that â(0) = 1 and â has exponential decay
of order r for some r > 0. Then the following are equivalent:

(i) â(π) = 0, and for every 0 < γ < 2r and every admissible function f ∈
L2,1,γ(R) with respect to â, {fn}∞n=1 is a Cauchy sequence in L2,1,γ(R), where
fn are defined in (2.2).

(ii) â(π) = 0, and for every 0 < γ < 2r, every 1 � p � ∞, and every admissible
function f ∈ L2,p,γ(R) with respect to â, {fn}∞n=1 is a Cauchy sequence in
L2,p,γ(R).

(iii) â(π) = 0, and for some 0 < γ < 2r, some 1 � p � ∞, and every admissible
function f ∈ L2,p,γ(R) with respect to â, {fn}∞n=1 is a Cauchy sequence in
L2,p,γ(R).

(iv) For some 0 < γ < 2r, some 1 � p � ∞, and one admissible function
f ∈ L2,p,γ(R) with respect to â such that the shifts of f are stable in L2(R),
the sequence {fn}∞n=1 is a Cauchy sequence in L2,p,γ(R).

(v) ν2(â) > 0.
In particular, if ν2(â) > 0 and â has exponential decay of order r, then the standard
refinable function φ with mask â in (1.2) must have exponential decay of order 2r;
that is, (1.9) holds.

In the following, we shall apply the above results to the masks in (1.12), which
include both the classical Butterworth filters in [25] and the masks for the fractional
splines in [27] as special cases.

Example 2.4. Let â = ̂aβ1,β2,β3
or â = | ̂aβ1,β2,β3

|, where the masks ̂aβ1,β2,β3
are

defined in (1.12). By Proposition 4.2, it is easy to check that â ∈ Cβ(T) for some
β > 0. Denote

B̂(ξ) = (| cos(ξ/2)|2β2 + | sin(ξ/2)|2β2)β3 .

Then |â(ξ)| = 2−2β1 |1 + e−iξ|2β1/B̂(ξ). By calculation, it is easy to deduce that

(2.4) min(1, 21−β2) � | cos(ξ/2)|2β2 + | sin(ξ/2)|2β2 � max(1, 21−β2) ∀ ξ ∈ R.

Consequently, we have B̂(ξ) � min(1, 2(1−β2)β3) for all ξ ∈ R and β2, β3 > 0.
For 0 < β2 � 1, by Theorem 4.1 and Lemma 4.3, it follows from B̂(ξ) �

min(1, 2(1−β2)β3) = 1 that

ρ(â) = ρ4β1(â,∞) = ρ0(2
−2β1/B̂,∞) � ρ0(2

−2β1 ,∞) = 21−4β1 ,

since for a constant c, Tn
c 1 = 2n|c|2n, and therefore

ρ0(c,∞) = lim sup
n→∞

‖Tn
c 1‖1/n

L∞(T) = 2|c|2.

For β2 > 1, by Theorem 4.1 and Lemma 4.3, it follows from B̂(ξ) � 2(1−β2)β3

that

ρ(â) = ρ4β1
(â,∞) = ρ0(2

−2β1/B̂,∞) � ρ0(2
−2β1−(1−β2)β3 ,∞) = 21−4β1−2(1−β2)β3 .
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Therefore, for

(2.5) β1, β2, β3 > 0 satisfying β1 > 1/4 + max(0, (β2 − 1)β3/2),

we have ρ(â) < 1; that is, ν2(â) > 0. By Theorem 2.1, the cascade algorithm associ-
ated with mask â converges in the space L2,∞,0(R).

The classical Butterworth filters in [25] correspond to the case β3 = 1 and β1 =
β2 ∈ N. The condition in (2.5) holds for all β3 = 1 and β1 = β2 ∈ N, that is, holds
for all Butterworth filters.

For the fractional splines in [27], since β2 = 1, the condition in (2.5) becomes
β1 > 1/4. Note that when β2 = 1, the standard refinable function φ associated

with mask â in (1.2) satisfies |φ̂(2ξ)| = |(sin ξ)/ξ|2β1 . Clearly, if 0 < β1 � 1/4, then

φ̂ �∈ L2(R). So, the condition in (2.5), that is, β1 > 1/4, is sharp for the case of
fractional splines in [27].

Now we consider the case that â has exponential decay; that is, â(ξ) = ̂aβ1,β2,β3
(ξ)

with 2β1 ∈ N and β2 ∈ N. In this case, by the definition of the masks ̂aβ1,β2,β3 in
(1.12), it is easy to see that â can be extended into a holomorphic function on some
strip {z ∈ C : |Im(z)| < r} for some r > 0 depending only on β2. So, â has
exponential decay of order r. Now by Theorem 2.3, if (2.5) holds with 2β1 ∈ N and
β2 ∈ N, then the cascade algorithm associated with mask â converges in the spaces
L2,p,γ(R) for all 0 � γ < 2r and the standard refinable function φ associated with
mask â must have exponential decay of order 2r in L2(R).

3. Characterization of MRA biorthogonal wavelets and Riesz wavelets.
In this section, using Theorem 2.1, we shall study MRA biorthogonal wavelets and
Riesz wavelets with Hölder continuous masks.

Let us first recall the definition of biorthogonal wavelets in [6]. For two functions
ψ, ψ̃ ∈ L2(R), we say that (ψ, ψ̃) generates a pair of biorthogonal wavelet bases in
L2(R) if each of ψ and ψ̃ generates a Riesz wavelet basis in L2(R) and the following
biorthogonality relation holds:

(3.1) 〈ψj,k, ψ̃j′,k′〉 :=

∫
R

ψj,k(x)ψ̃j′,k′(x) dx = δj−j′δk−k′ ∀ j, j′, k, k′ ∈ Z,

where ψj,k := 2j/2ψ(2j · −k) and δ denotes the Dirac sequence such that δ0 = 1
and δk = 0 for all k �= 0. Compactly supported biorthogonal wavelets have been
investigated in [4, 6, 7, 12] and other papers.

As an application of Theorem 2.1, we have the following result on biorthogonal
wavelets with Hölder continuous masks.

Theorem 3.1. Let â, ˆ̃a ∈ Cβ(T) with â(0) = ˆ̃a(0) = 1 and β > 0. Define two

refinable functions φ̂ and
ˆ̃
φ associated with masks â and ˆ̃a by

(3.2) φ̂(ξ) :=
∞∏
j=1

â(2−jξ) and
ˆ̃
φ(ξ) :=

∞∏
j=1

ˆ̃a(2−jξ), ξ ∈ R.

Then the following are equivalent:

(i) [φ̂, φ̂], [
ˆ̃
φ,

ˆ̃
φ] ∈ L∞(T) and [φ̂,

ˆ̃
φ] = 1; or equivalently, the shifts of both φ and

φ̃ are stable in L2(R) and the biorthogonality relation holds:

(3.3) 〈φ, φ̃(· − k)〉 =

∫
R

φ(x)φ̃(x− k) dx = δk ∀ k ∈ Z.
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(ii) ν2(â) > 0, ν2(ˆ̃a) > 0, and ˆ̃a is a dual mask of â, where we say that ˆ̃a is a
dual mask of â if

(3.4) â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π) = 1.

Let b̂,
ˆ̃
b ∈ Cβ(T) such that b̂(0) =

ˆ̃
b(0) = 0. Define two wavelet functions ψ and ψ̃ by

(3.5) ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2) and
ˆ̃
ψ(ξ) :=

ˆ̃
b(ξ/2)

ˆ̃
φ(ξ/2).

If ν2(â) > 0, ν2(ˆ̃a) > 0, and

(3.6)

[
â(ξ) â(ξ + π)

b̂(ξ) b̂(ξ + π)

][
ˆ̃a(ξ) ˆ̃a(ξ + π)

ˆ̃
b(ξ)

ˆ̃
b(ξ + π)

]T
=

[
1 0
0 1

]
,

then (ψ, ψ̃) generates a pair of biorthogonal wavelet bases in L2(R).

Proof. Suppose that (i) holds. By 1 = |[φ̂, ˆ̃
φ]|2 � [φ̂, φ̂][

ˆ̃
φ,

ˆ̃
φ], we have [φ̂, φ̂] �

‖[ ˆ̃φ, ˆ̃
φ]‖−1

L∞(T) and [
ˆ̃
φ,

ˆ̃
φ] � ‖[φ̂, φ̂]‖−1

L∞(T). Therefore, the shifts of φ and φ̃ are stable

in L2(R). By Corollary 2.2, we have ν2(â) > 0 and ν2(ˆ̃a) > 0. Now by [φ̂,
ˆ̃
φ] = 1, it

follows directly from the refinement equations φ̂(2ξ) = â(ξ)φ̂(ξ) and
ˆ̃
φ(2ξ) = ˆ̃a(ξ)

ˆ̃
φ(ξ)

that

1 = [
ˆ̃
φ, φ̂](2ξ) = â(ξ)ˆ̃a(ξ)[

ˆ̃
φ, φ̂](ξ) + â(ξ + π)ˆ̃a(ξ + π)[

ˆ̃
φ, φ̂](ξ + π)

= â(ξ)ˆ̃a(ξ) + â(ξ + π)ˆ̃a(ξ + π).

So, ˆ̃a is a dual mask of â. Therefore, (i)⇒(ii).
To prove (ii)⇒(i), since ν2(â) > 0 and ν2(ˆ̃a) > 0, by Theorem 2.1, we see that (i) of

Theorem 2.1 holds for both â and ˆ̃a. Moreover, by (2.3), we have [φ̂, φ̂], [
ˆ̃
φ,

ˆ̃
φ] ∈ L∞(T).

Take f̂ := χ[−π,π], the characteristic function of the interval [−π, π]. By (i) of

Theorem 2.1, we have â(π) = ˆ̃a(π) = 0. Since â, ˆ̃a ∈ Cβ(T) and â(0) = ˆ̃a(0) = 1, it is
easy to directly verify that f is an admissible function in L2,∞,0(R) with respect to

both â and ˆ̃a. Define

f̂n(ξ) := f̂(2−nξ)

n∏
j=1

â(2−jξ) and
̂̃
fn(ξ) := f̂(2−nξ)

n∏
j=1

ˆ̃a(2−jξ), n ∈ N.

Then by (i) of Theorem 2.1, both {fn}∞n=1 and {f̃n}∞n=1 are Cauchy sequences in

L2,∞,0(R). Note that limn→∞ f̂n(ξ) = φ̂(ξ) and limn→∞
̂̃
fn(ξ) =

ˆ̃
φ(ξ). So, we must

have

lim
n→∞

‖fn − φ‖L2,∞,0(R) = lim
n→∞

‖f̃n − φ̃‖L2,∞,0(R) = 0.

Since [f̂ , f̂ ] = 1 and the discrete biorthogonality relation in (3.4) holds, it is easy

to show by induction that [f̂n,
̂̃
fn] = 1 for all n ∈ N. Consequently, we must have

[φ̂,
ˆ̃
φ] = 1. Therefore, (ii)⇒(i).
If ν2(â) > 0, ν2(ˆ̃a) > 0, and (3.6) holds, then all the conditions in (ii) hold. So,

[φ̂,
ˆ̃
φ] = 1. Now it follows from (3.6) that [φ̂,

ˆ̃
ψ] = 0, [ψ̂,

ˆ̃
φ] = 0, and [ψ̂,

ˆ̃
ψ] = 1. By a
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standard argument on MRA [4, 6], we deduce that (3.1) holds. Since φ̂(0) =
ˆ̃
φ(0) = 1

and both φ̂ and
ˆ̃
φ are continuous, by the standard argument on MRA, we see that

both {ψj,k : j, k ∈ Z} and {ψ̃j,k : j, k ∈ Z} are dense in L2(R). To show that both ψ

and ψ̃ generate Riesz wavelet bases in L2(R), we need to show that ψ and ψ̃ satisfy
(1.11). By the biorthogonality relation in (3.1), it suffices to show that the right-hand
inequality in (1.11) holds for both ψ and ψ̃ [4], which is equivalent to showing that
there exists a positive constant C such that

(3.7)
∑
j∈Z

∑
k∈Z

[
|〈f, ψj,k〉|2 + |〈f, ψ̃j,k〉|2

]
� C‖f‖2 ∀ f ∈ L2(R).

Since ν2(â) > 0 and ν2(ˆ̃a) > 0, by Theorem 2.1, we have [φ̂, φ̂]ν , [
ˆ̃
φ,

ˆ̃
φ]ν ∈ L∞(T)

for 0 < ν < min(ν2(â), ν2(ˆ̃a)). Using Fourier transform and the Parseval’s identity,

by ψ̂(ξ) = b̂(ξ/2)φ̂(ξ/2), we have

2π
∑
k∈Z

|〈f, ψj,k〉|2 = 2j
∫ π

−π

|[f̂(2j ·), ψ̂](ξ)|2 dξ

� 2j+1

∫ π

−π

|b̂(ξ)|2|[f̂(2j+1·), φ̂](ξ)|2 dξ

� 2j+1

∫ π

−π

|b̂(ξ)|2[f̂(2j+1·), f̂(2j+1·)]−ν(ξ)[φ̂, φ̂]ν(ξ) dξ

� ‖[φ̂, φ̂]ν‖L∞(T)2
j+1

∫ π

−π

|b̂(ξ)|2[f̂(2j+1·), f̂(2j+1·)]−ν(ξ) dξ

= ‖[φ̂, φ̂]ν‖L∞(T)

∫
R

|b̂(2−j−1ξ)|2
(1 + |2−j−1ξ|2)ν |f̂(ξ)|2 dξ.

Note that b̂(0) =
ˆ̃
b(0) = 0 and b̂,

ˆ̃
b ∈ Cβ(T) with β > 0. Consequently, we see that

(3.7) holds with

C = ‖[φ̂, φ̂]ν‖L∞(T)

∥∥∥∥∥∥
∑
j∈Z

|b̂(2j ·)|2
(1 + |2j · |2)ν

∥∥∥∥∥∥
L∞(R)

+ ‖[ ˆ̃φ, ˆ̃
φ]ν‖L∞(T)

∥∥∥∥∥∥
∑
j∈Z

|ˆ̃b(2j ·)|2
(1 + |2j · |2)ν

∥∥∥∥∥∥
L∞(R)

< ∞.

Therefore, (ψ, ψ̃) generates a pair of biorthogonal wavelet bases in L2(R).
As an application of Theorems 2.1 and 3.1, we characterize MRA Riesz wavelet

bases in L2(R) in the following result, which improves and generalizes [14, Theorem 6]
and [16, Theorem 1.1] by taking a different approach.

Theorem 3.2. Let â, b̂ ∈ Cβ(T) with â(0) = 1 and β > 0. Define φ and ψ by

(3.8) φ̂(ξ) :=
∞∏
j=1

â(2−jξ) and ψ̂(ξ) := b̂(ξ/2)φ̂(ξ/2), ξ ∈ R.
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Then the shifts of φ are stable in L2(R) and ψ generates a Riesz wavelet basis in
L2(R) if and only if

(i) b̂(0) = 0 and d(ξ) := â(ξ)b̂(ξ + π) − â(ξ + π)b̂(ξ) �= 0 for all ξ ∈ R,

(ii) ν2(â) > 0 and ν2(ˆ̃a) > 0, where ˆ̃a(ξ) := b̂(ξ + π)/d(ξ).

In the case that â is a 2π-periodic trigonometric polynomial, then the shifts of φ ∈
L2(R) must be stable in L2(R) if ψ generates a Riesz wavelet basis in L2(R).

Proof. Suppose that (i) and (ii) hold. Define
ˆ̃
b(ξ) := −â(ξ + π)/d(ξ). Since

â, b̂ ∈ Cβ(T) and d(ξ) �= 0 for all ξ ∈ R, it is evident that ˆ̃a,
ˆ̃
b ∈ Cβ(T). By ν2(â) > 0

and Theorem 2.1, â(π) = 0. Since â(0) = 1 and b̂(0) = 0, we must have ˆ̃a(0) = 1
and ˆ̃a(π) = 0. Moreover, it is easy to check that (3.6) holds. Define φ̃ and ψ̃ as
in (3.2) and (3.5). Now it follows from Theorem 3.1 that (ψ, ψ̃) generates a pair of
biorthogonal wavelet bases in L2(R). In particular, we conclude that ψ generates a
Riesz wavelet basis in L2(R).

Conversely, suppose that the shifts of φ are stable in L2(R) and ψ generates a Riesz
wavelet basis in L2(R). Since the shifts of φ are stable in L2(R), by Corollary 2.2, we

have ν2(â) > 0 and â(π) = 0. Since ψ̂ is continuous and ψ generates a Riesz wavelet

basis in L2(R), we must have ψ̂(0) = 0, and therefore b̂(0) = 0 by φ̂(0) = 1. So,

ˆ̃a(0) = b̂(π)/d(0) = 1. By [14, Lemma 1], we see that (i) must hold and there exists a

function φ̃ ∈ L2(R) such that the shifts of φ̃ are stable in L2(R) and
ˆ̃
φ(2ξ) = ˆ̃a(ξ)

ˆ̃
φ(ξ).

Since ˆ̃a ∈ Cβ(T) and ˆ̃a(0) = 1, by Corollary 2.2, we have ν2(ˆ̃a) > 0. Therefore, both
(i) and (ii) hold.

Suppose that â is a 2π-periodic trigonometric polynomial and the shifts of φ ∈
L2(R) are not stable in L2(R). Since φ is compactly supported, by [19, Theorem 5.3],
there exists a compactly supported refinable function η ∈ L2(R) with stable shifts
in L2(R) such that η̂(2ξ) = ĉ(ξ)η̂(ξ) for some 2π-periodic trigonometric polynomial

ĉ, and φ̂(ξ) = θ(ξ)η̂(ξ) for some 2π-periodic trigonometric polynomial θ. Note that

[φ̂, φ̂](ξ) = |θ(ξ)|2[η̂, η̂](ξ) and â(ξ) = θ(2ξ)ĉ(ξ)/θ(ξ). Since the shifts of the com-
pactly supported function φ are not stable in L2(R), there is ξ0 ∈ R\[2πZ] such that
θ(ξ0) = 0.

Since ψ̂(2ξ) = b̂(ξ)φ̂(ξ) = b̂(ξ)θ(ξ)η̂(ξ) and the shifts of η are stable in L2(R), if
ψ generates a Riesz wavelet basis in L2(R), by what has been proved, then we must
have

0 �= d̊(ξ) := ĉ(ξ)b̂(ξ + π)θ(ξ + π) − ĉ(ξ + π)b̂(ξ)θ(ξ) =
θ(ξ)θ(ξ + π)

θ(2ξ)
d(ξ)

∀ ξ ∈ R

(3.9)

and ν2(ĉ) > 0, ν2(ˆ̊a) > 0, where ˆ̊a(ξ) := b̂(ξ + π)θ(ξ + π)/d̊(ξ).

By (3.9), we conclude that if ξ ∈ R is a zero of θ, then 2ξ must also be a zero of
θ. Since θ(ξ0) = 0, we now see that θ(2jξ0) = 0 for all j ∈ N ∪ {0}. By the definition

of d̊(ξ) in (3.9), for all j ∈ N ∪ {0}, we have

d̊(2jξ0) := ĉ(2jξ0)b̂(2
jξ0 + π)θ(2jξ0 + π) − ĉ(2jξ0 + π)b̂(2jξ0)θ(2

jξ0)

= ĉ(2jξ0)b̂(2
jξ0 + π)θ(2jξ0 + π).
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Now by the definition of ˆ̊a, we deduce that

ˆ̊a(2jξ0) =
b̂(2jξ0 + π)θ(2jξ0 + π)

ĉ(2jξ0)b̂(2jξ0 + π)θ(2jξ0 + π)
=

1

ĉ(2jξ0)
∀ j ∈ N ∪ {0},

from which we see that

(3.10)
n∏

j=0

ˆ̊a(2jξ0) =
1∏n

j=0 ĉ(2
jξ0)

∀ n ∈ N.

Since the shifts of η are stable, there exists k0 ∈ Z such that η̂(ξ0 + 2πk0) �= 0. Since
ξ0 �∈ 2πZ, we have ξ0 + 2πk0 �= 0, and therefore limn→∞ η̂(2n(ξ0 + 2πk0)) = 0 by
η ∈ L1(R) ∩ L2(R). Now by (3.10), we have

∣∣∣∣∣
n∏

j=0

ˆ̊a(2jξ0)

∣∣∣∣∣ = 1∣∣∣∏n
j=0 ĉ(2

jξ0)
∣∣∣ =

1∣∣∣∏n
j=0 ĉ(2

j(ξ0 + 2πk0))
∣∣∣

=
|η̂(ξ0 + 2πk0)|

|η̂(2n+1(ξ0 + 2πk0))|
→ ∞

as n → ∞, which is a contradiction to [14, Lemma 1] (also see (5.19)), since ˆ̊a ∈ Cβ(T).
Therefore, the shifts of φ ∈ L2(R) must be stable in L2(R).

To illustrate the results in this section, we consider MRA Riesz wavelet bases in
L2(R) using the masks in (1.12). The following result generalizes [17, Theorem 2.2]
for the case of B-splines.

Theorem 3.3. Let â = ̂aβ1,β2,β3
or â = | ̂aβ1,β2,β3

|, where the masks ̂aβ1,β2,β3
are

defined in (1.12). Let φ denote the standard refinable function associated with mask
â in (1.2) and define a wavelet function ψ by

(3.11) ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ), ξ ∈ R.

Then the shifts of φ are stable in L2(R) and the wavelet function ψ generates a Riesz
wavelet basis in L2(R), provided that β1, β2, β3 > 0 satisfy

(3.12) β1 > 1/4+ |β2−1|β3/2, (β2−1)β3 > −1/2 or β1 � 1, (β2−1)β3 � −1/2.

Proof. Let b̂(ξ) := e−iξâ(ξ + π). Then ψ̂(2ξ) = b̂(ξ)φ̂(ξ). Clearly, â, b̂ ∈ Cβ(T)

for some β > 0 and b̂(0) = 0. By calculation, we have

d(ξ) = e−i(ξ+π)
(
|â(ξ)|2 + |â(ξ + π)|2

)
= e−i(ξ+π) | cos(ξ/2)|4β1 + | sin(ξ/2)|4β1(

| cos(ξ/2)|2β2 + | sin(ξ/2)|2β2
)2β3

.

So, d(ξ) �= 0 for all ξ ∈ R, and (i) of Theorem 3.2 holds.



82 BIN HAN

By calculation, we have

|ˆ̃a(ξ)| = |b̂(ξ + π)/d(ξ)| = 2−2β1 |1 + e−iξ|2β1 ĉ(ξ),

where

ĉ(ξ) :=

(
| cos(ξ/2)|2β2 + | sin(ξ/2)|2β2

)β3

| cos(ξ/2)|4β1 + | sin(ξ/2)|4β1
.

Now it follows from the inequalities in (2.4) that

0 < ĉ(ξ) � cβ1,β2,β3 :=
max(1, 2(1−β2)β3)

min(1, 21−2β1)
∀ ξ ∈ R.

If (3.12) holds, then (2.5) must be true, and therefore, by Example 2.4, we have
ν2(â) > 0. By Theorem 4.1 and Lemma 4.3, if (3.12) holds, then we have

ρ(ˆ̃a) = ρ4β1
(ˆ̃a,∞) = ρ0(2

−2β1 ĉ,∞) � ρ0(2
−2β1cβ1,β2,β3

,∞) = 21−4β1 |cβ1,β2,β3
|2 < 1,

since the last inequality combined with (2.5) is equivalent to (3.12). Now by The-
orem 3.2, the shifts of φ are stable in L2(R), and the function ψ generates a Riesz
wavelet basis in L2(R).

For the fractional splines in [27], we have β2 = 1, and the condition in (3.12)
becomes β1 > 1/4. As discussed in Example 2.4, the standard refinable function
associated with mask â and β2 = 1 does not belong to L2(R) for 0 < β1 � 1/4. So,
Theorem 3.3 is sharp for all the fractional splines in [27].

For the classical Butterworth filters, we have β3 = 1 and β1 = β2 ∈ N. Now
the condition in (3.12) becomes β1 > 1/2. Therefore, Theorem 3.3 holds for all the
classical Butterworth filters in [25].

4. Some properties and estimate of the quantity ν2(â). In this section,
we shall investigate some properties of the quantity ν2(â) in (1.7) and discuss how
to estimate the quantity ν2(â). Some results in this section will be needed in our
study of refinable functions, cascade algorithms, and wavelets with Hölder continuous
masks. The results in this section for the general case of Lebesgue measurable masks
are also of interest in their own right and may be useful elsewhere.

The following result generalizes a well-known result for a univariate 2π-periodic
trigonometric polynomial â and a positive integer τ in the wavelet literature. The
proof of the following result for the general case of Hölder continuous masks is non-
trivial and will be presented in section 7.

Theorem 4.1. Let â be a 2π-periodic measurable function such that |â|2 ∈ Cβ(T)
with |â(0)|2 �= 0 and β > 0. If |â(ξ)|2 = |1 + e−iξ|2τ |Â(ξ)|2 a.e. ξ ∈ R for some τ � 0
such that Â ∈ L∞(T), then

ρ2τ (â,∞) = inf
n→∞

∥∥∥∥∥T
n
â (| sin(·/2)|2τ )
| sin(·/2)|2τ

∥∥∥∥∥
1/n

L∞(T)

= lim
n→∞

‖Tn
Â

1‖1/n
L∞(T) = inf

n∈N

‖Tn
Â

1‖1/n
L∞(T).

(4.1)

As in (1.7), we define a similar quantity as follows:
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(4.2) ν2(â, p) := −[log2 ρ(â, p)]/2, 1 � p � ∞,

where the quantity ρ(â, p), using ρτ (â, p) in (1.6), is defined to be

(4.3) ρ(â, p) := inf{ρτ (â, p) : |â(· + π)|2/| sin(·/2)|τ ∈ L∞(T) and τ � 0}.

Clearly, ν2(â) = ν2(â,∞) and ρ(â) = ρ(â,∞). For a 2π-periodic trigonometric
polynomial â, we can write â(ξ) = (1 + e−iξ)τ Â(ξ) for some nonnegative integer τ
and some 2π-periodic trigonometric polynomial Â with Â(π) �= 0. Write |Â(ξ)|2 =∑K

k=−K cke
−ikξ. It is known [7, 13, 15] that ν2(â, p) = ν2(â) = −1/2− log2

√
ρ, where

ρ is the spectral radius of the square matrix (c2j−k)−K�j,k�K .

In the following, we shall investigate the mutual relations among the quantities
ν2(â, p).

Proposition 4.2. The following statements hold:

(1) For 0 < τ < 1, | sin(·/2)|τ ∈ Cτ (T) and | cos(·/2)|τ ∈ Cτ (T).
(2) For a 2π-periodic measurable function â and 0 � τ1 � τ2,

ρτ2(â, p) � ρτ1(â, p) � ρτ1(â, q) and ν2(â, q) � ν2(â, p)

∀ 1 � p � q � ∞.
(4.4)

(3) If â ∈ Cβ(T) with â(0) = 1 and β > 0, then the condition

(4.5) lim inf
n→∞

‖Tn
â (| sin(·/2)|τ )‖L1(T) = 0 for some τ � 0

implies â(π) = 0. In particular, (4.5) holds if ν2(â, p) > 0 for some 1 � p �
∞.

Proof. It is easy to prove that 1− xτ � (1− x)τ for all 0 < τ � 1 and 0 � x � 1.
Consequently, we have

|| sin(x/2)|τ − | sin(y/2)|τ | � | sin(x/2) − sin(y/2)|τ � |x− y|τ .

So, | sin(·/2)|τ ∈ Cτ (T), and it follows that | cos(·/2)|τ ∈ Cτ (T). So, (1) holds.

Since 0 � τ1 � τ2, it is evident that | sin(ξ/2)|τ2 � | sin(ξ/2)|τ1 for all ξ ∈ R.
Therefore,

Tn
â (|sin(·/2)|τ2) � Tn

â (|sin(·/2)|τ1) .

Now the claim in (4.4) follows directly from the above inequality and the fact that
‖ · ‖Lp(T) � ‖ · ‖Lq(T) for all 1 � p � q � ∞. So, (2) holds.

To prove (3), we denote Φ(ξ) :=
∏∞

j=1 |â(2−jξ)|2. Since â ∈ Cβ(T) with â(0) =
1 and β > 0, Φ is well defined and is continuous with Φ(0) = 1. Suppose that
â(π) �= 0. Then there exist 0 < ε < π/2 and a positive constant C such that
|â(ξ + π)|2| sin(ξ/2 + π/2)|τ � C and C � Φ(ξ) � 1/C for all ξ ∈ (−2ε, 2ε). By the
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definition of Tâ, we deduce that

∫ 2π

0

[Tn
â (| sin(·/2)|τ )](ξ) dξ = 2n

∫ 2π

0

| sin(ξ/2)|τ |â(ξ)|2|â(2ξ)|2 · · · |â(2n−1ξ)|2 dξ

� 2n
∫ π+ε

π−ε

| sin(ξ/2)|τ |â(ξ)|2|â(2ξ)|2 · · · |â(2n−1ξ)|2 dξ

� 2nC

∫ π+ε

π−ε

|â(2ξ)|2 · · · |â(2n−1ξ)|2 dξ

= 2n−1C

∫ 2ε

−2ε

|â(ξ)|2 · · · |â(2n−2ξ)|2 dξ

= 2n−1C

∫ 2ε

−2ε

Φ(2n−1ξ)

Φ(ξ)
dξ

� 2n−1C2

∫ 2ε

−2ε

Φ(2n−1ξ) dξ

= C2

∫ 2nε

−2nε

Φ(ξ) dξ.

Hence,

lim inf
n→∞

‖Tn
â (| sin(·/2)|τ )‖L1(T) � (2π)−1C2

∫
R

Φ(ξ) dξ > 0,

since Φ � 0 is continuous and Φ(0) = 1. This is a contradiction to our assumption in
(4.5). So, we must have â(π) = 0. If ν2(â, p) > 0, then ν2(â, 1) � ν2(â, p) > 0, and
therefore (4.5) holds.

The following result will be needed later in this section.
Lemma 4.3. Let â and ĉ be 2π-periodic measurable functions such that |â(ξ)| �

|ĉ(ξ)| for almost every ξ ∈ R. Then

(4.6) ρτ (â, p) � ρτ (ĉ, p) and ν2(ĉ, p) � ν2(â, p) ∀ 1 � p � ∞, τ ∈ R.

Proof. To prove (4.6), since |â(ξ)|2 � |ĉ(ξ)|2, it is obvious that

0 � [Tn
â (| sin(·/2)|τ )](ξ) � [Tn

ĉ (| sin(·/2)|τ )](ξ) a.e. ξ ∈ R.

Therefore, ‖Tn
â (| sin(·/2)|τ )‖Lp(T) � ‖Tn

ĉ (| sin(·/2)|τ )‖Lp(T), which implies the first
part of (4.6).

If |ĉ(· + π)|2/| sin(·/2)|τ ∈ L∞(T) for some τ , then we also have

|â(· + π)|2/| sin(·/2)|τ ∈ L∞(T)

since |â(ξ)| � |ĉ(ξ)|. Now by the definition of ν2(â, p) in (4.2) and the first part of
(4.6), it is easy to see that ν2(ĉ, p) � ν2(â, p).

For a particular family of masks, the following result reveals the mutual relations
among the quantities ν2(â, p) for different 1 � p � ∞.
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Lemma 4.4. Let â be a 2π-periodic measurable function such that |â(ξ)| = |1 +
e−iξ|τ |Â(ξ)| for some τ � 0 and some 2π-periodic trigonometric polynomial Â with
Â(0) �= 0. Then

ρ2τ (â, p) = lim
n→∞

∥∥Tn
â (| sin(·/2)|2τ )

∥∥1/n

Lp(T)
= ρ0(Â,∞) = inf

n∈N

‖Tn
Â

1‖1/n
L∞(T)

∀ 1 � p � ∞.

(4.7)

In particular, ν2(â, p) = ν2(â) = ν2(Â) for all 1 � p � ∞. That is, ν2(â, p) is
independent of p.

Proof. Let N be an integer such that N � τ . Define ĉ(ξ) := (1 + e−iξ)N Â(ξ). By
calculation, it follows from |â(ξ)|2 = 22τ | cos(ξ/2)|2τ |Â(ξ)|2 that[
Tâ(f(·)| sin(·/2)|2τ )

]
(ξ) = |â(ξ/2)|2| sin(ξ/4)|2τf(ξ/2)

+ |â(ξ/2 + π)|2| sin(ξ/4 + π/2)|2τf(ξ/2 + π)

= | sin(ξ/2)|2τ [|Â(ξ/2)|2f(ξ/2) + |Â(ξ/2 + π)|2f(ξ/2 + π)]

= | sin(ξ/2)|2τ [TÂf ](ξ).

That is, when |â(ξ)|2 = 22τ | cos(ξ/2)|2τ |Â(ξ)|2, for any 2π-periodic function f , by
induction, we have

(4.8)
[
Tn
â (f(·)| sin(·/2)|2τ )

]
(ξ) = | sin(ξ/2)|2τ [Tn

Â
f ](ξ), n ∈ N.

Setting f = 1 in (4.8), we have

(4.9) [Tn
â (| sin(·/2)|2τ )](ξ) = | sin(ξ/2)|2τ [Tn

Â
1](ξ) � [Tn

Â
1](ξ).

Note that 2N − 2τ � 0. Similarly, by |ĉ(ξ)|2 = 22N−2τ | cos(ξ/2)|2N−2τ |â(ξ)|2, setting
f(ξ) = | sin(ξ/2)|2τ and replacing τ by N − τ in (4.8), we have

[Tn
ĉ (| sin(·/2)|2N )](ξ) = | sin(ξ/2)|2N−2τ [Tn

â (| sin(·/2)|2τ )](ξ)

� [Tn
â (| sin(·/2)|2τ )](ξ).

(4.10)

Thus, it follows from (4.9) and (4.10) that

‖Tn
ĉ (sin2N (·/2))‖Lp(T) � ‖Tn

â (| sin(·/2)|2τ )‖Lp(T) � ‖Tn
Â

1‖Lp(T)

� ‖Tn
Â

1‖L∞(T).
(4.11)

Since both |ĉ|2 and sin2N (·/2) are 2π-periodic trigonometric polynomials, by induc-
tion, it is known [4, 7, 15] that {Tn

ĉ (sin2N (·/2))}∞n=1 spans a finite dimensional space
and in fact the degrees of all trigonometric polynomials Tn

ĉ (sin2N (·/2)) are uniformly
bounded. Therefore, there exists a positive constant C, independent of all n, such
that

C‖Tn
ĉ (sin2N (·/2))‖L∞(T) � ‖Tn

ĉ (sin2N (·/2))‖Lp(T) ∀ 1 � p � ∞, n ∈ N.
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Hence, we conclude from the above inequality and (4.11) that for 1 � p � ∞,

C1/n‖Tn
ĉ (sin2N (·/2))‖1/n

L∞(T) � ‖Tn
â (| sin(·/2)|2τ )‖1/n

Lp(T) � ‖Tn
Â

1‖1/n
L∞(T)

∀ n ∈ N.

(4.12)

Since ĉ(ξ) = (1 + e−iξ)N Â(ξ) and Â(0) �= 0, by Theorem 4.1, we have

ρ2N (ĉ,∞) = lim
n→∞

‖Tn
ĉ (sin2N (·/2))‖1/n

L∞(T) = lim
n→∞

‖TÂ1‖1/n
L∞(T) = inf

n∈N

‖TÂ1‖1/n
L∞(T).

Now (4.7) follows directly from (4.12).
Since Â is a 2π-periodic trigonometric polynomial, we can write Â(ξ) = (1 +

e−iξ)kB̂(ξ) for some nonnegative integer k and some 2π-periodic trigonometric poly-
nomial B̂ such that B̂(π) �= 0. So, |â(ξ)| = |1+ e−iξ|k+τ |B̂(ξ)|. Now by the definition
of ν2(â, p) and Theorem 4.1, it follows from (4.7) that

ν2(â, p) := −[log2 ρ2k+2τ (â, p)]/2 = −[log2 ρ0(B̂,∞)]/2

= −[log2 ρ2k(Â,∞)]/2 = ν2(Â).

Therefore, ν2(â, p) = ν2(Â) for all 1 � p � ∞.
In the following, we shall discuss how to approximate the quantity ρ0(Â,∞).

Proposition 4.5. Let Â, Âj ∈ L∞(T), j ∈ N such that limj→∞ ‖Âj−Â‖L∞(T) =
0. Then

(4.13) lim sup
j→∞

ρ0(Âj ,∞) � ρ0(Â,∞).

If in addition |Â(ξ)| � |Âj(ξ)| for almost every ξ ∈ R and for all j ∈ N, then

(4.14) lim
j→∞

ρ0(Âj ,∞) = ρ0(Â,∞).

Proof. By Proposition 7.1, ρ0(Â,∞) = infn∈N ‖Tn
Â

1‖L∞(T). Therefore, for any

ε > 0, there exists a positive integer N such that ‖TN
Â

1‖1/N
L∞(T) < ρ0(Â,∞) + ε. Now

by limj→∞ ‖Âj − Â‖L∞(T) = 0, there exists a positive integer J such that

‖TN
Âj

1‖1/N
L∞(T) < ρ0(Â,∞) + ε ∀ j � J.

Consequently, by Proposition 7.1, we deduce that

ρ0(Âj ,∞) = inf
n∈N

‖Tn
Âj

1‖1/n
L∞(T) � ‖TN

Âj
1‖1/N

L∞(T) < ρ0(Â,∞) + ε ∀ j � J.

Hence, we have lim supj→∞ ρ0(Âj ,∞) � ρ0(Â,∞) + ε. Taking ε → 0, we conclude

that (4.13) holds. If |Â| � |Âj |, then by Lemma 4.3, ρ0(Â,∞) � ρ0(Âj ,∞) for all

j ∈ N. Therefore, ρ0(Â,∞) � lim infj→∞ ρ0(Âj ,∞). Now it follows from (4.13) that
(4.14) holds.

As a consequence of Proposition 4.5, we have the following corollary.
Corollary 4.6. Let Â ∈ Cβ(T) with Â(0) �= 0, Â(π) �= 0, and β > 0. Suppose

that there is a sequence {Âj}j∈N in Cβ(T) such that limj→∞ ‖Âj − Â‖L∞(T) = 0, and
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|Â(ξ)| � |Âj(ξ)| for all ξ ∈ R and j ∈ N. For τ � 0 and a 2π-periodic trigono-

metric polynomial ĉ with ĉ(0) �= 0, let â(ξ) := (1 + e−iξ)τ ĉ(ξ)Â(ξ) and âj(ξ) :=

(1 + e−iξ)τ ĉ(ξ)Âj(ξ). Then limj→∞ ν2(âj) = ν2(â) and ν2(âj) � ν2(â) for all j ∈ N.

Proof. Write ĉ(ξ) = (1+ e−iξ)kB̂(ξ) for some nonnegative integer k and some 2π-

periodic trigonometric polynomial B̂ with B̂(π) �= 0. Since Â(π) �= 0 and limj→∞ ‖Âj−
Â‖L∞(T) = 0, by Âj ∈ Cβ(T), we have Âj(π) �= 0 for sufficiently large j. Now by
Theorem 4.1 and Proposition 4.5, we have

ρ(â,∞) = ρ2k+2τ (â,∞) = ρ0(ÂB̂,∞) = lim
j→∞

ρ0(ÂjB̂,∞)

= lim
j→∞

ρ2k+2τ (âj ,∞) = lim
j→∞

ρ(âj ,∞).

It follows from the definition of ν2(â) that ν2(â) = limj→∞ ν2(âj). Now by |â(ξ)| �
|âj(ξ)|, it follows from Lemma 4.3 that ν2(âj) � ν2(â).

Proposition 4.7. Let â and âj, j ∈ N, be 2π-periodic measurable functions such
that

(4.15) lim
j→∞

‖âj/â‖L∞(T) = lim
j→∞

‖â/âj‖L∞(T) = 1,

where by convention (âj/â)(ξ) is equal to âj(ξ)/â(ξ) if â(ξ) �= 0, 1 if â(ξ) = âj(ξ) = 0,
or +∞ if â(ξ) = 0 but âj(ξ) �= 0. Then

(4.16) lim
j→∞

ν2(âj , p) = ν2(â, p) ∀ 1 � p � ∞.

Moreover, if ν2(âj , p) = ν2(âj) for all j ∈ N, then ν2(â, p) = ν2(â). In particular, if a
mask â has exponential decay, then ν2(â, p) = ν2(â) for all 1 � p � ∞.

Proof. Denote ĉj = âj/â. By convention and (4.15), 0 < |ĉj(ξ)| < ∞ for almost
every ξ ∈ R, and it is easy to check that âj(ξ) = ĉj(ξ)â(ξ) and â(ξ) = âj(ξ)/ĉj(ξ) for
almost every ξ ∈ R. For τ � 0, we now have

‖1/ĉj‖−2n
L∞(T)[T

n
â (| sin(·/2)|τ )](ξ) � [Tn

âj
(| sin(·/2)|τ )](ξ)

� ‖ĉj‖2n
L∞(T)[T

n
â (| sin(·/2)|τ )](ξ).

Consequently, we have

‖1/ĉj‖−2
L∞(T)‖T

n
â (| sin(·/2)|τ )‖1/n

Lp(T) � ‖Tn
âj

(| sin(·/2)|τ )‖1/n
Lp(T)

� ‖ĉj‖2
L∞(T)‖Tn

â (| sin(·/2)|τ )‖1/n
Lp(T).

Hence, we deduce that

(4.17) ‖1/ĉj‖−2
L∞(T)ρτ (â, p) � ρτ (âj , p) � ‖ĉj‖2

L∞(T)ρτ (â, p) ∀ j ∈ N, 1 � p � ∞.

By our assumption in (4.15), we have limj→∞ ‖1/ĉj‖L∞(T) = limj→∞ ‖ĉj‖L∞(T) = 1.
Now by the definition of ν2(â) and (4.17), we must have limj→∞ ν2(âj , p) = ν2(â, p)
for all 1 � p � ∞.

If ν2(âj , p) = ν2(âj), then ν2(â, p) = limj→∞ ν2(âj , p) = limj→∞ ν2(âj) = ν2(â).

If â has exponential decay, then we can write â(ξ) = ĉ(ξ)Â(ξ), where ĉ is a 2π-
periodic trigonometric polynomial and Â has exponential decay satisfying Â(ξ) �= 0



88 BIN HAN

for all ξ ∈ R. Now it is easy to see that there is a sequence {Âj}∞j=1 of 2π-periodic

trigonometric polynomials such that limj→∞ ‖Âj/Â‖L∞(T) = limj→∞ ‖Â/Âj‖L∞(T) =

1. Taking âj(ξ) := ĉ(ξ)Âj(ξ), then (4.15) holds, and by Lemma 4.4, ν2(âj , p) = ν2(âj)
for all 1 � p � ∞ and j ∈ N. By what has been proved, we have ν2(â, p) =
limj→∞ ν2(âj , p) = limj→∞ ν2(âj) = ν2(â).

In passing, we mention that the quantity defined in [14, equation (2.16)] cor-
responds to ν2(â, 1) in (4.2) of this paper. For a mask with exponential decay, by
Proposition 4.7, the quantity ν2(â) in [14, equation (2.16)] agrees with the one in
this paper. However, it is not clear whether ν2(â, p) = ν2(â) for all 1 � p � ∞ if
â ∈ Cβ(T) for some β > 0.

5. Proof of Theorem 2.1. Since â(0) = 1 and â ∈ Cβ(T) with β > 0, we see

that φ̂ in (1.2) is well defined and φ̂ is continuous. If {fn}∞n=1 is a Cauchy sequence in

L2,∞,0(R) and limn→∞ f̂(2−nξ) = 1 for almost every ξ ∈ R, by φ̂(ξ) = limn→∞ f̂n(ξ)
for almost every ξ ∈ R, then we must have φ ∈ L2,∞,0(R) and limn→∞ ‖fn −
φ‖L2,∞,0(R) = 0.

We shall prove in the order that (i)⇒(ii)⇒(iii)⇒(iv) ⇒(v)⇒(ii) and (iii)⇒(i).
Note that â ∈ Cβ(T) implies â ∈ Cmin(1,β)(T). So, without loss of generality, we
replace β by min(1, β). That is, we assume 0 < β � 1, and the following proof
depends only on the fact that â ∈ Cα(T) for a small number α > 0.

We show (i)⇒(ii) by constructing an admissible function η in L2,∞,0(R) such that
the shifts of η are stable in L2(R) and η̂ is compactly supported; such an admissible

initial function η will be used in several places in this proof. Since φ̂ is a continuous
function with φ̂(0) = 1, there exists 0 < ε < π such that 1/2 � |φ̂(ξ)| � 3/2 for all
|ξ| � ε. Define a function η̂ by

(5.1) η̂(ξ) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ̂(ξ) if |ξ| � ε,

φ̂(−ε)(3π + 2ξ)/(3π − 2ε) if −3π/2 � ξ < −ε,

φ̂(ε)(3π − 2ξ)/(3π − 2ε) if ε < ξ � 3π/2,

0 otherwise.

Note that η̂(ξ) − â(ξ/2)η̂(ξ/2) = 0 for all |ξ| � ε. By the assumption â(π) = 0 in (i)
and â ∈ Cβ(T), we see that |â(· + π)|2/| sin(·/2)|2β ∈ L∞(T). Since η̂ is supported
inside [−3π/2, 3π/2], now we can easily verify that η is an admissible function in
L2,∞,0(R) with respect to â, since the condition in (2.1) holds with τ = 2β > 0. By
the definition of η̂, we have 1/32 � [η̂, η̂] � 9/2. Therefore, the shifts of η are stable
in L2(R). Taking f = η, it follows directly from (i) that (ii) holds.

Now we prove (ii)⇒(iii) without the condition that the initial function f is ad-
missible. By the definition of fn in (2.2) and induction, we deduce that

(5.2) [f̂n, f̂n](ξ) =

2n−1∑
k=0

n∏
j=1

|â(2−j(ξ + 2πk))|2[f̂ , f̂ ](2−n(ξ + 2πk)) = (Tn
â [f̂ , f̂ ])(ξ).

Since the shifts of f are stable in L2(R) and {fn}∞n=1 is a Cauchy sequence in
L2,∞,0(R), there exists a positive constant C1 such that

‖fn‖2
L2,∞,0(R) = ‖[f̂n, f̂n]‖L∞(T) � C1
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for all n ∈ N and 1/C1 � [f̂ , f̂ ](ξ) � C1 for almost every ξ ∈ R. Now it follows from
(5.2) that

0 � [Tn
â 1](ξ) � C1(T

n
â C

−1
1 )(ξ) � C1(T

n
â [f̂ , f̂ ])(ξ) = C1[f̂n, f̂n](ξ) � C2

1 .

That is, we have

(5.3) ‖Tn
â 1‖L∞(T) � C2

1 ∀ n ∈ N ∪ {0}.

Since â ∈ Cβ(T), we have |â|2 ∈ Cβ(T), and there exists a positive constant C2 such
that

(5.4)
∥∥|â|2 − |â(· − h)|2

∥∥
L∞(T)

� C2h
β ∀ h > 0.

Now we are going to extend an interesting idea in [23] to show that Tn
â g, n ∈ N, are

equicontinuous if g ∈ Cτ (T) for some τ > 0. For g ∈ L∞(T), we denote

(5.5) ωn(ξ, h) := |[Tn
â g](ξ) − [Tn

â g](ξ − h)| , ξ ∈ R, h > 0, n ∈ N ∪ {0}.

Setting

C3 := max(C2
1 , 2

1−βC4
1C2/(1 − 2−β)) < ∞,

we show that (5.3) and (5.4) imply that

‖h−βωn+k(·, h)‖L∞(T) � C3

(
2−nβ‖(2−nh)−βωk(·, 2−nh)‖L∞(T) + ‖T k

â g‖L∞(T)

)
∀ h > 0, k, n ∈ N ∪ {0}, g ∈ L∞(T).(5.6)

By the definition of Tâ, we have

[Tn
â g](ξ)−[Tn

â g](ξ − h)

= |â(ξ/2)|2
(
[Tn−1

â g](ξ/2) − [Tn−1
â g](ξ/2 − h/2)

)
+ |â(ξ/2 + π)|2

(
[Tn−1

â g](ξ/2 + π) − [Tn−1
â g](ξ/2 + π − h/2)

)
+
(
|â(ξ/2)|2 − |â(ξ/2 − h/2)|2

)
[Tn−1

â g](ξ/2 − h/2)

+
(
|â(ξ/2 + π)|2 − |â(ξ/2 + π − h/2)|2

)
[Tn−1

â g](ξ/2 + π − h/2).

It follows from (5.4) that

ωn(ξ, h) � |â(ξ/2)|2ωn−1(ξ/2, h/2) + |â(ξ/2 + π)|2ωn−1(ξ/2 + π, h/2)

+ 2C2(h/2)β‖Tn−1
â g‖L∞(T)

= [Tâωn−1(·, h/2)](ξ) + 21−βC2h
β‖Tn−1

â g‖L∞(T).

Consequently, by induction on n, we deduce from the above inequality that for all
k, n ∈ N ∪ {0},

ωn+k(ξ, h) � [Tn
â ωk(·, 2−nh)](ξ)

+ 2C2h
β

n∑
j=1

2−jβ‖Tn+k−j
â g‖L∞(T)‖T j−1

â 1‖L∞(T).
(5.7)
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In fact, (5.7) clearly holds for n = 0 and all k ∈ N∪{0}. Suppose that (5.7) holds for
n and all k ∈ N ∪ {0}. Then by induction hypothesis we have

ωn+1+k(ξ, h) � [Tn
â ωk+1(·, 2−nh)](ξ)

+ 2C2h
β

n∑
j=1

2−jβ‖Tn+k+1−j
â g‖L∞(T)‖T j−1

â 1‖L∞(T).

Note that we proved in the inequality above (5.7) that

ωk+1(ξ, 2
−nh) � [Tâωk(·, 2−1−nh)](ξ) + 21−βC2(2

−nh)β‖T k
â g‖L∞(T).

Applying the operator Tn
â on both sides of the above inequality, we deduce that

Tn
â ωk+1(ξ, 2

−nh) � [Tn+1
â ωk(·, 2−1−nh)](ξ) + 21−βC2(2

−nh)β‖T k
â g‖L∞(T)[T

n
â 1](ξ).

Combining all the above inequalities together, we see that (5.7) holds for n + 1 and
all k ∈ N ∪ {0}. So, by induction, (5.7) holds for all k, n ∈ N ∪ {0}.

By (5.3), we have

‖Tn+k−j
â g‖L∞(T) � ‖Tn−j

â 1‖L∞(T)‖T k
â g‖L∞(T) � C2

1‖T k
â g‖L∞(T)

and

‖Tn
â ωk(·, 2−nh)‖L∞(T) � ‖Tn

â 1‖L∞(T)‖ωk(·, 2−nh)‖L∞(T) � C2
1‖ωk(·, 2−nh)‖L∞(T).

Therefore, we deduce from (5.7) that

‖ωn+k(·, h)‖L∞(T) � C2
1‖ωk(·, 2−nh)‖L∞(T) + 2C4

1C2h
β‖T k

â g‖L∞(T)

∞∑
j=1

2−jβ

� C3

(
‖ωk(·, 2−nh)‖L∞(T) + hβ‖T k

â g‖L∞(T)

)
.

That is, (5.6) has been proved. In particular, for any τ > 0, we take g(ξ) = | sin(ξ/2)|τ
and ν := min(β, τ) > 0. By Proposition 4.2, g ∈ Cν(T). It is evident that
‖T 0

â g‖L∞(T) = ‖g‖L∞(T) = 1. By g ∈ Cν(T), there exists a positive constant C4

such that

(5.8) (2−nh)−νω0(ξ, 2
−nh) = (2−nh)−ν |g(ξ) − g(ξ − 2−nh)| � C4.

Since 0 < ν � β, we see that (5.4) holds with β being replaced by ν (now the constant
C2 in (5.4) may be different). That is, for all k, n ∈ N∪{0} and h > 0, (5.6) becomes

‖h−νωn+k(·, h)‖L∞(T)

� C3

(
2−nν‖(2−nh)−νωk(·, 2−nh)‖L∞(T) + ‖T k

â g‖L∞(T)

)
.

(5.9)

Setting k = 0 in (5.9), we deduce that

(5.10) ‖h−νωn(·, h)‖L∞(T) � C3(2
−nνC4 + 1) � C3(C4 + 1) < ∞ ∀ h > 0, n ∈ N.

By the definition of ωn(ξ, h) in (5.5), this is equivalent to saying that

|[Tn
â g](ξ1) − [Tn

â g](ξ2)| � C3(C4 + 1)|ξ1 − ξ2|ν ∀ n ∈ N, ξ1, ξ2 ∈ R.
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Note that â is continuous and ‖Tn
â g‖L∞(T) � ‖Tn

â 1‖L∞(T)‖g‖L∞(T) � C2
1 . So, the

sequence {Tn
â g}∞n=1 is bounded and equicontinuous in C(T). By the Arzela–Ascoli

theorem, there is a subsequence {Tnk

â g}∞k=1 converging to g∞ ∈ C(T) as k → ∞; that
is,

(5.11) lim
k→∞

‖Tnk

â g − g∞‖C(T) = 0.

Since all Tnk

â g � 0, we must have g∞ � 0. Now we show that if (ii) holds, then we
must have g∞ ≡ 0. Define

gn(ξ) := g(2−nξ)|f̂n(ξ)|2 = | sin(2−1−nξ)|τ |f̂n(ξ)|2

= | sin(2−1−nξ)|τ |f̂(2−nξ)|2
n∏

j=1

|â(2−jξ)|2.

By induction, we observe that [gn, gn] = Tn
â ([f̂ , f̂ ]g) for all n ∈ N. Since [f̂ , f̂ ] � 1/C1,

we conclude that

[Tn
â g](ξ) � C1[T

n
â ([f̂ , f̂ ]g)](ξ) = C1[gn, gn](ξ).

Therefore,

(5.12)

∫ 2π

0

[Tn
â g](ξ) dξ � C1

∫ 2π

0

[gn, gn](ξ) dξ = C1

∫
R

g(2−nξ)|f̂n(ξ)|2 dξ.

By g(ξ) = | sin(ξ/2)|τ and τ > 0, we have limn→∞ g(2−nξ) = g(0) = 0. Since

â ∈ Cβ(T) with â(0) = 1, we have limn→∞
∏n

j=1 |â(2−jξ)|2 = |φ̂(ξ)|2. Observing that

0 � g(2−nξ)|f̂n(ξ)|2 = g(2−nξ)|f̂(2−nξ)|2
n∏

j=1

|â(2−jξ)|2

� ‖f‖2
L2,∞,0

(R)g(2−nξ)

n∏
j=1

|â(2−jξ)|2,

we see that limn→∞ g(2−nξ)|f̂n(ξ)|2 = 0 for almost every ξ ∈ R.
Since {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R), the sequence {fn}∞n=1 must

also be a Cauchy sequence in L2(R) by ‖f‖L2(R) � ‖f‖L2,∞,0(R). Consequently,

lim
n→∞

∫
R

|f̂n(ξ)|2 dξ = lim
n→∞

∫ 2π

0

[f̂n, f̂n](ξ) dξ

exists and is finite. Now by 0 � g(2−nξ)|f̂n(ξ)|2 � |f̂n(ξ)|2 and the generalized
Lebesgue dominated convergence theorem, we conclude that

lim
n→∞

∫
R

g(2−nξ)|f̂n(ξ)|2 dξ =

∫
R

lim
n→∞

g(2−nξ)|f̂n(ξ)|2 dξ =

∫
R

0 dξ = 0.

Hence, by (5.12), we get

(5.13) lim
n→∞

∫ 2π

0

[Tn
â g](ξ) dξ = 0.
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Now it follows from (5.11) and (5.13) that∫ 2π

0

g∞(ξ) dξ = lim
k→∞

∫ 2π

0

[Tnk

â g](ξ) dξ = 0.

Since g∞ � 0, we must have g∞ = 0. That is, (5.11) becomes

(5.14) lim
k→∞

‖Tnk

â g‖L∞(T) = 0.

Setting k = nk in (5.9), by (5.10), we deduce that

‖h−νωn+nk
(·, h)‖L∞(T) � C3(2

−nνC3(C4 + 1) + ‖Tnk

â g‖L∞(T)).

So, when n and k are large enough, by (5.14) and ν > 0, setting N = n+nk, we must
have

h−νωN (ξ, h) � π−ν ∀ ξ ∈ R, h > 0.

In particular, setting ξ = 0 or −h in the above inequality, we have∣∣[TN
â g](h) − [TN

â g](0)
∣∣ � π−ν |h|ν ∀ h ∈ R.

By (5.13) and Proposition 4.2, we see that â(π) = 0. Since g(0) = â(π) = 0, by
induction, one can verify that [Tn

â g](0) = 0 for all n ∈ N. Therefore, it follows from
the above inequality that

[TN
â g](h)

| sin(h/2)|ν � (π/2)ν
[TN

â g](h)

|h|ν � 2−ν < 1 ∀ h ∈ [−π, π]\{0}.

In order to show that (ii)⇒(iii), by Proposition 4.2, it suffices to show ρτ (â,∞) < 1
for sufficiently small τ > 0. Since â ∈ Cβ(T) with β > 0, we must have |â(· +
π)|2/| sin(·/2)|2β ∈ L∞(T). So, for any 0 < τ < β, by ν = min(β, τ), we have ν = τ ,
and by Theorem 4.1, we must have

ρτ (â,∞) = inf
n∈N

‖[Tn
â g]/g‖

1/n
L∞(T) �

∥∥[TN
â g]/g

∥∥1/N

L∞(T)
� 2−ν/N < 1.

So, (iii) holds for all 0 < τ < β, and therefore (iii) holds for all τ > 0. Hence,
(ii)⇒(iii).

By (iii) and Proposition 4.2, we have â(π) = 0. So, it follows from â ∈ Cβ(T)
that |â(·+π)|2/| sin(·/2)|2β ∈ L∞(T). Now it is straightforward to see that (iii)⇒(iv),
since ρ(â) � ρ2β(â,∞) < 1.

By the definition of ρ(â), (iv) implies that ρτ (â,∞) < 1 and |â(·+π)|2/| sin(·/2)|τ ∈
L∞(T) for some τ � 0. On the other hand, since â(0) = 1 and â is continuous, by
[Tn

â 1](0) � |â(0)|n = 1, we must have ρ0(â,∞) � 1. Therefore, τ > 0, and so
(iv)⇒(v).

Now we show that (v)⇒(ii). By (v) and Proposition 4.2, â(π) = 0 and |â(· +
π)|2/| sin(·/2)|τ ∈ L∞(T). Let η̂ be defined in (5.1). Then η ∈ L2,∞,0(R) and the
shifts of η are stable in L2(R). Consequently, it is easy to directly verify that

(5.15) H := [â(·/2)η̂(·/2) − η̂, â(·/2)η̂(·/2) − η̂]/| sin(·/2)|τ ∈ L∞(T).

So, η is an admissible function in L2,∞,0(R) with respect to â such that the shifts of η
are stable in L2(R). Taking f = η and defining fn as in (2.2), we show that {fn}∞n=1

is a Cauchy sequence in L2,∞,0(R).
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Note that

(5.16) |f̂n+1(ξ) − f̂n(ξ)| = |â(2−1−nξ)f̂(2−1−nξ) − f̂(2−nξ)|
n∏

j=1

|â(2−jξ)|.

Consequently, we have

[f̂n+1− f̂n, f̂n+1− f̂n](ξ) =
[
Tn
â ([â(·/2)f̂(·/2) − f̂ , â(·/2)f̂(·/2) − f̂ ])

]
(ξ) ∀ n ∈ N.

By (5.15), we have

[â(·/2)f̂(·/2) − f̂ , â(·/2)f̂(·/2) − f̂ ](ξ) = H(ξ)g(ξ)

and H ∈ L∞(T), where g(ξ) := | sin(ξ/2)|τ . Hence, we have

(5.17) ‖fn+1−fn‖2
L2,∞,0(R) = ‖[f̂n+1−f̂n, f̂n+1−f̂n]‖L∞(T) � ‖H‖L∞(T)‖Tn

â g‖L∞(T).

By our assumption in (v), we have ρτ (â,∞) < 1, and therefore, for any ρ such that
ρτ (â,∞) < ρ < 1, there exists a positive constant C such that ‖Tn

â g‖L∞(T) � Cρn for
all n ∈ N. Now it follows from (5.17) that

(5.18) ‖fn+1 − fn‖L2,∞,0(R) � ‖H‖1/2
L∞(T)C

1/2ρn/2 ∀ n ∈ N,

which yields, by 0 < ρ < 1, that {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R). So,
(v)⇒(ii).

Finally, we show that (iii)⇒(i). Let f be an admissible function in L2,∞,0(R)
with respect to â such that (2.1) holds for some τ > 0. By Proposition 4.2 and (iii),
we have â(π) = 0. Now by â ∈ Cβ(T), we must have |â(·+π)|2/| sin(·/2)|2β ∈ L∞(T).
Replacing τ by min(τ, 2β), we see that (2.1) still holds and |â(· + π)|2/| sin(·/2)|τ ∈
L∞(T). By our assumption in (iii) and τ > 0, we have ρτ (â,∞) < 1. Now by the same
proof for showing (v)⇒(ii), we see that {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R).
Therefore, (iii)⇒(i).

Now we prove the rest of Theorem 2.1. Since ν2(â) > 0, we must have â(π) = 0,
and (5.3) holds. Consequently,

(5.19)

n∏
j=1

|â(2−jξ)|2 � ‖Tn
â 1‖L∞(T) � C2

1 ∀ n ∈ N, ξ ∈ R.

Since â ∈ Cβ(T) and since we assumed 0 < β � 1, there exists a positive constant C
such that |â(ξ1) − â(ξ2)| � C|ξ1 − ξ2|β for all ξ1, ξ2 ∈ R. We deduce that

|φ̂(ξ1) − φ̂(ξ2)| =

∣∣∣∣∣∣
∞∑
j=1

[
j−1∏
k=1

â(2−kξ1)

]
[â(2−jξ1) − â(2−jξ2)]

⎡
⎣ ∞∏

=j+1

â(2−
ξ2)

⎤
⎦
∣∣∣∣∣∣

�
∞∑
j=1

∣∣∣∣∣
j−1∏
k=1

â(2−kξ1)

∣∣∣∣∣×
∣∣â(2−jξ1) − â(2−jξ2)

∣∣×
∣∣∣∣∣∣

∞∏

=j+1

â(2−
ξ2)

∣∣∣∣∣∣
� C2

1C

∞∑
j=1

2−jβ |ξ1 − ξ2|β � |ξ1 − ξ2|βC2
1C/(1 − 2−β).
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So, φ̂ ∈ Λβ(R). Let η̂ be defined in (5.1). Take f = η and define fn as in (2.2).
Since ν2(â) > 0, {fn}∞n=1 is a Cauchy sequence in L2,∞,0(R). In particular, by

limn→∞ f̂n(ξ) = φ̂(ξ), we have φ ∈ L2,∞,0(R) and limn→∞ ‖fn − φ‖L2,∞,0(R) = 0.

By induction, we have [f̂n, f̂n] = Tn
â [f̂ , f̂ ]. Note that [f̂n, f̂n] is continuous. Now

define g := [η̂, η̂]. By the definition of η̂ in (5.1) and φ̂ ∈ Cβ(R), it is easy to check
that g ∈ Cβ(T). Consequently, taking k = 0 in (5.6), wee see that a similar result as
in (5.10) holds; that is, there exists a positive constant C5 such that

(5.20) h−β
∥∥∥[f̂n, f̂n] − [f̂n, f̂n](· − h)

∥∥∥
L∞(T)

= h−β‖ωn(·, h)‖L∞(T) � C5 ∀ h > 0,

where ωn is defined in (5.5) and we used the fact [f̂n, f̂n] = Tn
â [f̂ , f̂ ] = Tn

â g. Since

limn→∞ ‖fn − φ‖L2,∞,0(R) = 0, we deduce that limn→∞ ‖[f̂n, f̂n] − [φ̂, φ̂]‖C(T) = 0.

Now it follows from (5.20) that ‖[φ̂, φ̂] − [φ̂, φ̂](· − h)‖C(T) � C5h
β for all h > 0. So,

[φ̂, φ̂] ∈ Λβ(T).
Now we prove (2.3). Since 0 � ν < ν2(â), by the definition of ν2(â), there exists

τ > 0 such that ρτ (â,∞) < 2−2ν and |â(· + π)|2/| sin(·/2)|τ ∈ L∞(T). Let η̂ be
defined in (5.1). Take f = η and define fn as in (2.2). As in the proof of (v)⇒(ii), we

see that (5.18) holds for ρτ (â,∞) < ρ < 2−2ν . Denote gn := f̂n+1 − f̂n and

[gn, gn]ν(ξ) :=
∑
k∈Z

|gn(ξ + 2πk)|2(1 + |ξ + 2πk|2)ν , ξ ∈ [−π, π].

Since f̂ = η̂ is supported inside [−3π/2,−ε] ∪ [ε, 3π/2], it follows from (5.16) that gn
is supported inside [−3π2n,−ε2n] ∪ [ε2n, 3π2n]. Therefore, for ξ ∈ [−π, π], it follows
from (5.18) that

[gn, gn]ν(ξ) =
∑

|ξ+2πk|�3π2n

|gn(ξ + 2πk)|2(1 + |ξ + 2πk|2)ν

� (1 + (3π2n)2)ν
∑
k∈Z

|gn(ξ + 2πk)|2

= (1 + (3π2n)2)ν‖fn+1 − fn‖2
L2,∞,0(R) � C6(2

2νρ)n,

where C6 := 18νπ2νC‖[h, h]‖L∞(T) < ∞. Since [gn, gn] is continuous, we conclude
that

(5.21) [gn, gn]ν(ξ) � C6(2
2νρ)n ∀ n ∈ N, ξ ∈ [−π, π].

Since ν2(â) > 0, we have φ = η +
∑∞

n=0(fn+1 − fn) in L2,∞,0(R) with f0 := η. Since

all φ̂, η̂, and gn, n ∈ N, are continuous and gn is supported inside [−3π2n,−ε2n] ∪
[ε2n, 3π2n], we must have φ̂(ξ) = η̂(ξ) +

∑∞
n=0 gn(ξ) for all ξ ∈ R, where the series is

in fact a finite sum for any ξ in any bounded set. Therefore, for all ξ ∈ [−2π, 2π] and
N � 3, we have( ∞∑

|k|=N+1

(1 + |ξ + 2πk|2)ν |φ̂(ξ + 2πk)|2
)1/2

�
∞∑

n=log2(N/3)

[gn, gn]1/2ν (ξ)

� C
1/2
6

∞∑
n=log2(N/3)

(2νρ1/2)n � C
1/2
6 (N/3)log2(2

νρ1/2)/(1 − 2νρ1/2).
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Since 2νρ1/2 < 1, we have log2(2
νρ1/2) < 0, and therefore limN→∞(N/3)log2(2

νρ1/2) =

0. Hence, the series
∑N

k=−N (1 + |ξ + 2πk|2)ν |φ̂(ξ + 2πk)|2 is uniformly convergent as

N → ∞ for all ξ ∈ [−2π, 2π]. Since φ̂ is continuous, we conclude that [φ̂, φ̂]ν ∈ C(T).
That is, (2.3) holds.

For a mask â ∈ Cβ(T) with β > 0, a more complicated argument can be used to

show a stronger statement that φ̂ ∈ Cβ(R) and [φ̂, φ̂] ∈ Cβ(T), instead of the result

φ̂ ∈ Λmin(1,β)(R) and [φ̂, φ̂] ∈ Λmin(1,β)(T) stated in Theorem 2.1. We shall address
this technical issue elsewhere.

6. Proof of Theorem 2.3. Before we present the proof of Theorem 2.3, we
need the two following auxiliary results.

Proposition 6.1. Let f ∈ L2,1,γ2(R) with γ2 > 0. Then for 0 � γ1 < γ2,

[f̂ , f̂ ](ξ + iζ) :=
∑
k∈Z

|f̂(ξ + iζ)|2 � Cγ2−γ1‖f‖2
L2,1,γ2 (R)

∀ ξ ∈ R, ζ ∈ [−γ1, γ1],

(6.1)

where

Cγ :=

∥∥∥∥∥
∑
k∈Z

e−2γ|·−k|

∥∥∥∥∥
L∞(R)

< ∞

for γ > 0. If in addition f̂(2πk) = 0 for all k ∈ Z, then f = h − h(· − 1) and
h ∈ L2,1,γ1(R) for all 0 � γ1 < γ2, where h :=

∑∞
k=0 f(· − k).

Proof. Since f ∈ L2,1,γ2(R), by the Cauchy–Schwarz inequality, for 0 � γ1 < γ2,
we have

∫ 1

0

(∑
k∈Z

|f(x− k)|eγ1|x−k|

)2

dx � Cγ

∫ 1

0

∑
k∈Z

|f(x− k)|2e2γ2|x−k| dx

= Cγ‖f‖2
L2,1,γ2

(R),

(6.2)

where γ := γ2 − γ1 > 0. Using the Fourier series of [f̂ , f̂ ] and f̂(ξ + iζ) = êζ·f(ξ), for
any fixed ζ ∈ [−γ1, γ1] and almost every ξ ∈ R, we deduce from (6.2) that

[f̂ , f̂ ](ξ + iζ) =

∣∣∣∣∣
∑
k∈Z

eikξ
∫

R

eζxf(x)eζ(x+k)f(x + k) dx

∣∣∣∣∣
�
∑
k∈Z

∫
R

e|ζx||f(x)|e|ζ(x+k)||f(x + k)| dx

=

∫ 1

0

(∑
k∈Z

|f(x + k)|e|ζ|×|x+k|

)2

dx � Cγ‖f‖2
L2,1,γ2 (R).

Since f̂ is continuous, it follows from the above inequality that (6.1) holds for all
ξ ∈ R.

If f̂(2πk) = 0 for all k ∈ Z, then we have
∑

k∈Z
f(· − k) = 0. From the definition

of h, we see that f = h − h(· − 1) and h = −
∑−1

k=−∞ f(· − k). We now verify
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that h ∈ L2,1,γ3
for all 0 < γ3 < γ2. Take γ1 such that γ3 < γ1 < γ2. Then by

h =
∑∞

k=0 f(· − k), we have

∞∑
j=0

|h(x− j)|eγ3|x−j| �
∞∑
j=0

∞∑
k=0

|f(x− j − k)|eγ3|x−j|

=

∞∑
k=0

|f(x− k)|eγ1|x−k|e−γ1|x−k|
k∑

j=0

eγ3|x−j|.

For x ∈ [0, 1], by γ3 < γ1 < γ2 and k � 0, we have

e−γ1|x−k|
k∑

j=0

eγ3|x−j| � e−γ1(k−1)
k∑

j=0

eγ3(j+1) � eγ2+2γ3

eγ3 − 1
:= C.

Therefore, we deduce that

∞∑
j=0

|h(x− j)|eγ3|x−j| � C

∞∑
k=0

|f(x− k)|eγ1|x−k|, x ∈ [0, 1].

Similarly, using h = −
∑−1

k=−∞ f(· − k), we have

−1∑
j=−∞

|h(x− j)|eγ3|x−j| � C

−1∑
k=−∞

|f(x− k)|eγ1|x−k|, x ∈ [0, 1].

Hence, ∑
j∈Z

|h(x− j)|eγ3|x−j| � C
∑
k∈Z

|f(x− k)|eγ1|x−k|.

By (6.2), we conclude that

‖h‖2
L2,1,γ3

(R) =

∫ 1

0

∑
j∈Z

|h(x− j)eγ3|x−k||2 dx �
∫ 1

0

(∑
j∈Z

|h(x− j)|eγ3|x−j|

)2

dx

� C

∫ 1

0

(∑
k∈Z

|f(x− k)|eγ1|x−k|

)2

dx � CCγ2−γ1
‖f‖2

L2,1,γ2 (R).

So, h ∈ L2,1,γ3
(R) for all 0 < γ3 < γ2. This completes the proof.

It follows from (6.1) and f̂(ξ + iζ) = êζ·f(ξ) that for any 1 � p, q � ∞,

‖f‖2
L2,p,γ1 (R) � ‖f‖2

L2,∞,γ1 (R) � Cγ2−γ1‖f‖2
L2,1,γ2 (R) � Cγ2−γ1‖f‖2

L2,q,γ2 (R)

∀ 0 � γ1 < γ2.
(6.3)

Consequently, L2,q,γ2(R) ⊆ L2,p,γ1(R) for all 1 � p, q � ∞ and 0 � γ1 < γ2.
Now we have the following result on admissible functions in a cascade algorithm.
Proposition 6.2. Let f ∈ L2,1,γ(R) for some γ > 0 such that f satisfies

(6.4) f̂(2πk) = 0 ∀ k ∈ Z\{0}.
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Then f is admissible with respect to â for any â ∈ Cβ(T) with â(0) = 1, â(π) = 0,
and β > 0.

Proof. Let f̂1 := f̂(2 · +2π) and f̂2 := f̂ − f̂(2·). Then f1, f2 ∈ L2,1,γ/2(R) and

f̂1(2πk) = f̂2(2πk) = 0 for all k ∈ Z. By Proposition 6.1, f1 = h1 − h1(· − 1) and
f2 = h2 − h2(· − 1) for some h1, h2 ∈ L2,1,γ1

(R) with 0 < γ1 < γ/2. Therefore, we
have

(6.5) [f̂1, f̂1](ξ) = |1 − e−iξ|2[ĥ1, ĥ1](ξ) and [f̂2, f̂2](ξ) = |1 − e−iξ|2[ĥ2, ĥ2](ξ).

Since â ∈ Cβ(T) with â(0) = 1 and â(π) = 0, there exists a positive constant C such
that

(6.6) |â(ξ) − 1| � C|1 − e−iξ|β and |â(ξ + π)| � C|1 − e−iξ|β ∀ ξ ∈ R.

Now it follows from (6.5) and (6.6) that∑
k∈Z

∣∣â(ξ/2 + 2πk)f̂(ξ/2 + 2πk) − f̂(ξ + 4πk)
∣∣2

=
∑
k∈Z

∣∣[â(ξ/2) − 1]f̂(ξ/2 + 2πk) + f̂2(ξ/2 + 2πk)
∣∣2

� 2|â(ξ/2) − 1|2[f̂ , f̂ ](ξ/2) + 2[f̂2, f̂2](ξ/2)

� 2C2|1 − e−iξ/2|2β
(
‖[f̂ , f̂ ]‖L∞(T) + 22−2β‖[ĥ2, ĥ2]‖L∞(T)

)
.

Similarly, by f̂(ξ + 2π + 4πk) = f̂1(ξ/2 + 2πk), we have∑
k∈Z

∣∣â(ξ/2 + π + 2πk)f̂(ξ/2 + π + 2πk) − f̂(ξ + 2π + 4πk)
∣∣2

� 2|â(ξ/2 + π)|2[f̂ , f̂ ](ξ/2 + π) + 2[f̂1, f̂1](ξ/2)

� 2C2|1 − e−iξ/2|2β
(
‖[f̂ , f̂ ]‖L∞(T) + 22−2β‖[ĥ1, ĥ1]‖L∞(T)

)
.

Letting C1 := 8C2(‖[f̂ , f̂ ]‖L∞(T) + ‖[ĥ1, ĥ1]‖L∞(T) + ‖[ĥ2, ĥ2]‖L∞(T)) < ∞, combining
the above two inequalities, for almost every ξ ∈ [−π, π], we have

[â(·/2)f̂(·/2) − f̂ , â(·/2)f̂(·/2) − f̂ ](ξ) � C1|1 − e−iξ/2|2β � 2βC1| sin(ξ/2)|2β .

Therefore, (2.1) holds with τ = 2β > 0.
Proof of Theorem 2.3. By (6.3), it is easy to see that (i)⇒(ii). (ii)⇒(iii) is obvious.

To show that (iii)⇒(iv), we take f = max(0, 1−|·|). It is easy to check that f satisfies
the condition in (6.4) and the shifts of f are stable. By â(π) = 0 and Proposition 6.2,
f ∈ L2,p,γ(R) is admissible with respect to â. Therefore, (iii)⇒(iv).

If (iv) holds, by Proposition 6.1 or (6.3), f ∈ L2,∞,0(R) and f is admissible with
respect to â. Now it follows from (iv) and (6.3) that {fn}∞n=1 is a Cauchy sequence
in L2,∞,0(R). Therefore, (ii) of Theorem 2.1 holds, and consequently ν2(â) > 0. So,
(iv)⇒(v).

To complete the proof, we have to show that (v)⇒(i), which is the major part
of this proof. By Proposition 4.2, ν2(â) > 0 implies â(π) = 0. So, we can write
â(ξ) = (1+e−iξ)Â(ξ), where Â also has exponential decay of order r. By Theorems 2.1

and 4.1, it follows from ν2(â) > 0 and â(ξ) = (1+e−iξ)Â(ξ) that infn∈N ‖Tn
Â

1‖1/n
L∞(T) =
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ρ0(Â,∞) = ρ2(â,∞) < 1. Therefore, there exist 0 < ρ < 1 and N ∈ N such that

‖TN
Â

1‖1/N
L∞(T) < ρ < 1. Since Â has exponential decay of order r, the operator [Tn

Â
1](ξ)

in (1.5) is well defined for ξ ∈ Γ2r := {z ∈ C : |Im(z)| < 2r}. Since Â is a 2π-periodic
continuous function on the strip Γr, there exists γ1 > 0 such that

(6.7) ‖[TN
Â

1](· + iζ)‖L∞(T) � ρN < 1 ∀ ζ ∈ [−γ1, γ1].

Take m to be the smallest nonnegative integer such that 21−mr < γ1. For each
n � N +m, we can uniquely write n = Nk + j, where j ∈ {m,m+ 1, . . . ,m+N − 1}
and k ∈ N. So, for every ζ ∈ [−γ, γ] and 0 < γ < 2r, by (6.7) and the extended
definition of TÂ in (1.5), we have |2−jζ| � 2−mγ < 21−mr < γ1 and

‖[Tn
Â

1](· + iζ)‖L∞(T) = ‖[T j

Â
TNk
Â

1](· + iζ)‖L∞(T)

� ‖[T j

Â
1](· + iζ)‖L∞(T)‖[TNk

Â
1](· + i2−jζ)‖L∞(T)

� ‖[T j

Â
1](· + iζ)‖L∞(T)ρ

Nk � C1ρ
n,

where

C1 := ρ1−m−N sup
{
‖[T j

Â
1](· + iζ)‖L∞(T) : j = m, . . . ,m + N − 1, ζ ∈ [−γ, γ]

}
< ∞.

That is, we have

(6.8) ‖[Tn
Â

1](· + iζ)‖L∞(T) � C1ρ
n ∀ n � N + m, ζ ∈ [−γ, γ].

Denote F̂ (ξ) := â(ξ/2)f̂(ξ/2) − f̂(ξ). Since f is admissible with respect to â
and F ∈ L2,1,γ(R), we must have F̂ (2πk) = 0 for all k ∈ Z. By Proposition 6.1,

F̂ (ξ) = (1 − e−iξ)ĥ(ξ) for some h ∈ L2,1,γ/2(R). Denote gn := f̂n+1 − f̂n with

g := g0 := f̂1− f̂ . Then g(ξ) = F̂ (ξ). Therefore, by Proposition 6.1, we conclude that

[g, g](ξ) = [F̂ , F̂ ](ξ) = |1 − e−iξ|2[ĥ, ĥ](ξ) � C2|1 − e−iξ|2

∀ ξ ∈ Γγ2 := {z ∈ C : |Im(z)| < γ2},
(6.9)

where γ2 := γ/4 > 0, C2 := Cγ/4‖h‖L2,1,γ/2(R) < ∞, and Cγ/4 is defined in Proposi-
tion 6.1.

By the definition of fn and by induction on n, for n � n0 := 1 − log2(γ2/r), we
have that gn(ξ) = g(2−nξ)

∏n
j=1 â(2

−jξ) for ξ ∈ Γ2r and gn is holomorphic on Γ2r,

since 2−nΓ2r ⊆ Γγ2 for all n � n0. Now by induction, it follows from (6.9) that

(6.10) [gn, gn](ξ) = (Tn
â [g, g])(ξ) � C2(T

n
â (|1 − e−i·|2))(ξ), ξ ∈ Γ2r.

By â(ξ) = (1+e−iξ)Â(ξ), we have |â(ξ)|2 = 22| cos(ξ/2)|2|Â(ξ)|2. So, (4.8) holds with
τ = 1. So, we deduce that

[Tn
â (|1 − e−i·|2)](ξ) = |1 − e−iξ|2[Tn

Â
1](ξ) � (1 + e2r)2[Tn

Â
1](ξ), ξ ∈ Γ2r.

Consequently, since 0 < γ < 2r, it follows from (6.8) and (6.10) that

[gn, gn](ξ) � C2(1 + e2r)2|[Tn
Â

1](ξ)| � C1C2(1 + e2r)2ρn � C3ρ
n

∀ n � n1, |Im(ξ)| � γ,
(6.11)



REFINABLE FUNCTIONS AND CASCADE ALGORITHMS 99

where C3 := C1C2(1 + e2r)2 < ∞ and n1 = max(n0, N + m). Note that gn(· + iζ) is
the Fourier transform of eζ·(fn+1 − fn). For ζ ∈ [−γ, γ], we have

2π‖(fn+1 − fn)eζ·‖2
L2(R) = ‖gn(· + iζ)‖2

L2(R) = 2π‖[gn, gn](· + iζ)‖L1(T)

� 2π‖[gn, gn](· + iζ)‖L∞(T).

Now by the definition of the space L2,1,γ(R), it follows from the above inequality and
(6.11) that

‖fn+1 − fn‖2
L2,1,γ(R) = ‖(fn+1 − fn)eγ|·|‖2

L2(R) � 2C3ρ
n ∀ n � n0.

Consequently, {fn}∞n=1 is a Cauchy sequence in L2,1,γ(R). So, (v)⇒(i).

Now we show that φ has exponential decay of order 2r. Since φ̂(ξ) :=
∏∞

j=1 â(2
−jξ)

and â has exponential decay of order r with â(0) = 1, we see that φ̂ can be extended
into a holomorphic function in the strip Γ2r. If ν2(â) > 0, for every 0 < γ < 2r,

by (i) and limn→∞ f̂n(ξ) = φ̂(ξ) for all ξ ∈ R (here we additionally assumed that

limξ→0 f̂(ξ) = 1, which is satisfied by many initial admissible functions), we see that
limn→∞ ‖fn − φ‖L2,1,γ(R) = 0 and hence φ ∈ L2,1,γ(R). Therefore, φ ∈ L2,1,γ(R) for
all 0 � γ < 2r. That is, (1.9) holds.

7. Proof of Theorem 4.1. Before we present a proof of Theorem 4.1, we need
the following result.

Proposition 7.1. Let â and f be 2π-periodic measurable functions. Assume
that f(ξ) > 0 for almost every ξ ∈ R and [Tn

â f ]/f ∈ L∞(T) for all n � n0, where
n0 ∈ N. Then

(7.1) lim sup
n→∞

‖[Tn
â f ]/f‖1/n

L∞(T) = lim
n→∞

‖[Tn
â f ]/f‖1/n

L∞(T) = inf
n�n0

‖[Tn
â f ]/f‖1/n

L∞(T).

Proof. Denote ρ := infn�n0 ‖[Tn
â f ]/f‖1/n

L∞(T). Then ρ < ∞ by [Tn0

â f ]/f ∈ L∞(T).

Since for all n � n0, ‖[Tn
â f ]/f‖1/n

L∞(T) � ρ, we have

(7.2) lim inf
n→∞

‖[Tn
â f ]/f‖1/n

L∞(T) � ρ.

For any ε > 0, there exists m ∈ N such that m � n0 and ‖[Tm
â f ]/f‖1/m

L∞(T) � ρ + ε.

Since f(ξ) > 0 for almost every ξ ∈ R, we deduce that

(7.3) [Tm
â f ](ξ) � ‖[Tm

â f ]/f‖L∞(T)f(ξ) � f(ξ)(ρ + ε)m a.e. ξ ∈ R.

For each n � 2m, we can uniquely write n = mN + j, where N ∈ N and j ∈
{m,m + 1, . . . , 2m− 1}. Therefore, by (7.3),

[Tn
â f ](ξ) = [T j

â (TmN
â f)](ξ) � (ρ + ε)mN [T j

âf ](ξ).

Since f(ξ) > 0 for almost every ξ ∈ R, the above inequality yields that

[Tn
â f ](ξ)

f(ξ)
� (ρ + ε)mN [T j

âf ](ξ)

f(ξ)
� C(ρ + ε)n a.e. ξ ∈ R,

where

C := max{(ρ + ε)−j‖[T j
âf ]/f‖L∞(T) : j = m, . . . , 2m− 1} < ∞.
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Thus, ‖[Tn
â f ]/f‖1/n

L∞(T) � C1/n(ρ + ε) for all n � 2m. Consequently,

lim sup
n→∞

‖[Tn
â f ]/f‖1/n

L∞(T) � (ρ + ε).

Taking ε → 0, we have lim supn→∞ ‖[Tn
â f ]/f‖1/n

L∞(T) � ρ. By (7.2), (7.1) holds.

Proof of Theorem 4.1. Without loss of generality, we can assume that |â(0)|2 = 1;
otherwise, we consider â/|â(0)|. By |â(ξ)|2 = 22τ | cos(ξ/2)|2τ |Â(ξ)|2, (4.8) holds.
Setting f = 1 in (4.8), we have

(7.4)
[
Tn
â (| sin(·/2)|2τ )

]
(ξ) = | sin(ξ/2)|2τ [Tn

Â
1](ξ) ∀ n ∈ N a.e. ξ ∈ R.

Since | sin(ξ/2)|2τ � 1, it follows from (7.4) that

‖Tn
â (| sin(·/2)|2τ )‖L∞(T) � ‖Tn

Â
1‖L∞(T)

for all n ∈ N. Consequently, by Â ∈ L∞(T) and Proposition 7.1, we conclude that

(7.5) ρ := ρ2τ (â,∞) := lim sup
n→∞

∥∥Tn
â (| sin(·/2)|2τ )

∥∥1/n

L∞(T)
� lim sup

n→∞
‖Tn

Â
1‖1/n

L∞(T).

On the other hand, by (7.4), we have

(7.6) [Tn
Â

1](ξ) =
[Tn

â (| sin(·/2)|2τ )](ξ)
| sin(ξ/2)|2τ =: gn(ξ) ∀ n ∈ N.

By the definition of Tâ and gn, we have

gn(ξ) = |Â(ξ/2)|2gn−1(ξ/2) +
|â(ξ/2 + π)|2
| sin(ξ/2)|2τ [Tn−1

â (| sin(·/2)|2τ )](ξ/2 + π).

Since τ � 0, for almost every ξ ∈ [−π, π], we have

|â(ξ/2 + π)|2/| sin(ξ/2)|2τ = |Â(ξ/2 + π)|2/| cos(ξ/4)|2τ � 2τ‖Â‖L∞(T),

from which we see that

gn(ξ) � |Â(ξ/2)|2gn−1(ξ/2) + 2τ‖Â‖L∞(T)‖Tn−1
â (| sin(·/2)|2τ )‖L∞(T)

a.e. ξ ∈ [−π, π].

By induction on n and g0 = 1, we deduce from the above inequality that for almost
every ξ ∈ [−π, π] and all n ∈ N,

gn(ξ) �
n∏

j=1

|Â(2−jξ)|2

+ 2τ‖Â‖L∞(T)

n−1∑
j=1

‖T j
â (| sin(·/2)|2τ )‖L∞(T)

n−j−1∏
k=1

|Â(2−kξ)|2.

(7.7)

Since |â|2 ∈ Cβ(T) and |â(0)|2 = 1, we define

Φ(ξ) :=

∞∏
j=1

|â(2−jξ)|2, ξ ∈ R.
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Then Φ is continuous and Φ(0) = 1. Thus, there exists 0 < ε0 < π such that
1/2 � Φ(ξ) � 3/2 for all ξ ∈ [−ε0, ε0]. By

|â(ξ)|2 = 22τ | cos(ξ/2)|2τ |Â(ξ)|2,

for n � log2(π/ε0) and ξ ∈ [−π, π], we have

n∏
j=1

|Â(2−jξ)|2 =
∣∣∣ sin(2−1−nξ)

sin(ξ/2)

∣∣∣2τ n∏
j=1

|â(2−jξ)|2

=
∣∣∣ sin(2−1−nξ)

sin(ξ/2)

∣∣∣2τ Φ(ξ)

Φ(2−nξ)
�
∣∣∣2−1−nξ

ξ/π

∣∣∣2τ Φ(ξ)

1/2

� 21−2τπ2τ‖Φ‖L∞([−π,π])2
−2τn.

Therefore, we have

(7.8)

n∏
j=1

|Â(2−jξ)|2 � C12
−2τn ∀ ξ ∈ [−π, π]

with C1 := 21−2τπ2τ‖Φ‖L∞([−π,π]) < ∞. Since
∏n

j=1 |â(2−jξ)|2 = Φ(ξ)/Φ(2−nξ) and
1/2 � Φ(ξ) � 3/2 for ξ ∈ [−ε0, ε0], we have

‖Tn
â (| sin(·/2)|2τ )‖L∞(T) �

∥∥∥∥∥| sin(2−1−n·)|2τ
n∏

j=1

|â(2−j ·)|2
∥∥∥∥∥
L∞([−π,π])

=
∥∥| sin(2−1−n·)|2τΦ(·)/Φ(2−n·)

∥∥
L∞([−π,π])

� | sin(2−1−nε0)|2τΦ(ε0)/Φ(2−nε0)

� 3−1π−2τε2τ
0 2−2τn.

By the definition of ρ, it follows from the above inequality that ρ � 2−2τ . By (7.8)
and the definition of ρ in (7.5), for any ε > 0, there exists a positive constant C with
C � C1 such that∥∥∥∥∥

n∏
j=1

|Â(2−j ·)|2
∥∥∥∥∥
L∞([−π,π])

� C2−2τn � C(ρ + ε)n

and

‖Tn
â (| sin(·/2)|2τ )‖L∞(T) � C(ρ + ε)n ∀ n ∈ N.

Now it follows from (7.7) and the above inequalities that

‖gn‖L∞(T) = ‖gn‖L∞([−π,π]) � C(ρ + ε)n + 2τ‖Â‖L∞(T)C
2n(ρ + ε)n−1,

from which we deduce that lim supn→∞ ‖gn‖1/n
L∞(T) � ρ + ε. Taking ε → 0, by the

definition of gn in (7.6), we conclude that

lim sup
n→∞

‖Tn
Â

1‖1/n
L∞(T) = lim sup

n→∞
‖gn‖1/n

L∞(T) � ρ.

So, by Proposition 7.1, the proof is completed by the above inequality and
(7.5).
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Abstract. We construct a surface hopping semigroup, which asymptotically describes nuclear
propagation through crossings of electron energy levels. The underlying time-dependent Schrödinger
equation has a matrix-valued potential, whose eigenvalue surfaces have a generic intersection of codi-
mension two, three, or five in Hagedorn’s classification. Using microlocal normal forms reminiscent
of the Landau–Zener problem, we prove convergence to the true solution with an error of the order
ε1/8, where ε is the semiclassical parameter. We present numerical experiments for an algorithmic
realization of the semigroup illustrating the convergence of the algorithm.
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1. Introduction. In the framework of time-dependent Born–Oppenheimer ap-
proximation, the dynamics of molecules can approximately be reduced to matrix-
valued Schrödinger equations on the nucleonic configuration space,

{
iε∂tψ

ε(q, t) =
(
− ε2

2 Δq + V (q)
)
ψε(q, t), (q, t) ∈ R

d × R,

ψε(q, 0) = ψε
0(q);

(1.1)

see, for example, [12, 19]. The linear Schrödinger equation (1.1) has a unique global
solution ψε ∈ C(R, L2(Rd,CN )) for all square-integrable initial data ψε

0. The param-
eter ε > 0 is small and causes a highly oscillatory behavior of the solution in space
and time. It can be thought of as the square root of the ratio of electronic mass and
the average mass of the nuclei. Moreover, the solution itself does not have any direct
physical interpretation. It is the position density |ψε(q, t)|2 which gives the probabil-
ity of finding the nuclei in the configuration q ∈ R

d at time t. We are interested in an
asymptotic description for the time evolution of quadratic quantities like the position
density with the following properties. First, it shall be effective in the sense that
it unfolds characteristic dynamical properties. Second, it shall be explicit enough,
such that it allows an algorithmic realization. Third, the resulting algorithm shall be
applicable on high-dimensional nucleonic configuration spaces R

d, d � 1.
Hagedorn rigorously derived and classified Schrödinger systems for molecular

propagation through electron energy level crossings of minimal multiplicity [13]. He
obtained potentials of the form

V (q) = v(q) Id + V� (φ(q)) , � ∈ {2, 3, 3′, 5},
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†Université de Paris 12 Val de Marne, Laboratoire d’ analyse et de mathématiques appliquées,
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where v(q) ∈ C∞(Rd,R) is a smooth real-valued function, Id is the identity matrix in
C

2×2 or C
4×4, and q �→ φ(q) is a smooth vector-valued function with φ(q) ∈ R

2, R
3,

or R
5. The matrices V� are given by

V2(φ) =

(
φ1 φ2

φ2 −φ1

)
, V3(φ) =

(
φ1 φ2 + iφ3

φ2 − iφ3 −φ1

)
,(1.2)

V3′(φ) =

⎛
⎜⎜⎜⎝

(
φ1 φ2 + iφ3

φ2 − iφ3 −φ1

)
0

0

(
φ1 φ2 − iφ3

φ2 + iφ3 −φ1

)
⎞
⎟⎟⎟⎠ ,(1.3)

V5(φ) =

⎛
⎜⎜⎜⎝

φ0 Id

(
φ1 + iφ2 φ3 + iφ4

−φ3 + iφ4 φ1 − iφ2

)
(
φ1 − iφ2 −φ3 − iφ4

φ3 − iφ4 φ1 + iφ2

)
−φ0 Id

⎞
⎟⎟⎟⎠ .(1.4)

For these four matrices, the eigenvalues are ±|φ|. Therefore, the eigenvalues of V (q)
are v(q)±|φ(q)|, and q∗ ∈ R

d is a point of crossing eigenvalues if and only if φ(q∗) = 0.
We shall say that this crossing is generic if

dφ is of maximal rank on {φ = 0},

i.e., of rank 2 for � = 2, of rank 3 for � = 3, 3′, and of rank 5 for � = 5. This
explains why these crossings are usually referred to as codimension two, three, and
five crossings and enlightens the choice of the index � we have made. Hagedorn’s
codimension one crossings are not considered here, since they violate the above rank
condition and also show a different dynamical behavior than systems with crossings
of higher codimension. We set

N(2) = N(3) = 2, N(3′) = N(5) = 4,

so that the potential V (q), the wave function ψε(q, t), and the differential dφ(q)
belong to C

N(�)×N(�), C
N(�), and R

�×d, respectively. For � = 3′ we set R
3′

= R
3. The

orthogonal eigenprojectors

Π±(q) = 1
2

(
Id ± |φ(q)|−1V�(φ(q))

)
of the matrix V (q) have a conical singularity at points of crossing eigenvalues q∗;
that is, ∇Π±(q) = O(|q − q∗|−1) as q → q∗. This motivates the notion of conical
intersections, by which especially codimension two crossings are frequently referred
to.

Eigenvalue crossings are ubiquitous in the quantum mechanical description of
polyatomic molecules, that is, molecules with more than two nuclei. The collection
[4] provides an exposition of this active area of research in theoretical chemistry. As
for a prominent example of an ultrafast isomerization on the femtosecond time scale,
a codimension two crossing of energy levels explains the effectiveness of the first step
of vision, the cis-trans isomerization of retinal in rhodopsin; see also [14] and section 3
below for related numerical experiments.

The analysis of scalar Schrödinger equations teaches us that the direct study
of the time evolution of quadratic quantities like the position density |ψε(q, t)|2 is
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impossible. The oscillations of ψε(q, t) have to be taken into account, and one has to
work in the space of positions and momenta (q, p), the phase space R

d
q×R

d
p. Therefore,

one studies the Wigner function of ψε(q, t) in a suitable ε-dependent scaling, which
resolves the highly oscillatory features of the solution,

W ε(ψε(t))(q, p) = (2π)−d

∫
Rd

ψε
(
q − ε

2v, t
)
⊗ ψ

ε(
q + ε

2v, t
)

ei v·p dv.

It plays the role of a generalized probability density on phase space. For square-
integrable wave functions ψ, the Wigner function W ε(ψ) is a square-integrable func-
tion on phase space with values in the space of hermitian matrices. One recovers the
position density by

|ψ(q)|2 = tr

∫
Rd

W ε(ψ)(q, p) dp.

Besides, the action of the Wigner function against compactly supported smooth test
functions a ∈ C∞

c (R2d,CN(�)×N(�)) is simply expressed in terms of the semiclassical
pseudodifferential operator with symbol a, which is defined by

opε(a)ψ(q) = (2πε)−d

∫
R2d

a
(

1
2 (q + v), p

)
e

i
εp·(q−v)ψ(v) dv dp

for ψ ∈ L2(Rd,CN(�)). Indeed, we have

tr

∫
R2d

W ε(ψ)(q, p)a(q, p) dq dp = (opε(a)ψ , ψ)L2(Rd,CN(�)) .

It is our aim to construct an asymptotic semigroup, which approximately prop-
agates the initial data’s Wigner function for all generic level crossings of Hagedorn’s
classification. Our approximation relies on a microlocal normal form for operators
with eigenvalue crossings, which has been derived in [1, 2, 6]. Roughly speaking, near
a crossing point the Schrödinger operator

−iε∂t − ε2

2 Δq + V (q)

is equivalent to the normal form

−iε∂t + V�

(
t, opε(|dφ(q)p|− 1

2π�(q, p)φ(q))
)
,

where π�(q, p) denotes the orthogonal projection onto the hyperplane normal to the
vector dφ(q)p ∈ R

�. In the case � = 2, this resembles the Landau–Zener system

iε d
dtψ(t) =

(
t γ

γ −t

)
ψ(t), γ > 0,

for which the probability that a solution starting at time t = −∞ in the one eigenspace
will have passed over to the other eigenspace at time t = +∞, which has explicitly
been computed by Landau [16] and Zener [21] in the 1930s. This famous Landau–
Zener transition rate reads as

exp
(
−π

ε
γ2

)
,
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and in [8] it is proven that the rate still gives the correct asymptotics if γ is re-
placed by a bounded operator. Our semigroup combines effective transitions between
eigenspaces close to points of crossing eigenvalues on the one hand with classical
transport in the adiabatic regime on the other hand. More precisely, the V -diagonal
components Π±W ε(ψε

0)Π
± of the initial Wigner function are transported along the

Hamiltonian curves of the eigenvalues of the Schrödinger operator’s symbol

1
2 |p|

2 + v(q) ± |φ(q)|.

Whenever one of the trajectories (q±(t), p±(t)) attains a local minimal gap between
the eigenvalues, there is an effective nonadiabatic transfer of weight according to the
ε-dependent transition rate

exp

(
−π

ε

|π�(q, p)φ(q)|2

|dφ(q)p|

)
.

Since the rate is negligibly small, when the eigenvalue gap is larger than
√
ε, the

nonadiabatic transfer of weight is effectively performed at times t∗ with

t �→ |φ(q±(t))| has a local minimum in t = t∗ and |φ(q±(t∗))| ≤ R
√
ε

for some fixed R > 0. Our main result is that this dynamical description yields
approximate solutions with an error of order ε1/8 when choosing R = ε−1/8. Moreover,
it is explicit enough for an algorithmic realization, whose performance on a model
for retinal in rhodopsin is studied here as well. The algorithm is a mathematical
counterpart to the popular surface hopping algorithms of chemical physics introduced
by Tully and Preston in [20].

Quantum dynamical descriptions in terms of classical transport as described
above, that is, in the spirit of an Egorov theorem, are well established and have
been given for Wigner functions, for example, in [10, 11]: for Schrödinger systems
they hold to leading order in ε, until classical trajectories come close to a point of
crossing eigenvalues. Then, as already mentioned, the adiabatic approximation is no
longer valid, and there are leading order nonadiabatic transitions between the levels
(the energy propagated on one level to the crossing may pass partially or completely
on the other level). This phenomenon has been precisely analyzed in the case of Gaus-
sian wave packet propagation by Hagedorn [13] for all generic electron level crossings.
For initial data, which are less specific than Gaussian wave packets, the evolution of
appropriate two-scale Wigner measures has been studied. These measures are weak
limits of the Wigner function and incorporate information on concentration effects
close to trajectories, which touch points of crossing eigenvalues, with respect to the
second scale

√
ε. These Wigner measures have been analyzed for a linear codimension

two crossing in [7], for general two-level systems in [8], and for all of Hagedorn’s mod-
els in [5]. In [18], the results of [7] have been lifted to a leading order approximation
of the Wigner function. Here, we aim at approximating the Wigner function for all
generic crossings, while additionally proving a convergence rate.

We will proceed as follows. Section 2 constructs the surface hopping semigroup,
states the main result, that is, the validity of our approximation with an error of
order ε1/8, and discusses the strategy of the proof. In section 3, numerical results are
presented for an algorithmic realization of the semigroup applied to a retinal model.
In section 4, the proof for propagation away from the crossing is carried out, while
the microlocal normal form yields the correct nonadiabatic transition rates, as proven
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in section 5. In section 6, the main result is extended to observables, which are
more pertinent for the crossings with degenerate eigenvalues (� = 3′, 5). Finally, the
appendix summarizes basic facts of Weyl calculus.

2. Main result. Propagation through level crossings can be approximated by
a proper combination of classical transport and nonadiabatic transitions. For this,
we study the underlying classical flows and combine them with effective nonadiabatic
transitions to an asymptotic semigroup.

2.1. Transport and transitions. We consider the classical flows

Φ−t
± : R

2d → R
2d , Φ−t

± (q0, p0) =
(
q±(t), p±(t)

)
associated with the Hamiltonian curves of 1

2 |p|2 + v(q) ± |φ(q)|. These curves are
solutions to the Hamiltonian systems{

q̇±(t) = p±(t), ṗ±(t) = −∇v (q±(t)) ∓ tdφ (q±(t))
φ(q±(t))
|φ(q±(t))| ,

q±(0) = q0, p±(0) = p0.

We consider only initial phase space points (q0, p0) ∈ R
2d such that for t > 0

φ(q±(t)) = 0 ⇒ dφ(q±(t))p±(t) 
= 0.(2.1)

This condition guarantees that classical trajectories arrive transversally at the crossing
set and have a unique smooth continuation through this singularity; see Proposition 1
in [5].

For a large class of test functions and under suitable restrictions on the time
interval, the classical flows are enough for approximating the dynamics up to an error
of order ε. Indeed, one considers observables a ∈ C∞

c (R2d,CN(�)×N(�)) such that

a = a+Π+ + a−Π−, a± ∈ C∞
c (R2d \ {φ = 0},C).(2.2)

For � = 2, 3, the eigenspaces are one-dimensional, and these observables focus on
the V -diagonal elements of the Wigner matrix, where V -diagonal means diagonal
with respect to the decomposition of C

N(�) by the eigenprojectors Π+(q) and Π−(q).
For � = 3′, 5, however, the eigenspaces are two-dimensional, and observables of the
form (2.2) are not enough to completely resolve all dynamical features within the
eigenspaces. We will address this issue in section 6.

For all times t ∈ [0, T ], such that the classical trajectories Φt
± arriving on the

support of a have not passed the crossing set {φ = 0}, the action of the Wigner
function on a = a±Π± obeys

tr

∫
R2d

W ε(ψε(t)) (q, p) Π±(q)a±(q, p) dq dp

− tr

∫
R2d

(
Π±W ε(ψε

0)Π
± ◦ Φ−t

±
)
(q, p) a±(q, p) dq dp = O(ε)

as ε → 0. Such Egorov-type descriptions hold, until classical trajectories come close
to a crossing point (q, p) ∈ {φ = 0} and leading order nonadiabatic transitions oc-
cur. These transitions depend on how the solution ψε(t) concentrates on the ingoing
trajectories with respect to the scale

√
ε. For the linear codimension two crossing

with φ(q) = q, q ∈ R
2, the two-scale Wigner measure’s description of [7] is lifted
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to an approximation of the Wigner function in [18]. This linear model has specific
features; see also [9]. In particular, all classical trajectories which meet the crossing
are included in the set {q ∧ p = 0}, where q ∧ p := q2p1 − q1p2 for q, p ∈ R

2. The idea
of [18] is to propagate the V -diagonal parts of the initial Wigner function along the
classical trajectories and to apply the ε-dependent transition coefficient

T ε
lin(q∗, p∗) = exp

(
−π

ε

|q∗ ∧ p∗|2
|p∗|3

)
,

as soon as the trajectories reach their minimal distance from the crossing set, which
is easy to check since q · p = 0 at such a point. Theorem 3.2 in [18] proves that under
suitable conditions on the initial data this ε-dependent propagation is correct in the
limit ε → 0. We construct here an extension, which covers the general situation
described above, and give a convergence proof including a convergence rate. Our
approach draws from the understanding of the nonadiabatic mechanism as developed
in [5].

2.2. A surface hopping semigroup. Let R > 0. In the general case, the
crucial points in phase space are those where the classical trajectories attain a local
minimal gap between the two eigenvalues. These points fulfill the condition

d

dt

(∣∣φ (
q±(t)

)∣∣2) = 2 dφ
(
q±(t)

)
p±(t) · φ

(
q±(t)

)
= 0,

and one performs an effective nonadiabatic transfer of weight, whenever a trajectory
passes the set

Sε,R =
{
(q, p) ∈ R

2d | |φ(q)| ≤ R
√
ε, dφ(q)p · φ(q) = 0

}
.

The microlocal normal form, which will be given later in Theorem 5.2, suggests the
transition rate

T ε(q∗, p∗) = exp

(
−π

ε

|π�(q
∗, p∗)φ(q∗)|2

|dφ(q∗)p∗|

)
,

where π�(q
∗, p∗) is the orthogonal projection from the Euclidean space R

� into the
hyperplane normal to the vector dφ(q∗)p∗ ∈ R

�. Since dφ(q±(t))p±(t) does not vanish
when the considered trajectories arrive at the crossing set {φ = 0}, it is also nonzero
when arriving at the jump manifold Sε,R if R

√
ε is small enough. Besides, for � = 2,

one has

| π�(q, p)φ(q) |= | φ(q) ∧ dφ(q)p
|dφ(q)p| |,

and we recover the transition coefficient T ε
lin(q∗, p∗) for φ(q) = q, q ∈ R

2.
We attach the labels −1 and +1 to phase space. For points (q, p, j) ∈ R

2d
± :=

R
2d × {−1,+1}, we consider trajectories

T (q,p,j)
ε,R : [0,+∞) → R

2d
± ,

which combine deterministic classical transport and random jumps between the lev-

els at the manifold Sε,R. More precisely, we set T (q,p,j)
ε,R (t) =

(
Φt

j(q, p), j
)

as long as

Φt
j(q, p) 
∈ Sε,R. Whenever the deterministic flow Φt

j(q, p) hits the manifold Sε,R at
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a point (q∗, p∗), a random jump from j to −j occurs with probability T ε(q∗, p∗).
For points (q, p, j) generating classical trajectories, which either violate the non-
degeneracy condition (2.1) or do not leave the set Sε,R, there is either no transport
or no jump at all. Since the trajectories which touch the crossing set arrive there
transversally, each path

(q, p, j) → T (q,p,j)
ε,R (t)

has a finite number of jumps and remains in a bounded region of R
2d
± within a bounded

time interval [0, T ]. Away from the jump manifold Sε,R × {−1,+1} each path is
smooth. Hence, the random trajectories define a time-dependent Markov process
with state space R

2d
± . The associated transition function Pε,R(p, q, j; t,Γ) describes

the probability of being at time t in the measurable set Γ ⊂ R
2d
± having started in

(q, p, j). Its action on bounded measurable scalar functions f : R
2d
± → C defines a

semigroup (Lt
ε,R)t≥0 by

(Lt
ε,R f)(q, p, j) :=

∫
R2d×{−1,+1}

f(x, ξ, k)Pε,R(q, p, j; t,d(x, ξ, k)).

For introducing the semigroup’s action on Wigner functions, we use the following space
of continuous V -diagonal test functions satisfying T ε-dependent boundary conditions
at the jump manifold.

Definition 2.1. A continuous function a ∈ Cc(R2d \Sε,R,C
N(�)×N(�)) belongs to

the space Cε,R if it has the following properties:
i. a = a+Π+ + a−Π− with a± ∈ Cc(R2d \ Sε,R,C).
ii. The function fa : (R2d \ Sε,R) × {−1,+1} → C,

fa(q, p,+) = a+(q, p), fa(q, p,−) = a−(q, p),

satisfies for all (q, p, j) ∈ Sε,R × {−1,+1}

lim
δ→−0

fa(q + δp, p + δ(−∇v(q) − j tdφ(q)φ(q)/|φ(q)|), j)

= lim
δ→+0

(T εfa)(q + δp, p + δ(−∇v(q) + j tdφ(q)φ(q)/|φ(q)|),−j)

= lim
δ→+0

((1 − T ε)fa)(q + δp, p + δ(−∇v(q) − j tdφ(q)φ(q)/|φ(q)|), j).

For test functions a ∈ Cε,R, the action of (Lt
ε,R)t≥0 is naturally given by

(Lt
ε,R a)(q, p) :=

(
Lt
ε,Rfa

)
(q, p,+1) Π+(q) +

(
Lt
ε,Rfa

)
(q, p,−1) Π−(q).

By construction, the semigroup leaves Cε,R invariant, and duality allows us to define
its action on Wigner functions. More precisely, let W ε(ψ) be the Wigner function of
some wave function ψ ∈ L2(Rd,CN(�)). Then, Lt

ε,RW
ε(ψ) acts on a ∈ Cε,R by

(
Lt
ε,RW

ε(ψ), a
)

= tr

∫
R2d

W ε(ψ)(q, p)(Lt
ε,R a)(q, p) dq dp,

defining a locally integrable function on phase space. We finally choose an ε-dependent
hopping range R(ε) = ε−1/8 and set

(Lt
ε)t≥0 := (Lt

ε,R(ε))t≥0.
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2.3. Assumptions and main result. Let ψε(t) be the solution of the Schrö-
dinger equation (1.1) with initial datum ψε

0. We now state the precise assumptions, un-
der which the action of the semigroup (Lt

ε)t≥0 on the initial Wigner function W ε(ψε
0)

approximates the V -diagonal components of W ε(ψε(t)).
(A0) V ∈ C∞(Rd,CN(�)×N(�)) is of subquadratic growth and of the form

V (q) = v(q) Id + V� (φ(q)) , � ∈ {2, 3, 3′, 5},

where the matrices V�(φ(q)) have been defined in (1.2), (1.3), and (1.4). We
assume the eigenvalue crossings to be generic in the sense that dφ is of max-
imal rank on the crossing set {φ = 0}.

(A1) (ψε
0)ε>0 is a bounded family in L2

(
R

d,CN(�)
)

associated with RanΠ+,

‖Π−ψε
0‖L2(Rd,CN(�)) = O(εβ1), β1 ≥ 1/8.

We suppose that the initial data are localized away from the crossing {φ = 0};
i.e., for all b ∈ C∞

c (R2d,CN(�)×N(�)) with supp(b) ⊂ {|φ| ≤ R
√
ε}, R = ε−1/8,∫

R2d

W ε(ψε
0)(q, p) b(q, p) dq dp = O(εβ2), β2 ≥ 1/8.

We also assume localization away from the set{
(q0, p0) ∈ R

2d | ∃t > 0 : φ(q±(t)) = 0, dφ(q±(t))p±(t) = 0
}
,

which contains the points issuing classical trajectories, which arrive at the
crossing without a unique continuation through it.

(A2) The test function a ∈ C∞
c

(
R

2d,CN(�)×N(�)
)

has its support at a distance

larger than R
√
ε with R = ε−1/8 from the crossing; that is,

supp(a) ∩
{
(q, p) ∈ R

2d | |φ(q)| ≤ R
√
ε
}

= ∅, R = ε−1/8,

and

a(q, p) = a+(q, p)Π+(q) + a−(q, p)Π−(q), (q, p) ∈ R
2d,

with scalar-valued a± ∈ C∞
c (R2d,C).

(A3) Within the time interval [0, T ], each of the plus-trajectories arriving at the
support of a+ at time T has performed at most one jump, generating minus-
trajectories arriving at the support of a−, which have not jumped at all.

Alternatively, assumptions (A1) and (A3) could also require that the initial data
are associated with RanΠ− and that each of the minus-trajectories arriving at the
support of a− at time T has performed at most one jump, generating plus-trajectories
arriving at the support of a+, which have not jumped at all.

Theorem 2.2. Let the potential V , the initial data (ψε
0)ε>0, the observable a,

and the time interval [0, T ] fulfill assumptions (A0), (A1), (A2), and (A3). Let χ ∈
C∞
c ([0, T ],R). Then, there exist positive constants C, ε0 > 0 such that for all 0 < ε <

ε0 the solution ψε(t) of the Schrödinger equation (1.1) satisfies∣∣∣∣tr
∫

R2d+1

χ(t)
(
W ε(ψε(t)) − Lt

εW
ε(ψ0)

)
(q, p) a(q, p) dq dpdt

∣∣∣∣ ≤ C ε1/8.(2.3)

Before entering the proof, we add some remarks. First, if one allows initial
data in assumption (A1) with β1, β2 > 0, then the result holds with convergence
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rate εmin(β1,β2,1/8). Second, pointwise convergence holds on time intervals without
nonadiabatic jumps, that is, when the solution has passed by the jump manifold; see
also [18]. However, for pointwise convergence only the limit behavior without conver-
gence rate can be deduced, since the constants C and ε0 depend on the cut-off function
χ and its derivatives in a way that possible oscillations in time are not controlled. Fi-
nally, in section 6 an extension of the approximation for the cases � = 3′, 5 with
degenerate eigenvalues is given. There, assumption (A2) is generalized to observables
a which commute with V , that is, a = Π+aΠ+ + Π−aΠ−.

2.4. Strategy of the proof. For notational convenience, we suppose β1 =
β2 = 1/2. Otherwise, one has to add O(ε1/8) in all the estimates. We work with the
semigroup (Lt

ε,R)t≥0 and prove convergence with an error of order

O(1/(R5
√
ε)) + O(R3

√
ε) + O(1/R2) + O(

√
ε | ln ε|)

as ε → 0 and R → +∞, which gives the claimed rate when choosing R = ε−1/8. We
distinguish between regions of large and small eigenvalue gap, that is, between sets
{|φ| > C R

√
ε} with C = 1

2 , 1 on the one hand and {|φ| ≤ R
√
ε} on the other hand.

For a large gap we prove classical transport with an error of size O(1/(R5
√
ε)) +

O(1/R2) + O(
√
ε). Close to the crossing set, proving the relevance of nonadiabatic

transitions, we use a microlocal normal form, which reduces the Schrödinger equation
to a Landau–Zener-type problem with explicitly computable transition rates. There,
we introduce an error of order O(R3

√
ε) + O(1/R2) + O(

√
ε| ln ε|) + O(1/(R5

√
ε)).

The combination of both errors will then yield the final estimate of Theorem 2.2.
Proposition 2.3. Let c ∈ C∞

c (R2d,C), and let b ∈ C∞(R�,C) with ∇b compactly
supported. If there exist C > 0 and s0 > 0 such that

∀r ∈ [−s0, s0] : Φr
±(supp(c)) ⊂ {|φ| > C R

√
ε},

then for all χ ∈ C∞
c (R,R) and for all s ∈ [t− s0, t + s0]

tr

∫
R2d+1

χ(t) c(q, p) b
(

φ(q)
R
√
ε

)
Π±(q)W ε(ψε(t))(q, p) dq dpdt

= tr

∫
R2d+1

χ(t) c(q, p) b
(

φ(q)
R
√
ε

) (
Π±W ε(ψε(s)) Π± ◦ Φ−t+s

±
)
(q, p) dq dpdt

+O
(

1
R5

√
ε

)
+ O

(
1
R2

)
+ O(

√
ε).

Proposition 2.3 will be proved in section 4. To use it for the main proof, we need
to specify which points of supp(a±) arrive close to the crossing. We denote the sets
of trajectories arriving at (respectively, arising from) the crossing set {φ = 0} by

M±,in =
{
Φt

±(q, p) ∈ R
2d | Φt

±(q, p) 
∈ {φ = 0},∃t0 < t : Φt0
± (q, p) ∈ {φ = 0}

}
,

M±,out =
{
Φt

±(q, p) ∈ R
2d | Φt

±(q, p) 
∈ {φ = 0},∃t0 > t : Φt0
± (q, p) ∈ {φ = 0}

}
.

The sets M±,in/out are smooth submanifolds of R
2d. By construction of the semigroup,

all phase space points generating backward trajectories passing through the zone of
small gap {|φ| ≤ R

√
ε} and performing a jump are contained in a neighborhood Ω±

of the intersection of the support of a± with M±,out.
Some of the random trajectories reaching Ω± touch the crossing set. We consider

one of them, which arrives at time t0 at (q0, p0) with φ(q0) = 0, dφ(q0)p0 
= 0,
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and choose the associated point (q0, t0, p0, τ0) in the phase space of space-time, where
τ0 = − 1

2 |p0|2−v(q0) is the energy coordinate. The normal form theorems [1, 2, 6] give
neighborhoods of these points, on which the Schrödinger equation (1.1) microlocally
reduces to a Landau–Zener-type problem

−iε∂sv
ε = V�(s, z̃ + γε(z, ζ))v

ε + O(ε∞).

These model problems have explicitly computable transition rates in the scattering
regime; see [7, 8]. The compact subset of {|φ| < R

√
ε}, which is touched by the

backward trajectories coming from Ω±, can be covered by finitely many of these
neighborhoods projected to R

2d, and without loss of generality we assume that one
of them suffices.

Moreover, for each point in Ω± being reached by a random trajectory at time t
there are positive numbers 0 < t±f < t±i , such that at time t − t±i and t − t±f the
trajectories are contained in an annulus {C1

√
ε < |φ| < C2

√
ε} with C1, C2 > 0 and

have performed their only jump within the interval ]t − t±i , t − t±f [, whose length is
denoted by δ±t = t±i − t±f . These quantities are well defined, since the trajectories are
transverse to the crossing set. Choosing C1 = R

2 and C2 = R, Ω± can be covered
by finitely many open sets, such that each of these sets can be associated with such
points of time t±i and t±f . Without loss of generality, we assume that one of them is
enough. Then, we have by Proposition 2.3 with C = 1

2

tr

∫
R2d+1

χ(t) a±(q, p) Π±(q)W ε(ψε(t))(q, p) dq dpdt

= tr

∫
R2d+1

χ(t) a±(q, p)
(
Π±W ε

(
ψε(t− t±f )

)
Π± ◦ Φ

−t±f
±

)
(q, p) dq dpdt

+O(1/(R5
√
ε)) + O(1/R2) + O(

√
ε).

Then, we perform a cut-off of the symbol a± ◦ Φ
t±f
± . We consider a smooth com-

pactly supported function χ0 ∈ C∞
c (R�,R) such that χ0(u) = 1 on {|u| < 1} and

χ0(u) = 0 for {|u| > 2}. We write(
a± ◦ Φ

t±f
±

)
(q, p) = a±BO(q, p) + a±LZ(q, p),

a±BO(q, p) =
(
a± ◦ Φ

t±f
±

)
(q, p)

(
1 − χ0

(
φ(q)
R
√
ε

))
,

a±LZ(q, p) =
(
a± ◦ Φ

t±f
±

)
(q, p)χ0

(
φ(q)
R
√
ε

)
.

Since the trajectories, which pass within the time interval ]t− t±i , t− t±f [ through the
support of a±BO, do not jump, Proposition 2.3 with C = 1 is enough to deal with the
Born–Oppenheimer part. The analysis of the Landau–Zener part, however, involves
nonadiabatic transitions. For points (q, p) ∈ supp(a±LZ) we have |φ(q)| ≤ 2R

√
ε.

Hence, not all of the trajectories passing through the support of a±LZ jump. Never-
theless, we argue as if all of them did. Indeed, the transition coefficients generated
by these added jumps are exponentially small with respect to ε, since they occur for
points (q, p) with |φ(q)| > R

√
ε.

Proposition 2.4. Let 0 < t±f < t±i be such that at t− t±i and t− t±f all random
trajectories arriving at time t in Ω± are contained in

{
R
2

√
ε ≤ |φ| ≤ R

√
ε
}

and have
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performed their only jump within the interval ]t− t±i , t− t±f [ of length δ±t = t±i − t±f .
Then, for all χ ∈ C∞

c ([0, T ],R)

tr

∫
R2d+1

χ(t)W ε(ψε(t))(q, p) a±LZ(q, p)Π±(q) dq dpdt

= tr

∫
R2d+1

χ(t)W ε(ψε(t− δ±t ))(q, p)(Lδ±t
ε,Ra

±
LZ)(q, p) Π+(q) dq dpdt

+O(1/R2) + O(R3
√
ε) + O(

√
ε| ln ε|) + O(1/(R5

√
ε)).(2.4)

One observes that in the right-hand side of (2.4) only the plus-projector Π+

appears. This comes from the fact that at time t− t±i the contribution on the minus-
mode is of order O(1/(R5

√
ε)) + O(1/R2) + O(

√
ε), which is due to Proposition 2.3

and the initial data being associated only with Ran Π+. Finally, again the classical
transport result of Proposition 2.3 relates the right-hand side of (2.4) with the initial
data, and the proof of our main result, Theorem 2.2, is complete.

3. Numerical experiments. Before giving the detailed proof, we present nu-
merical experiments illustrating the theoretical convergence result and the effective-
ness of the algorithm. We consider a two-level Schrödinger equation with codimension
two crossing in two space dimensions, which models the photoisomerization of retinal
in rhodopsin. This conformational change is considered as the first step of vision. In
[14], computations with the model Hamiltonian

−ω
2 ∂

2
x − 1

2m∂2
ϕ + 1

2ωx
2 +

( 1
2W0(1 − cosϕ) λx

λx E1 − 1
2W1(1 − cosϕ) + κx

)

have qualitatively reproduced spectroscopic information of the molecule. The two
effective coordinates (ϕ, x) ∈ ]− π

2 ,
3π
2 ]×R consist of the reaction coordinate φ and a

collective coordinate x. The parameters are m−1 = 4.84 · 10−4, E1 = 2.48, W0 = 3.6,
W1 = 1.09, ω = λ = 0.19, and κ = 0.1 (all in eV, � = 1); see note 18 in [14]. Setting

ε = m−1/2 = 0.022, q1 = ϕ, q2 =
ε√
ω
x,

one obtains a rescaled Hamiltonian − ε2

2 Δq + V (q) with potential

V (q) = 1
2 (βq2)

2 +

( 1
2W0(1 − cos q1) α1q2

α1q2 E1 − 1
2W1(1 − cos q2) + α2q2

)
,

whose parameters (α1, α2) =
√
ω
ε (κ, λ) ≈ (2, 3.8) and β = ω/ε ≈ 8.6 are of order one

with respect to ε. Fixing these values of (α1, α2) and β, we run a series of experiments
for varying values of the semiclassical parameter ε and hopping ranges R,

ε ∈ {0.0005, 0.001, 0.005, 0.01, 0.015, 0.02, 0.022, 0.03}, R ∈ {1, 2, 3},

in the following set-up. We consider normalized Gaussian initial data associated with
the plus-level, that is,

ψε
0(q) = (επ)−1/2 exp

(
− 1

2ε |q − qε0|2 + i
ε p0 · (q − qε0)

)
v+(q),
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Table 1

The table shows final level populations and particle numbers as well as the accuracy of the
reference solver. The population of the upper level ‖Π+ψε(t)‖2 at the final time T = 7

√
ε is com-

puted by the reference solver, a pseudospectral Strang splitting scheme, and illustrates leading order
nonadiabatic transitions for all test cases. Depending on the hopping range R, the final particle
numbers of the surface hopping algorithm vary between 3000 and 30000. The reference accuracy is
the difference in L2-norm of the final wave function computed with full and half resolution. For all
computations it is less than 10−4.

ε 0.0005 0.001 0.005 0.01 0.015 0.02 0.022 0.03
‖Π+ψε(t)‖2 0.499 0.576 0.792 0.378 0.263 0.276 0.276 0.239

� particles, R = 1 5396 5229 3730 3548 3316 3274 3482 3292
� particles, R = 2 6650 6353 4732 4766 4801 5569 6106 8281
� particles, R = 3 7392 6881 5809 6155 7119 10 536 12 581 34 485
Ref. accuracy ·105 3.44 2.89 7.57 2.56 2.47 2.45 2.47 2.63

where v+(q) is a normalized eigenvector of V (q) for the eigenvalue v(q)+ |φ(q)|, which
depends smoothly on q. The initial center in position space

qε0 =
(
1.63 − 4

√
ε, 0.5

√
ε
)

is chosen left of the two crossing points (γl, 0), (γr, 0), where γl,r are the two solutions
of cosϕ = 1− 2E1/(W0 +W1) for ϕ ∈ ]− π

2 ,
3π
2 ], that is, γl ≈ 1.63 and γr ≈ 4.65. The

initial momentum center and the time interval,

p0 = (1, 0), [0, T ] = [0, 7
√
ε],

are chosen such that the wave function passes only the left crossing point (γl, 0) once
without returning to it again. The upper level populations ‖Π+ψε(t)‖2 at the final
time T = 7

√
ε, which are given in Table 1, confirm that the experimental set-up

produces leading order nonadiabatic transitions.
The numerical realization of the surface hopping semigroup (Lt

ε,R)t≥0 is the same
as for the simulations of models with a linear isotropic potential matrix presented in
[17], up to adding the R

√
ε-dependent jump criterion

t �→ |φ(q±(t))| has a local minimum in t = t∗ and |φ(q±(t∗))| ≤ R
√
ε.

The initial sampling is performed on 16× 16 grids in position and momentum space,
and the classical transport is discretized by the explicit Runge–Kutta method of
Dormand and Prince DOPRI45. For comparison, we have also solved the Schrödinger
equation (1.1) by a numerically converged pseudospectral Strang splitting scheme.
The solutions obtained with a 1024 × 512 space grid on the computational domain
[1.63 − 8

√
ε, 1.63 + 16

√
ε] × [−6

√
ε, 6

√
ε] and with 104 time steps are regarded as a

reference, since they differ in L2-norm from the corresponding solution with a fourth
of the grid points and half the time steps by less than 10−4; see Table 1. We have
computed the following quadratic quantities of the wave function at final time T =
7
√
ε: the level populations ‖Π±ψε(t)‖2 and the expectation values of position and

momentum on each level,

〈Π±(q)ψε(q, t), qΠ±(q)ψε(q, t)〉, 〈Π±(q)ψε(q, t),−iε∇qΠ
±(q)ψε(q, t)〉.

We note that the reference solver restricts the length of the time interval to 7
√
ε, since

the dynamics can be resolved only as long as the solution stays well localized in the
computational domain, while for the fixed number of 1024 × 512 grid points the size
of the computational domain affects the numerical accuracy.
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Comparing the outcome of the two algorithms, we find all errors within and below
the corridor [15

√
ε, 5

√
ε] (see Figure 1), which is better than the proven convergence

rate ε1/8. Moreover, the errors increase monotonically when increasing the semi-
classical parameter; however, when entering the range ε ≥ 0.01 we observe different
dependencies. The level populations’ error starts decreasing, while the error of the
momentum expectation oscillates. We have no mathematical explanation for these
observations and can make only an educated guess. The good convergence rate might
be caused by the localization properties of the initial Gaussian wave packet combined
with the short length of the time interval. Indeed, the error terms O(1/R2) and
O(1/(R5

√
ε)) in the approximation by classical transport in Proposition 2.3 might be

negligible in this case as well as the contribution O(1/R2) in Proposition 2.4, which
is due to localization in energy. The tendencies for a large semiclassical parameter,
however, are clearly beyond the reach of our asymptotic analysis.

Table 1 shows that an increase of the hopping range R increases the number of
final particles, that is, the number of jumps within the overall time interval. We
obtain particle numbers around 3000 and 30000 for R = 1 and R = 3, respectively,
resulting in half a minute and 5 minutes computing time for our implementation of the
algorithm in MATLAB 7.0 on a 3GHz Pentium 4 computer. However, an enlarged
hopping range need not improve the accuracy of the approximation. The plots in
Figure 1 mostly display smaller errors for larger R, but the level populations in the
physical relevant range of ε = 0.022 have the most accurate computation for R = 2.

Summarizing, the numerical experiments are consistent with the theoretical re-
sult, but also present a better convergence rate and tendencies in the range of a larger
semiclassical parameter, which seem to be unexplainable by our asymptotic analy-
sis. A systematic comparison with the well-established surface hopping algorithms of
chemical physics is in progress.

4. Propagation outside the crossing zone. We now begin proving our main
result. The first step is to establish the validity of the classical transport approxima-
tion in the zone of large eigenvalue gap {|φ| ≥ C R

√
ε}.

Proof of Proposition 2.3. Our aim is to prove

tr

∫ {
χ(t)c(q, p)b

(
φ(q)
R
√
ε

)
, τ + 1

2 |p|
2 + v(q) ± |φ(q)

}
Π±(q)W ε(ψε(t))(q, p) dq dpdt

= O
(

1
R2

)
+ O

(
1

R5
√
ε

)
+ O(

√
ε),

since then classical transport follows immediately. The key argument is the estimation
of the action of the commutator

K = 1
ε

[
χ(t)opε

(
c(q, p)b

(
φ(q)
R
√
ε

)
Π±(q)

)
, −iε∂t − ε2

2 Δq + V (q)
]

on the solution of the Schrödinger equation (1.1). Indeed, observing that

(Kψε, ψε)L2(Rd+1) = 0,

we are going to prove

(Kψε, ψε)L2(Rd+1) = O
(

1
R2

)
+ O

(
1

R5
√
ε

)
+ O(

√
ε)

+
(
opε

({
χ(t)c(q, p)b

(
φ(q)
R
√
ε

)
, τ + 1

2 |p|
2 + v(q) ± |φ(q)

}
Π±(q)

)
ψε, ψε

)
L2(Rd+1)

,
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Fig. 1. Double logarithmic plots of the absolute error, when comparing the outcome
of the surface hopping algorithm with a numerically converged pseudospectral splitting scheme.
The semiclassical parameter ε varies in the set {0.0005, 0.001, 0.005, 0.01, 0.015, 0.02, 0.022, 0.03}.
The dashed, dashed-dotted, and solid lines refer to a hopping range R = 1, 2, 3, respec-
tively. The three plots show the error of the level population ‖Π+(q)ψε(q, t)‖2, of the
position expectation value 〈Π+(q)ψε(q, t), qΠ+(q)ψε(q, t)〉, and of the momentum expectation
〈Π−(q)ψε(q, t),−iε∇qΠ−(q)ψε(q, t)〉 at the final time T = 7

√
ε. All errors lie in and below the

corridor defined by the two functions ε �→ 5
√
ε and ε �→ 1

5

√
ε, which are represented by dotted lines.
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where opε also denotes Weyl quantized operators acting on space-time variables. We
use the scaling operator

T : L2
loc(R

d+1) → L2
loc(R

d+1), (Tψ)(t, q) = εd/4ψ(t,
√
εq)(4.1)

and write

T ∗KT = 1
ε

[
op1

(
χ(t)c(

√
εq,

√
εp)b

(
φ(

√
εq)

R
√
ε

)
Π±(

√
εq)

)
, −iε∂t − ε

2Δq + V (
√
εq)

]
.

We have to deal carefully with the ε,R dependence of the symbol in the left-hand
side of the commutator. For all multi-indices α ∈ N

d,

Dα
(
Π±(q)

)
= O(|φ(q)|−|α|

).

Since |φ(q)| > C R
√
ε on the support of bε,R(q, p) := c(q, p)b( φ(q)

R
√
ε
), we have

Dα
q

(
(bε,RΠ±)(

√
εq,

√
εp)

)
= O(1), Dα

p

(
(bε,RΠ±)(

√
εq,

√
εp)

)
= O(ε|α|/2)(4.2)

for α ∈ N
d. By the symbolic calculus of Lemma A.2,

1
ε

[
op1

(
(bε,RΠ±)

(√
εq,

√
εp
))

, op1

(
ε
2 |p|

2
)]

= 1
i op1({(bε,RΠ±)

(√
εq,

√
εp
)
, 1

2 |p|
2})

= 1
i op1

(
{bε,R(

√
εq,

√
εp), 1

2 |p|
2}Π±(

√
εq)

)
− 1

i op1

(
r0(

√
εq,

√
εp)

)
,

where

r0(
√
εq,

√
εp) = bε,R(

√
εq,

√
εp)

d∑
j=1

√
εpj(∂qjΠ

±)(
√
εq).(4.3)

Moreover, in view of [Π±, V ] = 0 and (4.2),

1
ε

[
op1

(
(bε,RΠ±)

(√
εq,

√
εp
))

, V (
√
εq)

]
= 1

2iε op1({(bε,RΠ±)(
√
εq,

√
εp), V (

√
εq)})

− 1
2iε op1({V (

√
εq), (bε,RΠ±)(

√
εq,

√
εp)}) + O(ε).

Working on the Poisson brackets involving V = v + V�(φ), we first observe that{
bε,RΠ±, V�(φ)

}
−
{
V�(φ), bε,RΠ±} = Π± {bε,R, V�(φ)} − {V�(φ), bε,R}Π±.

Using that V�(φ) = |φ|(Π+ − Π−) and ∂qjΠ
± = Π±(∂qjΠ

±) + (∂qjΠ
±)Π±, we get

{
bε,RΠ±, V�(φ)

}
−
{
V�(φ), bε,RΠ±} = ±2{bε,R, |φ|}Π± ± 2 |φ|

d∑
j=1

(
∂pj bε,R

)
∂qjΠ

±

and set

r1(
√
εq,

√
εp) = 1

ε |φ(
√
εq)|

d∑
j=1

∂pj

(
bε,R(

√
εq,

√
εp)

)
∂qj

(
Π±(

√
εq)

)
(4.4)

= |φ(
√
εq)|

d∑
j=1

(∂pjc)(
√
εq,

√
εp) b

(
φ(

√
εq)

R
√
ε

)
(∂qjΠ

±)(
√
εq).
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Now, collecting all the different pieces, we have

K = opε

({
χ(t)bε,R(q, p) , τ + 1

2 |p|
2 + v(q) ± |φ(q)|

}
Π±(q)

)
+ opε(χ(t)r0(q, p)) + opε(χ(t)r1(q, p)) + O(ε).

Hence, our claim follows from the analysis of r0 and r1, which is carried out in
Lemma 4.1.

Lemma 4.1. Let ψε solve the Schrödinger equation (1.1). For the matrix-valued
functions r0 and r1 defined in (4.3) and (4.4), respectively, one has

(opε (χ(t)r0(q, p))ψ
ε, ψε)L2(Rd+1) = O(

√
ε) + O(1/R2) + O(1/(R5

√
ε)),

(opε (χ(t)r1(q, p))ψ
ε, ψε)L2(Rd+1) = O(

√
ε) + O(1/R2).

Proof. Both functions have off-diagonal matrix structure; that is, r0(q, p) and
r1(q, p) do not commute with V (q). However, since r1 contains an additional factor |φ|,
it is less singular than r0, in the sense that for α ∈ N

d and (q, p) with |φ(
√
εq)| > CR

√
ε

Dα
q

(
r0(

√
εq,

√
εp)

)
= O(R−|α|−1ε−1/2), Dα

q

(
r1(

√
εq,

√
εp)

)
= O(R−|α|).

We begin with r1. We write r1 = Π−r1Π
+ +Π+r1Π

− and work successively with
each part. Thus, without loss of generality, we suppose that Π−r1Π

+ = r1. The
strategy is to reuse the Schrödinger equation, since

r1 = Π−r1Π
+ = 1

2|φ| [r1, V�(φ)] = 1
2|φ| [r1, τ + 1

2 |p|
2 + V ].

With the scaling operator T defined in (4.1), we obtain

opε(χ(t)r1(q, p)) = T ∗op1

([
χ(t)

2|φ(
√
εq)| r1(

√
εq,

√
εp), ετ + ε

2 |p|
2 + V (

√
εq)

])
T.

Then, by the symbolic calculus of Lemma A.2,

op1

([
χ(t)

2|φ(
√
εq)| r1(

√
εq,

√
εp), ετ + ε

2 |p|
2 + V (

√
εq)

])

=
[
op1

(
χ(t)

2|φ(
√
εq)| r1(

√
εq,

√
εp)

)
, op1

(
ετ + ε

2 |p|
2 + V (

√
εq)

)]
+ op1(r2(t,

√
εq,

√
εp)),

where

r2(t,
√
εq,

√
εp) = χ(t)r̃1(

√
εq,

√
εp) + ε χ′(t)

2|φ(
√
εq)| r1(

√
εq,

√
εp) + εχ(t)r̃2(

√
εq,

√
εp)

with

r̃1(
√
εq,

√
εp) = 1

2i

{
1

2|φ(
√
εq)| r1(

√
εq,

√
εp) , ε

2 |p|
2 + V (

√
εq)

}

− 1
2i

{
ε
2 |p|

2 + V (
√
εq) , 1

2|φ(
√
εq)| r1(

√
εq,

√
εp)

}
.

The term r̃2(
√
εq,

√
εp) contains the commutator of second derivatives in p of the

symbol |φ(
√
εq)|−1 r1(

√
εq,

√
εp) with second derivatives of V (

√
εq) and a linear com-

bination of derivatives in (q, p) of order greater than or equal to three. Hence, by
Lemma A.2

opε (χ(t)r̃2(q, p)) = O(ε
√
ε) + O(ε/R4) in L(L2(Rd+1)).
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It remains to study r̃1. Since derivatives in p of r1(
√
εq,

√
εp) generate powers of

√
ε,

the bracket with V (
√
εq) gives

op1

(
χ(t)

{
1

2|φ(q
√
ε)|r1(

√
εq,

√
εp), V (

√
εq)

})
= O

(√
ε

R

)
in L(L2(Rd+1)).

For the bracket with ε
2 |p|2 one has{

1
2|φ(

√
εq)|r1(

√
εq,

√
εp) , ε

2 |p|
2
}

=
√
ε

2|φ(
√
εq)|

√
εp · ∇q

(
r1(

√
εq,

√
εp)

)
+ ε

2
dφ(

√
εq)

√
εp·φ(

√
εq)

|φ(
√
εq)|3 r1(

√
εq,

√
εp).

Both terms give a contribution of order O(1/R2), but since they are not purely off-
diagonal, the preceding commutator argument cannot be reiterated. Hence,

opε(χ(t)r̃1(q, p)) = O
(

1
R2

)
+ O

(√
ε

R

)
, opε

(
ε χ′(t)
|φ(q)| r1(q, p)

)
= O

(√
ε

R

)
in L(L2(Rd+1)), and we have proven one part of the lemma.

In the case of the more singular symbol r0, the previous strategy results in an
error of size

1/R
√
ε
(
O(ε

√
ε) + O(ε/R4) + O(

√
ε/R) + O(1/R2)

)
= O(

√
ε) + O(1/R2) + O(1/(R3

√
ε)).

However, the special form of r0 allows us to ameliorate the term of order O(1/(R3
√
ε)),

which stems from the Poisson bracket with ε
2 |p|2. Indeed, we observe that

p · ∇Π+(q) = 1
4|φ(q)|3 [V�(φ(q)) , [V�(φ(q)), V�(dφ(q)p)]] .

Therefore, the bracket with ε
2 |p|2 in the r̃1 term writes as{

1
4|φ(

√
εq)|3 bε,R(

√
εq,

√
εp)

[
V�(φ(

√
εq)), V�(dφ(

√
εq)

√
εp)

]
, ε

2 |p|
2
}

= ε
|φ(

√
εq)|4

[
V�(φ(

√
εq)), Gε(

√
εq,

√
εp)

]
for some matrix-valued function Gε with

Dα
q

(
Gε(

√
εq,

√
εp)

)
= O(1), Dα

p

(
Gε(

√
εq,

√
εp)

)
= O(ε|α|/2)

for all α ∈ N
d. We then set

r̃3(
√
εq,

√
εp) := ε

|φ(
√
εq)|4

[
V�(φ(

√
εq)), Gε(

√
εq,

√
εp)

]
= −

[
ε

|φ(
√
εq)|4 Gε(

√
εq,

√
εp) , τ + ε

2 |p|
2 + V (

√
εq)

]
and obtain

(opε(χ(t)r̃3(q, p))ψ
ε , ψε)L2(Rd+1)

=
(
T ∗op1

([
εχ(t)

|φ(
√
εq)|4 Gε(

√
εq,

√
εp) , ετ + ε

2 |p|
2 + V (

√
εq)

])
Tψε , ψε

)
L2(Rd+1)



120 CLOTILDE FERMANIAN KAMMERER AND CAROLINE LASSER

= 1
2i

(
T ∗op1

({
εχ(t)

|φ(
√
εq)|4 Gε(

√
εq,

√
εp) , ετ + ε

2 |p|
2 + V (

√
εq)

})
Tψε , ψε

)
L2(Rd+1)

− 1
2i

(
T ∗op1

({
ετ + ε

2 |p|
2 + V (

√
εq) , εχ(t)

|φ(
√
εq)|4 Gε(

√
εq,

√
εp)

})
Tψε , ψε

)
L2(Rd+1)

+
(
T ∗op1(r̃4(

√
εq,

√
εp))Tψε , ψε

)
L2(Rd+1)

,

where r̃4(
√
εq,

√
εp) contains the commutator of second order derivatives in p of

ε χ(t)|φ(
√
εq)|−4 Gε(

√
εq,

√
εp) with second derivatives of V (

√
εq) and a linear com-

bination of higher order derivatives in (q, p). Hence, opε(r̃4(q
√
ε, p

√
ε)) = O(ε/R4) in

L(L2(Rd+1)). Since the Poisson brackets give a contribution of order O(1/(R5
√
ε))+

O(1/R4), the other part of the lemma is proven, too.

5. Transitions near the crossing. The microlocal normal form used for prov-
ing Proposition 2.4 holds locally near some point (q0, t0, p0, τ0) ∈ R

2d+2 of the phase
space of space-time, which is a crossing point in the sense that φ(q0) = 0 and
τ0 + v(q0) + 1

2 |p0|2 = 0.

5.1. Localization in energy. For localization in energy, we consider a cut-off
function θ ∈ C∞

c (R), 0 ≤ θ ≤ 1, with θ(x) = 1 for |x| ≤ 1
2 and θ(x) = 0 for |x| > 1.

We set

λ±(q, p, τ) = τ + v(q) + 1
2 |p|

2 ± |φ(q)|

and crucially use the following lemma for suitably reformulating Proposition 2.4.
Lemma 5.1. Let c ∈ C∞

c (R2d+1+�,C). If cε,R(t, q, p) = c(t, q, p, φ(q)/(R
√
ε)) is

supported in {|φ| ≥ R
2

√
ε}, then

tr

∫
R2d+1

W ε(ψε(t))(q, p)cε,R(t, q, p)Π±(q)dq dpdt = O
(

1
R2

)
+ O(

√
ε)

+
(
opε

(
cε,R(t, q, p)θ

(
λ±(q,p,τ)

R
√
ε

)
Π±(q)

)
ψε, ψε

)
L2(Rd+1)

.

Proof. Writing 1 − θ(u) = uG(u) with G ∈ C∞(R), we have

1 − θ
(

λ±(q,p,τ)
R
√
ε

)
= 1

R
√
ε
λ±(q, p, τ)G

(
λ±(q,p,τ)

R
√
ε

)
.

We now argue as in section 4, using the estimates on Π± and λ±(q, p, τ)Π±(q) =
Π±(q)

(
τ + 1

2 |p|2 + V (q)
)
. The symbolic calculus of Lemma A.2 yields in L(L2(Rd+1))

opε

(
cε,R(t, q, p)

(
1 − θ

(
λ±(q,p,τ)

R
√
ε

))
Π±(q)

)
= O(

√
ε) + O

(
1
R2

)

+ 1
R
√
ε

opε

(
cε,R(t, q, p)G

(
λ±(q,p,τ)

R
√
ε

)
Π±(q)

)
opε

(
τ + 1

2 |p|
2 + V (q)

)
.

Indeed, the derivatives of the projectors are less harmful than in section 4, since they
are divided only by

√
ε and not by ε. Since ψε solves the equation, we obtain

(
opε

(
cε,R(t, q, p)

(
1 − θ

(
λ±(q,p,τ)

R
√
ε

))
Π±(q)

)
ψε, ψε

)
L2(Rd+1)

= O
(

1
R2

)
+ O(

√
ε).
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By Lemma 5.1, we introduce the energy cut-off on both sides of equality (2.4),
adding an error of order O(1/R2) + O(

√
ε). Then, the left-hand side reads

tr

∫
R2d+1

χ(t)W ε(ψε(t))(q, p)a±LZ(q, p) Π±(q)dq dpdt = O
(

1
R2

)
+ O(

√
ε)

+
(
opε

(
a±LZ(q, p)χ(t) θ

(
λ±(q,p,τ)

R
√
ε

)
Π±(q)

)
ψε , ψε

)
L2(Rd+1)

.

Using the notation

f±
a (q, p, j) = 1{j=±1}(j) a

j(q, p), (q, p, j) ∈ R
2d
± ,

for a V -diagonal matrix-valued symbol a, the action of the semigroup on a±LZ can be
written as

(Lδ±t
ε,Ra

±
LZ)(q, p) Π±(q) = (Lδ±t

ε,Rf
±
aLZ

)(q, p,+) Π+(q).

Then, the right-hand side of (2.4) is

tr

∫
R2d+1

χ(t + δ±t )W ε(ψε(t))(q, p) (Lδ±t
ε,Ra

±
LZ)(q, p) Π+(q) dq dpdt

=
(
opε

(
χ(t + δt) θ

(
λ+(q,p,τ)

R
√
ε

)
(Lδ±t

ε,Rf
±
aLZ

)(q, p,+) Π+(q)
)
ψε , ψε

)
L2(Rd+1)

+O
(

1
R2

)
+ O(

√
ε),

and the proof of Proposition 2.4 reduces to showing that(
opε

(
a±LZ(q, p)χ(t)θ

(
λ±(q,p,τ)

R
√
ε

)
Π±(q)

)
ψε , ψε

)
L2(Rd+1)

=
(
opε

(
χ(t + δ±t )θ

(
λ+(q,p,τ)

R
√
ε

)
(Lδ±t

ε,Rf
±
aLZ

)(q, p,+) Π+(q)
)
ψε , ψε

)
L2(Rd+1)

+O
(

1
R2

)
+ O(R3

√
ε) + O(

√
ε| ln ε|) + O

(
1

R5
√
ε

)
.(5.1)

For points (q, t, p, τ, j) ∈ R
2d+2 × {±1}, we consider random trajectories

T (q,t,p,τ,j)
ε,R : [0,+∞) →

(
R

2d+2 × {±1}
)

with T (q,t,p,τ,j)
ε,R (r) =

(
qj(r), r + t, pj(r), τ, j

)
as long as (qj(r), pj(r)) 
∈ Sε,R and a

jump from j to −j with probability T ε(q∗, p∗), whenever (qj(r), pj(r)) hits Sε,R at a
point (q∗, p∗). We keep the notation (Lr

ε,R)r≥0 for the associated semigroup and set

c±ε,R(q, t, p, τ) = a±LZ(q, p)χ(t) θ
(

λ±(q,p,τ)
R
√
ε

)
.(5.2)

Since r �→ λ±(q±(r), p±(r), τ) is a constant function, and since within [t − ti, t − tf ]
all involved random trajectories perform a jump, we have

(Lδ±t
ε,Rf

+
cε,R)(q, t, p, τ,+) = χ(t + δt) θ

(
λ+(q,p,τ)

R
√
ε

)
(Lδt

ε,Rf
+
aLZ

)(q, p,+),

(Lδt
ε,Rf

−
cε,R)(q, t, p, τ,+) = χ(t + δt) θ

(
λ+(q,p,τ)

R
√
ε

)
(Lδt

ε,Rf
−
aLZ

)(q, p,+).
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With this notation, (5.1) and, consequently, Proposition 2.4 are equivalent to(
opε

(
c±ε,R(q, t, p, τ)Π±(q)

)
ψε , ψε

)
L2(Rd+1)

=
(
opε

(
(Lδ±t

ε,Rf
±
cε,R)(q, t, p, τ,+) Π+(q)

)
ψε , ψε

)
L2(Rd+1)

+O(1/R2) + O(R3
√
ε) + O(

√
ε| ln ε|) + O(1/(R5

√
ε)).(5.3)

We emphasize that the symbols c±ε,R and Lδ±t
ε,Rf

±
cε,R are compactly supported inside

the annulus {R
2

√
ε < |φ| < R

√
ε} at a distance of order R

√
ε of J±,out, where

J±,in/out =
{

(q, t, p, τ) ∈ R
2d+2 | (q, p) ∈ M±,in/out, τ + v(q) + 1

2 |p|
2 ± |φ(q)| = 0

}
denote the submanifolds, which consist of all Hamiltonian trajectories entering (re-
spectively, leaving) the crossing set.

5.2. The normal form. Let us first recall some basic facts about canonical
transforms and Fourier integral operators. The phase space T ∗

R
d+1 = R

d+1 × R
d+1

is a symplectic space, once endowed with the symplectic form ω = dτ ∧ dt + dp ∧ dq.
A canonical transform κ : T ∗

R
d+1 → T ∗

R
d+1 is a change of coordinates, which

preserves the symplectic form. With a canonical transform κ, one associates a unitary
operator U : L2(Rd+1) → L2(Rd+1) such that for all a ∈ C∞

c (R2d+2,CN(�)×N(�))

U∗opε (a)U = opε(a ◦ κ) + O(ε2)

as bounded operators on L2(Rd+1); see, for example, section 2.2 in [7]. The operator U
is a Fourier integral operator. The last equality extends to symbols of the form

bε,R(q, t, p, τ) = b
(
q, t, p, τ, f(q,p)

R
√
ε

)
with b ∈ C∞

c (R2d+3,CN(�)×N(�)) and f ∈ C∞(R2d,R) according to

U∗opε (bε,R)U = opε(bε,R ◦ κ) + O(
√
ε).(5.4)

The proof of this statement follows the proof of Lemma 2 in [7]: one uses symbolic
calculus for the commutator of a usual semiclassical pseudodifferential operator and
a two-scale one of the form opε(bε,R), hence the gain of

√
ε.

We shall crucially use the following microlocal normal form result, which for
codimension two and three crossings is proven in [1, 2], however, without the explicit
equations (5.6)–(5.9). These equations, including the normal form for codimension
five crossings, are provided in Theorem 1 and Proposition 4 of [6].

Theorem 5.2 (see [6]). We consider ρ0 = (q0, t0, p0, τ0 = −v(q0) − 1
2 |p0|2) such

that φ(q0) = 0, dφ(q0)p0 
= 0, and dφ is of maximal rank near q0. Then, there exists a
local canonical transform κ from a neighborhood of ρ0 into some neighborhood Ω of 0,

κ : (q, t, p, τ) �→ (z, s, ζ, σ), κ(ρ0) = 0.

There exist a Fourier integral operator U associated with κ−1 and an invertible matrix-
valued symbol Aε = A0 + εA1 + ε2A2 + · · · such that vε = U∗opε(Aε)

−1ψε satisfies
for all ϕ ∈ C∞

c (Ω,R)

opε(ϕ) opε (−σ + V� (s, z̃ + γε(z, ζ))) v
ε = O(ε∞)(5.5)
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in L2(Rd+1), where z = (z̃, z′) ∈ R
d with z̃ ∈ R

�−1 and γε = γε(z, ζ) is a vector-valued
symbol γε = γ0 + εγ1 + ε2γ2 + · · · ∈ R

�−1 with

γε = 0 for � = 2, γε = O(|z̃|2) for � > 2.

z̃ ∈ R
�−1 contains the coordinates of the vector |dφ(q)p|−1/2π�(q, p)φ(q) in an or-

thonormal basis of the hyperplane normal to dφ(q)p up to O(|φ(q)|2), while

s = −|dφ(q)p|−1/2 dφ(q)p
|dφ(q)p| · φ(q) + O(s2 + σ2 + |z̃|2),

(5.6)

σ = |dφ(q)p|−1/2
(
τ + 1

2 |p|
2 + v(q)

)
+ O(s2 + σ2 + |z̃|2).

Moreover,

J±,in = {σ ∓ s = 0, z̃ = 0, s ≤ 0}, J±,out = {σ ± s = 0, z̃ = 0, s ≥ 0},(5.7)

and there exists γ ∈ {−1,+1} such that for all ρ = (q, t, p, τ) with κ(ρ) = (z, s, ζ, σ)

A∗
0(ρ)

(
τ + 1

2 |p|
2 + V (q)

)
A0(ρ) = γ (−σ + V�(s, z̃ + γ0(z, ζ))) ,(5.8)

A∗
0(ρ)V�

(
π�(q,p)φ(q)
|π�(q,p)φ(q)|

)
A0(ρ) = γ V�

(
0, z̃

|z̃|

)
+ O(

√
σ2 + s2 + |z̃|2).(5.9)

We denote by

Π̃±(z, s, ζ) = 1
2

(
Id ∓ 1√

s2+|z̃+γ0(z,ζ)|2
V�(s, z̃ + γ0(z, ζ))

)
,

λ̃±(z, s, ζ, σ) = −σ ∓
√

s2 + |z̃ + γ0(z, ζ)|2

the spectral projectors and the eigenvalues of −σ + V�(s, z̃ + γ0(z, ζ)). Due to the

relation J±,in/out ⊆ {−σ ∓
√
s2 + |z̃|2 = 0, z̃ = 0}, the labeling of Π̃± coincides on

J±,in/out with the one for Π±.
Proposition 5.3. There exist functions k± such that if κ(q, t, p, τ) = (z, s, ζ, σ),

the projectors Π± and Π̃± are related by

Π̃±(z, s, ζ, σ) =
(
k±A∗

0Π
±A0

)
(q, t, p, τ) on Σ∓ = {λ∓ = 0}.(5.10)

If S = {φ(q) = 0, τ+ 1
2 |p|2+v(q) = 0}, then k+

|S = k−|S = e 
= 0 and (eA∗
0A0)|S = Id|S.

Moreover, on Σ± ∩ {0 < |φ| ≤ R
√
ε},

Π̃±(z, s, ζ, σ) = e(A∗
0Π

±A0)(q, t, p, τ) + O(R
√
ε).(5.11)

Proof. For convenience, we set

P = τ + 1
2 |p|

2 + V (q), P̃ = −σ + V�(s, z̃ + γ0(z, ζ)).

By (5.8), the use of determinants gives Σ+ ∪ Σ− = κ−1({λ̃+ = 0} ∪ {λ̃− = 0}).
Considering the equations of J±,in/out, the only possibility is

Σ± = κ−1
(
{λ̃± = 0}

)
.
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Therefore, for ρ ∈ Σ+ we have

γP̃ (κ(ρ)) = γ(λ̃−Π̃−)(κ(ρ)) = (A∗
0PA0)(ρ) = (λ−A∗

0Π
−A0)(ρ).

The same argument for Σ− gives (5.10).
The fact k+

|S = k−|S comes from the precise analysis of the Hamiltonian vector

fields associated with the eigenvalues λ±. Let ρ ∈ S. We find in [6, section 5] that if

H(ρ) = lim
α→0∓

Hλ±(Φα
±(q, p)), H ′(ρ) = lim

α→0±
Hλ±(Φα

±(q, p)),

then there exists a nonzero function e such that

H = e(∂s + ∂σ), H ′ = e(∂s − ∂σ) on S.

Since λ± = 0 and λ̃± = 0 on S, we have k+
|S = k−|S = e. Next, we consider the limit

of the projectors Π± along outgoing trajectories,

Π∓
S (ρ) = lim

α→0−
Π∓(Φα

±(q, p)) = 1
2

(
Id ∓ V�

(
dφ(q)p
|dφ(q)p|

))
.

Then, (5.10) gives on S

eA∗
0A0 = eA∗

0

(
Π+

S + Π−
S

)
A0 =

(
Π̃+ + Π̃−

)
◦ κ = Id.

Finally, let ρ ∈ Σ+. By relation (5.8), we have for any vector w ∈ C
N(�) that

w ∈ Ker P̃ (κ(ρ)) if and only if A0(ρ)w ∈ KerP (ρ). Moreover, KerP (ρ) = Ran Π+(ρ)

and Ker P̃ (κ(ρ)) = Ran Π̃+(κ(ρ)). We therefore obtain

Ran Π̃+(κ(ρ)) = Ran (A−1
0 Π+A0)(ρ).

Since
√
eA0 is unitary on S, we have

(A−1
0 Π+A0)

∗(ρ) = (A−1
0 Π+A0)(ρ) + O(R

√
ε)

for ρ ∈ Σ+ ∩ {|φ| ≤ R
√
ε}. Since the two projectors Π̃+(κ(ρ)) and (A−1

0 Π+A0)(ρ)
have the same range, while one of them is orthogonal and the other orthogonal up to
O(R

√
ε), they coincide up to O(R

√
ε). The same argument holds for ρ ∈ Σ−, and we

have proven relation (5.11).
As the next step towards proving the claimed identity (5.3), we perform the

canonical change of coordinates for arriving at the microlocal normal form.
Proposition 5.4. Let c±ε,R ∈ C∞

c (R2d+2,C) be the functions defined in (5.2) and

vε = U∗opε(Aε)
−1ψε. Denote

T̃ ε(z̃) = exp(−π
ε |z̃|

2).(5.12)

Then, there exist functions b± ∈ C∞
c (R2d+2,C) and s±1 ∈ R, such that b±(z, s, ζ, η)

and b±(z, s±1 + s, ζ, η) are compactly supported in {s > 0} and {s < 0}, respectively,
and satisfy(
opε

(
c+ε,R(q, t, p, τ)Π+(q)

)
ψε(q, t), ψε(q, t)

)
L2
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=
(
opε

(
b+

(
z, s, ζ, z̃

R
√
ε

))
vε2(z, s), v

ε
2(z, s)

)
L2

+ O(R
√
ε),

(
opε

(
(Lδt

ε,Rf
+
cε,R)(q, t, p, τ,+)Π+(q)

)
ψε(q, t), ψε(q, t)

)
L2

=
(
opε

(
(1 − T̃ ε(z̃))b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
vε1(z, s), v

ε
1(z, s)

)
L2

+ O(R3
√
ε),

(
opε

(
c−ε,R(q, t, p, τ)Π−(q)

)
ψε(q, t), ψε(q, t)

)
L2

=
(
opε

(
b−

(
z, s, ζ, z̃

R
√
ε

))
vε1(z, s), v

ε
1(z, s)

)
L2

+ O(R
√
ε),

(
opε

(
(Lδt

ε,Rf
−
cε,R)(q, t, p, τ,+)Π+(q)

)
ψε(q, t), ψε(q, t)

)
L2

=
(
opε

(
T̃ ε(z̃) b−

(
z, s + s−1 , ζ,

z̃
R
√
ε

))
vε1(z, s), v

ε
1(z, s)

)
L2

+ O(R3
√
ε).

Proof. We prove only the first two equalities, since one deals similarly with the
other two. By symbolic calculus and the transformation property (5.4), the canonical
transform κ−1 of Theorem 5.2 acts as(
opε

(
c+ε,R(q, t, p, τ)Π+(q)

)
ψε(q, t), ψε(q, t)

)
L2

=
(
opε

((
(c+ε,RA

∗
0Π

+A0) ◦ κ−1
)
(z, s, ζ, σ)

)
vε(z, s) , vε(z, s)

)
L2

+ O(
√
ε).

The compactly supported function c+ε,R ◦ κ−1 is localized near J+,out, that is, near
{σ+ s = 0, z̃ = 0, s > 0}. The relation (5.11) between the projectors gives a function
b ∈ C∞

c (R2d+2+�,C) compactly supported in {s > 0} such that(
(c+ε,RA

∗
0Π

+A0) ◦ κ−1
)
(z, s, ζ, σ)

= b
(
z, s, ζ, σ, z̃

R
√
ε
, λ̃+(z,s,ζ,σ)

R
√
ε

)
Π̃+(z, s, ζ) + O(R

√
ε)

=: bε,R(z, s, ζ, σ)Π̃+(z, s, ζ) + O(R
√
ε)

as functions in C∞
c (R2d+2,C). Hence, we obtain(

opε

(
c+ε,R(q, t, p, τ)Π+(q)

)
ψε(q, t) , ψε(q, t)

)
L2

=
(
opε

(
bε,R(z, s, ζ, σ)Π̃+(z, s, ζ)

)
vε(z, s) , vε(z, s)

)
L2

+ O(R
√
ε).

For |z̃| = O(R
√
ε) we have

Π̃+(z, s, ζ) =

(
0 0
0 Id

)
+ O(R

√
ε) in {s > 0},

Π̃+(z, s, ζ) =

(
Id 0
0 0

)
+ O(R

√
ε) in {s < 0},(5.13)
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and therefore(
opε

(
bε,R(z, s, ζ, σ)Π̃+(z, s, ζ)

)
vε(z, s) , vε(z, s)

)
L2

= (opε (bε,R(z, s, ζ, σ)) vε2(z, s) , v
ε
2(z, s))L2 + O(R

√
ε).

We now remove the σ-dependence of the symbol. Taylor expanding around σ =
−
√
s2 + |z̃ + γ0(z, ζ)|2, we write

bε,R(z, s, ζ, σ) = b
(
z, s, ζ,−

√
s2 + |z̃ + γ0(z, ζ)|2, z̃

R
√
ε
, 0
)

+ 1
R
√
ε
λ̃+(s, z, σ, ζ)G

(
z, s, ζ, σ, z̃

R
√
ε
, λ̃+(z,s,σ,ζ)

R
√
ε

)
with G ∈ C∞

c (R2d+2+�,C). Since

λ̃+(z, s, ζ, σ)Π̃+(z, s, ζ) = Π̃+(z, s, ζ) (σ − V�(s, z̃ + γ0(z, ζ)) ,

and since vε solves the Landau–Zener-type problem (5.5), an argument analogous to
the proof of Lemma 5.1 yields

(opε (bε,R(z, s, ζ, σ)) vε2(z, s) , v
ε
2(z, s))L2 = O

(
1
R2

)
+ O(

√
ε)

+
(
opε

(
b
(
z, s, ζ,−

√
s2 + |z̃ + γ0(z, ζ)|2, z̃

R
√
ε
, 0
))

vε2(z, s) , v
ε
2(z, s)

)
L2

.

Setting b+(z, s, ζ, η) = b(z, s, ζ,−s, η, 0), we obtain(
opε

(
c+ε,R(q, t, p, τ)Π+(q)

)
ψε(q, t) , ψε(q, t)

)
L2

=
(
opε

(
b+

(
z, s, ζ, z̃

R
√
ε

))
vε2(z, s) , v

ε
2(z, s)

)
L2

+ O(R
√
ε) + O

(
1
R2

)
.

Next, we focus on the second claimed identity, which contains nonadiabatic tran-
sitions. We have(
opε

(
(Lδt

ε,Rf
+
cε,R)(q, t, p, τ,+)Π+(q)

)
ψε(q, t) , ψε(q, t)

)
L2

=
(
opε

((
(Lδt

ε,Rf
+
cε,R)A∗

0Π
+A0

)
(κ−1(z, s, ζ, σ),+)

)
vε(z, s) , vε(z, s)

)
L2

+ O(
√
ε).

Let r �→ (z+(r), s+(r), ζ+(r), σ+(r)) be the Hamiltonian trajectory of

ż = ∂ζ λ̃
+ = tdζγ0(z, ζ)(z̃ + γ0(z, ζ)) (s2 + |z̃ + γ0(z, ζ)|2)−1/2,

ṡ = ∂σλ̃
+ = 1,

ζ̇ = −∂zλ̃
+ = − tdz(z̃ + γ0(z, ζ))(z̃ + γ0(z, ζ))(s

2 + |z̃ + γ0(z, ζ)|2)−1/2,

σ̇ = −∂sλ̃
+ = −s (s2 + |z̃ + γ0(z, ζ)|2)−1/2

with (z(0), s(0), ζ(0), σ(0)) = (z, s, ζ, σ) = κ(q, t, p, τ). A trajectory jumps for r = r∗
if s+(r∗) = O(|φ(q)|2) = O(R2ε). Then, σ+(r∗) = O(R2ε) as well. Since

d
dr

(
s+(r) + σ+(r)

)
= O(|z̃|2) on J+,out = {σ + s = 0, z̃ = 0, s > 0},
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and since |z̃| = O(R
√
ε) on the support of our symbol, we have

z+(r) = z + O(R3ε3/2), s+(r) = s + r,

ζ+(r) = ζ + O(R
√
ε), σ+(r) = −s+(r) + O(R2ε).

These asymptotics together with conservation of energy along Hamiltonian flows yield

b
(
z+(r), s+(r), ζ+(r), σ+(r), z̃+(r)

R
√
ε
, λ̃+(z+(r),s+(r),ζ+(r),σ+(r))

R
√
ε

)

= b
(
z, s + r, ζ,−(s + r), z̃

R
√
ε
, λ̃+(z,s,ζ,σ)

R
√
ε

)
+ O(R

√
ε).

Jumps occur for |φ(q)| ≤ R
√
ε, that is, for

|z̃|2 = |dφ(q)p|−1|π�(q, p)φ(q)|2 + O(|φ(q)|3)

= |dφ(q)p|−1|π�(q, p)φ(q)|2 + O(R3ε3/2).

Therefore, the transition rate T ε(q, p) reads in the new coordinates as

T ε(q, p) = exp
(
−π

ε |dφ(q)p|−1|π�(q, p)φ(q)|2
)

= exp
(
−π

ε |z̃|
2
)

+ O(R3
√
ε) = T̃ ε(z̃) + O(R3

√
ε),

and there exists s+
1 ∈ R such that(

(Lδt
ε,Rf

+
cε,R)A∗

0Π
+A0

)
(κ−1(z, s, ζ, σ),+)

=
(
1 − T̃ ε(z̃)

)
b
(
z, s + s+

1 , ζ,−(s + s±1 ), z̃
R
√
ε
, λ̃+(z,s,ζ,σ)

R
√
ε

)
Π̃+(z, s, ζ) + O(R3

√
ε).

By the asymptotics (5.13) of Π̃+ above {s < 0}, we then get(
opε

((
(Lδt

ε,Rf
+
cε,R)A∗

0Π
+A0

)
(κ−1(z, s, ζ, σ),+)

)
vε(z, s) , vε(z, s)

)
L2

= O(R3
√
ε)

+
(
opε

((
1 − T̃ ε(z̃)

)
b
(
z, s + s+

1 , ζ,−(s + s±1 ), z̃
R
√
ε
, λ̃+(z,s,ζ,σ)

R
√
ε

))
vε1(z, s), v

ε
1(z, s)

)
L2

.

As before, we remove the σ-dependence of the symbol and obtain(
opε

(
(Lδt

ε,Rf
+
cε,R)(q, t, p, τ,+)Π+(q)

)
ψε(q, t) , ψε(q, t)

)
L2

=
(
opε

((
1 − T̃ ε(z̃)

)
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
vε1(z, s) , v

ε
1(z, s)

)
L2

+ O(R3
√
ε).

5.3. The transitions. It remains to analyze vε = U∗opε(A
−1
ε )ψε for proving

the equality of each pair in Proposition 5.4 up to an error of O(1/R2) + O(R3
√
ε) +

O(
√
ε| ln ε|)+O(1/(R5

√
ε)), concluding the proof of our main result. We consider the

solution uε of

−iε∂su
ε =

(
s Id

√
εG

√
εG∗ −s Id

)
uε, uε

|s=0 = vε|s=0,(5.14)
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where G is one of the operators

G2 = 1√
ε
ϕ
(

z̃
R
√
ε

)
z̃, G3 = 1√

ε
ϕ
(

z̃
R
√
ε

)
(Z1 + iZ2),

G5 = 1√
ε
ϕ
(

z̃
R
√
ε

)(
Z1 + iZ2 Z3 + iZ4

−Z3 + iZ4 Z1 − iZ2

)

with Z = opε(z̃ + γε(z, ζ)) and ϕ ∈ C∞
c (R�−1,R). In all three cases, G is a bounded

operator on L2(Rd) with ‖G‖ = O(R), and we have

‖uε − vε‖L2
loc(R

d+1) = O(ε∞).

The following Landau–Zener-type formula is given in Proposition 7 of [8], up to the
explicit error terms.

Proposition 5.5. Let uε be the solution of (5.14). There exist vector-valued
functions αε = (αε

1, α
ε
2), ω

ε = (ωε
1, ω

ε
2) ∈ L2(Rd,CN(�)) such that for any func-

tion χ ∈ C∞
c ({x ∈ R | |x| ≤ R2},R) the families (χ(GG∗)αε

1)ε>0, (χ(G∗G)αε
2)ε>0,

(χ(GG∗)ωε
1)ε>0, (χ(G∗G)ωε

2)ε>0 are bounded in L2(Rd,C) and satisfy

χ(GG∗)uε
1(z, s) = χ(GG∗)eis

2/(2ε)
∣∣∣ s√

ε

∣∣∣iGG∗
2

kε1(z) + O(R2
√
ε),

χ(G∗G)uε
2(z, s) = χ(G∗G)e−is2/(2ε)

∣∣∣ s√
ε

∣∣∣−iG∗G
2

kε2(z) + O(R2
√
ε)

in L2(Rd,C), where kεj = αε
j and kεj = ωε

j for s < 0 and s > 0, respectively, j ∈ {1, 2}.
Moreover, (

ωε
1

ωε
2

)
=

(
a(GG∗) −b(GG∗)G

b(G∗G)G∗ a(G∗G)

)(
αε

1

αε
2

)
(5.15)

with

a(λ) = e−πλ/2, b(λ) = 2ieiπ/4

λ
√
π

2−iλ/2e−πλ/4Γ(1 + iλ2 ) sinh(πλ2 ).

Proof. Lemma 7 in [8] is the crucial step in the proof of Proposition 7 for which
we have to check that the leading order error estimate is indeed O(R2

√
ε). For this,

we turn to the explicit calculations in the proof of Lemma 11 in [7] and study the two
integrals

A0 = s−1+iη2/2e−is2/2

∫
R

χ̃

(√
2 −

√
2 − 2z

s2

) ∣∣∣∣√2 −
√

2 − 2z
s2

∣∣∣∣
iη2/2

eiz√
2− 2z

s2

dz,

B0 = s1+iη2/2

∫
R

(1 − χ̃(y)) e−
i
2 s

2(1+y2−2
√

2y)|y|iη2/2dy,

where χ̃ ∈ C∞
c (R,R) is a function with 0 ≤ χ̃ ≤ 1, χ̃(y) = 0 for |y| ≥

√
2/2, and

χ̃(y) = 1 for |y| ≤
√

2/4. The phase function y �→ − 1
2 (1 + y2 − 2

√
2y) of B0 has the

stationary point y =
√

2, and Taylor expansion of y �→ ln |y| around y =
√

2 yields

B0 =
√

2πe−iπ/42iη
2/4siη

2/2eis
2/2 + O(η2s−2),
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while integration by parts gives

A0 = O(η2s−1)

as η, s → ∞. Since the asymptotics of the other relevant integrals can be ob-
tained analogously, the claimed error estimates follow by setting s = O(ε−1/2) and
η = O(R).

For implementing these Landau–Zener asymptotics, we need the following addi-
tional relations, which are literally contained in the proofs of Lemmas 8 and 9 in
[8].

Lemma 5.6. For any χ ∈ C∞
c (R,R) and b ∈ C∞

c (R2d+N(�)−1,C), we have

χ
(

|z̃|2
ε

)
= χ(GG∗) + O(

√
ε) = χ(G∗G) + O(

√
ε),

∣∣∣ s√
ε

∣∣∣±iG∗G
2

opε

(
b
(
z, ζ, z̃

R
√
ε

)) ∣∣∣ s√
ε

∣∣∣∓iG∗G
2

= opε

(
b
(
z, ζ, z̃

R
√
ε

))
+ O(

√
ε| ln ε|).

Now, we are ready to conclude the proof of Theorem 2.2. We discuss only the first
pair of terms in Proposition 5.4, since the other pair can be dealt with analogously.
We set

I1
ε,R =

(
opε

(
b+

(
z, s, ζ, z̃

R
√
ε

))
uε

2(z, s), u
ε
2(z, s)

)
L2

,

I2
ε,R =

(
opε

(
(1 − T̃ ε(z̃))b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
uε

1(z, s), u
ε
1(z, s)

)
L2
.

By Lemma 5.6 and Proposition 5.5, we have

I1
ε,R =

(
opε

(
b+

(
z, s, ζ, z̃

R
√
ε

))
χ(G∗G)uε

2(z, s), χ(G∗G)uε
2(z, s)

)
L2

+ O(
√
ε)

=

(
opε

(
b+

(
z, s, ζ, z̃

R
√
ε

))
e−i s2

2ε

∣∣∣ s√
ε

∣∣∣−iG∗G
2

ωε
2(z), e

−i s2

2ε

∣∣∣ s√
ε

∣∣∣−iG∗G
2

ωε
2(z)

)
L2

+O(R2
√
ε)

=
(
opε

(
b+

(
z, s, ζ, z̃

R
√
ε

))
ωε

2(z), ω
ε
2(z)

)
L2

+ O(R2
√
ε) + O(

√
ε| ln ε|)

=
(
opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
ωε

2(z), ω
ε
2(z)

)
L2

+ O(R2
√
ε) + O(

√
ε| ln ε|)

because s±1 = O(R
√
ε) and analogously

I2
ε,R =

(
opε

(
(1 − T̃ ε(z̃)) b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
αε

1(z), α
ε
1(z)

)
L2

+O(R2
√
ε) + O(

√
ε| ln ε|).

By the scattering identity (5.15), we have ωε
2 = b(G∗G)G∗αε

1 + a(G∗G)αε
2 and

I1
ε,R =

(
opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
(b(G∗G)G∗αε

1(z) + a(G∗G)αε
2(z)) ,

b(G∗G)G∗αε
1(z) + a(G∗G)αε

2(z)
)
L2

+ O(R2
√
ε) + O(

√
ε| ln ε|).
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Since the wave function ψε(q, t) is of order O(1/R2)+O(
√
ε)+O(1/(R5

√
ε)) near the

set J−,in = {σ + s = 0, z̃ = 0, s < 0}, we have(
0

vε2(z, s)

)
= opε

(
Π̃−(z, s, ζ)

)
vε(z, s) + O(R

√
ε)

= O(1/R2) + O(R
√
ε) + O(1/(R5

√
ε))

as functions in L2
loc(R

d+1) localized near J−,in. The preceding arguments expressing
I1
ε,R and I2

ε,R in terms of αε and ωε then yield

a(G∗G)αε
2(z) = O(1/R2) + O(R2

√
ε) + O(

√
ε| ln ε|) + O(1/(R5

√
ε))

near J−,in, and hence

I1
ε,R =

(
opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
b(G∗G)G∗αε

1(z), b(G
∗G)G∗αε

1(z)
)
L2

+O
(

1
R2

)
+ O(R2

√
ε) + O(

√
ε| ln ε|) + O

(
1

R5
√
ε

)
.

Lemma 5.6 together with the relations G∗b(GG∗) = b(G∗G)G∗ and

λ|b(λ)|2 = 1 − e−πλ

implies

Gb(G∗G) opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
b(G∗G)G∗αε

1(z)

= Gb(G∗G)b(G∗G)G∗ opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
αε

1(z) + O(
√
ε)

= GG∗b(GG∗)b(GG∗) opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
αε

1(z) + O(
√
ε)

= (1 − T̃ ε(z̃)) opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
αε

1(z) + O(
√
ε)(5.16)

and finally

I1
ε,R = I2

ε,R + O(1/R2) + O(R2
√
ε) + O(

√
ε| ln ε|) + O(1/(R5

√
ε)).

6. Eigenvalues of multiplicity two. We have assumed that the matrix-valued
observable a is V -diagonal in the sense that a = a+Π+ + a−Π− with scalar-valued
functions a±. The more natural assumption, that a commutes with V ,

a = Π+aΠ+ + Π−aΠ−,

does not change the situation in the case � = 2, 3 but enlarges the class of observables
for � = 3′, 5. For observables of this form, one has to modify the Markov process to
account for a polarization effect. The state space requires an additional component
w ∈ C

4, and when the deterministic flow Φt
j(q, p) hits the jump manifold Sε,R in

a point (q∗, p∗) a more general branching occurs. The state (q∗, p∗, j, w) changes
with probability T ε(q∗, p∗) to (q∗, p∗,−j, w) and with probability 1 − T ε(q∗, p∗) to
(q∗, p∗, j,R(q∗, p∗)w), where

R(q, p) = V�

(
π�(q,p)φ(q)
|π�(q,p)φ(q)|

)
.



PROPAGATION THROUGH GENERIC LEVEL CROSSINGS 131

This phenomenon is also described in Theorem 1 of [5] for two-scale Wigner measures.
Our main result, Theorem 2.2, for the propagation of Wigner functions still applies
for the semigroup, which incorporates polarization.

Proof of Theorem 2.2 for a = Π+aΠ+ + Π−aΠ− if � = 3′, 5. Let us first prove
classical transport. We set A+ = Π+aΠ+ and focus on the + mode. We extensively
use Π+A+ = A+Π+ = A+. The strategy is similar to the one of section 4, and we
have to focus on the Poisson brackets

1
2{A

+(q, p), τ + 1
2 |p|

2 + v(q) + V�(φ(q))} − 1
2{τ + 1

2 |p|
2 + v(q) + V�(φ(q)), A+(q, p)}.

We set μ(q, p, τ) = τ + 1
2 |p|2 + v(q) and write

{A+, μ} = Π+{A+, μ}Π+ + A+{Π+, μ} + {Π+, μ}A+.

We observe that

r0 = A+{Π+, μ} + {Π+, μ}A+ = −A+(∇qΠ
+ · p) − (∇qΠ

+ · p)A+

can be treated as in section 4. Indeed, since A+ commutes with V�(φ), one has for
any matrix G that A+[V�(φ), G] = [V�(φ), A+G], [V�(φ), G]A+ = [V�(φ), GA+], and
consequently

r0 = − 1
4|φ|3

[
V�(φ),

[
V�(φ), A+V�(dφp)

]]
− 1

4|φ|3
[
V�(φ),

[
V�(φ), V�(dφp)A

+
]]

= −
[
μ + V�(φ), 1

4|φ|3
[
V�(φ), A+V�(dφp)

]]
−
[
μ + V�(φ), 1

4|φ|3
[
V�(φ), V�(dφp)A

+
]]

.

The most harmful of the arising terms contains the brackets with 1
2 |p|2, that is,

r̃0 = −
{

1
2 |p|

2, 1
4|φ|3

[
V�(φ), A+V�(dφp)

]}
−
{

1
2 |p|

2, 1
4|φ|3

[
V�(φ), V�(dφp)A

+
]}

.

Since the term containing the derivatives of V�(φ) vanishes,

− 1
4|φ|3

[
V�(dφp), A

+V�(dφp)
]
− 1

4|φ|3
[
V�(dφp), V�(dφp)A

+
]

= 0,

there is a matrix-valued function Gε with suitable bounds on its derivatives, such
that r̃0 = |φ|−4 [V�(φ), Gε], and hence the other arguments of Lemma 4.1 apply for
the analysis of r0.

For the brackets with the matrix part, we write

1
2{A

+, V�(φ)} − 1
2{V�(φ), A+} = Π+{A+, |φ|}Π+ + |φ|

(
{A+,Π+} − {Π+, A+}

)
.

The second part,

r1 = |φ|
(
{A+,Π+} − {Π+, A+}

)
= |φ|

(
∇pA

+ · ∇qΠ
+ + ∇qΠ

+∇pA
+
)
,

is off-diagonal with respect to V , since ∇pA
+ = Π+∇pA

+ = ∇pA
+Π+, Π±Π∓ = 0,

and Π±∇qΠ
+Π± = 0 imply

Π± (
∇pA

+ · ∇qΠ
+ + ∇qΠ

+∇pA
+
)
Π± = 0.

Hence, Lemma 4.1 applies.
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The importance of R(q, p) for the nonadiabatic transitions becomes clear, when
recasting (5.16) in the previous section as(

0 G∗

G 0

)
b(G∗G) opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
b(G∗G)

(
0 G

G∗ 0

)(
αε

1(z)

0

)

= V ∗
� (0, z̃

|z̃| )(G
∗G)

1
2 b(G∗G) opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))

× b(G∗G)(G∗G)
1
2 V ∗

�

(
0, z̃

|z̃|

)(
αε

1(z)

0

)
+ O(

√
ε)

= (1 − T̃ ε(z̃))V ∗
�

(
0, z̃

|z̃|

)
opε

(
b+

(
z, s + s+

1 , ζ,
z̃

R
√
ε

))
V�

(
0, z̃

|z̃|

) (
αε

1(z)

0

)
+ O(

√
ε)

and observing that the normal form transformation relates V�(0, z̃/|z̃|) and R(q, p) by
identity (5.9) of Theorem 5.2.

Appendix A. Weyl calculus. For the convenience of the reader, we formulate
the key technical lemma of the calculus of Weyl quantized pseudodifferential operators.

Definition A.1. A smooth matrix-valued function a ∈ C∞(R2d,CN×N ) is of
subquadratic growth if for all |α| + |β| ≥ 2 there exists Cα,β > 0 such that

‖∂α
q ∂

β
p a‖∞ ≤ Cα.

Lemma A.2. Let a ∈ C∞
c (R2d,CN×N ), and let b ∈ C∞(R2d,CN×N ) be of sub-

quadratic growth. Then, for all ψ ∈ C∞
c (Rd,CN )

op1(a)op1(b)ψ =
(
op1(ab) + 1

2iop1 ({a, b}) + op1(c) + op1(r)
)
ψ,

with {a, b} = ∂pa∂qb− ∂qa∂pb the Poisson bracket, c a linear combination of

∂qj ,pja ∂qj ,pj
b, ∂2

qja ∂
2
pj
b, ∂2

pj
a ∂2

qj b,

and r ∈ C∞(R2d,CN×N ) such that

Nk(r) := Sup
|α|+|β|≤k

‖∂α
q ∂

β
p r‖∞ ≤ Ck Σ

m+m′=k

(
Nm(D3a)Nm′(D3b)

)

for all k ∈ N.
For a proof of this classical lemma, the reader can refer to [15] or to [3]. The

theorem of Calderon and Vaillancourt implies that op1(r) is a bounded operator on
L2(Rd,CN ).
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ON A MODEL OF MULTIPHASE FLOW∗

DEBORA AMADORI† AND ANDREA CORLI‡

Abstract. We consider a hyperbolic system of three conservation laws in one space variable.
The system is a model for fluid flow allowing phase transitions; in this case the state variables are
the specific volume, the velocity, and the mass density fraction of the vapor in the fluid. For a class
of initial data having large total variation we prove the global existence of solutions to the Cauchy
problem.
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1. Introduction. We consider a model for the one-dimensional flow of an invis-
cid fluid capable of undergoing phase transitions. Both liquid and vapor phases are
possible, as well as mixtures of them. In Lagrangian coordinates the model is⎧⎪⎨

⎪⎩
vt − ux = 0,

ut + p(v, λ)x = 0,

λt = 0 .

(1.1)

Here t > 0 and x ∈ R; moreover, v > 0 is the specific volume, u the velocity, and
λ the mass density fraction of vapor in the fluid. Then λ ∈ [0, 1], with λ = 0 char-
acterizing the liquid and λ = 1 the vapor phase; the intermediate values of λ model
the mixtures of the two pure phases. The pressure is denoted by p = p(v, λ); under
natural assumptions the system is strictly hyperbolic.

This model is a simplified version of a model proposed by Fan [13], where also
viscous and relaxation terms were taken into account. The model is isothermal (see
(2.1) below); in the presence of phase transitions this physical assumption is mean-
ingful for retrograde fluids. A study of the Riemann problem for a 2 × 2 relaxation
approximation of (1.1) has been done in [10]. We focus here on the global existence
of solutions to the Cauchy problem for (1.1), namely, for initial data

(v, u, λ)(0, x) =
(
vo(x), uo(x), λo(x)

)
having finite total variation. This problem is motivated by the study of more complete
models, where (1.1) is supplemented by source terms.

The problem of the global existence of solutions to strictly hyperbolic system of
conservation laws has been studied for a long time; see [9, 11, 24, 25, 26] for general
information. If the initial data have small total variation, then the Glimm theorem
[14] applies; we refer the reader again to [9] for the analogous results obtained by a
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wave-front tracking algorithm as well as for uniqueness and continuous dependence of
the solutions on the initial data.

Some special systems allow, however, initial data with large total variation. For
the system of isothermal gasdynamics Nishida [19] proved that it is sufficient that
the variation TV(vo, uo) of the initial data is finite in order to have globally defined
solutions. This result was extended by Nishida and Smoller [20] to any pressure law
p = k/vγ , γ > 1, provided that (γ − 1)TV(vo, uo) is small; related results are in [12].
For the full nonisentropic system of 3 × 3 gasdynamics, where p = k exp(γ−1

R s)/vγ

and s denotes the entropy, Liu [17, 16] proved the global existence of solutions if
(γ − 1)TV(vo, po) is small and TV(so) bounded. Temple [27] and Peng [21] obtained
similar results. All these papers use the Glimm scheme. Analogous results making use
of a wave-front tracking scheme have been given recently by Asakura [4, 5]; we point
out that the use of wave-front tracking schemes in case of data with large variation is
far from being trivial, and a deep analysis of the wave interactions is required. Very
general results can be proved for systems with coinciding shock and rarefaction curves
[8]; however, system (1.1) is not of this type.

In comparison with the above systems of gasdynamics, in (1.1) we keep a γ-law
for the pressure with γ = 1 but add a dependence of p on λ: we then take p = a(λ)/v
for a suitable function a. System (1.1) has close connections to a system introduced
by Benzoni-Gavage [6] and studied by Peng [22]; it seems, however, that the proof
in [22] is not complete. A comparison of these models is done in subsection 3.1. We
mention that the method of compensated compactness has also been applied to (1.1)
(see [15, 7] and [18, sections 12.3 and 16]) but for different pressure laws.

In this paper we prove by a wave-front tracking scheme the global existence of
solutions to (1.1) for a wide class of initial data with large total variation. We first
introduce a weighted total variation (WTV) of a(λo); this quantity arises in a natural
way in the problem and also has an analytical meaning, being the logarithmic variation
in the case of continuous functions. We prescribe a bound, on WTV (a(λo)); for the
variation TV(vo, uo) there is not such a bound, but, roughly speaking, the larger
TV(vo, uo) is, the smaller WTV (a(λo)) must be. An important point is that we give
explicit expressions for these bounds; then our results are qualitatively different from
some of those quoted above, where a generic smallness is required.

The plan of the paper is the following. The main result is stated in section 2,
Theorem 2.2. The Riemann problem is reviewed in section 3 together with related
results; proofs have been given in [2]. The definition of the algorithm is in section 4.
The core of the proof is section 5—where interactions are studied in detail—and
section 6—where we prove the convergence and consistence of the scheme. A careful
analysis is needed due to the presence of large waves.

The paper is completed by two appendices. In the first one we prove the main
result on the WTV. In the second we study the interaction of two shock waves to the
light of section 5; namely, we look for precise bounds of the damping coefficient that
controls the reflected wave produced in the interaction; we think that this analysis is
interesting on its own. Good reading!

2. Main results. We consider the system of conservation laws (1.1). The pres-
sure is given by

p(v, λ) =
a2(λ)

v
,(2.1)

where a is a smooth (C1) function defined on [0, 1] satisfying for every λ ∈ [0, 1]
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a(λ) > 0, a′(λ) > 0 ;(2.2)

see Figure 2.1. For instance a2(λ) = k0 +λ(k1−k0) for 0 < k0 < k1. As a consequence
of (2.1) and (2.2) we have, for every (v, λ) ∈ (0,+∞) × [0, 1],

p > 0, pv < 0, pvv > 0,(2.3)

pλ > 0, pvλ < 0 .(2.4)

Remark that assumptions (2.3) and (2.4) are analogous to those usually made on the
pressure in the full nonisentropic case [17], the entropy replacing λ.

�
v

�p(·, λ)

λ = 0
�
��

�
�

�
���

0 < λ < 1

λ = 1�

Fig. 2.1. Pressure curves as functions of v.

We denote U = (v, u, λ) ∈ Ω = (0,+∞) × R × [0, 1]. Under assumptions (2.1)
and (2.2) the system (1.1) is strictly hyperbolic in the whole Ω with eigenvalues
e1 = −

√
−pv(v, λ), e2 = 0, e3 =

√
−pv(v, λ). We write c =

√−pv = a(λ)/v. The
eigenvectors associated with the eigenvalues ei, i = 1, 2, 3, are r1 = (1, c, 0), r2 =
(−pλ, 0, pv), r3 = (−1, c, 0). Because of the third inequality in (2.3) the eigenvalues
e1, e3 are genuinely nonlinear with ∇ei ·ri = pvv/(2c) > 0, i = 1, 3, while e2 is linearly
degenerate. Pairs of Riemann invariants are R1 = {u − a(λ) log v, λ}, R2 = {u, p},
R3 = {u + a(λ) log v, λ}.

We denote by TV(f) the total variation of a function f . In the case f : R →
(0,+∞) we define the weighted total variation of f by

WTV(f) = 2 sup

n∑
j=1

|f(xj) − f(xj−1)|
f(xj) + f(xj−1)

,

where the supremum is taken over all n ≥ 1 and (n + 1)-tuples of points xj with
xo < x1 < · · · < xn. This variation is motivated by the definition (3.6) of strength for
the waves of the second family. If f is bounded and bounded away from zero, then

1

sup f
TV(f) ≤ WTV(f) ≤ 1

inf f
TV(f) .

Proposition 2.1. Consider f : R → (0,+∞); then

inf f

sup f
TV (log(f)) ≤ WTV(f) ≤ TV (log(f)) .(2.5)

Moreover, if f ∈ C(R), then WTV(f) = TV (log(f)).
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The proof is deferred to Appendix A. In (2.5), in the inequality on the right, the
strict sign may occur if f is discontinuous; see Remark A.1.

We provide system (1.1) with initial data

U(x, 0) = Uo(x) = (vo(x), uo(x), λo(x))(2.6)

for x ∈ R. Denote ao(x)
.
= a (λo(x)), po(x)

.
= p (vo(x), λo(x)); remark that inf ao(x) ≥

a(0) > 0. The main result of this paper now follows.
Theorem 2.2. Assume (2.1), (2.2). Consider initial data (2.6) with vo(x) ≥ v > 0

for some constant v and 0 ≤ λo(x) ≤ 1. For every m > 0 and a suitable function
k(m) ∈ (0, 1/2) the following holds. If

TV (log(po)) +
1

inf ao
TV(uo) < 2

(
1 − 2WTV(ao)

)
m,(2.7)

WTV(ao) < k(m),(2.8)

then the Cauchy problem (1.1), (2.6) has a weak entropic solution (v, u, λ) defined for
t ∈ [0,+∞). Moreover, the solution is valued in a compact set of Ω, and there is a
constant C(m) such that for every t ∈ [0,+∞)

TV (v(t, ·), u(t, ·)) ≤ C(m) .(2.9)

The function k(m), whose expression is given in (6.22), deserves some comments.
The interaction of two waves α, α′ of the same family i = 1, 3 produces a wave β of
the same family i and a “reflected” wave δ of the other family j (j = 1, 3, j 	= i). For
a suitable definition of the strengths of the waves we prove that |δ| ≤ d ·min{|α|, |α′|}
for a damping coefficient d < 1 depending on α and α′; see Lemma 5.6. The function
k above depends essentially on the supremum of such coefficients d; we prove that
k(0) = 1/2 and that k(m) decreases to 0 as m → +∞. In particular then WTV(ao) <
1/2. The assumptions (2.7), (2.8) read as analogous to those in [20]: the larger m is,
the smaller k(m) is, and vice versa. The occurrence of a possible blow-up when the
bound on WTV(ao) does not hold is an interesting open problem.

The variation of λo appears both in condition (2.7), because of po, and in (2.8).
Using the definition of the pressure, we can replace (2.7) by the slightly stronger
condition TV log(vo) + 2TV log(ao) + 1

inf ao
TV(uo) ≤ 2

(
1 − 2WTV(ao)

)
m or even

TV log(vo) +
1

a(0)
TV(uo) ≤ 2m

(
1 − 2m + 1

m
TV(log(ao))

)

by making use of (2.5). In particular if λo is constant, we recover the famous result
by Nishida [19].

Clearly λ(t, x) = λo(x) for any t because of the third equation in (1.1); this is
why only v and u appear in the estimate (2.9). In other words system (1.1) can be
rewritten as a p-system of two conservation laws with flux depending on x, namely,
for the pressure law p = p (v, λo(x)) = a2 (λo(x)) /v.

The proof of Theorem 2.2 makes use of a wave-front tracking scheme where we
exploit the special structure of system (1.1) by differentiating the treatment of 1- and
3-waves from that of 2-waves. Our algorithm is a natural extension of that in [3],
where the system for λo constant is studied, in the presence of a relaxation term.

Here we consider a linear functional as in [3] that accounts for the strengths of
all 1- and 3-waves, with a weight ξ > 1 assigned to shock waves; a crucial point in
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the proof is the choice of ξ as a function of m. This functional differs from that in
[19, 4], where ξ is missing and only the variation of shocks is taken into account.
Moreover, motivated again by [3], we do not introduce a simplified Riemann solver
for interactions between 1- and 3-waves but only for interactions involving the 2-
contact discontinuities. The interaction potential then uniquely considers interactions
of 2-waves with 1- or 3-waves approaching it.

System (1.1) can be written in Eulerian coordinates. Denoting ρ = 1/v the density,
the pressure law becomes p = a2(λ)ρ, and (1.1) turns into⎧⎪⎨

⎪⎩
ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + p(ρ, λ)

)
x

= 0,

(ρλ)t + (ρλu)x = 0 .

(2.10)

A global existence result of weak solutions for (2.10) holds by Theorem 2.2 because
of [28].

3. Preliminaries.

3.1. Comparison with other models. In [6] many models for diphasic flows
are proposed and studied. In a simple case (no source terms, the fluid in either a
dispersed or separated configuration) and keeping notation as in [6, page 35], they
can be written as⎧⎪⎨

⎪⎩
(ρlRl)t + (ρlRlul)x = 0,

(ρgRg)t + (ρgRgug)x = 0,

(ρlRlul + ρgRgug)t + (ρlRlu
2
l + ρgRgu

2
g + p)x = 0 .

(3.1)

Here the indexes l and g stand for liquid and gas. Therefore ρl, Rl, ul are the liquid
density, phase fraction, and velocity, and analogously for the gas; clearly Rl + Rg = 1.
The pressure law is p = a2ρg for a > 0 a constant. Equations (3.1) state the conser-
vation of mass of either phase and the total momentum.

A case studied in [6, page 44] is when ul = ug and ρl is constant, say, equal to 1.
The unknown variables are then Rl, u, ρg, and it is assumed 0 < Rl < 1 and ρg > 0;
as a consequence 0 < Rg < 1. Under these conditions, and still writing ρl instead of

1 for clarity, we define the concentration c =
ρgRg

ρlRl
> 0 and deduce the pressure law

p = a2c Rl

1−Rl
. We obtain exactly the model of [22]:

⎧⎪⎨
⎪⎩

(Rl)t + (Rlu)x = 0,

(Rlc)t + (Rlcu)x = 0,

(Rl(1 + c)u)t +
(
Rl(1 + c)u2 + p

)
x

= 0 .

(3.2)

This system is strictly hyperbolic for c > 0. Remark that the three eigenvalues of
(3.2) coincide with u at c = 0, and if c vanishes identically, then (3.2) reduces to the
pressureless gasdynamics system. System (3.2) is analogous to (2.10), but the pressure
laws are different. In fact the variables ρ and λ of (2.10) write ρ = ρlRl + ρgRg and

λ =
ρgRg

ρlRl+ρgRg
= c

1+c , and then Rl = (1− λ)ρ, ρg = λ
ρ−1−(1−λ) . If we sum up the first

two equations in (3.2), we find the first equation in (2.10); the third (resp., second)
equation in (3.2) becomes the second (resp., third) equation in (2.10). The choice
p = a2ρg for the pressure in (3.1) gives p = a2 λ

1
ρ−(1−λ)

.
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Notice that the pressure vanishes in the presence of a pure liquid phase, and this
is the main difference with (2.1), (2.2).

We now compare (2.10) and (3.2) in Lagrangian coordinates. Consider for (3.2)
the change of coordinates y = Rldx − Rludt based on the streamlines of the liquid

particles (because Rl = ρlRl) [22]. Denote w = 1
Rl

− 1 =
Rg

Rl
= c

ρg
. Then for p = a2c

w

system (3.2) turns into ⎧⎪⎨
⎪⎩

wt − ux = 0,

((1 + c)u)t + px = 0,

ct = 0 .

(3.3)

It is more interesting, however, to consider for system (3.2) the change y = (1 +
c)Rldx− (1+ c)Rludt = ρdx−ρudt into Lagrangian coordinates based on the stream-

lines of the full density ρ. Let w be as above and v = w
1+c =

Rg

ρ . Then system (3.2)

becomes system (1.1) with a2(λ) = a2 c
1+c = a2λ. As a consequence the pressure

law p(v, λ) = a2(λ)/v does not satisfy (2.2). This difficulty can be overcome as fol-

lows. Fix any 0 < a1 < a2 < a and consider for ci =
a2
i

a2−a2
i

the invariant domain

{(Rl, u, c): 0 < c1 ≤ c ≤ c2} [22]. In this domain 0 < b1 ≤ λ ≤ b2 < 1 for bi = a2
i /a

2.
If we denote μ = λ−b1

b2−b1
, then the function b(μ) = a(λ) = a(b1 + (b2 − b1)μ) makes the

pressure law p(v, λ) = b2(μ)/v, with μ ∈ [0, 1], satisfy both conditions in (2.2).

3.2. Wave curves and the Riemann problem. In this section we recall some
results about the wave curves for system (1.1) and the solution to the Riemann prob-
lem; see [2] for more details.

The shock-rarefaction curves through the point Uo = (vo, uo, λo) for (1.1) are

Φi(v, Uo) = (v, φi(v, Uo), λo) , i = 1, 3,(3.4)

φ1(v, Uo) =

{
uo + a(λo) · (v − vo)/

√
vvo, v < vo, shock,

uo + a(λo) log(v/vo), v > vo , rarefaction,

φ3(v, Uo) =

{
uo − a(λo) log(v/vo), v < vo, rarefaction,

uo − a(λo) · (v − vo)/
√
vvo, v > vo , shock,

Φ2(λ,Uo) =

(
vo

a2(λ)

a2(λo)
, uo, λ

)
, λ ∈ [0, 1], contact discontinuity.(3.5)

The curves Φ1, Φ2, and Φ3 are plane curves: Φ1 and Φ3 lie on the plane λ = λo,
while Φ2 on u = uo.

Definition 3.1 (wave strengths). Under the notation (3.4), (3.5) we define the
strength εi of an i-wave as

ε1 =
1

2
log

(
v

vo

)
, ε2 = 2

a(λ) − a(λo)

a(λ) + a(λo)
, ε3 =

1

2
log

(vo
v

)
.(3.6)

According to this definition, rarefaction waves have positive strengths and shock waves
have negative strengths. Given the initial datum λo = λo(x), denote

a∗
.
= sup

x∈R

a
(
λo(x)

)
, a∗

.
= inf

x∈R

a
(
λo(x)

)
, [a]∗

.
=

a∗ − a∗
a∗ + a∗

.(3.7)
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Then [a]∗ ≤ a(1)−a(0)
a(1)+a(0) < 1 and |ε2| ≤ 2[a]∗ < 2. It is useful to also define the function

(see [22])

h(ε) =

{
ε if ε ≥ 0 ,

sinh ε if ε < 0 .
(3.8)

Then we have for i = 1, 3

φi(v, Uo) = uo + a(λo) · 2h(εi) .(3.9)

At last we consider the Riemann problem. This is the initial value problem for
(1.1) under the piecewise constant initial condition

(v, u, λ)(0, x) =

{
(v�, u�, λ�) = U� if x < 0,

(vr, ur, λr) = Ur if x > 0
(3.10)

for U� and Ur in Ω. We denote ar = a(λr), pr = a2
r/vr, and similarly for a�, p�.

Proposition 3.2. Fix any pair of states U�, Ur in Ω; then the Riemann problem
(1.1), (3.10) has a unique Ω-valued solution in the class of solutions consisting of
simple Lax waves. If εi is the strength of the i-wave, i = 1, 2, 3, then

ε3 − ε1 =
1

2
log

(
pr
p�

)
, 2

(
a�h(ε1) + arh(ε3)

)
= ur − u� .

Moreover, let v > 0 be a fixed number. There exists a constant C1 > 0 depending on
v and a(λ) such that if vl, vr ≥ v, then

|ε1| + |ε2| + |ε3| ≤ C1|U� − Ur| .(3.11)

For the proof, see [2]. One can easily find that

|ε1| + |ε3| ≤
1

2
| log(pr) − log(p�)| +

1

2 min{a�, ar}
|ur − u�|(3.12)

≤ 1

2
| log(vr) − log(v�)| + | log(ar) − log(a�)| +

1

2 min{a�, ar}
|ur − u�| .

We remark that for any Riemann data (v�, u�, λ�), (vr, ur, λr), the λ component of
the solution takes value λ� for x < 0 and λr for x > 0. The fact that the interfaces
between different phases are connected by a stationary wave can then be interpreted
as a “kinetic condition” [1], analogous to Maxwell’s rule.

4. The approximate solution. In this section we define a wave-front track-
ing scheme [9] to build up piecewise constant approximate solutions to (1.1). More
precisely, we follow the algorithm introduced in [3].

First, we approximate the initial data. For any ν∈N we take a sequence (vνo , u
ν
o , λ

ν
o)

of piecewise constant functions with a finite number of jumps such that

(i) TVpνo ≤ TVpo, TVuν
o ≤ TVuo, WTVa(λν

o) ≤ WTVa(λo), inf aνo ≥ inf ao;
(ii) limx→−∞(vνo , u

ν
o , λ

ν
o)(x) = limx→−∞(vo, uo, λo)(x);

(iii) ‖(vνo , uν
o , λ

ν
o) − (vo, uo, λo)‖L1 ≤ 1

ν ,
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where pνo = a2(λν
o)/v

ν
o . Second, we define the approximate Riemann solver. We in-

troduce positive parameters η = ην , ρ = ρν ; they control, respectively, the size of
rarefactions and the threshold when a simplified Riemann solver is used. Define also a
parameter ŝ > 0 strictly larger than all possible speeds of wave fronts of both families
1 and 3. These parameters will be determined at the end of section 6.

• At time t = 0 we solve the Riemann problems at each point of jump of
(vνo , u

ν
o , λ

ν
o)(0+, · ) as follows: shocks are not modified while rarefactions are

approximated by fans of waves, each of them having size less than η. More
precisely, a rarefaction of size ε is approximated by N = [ε/η]+1 waves whose
size is ε/N < η; we set their speeds to be equal to the characteristic speed of
the state at the right.
Then (v, u, λ)(t, ·) is defined until some wave fronts interact; by slightly chang-
ing the speed of some waves [9] we can assume that only two fronts interact
at a time.

• When two wave fronts of families either 1 or 3 interact we solve the Riemann
problem at the interaction point. If one of the incoming waves is a rarefaction,
after the interaction it is prolonged (if it still exists) as a single discontinuity
with speed equal to the characteristic speed of the state at the right. If a new
rarefaction is generated, we employ the Riemann solver described before and
divide it into a fan of waves having size less than η.

• When a wave front of family either 1 or 3 interacts with a 2-wave we proceed
as follows. Let δ2 be the size of the 2-wave and δ the size of the other wave.

– If |δ2δ| ≥ ρ, we solve the Riemann problem as above, that is, with the
accurate Riemann solver.

– If |δ2δ| < ρ, we prolong the 1- or 3- wave with a wave of the same family
and size. Since the two waves do not commute, a nonphysical front is
introduced [9], with fixed speed ŝ > 0. The size of a nonphysical wave
is set to be |ur − u�|, where u�, ur are the u components of the left
and right states of the wave. We call this solver the simplified Riemann
solver.

• When a nonphysical front interacts with a front of family 1, 2, or 3 (“phys-
ical”), we prolong the solution with a physical wave of the same size and a
nonphysical one, consequently computing the intermediate value.

We refer for the last two items to Proposition 5.12 below. Remark that two
nonphysical fronts cannot interact since they have the same constant speed ŝ. We
denote by NP the set of nonphysical waves.

5. Interactions. Fix the index ν introduced in the previous section. We shall
prove in subsection 6.1 that the algorithm described above is defined for any t > 0
and provides for any initial data (vνo , u

ν
o , λ

ν
o) a piecewise constant approximate solution

(vν , uν , λν) = (v, u, λ), where we dropped for simplicity the index ν. Here we study
the interaction of waves.

For Knp > 0 and t > 0 we define the functional L and the interaction potential
Q, both referred to (v, u, λ)(t, ·), by

L(t) =
∑
i=1,3

|γi| + KnpLnp , Lnp =
∑

γ∈NP
|γ|,

Q(t) =
∑

γ3 at the left of δ2

|γ3||δ2| +
∑

γ1 at the right of δ2

|δ2||γ1| .(5.1)
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Remark that L takes into account only the strengths of both 1- and 3-waves and that
of nonphysical waves. For contact discontinuities we define

Lcd =
∑

|γ2| = WTVa(λν
o) .

Finally, for ξ ≥ 1 and K ≥ 0 we introduce

Lξ =
∑
i=1,3
γi>0

|γi| + ξ
∑
i=1,3
γi<0

|γi| + KnpLnp ,(5.2)

F = Lξ + KQ .(5.3)

For simplicity we omitted noting the dependence on Knp in the functional Lξ and on
Knp, ξ, K in F ; the choice of Knp shall depend on that of K; see Proposition 5.12.

Observe that if λo is constant, then Q = 0 and F = Lξ, whose variation was
analyzed in Lemma 3.2 of [3]. Hence we will assume from now on that

Ao
.
= WTV(ao) > 0 .(5.4)

By assumption (i) in section 4, one has Lcd ≤ Ao.
In the following sections we analyze in detail the different types of interactions.

Recalling the definition of h, (3.8), and with the notation of Figure 5.1, we introduce
the following identities (see (3.1), (3.2) in [22]):

ε3 − ε1 = α3 + β3 − α1 − β1,(5.5)

a�h(ε1) + arh(ε3) = a�h(α1) + amh(α3) + amh(β1) + arh(β3) .(5.6)

Formula (5.5) does not depend on λ and follows easily by equating the specific volumes
v before and after the interaction time. By equating the velocities u we obtain (5.6).
These properties are a consequence of the definition (3.6) of the strengths for 1- and
3-waves and of (3.9).
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Fig. 5.1. A general interaction pattern.

5.1. Interactions with a 2-wave. We first consider the interactions of 1- or
3-waves with a 2-wave; see Figure 5.2.

Proposition 5.1 (see [2]). Denote by λ�, λr the side states of a 2-wave. The
interactions of 1- or 3-waves with the 2-wave give rise to the following pattern of
solutions:

Interaction Outcome
λ� < λr λ� > λr

2 × 1R 1R + 2 + 3R 1R + 2 + 3S
2 × 1S 1S + 2 + 3S 1S + 2 + 3R
3R× 2 1S + 2 + 3R 1R + 2 + 3R
3S × 2 1R + 2 + 3S 1S + 2 + 3S
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The next lemma is concerned instead with the strengths of waves involved in the
interaction above. The inequalities (5.8) improve the inequality (3.3) in [22] in the
special case of two interacting wave fronts, one of them being of the second fam-
ily. More precisely, under the notation of [22] we find a term 1/(ar + a�) instead of
1/min{ar, a�}. The proof differs from Peng’s. Our estimates are sharp: in some cases
(5.8) reduces to an identity.

δ2
�

�
�

�

δ1

ε2

�
�
�
ε3

�
�

�
ε1

U� Ur

(a)

δ2
�
�
�
�

δ3

ε2

�
�

�
ε3

�
�

�
ε1

U� Ur

(b)
Fig. 5.2. Interactions. (a) from the right; (b) from the left.

Lemma 5.2 (see [2]). Assume that a 1-wave of strength δ1 or a 3-wave of strength
δ3 interacts with a 2-wave of strength δ2 = 2(ar − a�)/(ar + a�). Then the strengths
εi of the outgoing waves satisfy ε2 = δ2 and

|εi − δi| = |εj | ≤
1

2
|δ2| · |δi| ≤ [a]∗|δi|(5.7)

for i, j = 1, 3, i 	= j. Moreover,

|ε1| + |ε3| ≤

⎧⎨
⎩

|δ1| + |δ1|[δ2]+ if 1 interacts,

|δ3| + |δ3|[δ2]− if 3 interacts .
(5.8)

Here [x]+ = max{x, 0}, [x]− = max{−x, 0}, x ∈ R. Remark that the colliding
1- or 3-wave does not change sign across the interaction. Moreover, the functional L
increases iff the incoming and the reflected waves are of the same type; this happens
when the colliding wave is moving toward a more liquid phase.

Now we prove that F is decreasing for suitable K when an interaction with a
2-wave occurs. The potential Q is needed to balance the possible increase of Lξ.

Proposition 5.3. Assume Ao < 2 and consider an interaction of a 1- or 3-wave
with a 2-wave, with the notation of Lemma 5.2. Then ΔQ < 0. If, moreover,

ξ ≥ 1 and K >
2ξ

2 −Ao
,(5.9)

then

ξ|εj | = ξ
∣∣|εi| − |δi|

∣∣ < K

2
|ΔQ|,(5.10)

and hence ΔF < 0.
Proof. We consider the interaction of a 1-wave with a 2-wave; the symmetric

case follows in an analogous way. We use the notation as in Figure 5.2(a). We define
L∗
cd = L−

cd + L+
cd, L

±
cd, meaning right or left of the 2-wave under consideration.
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By assumption, one has

Lcd = L−
cd + L+

cd + |δ2| = L∗
cd + |δ2| ≤ Ao < 2 .(5.11)

Recall that ε1 − δ1 = ε3 and by Proposition 5.1

|ε1| − |δ1| = |ε3| if δ2 > 0 ,(5.12)

|ε1| − |δ1| = −|ε3| if δ2 < 0 ,(5.13)

so that in particular |ε3| =
∣∣|ε1| − |δ1|

∣∣. An estimate for ΔQ follows at once because
of (5.11):

ΔQ = −|δ2δ1| + (|ε1| − |δ1|)L−
cd + |ε3|L+

cd ≤ 1

2
|δ2δ1|(L∗

cd − 2)

≤ 1

2
|δ2δ1|(Ao − 2) < 0 .(5.14)

Hence, using (5.7), we get

ξ|ε3| +
K

2
ΔQ ≤ 1

2
|δ2δ1|

{
ξ +

K

2
(Ao − 2)

}
< 0(5.15)

because of (5.9); this proves (5.10). Finally, by using (5.15) we get

ΔF = ΔLξ + KΔQ ≤ ξ|ε3| + ξ|ε1 − δ1| + KΔQ < 0 .(5.16)

5.2. Interactions between 1- and 3-waves. Here we analyze the possible
interactions between 1- and 3-waves. Two situations may occur; see Figure 5.3: either
the waves belong to different families or they both belong to the same family. In this
last case, at least one of the waves must be a shock.
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Fig. 5.3. Interactions of 1- and 3-waves.

Lemma 5.4 (different families interacting). If a wave of the third family interacts
with a wave of the first family, they cross each other without changing their strength.

Proof. See also Lemma 3.1 in [3]. Using notation as in Figure 5.3(a) we have
ε3 − ε1 = δ3 − δ1 and h(ε1) + h(ε3) = h(δ1) + h(δ3). The uniqueness of solutions to
the Riemann problem implies ε1 = δ1, ε3 = δ3.

Remark that here ΔLξ = 0 = ΔQ and then ΔF = 0 for all ξ ≥ 1 and K.
Lemma 5.5 (same family interacting: outcome). Assume that a wave α3 of the

third family interacts with a wave β3 of the third family, giving rise to waves ε1, ε3.
Then

(i) α3 < 0, β3 < 0 ⇒ ε1 > 0, ε3 < 0,
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(ii) α3β3 < 0 ⇒ ε1 < 0.
An analogous result holds for interacting waves of the first family.

Proof. The proof can be done in a geometric way by observing the mutual positions
of the curves [19, 26]. A simple alternative proof by analytical arguments now follows.
We have

ε3 − ε1 = α3 + β3,(5.17)

h(ε1) + h(ε3) = h(α3) + h(β3) .(5.18)

In case (i) these formulas read ε1 − ε3 = |α3| + |β3| > 0 and −h(ε1) − h(ε3) =
sinh(|α3|) + sinh(|β3|) > 0. If it were ε3 > 0, then ε1 > 0 from the first equality and
ε1 < 0 from the second, a contradiction. Therefore ε3 < 0 so that ε1+ |ε3| = |α3|+ |β3|
and −h(ε1)+ sinh(|ε3|) = sinh(|α3|)+ sinh(|β3|). Analogously, if it were ε1 < 0, using
elementary inequalities we get 0 = sinh(|ε1|) + sinh(|α3| + |β3| + |ε1|) − sinh(|α3|) −
sinh(|β3|) ≥ 2 sinh(|ε1|), a contradiction again. Hence ε1 > 0.

In case (ii) assume α3 < 0, β3 > 0; the other case is dealt with analogously
since (5.17), (5.18) are symmetric in α3, β3. We have ε3 − ε1 = −|α3| + |β3| and
h(ε1)+h(ε3) = − sinh(|α3|)+|β3|; then [h(ε1)+ε1]+[h(ε3)−ε3] = |α3|−sinh(|α3|) < 0.
If ε3 > 0, this last equality becomes h(ε1) + ε1 = |α3| − sinh(|α3|) < 0, which implies
ε1 < 0. If ε3 < 0, then h(ε1) + ε1 = [|α3| − sinh(|α3|)] − [|ε3| − sinh(|ε3|)]. If it were
ε1 > 0, it would be |α3| < |ε3|, since the map x �→ x− sinhx is decreasing; but from
|ε3| + |ε1| = |α3| − |β3| we would get that |ε3| < |α3|, a contradiction. Hence in all
cases one has ε1 < 0.

Now we give sharper estimates for the interaction of waves of the same family: we
prove that the strength of the reflected wave is bounded by the size of each incoming
wave, multiplied by a damping factor smaller than 1. This property will be crucial in
the next section, and it holds also for interactions with a 2-wave, with damping factor
[a]∗; see (5.7). In the case below, however, the coefficient depends on the strengths
of the incoming waves; this happens also when nonphysical waves are generated; see
Proposition 5.12. We assume that

the strength of any interacting i-wave is less than m

for some m > 0 and i = 1, 3.
(5.19)

In the special case of interaction of waves of the same family producing two outgoing
shocks we give a more precise result in Appendix B.

Lemma 5.6 (same family interacting). Consider the interaction of two waves of
the same family, of sizes αi and βi, i = 1, 3, producing two outgoing waves ε1, ε3;
assume (5.19). Then the following hold.

(i) There exists a damping coefficient d = d(m), with 0 < d < 1, such that

|εj | ≤ d(m) · min{|αi|, |βi|} , j 	= i .(5.20)

(ii) If the incoming waves are both shocks, the resulting shock satisfies |εi| >
max{|αi|, |βi|}. If the incoming waves have different signs, both the amount of shocks
and the amount of rarefactions of the ith family decrease across the interaction.
In any case

|εi| ≤ |αi| + |βi| .(5.21)
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Proof. (i) To fix the ideas, assume i = 3. We have

ε3 − ε1 = α3 + β3,(5.22)

h(ε1) + h(ε3) = h(α3) + h(β3),(5.23)

and then

h(ε1) + h(ε1 + α3 + β3) = h(α3) + h(β3) .(5.24)

Remark that (5.24) is symmetric in α3, β3; from the implicit function theorem we find
that ε1 = ε1(α3, β3) is C1. Using the notation ε1 = τ , α3 = a, β3 = b, the identity
(5.24) rewrites as

h(τ) + h(τ + a + b) − h(a) − h(b) = 0 ,(5.25)

with τ = τ(a, b). One verifies that τ(a, 0) = τ(0, b) = 0 and that

τa =
h′(a) − h′(τ + a + b)

h′(τ) + h′(τ + a + b)
, τb =

h′(b) − h′(τ + a + b)

h′(τ) + h′(τ + a + b)
.

As a → 0, one has τa → (1 − h′(b))/(1 + h′(b)); then |τa(0, b)| < 1, and it can be
bounded by a positive constant less than 1 that depends on m. The same argument
works for τb.

To complete the proof, we show that |τ | < min{|a|, |b|} in the nontrivial case
a 	= 0 	= b. We argue by contradiction, using an argument of [23]. Suppose that
|τ | ≥ |a|; we can assume τ > 0, since the case τ < 0 can be proved by using the
equality (5.25) written in terms of G(t) = −h(−t). Since the function h is increasing
we have, for τ ≥ |a|,

h(τ) ≥ h(a), h(τ + a + b) ≥ h(b).

Moreover, one of the two inequalities is strict: if a < 0, the first; if a > 0, the second.
Hence we contradict (5.25).

(ii) From [3] we already know that ΔL = |ε1| + |ε3| − |α3| − |β3| ≤ 0 , and hence
(5.21).

If the incoming waves are both shocks, then (5.22) becomes

|ε3| + |ε1| = |α3| + |β3| .(5.26)

From (i) we have |ε1| < |α3|, |β3| and hence the first part of (ii). On the other hand,
if α3β3 < 0, we have ε1 < 0. We can assume α3 < 0 < β3; hence (5.22) becomes
ε3 = |β3| − |α3| − |ε1|. If ε3 > 0, then |ε3| < |β3|; if ε3 < 0, using (i) again one finds
that |ε3| < |α3|.

Remark 5.7. The damping coefficient d(m) (see Figure 5.4) is given by

d(m) = max
|a|≤m
|b|≤m

|ε(a, b)|
min{|a|, |b|} ,

where the function ε(a, b) satisfies h(ε) + h(ε + a + b) − h(a) − h(b) = 0; see (5.24).
Hence d(m) increases with m and vanishes as m → 0 because quadratic interaction
estimates hold for m small.
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Fig. 5.4. The coefficient d(m).

Moreover, it is asymptotic to 1 for m large. Indeed, from the proof of Lemma 5.6

we have τa(0, b) = 1−h′(b)
1+h′(b) ; then τa(0, b) = 0 if b > 0 and |τa(0, b)| = cosh(b)−1

cosh(b)+1 ≤
coshm−1
coshm+1 if b < 0. Therefore |τa(0, b)| ≤ coshm−1

coshm+1 for every b, and an analogous estimate

holds for |τb(0, a)|. Hence d(m) ≥ coshm−1
coshm+1

.
= c(m); we refer to Lemma B.1 for the

role of this quantity.
Remark 5.8. When a rarefaction interacts with a 1- or 3-wave, its size does not

increase. Indeed, the size does not change upon interactions with waves of the other
family by Lemma 5.4; if the rarefaction interacts with a shock of the same family, we
apply Lemma 5.6(ii). Remark, moreover, that by Lemma 5.5, when a rarefaction and
a shock of the same family interact, the reflected wave is never a rarefaction.

Remark 5.9. If two waves of the same family interact, the wave belonging to that
family can be missing, while the “reflected” wave is always present. This follows easily
from (5.22), (5.23).

Proposition 5.10 (variation of F ). Consider the interactions of any two wave
fronts of the same family, 1 or 3, and assume (5.4), (5.19). If

1 < ξ <
1

d
and K <

ξ − 1

Ao
,(5.27)

then ΔLξ < 0 and ΔF < 0 .
Proof. Let two waves αi, βi interact, i = 1, 3, giving rise to waves ε1, ε3. We

consider i = 3, the other case being analogous. Using (5.21), we get

ΔQ = (|ε3| − |α3| − |β3|)L+
cd + |ε1|L−

cd ≤ |ε1|L−
cd ≤ |ε1|Ao .(5.28)

Now we claim that

ΔLξ + |ε1|(ξ − 1) ≤ 0 .(5.29)

From this estimate it follows that ΔF = ΔLξ + KΔQ ≤ |ε1| (1 − ξ + KAo) < 0
because of (5.27). To prove our claim we consider the possible cases; we make use of
(5.22).

SS → RS . Since ΔL = 0, then

ΔLξ + (ξ − 1)|ε1| = ξ(|ε1| + |ε3| − |α3| − |β3|) ≤ 0 .(5.30)
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SR, RS → SR . Assume α3 < 0 < β3; then (5.29) reads (2ξ − 1)|ε1| + |ε3| −
|β3| − ξ|α3| ≤ 0. For later use we prove the stronger inequality

ξ2|ε1| + |ε3| − |β3| − ξ|α3| ≤ 0 .(5.31)

Indeed, from Lemma 5.6(ii) we have |ε3| < |β3|, while ξ|ε1| ≤ |α3| from (5.20), (5.27)1.

SR, RS → SS . Assume α3 < 0 < β3; then (5.29) is (2ξ − 1)|ε1| + ξ(|ε3| −
|α3|) − |β3| ≤ 0. We prove also in this case the stronger inequality

ξ2|ε1| + ξ(|ε3| − |α3|) − |β3| ≤ 0.(5.32)

Indeed, by (5.17) and again because of (5.20), (5.27)1, one has

ξ2|ε1| + ξ(|ε3| − |α3|) − |β3| = ξ2|ε1| + ξ(|ε1| − |β3|) − |β3|

= (ξ + 1)(ξ|ε1| − |β3|) ≤ 0 .

This proves the claim and concludes the proof.

Remark 5.11. From the above proof we see that ΔLξ ≤ 0 for ξ = 1. This was
a key point in [19], where, however, a different choice of strengths was made. In [3]
the inequality ΔLξ ≤ 0 was proved to hold also for 1 < ξ ≤ ξo for some ξo > 1; the
condition (5.27)1 gives an estimate of such a threshold.

More precisely, in the first two cases of Proposition 5.10 we have ΔLξ ≤ 0 for
every ξ ≥ 1. The third case is analyzed in detail in Lemma B.1; we prove there that
ΔLξ ≤ 0 for any ξ > 1 if c(m) ≤ 1/2, while we need 1 < ξ ≤ 1

2c(m)−1 if c(m) > 1/2.

5.3. Nonphysical waves. In this subsection we compute the strength of a non-
physical wave generated by an interaction and prove that it does not change in sub-
sequent interactions. We introduce the following notation: given U� = (v�, u�, λ�) and
λr we define by

U∗
�r = Φ2(λr, U�) = (Ar�v�, u�, λr)

the state on the right of a 2-wave with left state U� = (v�, u�, λ�) and λ = λr on the
right, where Ar� = a2(λr)/a

2(λ�). See (3.5) and [2].
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Fig. 5.5. Simplified Riemann solver.

Proposition 5.12 (nonphysical waves). Consider U� = (v�, u�, λ�). Let Ur =
(vr, ur, λr) be connected to U∗

�r by a 1-wave of size δ1 and Uq = (vq, uq, λ�) be connected
to U� by a 1-wave of size δ1; see Figure 5.5(a). Assume (5.19).
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Then U∗
qr and Ur differ only in the u component; if δ2 denotes the size of the

2-wave, there exists a constant Co = Co(m) such that

‖U∗
qr − Ur‖ = |uq − ur| ≤ Co|δ2δ1| .(5.33)

A similar result holds for the interaction of a 3-wave (see Figure 5.5(b)), again under
(5.19).

Moreover, the size of a nonphysical wave does not change in subsequent interac-
tions. For any K > 0 and Knp < K/Co at any interaction involving a nonphysical
wave we have

ΔF ≤ 0 ,(5.34)

with ΔF < 0 when a nonphysical wave is generated.
Proof. Recalling [2, Lemma 2], only the u component will be different after com-

mutation of the 1- and the 2-wave. We find that

uq − u� = 2a�h(δ1), ur − u� = 2arh(δ1),

and hence

|uq − ur| = 2|a� − ar| · |h(δ1)| ≤ |δ2δ1| · 2a(1) max
0<η≤m

sinh η

η
.

Then (5.33) follows with Co(m)
.
= 2a(1) · sinhm

m .
Next, assume that a nonphysical wave interacts with a 2-wave. Since the values

of u do not change across a 2-wave, the left and right values of u of the nonphysical
wave do not change across the interaction; hence the size does not change.

Assume then that a nonphysical wave interacts with a 1- or 3-wave of size δ. Since
λ is constant, we refer only to the components v, u. Let (v�, u�) and (v�, uq) be the
side states of the nonphysical wave before the interaction and (v�, uq), (vr, ur) be the
side states of the physical wave. After the interaction, let (ṽ�, ũ�) be the intermediate
state. One has

ur − uq = 2a(λ)h(δ) = ũ� − u� ,

and hence |uq − u�| = |ur − ũ�|.
At last, we consider the functional F . The potential Q is unaltered when non-

physical waves interact with other waves. The only cases in which Lnp changes are
when a nonphysical wave arises. Assume that a 1- or a 3-wave of size δ interacts with
a 2-wave of size δ2, producing a wave of the same size and a nonphysical wave. Then
ΔQ = −|δδ2| and ΔLξ = KnpΔLnp ≤ KnpCo|δδ2|; hence ΔF = ΔLξ + KΔQ ≤
|δδ2|(KnpCo −K), and then (5.34).

5.4. Decreasing of the functional F and control of the variations. We
first collect the previous results into a single proposition.

Proposition 5.13 (local decreasing). Consider the interaction of any two waves
either of families 1, 2, 3 or nonphysical. Assume (5.19) for some m > 0; let Co =
Co(m) as in Proposition 5.12. Finally, let Ao satisfy

0 < Ao < 2
1 − d

3 − d
.(5.35)
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If ξ, K, Knp satisfy

2 −Ao

2 − 3Ao
< ξ <

1

d
,

2ξ

2 −Ao
< K <

ξ − 1

Ao
, Knp <

K

Co
,(5.36)

then

ΔF ≤ 0 .(5.37)

Proof. The condition on K comes from (5.9) and (5.27)2. The interval where
K lies is not empty if Ao < 2

3 and ξ > 2−Ao

2−3Ao
; together with (5.27)1 this gives the

assumption required on ξ. In turn, it is possible to choose ξ in such an interval if (5.35)
holds. Remark that 21−d

3−d ≤ 2
3 , so the previous condition on Ao holds. Therefore the

assumptions of Propositions 5.3, 5.10, and 5.12 hold, and then (5.37) follows.
Proposition 5.14 (global decreasing). Let m > 0; assume (5.35), (5.36),

L(0+) <
m

2ξ − 1
(5.38)

and that the approximate solution U is defined in [0, T ]. Then L(t) < m for any
t ∈ (0, T ]; as a consequence, condition (5.19) holds for any 1- or 3-wave in U . Finally,
ΔF (t) ≤ 0 for all times t ∈ [0, T ].

Proof. Since L may change value only at the times of interaction, we use an
induction argument based on Proposition 5.13.

First, we have L(0+) < m because ξ ≥ 1 and (5.38). Now assume that L(τ) < m
for all 0 < τ < t. By Proposition 5.13 one has both ΔF (τ) ≤ 0 and ΔF (t) ≤ 0, so
that

F (t) ≤ F (0+) ≤ ξL(0+) + KQ(0+) .

Since Q(0+) ≤ L(0+)Lcd ≤ L(0+)Ao, and recalling (5.36)2, we get

F (t) ≤ L(0+) · (ξ + KAo) ≤ L(0+) · (2ξ − 1) < m ,(5.39)

again because of (5.38). Finally, since L(t) ≤ Lξ(t) ≤ F (t) we arrive at the conclu-
sion.

Remark 5.15. From (5.38) we see that, in order to have L(t) < m, the smaller ξ
is, the larger the L(0+) can be chosen.

Remark 5.16. From Proposition 5.14 we deduce that v remains bounded away
from zero. Indeed, recalling (3.6), (3.5) and that v is constant across nonphysical
waves, we have

1

2
TV(log v(t, ·)) ≤ L(t) + TV(log ao) ≤ m + TV(log ao) .

6. The convergence and the consistence of the algorithm. In this section
we prove Theorem 2.2. We first show that for fixed ν the algorithm introduced in
section 4 gives an approximate solution defined for every t > 0; more precisely, we
prove that at every time the number of interactions is bounded. Then we prove that
the total amount of nonphysical waves in each approximate solution is very small. The
convergence of a suitable subsequence is assured by Helly’s theorem; then consistence
follows.
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6.1. Control of the number of interactions. We prove first that the size of
the rarefactions in the scheme is small.

Lemma 6.1. Consider a rarefaction of size ε; then

|ε| < ηe
Ao
2 .(6.1)

Proof. We analyze all possible situations. When the rarefaction is generated, one
has 0 < ε < η. When it interacts with a 1- or 3-wave, the size does not increase;
see Remark 5.8. By Proposition 5.12 the size does not change when interactions with
nonphysical waves occur.

The last case to be considered is when a rarefaction interacts with a 2-wave. In
this case the size may increase; however, a rarefaction can meet a fixed 2-wave only
once. Consider the case of a 1-rarefaction of size δ1, as in Proposition 5.3, the other
being analogous. If δ2 < 0, then the size decreases; see (5.13). If δ2 > 0, by (5.12) we
have

|ε1| = |δ1| + |ε3| ≤ |δ1|
(

1 +
1

2
|δ2|

)
< |δ1|e

|δ2|
2 .

Summarizing the three cases above, we get |ε| < ηeL
+
cd/2 (or |ε| < ηeL

−
cd/2) for a 1-

rarefaction (resp., 3-rarefaction), where L±
cd is the sum of the 2-waves at the right or

left of the rarefaction. Then (6.1) follows.
Next, we prove that the number of interactions remains bounded in finite time,

so that the approximate solution is well defined for all t > 0. We first give a lemma.
Lemma 6.2. Consider the wave-front tracking algorithm described in section 4,

under the assumptions of Proposition 5.14. Then
(i) the number of interactions involving a 2-wave and solved by the accurate

Riemann solver is finite;
(ii) the number of interactions where a new rarefaction of size ε ≥ η arises is

finite.
Proof. First consider (i) and refer to Proposition 5.3. Then, using (5.16), we have

ΔF ≤ ρ (ξ + K(Ao − 2)/2) < 0, and hence F decreases by a uniform positive quantity;
since it is nonincreasing, this can happen only a finite number of times.

Then consider (ii). After (i), it remains only to consider the case of two shocks of
the same family interacting.

Under the notation of the corresponding case in the proof of Proposition 5.10 we
have ε = ε1 ≥ η and

ΔF ≤ |ε1| (1 − ξ + KAo) ≤ η (1 − ξ + KAo) < 0

because of (5.36). Arguing similarly as in (i), this can happen only a finite number of
times.

Regarding (ii) in Lemma 6.2, recall that if ε ≥ η, then the new rarefaction must
be split into more than one wave. Therefore Lemma 6.2 can be rephrased by saying
that, except for finite interactions, the number of waves emitted in an interaction is
at most three, and this case occurs precisely when a nonphysical wave is generated;
moreover, in every interaction at most one wave per family is emitted.

In a schematic way, apart from a finite number of interactions, in our algorithm
the following hold (we will consider the set of nonphysical waves as a fourth family of
waves):
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(a) the interaction of an i-wave, i = 1, 3, with a 2-wave is solved by a single
i-wave, a 2-wave, and a 4-wave;

(b) in the interaction of just 1- and/or 3-waves, there is at most one outgoing
wave of each family 1 and 3;

(c) the interaction of a i-wave, i = 1, 2, 3, with a 4-wave is solved by an i-wave
and a 4-wave.

The next proposition extends the result of Lemma 2.5 in [3].
Proposition 6.3. Consider the wave-front algorithm described in section 4 and

assume in the strip [0, T ) × R the following:
for some a1 < a2 < 0 < b1 < b2 the waves of the first (resp., third)
family have speeds in the interval [a1, a2] (resp., [b1, b2]).

Then the number of interactions in the region [0, T ) × R is finite.
Proof. Assume by contradiction that in the region [0, T ) × R there exists an in-

finite number of interactions. Unless we take a smaller T we can assume that the
number of interactions is finite in every strip [0, t] × R, 0 < t < T , and that T is
an accumulation point for the times of interaction. Because of the finite propagation
speed, the interaction points are also bounded in space.

Then there exists a bounded sequence (tj , xj), j = 1, 2, . . . , of interaction points
such that

0 < tj < tj+1 < T for all j and (tj , xj) → (T, x̄)

for some x̄. Denote J = {(tj , xj): j = 1, 2, . . .} the set of all interaction points.
The situation described in items (a)–(c) above holds except in a finite number of

interactions; let τ < T be the maximum time of these “exceptional” interactions. It
is not restrictive to assume that τ < tj < T for all j = 1, 2, . . . .

Starting from a point of J , we “trace back” all the segments up to t = 0; we
repeat the procedure for all the points of J and call F the set of the “traced segments”
obtained in this way. In other words, a segment belongs to the set F iff it can be joined
forward in time to some point of J by a continuous path along the wave fronts. The
set F is not empty: for instance, two segments interacting at the point (tj , xj) belong
to F for any j = 1, 2, . . . , . Observe the following dichotomy property of F which is
used just below:

two interacting waves either both belong to F or none of them does;
moreover, if at least one of the outgoing waves belong to F , then
both the incoming waves must belong to F .

We now partition all the interaction points of the algorithm that occur for times t > τ
into the following sets:

• I0: the interaction points where no ingoing wave belongs to F ;
• I1: the interaction points where both incoming waves belong to F and at

most one outgoing segment belongs to F ;
• I2: the interaction points where exactly two outgoing segments belong to F ;
• I3: the interaction points where three outgoing waves all belong to F .

Because of the dichotomy property quoted above no outgoing wave in case I0 can
belong to F . On the contrary, both incoming waves in I1, I2, I3 must belong to F .

Recall that we are considering times t > τ . Therefore the maximum number
of emitted waves in an interaction is three, and this happens only in the situation
considered in I3, that is, for interactions as in (a) above. The case of more than one
emitted wave per family cannot occur, and so the outgoing waves in I2 belong to
different families. By definition we have J ∩ I0 = ∅, and so J ⊂ I1 ∪ I2 ∪ I3.



ON A MODEL OF MULTIPHASE FLOW 153

Let V(t) be the total number of wave fronts of the families 1, 2, and 3 that belong
to F at time t. The functional V(t) is nonincreasing, and it decreases at least by 1
across I1. Then I1 is finite. As a consequence, all the interaction points of J belong
to I2 ∪ I3, except at most a finite number. Let τ1 ∈ [τ, T ) be a time such that all
points in I1 lie in t < τ1.

Let P = {x1, . . . , xN1
} be the set of points of the x-axis where a 2-wave is located.

We consider two cases and make use of [3, Lemma 2.5].

x̄ 	∈ P . In this case we can choose a time τ1 < T such that after that time no

segment belonging to F crosses a 2-wave. Then all the points in J with tj > τ1 belong
to I2.

Take a point (t∗, x∗) ∈ J with t∗ > τ1, so that (t∗, x∗) ∈ I2. At (t∗, x∗) there
are two outgoing segments, both of them belonging to F ; for t > t∗ and t close to t∗

we define γ�(t) to be the segment on the left and γr(t) that on the right. When γ�(t)
(resp., γr(t)) reaches an interaction point, we prolong it by the segment of F outgoing
from that point and located on the left (resp., on the right).

In this way we define recursively for any t < T two paths: γ�(t) is made by
segments of the families 1 or 3, while γr(t) is made by segments of the families 3 or 4.

We claim that the speeds of the two paths are strictly separated. Indeed, if γr
starts following a 3-segment, then γ� starts with a 1-segment and so will always follow
1-segments; therefore γ̇�(t) ≤ a2 < 0 < b1 ≤ γ̇r(t). If γr starts following a 4-segment,
then it will always follow 4-segments; in this case γ̇�(t) ≤ b2 < ŝ = γ̇r(t).

Thus for c = min{ŝ− b2, b1 − a2} > 0 we have γr(t) − γ�(t) ≥ c(t− t∗) . Now set
ρ = c(T − t∗) and choose tn ∈ (t∗, T ), with (tn, xn) ∈ J , such that

c(tn − t∗) >
ρ

2
, (T − tn)(|a1| + ŝ) <

ρ

4
.(6.2)

By definition of F , the points (tn, γ�(tn)) and (tn, γr(tn)) can be joined forward in
time to points (th, xh), resp., (tk, xk), of J , with h, k > n. Then

xh ≤ γ�(tn) + ŝ(th − tn) , xk ≥ γr(tn) − |a1|(tk − tn) .

Thanks to (6.2), we get

xk − xh ≥ c(tn − t∗) − (|a1| + ŝ) (T − tn) >
ρ

4
.

Since n can be taken arbitrarily large, the last inequality contradicts the convergence
of the sequence xj .

x̄ ∈ P . Consider case (a) above. The possibility that the outgoing waves be-
longing to F are precisely one physical and one nonphysical wave may happen only
a finite number of times, since the functional V(t) is nonincreasing. Therefore we can
assume that, for t > τ1, in case (a) the two outgoing physical waves belong to F .

Let (t∗, x∗) ∈ J with t∗ > τ1. As before we define for t ∈ [t∗, T ) two continuous
paths γ�(t), γr(t) starting at (t∗, x∗) in the following way.

At (t∗, x∗) there are either two or three outgoing segments belonging to F ; for
times t > t∗ and sufficiently close to t∗ we define γ�(t) to be the segment on the left
and γr(t) the one on the right. When γ�(t) (γr(t)) reaches an interaction point, it is
prolonged by the segment of F on the left (resp., on the right). Then the path γ�(t) is
made by segment of the families 1, 2, or 3, while γr(t) is made by segments of families
3 or 4; in fact the interaction of a 1-wave with a 2-wave always produces a 4-wave
(except in a finite number of cases).
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Now we prove that the speeds of the paths γ�(t), γr(t) are strictly separated.
Indeed, if γr(t) starts following a 3-segment, then γ� starts with either a 2- or a
1-segment and, by the remark at the beginning of this subcase, γ̇�(t) ≤ 0 < b1 ≤ γ̇r(t).
If γr(t) starts following a 4-segment, then γ̇�(t) ≤ b2 < ŝ = γ̇r(t).

Finally, for c = min{ŝ − b2, b1} the same argument exploited in the other case
leads to a contradiction.

6.2. Control of the total size of nonphysical fronts. Assume as above
that the assumptions of Proposition 5.14 hold. We assign inductively to each wave
α a generation order kα as in [9, page 140]. This is done according to the following
procedure. First, at time t = 0 each wave has order 1. Second, assume that two waves
α and β interact at time t; if α and β belong to different families, the outgoing waves
of those families keep the order of the incoming waves, and the other waves assume
order max{kα, kβ} + 1; if α and β belong to the same family, and the outgoing wave
of that family takes the order min{kα, kβ}, and the other waves are assigned order
max{kα, kβ} + 1.

When specialized to the current setting this has the following consequences:
• every 2-wave has order 1; when an i-wave, i = 1, 3, of order k interacts with

a 2-wave, the outgoing i-wave has order k, and the other outgoing wave (of
the family j, j = 1, 3, j 	= i, or a nonphysical wave) has order k + 1;

• in the interaction of a 1- with a 3-wave the waves cross without changing
order; in the interaction of two waves α, β of the same family i = 1, 3, the
outgoing wave of the family i takes order min{kα, kβ}, and the wave of the
family j = 1, 3, j 	= i, has order max{kα, kβ} + 1;

• when a nonphysical wave interacts with any other wave, both waves cross
without changing order; in particular a nonphysical wave keeps the order it
has been assigned when generated.

For t ≥ 0 not an interaction time and any k = 1, 2, . . . define (see (5.2), (5.1))

Vk(t) =
∑
γ>0
kγ=k

|γ| + ξ
∑
γ<0
kγ=k

|γ| + Knp

∑
γ∈NP
kγ=k

|γ|,

Qk(t) =
∑

γ3 at the left of δ2
kγ3=k

|γ3||δ2| +
∑

γ1 at the right of δ2
kγ1=k

|δ2||γ1|,

Fk(t) = Vk(t) + KQk(t),

and

Ṽk(t) =
∑
�≥k

V�(t) , Q̃k(t) =
∑
�≥k

Q�(t) , F̃k(t) = Ṽk(t) + KQ̃k(t) .

We remark that

F̃1(0+) = Lξ(0+) + KQ(0+), F̃k(0+) = 0 for k ≥ 2.

Observe that if a nonphysical front interacts with another wave, the functionals above
do not change; the same holds for interactions between 3- and 1-waves. Then we focus
on interactions of waves of the same i family, i = 1, 3 (as usual denote j = 1, 3, j 	= i),
and on interactions between 1- or 3-waves with a 2-wave.
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For h ∈ N, denote by Ih the set of times t when an interaction occurs between
two waves α and β of families 1 or 3 with max{kα, kβ} = h; denote by Jh the set
of interaction times t of a 1- or 3-wave of order h with a 2-wave. Finally, denote
Th = Ih ∪ Jh and I =

⋃
h≥1 Ih, J =

⋃
h≥1 Jh, T = I ∪ J .

In order to control the total size of nonphysical fronts we must strengthen the
assumptions (5.35), (5.36) required in Proposition 5.14. First, for any fixed m > 0,
instead of (5.35) we require the stronger condition

0 < Ao <
1 −

√
d

2 −
√
d
.(6.3)

Then denote

λ=̇
1 + KAo

ξ
, λ2 =̇

ξ + KAo

K(2 −Ao) − ξ
, μ=̇ max

{
λ , λ2,

KnpCo

K

}
.(6.4)

We need 0 < μ < 1. From (5.36)3 we have KnpCo < K; moreover, we have 0 < λ < 1

and λ2 > 0 because of (5.36)2. At last λ2 < 1 holds iff ξ
1−Ao

< K; this condition is
stronger than the left inequality in (5.36)2. Hence, instead of (5.36) we assume

1 −Ao

1 − 2Ao
< ξ <

1√
d
,

ξ

1 −Ao
< K <

ξ − 1

Ao
, Knp <

K

Co
.(6.5)

Remark the new upper bound required on ξ. As in the proof of Proposition 5.13, the
interval where K varies is not empty if Ao < 1

2 and ξ > 1−Ao

1−2Ao
. In turn, we can find

ξ satisfying (6.5)1 if (6.3) holds; remark that 1−
√
d

2−
√
d
≤ 1

2 . The last condition in (6.5)

coincides with that in (5.36).
Remark 6.4. Proposition 5.14 still holds under the stronger assumptions (6.3),

(6.5) under the same condition (5.38), because the inequality on the right-hand side
in (6.5)2 has not changed; see (5.39).

Proposition 6.5. Fix m > 0 and assume (6.3), (6.5). We have the following:
1. τ ∈ Th, h ≤ k − 2: then ΔF̃k = ΔFk = 0 .
2. τ ∈ Tk−1: then ΔFk−1 < 0, ΔF̃k = ΔFk > 0, and

[ΔF̃k]+ ≤ μ

(
[ΔFk−1]− −

k−2∑
�=1

[ΔF�]+

)
.(6.6)

3. τ ∈ Th, h ≥ k: if h = k, then ΔFk < 0; in any case ΔF̃k < 0 and

k−1∑
�=1

[ΔF�]+ < [ΔF̃k]− .(6.7)

Proof. As we pointed out above, for τ ∈ I only interactions of waves of the same
family are taken into account; see Figure 6.1. Remark that by Proposition 5.14 we
have

k−1∑
�=1

ΔF� + ΔF̃k < 0 .(6.8)

1. If h ≤ k−2, no waves with order ≥ k are involved, and then ΔF̃k = ΔFk = 0 .
2. Let h = k− 1. First, consider τ ∈ Ik−1; then ΔṼk = ΔVk > 0. We prove that
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Fig. 6.1. Interactions of 3-waves; h ≥ � denote generation orders.

[ΔṼk]+ ≤ 1

ξ

(
[ΔVk−1]− −

k−2∑
�=1

[ΔV�]+

)
.(6.9)

Indeed, from (5.30)–(5.32), we deduce that

ξ[ΔṼk]+ + ΔVk−1 +

k−2∑
�=1

ΔV� ≤ 0 .(6.10)

If min{kα, kβ} = k − 1, then ΔV� = 0 for 
 = 1, . . . , k − 2 and (6.10) becomes

ξ[ΔṼk]+ + ΔVk−1 < 0; this implies ΔVk−1 < 0 and hence [ΔṼk]+ < (1/ξ)[ΔVk−1]−,
that is, (6.9). Moreover, in this case, one easily finds that ΔQk−1 ≤ 0, because of
(5.21).

If min{kα, kβ} = 
 ≤ k − 2, then ΔVk−1 < 0 and ΔQk−1 < 0, since no waves of
order k − 1 are present after the interaction. Therefore the estimate (6.10) becomes

ξ[ΔṼk]+ − [ΔVk−1]− + ΔV� ≤ 0 .

If ΔV� ≥ 0, we get (6.9). If ΔV� < 0, we check directly that ξ[ΔṼk]+ − [ΔVk−1]− ≤
ξ2|ε1| − |α3| < 0 because of (5.20) and (6.5)1. This completes the proof of (6.9).

From this proof we see also that ΔFk−1 = ΔVk−1 + KΔQk−1 < 0, since both
terms in the sum are negative. Then we use (6.9) and 0 ≤ ΔQ̃k ≤ AoΔṼk to get

0 < ΔF̃k ≤ (1 + KAo)[ΔṼk]+ ≤ λ

(
[ΔVk−1]− −

k−2∑
�=1

[ΔV�]+

)
.(6.11)

We now prove that

[ΔQk−1]− −
k−2∑
�=1

[ΔQ�]+ ≥ 0 .(6.12)

We have only to consider the case in which [ΔQ�]+ > 0 for some 
 ≤ k − 2; but in

this case [ΔQk−1]− −
∑k−2

�=1 [ΔQ�]+ = L+
cd(|α3| + |β3| − |ε3|) ≥ 0 because of (5.21).

Therefore (6.6) for τ ∈ Ik−1 follows from (6.11) and (6.12).
Second, assume τ ∈ Jk−1; we prove that

[ΔF̃k]+ ≤ μ[ΔFk−1]− .(6.13)

Indeed, if the reflected wave is a physical wave, then, under the notation of Proposi-
tion 5.3,

ΔVk−1 ≤ ξ
|δ1δ2|

2
, ΔQk−1 ≤ −|δ1δ2| +

|δ1δ2|
2

Ao = −|δ1δ2|
2

(2 −Ao)
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so that ΔFk−1 ≤ [ξ −K(2 −Ao)] |δ1δ2|/2 < 0 because of (6.5). Then (6.13) follows
since ΔF̃k = ΔFk > 0 and

[ΔF̃k]+ ≤ |δ1δ2|
2

(ξ+KAo) =
|δ1δ2|

2
[K(2 −Ao) − ξ]·λ2 ≤ λ2[ΔFk−1]− ≤ μ[ΔFk−1]− .

If the reflected wave is a nonphysical wave, we have, under the notation of Proposi-
tion 5.12,

0 < ΔFk = ΔVk ≤ KnpCo|δδ2| , ΔVk−1 = 0 , ΔQk−1 = −|δδ2|,

and then

[ΔFk−1]− = K|δδ2| , [ΔFk]+ ≤ KnpCo

K
[ΔFk−1]− ≤ μ[ΔFk−1]− .

The estimate (6.13) is then completely proved. From (6.13) we get (6.6) since no 1-,
3-, or nonphysical waves of order ≤ k − 2 are involved in the interaction.

3. Finally, let h ≥ k. We first consider τ ∈ Ih. If min{kα, kβ} ≥ k, then ΔṼk =

ΔLξ < 0 and ΔF̃k = ΔF < 0. If min{kα, kβ} ≤ k− 1, assume kα ≥ k and kβ ≤ k− 1;

then ΔṼk ≤ ξ|ε1| − |α3| ≤ (ξd − 1)|α3| < 0 by (5.20) and (5.36)1. Moreover, ΔQ̃k =
|ε1|L−

cd − |α3|L+
cd ≤ |ε1|Ao ≤ dAo|α3| again by (5.20). Then

ΔF̃k ≤ [(ξ + KAo)d− 1] · |α3|,

and since, because of (6.5),

(ξ + KAo)d− 1 < (2ξ − 1)d− 1 <

(
2√
d
− 1

)
d− 1 = −(1 −

√
d)2 < 0 ,

we proved that ΔF̃k < 0. Now from (6.8) we deduce that
∑k−1

�=1 ΔF� < [ΔF̃k]−. Since
at most one nonzero term is present in the first sum, (6.7) follows. If h = k, we are in
the same situation as in case 2, so we have ΔFk < 0.

Now assume τ ∈ Jh. Then ΔF̃k = ΔF < 0 and no 1-, 3-, or nonphysical waves
of order < k are present, so (6.7) holds. If h = k and the reflected wave is physical,
from the proof of Proposition 5.3 and (6.5) we find that

ΔFk = ΔVk + KΔQk ≤ |δ1δ2|
2

(ξ − 2K + KAo) < 0 .

If h = k and the reflected wave is nonphysical, then ΔVk = 0, ΔQk < 0, and
ΔFk < 0.

Summarizing, for τ ∈ T we have the following table:

Th; h ≤ k − 2 k − 1 k ≥ k + 1
ΔFk 0 + − ±
ΔF̃k 0 + − −

We write F̃±
k (t) =

∑
τ≤t[ΔF̃k(τ)]± for k ≥ 2. For simplicity the time τ in such sums

is omitted.
Lemma 6.6. Under the assumptions of Proposition 6.5 we have
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F̃+
2 (t) ≤ μ (Lξ(0) + KQ(0)) +

∑
Th, h≥2

[ΔF1]+,(6.14)

F̃+
k (t) ≤ μ

⎛
⎝F̃+

k−1(t) +
∑

Th, h≥k

[ΔFk−1]+ −
∑
Tk−1

k−2∑
�=1

[ΔF�]+

⎞
⎠ , k ≥ 3 .(6.15)

Proof. By Proposition 6.5 (see also the table above), the functional Fk increases
at times τ ∈ Tk−1 and decreases at times τ ∈ Tk, while it does not have a given sign
at times τ ∈ Th, with h ≥ k + 1.

First, by summing up (6.6) we obtain

F̃+
k (t) ≤ μ

∑
Tk−1

(
[ΔFk−1]− −

k−2∑
�=1

[ΔF�]+

)
(6.16)

for k ≥ 2, where the last term in (6.16) is missing if k = 2.
Now recall that F1(0) = Lξ(0) + KQ(0); therefore

F1(t) ≤ Lξ(0) + KQ(0) −
∑
T1

[ΔF1]− +
∑

Th, h≥2

[ΔF1]+

and then ∑
T1

[ΔF1]− ≤ Lξ(0) + KQ(0) +
∑

Th, h≥2

[ΔF1]+ .(6.17)

On the other hand, Fk(0) = 0 for k ≥ 2; from Proposition 6.5 we have

Fk(t) ≤
∑
Tk−1

[ΔFk]+ −
∑
Tk

[ΔFk]− +
∑

Th, h≥k+1

[ΔFk]+ .

Moreover, ∑
Tk−1

[ΔFk]+ =
∑
Tk−1

[ΔF̃k]+ = F̃+
k (t)

and then ∑
Tk

[ΔFk]− ≤ F̃+
k (t) +

∑
Th, h≥k+1

[ΔFk]+ .(6.18)

From (6.16), (6.17), (6.18) we get (6.14), (6.15).
Proposition 6.7 (a contraction property). Under the assumptions of Proposi-

tion 6.5, for any t ≥ 0 and k ≥ 1 we have

Ṽk(t) ≤ F̃k(t) ≤ μk−1 · (Lξ(0) + KQ(0)) .(6.19)

Proof. The estimate (6.19) holds for k = 1 because F̃1(t) = F (t) ≤ Lξ(0)+KQ(0).
Next, we prove by induction on k ≥ 2 that for any t

F̃+
k (t) ≤ μk−1 (Lξ(0) + KQ(0)) +

∑
Th, h≥k

k−1∑
�=1

[ΔF�]+ .(6.20)
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Since by summing up (6.7) we obtain

F̃−
k (t) ≥

∑
Th, h≥k

k−1∑
�=1

[ΔF�]+,(6.21)

then (6.19) will follow from (6.20) for any k ≥ 2 because of (6.21).
Formula (6.20) for k = 2 reduces to (6.14). Next, assume that (6.20) holds for

some k ≥ 2. By (6.15) and the induction assumption

F̃+
k+1(t) ≤ μ

⎛
⎝F̃+

k (t) +
∑

Th, h≥k+1

[ΔFk]+ −
∑
Tk

k−1∑
�=1

[ΔF�]+

⎞
⎠

≤ μk (Lξ(0) + KQ(0)) + μ

⎛
⎝ ∑

Th, h≥k

k−1∑
�=1

[ΔF�]+ +
∑

Th, h≥k+1

[ΔFk]+ −
∑
Tk

k−1∑
�=1

[ΔF�]+

⎞
⎠

≤ μk (Lξ(0) + KQ(0)) + μ
∑

Th, h≥k+1

k∑
�=1

[ΔF�]+ .

Since μ < 1, we get (6.20) for k + 1.
Remark 6.8. We now comment on the case Ao = 0. In this case system (1.1)

reduces to the p-system with pressure law given by (2.1) for fixed λ. According to
our front-tracking algorithm, stationary and nonphysical waves do not appear, and so
Lcd = Q = 0; the algorithm reduces to the one introduced in [3]. Then Proposition 6.5
holds with Ṽk and 1/ξ replacing F̃k and μ, respectively, and at last (6.19) reads

Ṽk(t) ≤
1

ξk−1
· Lξ(0) .

Next, we conclude that the total strength of all nonphysical waves is small by
proceeding as in [9, page 142]. Recall the notation in section 4. First, by Remark 5.16,
the sequence {vν} is uniformly bounded from above and away from 0; then the eigen-
values e1 and e3 are bounded, and this makes possible the choice of a suitable ŝ. We
have two more parameters η, ρ to be chosen. Fix η > 0 with the condition η = ην → 0
as ν → ∞ and estimate the total number of waves of order < k. We have∑
γ∈NP

|γ|(t) ≤ Ṽk(t) +
∑

γ∈NP, kγ<k

|γ|(t)

≤ μk−1 · (Lξ(0) + KQ(0)) + Coρ · [number of fronts of order < k] ≤ 1

ν

by choosing k sufficiently large to have the first term ≤ 1/(2ν) and then choose ρ
small enough to have the second term ≤ 1/(2ν).

We now accomplish the proof of Theorem 2.2. First define

k(m) =
1 −

√
d(m)

2 −
√

d(m)
.(6.22)

From the properties of the function d(m) stated in Remark 5.7 we see that k(0) = 1/2
and that k(m) is decreasing, tending to 0 for m → +∞. The assumption (2.8) implies
that (6.3) holds.
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Now, by hypotheses (2.7) it follows that we can choose ξ such that

1

2
TV log(po) +

1

2 inf ao
TV(uo) <

m

2ξ − 1
<

(
1 − 2Ao

)
m

and that (6.5)1 holds. Hence, using (3.12) and (i) in section 4, we have

L(0+) ≤ 1

2
TV log(po) +

1

2 inf ao
TV(uo) <

m

2ξ − 1

so that the hypotheses (5.38) of Proposition 5.14 hold. Theorem 2.2 now follows along
the lines of [9, section 7.4].

Appendix A. The weighted total variation. In this appendix we prove

Proposition 2.1. Remark that the map d(a, b)
.
= |a−b|

a+b is a distance on R+, as one
can easily prove.

We start with the proof of the inequality on the right in (2.5). It is enough to
prove that

2
n∑

j=1

|f(xj) − f(xj−1)|
f(xj) + f(xj−1)

≤
n∑

j=1

|log f(xj) − log f(xj−1)| .(A.1)

We claim that

log t ≥ 2(t− 1)

t + 1
for t ≥ 1,(A.2)

where the inequality is strict if t > 1. To prove the claim it is sufficient to notice that

the function φ(t) = log t− 2 t−1
t+1 vanishes in 1 and φ′(t) = (t−1)2

t(t+1)2 > 0 if t > 1.

We apply (A.2) to t = x/y for 0 < y ≤ x and arguing by symmetry deduce that

| log x− log y| ≥ 2|x− y|
x + y

for every x, y > 0 .

Then (A.1) follows. The proof of the inequality on the left in (2.5) is analogous,
starting from the inequality

1

t
log t ≤ 2(t− 1)

t + 1
for t ≥ 1(A.3)

with strict inequality if t > 1.
Now assume that f ∈ C(R). To show that WTV(f) = TV (log(f)), we have to

prove that the inequality

TV (log(f)) ≤ 2 sup

n∑
j=1

|f(xj) − f(xj−1)|
f(xj) + f(xj−1)

(A.4)

holds for any [a, b] ⊂ R, the supremum being taken on the set of all partitions a =
xo < x1 < · · · < xn = b, n ∈ N. Consider any such partition; by the mean value
theorem and by the intermediate value theorem applied to f , we get

|log (f(xj)) − log (f(xj−1))| =
|f(xj) − f(xj−1)|

ζj

=
f(xj) + f(xj−1)

2f(ηj)
· 2 |f(xj) − f(xj−1)|

f(xj) + f(xj−1)
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for some ζj between f(xj) and f(xj−1) and ηj ∈ [xj−1, xj ]. We exploit again the
continuity of f in [a, b]. On one hand, its image is compact; then min[a,b] f = m > 0.
On the other hand, f is uniformly continuous in [a, b], so that for any ε > 0 there
exists δε > 0 such that |f(x) − f(y)| < ε if |x− y| < δε for x, y ∈ [a, b].

Now fix any ε > 0; without loss of generality we can consider partitions of the
interval [a, b] of mesh less than δε. Assume for instance f(xj−1) ≤ f(xj); then from
the inequalities

f(xj) − f(xj−1) < ε , f(xj−1) ≤ f(ηj) ≤ f(xj)

it follows that

f(xj) + f(xj−1)

2f(ηj)
≤ 2f(xj−1) + ε

2f(xj−1)
≤ 1 +

ε

m
.

The inequality (A.4) follows by remarking that then for any partition of mesh less
than δε

n∑
j=1

|log (f(xj)) − log (f(xj−1))| ≤
(
1 +

ε

m

)
2

n∑
j=1

|f(xj) − f(xj−1)|
f(xj) + f(xj−1)

.

The proof of Proposition 2.1 is complete.
Remark A.1. Observe that if TV (log(f)) < ∞ and f is discontinuous, then the

inequality on the right in (2.5) is strict, because of the strict inequality in (A.2).
For example, if f has a single jump and assumes the values c > 0 and d > 0, then

WTV(f) = 2 |c−d|
c+d < | log c− log d| = TV(log(f)).

Remark, moreover, that WTV and TV are not equivalent, in the sense that there
does not exist a positive constant C such that C ·TV (log(f)) ≤ WTV(f). This follows

from the fact that clearly the inequality C log t ≤ 2(t−1)
t+1 does not hold for every t ≥ 1.

Appendix B. Shock-rarefaction interactions. In this appendix we consider
a particular case of Lemma 5.6. Actually, this is the only case needed in order to
define a decreasing functional (see section 5); however, we needed further analysis for
the control and treatment of the nonphysical waves.

Lemma B.1 (the case SR, RS → SS). Consider the interaction of a shock αi

and a rarefaction βi of the same family, i = 1, 3, producing two outgoing shocks ε1, ε3.
Then there exists a smooth function B satisfying |αi| ≤ B(αi) ≤ min{sinh(|αi|), 2|αi|}
such that

0 < βi ≤ B(αi) .(B.1)

Moreover, assume

|αi| ≤ m(B.2)

for some m > 0 and denote c = c(m) = cosh(m)−1
cosh(m)+1 . Then both the variation of shock

waves and the reflected wave εj, j 	= i, j = 1, 3, are estimated by the interacting
rarefaction as

|ε1| + |ε3| − |αi| ≤ (2c− 1) · |βi| ,(B.3)

|εj | ≤ c · |βi| .(B.4)
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Proof. We focus on the case i = 3, j = 1; see Figure 5.3(b). Therefore we consider
α3 < 0, β3 > 0 and ε1 < 0, ε3 < 0. Then (5.5), (5.6) become

|ε1| − |ε3| = |β3| − |α3|,(B.5)

sinh(|ε1|) + sinh(|ε3|) = sinh(|α3|) − |β3| .(B.6)

From the second equation |ε1| < |α3|, |ε3| < |α3|, and |β3| < sinh(|α3|); using the first
equation and |ε3| < |α3|, we get |ε1| < |β3|. Therefore in conclusion

|ε1| < min{|α3|, |β3|}, |ε3| < |α3|, |β3| < sinh(|α3|) .(B.7)

Step 1: notation. We set x = |β3|, y = |ε1|, z = |α3|, so that

|ε3| = y − x + z ;(B.8)

see Figure B.1. Under this notation, (B.6) writes as

F (x, y; z) = sinh y + sinh(y − x + z) − sinh z + x = 0(B.9)

for x ≥ 0, y ≥ 0, z ≥ 0, y − x + z ≥ 0. By (B.7), any solution of (B.9) satisfies

y < z , y < x , x < sinh(z) .(B.10)

Step 2: the threshold. Observe that, despite the last inequality in (B.7), we may
well have |β3| > |α3|, that is, x > z. Consider in fact the limit case of ε3 = 0: we have
y = x− z > 0 and sinh(y) = sinh(z) − x that give

sinh(x− z) = sinh(z) − x, x > z .

The last equality is the relation needed for β3, α3 in order to have that the shock
and rarefaction cancel out exactly, giving rise only to a wave of the opposite family.
Observe that the size of the rarefaction must be larger than the one of the shock.
Under the notation above, the threshold curve separating the case of the outgoing
waves S1S3 from the case S1R3 is given by

f(x, z) = sinh(x− z) − sinh(z) + x = 0 .(B.11)

Since fx = cosh(x − z) + 1 > 0 and f(z, z) < 0, the implicit equation f(x, z) = 0

is solved by x = xo(z) ≥ z with x′
o(z) = cosh(x−z)+cosh(z)

cosh(x−z)+1 > 0 for every z ≥ 0;

the curve has for tangent at (0, 0) the line z = x. Observe that xo(z) ≤ 2z because
f(2z, z) = z ≥ 0. In conclusion

z ≤ xo(z) ≤ 2z ;(B.12)

see Figure B.2(a). This estimate and the third inequality in (B.7) prove (B.1) for
B(αi) = xo(|αi|). We can prove more than (B.12), that is,

lim
z→+∞

(xo(z) − 2z) = 0 .(B.13)

Indeed, we show that the inequality xo(z) > 2z − q holds for large z and q > 0 . This
follows from f(2z − q, z) = sinh(z − q) − sinh z + 2z − q ∼ ez (e−q − 1) /2 → −∞ for
z → ∞.
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Fig. B.1. Interactions.
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Fig. B.2. (a) the threshold curve f(x, z) = sinh(x − z) − sinh(z) + x = 0; (b) the domain Dz

and the function y = y(x; z).

Remark that the fact that ε3 is a shock implies that

f(x, z) = sinh(x− z) − sinh(z) + x < 0 .(B.14)

Step 3: the amount of shocks can increase. From (B.5) we have

|ε1| + |ε3| − |α3| = 2|ε1| − |β3| .(B.15)

We now prove that the inequality |ε1| + |ε3| − |α3| < 0, or equivalently |ε1| < 1
2 |β3|,

does not hold if m is large.
The equation giving |ε1| = y in terms of |β3| = x, for a given parameter |α3| = z,

is (B.9), to be considered in the domain

Dz = {(x, y): 0 ≤ x ≤ xo(z) , y ≥ max{0, x− z}} for z ≥ 0,

where xo(z) satisfies (B.11); see Figure B.2(b). Since Fy = cosh y+cosh(y−x+z) > 0,
the implicit equation (B.9) defines a function y = y(x; z) with 0 ≤ y(x; z) ≤ x
and y(x; z) ≤ z; see (B.10). Remark that F (x, x; z) = sinhx + x > 0. Moreover,
F (x, 0; z) = sinh(z−x)−sinh z+x so that F (0, 0; z) = 0; by Fx = 1−cosh(z−x) < 0,
we deduce that F (x, 0; z) < 0 if x > 0. By the implicit function theorem we have
y′(x; z) ≥ 0,

y′(0; z) =
cosh(z) − 1

cosh(z) + 1
∈ [0, 1),(B.16)

and y′′(0; z) = − 4 sinh(z)
(1+cosh(z))2 ≤ 0. The function cosh(z)−1

cosh(z)+1 is increasing, and then for

z ∈ [0,m] its maximum is cosh(m)−1
cosh(m)+1 ; this quantity is strictly larger than 1/2 if m >

log(3 + 2
√

2). Thus in general the estimate y(x; z) < x/2 cannot hold.
Step 4: proof of the estimate. From (B.15) we see that |ε1|+ |ε3|− |α3| ≤ (2c−1) ·

|β3| ⇐⇒ |ε1| ≤ c · |β3|, that is, that (B.3) and (B.4) are equivalent; we shall prove
(B.4). To bypass the study of the function y(x; z) we define
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Φ(x; z, c) = F (x, cx; z) = sinh(cx) + sinh (z − (1 − c)x) − sinh z + x .

If 1/2 ≤ c < 1, then z > (1 − c)x and Φ(0; z, c) = 0 ,

Φx(x; z, c) = 1 + c cosh(cx) − (1 − c) cosh (z − (1 − c)x) ,

Φxx(x; z, c) = c2 sinh(cx) + (1 − c)2 sinh (z − (1 − c)x) > 0 .

Therefore the function x → Φx(x; z, c) is increasing, and then Φ(x; z, c) ≥ 0 if

Φx(0; z, c) = (1 + c) − (1 − c) cosh(z) > 0 ,

that is, if cosh(z) ≤ 1+c
1−c ; this is just (B.2). Then y(x; z) ≤ cx for all x ∈ (0, xo(z)),

and so (B.4) is proved.
Remark B.2. From (B.16) we see that condition (B.2) is equivalent to the geo-

metric condition y′(0; z) = (cosh z − 1)/(cosh z + 1) < c. Moreover, as we noticed in
the above proof, condition (B.2) is equivalent to

cosh(|αi|) ≤
1 + c

1 − c
,(B.17)

which, in turn, is equivalent to

|αi| ≤ log
(1 +

√
c)2

1 − c
.(B.18)

From the definition of the strength, one has that |αi| = (1/2) log(vmax/vmin), where
vmax = max{v�, vr}, vmin = min{v�, vr}, v�, vr being, respectively, the left and right
values of v for the wave of size αi. Hence (B.18) is equivalent to

√
vmax

vmin
≤ (1 +

√
c)

2

1 − c
.

Remark B.3. In the proof above we showed that ΔLshocks = |ε1| + |ε3| − |α3| =
2|ε1| − |β3| may be positive, differently from Nishida’s paper, where it is always de-
creasing. This depends on the definition of the wave strengths, which was imposed to
us in order to have good estimates when dealing with interactions with the 2-waves.
In any case ΔL = ΔLshocks + ΔLrarefactions ≤ 0.

Remark B.4. Under the notation and assumptions of Lemma B.1 we verify that

|εj | ≤ c · |αi| .(B.19)

This estimate, together with (B.4), allows us to obtain (in a special case) the analogue
of (5.20) with c in place of d.

The proof makes use of a numerical computation. As in that lemma we consider
the case j = 1, i = 3. Let z > 0 be fixed and 0 ≤ x ≤ xo(z). From the proof
of Lemma B.1 we deduce that y = y(x, z); for z fixed the function x → y(x, z) is
increasing. Then define

Y (z) = y(xo(z), z) = xo(z) − z .

In order to prove (B.19) it is sufficient to prove that

Y (z) ≤ cz if cosh(z) ≤ 1 + c

1 − c
.
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Remark that from (B.13) we know that Y (z)/z → 1 for z → +∞; however, the
constraint (B.17) implies that z is bounded. The inequality Y (z) ≤ cz is equivalent
to xo(z) − z ≤ cz, i.e., xo(z) ≤ (1 + c)z. Therefore we need to prove that

φ(z, c)
.
= sinh(cz) − sinh(z) + (1 + c)z ≥ 0 if cosh(z) ≤ 1 + c

1 − c
.(B.20)

Notice that cosh(z) ≤ 1+c
1−c means 0 ≤ z ≤ zc for zc = log( 1+c

1−c +
√

( 1+c
1−c )

2 − 1 ).

Formula (B.20) is shown to hold true by numerical computations. Remark, however,
that

φ′(z, c) = c cosh(cz) − cosh(z) + 1 + c,

φ′′(z, c) = c2 sinh(cz) − sinh(z) ≤ 0,

so φ′(0, c) = 2c, φ(·, c) is concave, limz→+∞ φ(z, c) = −∞, and φ(·, c) has a single
point of maximum; at last φ′(zc) = c (cosh(czc) − cosh(zc)) < 0. This concludes the
proof of (B.19).

Remark that if c = 1/2, then φ(z, c) = sinh(z/2) − sinh z + 3
2z. If z is such that

cosh z = 3, then sinh z = 2
√

2, sinh(z/2) = 1, z = log(3 +
√

8), and (B.20) holds with
strict inequality.
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Abstract. We prove the global well-posedness of the critical dissipative quasi-geostrophic equa-
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1. Introduction. In this paper we are concerned with the initial value problem
of the 2D (two-dimensional) dissipative quasi-geostrophic equation

(QG)α

{
∂tθ + v · ∇θ + |D|2αθ = 0,

θ|t=0 = θ0,

where the scalar function θ represents the potential temperature and the parameter
α ∈ ]0, 1]. The velocity v = (v1, v2) is determined by Riesz transforms of θ,

v = (−∂2|D|−1θ, ∂1|D|−1θ) := (−R2θ,R1θ), |D| =
√
−Δ.

In addition to its intrinsic mathematical importance, this equation serves as a 2D
model in geophysical fluid dynamics; for more details about the subject, see [6, 19].

This equation has been intensively investigated, and much attention is devoted
to the problem of global well-posedness. For the subcritical case (α > 1

2 ) the theory
seems to be in a satisfactory state. Indeed, global existence and uniqueness for arbi-
trary initial data are established in various function spaces (see, for example, [8, 20]).
However, the critical and supercritical cases, corresponding respectively to α = 1

2
and α < 1

2 , are harder to deal with. In the supercritical case, we have until now
only global results for small initial data; see, for instance, [3, 5, 12, 13, 23, 24]. For
the critical case, Constantin, Córdoba, and Wu showed in [7] the global existence in
Sobolev space H1 under a smallness assumption of the L∞ norm of θ0. Many other
relevant results can be found in [9, 14, 15, 17]. Very recently, Kiselev, Nazarov, and
Volberg proved in [16] global well-posedness for arbitrary periodic smooth initial data
by using an elegant argument of the modulus of continuity. In [2], Caffarelli and
Vasseur established the global regularity of weak solutions associated with L2 initial
data.

The main goal of this work is to establish global well-posedness in the critical
case when initial data belong to the homogeneous critical Besov space Ḃ0

∞,1(R
2): we

remove the periodic condition, and we weaken the initial regularity. Before giving our
main result let us first specify our notion of critical spaces. Let θ be a solution of

∗Received by the editors February 9, 2007; accepted for publication (in revised form) December
3, 2007; published electronically April 4, 2008.
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(QG)α and λ > 0; then θλ(t, x) = θ(λt, λx) is also a solution. One class of scaling

invariant spaces is the homogeneous Besov spaces (Ḃ
2/p
p,r ), with p, r ∈ [1,∞].

Our first main result reads as follows.
Theorem 1.1. Let θ0 ∈ Ḃ0

∞,1; then there exists a unique global solution θ to
(QG)α such that

θ ∈ C(R+; Ḃ0
∞,1) ∩ L1

loc(R+; Ḃ1
∞,1).

The proof relies essentially on two facts: the first is the establishment of local
existence, which is the major part of this paper, and the derivation of some smoothing
effects of the solution, described in the next theorem. The second is the use of the
modulus of continuity, as used in [16]. We mention that the property allowing us
to remove the periodicity is the spatial decay of the solution. The key to our local
existence result is some new estimates for the following transport-diffusion equation:

(TD)

{
∂tθ + v · ∇θ + |D|θ = f,

θ|t=0 = θ0,

where v and f are given and θ is the unknown scalar function. We now state our
second main result.

Theorem 1.2. Let s ∈ ]−1, 1[, r, r ∈ [1,+∞] with r ≥ r̄, f ∈ L̃r
loc(R+; Ḃ

s+ 1
r−1

∞,1 ),

and v be a divergence-free vector field belonging to L1
loc(R+; Lip(R2)). We consider a

smooth solution θ of the transport-diffusion equation (TD); then there exists a constant
C depending only on s such that for every t ∈ R+

‖θ‖
L̃r

t Ḃ
s+ 1

r
∞,1

≤ CeC
∫ t
0
‖∇v(τ)‖L∞dτ

(
‖θ0‖Ḃs

∞,1
+ ‖f‖

L̃r
t Ḃ

s+ 1
r
−1

∞,1

)
.

Additionally, if v = ∇⊥|D|−1θ, then we have for all s ≥ 1

‖θ‖
L̃r

t Ḃ
s+ 1

r
∞,1

≤ CeC
∫ t
0
(‖∇θ(τ)‖L∞+‖∇v(τ)‖L∞ )dτ

(
‖θ0‖Ḃs

∞,1
+ ‖f‖

L̃r
t Ḃ

s+ 1
r
−1

∞,1

)
.

We use for the proof a new approach based on Lagrangian coordinates combined
with paradifferential calculus and a new commutator estimate. This idea has been
recently used by the second author in [11, 12].

The rest of the paper is structured as follows. In section 2 we review some basic
results of Littlewood–Paley theory, and we give some useful lemmas. Section 3 deals
with a new commutator estimate which is needed for the proof of Theorem 1.2, done
in section 4. Theorem 1.1 is proved in section 5.

2. Preliminaries. Throughout the paper, C stands for a constant which may
be different in each occurrence. We shall sometimes use the notation A � B instead
of A ≤ CB, and A ≈ B means that A � B and B � A. We denote by Ff the Fourier
transform of f and by [η] the whole part of η.

One starts with recalling a traditional result that will be frequently used.
Lemma 2.1 (Bernstein). Let f ∈ Lp(R2), with 1 ≤ p ≤ ∞ and 0 < r < R. Then

there exists a constant C > 0 such that ∀ k ∈ N and λ > 0 we have

suppFf ⊂ B(0, λr) =⇒ sup
|β|=k

‖∂βf‖Lq ≤ Ckλk+2( 1
p−

1
q )‖f‖Lp ,

suppFf ⊂ C(0, λr, λR) =⇒ C−kλk‖f‖Lp ≤ sup
|β|=k

‖∂βf‖Lp ≤ Ckλk‖f‖Lp .
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These estimates hold true if we replace the derivation ∂β by |D||β|.
To define Besov spaces we need to recall the homogeneous Littlewood–Paley de-

composition based on a dyadic unity partition. Let ϕ be a smooth function supported
in the ring C := {ξ ∈ R

2, 3
4 ≤ |ξ| ≤ 8

3} and such that∑
q∈Z

ϕ(2−qξ) = 1 for ξ �= 0.

Now, for u ∈ S ′ we set

∀q ∈ Z, Δqu = ϕ(2−qD)u and Squ =
∑

j≤q−1

Δju.

We have the formal decomposition

u =
∑
q∈Z

Δq u ∀u ∈ S ′(R2)/P[R2],

where P[R2] is the set of polynomials (see [18]). Moreover, the Littlewood–Paley
decomposition satisfies the property of almost orthogonality:

(1) ΔkΔqu ≡ 0 if |k − q| ≥ 2, and Δk(Sq−1uΔqu) ≡ 0 if |k − q| ≥ 5.

We recall now the definition of Besov spaces. Letting (p,m) ∈ [1,+∞]2, s ∈ R, and
u ∈ S ′, we set

‖u‖Ḃs
p,m

:=
(
2qs‖Δqu‖Lp

)
�m

, Ḃs
p,m :=

{
u ∈ S

∣∣ ‖u‖Ḃs
p,m

< ∞
}
·

• For s < 2
p (or s ≤ 2

p if m = 1), we then define Ḃs
p,m as the completion of Ḃs

p,m

for ‖ · ‖Ḃs
p,m

.

• If k ∈ N and 2
p + k − 1 ≤ s < 2

p + k (or s = 2
p + k if m = 1), then Ḃs

p,m is

defined as the subset of distributions u ∈ S ′ such that ∂βu ∈ Ḃs−k
p,m whenever

|β| = k.
Another characterization of the homogeneous Besov spaces that will be needed

later is the following; see, for instance, [21]. For s ∈ ]0, 1[, p,m ∈ [1,∞]

(2)

(∫
R2

‖u(· − x) − u(·)‖mLp

|x|sm
dx

|x|2

) 1
m

≈ ‖u‖Ḃs
p,m

,

with the usual modification if m = ∞.
In our next study we require two kinds of coupled space-time Besov spaces. The

first one is defined in the following manner: for T > 0 and m ≥ 1, we denote by
Lr
T Ḃ

s
p,m the set of all tempered distributions u satisfying

‖u‖Lr
T Ḃs

p,m
:=

∥∥∥(2qs‖Δqu‖Lp

)
�m

∥∥∥
Lr

T

< ∞.

The second mixed space is L̃r
T Ḃ

s
p,m, which is the set of tempered distributions u

satisfying

‖u‖L̃r
T Ḃs

p,m
:=

(
2qs‖Δqu‖Lr

TLp

)
�m

< ∞.
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We can define in the same way the spaces Lr
TB

s
p,m and L̃r

TB
s
p,m. The following em-

beddings are a direct consequence of Minkowski’s inequality.
Let s ∈ R, r ≥ 1, and

(
p,m

)
∈ [1,∞]2; then we have

Lr
T Ḃ

s
p,m ↪→ L̃r

T Ḃ
s
p,m if m ≥ r and(3)

L̃r
T Ḃ

s
p,m ↪→ Lr

T Ḃ
s
p,m if r ≥ m.

The next lemma will be useful.
Proposition 2.2. The following results hold true:
•

Ḃs
p,m ↪→ Ḃ

s−2( 1
p−

1
p1

)
p1,m1 for p ≤ p1 and m ≤ m1.

• Let |D| :=
√
−Δ and σ ∈ R; then the operator |D|σ is an isomorphism from

Ḃs
p,m to Ḃs−σ

p,m .

• Let γ ∈ ]0, 1[, s1, s2 ∈ R such that s1 < s2 and u ∈ Ḃs1
p,∞ ∩ Ḃs2

p,∞; then

‖u‖
Ḃ

γs1+(1−γ)s2
p,1

� ‖u‖γ
Ḃ

s1
p,∞

‖u‖1−γ

Ḃ
s2
p,∞

.

• For s > 0, Ḃs
p,m ∩ L∞ is an algebra.

We now recall some commutator estimates (see [4, 10] and the references therein).
Lemma 2.3. Let p, r ∈ [1,∞], 1 = 1

r+ 1
r′ , ρ1 < 1, ρ2 < 1, and v be a divergence-free

vector field of R
2. Assume in addition that

ρ1 + ρ2 + 2 min{1, 2/p} > 0 and ρ1 + 2/p > 0.

Then we have∑
q∈Z

2q(
2
p+ρ1+ρ2−1)

∥∥[Δq, v · ∇]u
∥∥
L1

tL
p � ‖v‖

L̃r
t Ḃ

2
p

+ρ1

p,1

‖u‖
L̃r′

t Ḃ
2
p

+ρ2

p,1

.

Moreover, we have for s ∈ ] − 1, 1[

∑
q∈Z

2qs
∥∥[Δq, v · ∇]u

∥∥
Lp � ‖∇v‖L∞‖u‖Ḃs

p,1
.

If v = ∇⊥|D|−1θ, then the above estimate holds true for s ≥ 1 if we replace ‖∇v‖L∞

by ‖∇v‖L∞ + ‖∇u‖L∞ .
The following result is due to Vishik [22].
Lemma 2.4. Let f be a function in the Schwartz class and ψ a diffeomorphism

preserving Lebesgue measure; then ∀ p ∈ [1,+∞] and ∀ j, q ∈ Z,

‖Δj(Δqf ◦ ψ)‖Lp ≤ C2−|j−q|‖∇ψε(j,q)‖L∞‖Δqf‖Lp ,

with

ε(j, q) = sign(j − q).

The following result is proved in [9].
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Proposition 2.5. Let v be a smooth divergence-free vector field and f be a
smooth function. We assume that θ is a smooth solution of the equation

∂tθ + v · ∇θ + κ|D|2αθ = f, with κ ≥ 0 and α ∈ [0, 1].

Then for p ∈ [1,+∞] we have

‖θ(t)‖Lp ≤ ‖θ(0)‖Lp +

∫ t

0

‖f(τ)‖Lpdτ.

We can find a proof of the next proposition in [12].
Proposition 2.6. Let C be a ring and α ∈ R+. There exists a positive constant

C such that, for any p ∈ [1; +∞], for any pair (t, λ) of positive real numbers, we have

suppFu ⊂ λC ⇒ ‖e−t|D|αu‖Lp ≤ Ce−C−1tλα‖u‖Lp .

3. Commutator estimate. The main result of this section is the following
estimate that will play a crucial role for the proof of Theorem 1.2.

Proposition 3.1. Let v be a divergence-free vector field belonging to L1
loc(R+;

Lip(R2)). For q ∈ Z we denote by ψq the flow of the regularized vector field Sq−1v.

Then for f ∈ Ḃ1
∞,∞ and for q ∈ Z we have∥∥|D|(Δqf ◦ ψq) − (|D|Δqf) ◦ ψq

∥∥
L∞ ≤ CeCV (t)V

1
2 (t)2q‖Δqf‖L∞ ,

where V (t) = ‖∇v‖L1
tL

∞(R2) and C is an absolute constant.
Proof. We set fq := Δqf, and then it is obvious that

|D|(fq ◦ ψq) − (|D|fq) ◦ ψq = |D| 12 {(|D| 12 fq) ◦ ψq} − {|D| 12 (|D| 12 fq)} ◦ ψq

+ |D| 12
{
|D| 12 (fq ◦ ψq) − (|D| 12 fq) ◦ ψq

}
:= I + II.

For the first term we apply Proposition 3.1 from [12], with α = 1
2 and Fq = |D| 12 fq,

yielding

‖I‖L∞ ≤ CeCV (t)(eCV (t) − 1)‖Fq‖
Ḃ

1
2
∞,1

≤ CeCV (t)(eCV (t) − 1)2q‖fq‖L∞

� eCV (t)V
1
2 (t)2q‖fq‖L∞ .

For the second term we use the following formula for the fractional Laplacian:

|D| 12 f(x) = C

∫
R2

f(x) − f(y)

|x− y| 52
dy.

Since the flow ψq preserves Lebesgue measure, we easily get

|D| 12 (fq ◦ ψq)(x) − (|D| 12 fq) ◦ ψq(x) = C

∫
R2

fq(ψq(x)) − fq(ψq(y))

|x− y| 52

×
(

1 − |x− y| 52
|ψq(x) − ψq(y)|

5
2

)
dy.
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We denote gq(x) = fq(ψq(x)) and we set h = x− y:

|D| 12 (fq ◦ ψq)(x) − (|D| 12 fq) ◦ ψq(x) = C

∫
R2

gq(x) − gq(x− h)

|h| 52
ψ̄q(x, h)dh,

with

ψ̄q(x, h) = 1 − |h| 52
|ψq(x) − ψq(x− h)| 52

·

It follows from law products and the embedding Ḃ0
∞,1 ↪→ L∞ that

‖II‖L∞ ≤
∥∥|D| 12 (fq ◦ ψq) − (|D| 12 fq) ◦ ψq

∥∥
Ḃ

1
2
∞,1

≤ C‖ψ̄q‖L∞(R4)

∫
R2

|h|− 5
2 ‖gq(·) − gq(· − h)‖

Ḃ
1
2
∞,1

dh

+ C sup
h∈R2

‖ψ̄q(·, h)‖
Ḃ

1
2
∞,1

∫
R2

|h|− 5
2 ‖gq(·) − gq(· − h)‖L∞dh

= J1
q + J2

q .

We intend to estimate J1
q . It is plain from the mean value theorem that

1

‖∇ψ‖
5
2

L∞

≤ |h| 52
|ψ(x) − ψ(x− h)| 52

≤ ‖∇ψ−1‖
5
2

L∞ ,

which easily gives the inequality

‖ψ̄q‖L∞(R4) ≤ max
(
|1 − ‖∇ψ−1

q ‖
5
2

L∞ |; |1 − ‖∇ψq‖
− 5

2

L∞ |
)
.

On the other hand, we have the classical estimates

(4)
e
−C‖Sq−1∇v‖

L1
tL∞ ≤ ‖∇ψ∓1

q ‖L∞ ≤ e
C‖Sq−1∇v‖

L1
tL∞

and ‖Sq−1∇v‖L1
tL

∞ ≤ CV (t).

We thus get

(5) ‖ψ̄q‖L∞(R4) ≤ CeCV (t)(eCV (t) − 1).

Using the definition of Besov spaces and the commutation of Δj with translation
operators, one finds∫

R2

|h|− 5
2 ‖gq(·) − gq(· − h)‖

Ḃ
1
2
∞,1

dh

≤
∑
j

2
1
2 j

∫
R2

|h|− 1
2 ‖Δjgq(·) − (Δjgq)(· − h)‖L∞

dh

|h|2 ·
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Applying the characterization of Besov spaces (2) yields∫
R2

|h|− 5
2 ‖gq(·) − gq(· − h)‖

Ḃ
1
2
∞,1

dh ≤ C
∑
j

2
1
2 j‖Δjgq‖

Ḃ
1
2
∞,1

≤ C
∑

|j−k|≤1

2j
1
2 2

1
2k‖ΔjΔkgq‖L∞

≤ C‖gq‖Ḃ1
∞,1

.

Now we use the following interpolation estimate:

‖gq‖Ḃ1
∞,1

� ‖gq‖
1
2

L∞‖Δgq‖
1
2

L∞

� ‖fq‖
1
2

L∞‖Δgq‖
1
2

L∞ .

It is easy to check from Leibniz rule that

Δgq = Δ(fq ◦ ψq) =

d∑
i=1

〈(∇2fq) ◦ ψq · ∂iψq, ∂iψq〉 + (∇fq) ◦ ψq · Δψq.

Applying the Bernstein inequality, we get

‖Δgq‖L∞ � eCV (t)22q‖fq‖L∞ + 2q‖fq‖L∞‖Δψq‖L∞ .

The derivative of the flow equation with respect to x and the use of the Gronwall and
Bernstein inequalities gives

‖∇2ψq(t)‖L∞ � eCV (t)

∫ t

0

‖∇2Sq−1v(τ)‖L∞dτ

� eCV (t)2q.(6)

Combining both last estimates, we obtain

(7) ‖Δgq‖L∞ � eCV (t)22q‖fq‖L∞ .

Putting together (5) and (7), we conclude that

‖J1
q (t)‖L∞ � eCV (t)(eCV (t) − 1)2q‖fq‖L∞ .

Let us now turn to the second term J2
q . The integral term can be estimated from (2)

as follows: ∫
R2

|h|− 5
2 ‖gq(·) − gq(· − h)‖L∞dh � ‖gq‖

Ḃ
1
2
∞,1

.

According to the classical composition result we write

‖gq(t)‖
Ḃ

1
2
∞,1

� ‖∇ψq‖
1
2

L∞‖fq‖
Ḃ

1
2
∞,1

� eCV (t)2q
1
2 ‖fq‖L∞ .(8)
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In order to estimate ψ̄q we use the interpolation inequality

‖ψ̄q(·, h)‖
Ḃ

1
2
∞,1

� ‖ψ̄q(·, h)‖
1
2

L∞‖∇xψ̄q(·, h)‖
1
2

L∞ .

This leads in view of (5) to

(9) ‖ψ̄q(·, h)‖
Ḃ

1
2
∞,1

≤ CeCV (t)(eCV (t) − 1)
1
2 ‖∇xψ̄q(·, h)‖

1
2

L∞ .

The derivative of ψ̄q with respect to x yields

|∇xψ̄q(x, h)| � |h| 72
|ψq(x) − ψq(x− h)| 72

|∇xψq(x) −∇xψq(x− h)|
|h|

� ‖∇ψ−1
q ‖

7
2

L∞‖∇2ψq‖L∞ .

Combining (4) and (6), we obtain

(10) ‖∇xψ̄q(t)‖L∞(R4) � eCV (t)2q.

Plugging (10) into (9), we find

(11) ‖ψ̄q(·, h)‖
Ḃ

1
2
∞,1

� eCV (t)V
1
2 (t)2

q
2 .

Thus we deduce from (11) and (8) that

‖J2
q (t)‖L∞ ≤ CeCV (t)V

1
2 (t)2q‖fq(t)‖L∞ .

This achieves the proof.

4. Proof of Theorem 1.2. The Fourier localized function θq := Δqθ satisfies

(12) ∂tθq + Sq−1v · ∇θq + |D|θq = −[Δq, v · ∇]θ + (Sq−1v − v) · ∇θq + fq := Rq.

Let ψq denote the flow of the velocity Sq−1v, and set

θ̄q(t, x) = θq(t, ψq(t, x)) and R̄q(t, x) = Rq(t, ψq(t, x)).

Since ψq is an homeomorphism, then

(13) ‖R̄q‖L∞ ≤ ‖[Δq, v · ∇]θ‖L∞ + ‖(Sq−1v − v) · ∇θq‖L∞ + ‖fq‖L∞ .

It is not hard to check that the function θ̄q satisfies

(14) ∂tθ̄q + |D|θ̄q = |D|(θq ◦ ψq) − (|D|θq) ◦ ψq + R̄q := R̄1
q.

From Proposition 3.1 we find that for q ∈ Z

(15) ‖|D|(θq ◦ ψq) − (|D|θq) ◦ ψq‖L∞ � eCV (t)V
1
2 (t)2q‖θq(t)‖L∞ ,

where V (t) := ‖∇v‖L1
tL

∞ . Putting together (13) and (15) yields

‖R̄1
q(t)‖L∞ � ‖fq(t)‖L∞ + ‖(Sq−1v − v) · ∇θq‖L∞ + ‖[Δq, v · ∇]θ‖L∞

+ eCV (t)V
1
2 (t)2q‖θq(t)‖L∞ .
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Applying the operator Δj to (14) and using Proposition 2.6, we obtain

‖Δj θ̄q(t)‖L∞ � e−ct2j‖Δjθ
0
q‖L∞ +

∫ t

0

e−c(t−τ)2j‖fq(τ)‖L∞dτ(16)

+ eCV (t)V
1
2 (t)2q

∫ t

0

e−c(t−τ)2j‖θq(τ)‖L∞dτ

+

∫ t

0

e−c(t−τ)2j‖[Δq, v · ∇]θ(τ)‖L∞dτ

+

∫ t

0

e−c(t−τ)2j‖(Sq−1v − v) · ∇θq(τ)‖L∞dτ.(17)

Integrating this estimate with respect to the time and using the Young inequality, we
get

‖Δj θ̄q‖Lr
tL

∞ � 2−
j
r (1 − e−crt2j

)
1
r ‖Δjθ

0
q‖L∞ + 2−j(1+ 1

r−
1
r )‖fq‖Lr

tL
∞

+ eCV (t)V
1
2 (t)2(q−j)‖θq‖Lr

tL
∞

+ 2−
j
r

∫ t

0

‖[Δq, v · ∇]θ(τ)‖L∞dτ

+ 2−
j
r

∫ t

0

‖(Sq−1v − v) · ∇θq(τ)‖L∞dτ.(18)

Since the flow ψ is a homeomorphism, one writes

2q(s+
1
r )‖θq‖Lr

tL
∞ = 2q(s+

1
r )‖θ̄q‖Lr

tL
∞

≤ 2q(s+
1
r )

⎛
⎝ ∑

|j−q|>N

‖Δj θ̄q‖Lr
tL

∞ +
∑

|j−q|≤N

‖Δj θ̄q‖Lr
tL

∞

⎞
⎠

:= I + II.

To estimate the term I we appeal to Lemma 2.4,

‖Δj θ̄q‖Lr
tL

∞ � 2−|q−j|eC
∫ t
0
‖∇v(τ)‖L∞dτ‖θq‖Lr

tL
∞

≤ C2−|q−j|eCV (t)‖θq‖Lr
tL

∞ .

Therefore we get

(19) I ≤ C2−NeCV (t)2q(s+
1
r )‖θq‖Lr

tL
∞ .

In order to bound the second term II we use (18):

II � (1 − e−crt2q

)
1
r 2qs‖θ0

q‖L∞ + 2N( 1
r +1− 1

r )2q(s+
1
r−1)‖fq‖Lr

tL
∞

+ 2NeCV (t)V
1
2 (t)2q(s+

1
r )‖θq‖Lr

tL
∞

+ 2
N
r 2qs

∫ t

0

‖[Δq, v · ∇]θ(τ)‖L∞dτ

+ 2
N
r 2qs

∫ t

0

‖(Sq−1v − v) · ∇θq(τ)‖L∞dτ.(20)
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Denoting Zr
q (t) := 2q(s+

1
r )‖θq‖Lr

tL
∞ , we then obtain, in view of (19) and (20),

Zr
q (t) ≤ C(1 − e−crt2q

)
1
r 2qs‖θ0

q‖L∞ + C2N( 1
r +1− 1

r )2q(s+
1
r−1)‖fq‖Lr

tL
∞

+ C
{
2NeCV (t)V

1
2 (t) + 2−NeCV (t)

}
Zr
q (t)

+ C2
N
r 2qs

∫ t

0

‖[Δq, v · ∇]θ(τ)‖L∞dτ

+ C2
N
r 2qs

∫ t

0

‖(Sq−1v − v) · ∇θq(τ)‖L∞dτ.

It is easy to check the existence of two absolute constants N and C0 such that

V (t) ≤ C0 ⇒ C2−NeCV (t) + C2NeCV (t)V
1
2 (t) ≤ 1

2
·

Thus we obtain under this condition

Zr
q (t) � (1 − e−crt2q

)
1
r 2qs‖θ0

q‖L∞ + 2q(s+
1
r−1)‖fq‖Lr

tL
∞

+ 2qs
∫ t

0

(
‖[Δq, v · ∇]θ(τ)‖L∞ + ‖(Sq−1v − v) · ∇θq‖L∞

)
dτ.(21)

Summing over q and using Lemma 2.3 leads, for V (t) ≤ C0, to

‖θ‖
L̃r

t Ḃ
s+ 1

r
∞,1

� ‖θ0‖Ḃs
∞,1

+ ‖f‖
L̃r

t Ḃ
s+ 1

r
−1

∞,1

+

∫ t

0

‖∇v(τ)‖L∞‖θ(τ)‖Ḃs
∞,1

dτ

� ‖θ0‖Ḃs
∞,1

+ ‖f‖
L̃r

t Ḃ
s+ 1

r
−1

∞,1

+ C0‖θ‖L∞
t Ḃs

∞,1
.(22)

Let us show how to conclude the proof in the case of r = ∞. If C0 is sufficiently small,
then we obtain from (22) the desired estimate:

‖θ‖L̃∞
t Ḃs

∞,1
� ‖θ0‖Ḃs

∞,1
+ ‖f‖

L̃r
t Ḃ

s+ 1
r
−1

∞,1

.(23)

Now for an arbitrary positive time T we take a partition (Ti)
M
i=0 of [0, T ] such

that
∫ Ti+1

Ti
‖∇v(τ)‖L∞dτ ≈ C0. We can proceed analogously to the above calculus

and obtain

‖θ‖L̃∞
[Ti,Ti+1]Ḃ

s
∞,1

� ‖θ(Ti)‖Ḃs
∞,1

+ ‖f‖
L̃r

[Ti,Ti+1]Ḃ
s+ 1

r
−1

∞,1

.

An iteration argument leads to

‖θ‖L̃∞
[Ti,Ti+1]Ḃ

s
∞,1

≤ Ci+1
(
‖θ0‖Ḃs

∞,1
+ ‖f‖

L̃r
[0,Ti+1]Ḃ

s+ 1
r
−1

∞,1

)
.

The triangle inequality and the fact that C0M � 1 + V (t) give

(24) ‖θ‖L̃∞
T Ḃs

∞,1
≤ CeC

∫ T
0

‖∇v(τ)‖L∞
(
‖θ0‖Ḃs

∞,1
+ ‖f‖

L̃r
T Ḃ

s+ 1
r
−1

∞,1

)
.
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Let us now turn to the case of finite r. Combining (22) and (23), we obtain under the
assumption V (t) ≤ C0

(25) ‖θ‖
L̃r

t Ḃ
s+ 1

r
∞,1

� ‖θ0‖Ḃs
∞,1

+ ‖f‖
L̃r

t Ḃ
s+ 1

r
−1

∞,1

.

This gives the result for a short time, and as for the case r = ∞, we obtain the
required global estimate.

Concerning the last estimate of Theorem 1.2, we use in the commutator term
of (21) the last part of Lemma 2.3.

5. Proof of Theorem 1.1. The proof is divided into two parts: in the first one
we construct a local unique solution and give a criterion of global existence. However,
in the second part we discuss the global existence by reproducing an idea of [16].

5.1. Local existence. We aim to prove the following result.
Proposition 5.1. Given any θ0 ∈ Ḃ0

∞,1, there is T > 0 such that the (QG)α
equation has a unique solution θ with

θ ∈ L̃∞
T Ḃ0

∞,1 ∩ L1
T Ḃ

1
∞,1.

Moreover, for all β ∈ R+ we have tβθ ∈ L̃∞
T Ḃβ

∞,1.
Proof. The existence is based on Theorem 1.2 and an iterative method. We

denote θ0(t, x) := e−t|D|θ0(x), v0 := (−R2θ0, R1θ0), and θn+1 the solution of the
linear system ⎧⎪⎨

⎪⎩
∂tθn+1 + vn · ∇θn+1 + |D|θn+1 = 0,

vn = (−R2θn, R1θn),

θn+1|t=0 = θ0.

Since θ0 ∈ L1(R+; Ḃ1
∞,1) and from the continuity of Riesz transforms in the homo-

geneous Besov spaces we find v0 ∈ L1(R+; Ḃ1
∞,1). Thus by iteration and thanks to

Theorem 1.2, one deduces that ∀n ∈ N,

θn ∈ L̃∞(R+; Ḃ0
∞,1) ∩ L1(R+; Ḃ1

∞,1).

Step 1: Uniform bounds. Now we intend to obtain uniform bounds, with respect
to the parameter n, for some T > 0 independent of n.

By (21), we have for all T ≥ 0 such that

(26)

∫ T

0

‖θn(τ)‖Ḃ1
∞,1

dτ ≤ C1(:= CC0)

the following estimate:

‖θn+1‖
L̃2

T Ḃ
1
2
∞,1

+ ‖θn+1‖L1
T Ḃ1

∞,1
�

∑
q∈Z

(1 − e−cT2q

)
1
2 ‖Δqθ

0‖L∞

+
∑
q∈Z

∫ T

0

‖[Δq, vn · ∇]θn+1(τ)‖L∞dτ

+
∑
q∈Z

∫ T

0

‖(Sq−1vn − vn) · ∇Δqθn+1(τ)‖L∞dτ.
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Since div vn = 0, then Lemma 2.3 combined with the continuity of Riesz transforms
gives

∑
q∈Z

∫ T

0

‖[Δq, vn · ∇]θn+1(τ)‖L∞dτ � ‖vn‖
L̃2

T Ḃ
1
2∞,∞

‖θn+1‖
L̃2

T Ḃ
1
2
∞,1

� ‖θn‖
L̃2

T Ḃ
1
2∞,∞

‖θn+1‖
L̃2

T Ḃ
1
2
∞,1

.

We deduce from the Hölder and Young inequalities that

∑
q∈Z

∫ t

0

‖(Sqvn−vn) · ∇Δqθn+1‖L∞dτ �
∑
q∈Z

2q‖Δqθn+1‖L2
tL

∞‖Sqvn − vn‖L2
tL

∞

�
∑
q∈Z

2
1
2 q‖Δqθn+1‖L2

tL
∞

∑
k≥q

2
1
2 (q−k)2

1
2k‖Δkvn‖L2

tL
∞

� ‖θn+1‖
L̃2

t Ḃ
1
2
∞,1

‖θn‖
L̃2

t Ḃ
1
2∞,∞

.

Therefore we obtain from the above inequalities

‖θn+1‖
L̃2

t Ḃ
1
2
∞,1

+ ‖θn+1‖L1
t Ḃ

1
∞,1

�
∑
q∈Z

(1 − e−ct2q

)
1
2 ‖Δqθ

0‖L∞

+ ‖θn+1‖
L̃2

t Ḃ
1
2
∞,1

‖θn‖
L̃2

t Ḃ
1
2
∞,1

.

Thus there exists an absolute constant ε0 > 0 such that, if

(27)
∑
q∈Z

(1 − e−cT2q

)
1
2 ‖Δqθ

0‖L∞ ≤ ε0,

then

(28) ‖θn+1‖
L̃2

T Ḃ
1
2
∞,1

+ ‖θn+1‖L1
T Ḃ1

∞,1
≤ 2ε0.

The existence of T > 0 is due to the Lebesgue theorem.
Hence, by using the estimate∫ T

0

‖∇v(τ)‖L∞dτ �
∫ T

0

‖θ(τ)‖Ḃ1
∞,1

dτ

and Theorem 1.2, we obtain

‖θn+1‖L̃∞
T Ḃ0

∞,1
� ‖θ0‖Ḃ0

∞,1
.

Thus we prove that the sequence (vn, θn)n∈N is uniformly bounded in the space

L̃∞
T Ḃ0

∞,1 ∩ L1
T Ḃ

1
∞,1.

Step 2: Strong convergence. We will prove that (vn, θn) is a Cauchy sequence in

L̃∞
T Ḃ0

∞,1. Let (n,m) ∈ N
2, θn,m =: θn+1 − θm+1, and vn,m := vn − vm; then{

∂tθn,m + vn · ∇θn,m + |D|θn,m = −vn,m · ∇θm+1,

θn,m|t=0 = 0.
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Applying Theorem 1.2 to this equation gives

(29) ‖θn,m‖L̃∞
t Ḃ0

∞,1
≤ Ce

C‖θn‖L1
t Ḃ1

∞,1

∫ t

0

‖vn,m · ∇θm+1(τ)‖Ḃ0
∞,1

dτ.

Thanks to Bony’s decomposition [1], the embedding Ḃ0
∞,1 ↪→ L∞, and the fact that

div vn,m = 0,

(30) ‖vn,m · ∇θm+1‖Ḃ0
∞,1

� ‖vn,m‖Ḃ0
∞,1

‖θm+1‖Ḃ1
∞,1

.

Since Riesz transforms continuously map Ḃ0
∞,1 into itself, we get

(31) ‖vn,m · ∇θm+1‖Ḃ0
∞,1

� ‖θn−1,m−1‖Ḃ0
∞,1

‖θm+1‖Ḃ1
∞,1

.

Thus we infer

‖θn,m‖L̃∞
t Ḃ0

∞,1
≤ C‖θn−1,m−1‖L̃∞

t Ḃ0
∞,1

e
C‖θn‖L1

t Ḃ1
∞,1

∫ t

0

‖θm+1(τ)‖Ḃ1
∞,1

dτ.

According to the inequality (28) one can choose ε0 small such that

‖θn,m‖L̃∞
T Ḃ0

∞,1
≤ η‖θn−1,m−1‖L̃∞

T Ḃ0
∞,1

with η < 1. Let us suppose that n ≥ m; then by induction one finds

‖θn,m‖L̃∞
T Ḃ0

∞,1
� ηm‖θ0‖Ḃ0

∞,1
.

Thus (θn)n∈N is a Cauchy sequence in L̃∞
T Ḃ0

∞,1. Then there exists θ ∈ L̃∞
t Ḃ0

∞,1 such

that θn converges strongly to θ in L̃∞
t Ḃ0

∞,1. Moreover, the Fatou lemma and inequality

(28) imply that θ ∈ L1
t Ḃ

1
∞,1. These pieces of information allow us to pass to the limit

into the equation.
Step 3: Uniqueness. Let XT := L∞

T Ḃ0
∞,1∩L1

T Ḃ
1
∞,1, and θi, i = 1, 2 (vi the corres-

ponding velocity), be two solutions of the (QG)α equation with the same initial data
and belonging to the space XT . We set θ1,2 = θ1 − θ2 and v1,2 = v1 − v2; then it is
plain that

∂tθ1,2 + v1 · ∇θ1,2 + |D|θ1,2 = −v1,2 · ∇θ2, θ1,2|t=0 = 0.

Thanks to the inequalities (29) and (31), we have

‖θ1,2‖L̃∞
t Ḃ0

∞,1
≤ Ce

C‖θ1‖L1
t Ḃ1

∞,1

∫ t

0

‖θ1,2‖L̃∞
τ Ḃ0

∞,1
‖θ2(τ)‖Ḃ1

∞,1
dτ.

Thus Gronwall’s inequality gives the desired result.
Step 4: Smoothing effect. We will show the precise estimate: ∀ β ∈ R+ we have

(32) ‖tβθ(t)‖L̃∞
T Ḃβ

∞,1
≤ Cβe

C(β+1)‖θ‖
L1
T Ḃ1

∞,1‖θ‖L̃∞
T Ḃ0

∞,1
.

It is clear that {
∂t(t

βθ) + v · ∇(tβθ) + |D|(tβθ) = βtβ−1θ,

(tβθ)|t=0 = 0.
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We will proceed by induction and start the proof with the case β ∈ N.
For β = 1, we apply Theorem 1.2 with r̄ = +∞,

‖tθ(t)‖L̃∞
T Ḃ1

∞,1
� e

C‖θ‖
L1
T Ḃ1

∞,1‖θ‖L̃∞
T Ḃ0

∞,1
.

Assume that (32) holds for degree n; we will prove it for n + 1.
Applying Theorem 1.2 to the equation of tn+1θ, we get

‖tn+1θ(t)‖L̃∞
T Ḃn+1

∞,1
≤ C(n + 1)e

C‖θ‖
L1
T Ḃ1

∞,1‖tnθ‖L̃∞
T Ḃn

∞,1

≤ Cne
C(n+2)‖θ‖

L1
T Ḃ1

∞,1‖θ‖L̃∞
T Ḃ0

∞,1
.

For β ∈ R+, we have [β] ≤ β < [β] + 1, and by interpolation, one has

‖tβθ‖L̃∞
T (Ḃβ

∞,1)
�

∥∥∥t[β]θ
∥∥∥1+[β]−β

L̃∞
T (Ḃ

[β]
∞,1)

∥∥∥t[β]+1θ
∥∥∥β−[β]

L̃∞
T (Ḃ

[β]+1
∞,1 )

.

This completes the proof.

5.2. Blowup criteria. The main result of this section is the following.
Proposition 5.2. Let T ∗ be the maximum local existence time of θ in L̃∞

T Ḃ0
∞,1∩

L1
T Ḃ

1
∞,1. There exists an absolute constant ε0 > 0 such that if T ∗ < ∞, then

lim inf
t→T∗

(T ∗ − t)‖∇θ(t)‖L∞ ≥ ε0.

Proof. From local existence theory and especially (27) we see that if T ∗ < ∞,
then necessarily

lim inf
t→T∗

∑
q∈Z

(1 − e−c(T∗−t)2q

)
1
2 ‖θq(t)‖L∞ ≥ ε0;

otherwise we can continue the solution over T ∗. It follows that

lim inf
t→T∗

∑
q∈Z

(1 − e−c(T∗−t)2q

)
1
2 sup
t≤T∗

‖θq(t)‖L∞ ≥ ε0.

Consequently from the Lebesgue theorem we obtain

‖θ‖L̃∞
T∗ (Ḃ0

∞,1)
= ∞.

Using the Bernstein inequality and the fact that ‖θq‖L∞ � ‖θ0‖L∞ , we have

ε0 ≤ lim inf
t→T∗

{ ∑
q≤N

(1 − e−c(T∗−t)2q

)
1
2 ‖θq(t)‖L∞

+
∑
q≥N

(1 − e−c(T∗−t)2q

)
1
2 ‖θq(t)‖L∞

}

� lim inf
t→T∗

{
(T ∗ − t)

1
2 ‖θ0‖L∞

∑
q≤N

2q/2 + ‖∇θ(t)‖L∞

∑
q≥N

2−q

}

� lim inf
t→T∗

{
(T ∗ − t)‖θ0‖L∞2N + ‖∇θ(t)‖L∞2−N

}
.

Choosing judiciously N , we obtain the desired result.
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5.3. Global existence. We will use the idea of [16]. Let T ∗ be the maximal

time existence of the solution in the space L̃∞
loc([0, T

∗[, Ḃ0
∞,1) ∩ L1

loc([0, T
∗[, Ḃ1

∞,1).
From the local existence, there exists T0 > 0 such that

∀t ∈ [0, T0], t‖∇θ(t)‖L∞ ≤ C‖θ0‖Ḃ0
∞,1

.

Let λ be a real positive number that will be fixed later and T1 ∈ ]0, T0[. We define
the set

I :=
{
T ∈ [T1, T

∗[;∀t ∈ [T1, T ],∀x �= y ∈ R
2, |θ(t, x) − θ(t, y)| < ωλ(|x− y|)

}
,

where

ω : R+ −→ R+

is strictly nondecreasing, concave, ω(0) = 0, ω′(0) < +∞, limξ−→0+ ω′′(ξ) = −∞,
and

ωλ(|x− y|) = ω(λ|x− y|).

The function ω is a modulus of continuity chosen as in [16]. We shall first check that
I is nonempty. It suffices for this purpose to prove that T1 belongs to I under suitable
conditions over λ. Let C0 be a large positive number such that

(33) ω(C0) > 2‖θ0‖L∞ .

Since ω is a strictly nondecreasing function, then we get from the maximum principle
that

∀x, y, λ|x− y| ≥ C0 ⇒ |θ(T1, x) − θ(T1, y)| ≤ 2‖θ0‖L∞ < ωλ(|x− y|).

On the other hand, we have from the mean value theorem

|θ(T1, x) − θ(T1, y)| ≤ |x− y|‖∇θ(T1)‖L∞ .

Let 0 < δ0 < C0. Then using the concavity of ω, one obtains

λ|x− y| ≤ δ0 ⇒ ωλ(|x− y|) ≥ ω(δ0)

δ0
λ|x− y|.

If we choose λ so that

λ >
δ0

ω(δ0)
‖∇θ(T1)‖L∞ ,

then we get

0 < λ|x− y| ≤ δ0 ⇒ |θ(T1, x) − θ(T1, y)| < ωλ(|x− y|).

Let us now move to the case δ0 ≤ λ|x− y| ≤ C0. By an obvious computation we find

|θ(T1, x) − θ(T1, y)| ≤
C0

λ
‖∇θ(T1)‖L∞ and

ω(δ0) ≤ ω(λ|x− y|).
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Choosing λ such that

λ >
C0

ω(δ0)
‖∇θ(T1)‖L∞ ,

then we obtain

δ0 ≤ λ|x− y| ≤ C0 ⇒ |θ(T1, x) − θ(T1, y)| < ωλ(|x− y|).

All the preceding conditions over λ can be obtained if we take

(34) λ =
ω−1(3‖θ0‖L∞)

2‖θ0‖L∞
‖∇θ(T1)‖L∞ .

From the construction, the set I is an interval of the form [T1, T∗). We have three
possibilities. The first one is T∗ = T ∗, and in this case we must have T ∗ = +∞
because the Lipschitz norm of θ does not blow up. The second one is T∗ ∈ I, and we
will show that is not possible. Indeed, let C0 be as in (33); then ∀ t ∈ [T1, T

∗)

λ|x− y| ≥ C0 ⇒ |θ(t, x) − θ(t, y)| < ωλ(|x− y|).

Since ∇θ(t) belongs to C(]0, T ∗); Ḃ0
∞,1), then for ε > 0 there exist η0, R > 0 such that

∀t ∈ [T∗, T∗ + η0] ⇒ ‖∇θ(t)‖L∞ ≤ ‖∇θ(T∗)‖L∞ + ε/2 and

‖∇θ(T∗)‖L∞(Bc
(0,R))

≤ ε/2,

where B(0,R) is the ball of radius R and with center the origin.
Hence for λ|x− y| ≤ C0 and x or y ∈ Bc

(0,R+
C0
λ )

we have for t ∈ [T∗, T∗ + η0]

|θ(t, x) − θ(t, y)| ≤ |x− y|‖∇θ(t)‖L∞(Bc
(0,R))

≤ ε|x− y|.

On the other hand, from the concavity of ω we have

λ|x− y| ≤ C0 ⇒ ω(C0)

C0
λ|x− y| ≤ ωλ(|x− y|).

Thus if we take ε sufficiently small such that

ε <
ω(C0)

C0
λ,

then we find that

λ|x− y| ≤ C0, x or y ∈ Bc
(0,R+

C0
λ )

⇒ |θ(t, x) − θ(t, y)| < ωλ(|x− y|).

It remains to study the case where x, y ∈ B
(0,R+

C0
λ )

. Since ‖∇2θ(T∗)‖L∞ is finite (see

Proposition 5.1), we get for each x ∈ R
2

|∇θ(T∗, x)| < λω′(0).
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For the proof, see [16, p. 3]. From the continuity of x �−→ |∇θ(T∗, x)| we obtain

‖∇θ(T∗)‖L∞(B
(0,R+

C0
λ

)
) < λω′(0).

Let δ0 � 1; then using the continuity in time of the quantity ‖∇θ(t)‖L∞ , one can
find η1 > 0 such that ∀t ∈ [T∗, T∗ + η1]

‖∇θ(t)‖L∞(B
(0,R+

C0
λ

)
) < λ

ω(δ0)

δ0
·

For λ|x− y| ≤ δ0 and x �= y belonging together to B
(0,R+

C0
λ )

we have

|θ(t, x) − θ(t, y)| ≤ |x− y|‖∇θ(t)‖L∞(B
(0,R+

C0
λ

)
)

< λ|x− y|ω(δ0)

δ0
≤ ωλ(|x− y|).

Now for the other case we have

∀x, y ∈ B
(0,R+

C0
λ )

, δ0 ≤ λ|x− y|; |θ(T∗, x) − θ(T∗, y)| < ωλ(|x− y|);

then we get from a standard compact argument the existence of η2 > 0 such that
∀ t ∈ [T∗, T∗ + η2]

∀x, y ∈ B
(0,R+

C0
λ )

, δ0 ≤ λ|x− y|; |θ(t, x) − θ(t, y)| < ωλ(|x− y|).

Taking η = min{η0, η1, η2}, we obtain that T∗ +η ∈ I, which contradicts the fact that
T∗ is maximal.

The last case that we have to treat is that T∗ does not belong to I. Thus we have
by the time continuity of θ the existence of x �= y such that

θ(T∗, x) − θ(T∗, y) = ωλ(ξ), with ξ = |x− y|.

We will show that this scenario cannot occur, and more precisely

f ′(T∗) < 0, where f(t) = θ(t, x) − θ(t, y).

This is impossible since f(t) ≤ f(T∗) ∀t ∈ [0, T∗]. The proof is the same as in [16],
but for the convenience of the reader we will outline the proof. From the regularity
of the solution we see that (QG)α can be defined in the classical manner and

f ′(T∗) = (u · ∇θ)(T∗, x) − (u · ∇θ)(T∗, y) + |D|θ(T∗, x) − |D|θ(T∗, y).

From [16] we have

(u · ∇θ)(T∗, x) − (u · ∇θ)(T∗, y) ≤ Ωλ(ξ)ω′
λ(ξ),

where

Ωλ(ξ) = C

(∫ ξ

0

ωλ(η)

η
dη + ξ

∫ ∞

ξ

ωλ(η)

η2
dη

)
= Ω(λξ).
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Again from [16],

|D|θ(T∗, x) − |D|θ(T∗, y) ≤
1

π

∫ ξ
2

0

ωλ(ξ + 2η) + ωλ(ξ − 2η) − 2ωλ(ξ)

η2
dη

+
1

π

∫ ∞

ξ
2

ωλ(2η + ξ) − ωλ(2η − ξ) − 2ωλ(ξ)

η2
dη

≤ λ I(λξ),

where

I(ξ) =
1

π

∫ ξ
2

0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η2
dη

+
1

π

∫ ∞

ξ
2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η2
dη.

Thus we get

f ′(T∗) = λ(Ωω′ + I)(λξ).

Now, we choose the same function as [16] (see p. 5):

ω(ξ) = ξ − ξ
3
2 if ξ ∈ [0, δ],

and

ω′(ξ) =
γ

ξ(4 + log(ξ/δ))
if ξ > δ,

where δ and γ are small numbers and satisfy 0 < γ < δ. It is shown in [16] that

Ω(ξ)ω′(ξ) + I(ξ) < 0 ∀ξ �= 0.

This yields f ′(T∗) < 0.
Finally we have T ∗ = +∞ and

∀t ∈ [T1,+∞), ‖∇θ(t)‖L∞ ≤ λ.

The value of λ is given by (34).
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[11] T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl.
(9), 84 (2005), pp. 1455–1495.

[12] T. Hmidi and S. Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation
in Besov spaces, Adv. Math., 214 (2007), pp. 618–638.

[13] N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equa-
tions in the Sobolev space, Comm. Math. Phys., 251 (2004), pp. 365–376.

[14] N. Ju, On the two dimensional quasi-geostrophic equations, Indiana Univ. Math. J., 54 (2005),
pp. 897–926.

[15] N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or
super-critical dissipation, Math. Ann., 334 (2006), pp. 627–642.

[16] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipa-
tive quasi-geostrophic equation, Invent. Math., 167 (2007), pp. 445–453.

[17] F. Marchand and P.-G. Lemarié-Rieusset, Solutions auto-similaires non radiales pour
l’quation quasi-gostrophique dissipative critique, C. R. Math. Acad. Sci. Paris, 341 (2005),
pp. 535–538.

[18] J. Peetre, New Thoughts on Besov Spaces, Duke University Mathematical Series 1, Duke
University Press, Durham, NC, 1976.

[19] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.
[20] S. Resnick, Dynamical Problem in Nonlinear Advective Partial Differential Equations, Ph.D.

thesis, University of Chicago, 1995.
[21] H. Triebel, Theory of Function Spaces, Leipzig, Germany, 1983.
[22] M. Vishik, Hydrodynamics in Besov spaces, Arch. Ration. Mech. Anal., 145 (1998), pp. 197–

214.
[23] J. Wu, Solutions to the 2D quasi-geostrophic equations in Hölder spaces, Nonlinear Anal., 62
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A Γ-CONVERGENCE RESULT FOR THIN MARTENSITIC FILMS IN
LINEARIZED ELASTICITY∗

PETER HORNUNG†

Abstract. The elastic energy of a thin film Ωh of thickness h with displacement u : Ωh → R
3

is given by the functional Eh(u) =
∫
Ωh

W (∇u). We consider materials whose energy density W

is linearly frame indifferent and vanishes on two linearized wells which are compatible in the plane
but incompatible in the thickness direction. We prove compactness of displacement sequences u(h) :
Ωh → R

3 satisfying Eh(u(h)) ≤ Ch2, and we derive the Γ-limit of the functionals 1
h2 E

h as h → 0.

Key words. singular variational problems, thin films, martensitic phase transitions, Γ-con-
vergence
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1. Introduction. The study of solid-solid phase transitions in thin elastic films
leads to functionals of the form

(1) Eh(v) =

∫
Ωh

W (∇v(x)) dx,

where Ωh = S × (−h
2 ,

h
2 ) is a cylindrical domain of thickness h, S ⊂ R

2 is a bounded
Lipschitz domain, v : Ωh → R

3 is the elastic deformation (in the nonlinear setting)
or the displacement (in the linearized setting), and W is a free energy density with
n energy minima Fi, i.e., W (Fi) = 0 for i = 1, . . . , n. In the context of nonlinear
elasticity W is invariant under proper rotations, and in the context of linearized
elasticity it is invariant under addition of skew symmetric matrices. In [10] it was
observed (in the context of nonlinear elasticity) that for many materials which undergo
austenite-martensite phase transitions, the low-energy states of very thin samples of
material display a much richer variety of structures than bulk samples made of the
same material. The reason is that three dimensional compatibility requires a plane
on which two juxtaposed affine deformations coincide, i.e., that their gradients be
rank-one connected. In contrast, two dimensional compatibility is already satisfied if
there exists one in-plane vector on which the two deformations agree, so a rank-two
connection between the gradients suffices. This fact leads to the existence of many
nontrivial low-energy states, including laminates, tunnels, and tents; see, e.g., [11] for
experimental results. This rich structure makes thin martensitic films particularly
interesting for applications.

In this article we study the asymptotic behavior of thin martensitic films in the
context of linearized elasticity. In our model the zero set of the energy density W
consists of two linearized wells which are incompatible in bulk but compatible in the
plane (see section 2 for details). We study the asymptotic behavior of the functionals
(1) in the thin film-limit h → 0. We prove compactness of displacement sequences
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whose energy scales like h2, and we derive the Γ-limit of the functionals 1
h2E

h as the
film thickness h converges to zero. To our knowledge this is the first Γ-convergence
result for thin martensitic films in which both the domain and the image space are
three dimensional and no interfacial energy term is added to the elastic energy. In
our model, the formation of interfaces is penalized in a natural way by the interplay
of nonzero film thickness with incompatibility of the energy wells in the thickness
direction.

Thin films of single-well materials have been studied, e.g., in [1, 3, 12, 17] (in
a linearized setting) and in [34, 13, 28, 29] (in a nonlinear setting). Thin films of
multiwell materials have been studied, e.g., in [19] (in a linearized setting) and in
[37, 10, 15, 6] (in a nonlinear setting).

To state our main result let us introduce the functionals

Ih(u;S) =

{
1
h2

∫
S×(−h

2 ,h2 )
W (∇u(x)) dx if u ∈ W 1,2(S × (−h

2 ,
h
2 ); R3),

+∞ otherwise

and

I0(w;S) =

{ ∫
J
k(ν(x))dH1(x) if w ∈ A(S),

+∞ otherwise,

where the class A(S) of admissible limiting displacements is given in (30) below, J
denotes the jump set of sym ∇′w ∈ BV , and ν denotes the normal to it, which can
assume only two values (up to a sign). The function k is a “surface tension” which
depends on the normal and which we define in (29) below. Let us write v′ to denote
the first two entries of v ∈ R

3, and let us call a domain S ⊂ R
2 strictly star-shaped if

there is z ∈ S such that for all z′ ∈ S̄ the open segment (z, z′) is contained in S. Our
main result is the following theorem.

Theorem 1. Let A,B ∈ R
3×3 satisfy (i)–(iv) from section 2, let W satisfy the

conditions (4)–(6) below, and let S ⊂ R
2 be a bounded strictly star-shaped Lipschitz

domain. Then a Γ-type convergence Ih(·;S)
Γ→ I0(·;S) holds in the following sense:

(i) Ansatz-free lower bound. Let w ∈ L2(S; R2), hn → 0, let vn ∈ W 1,2(S ×
(−hn

2 , hn

2 ); R3), and set wn(x′) = 1
hn

∫ hn
2

−hn
2

v′n(x′, x3) dx3. If wn → w in L2(S; R2),

then lim infn→∞ Ihn(vn;S) ≥ I0(w;S).
(ii) Existence of recovery sequences. Let w ∈ L2(S; R2) and hn → 0. Then there

is a sequence vn ∈ W 1,2(S × (−hn

2 , hn

2 ); R3) such that, setting wn(x′) = 1
hn

∫ hn
2

−hn
2

v′n

(x′, x3) dx3, we have wn → w strongly in W 1,2(S; R2) and limn→∞ Ihn(vn;S) =
I0(w;S).

Remarks. (i) Theorem 1 is complemented by a compactness result for sequences
vn whose energy Ehn(vn) scales like h2

n (Theorem 6 below).
(ii) Notice that in Theorem 1(ii) we state the existence of recovery sequences for

any given sequence hn → 0.
(iii) The vertical average wn can be interpreted as the in-plane displacement of

the midplane S of the thin film; compare, e.g., [3].
(iv) The lower bound (i) is true for general (also non–star-shaped) Lipschitz do-

mains S; see Theorem 12. Star-shapedness is used in the proof of the upper bound
(ii) to show that limiting displacements with finitely many well-separated interfaces
are energy dense and to avoid the necessity of a lateral matching of two local recovery
sequences. The same technical difficulty concerning non–star-shaped domains occurs
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in [19, 20] and in [18]. A figure depicting the problematic situation can be found in
[18, Figure 4].

(v) The Γ-limit obtained in Theorem 1 has the same structure as that derived
in [19]. The reason is that the functionals Ih are related to singularly perturbed
functionals of the form

(2) J (ε)(u;S) =

∫
S

1

ε
W2D(∇u(x′)) + ε|∇2u(x′)|2 dx′.

The asymptotic behavior of singularly perturbed functionals has been extensively
studied in the literature (see [35, 27, 26, 5, 38] and, for gradient phase transitions,
see [25, 18, 19, 20]). Recently, Conti and Schweizer derived the Γ-limit of the function-
als (2) both under the assumption of linearized frame indifference [19] and under non-
linear frame indifference [20] of W2D. Their results are restricted to two dimensions.

There are two crucial differences between functionals of the form (2) and the
model studied in this article: In the former the domain and the image space are two
dimensional and an extra term

∫
|∇2u|2, weighted with some small parameter ε2, is

added to the elastic energy. The role of this term is to penalize the formation of
phase interfaces. In our model (1), the domain and the image space are genuinely
three dimensional and the energy functional does not involve higher derivatives: It
is a key property of our model that no interfacial energy contribution is added to
the elastic energy (this also contrasts with other thin film models [10, 37, 6]). The
formation of phase interfaces is naturally penalized by the interplay of nonzero film
thickness with the fact that the zero energy displacements A + Skew and B + Skew
are incompatible in the thickness direction.

Lemma 14 makes the relation between (1) and (2) more precise. This requires
a subtle mollification argument since (2) requires control on the second derivatives.
Lemma 14 suggests that the small parameter ε should be interpreted as the film
thickness h.

(vi) No nonlinear version of Theorem 1 has yet been proven. The only result
in this direction is [15], where it is shown that the energy of thin-film deformations
consisting of two phases scales like h2. Notice that, in contrast to the linearized setting,
the model considered in [20] would not be appropriate to describe thin martensitic
films since it is too rigid. Nonlinearly elastic rods of multiphase materials were studied
in [36].

This article is organized as follows. In section 2 we introduce some definitions and
reduce the problem to a canonical form. Then we prove a two-well analogue of Korn’s
inequality, Theorem 3, which applies to incompatible linear wells. Then we apply this
result to deduce the compactness result Theorem 6. In section 3 we obtain the lower
bound, Theorem 12, by an abstract scaling argument. Finally, in section 4 we derive
the upper bound by constructing three dimensional recovery sequences. The proof of
Theorem 1 closes section 4.

Notation. We use the letter C to denote constants depending only on the domain
and on W . Within an expression the explicit value of C may change from line to line.
A bar above a given 3×3 matrix denotes its upper left 2×2 submatrix, and in general
we use barred letters to denote 2 × 2 matrices. Primes on 3-vectors will denote the
2-vector consisting of the first two entries, so in particular x = (x′, x3). For a matrix
A we write sym A = 1

2 (A+AT ), skew A = 1
2 (A−AT ), and |A|2 = Tr(ATA), where Tr

denotes the trace. By a subscript i we will denote the partial derivative with respect
to the xi-variable. By ∇′ we denote the in-plane gradient, that is, ∇′w = (w,1|w,2).
For h > 0 we set Ih = (−h

2 ,
h
2 ). All intervals in this article are implicitly assumed to
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be nonempty and bounded. We use a dashed integral sign −
∫

to denote the average.
Often we will simply write {f = a} instead of {x ∈ S : f(x) = a}. For ρ > 0 we set
[ρ] = max{n ∈ N : n ≤ ρ}. If E ⊂ R

n, then |E| denotes its n dimensional Lebesgue
measure and Hk(E) its k dimensional Hausdorff measure [24]. For j ∈ {1, 2} we
denote by ej the jth unit vector, by πj : R

2 → span{ej} the orthogonal projection
onto span{ej}, and by π⊥

j : R
2 → {ej}⊥ the orthogonal projection onto {ej}⊥. If

E ⊂ R
n, then Bε(E) = {x ∈ R

n : distE(x) < ε}.
2. Preliminaries and compactness. We consider the functional, defined for

any Lipschitz domain U ⊂ R
2,

(3) Ih(u;U) =

{
1
h2

∫
U×Ih

W (∇u(x)) dx if u ∈ W 1,2(U × Ih; R3),

+∞ otherwise.

Throughout this article, W is assumed to satisfy the following conditions:

W : R
3×3 → R is continuous,(4)

linearized frame indifference: W (F ) = W (sym F ) for all F ∈ R
3×3,(5)

quadratic growth and coercivity: c0W0(F ) ≤ W (F ) ≤ C0W0(F ),(6)

where c0, C0 are positive constants. Here we have introduced the standard energy
density W0(F ) = dist2(sym F, {A,B}), where A and B are symmetric 3× 3 matrices
to be specified below. We define the reduced functional

Ih2D(w;U) =

{ ∫
U

1
hW2D(∇′w) + h|∇′2w|2 if w ∈ W 2,2(U ; R2),

+∞ otherwise,

where W2D(F̄ ) = dist2(sym F̄ , {Ā, B̄}). We make the following assumptions on the
wells A and B:

(i) A ∈ R
3×3 and B ∈ R

3×3 are symmetric; i.e., A = sym A and B = sym B.
(ii) Incompatibility in bulk. rank(A−B+T ) ≥ 2 for all T ∈ R

3×3 with sym T =
0.

(iii) Compatibility in the plane. There exists T̄ ∈ R
2×2 with sym T̄ = 0 such

that rank(Ā− B̄ + T̄ ) ≤ 1.
(iv) Nondegeneracy. det(Ā− B̄) 	= 0.
Item (iii) is satisfied if and only if there exists t ∈ R such that

0 = det

(
Ā− B̄ +

(
0 t

−t 0

))
= det(Ā− B̄) + t2,

whence (iii) is equivalent to det(Ā − B̄) ≤ 0 with equality if and only if Ā and B̄
are rank-one connected. Thus (iii) and (iv) together are equivalent to det(Ā− B̄) <
0. Table 11.1 in [7] shows that conditions (i)–(iv) are generically satisfied by real
materials (in a linearized framework).

Let us now reduce the set of all matrices satisfying (i)–(iv) to a canonical form.
Let Ã, B̃ satisfy conditions (i)–(iv) but be arbitrary otherwise. Then there is an
orthogonal matrix R ∈ O(3) with Re3 = e3 such that

RT (B̃ − Ã)R = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 +

3∑
i=1

μ̃i
ei ⊗ e3 + e3 ⊗ ei

2
,
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where λi are the eigenvalues of the matrix B̄ − Ā and μ̃i are some real numbers.
By possibly choosing R differently (by interchanging the first two columns), we may
assume that λ1 ≥ λ2, so since det(Ā− B̄) < 0, we must in fact have λ1 > 0 > λ2. Let

Q = diag(|λ1|−
1
2 , |λ2|−

1
2 , 1) and set B̂ = QRT (B̃ − Ã)RQ. This gives B̂ = e1 ⊗ e1 −

e2 ⊗ e2 +
∑3

i=1 μ̂i
ei⊗e3+e3⊗ei

2 , where μ̂i are related to μ̃i and λi. Now we can find a

proper rotation Q̂ ∈ SO(3) with eigenvector e3 such that

(7) B = Q̂T B̂Q̂ = e1 ⊗ e2 + e2 ⊗ e1 +

3∑
i=1

μi
ei ⊗ e3 + e3 ⊗ ei

2

for some μi ∈ R. Since the structural assumptions on the energy density W and on
the shape of the domain (i.e., strict star-shapedness with respect to the origin and a
cylindrical form S×Ih) are invariant under the transformations introduced above, we
obtain the following lemma.

Lemma 2. If Theorem 1 is shown for the special pairs A,B given by A = 0 and
B as in (7), then it holds for all possible choices of A and B which satisfy conditions
(i)–(iv).

2.1. Korn’s inequality for two incompatible strains. The following theo-
rem provides a generalization of Korn’s inequality to the case of two incompatible
linearized wells. A nonquantitative version of this result can be found in [22]; com-
pare also [39, 9, 8, 21]. In [19] an example is provided which shows that no Korn-type
rigidity like the one derived here can be expected in the case of two compatible wells.

Theorem 3. Let Ω ⊂ R
n be a bounded connected Lipschitz domain, n ≥ 2, and

K = (A + Skew) ∪ (B + Skew), where A and B are incompatible strains, i.e., (B −
A) + Skew does not contain rank-one matrices. Then there exists a positive constant
C(Ω, A,B) with the following property: For every u ∈ W 1,2(Ω; Rn), there exists an as-
sociated R ∈ K such that ‖∇u−R‖L2(Ω;Rn×n) ≤ C(Ω, A,B)‖dist(∇u,K)‖L2(Ω;Rn×n).

This theorem will follow from the interior estimate provided by the following
lemma.

Lemma 4. With assumptions as in Theorem 3 and Ū ⊂ Ω, where U is Lipschitz
and connected, there is a constant C(U,Ω, A,B) such that the following holds: For
every u ∈ W 1,2(Ω; Rn), there exists an associated R ∈ K such that

(8) ‖∇u−R‖L2(U ;Rn×n) ≤ C(U,Ω, A,B)‖dist(∇u,K)‖L2(Ω;Rn×n).

Proof. From (15) on this proof follows [14] rather closely with some minor
changes. Define d(F ) = dist(F, {A,B}) and set ε2 =

∫
Ω

dist2(∇u,K). Notice that

dist2(F,K) = d2(sym F ) for all F ∈ R
n×n. Since |F − A| ≤ d(F ) + |A − B|, by

Korn’s inequality there exists C > 0 with the property that (8) is satisfied whenever
u is such that ε ≥ 1. Hence we may assume without loss of generality that ε < 1. By
setting B̃ = B−A and applying the lemma to ũ(x) = u(x)−Ax we may also assume
without loss of generality that A = 0.

Denote by P : R
n×n →

(
(span{B})⊕ Skew

)⊥
the orthogonal projection onto the

orthogonal complement of the subspace (span{B})⊕ Skew. Since B + Skew does not
contain rank-one matrices, the only rank-one matrix contained in (span{B}) ⊕ Skew
is the zero matrix. Thus |P (a⊗ b)|2 > 0 for all a, b 	= 0. Hence, by continuity and by
compactness of the sphere, P satisfies the Legendre–Hadamard ellipticity condition
Λ|a|2|b|2 ≥ |P (a⊗ b)|2 ≥ λ|a|2|b|2 for some Λ > λ > 0. Now let w ∈ W 1,2(Ω; Rn) be
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a weak solution of the linear elliptic system with constant coefficients

div P (∇w) = 0 in Ω,(9)

w = u on ∂Ω.

Set z = u− w. Then z ∈ W 1,2
0 (Ω; Rn) is a weak solution of div P (∇z) = div P (∇u).

Testing this with z gives

(10)

∫
Ω

P (∇z) : ∇z =

∫
Ω

P (∇u) : ∇z ≤
(∫

Ω

|P (∇u)|2
) 1

2
(∫

Ω

|∇z|2
) 1

2

.

Since by ellipticity the left-hand side of (10) is greater than
∫
Ω
λ|∇z|2, we conclude

(11)

∫
Ω

|∇z|2 ≤ C

∫
Ω

|P (∇u)|2 = C

∫
Ω

dist2(sym ∇u, span{B}) ≤ Cε2.

Thus it remains to prove that there exists R ∈ K such that
∫
Ω
|∇w(x)−R|2 dx ≤ Cε2,

where C is independent of w.
Set ew = sym ∇w and let y ∈ Ω be such that B(y, 2r) ⊂ Ω. By Korn’s inequality

there is a C = C(n) (which by scaling invariance is independent of r), and T ∈ R
n×n

with sym T = 0 such that

(12)

∫
B(y,2r)

|∇w − T |2 ≤ C

∫
B(y,2r)

|ew|2.

Since by P (M) = P (sym M) we have P (T ) = 0, the mapping v(x) = w(x) − Tx is a
weak solution of

div P (∇v) = 0 in Ω,

v = u− Tx on ∂Ω.(13)

By standard elliptic regularity for linear systems with constant coefficients (see, e.g.,
[30]), we obtain the inequality

(14)

∫
B(y,r)

|∇2v|2 ≤ C

r2

∫
B(y,2r)

|∇v|2 =
C

r2

∫
B(y,2r)

|∇w − T |2.

We have |∇ew|2 = 1
4

∑
i,j,k(wi,jk + wj,ik)

2 ≤ |∇2w|2. Hence by the choice of T and

since |∇2w|2 = |∇2v|2 on B(y, 2r), we conclude from (12) and (14) that∫
B(y,r)

|∇ew|2 ≤ C

r2

∫
B(y,2r)

|ew|2.(15)

This inequality holds for all y ∈ Ω with B(y, 2r) ⊂ Ω.

Fix r0 ∈ (0, dist(U,∂Ω)
4 ) such that there exists c0 > 0 with the property that

|Br(x) ∩ U | ≥ c0|Br| for all x ∈ U and for all r ≤ r0. (Here and in what follows
we will sometimes omit the center of the ball when denoting its volume.) Existence
of such an r0 follows from the Lipschitz property of U , and c0 will depend on U .
Covering Ū with finitely many balls of radius 1

3 dist(U, ∂Ω) and applying (15) shows
that

∫
U
|∇ew|2 is bounded by a constant independent of u (since |ew| ≤ d(ew) + C
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and
∫
Ω
d2(ew) ≤ Cε2 by (11)). Hence, by applying Lemma 5 below with K1 = {0},

K2 = {B}, and F = ew, we obtain

min

{∫
U

|ew −B|2,
∫
U

|ew|2
}

≤ C

(∫
U

d2(ew)

∫
U

|∇ew|2
) n

2(n−1)

+

∫
U

d2(ew)(16)

≤ C(ε
n

n−1 + ε2).

Set ρ = |B|
2 , and let us assume that B is the minority phase in U ; i.e., the set

E = {x ∈ U : |ew(x) − B|2 ≤ ρ2} satisfies |E| ≤ |{x ∈ U : |ew(x)|2 ≤ ρ2}|. (The
case when A is the minority phase is treated similarly.) In particular, this implies
|E| ≤ |U \ E| by the choice of ρ. We have ρ2|E| ≤

∫
U
|ew|2 because |ew| ≥ ρ on E,

and similarly ρ2|E| ≤ ρ2|U \ E| ≤
∫
U
|ew −B|2. Thus by (16), whenever ε < 1,

|E| ≤ C1

(
ε

n
n−1 + ε2

)
(17)

for some constant C1 independent of u. Now we fix ε0 ∈ (0, 1) such that C1(ε
n

n−1

0 +
ε2
0) <

c0
2 |Br0 |. From now on we assume that ε ≤ ε0; the other case is treated at the

end of this proof. From (17) we deduce that |E| < c0
2 |Br0 |. Our aim is to show that

(18) |E| ≤ Cε2

for a constant C independent of u. Using Lemma 5 (notice that the constant in its
conclusion is invariant under a rescaling of the domain) as in (16) with Br replacing
U , and then dividing through |Br| and applying (15), one obtains

min

{
−
∫
Br(x)

|ew|2,−
∫
Br(x)

|ew −B|2
}

≤ C

[(
M(|ew|2)(x)−

∫
Br(x)

d2(ew)

) n
2(n−1)

+ −
∫
Br(x)

d2(ew)

]
(19)

for all x ∈ Ω and for all r > 0 such that B2r(x) ⊂ Ω. Here M denotes the Hardy–
Littlewood maximal function, M(f)(x) = supr>0 −

∫
Br(x)

|f |. Above and in what follows

we extend ew by zero outside Ω.
Claim 1. The set A∞ =

{
x ∈ Ω : M(|ew|2)(x) ≥ 10|B|2

}
satisfies |A∞| ≤ Cε2.

In fact, M(|ew|2) ≤ M(|ew|2−5|B|2)++5|B|2, whence x ∈ A∞ implies M(|ew|2−
5|B|2)+(x) ≥ 5|B|2. Since |ew|2 ≤ 2(d2(ew) + |B|2), we have d2(ew) ≥ 1

2 (|ew|2 −
5|B|2)+. We conclude that A∞ ⊂

{
M(d2(ew)) ≥ 5

2 |B|2
}
. Thus, by the Hardy–

Littlewood maximal theorem [31, Chapter 4], |A∞| ≤
∣∣{M(d2(ew)) ≥ 5

2 |B|2
}∣∣ ≤

C
∫
Ω
d2(ew), which proves Claim 1.

For almost every x ∈ E \A∞ there is an rx ≤ r0 such that

(20)
|E ∩Brx(x)|
|Brx(x)| =

c0
2
.

In fact, by the Lebesgue point theorem, for almost all x ∈ E\A∞, we have |E∩Br(x)|
|Br| →

1 as r → 0. On the other hand, |E∩Br(x)|
|Br(x)| ≤ |E|

|Br| , which is strictly less than c0/2 for

r > r0 by the choice of ε0. In particular, B2rx(x) ⊂ Ω for every x as above, by the
choice of r0.
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By Vitali’s covering theorem [24, Theorem 1, section 1.5] we can choose countably
many xi ∈ E \A∞ satisfying (20) and such that

(21) |E \A∞| ≤ C
∑

|Brxi
(xi)|

with pairwise disjoint balls on the right-hand side. By (20) and since |ew|2 ≥ ρ2 on
E and |ew −B|2 ≥ ρ2 on U \ E, for every i we have

c0ρ
2

2
≤ 1

|Brxi
| min

{∫
Brxi

(xi)∩E

|ew|2,
∫
Brxi

(xi)∩U\E
|ew −B|2

}

≤ C

⎡
⎣
(
−
∫
Brxi

(xi)

d2(ew)

) n
2n−2

+ −
∫
Brxi

(xi)

d2(ew)

⎤
⎦ .(22)

For the first inequality we have used that xi ∈ U , whence |Brxi
(xi) ∩ U | ≥ c0|Brxi

|
by definition of c0, and so |Brxi

(xi) ∩ U \ E| ≥ c0
2 |Brxi

| by (20). For the second

inequality we have used (19) and the definition of A∞. From (22) we have c0ρ
2

2 ≤
2C max

{
(−
∫
Brxi

(xi)
d2(ew))

n
2n−2 ,−

∫
Brxi

(xi)
d2(ew)

}
. We conclude that |Brxi

(xi)| ≤ max

{ 4C
c0ρ2 ,
(

4C
c0ρ2

) 2n−2
n }
∫
Brxi

(xi)
d2(ew). Summing over i, from the disjointedness of the

Brxi
(xi) and from (21) we conclude that |E \ A∞| ≤ Cε2, since

∫
Ω
d2(ew) ≤ Cε2 by

(11). By Claim 1 this implies (18) in the case ε ≤ ε0. But (18) also holds when ε > ε0

by (17) (e.g., by choosing C = 2C1

ε20
in (18); recall that ε < 1). Using (18) we can

finally estimate

∫
U

|ew|2 =

∫
U\E

|ew|2 +

∫
E

|ew|2 ≤ C

[∫
U\E

d2(ew) + |E| +
∫
E

d2(ew)

]
≤ Cε2.

The desired estimate now follows from Korn’s inequality.
The proof of Theorem 3 is completed using a cube decomposition of Ω and apply-

ing a weighted Poincaré inequality exactly as in the proof of Theorem 2 in [14]. We
have used the following lemma, the proof of which is the same as that of Lemma 2.4
in [14], where one can replace ∇w throughout by an arbitrary matrix-valued W 1,2-
function F .

Lemma 5. Let n ≥ 2, let Ω ⊂ R
n be a bounded and connected Lipschitz domain,

and let K1,K2 be compact disjoint subsets of R
n×n, K = K1 ∪K2. Then there is a

constant C = C(K,Ω), such that for any F ∈ W 1,2(Ω; Rn×n)

min
i=1,2

∫
Ω

dist2(F,Ki) ≤ C(K,Ω)

(∫
Ω

dist2(F,K)

∫
Ω

|∇F |2
) n

2(n−1)

+ C(K,Ω)

∫
Ω

dist2(F,K).

2.2. Compactness. The following theorem provides the compactness result
which complements the Γ-convergence result of Theorem 1. Its proof uses some facts
which were derived in [15] (in order to prove a lower scaling bound in a nonlinearly
elastic setting) and which in spirit are close to [28]. It is different from the Young
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measure arguments used in the literature of singularly perturbed functionals (e.g.,
[27, 18, 19, 20]).

Theorem 6. Let S ⊂ R
2 be a bounded Lipschitz domain, let A,B ∈ R

2×2 be
symmetric and such that (B−A)+Skew does not contain rank-one matrices, and set
K = (A + Skew) ∪ (B + Skew). Let hn → 0, set Ωhn = S × Ihn , and suppose that a
sequence un ∈ W 1,2(Ωhn

; R3) satisfies

(23) lim sup
n→∞

1

h2
n

∫
Ωhn

dist2(∇un,K) < ∞.

Set wn(x′) = −
∫
Ihn

(un(x′, x3))
′
dx3. Then there exist a subsequence (not relabeled)

and affine mappings fn : R
2 → R

2 with sym ∇′fn = 0, and there is w0 ∈ W 1,2(S; R2)
satisfying sym ∇′w0 ∈ BV (S; {Ā, B̄}) such that wn + fn → w0 strongly in W 1,2

(S; R2).
Proof. For h > 0 we consider a lattice of squares Sa,h = a + (−h

2 ,
h
2 )2, a ∈ hZ

2,

and we let S′
h =
⋃

{a∈hZ2:Sa,h⊂S} Sa,h. Now apply Theorem 3 to u(h) (here and in

what follows we write u(h) instead of un and h instead of hn to avoid cumbersome
notation) restricted to each cube a + (−h

2 ,
h
2 )3 with a ∈ hZ

2. This yields a piecewise

constant map R(h) : S′
h → K such that

(24)

∫
Sa,h×Ih

|∇u(h)(x) −R(h)(x′)|2 dx ≤ C

∫
Sa,h×Ih

dist2(∇u(h)(x),K) dx.

Define the piecewise constant map L(h) : S′
h → {A,B} by setting L(h)(x) = sym

R(h)(x). Let ε > 0 be sufficiently small (to be fixed below). We divide the family of
squares {Sa,h : a ∈ hZ

2 and Sa,h ⊂ S} into three different groups:

(25) a ∈ Ah
0 if and only if

∫
Sa,h×Ih

dist2(∇u(h)(x),K) dx ≥ εh3.

If a /∈ Ah
0 , then the matrix L(h)(a) ∈ {A,B} is such that 1

h3

∫
Sa,h×Ih

|sym ∇u(h) −
L(h)(a)|2 ≤ Cε. This follows from (24) and (25) by the definition of L(h)(a). Now
define

a ∈ Ah
1 if and only if a /∈ Ah

0 and L(h)(a) = A,

a ∈ Ah
2 if and only if a /∈ Ah

0 and L(h)(a) = B.(26)

For ε small enough, each square Sa,h belongs to exactly one of these three groups.
Thus the sets

(27) Ωh
i = int

⎛
⎝ ⋃

a∈Ah
i

S̄a,h

⎞
⎠ ,
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i = 0, 1, 2, are disjoint and cover S′
h up to an H2 null set. As in [15] one can prove

that, for ε small enough, the following implication holds:

(28) a ∈ Ah
i , a

′ ∈ Ah
j , and H1(S̄a′,h ∩ S̄a,h) > 0 =⇒ j ∈ {0, i},

that is, a square of type Ah
1 can only have neighboring squares of type Ah

1 or Ah
0 (never

of type Ah
2 ), and the analogous statement holds with Ah

1 and Ah
2 swapped. But from

(23) and from (25) we deduce #Ah
0 ≤ C

h . Since the side-length of each square Sa,h is
h, this leads to the estimate H1(∂Ωh

1 \ ∂S) ≤ C; compare [15]. This implies that the
characteristic functions χΩh

1
are bounded in BV (S), whence they have a subsequence

converging strongly in L1(S) and hence (by interpolation) in all Lp(S) with p < ∞.
Since #Ah

0 ≤ C
h , we have |Ωh

0 | ≤ Ch, whence χΩh
0
→ 0 in L1(R2). Hence we also have

strong L1(S)-convergence of χΩh
2
. Note that the respective limit functions, which we

denote χΩ1 and χΩ2
, both belong to BV (S).

On the other hand, L(h) = AχΩh
1

+ BχΩh
2

+ L(h)χΩh
0
. Let us extend L(h) by

zero to all of S. By the convergence χS′
h
→ 1 in L1(S) we obtain that L(h) → L

strongly in L2(S; R2×2), where L = χΩ1A + χΩ2B ∈ BV (S; {A,B}). By (24), (23),
and Jensen’s inequality we have

∫
S′
h
|sym ∇′w(h) − L̄(h)|2 ≤ Ch. Using L(h) = 0

on S \ S′
h and applying Jensen’s inequality, we find

∫
S\S′

h
|sym ∇′w(h) − L̄(h)|2 ≤

C|S \ S′
h| + Ch. We conclude that sym ∇′w(h) → L̄ strongly in L2(S; R2×2). Since

the subspace of symmetrized gradients is strongly closed in L2(S; R2×2), there is a
w0 ∈ W 1,2(S; R2) such that sym ∇′w0 = L̄ ∈ BV (S; {Ā, B̄}). An application of
Korn’s and of Poincaré’s inequalities on S for each h yields affine mappings f (h) :
R

2 → R
2 with sym ∇′f (h) = 0 (explicitly, e.g., ∇′f (h) = skew −

∫
S
∇′(w(h) −w0)) such

that ‖w(h) + f (h) − w0‖2
W 1,2(S;R2) ≤ C

∫
S
|sym ∇′w(h) − sym ∇′w0|2. This converges

to zero because sym ∇′w(h) → L̄ in L2(S; R2×2).
Remark. Let y(h)(x′, x3) = u(h)(x′, hx3) be the rescaled displacements defined on

Ω = S× (− 1
2 ,

1
2 ) and set ∇hy = (∇′y

∣∣ 1
hy,3). Then the proof of Theorem 6 shows that

sym ∇hy
(h) → L strongly in L2(Ω; R3×3). Thus ∇′(y(h))′ → L̄ and y,3 → 0 strongly

in L2. If, using a scaling analogous to that in [17, section 1.3], we set (ȳ(h))′ = (y(h))′

and (ȳ(h))3 = h(y(h))3, then Korn’s inequality on Ω implies that there are affine
mappings F (h) : R

3 → R
3 with sym ∇F (h) = 0 and such that ȳ(h) + F (h) → FL

strongly in W 1,2(Ω; R3), where FL(x) = ( L̄x′

0 ).
In [19, Proposition 2.2], the following characterization is provided for functions

whose symmetrized gradient has bounded variation and is supported on two incom-
patible matrices Ā, B̄. (For earlier results in this direction, compare [23].)

Proposition 7. Let S ⊂ R
2 be a bounded Lipschitz domain. Let Ā, B̄ satisfy

(iii)–(iv) from the beginning of section 2, let ν1, ν2 be linearly independent solutions
to Ā − B̄ + t(e1 ⊗ e2 − e2 ⊗ e1) = a ⊗ νi, where a ∈ R

3 and t ∈ R, and let w ∈
W 1,2(S; R2) satisfy sym ∇′w ∈ BV (S; {Ā, B̄}). Then the jump set J of sym ∇′w
consists of countably many disjoint segments whose endpoints belong to ∂S and which
have normal directions ν1 or ν2. In addition, ∇′w is constant on each connected
component of S \ J .

3. Lower bound. In this section we prove part (i) of Theorem 1. From now on
we assume that A = 0 and B is as in (7). This choice allows exactly two different
directions for the interface normal; the directions are orthogonal to each other: Setting
T1 = e2 ⊗ e1 − e1 ⊗ e2 and T2 = e1 ⊗ e2 − e2 ⊗ e1, we have B̄ + T1 = 2e2 ⊗ e1, giving
the normal ν1 = e1, and B̄ + T2 = 2e1 ⊗ e2, giving the normal ν2 = e2. Notice that,
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if T̄ ∈ R
2×2 \ {T1, T2} with sym T̄ = 0, then det(B̄ + T̄ ) 	= 0. Define the piecewise

constant mappings F±
i : R

2 → R
2×2 by

F±
i (x′) =

{
0 for ±x′ · νi < 0,

B̄ + Ti otherwise,

and set w±
i (x′) = F±

i (x′)x′; note that the jump set of ∇′w±
i agrees with {νi}⊥.

Definition 8. Let σ ∈ {−,+}, i ∈ {1, 2}, let J1, J2 be open intervals, and set
S = J1 × J2.

(i) We set wσ
i,S(x′) = wσ

i (x′ − ξei), where ξ = 1
2 (supJi − inf Ji). The set

Ji,S = S ∩ (ξνi + {νi}⊥) is called the interface of wσ
i,S.

(ii) A pair of sequences (un, hn) is called (σ, i)-admissible on S, provided that
hn ∈ R+, hn → 0, un ∈ W 1,2(S × Ihn

; R3), and −
∫
Ihn

u′
n dx3 → wσ

i,S in L2(S; R2).

(iii) If J1 = ∅ or J2 = ∅, then we set Fσ
i (S) = 0. Otherwise, we define

Fσ
i (S) = inf

{
lim inf
n→∞

Ihn(un;S) : There exist (hn) and (un) such that

(un, hn) is (σ, i)-admissible on S
}
.

We define

(29) k(νi) = F+
i

((
− 1

2
,
1

2

)
×
(
− 1

2
,
1

2

))
.

(iii) A pair of sequences (un, hn) is called a (σ, i)-recovery sequence on S, pro-
vided that (un, hn) is (σ, i)-admissible on S and limn→∞ Ihn(un;S) = Fσ

i (S).
Remarks. (i) Our definition of Fσ

i differs slightly from the usual one. If one sets
F̃σ

1 (J ; ε) = Fσ
1 ((−ε, ε)× J) and F̃σ

2 (J ; ε) = Fσ
2 (J × (−ε, ε)), then the F̃σ

i correspond
to the Fσ

i as defined, e.g., in [18, formula (4.2)].
(ii) In Lemma 13 we will show that for any fixed sequence hn → 0 there exist un

such that (un, hn) is a (σ, i)-recovery sequence.
(iii) When it is clear from the context which sequence hn → 0 is meant, then we

will often just say that un is a (σ, i)-recovery sequence. Also, we will drop the prefix
(σ, i) when it is clear from the context.

Lemma 9. Let J1, J2 be open intervals, set S = J1 × J2, and let i ∈ {1, 2}. Then
F+

i (S) = F−
i (S) = k(νi) |π⊥

i (S)|. (Recall that π⊥
i denotes the orthogonal projection

onto {ei}⊥ = {νi}⊥.)
Proof. Similar to [18, Lemma 4.3] or [19, Lemma 3.2], one can prove the lemma

by showing the following facts. Let J ′
1 ⊂ J1, J ′

2 ⊂ J2 be open intervals and set
S′ = J ′

1 × J ′
2. Then

(i) F+
i (S) = F−

i (S) =: Fi(S).
(ii) Behavior under homotheties. Fi(x

′ + λS) = λFi(S) for all x′ ∈ R
2 and all

λ > 0.
(iii) Monotonicity. Fi(S

′) ≤ Fi(S).
(iv) Concentration. Fi(S

′) = Fi(S) if |π⊥
i (S′)| = |π⊥

i (S)|.
Lemma 10. Let i ∈ {1, 2}, σ ∈ {+,−}, let J1, J2 be open intervals, let λ > 0,

y ∈ R
2 × {0}, and let (vn, hn) be a (σ, i)-recovery sequence on S = J1 × J2. Set

v̂n(x) = λvn(x−y
λ ) for all n ∈ N. Then (v̂n, λhn) is a (σ, i)-recovery sequence on

y′ + λS.
Proof. Since from Lemma 9 we have Fσ

i (y′+S) = Fσ
i (S), we may assume without

loss of generality that y = 0 and that S is centered about the origin. Since (vn, hn)
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is (σ, i)-admissible on S, (v̂n, λhn) is also (σ, i)-admissible on λS. By Lemma 9 and
a change of variables we have lim supn→∞ Iλhn(v̂n;λS) = lim supn→∞ λIhn(vn;S) =
λFσ

i (S) = Fσ
i (λS).

Lemma 11. Let i ∈ {1, 2}, σ ∈ {+,−}, let Jj , J
′
j be open intervals with J ′

j ⊂ Jj,
j = 1, 2, and set S = J1 × J2, S

′ = J ′
1 × J ′

2. Let (vn, hn) be a (σ, i)-recovery sequence
on S. Then the following hold:

(i) If S′ ∩ Ji,S = ∅, then limn→∞ Ihn(vn;S′) = 0.
(ii) If S′ ∩ Ji,S 	= ∅, then limn→∞ Ihn(vn;S′) = Fσ

i (S′).
Proof. By translation invariance we may assume without loss of generality that

S is centered about the origin, so Ji,S = S ∩ {νi}⊥. Statement (i) is an immediate
consequence of Lemma 9. In fact, let ε > 0 be so small that Sε = {x′ ∈ S : |x′ ·νi| < ε}
satisfies Sε∩S′ = ∅. Then Fσ

i (Sε) = Fσ
i (S) by Lemma 9 because |π⊥

i (Sε)| = |π⊥
i (S)|.

Hence limn→∞ Ihn(vn;S \ Sε) = 0.
To prove statement (ii) notice that by Lemma 11(i) we may assume without loss of

generality that πi(S
′) = πi(S) (recall that πi denotes the orthogonal projection onto

the subspace spanned by ei = νi). In other words, J ′
i = Ji, so S′ is a stripe of width

|π⊥
i (S′)| perpendicular to the interface Ji,S . Assume that (ii) is false, and so, since vn

is admissible on S′, we have lim supn→∞ Ihn(vn;S′) > Fσ
i (S′). If S′ = S, then this

would contradict the fact that vn is a recovery sequence on S. Otherwise, denote by
S1, S2 the two connected components of S\S′. (If S\S′ consists of only one connected
component, then we call it S1 and set S2 = ∅.) After passing to subsequences (not
relabeled) we may assume that Ihn(vn;S′) and Ihn(vn;Sj), j = 1, 2, converge. Hence
we obtain the contradiction

Fσ
i (S) = Fσ

i (S′) + Fσ
i (S1) + Fσ

i (S2)

< lim
n→∞

Ihn(vn;S′) + lim
n→∞

Ihn(vn;S1) + lim
n→∞

Ihn(vn;S2)

= lim
n→∞

Ihn(vn;S) = Fσ
i (S).

The first equality follows from Lemma 9; the strict inequality holds because
(vn|Sj

, hn) are admissible on Sj and because by assumption we have lim Ihn(vn;S′) >
Fi(S

′). The last equality holds because (vn, hn) is a recovery sequence on S.
Now we define the set of admissible limiting functions as

(30) A(S) =
{
w ∈ W 1,2(S; R2) : sym ∇′w ∈ BV (S; {0, B̄})

}
and the limiting functional

(31) I0(w;S) =

{ ∫
J
k(ν(x))dH1(x) if w ∈ A(S),

+∞ otherwise.

Here J denotes the jump set of sym ∇′w, also called the phase interface, and ν denotes
the normal (the sign does not matter), which up to a sign can assume only the values
ν1 = e1 and ν2 = e2.

Theorem 12. Let S ⊂ R
2 be a bounded Lipschitz domain and w ∈ L2(S; R2).

Then, for all hn → 0 and all un ∈ L2(S × Ihn
; R3) satisfying −

∫
Ihn

u′
ndx3 → w in

L2(S; R2), one has lim infn→∞ Ihn(un;S) ≥ I0(w;S).
Proof. If lim infn→∞ Ihn(un;S) = ∞, then there is nothing to prove. Other-

wise, by passing to a subsequence (not relabeled) we may assume that the sequence
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Ihn(un;S) converges, so, in particular, lim supn→∞ Ihn(un;S) < ∞. After passing to
a further subsequence, Theorem 6 implies that there is a sequence of affine mappings
fn : R

2 → R
2 with sym ∇fn = 0 such that wn + fn → w0 in W 1,2(S; R2) for some

w0 ∈ A(S), where we have set wn = −
∫
Ihn

u′
n dx3. Since wn → w in L2(S; R2), we

deduce that fn converges in L2(S; R2), whence there is T̄ ∈ R
2×2 with sym T̄ = 0 and

a vector c ∈ R
2 such that fn(x′) → c+T̄ x′ for all x′ ∈ S. Hence w = w0−T̄ x′−c, and,

in particular, we have w ∈ A(S). By the strong W 1,2-convergence of both wn + fn
and fn we have wn → w in W 1,2(S; R2). By Proposition 7 the jump set of sym ∇′w
consists of a countable union of disjoint segments Jk with normal ν1 or ν2. The rest
of the proof is standard: One covers each Jk with a box, applies Lemma 9 to each
box separately, and uses the minimality of F±

i (see, e.g., the proof of Proposition 3.1
in [19] for the details).

4. Upper bound. In this section we will show that for any admissible limit
function w and for any given sequence hn → 0 one can find a sequence (vn, hn) such
that −
∫
Ihn

v′n dx3 → w strongly in W 1,2(S; R2) and Ihn(vn;S) → I0(w;S). We will

first show that given (σ, i) and any sequence hn → 0 one can find a sequence (vn) such
that (vn, hn) is a (σ, i)-recovery sequence on S. A key difference from the proof of
the analogous Proposition 5.5 in [19] is that we do not rely on the existence of special
recovery sequences which are affine away from the interface but work directly with an
arbitrary recovery sequence.

Lemma 13. Let J1, J2 be open intervals and set S = J1 × J2. Let σ ∈ {+,−},
i ∈ {1, 2}, and Hn → 0 be given. Then we have

Fσ
i (S) = inf

{
lim inf
n→∞

IHn(un;S) : there is (un) such that (un, Hn)

is (σ, i)-admissible on S
}
.

Proof. Clearly we must prove only the “≥”-inequality, and by Lemmas 10 and 11
we may assume without loss of generality that S = (− 1

2 ,
1
2 )2. In fact, suppose

Lemma 13 is shown for this particular case. Now let Hn → 0 and an arbitrary S
be given and assume without loss of generality (by translation invariance) that S is
centered about the origin. Then there is λ > 0 such that λS ⊂ (− 1

2 ,
1
2 )2. By the

special case of Lemma 13 there is a recovery sequence (vn, λHn) on (− 1
2 ,

1
2 )2. By

Lemma 11(ii) we have that (vn|λS , λHn) is a recovery sequence on λS. By Lemma 10,
setting v̂n(x) = 1

λvn(λx), we conclude that (v̂n, Hn) is a recovery sequence on S.
So suppose that S = (− 1

2 ,
1
2 )2 and let Hn → 0 be given. Let us restrict our

attention to the case σ = + and i = 1, so the interface normal is ν1 = e1, the phase “0”
is used on the left, {∇′w+

1 = 0} = S∩{x1 < 0}, and {∇′w+
1 = B̄+T1} = S∩{x1 > 0}

up to a null set; the other cases are similar. Note that the infimum in the definition of
Fσ

i (S) = k(νi) is attained; i.e., there is a sequence hn → 0 and vn ∈ W 1,2(S×Ihn ; R3)
such that −

∫
Ihn

v′ndx3 → w+
1 in L2(S; R2) and limn→∞ Ihn(vn;S) = k(ν1). Since after

passing to subsequences this equality remains valid, we may assume without loss of
generality that hn � Hn, i.e., αn = Hn

hn
→ ∞.

Set y
(n)
1 = 1

2αn
− 1

2 and y
(n)
m+1 = y

(n)
m + 1

αn
, m = 1, . . . , [αn] − 1, and let S

(n)
m =

(− 1
2 ,

1
2 ) × (y

(n)
m − 1

2αn
, y

(n)
m + 1

2αn
). We recall (25)–(28) from the proof of Theorem 6

and apply them to vn instead of u(h). Define S
(n)
m,1 = S

(n)
m ∩ Ωhn

1 ∩ {∇′w+
1 = 0} and

S
(n)
m,2 = S

(n)
m ∩Ωhn

2 ∩{∇′w+
1 = B̄+T1}. It follows from the proof of Theorem 6 applied

to vn that χΩhn
1

→ χ{∇′w+
1 =0}∩S and χΩhn

2
→ χ{∇′w+

1 =B̄+T1}∩S strongly in L1(R2)
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(notice that, by uniqueness of the limits, the full sequence indeed converges). Now

denote by Gn = {m = 1, . . . , [αn] : |S(n)
m,1| > 1

3αn
and |S(n)

m,2| > 1
3αn

} the index set of

“good” stripes, and for i = 1, 2 set Mn,i = {m = 1, . . . , [αn] : |S(n)
m,i| ≤ 1

3αn
}. We

claim that

(32)
#Gn

αn
→ 1 as n → ∞.

Indeed, if (32) were false, then by definition of Gn there would exist i ∈ {1, 2},
γ > 0, and a subsequence (not relabeled) such that

#Mn,i

αn
∈ ( 5

6γ, γ) for all n. For
definiteness suppose that i = 1; the case i = 2 is similar. But for all n we have

Ωhn
1 ∩{∇′w+

1 = 0} ⊂ (S\
⋃[αn]

m=1 S
(n)
m )∪

⋃
m/∈Mn,1

S
(n)
m,1∪
⋃

m∈Mn,1
S

(n)
m,1. Taking measures

on both sides, we find (notice that by definition |S(n)
m,i| ≤ 1

2αn
)

|Ωhn
1 ∩ {∇′w+

1 = 0}| ≤ 1 − [αn]

αn
+

1

2αn
([αn] − #Mn,1) +

1

3αn
#Mn,1

≤ 1 − [αn]

αn
+

1

2

(
1 − 5

6
γ

)
+

γ

3
.

As n → ∞, the left-hand side converges to 1
2 and the right-hand side converges to

1
2 − 1

12γ. This contradiction proves (32).
From (32) one deduces that

(33) lim sup
n→∞

(
αn min

m∈Gn

Ihn(vn;S(n)
m )
)
≤ lim sup

n→∞
Ihn(vn;S).

In fact, if (33) were false, then (after passing to an unrelabeled subsequence) there

would exist γ > 0 such that Ihn(vn;S
(n)
m ) − 1

αn
Ihn(vn;S) ≥ γ

αn
for all n and for

all m ∈ Gn. Summing over m ∈ Gn we would find (1 − #Gn

αn
)Ihn(vn;S) ≥ Ihn(vn;⋃

m∈Gn
S

(n)
m )−#Gn

αn
Ihn(vn;S) ≥ #Gn

αn
γ. By (32) the left-hand side converges to zero as

n → ∞, while the right-hand side converges to γ, which is a contradiction proving (33).

Now choose mn ∈ Gn such that Ihn(vn;S
(n)
mn) = minm∈Gn Ihn(vn;S

(n)
m ), and set

ŷn = y
(n)
mn . Let r(n) = (− l

2αn
, l

2αn
) × (ŷn − 1

2αn
, ŷn + 1

2αn
), where l = 1 + k(ν1)

k(ν2)
.

Consider the functions gn(x1) = |Ωhn
1 ∩

(
(x1, 0) + r(n)

)
|. Since mn ∈ Gn, there is

x1 ≤ 0 such that gn(x1) > |r(n)|
2 . The existence of such x1 can be seen, e.g., by the

following argument (another argument uses Fubini’s theorem): Set xk
1 = l

2αn
− 1

2 + kl
αn

,

k = 0, . . . , Nn, where Nn = [αn

2l − 1
2 ]. Then xk

1 ≤ 0 for all k = 0, . . . , Nn and

(34) S(n)
mn

∩ {∇′w+
1 = 0} ⊂ r̂(n) ∪

Nn⋃
k=0

(
(xk

1 , 0) + r(n)
)
,

where r̂(n) is a rectangle with |r̂(n)| ≤ |r(n)|. If gn(xk
1) ≤ |r(n)|

2 for all k = 0, . . . , Nn,

then |Ωhn
1 ∩

(
(xk

1 , 0) + r(n)
)
| ≤ |r(n)|

2 for all k. Intersecting (34) with Ωhn
1 , taking

measures, and multiplying by αn, we find αn|S(n)
mn,1

| ≤ αn|r̂(n)| + αn(Nn + 1) |r
(n)|
2 ≤

C
αn

+ 1
4 since |r(n)| = l

α2
n
. As n → ∞, the right-hand side converges to 1

4 , while the

left-hand side is greater than 1
3 because mn ∈ Gn, which is a contradiction. Similarly,

one proves existence of x1 ≥ 0 such that gn(x1) <
|r(n)|

2 .
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Since gn is continuous, we conclude that there is some x̂n with gn(x̂n) = |r(n)|
2 . By

(33) and the choice of mn the rectangle Ŝn = (x̂n− l
2αn

, x̂n+ l
2αn

)×(ŷn− 1
2αn

, ŷn+ 1
2αn

)

satisfies lim supαnI
hn(vn; Ŝn) ≤ k(ν1). Recalling (25) we set Â(n)

0 = {a ∈ Ahn
0 :

a+(−hn

2 , hn

2 )2 ⊂ Ŝn}. Then by (25) we have #Â(n)
0 ≤ C

h3
n

∫
Ŝn

W (∇vn) ≤ C
hnαn

. Hence

|Ωhn
0 ∩ Ŝn| ≤ |

⋃
a∈Â(n)

0
(a+(−hn

2 , hn

2 )2)|+hn ·H1(∂Ŝn) ≤ Chn

αn
. But Chn

αn
� l

α2
n

= |Ŝn|

because Hn → 0. Hence
|Ωhn

0 ∩Ŝn|
|Ŝn|

→ 0, so we conclude that

(35)
|Ωhn

i ∩ Ŝn|
|Ŝn|

→ 1

2
for i = 1, 2 as n → ∞.

In fact, we have |Ŝn ∩ Ωhn
1 | = |Ŝn|

2 by the choice of x̂n. Now set Vn(x) = αnvn
(

x
αn

+

(x̂n, ŷn)
)

and S′ = (−l/2, l/2) × (− 1
2 ,

1
2 ). Then Vn ∈ W 1,2

(
S′ × (−Hn

2 , Hn

2 ); R3
)

and
lim sup IHn(Vn;S′) ≤ k(ν1). Set Wn = −

∫
IHn

V ′
ndx3. After possibly reflecting Vn about

{ν1}⊥ we may assume that

∣∣∣∣
{
x ∈ S′ : x1 < 0, sym ∇′Wn(x) ≤ |B|

4

}∣∣∣∣(36)

≤
∣∣∣∣
{
x ∈ S′ : x1 > 0, sym ∇′Wn(x) ≤ |B|

4

}∣∣∣∣
for all n. By Theorem 6, for every subsequence there is a further subsequence, labeled
with an index m, and there are affine mappings Fm : R

2 → R
2 with sym ∇Fm = 0

such that Wm + Fm → W0 strongly in W 1,2(S′; R2), where W0 ∈ A(S′). More-
over, we may assume that limm→∞ IHm(Vm;S′) = k(ν1). Theorem 12 implies that
I0(W0;S

′) ≤ k(ν1). Since S′ is a rectangle with sides parallel to e1 and e2, Proposi-
tion 7 implies that W0 has either only interfaces with normal ν1 = e1 or only interfaces
with normal ν2 = e2. If it had an interface of the latter type, we would obtain the
contradiction I0(W0;S

′) ≥ lk(ν2) > k(ν1), by the choice of l. Thus W0 has only
interfaces with normal ν1, and since lim sup IHn(Vn;S′) ≤ k(ν1), there can be at
most one such interface. On the other hand, by (35) we have |{sym ∇′W0 = 0}| =

|{sym ∇′W0 = B̄}| = |S′|
2 , so there must be at least one interface. Hence W0 has

exactly one interface, it has normal ν1, and by (35) it lies in {ν1}⊥. By (36) we have
(− l

2 , 0) × (− 1
2 ,

1
2 ) = {sym ∇′W0 = 0} up to a null set, so the mapping w+

1 − W0

is affine with sym ∇′(w+
1 − W0) = 0. We conclude that sym ∇′Wm → sym ∇′w+

1

strongly in L2(S′; R2×2). Since the same limit is obtained for all subsequences, we
conclude that the full sequence satisfies sym ∇′Wn → sym ∇′w+

1 . By Korn’s in-
equality on S′, there exist affine mappings F̃n : R

2 → R
2 with sym ∇′F̃n = 0

such that Wn + F̃n → w+
1 strongly in W 1,2(S′; R2). Denote by un the restriction of

x �→ Vn(x) + ( F̃n(x′)
0

) to S. This sequence satisfies −
∫
IHn

u′
n dx3 → w+

1 in W 1,2(S; R2)

and lim sup IHn(un;S) = k(ν1).
Notation. From now on we will drop the index n when dealing with sequences

hn → 0 because, in view of Lemma 13, there exists a recovery sequence (vn, hn) for a
particular sequence hn → 0 if and only if there exists one for every sequence hn → 0.
We say that there exists a (σ, i)-recovery sequence u(h) on S if for all (hn) there exist
(un) such that (un, hn) is a (σ, i)-recovery sequence on S.
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U

Fig. 1. Proof of Lemma 14: The black region represents the interpolation layer. The dashed
rectangle denotes the boundary of V .

In a first modification step we will now change the recovery sequence furnished
by Definition 8 and Lemma 13 in such a way that its vertical averages become smooth
away from the interface. Lemma 14 provides a link between (1) and (2).

Lemma 14. Let J1, J2 be open intervals, set S = J1 × J2, and let σ ∈ {+,−},
i ∈ {1, 2}. Let ε > 0 and set Q = S ∩ Bε(Ji,S). Then there exists a (σ, i)-recovery
sequence u(h) ∈ W 1,2(S × Ih; R3) on S such that w(h)(x′) = −

∫
Ih

(u(h))′(x) dx3 and

τ (h)(x′) = −
∫
Ih

u
(h)
3 (x) dx3 satisfy w(h) ∈ C∞(S \ Q̄; R2) and τ (h) ∈ C∞(S \ Q̄).

Moreover,

(37) lim
h→0

(
Ih2D(w(h);S \Q) + h

∫
S\Q

|∇′2τ (h)(x′)|2 dx′
)

= 0.

Proof. Arguing as at the beginning of the proof of Lemma 13, we may assume
without loss of generality that S = (− 1

2 ,
1
2 )2. Moreover, we will prove the statement

for i = 1, σ = + only, the other cases being analogous. Recall that {∇′w+
1 = 0} =

{x ∈ R
2 : x1 < 0} up to a null set. Let v(h) ∈ W 1,2((2S) × Ih; R3) be a (+, 1)-

recovery sequence on 2S, so by Lemma 11(ii) we have limh→0 I
h(v(h);S) = k(ν1). Fix

a > 0 satisfying (−9a, 9a)× (− 1
2 ,

1
2 ) ⊂ Q, set V = (− 1+a

2 ,−a
2 )× (− 1+a

2 , 1+a
2 ), and let

U = (− 1
2 ,−a)×(− 1

2 ,
1
2 ), so Ū ⊂ V ⊂ {∇′w+

1 = 0}∩(2S). The situation is depicted in
Figure 1. To obtain mappings defined on the full plate thickness, we mollify slicewise
in horizontal planes: Let ψ be a standard mollifier supported on (− 1

2 ,
1
2 )2, and set

ψh(x′) = 1
h2ψ(x

′

h ). Set

ṽ(h)(x) =
(
ψh ∗ v(h)(·, x3)

)
(x′) = −

∫
I2
h

ψ

(
y′

h

)
v(h)(x′ − y′, x3) dy′,

which for h small enough is well defined on S × Ih (recall that v(h) is defined on
(2S) × Ih). Recall the definition of S′

h and of R(h) : S′
h → Skew ∪ (B + Skew)

introduced before (24) in the proof of Theorem 6. Adopting the notation introduced
there, we have S ⊂ (2S)′h for h small enough, so R(h) is defined everywhere on S.
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Since ∇ṽ(h)(x) =
(
ψh ∗ ∇v(h)(·, x3)

)
(x′), we can estimate

∫
U×Ih

|∇ṽ(h)(x) −R(h)(x′)|2dx

≤ C

h2

∫
spt ψh

dy′
∫
U×Ih

(
|∇v(h)(x′ − y′, x3) −R(h)(x′ − y′)|2

+ |R(h)(x′ − y′) −R(h)(x′)|2
)
dx

≤ C

∫
V×Ih

W (∇v(h)(x)) dx.(38)

In the first step we have applied Jensen’s inequality and have added and subtracted
R(h)(x′−y′). In the last step we used that spt ψh ⊂ (−h

2 ,
h
2 )2 and applied the estimate

(39)

∫
U

|R(h)(x′ + ζ) −R(h)(x′)|2 dx′ ≤ C

∫
V×Ih

W (∇v(h)(x)) dx,

which holds for all ζ ∈ R
2 with |ζ1|, |ζ2| ≤ h. (The estimate (39) can be derived by

arguments similar to the first part of the proof of Theorem 4.1 in [28], with our Theo-
rem 3 replacing their Theorem 3.1.) From (38) we deduce Ih(ṽ(h);U) ≤ CIh(v(h);V )
by (6) since sym R(h) ∈ {A,B}. Let w(h) = −

∫
Ih

(v(h))′ dx3, τ
(h) = −

∫
Ih

(v(h))3 dx3 and

w̃(h) = −
∫
Ih

(ṽ(h))′ dx3, τ̃
(h) = −

∫
Ih

(ṽ(h))3 dx3. Since sym R̄(h) ∈ {Ā, B̄}, by Jensen’s

inequality and by (38) we can estimate

∫
U×Ih

W2D(∇′w̃(h)(x′)) dx ≤
∫
U×Ih

|sym ∇′w̃(h)(x′) − sym R̄(h)(x′)|2 dx

≤
∫
U×Ih

|∇ṽ(h)(x) −R(h)(x′)|2 dx ≤ C

∫
V×Ih

W (∇v(h)(x)) dx.

Since ∇ṽ(h)(x) =
(
ψh ∗ ∇v(h)(·, x3)

)
(x′), for α ∈ {1, 2} we have (∇ṽ(h)),α(x) =∫

ψ,α(y′)(∇v(x′−y′, x3)−∇v(x′, x3))dy
′ (where we have added a term which is zero by∫

∇′ψh = 0). Using this together with Jensen’s inequality and the fact that |∇′ψh|2 ≤
C
h2 while |spt ψh| ≤ h2, an argument similar to (38) leads to h

∫
U
|∇′2w̃(h)(x′)|2

dx′ + h
∫
U
|∇′2τ̃ (h)(x′)|2 dx′ ≤ CIh(v(h);V ). Summarizing, we have shown that

(40) Ih2D(w̃(h);U) + h

∫
U

|∇′2τ̃ (h)(x′)|2 dx′ ≤ CIh(v(h);V ).

For κ ∈ (0, a) let φ be a smooth cutoff function that decreases from one to zero
within the transition layer (−a − κ,−a) with ‖φ′‖∞ ≤ 2

κ . Consider the linear

interpolation u
(h)
κ (x) = v(h)(x) + φ(x1)(ṽ

(h)(x) − v(h)(x)). Since −
∫
Ih

(ṽ(h))′ dx3 →
w+

1 and −
∫
Ih

(v(h))′ dx3 → w+
1 in L2(U ; R2), we also have −

∫
Ih

(u
(h)
κ )′ dx3 → w+

1

in L2(U ; R2). Moreover, by (6) the energy
∫
Th

W (∇u
(h)
κ ) on the transition layer
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Th = (−a− κ,−a) × (− 1
2 ,

1
2 ) × Ih is bounded by

C

∫
Th

W0(∇u(h)
κ (x)) dx ≤ C

∫
Th

W0(∇v(h)(x)) +
1

κ2
|ṽ(h)(x) − v(h)(x)|2

+ |∇ṽ(h)(x) −∇v(h)(x)|2 dx

≤ C

κ2

∫
Th

W0(∇v(h)(x)) + |∇ṽ(h)(x) −∇v(h)(x)|2 dx

≤ C

κ2

∫
V×Ih

W (∇v(h)(x)) dx.(41)

In passing to the second line we have assumed, by possibly adding a constant c(h)

to ṽ(h), that
∫
Th

(
ṽ(h)(x) − v(h)(x)

)
dx = 0, so we could apply Poincaré’s inequality

to estimate the term involving |ṽ(h) − v(h)|2 (the varying domain causes no problem
in the application of Poincaré’s inequality; one could, e.g., apply it separately in
the in-plane and in the x3-directions). Note that c(h) → 0, since w(h) and w̃(h)

converge to the same limit w+
1 in W 1,2(S; R2). In the last step in (41) we have

used the fact that by (38) and since
∫
U×Ih

|∇v(h) − R(h)|2 ≤ C
∫
V×Ih

W (∇v(h)) (by

the definition of R(h)), we have
∫
V×Ih

|∇ṽ(h) − ∇v(h)|2 ≤ C
∫
V×Ih

W (∇v(h)). After

applying the analogous construction to the right of the interface (adding a different

constant c
(h)
2 to the corresponding ṽ(h)), the lemma follows because by Lemma 11(i)

we have 1
h2

∫
V×Ih

W (∇v(h)) → 0 as h → 0.
In the next lemma we further modify the recovery sequence such that the re-

sulting functions are affine away from the interface. This is achieved via a two-step
interpolation depicted in Figure 2. In the first step the recovery sequence is modified
in such a way that it uses only one well away from the interface—namely, the one

i, S
J

12

ξh
a2a

Fig. 2. The shaded regions represent the interpolation layers whose numbers correspond to the
steps in Lemma 15. The bold dashed lines belong to ∂Uh, the thin dashed lines to ∂U , and the solid
horizontal line to ∂S.
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which is being used by the limiting mapping on that region. In a second step, it is
further modified to become affine with gradient in the corresponding well.

Lemma 15. Let J1, J2 be open intervals, set S = J1 × J2, and let σ ∈ {+,−},
i ∈ {1, 2}. Then there is a (σ, i)-recovery sequence v(h) on S with the following
property: For any ε > 0 there is h0 > 0 such that, writing Q = S ∩ Bε(Ji,S),
the following holds: For h ∈ (0, h0) the mapping v(h) is affine on each connected
component of (S \Q) × Ih, and ∇v(h) ∈ Skew ∪ (B + Skew) on (S \Q) × Ih.

Proof. Arguing as at the beginning of the proof of Lemma 13, we may assume
without loss of generality that S = (− 1

2 ,
1
2 )2. We perform the construction only for

σ = + and i = 1 and only on the left side of the interface; the other cases are similar.
Set Ŝ = (−1, 1)2 and fix a ∈ (0, 1

100 ). Let v(h) be a (+, 1)-recovery sequence

on Ŝ as provided by Lemma 14, whose vertical averages w(h)(x′) = −
∫
Ih

(v(h)(x))′dx3

and τ (h)(x′) = −
∫
Ih

v
(h)
3 (x)dx3 satisfy w(h) ∈ C∞(Ŝ \ {|x1| < a

10}; R2) and τ (h) ∈
C∞(Ŝ \ {|x1| < a

10}). Set U = (−5a,−a
2 ) × (−1, 1). We may assume without loss

of generality that h < a
100 , and by Lemma 11(i) we have Ih(v(h);U) → 0 as h → 0.

By the strong convergence w(h) → w+
1 in W 1,2(Ŝ; R2) and since U ⊂ {∇′w+

1 = 0} we
have

∫
U
|∇′w(h)|2 → 0. Hence, using (37) in the conclusion of Lemma 14, we can write

(42) Ih(v(h);U) + Ih2D(w(h);U) + h

∫
U

|∇′2τ (h)(x′)|2dx′ +

∫
U

|∇′w(h)(x′)|2dx′ = ηh,

where ηh → 0 as h → 0.
Step 1. Interpolation to a displacement with low one-well energy. As in the proof

of Theorem 6 set Sz,h = z + (−h
2 ,

h
2 )2 and Ŝ′

h =
⋃

{z∈hZ2:Sz,h⊂Ŝ} Sz,h, and define the

mapping R(h) : S′
h → K to be constant on each Sz,h with z ∈ hZ

2 and such that∫
Sz,h×Ih

|∇v(h) −R(h)|2 ≤ C
∫
Sz,h×Ih

dist2(∇v(h),K). (Here C is a universal constant

given by applying Theorem 3 to a cube.) Let G(h) = hZ ∩ (−2a,−a) and set Nh =
#G(h). To every ξ ∈ G(h) define the column Zh(ξ) =

(
(ξ − h

2 , ξ + h
2 ) × (−1, 1)

)
∩ Ŝ′

h.

By definition of U and since h < a
2 , we have Zh(ξ) ⊂ U for all ξ ∈ G(h). Hence

(43)
∑

ξ∈G(h)

∫
Zh(ξ)

|∇′w(h)(x′)|2dx′ ≤
∫
U

|∇′w(h)(x′)|2dx′ ≤ ηh.

Now fix ρ ∈ (0, 1) such that (1 − 4ρ)2 > 2
3 and denote by G

(h)
1 the set of all ξ ∈ G(h)

with the property that

(44)

∫
Zh(ξ)

|∇′w(h)(x′)|2dx′ ≤ ηh
[ρNh]

.

The estimate (43) implies that #G
(h)
1 ≥ (1 − ρ)Nh. Notice that by (44) and since

Nh ≥ a
2h , for ξ ∈ G

(h)
1 we have

(45)

∫
Zh(ξ)

|∇′w(h)(x′)|2dx′ ≤ Cηhh.

Now set L(h) = sym R(h) and define Ah
i as in (25)–(26) and Ωh

i as in (27), i = 0, 1, 2.

By (42) and (25) we have h · #(Ah
0 ∩ U) → 0 as h → 0. Hence the set G

(h)
2 of all

ξ ∈ G(h) with the property that Zh(ξ) ∩ Ah
0 = ∅ satisfies

#G
(h)
2

Nh
≥ Nh−#(Ah

0∩U)
Nh

→ 1
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as h → 0 because hNh ≥ a
2 > 0. On the other hand, by the L1-convergence χΩh

1
→

χŜ∩{∇′w+
1 =0}, the set G

(h)
3 of all ξ ∈ G(h) with the property that Zh(ξ) ∩ Ah

1 	= ∅

satisfies
#G

(h)
3

Nh
→ 1 as well. By these two cardinality estimates, for h small enough

we have #(G
(h)
2 ∩G

(h)
3 ) ≥ (1− ρ)Nh, and since also #G

(h)
1 ≥ (1− ρ)Nh, we conclude

that #(G
(h)
1 ∩G

(h)
2 ∩G

(h)
3 ) ≥ (1−4ρ)Nh. On the other hand, Nh ≥ a

h −2 ≥ (1−4ρ) a
h

for small h. Hence by the choice of ρ we conclude

(46) #(G
(h)
1 ∩G

(h)
2 ∩G

(h)
3 ) >

2a

3h

for small h. From (28) we deduce that if ξ ∈ G
(h)
2 ∩ G

(h)
3 , then Zh(ξ) ⊂ Ωh

1 . Hence
using that by definition sym R(h) = 0 on Ωh

1 , from (24), (42), and the definition of

R(h) we conclude that ξ ∈ G
(h)
2 ∩G

(h)
3 implies∫

Zh(ξ)×Ih

|sym ∇v(h)(x)|2dx =

∫
Zh(ξ)×Ih

|sym ∇v(h)(x) − sym R(h)(ξ, x2)|2dx

≤ Ch2Ih(v(h);U) ≤ Cηhh
2.(47)

Let J̃
(h)
2 be the set of all ξ ∈ (−2a,−a) satisfying the property (Ph) (defined in the

statement of Lemma 18 in the appendix) for w(h). Applying Lemma 18 on the domain

(−2a,−a) × (−1, 1), for h small enough, we have H1(J̃
(h)
2 ) ≥ a

2 . For every ξ ∈ J̃
(h)
2

there is w̃(h) ∈ W 1,2((ξ − a, ξ) × (− 1
2 ,

1
2 ); R2) satisfying w(h)(ξ, ·) = w̃(h)(ξ, ·) in the

trace sense and

1

h

∫
(ξ−a,ξ)×(− 1

2 ,
1
2 )

|sym ∇′w̃(h)(x′)|2dx′ ≤ C

(
Ih2D(w(h);U) +

∫
U

|∇′w(h)(x′)|2dx′
)

≤ Cηh(48)

with C independent of ξ and h. We restrict the further construction to the domain
of interest S = (− 1

2 ,
1
2 )2. For ξ ∈ (−2a,−a) define the columns

(49) Z ′
h(ξ) =

(
ξ − h

8
, ξ

)
×
(
− 1

2
,
1

2

)

and consider J̃
(h)
1 =

⋃
ξ∈
⋂3

i=1 G
(h)
i

(ξ− 3h
8 , ξ+ 3h

8 ). By (46) we have H1(J̃
(h)
1 ∩(−2a,−a)) =

3
4h · (#

⋂3
i=1 G

(h)
i ) > a

2 . Since J̃
(h)
2 ⊂ (−2a,−a) and H1(J̃

(h)
2 ) ≥ a

2 we conclude that

there is ξh ∈ J̃
(h)
1 ∩J̃ (h)

2 with ξh ∈ (−2a,−a). Note that, in general, ξh /∈ G(h) but that

Z ′
h(ξh) ⊂ Zh(ξ) for some ξ ∈ ∩3

i=1G
(h)
i by the definitions of J̃

(h)
1 and Z ′

h(ξ). Let us in-
troduce the set Uh = (ξh−a, ξh)×(− 1

2 ,
1
2 ), which satisfies Uh ⊂ (−3a,−a)×(− 1

2 ,
1
2 ) ⊂

U for all h, since ξh ∈ (−2a,−a). Setting

(50) Wh = skew −
∫
Uh

∇′w̃(h)(x′) dx′,

we apply Korn’s inequality in the plane to deduce that there is an affine mapping f (h)

with ∇f (h) = Wh such that∫
Uh

|w̃(h) − f (h)|2 + |∇′w̃(h) −Wh|2dx′ ≤ C

∫
Uh

|sym ∇′w̃(h)|2dx′ ≤ Chηh,(51)
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where the last estimate holds by (48). Notice that C in (51) is independent of h
because the constant appearing in Korn’s inequality is invariant under translation of
the domain. We claim that

(52) Wh → 0 in R
2×2.

Indeed, consider any subsequence. By the trace inequality and the fact that w̃ and w
agree on {x ∈ S : x1 = ξh} we have

∫ 1
2

− 1
2

|f (h)(ξh, x2)|2dx2 ≤ C

∫ 1
2

− 1
2

|f (h)(ξh, x2) − w̃(h)(ξh, x2)|2dx2

+ C

∫ 1
2

− 1
2

|w(h)(ξh, x2)|2dx2

≤ C

∫
Uh

|f (h)(x′) − w̃(h)(x′)|2 + |Wh −∇′w̃(h)(x′)|2

+ |w(h)(x′)|2 + |∇′w(h)(x′)|2dx′,

which tends to zero by (51) and since w(h) → w+
1 in W 1,2(S; R2). Hence (after passing

to a subsequence) f (h)(ξh, x2) → 0 for all x2 ∈ (− 1
2 ,

1
2 ). From this and using that

sym Wh = 0 we deduce (52).
Now we extend w̃(h) to a three dimensional displacement ṽ(h) by defining

(53) ṽ(h)(x) =

(
w̃(h)(x′)

τ (h)(x′)

)
+ x3

⎛
⎜⎜⎝
−τ

(h)
,1 (x′)

−τ
(h)
,2 (x′)

0

⎞
⎟⎟⎠ .

By (42) and (48) we have∫
Uh×Ih

|sym ∇ṽ(h)(x)|2 dx ≤ h3

∫
Uh

|∇′2τ (h)(x′)|2 dx′ + h

∫
Uh

|sym ∇′w̃(h)(x′)|2dx′

≤ Cηhh
2.(54)

(Later we will repeat this construction on the other side of the interface. Then one

must replace the second summand in (53) by x3

(
μ2 − τ

(h)
,1 (x′), μ1 − τ

(h)
,2 (x′), μ3

)T
.)

Now consider the interpolation

(55) u(h)(x) = v(h)(x) + φ(h)(x1)(ṽ
(h)(x) − v(h)(x)),

where φ(h) : R → [0, 1] denotes a smooth cutoff function that decreases from one to
zero within the interval (ξh − h

8 , ξh), so spt (φ(h))′ ⊂ (ξh − h
8 , ξh). We claim that

(56)

∫
Uh×Ih

|sym ∇u(h)(x)|2dx ≤ Cη̃hh
2,

where η̃h = ηh + |Wh|2 converges to zero as h → 0.
To prove (56), recall that by the definition of Uh and (49) we have Z ′

h(ξh) ⊂ Uh.
Now notice that u(h) = ṽ(h) on

(
Uh × Ih

)
\
(
Z ′
h(ξh) × Ih

)
, whence by (54) we have
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∫
(Uh\Z′

h(ξh))×Ih
|sym ∇u(h)|2 ≤ Cηhh

2. It remains to prove (56) with the integration

domain Z ′
h(ξh) × Ih replacing Uh × Ih. We make a standard calculation to obtain∫

Z′
h(ξh)×Ih

|sym ∇u(h)(x)|2dx

≤ C

∫
Z′

h(ξh)×Ih

|sym ∇v(h)(x)|2 + |sym ∇ṽ(h)(x)|2 +
1

h2
|ṽ(h)(x) − v(h)(x)|2dx.(57)

Since ξh ∈ G
(h)
2 ∩ G

(h)
3 , the first term on the right-hand side is estimated by (47).

By (54) the second term in (57) satisfies
∫
Z′

h(ξh)×Ih
|sym ∇ṽ(x)|2dx ≤ Cηhh

2. Let us

estimate the third term in (57). Since(
w(h)(x′)

τ (h)(x′)

)
= −
∫
Ih

v(h)(x)dx3 = −
∫
Ih

v(h)(x) + x3(∇′τ (h)(x′))T dx3

and since w(h) = w̃(h) on the line {x ∈ S : x1 = ξh}, we can apply a Poincaré
inequality (see, e.g., [16, Theorem 6.1-8]) to estimate the second term in the last step
in (58) below. The first term in that step is estimated by the usual Poincaré inequality
in the x3-direction:∫

Z′
h(ξh)×Ih

1

h2
|v(h)(x) − ṽ(h)(x)|2dx

≤ C

h2

∫
Z′

h(ξh)×Ih

∣∣∣∣∣∣∣∣
v(h)(x) + x3

⎛
⎜⎜⎝
τ

(h)
,1 (x′)

τ
(h)
,2 (x′)

0

⎞
⎟⎟⎠−
(
w(h)(x′)

τ (h)(x′)

)∣∣∣∣∣∣∣∣

2

+ |w(h)(x′) − w̃(h)(x′)|2dx

≤ C

∫
Z′

h(ξh)×Ih

∣∣∣∣∣∣∣∣
v
(h)
,3 (x) +

⎛
⎜⎜⎝
τ

(h)
,1 (x′)

τ
(h)
,2 (x′)

0

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

2

+ |∇′w(h)(x′) −∇′w̃(h)(x′)|2dx.

(58)

To estimate the first term in (58), we observe that (τ
(h)
,1 (x′), τ

(h)
,2 (x′), 0) = ∇−

∫
Ih

v
(h)
3 (x) dx3, so we have

∫
Z′

h(ξh)×Ih

∣∣∣∣∣∣∣∣
v
(h)
,3 (x) +

⎛
⎜⎜⎝
τ

(h)
,1 (x′)

τ
(h)
,2 (x′)

0

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣

2

dx ≤ C

∫
Z′

h(ξh)×Ih

∣∣∣∣v(h)
,3 (x) −−

∫
Ih

v
(h)
,3 (x′, z)dz

∣∣∣∣
2

+

∣∣∣∣∣−
∫
Ih

v
(h)
,3 (x′, z)dz +

(
∇−
∫
Ih

v
(h)
3 (x′, z)dz

)T
∣∣∣∣∣
2

dx.

The second term is bounded by
∫
Z′

h(ξh)×Ih
|sym ∇v(h)|2 and can therefore be estimated

by (47). By the x3-independence of R(h), by Jensen’s inequality, by definition of R(h),
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and by (42), the first term can be estimated as follows:∫
Z′

h(ξh)×Ih

∣∣∣∣v(h)
,3 (x) −−

∫
Ih

v
(h)
,3 (x′, z) dz

∣∣∣∣
2

dx

≤ C

∫
Z′

h(ξh)×Ih

|v(h)
,3 (x) −R

(h)
3 (x′)|2 +

∣∣∣∣−
∫
Ih

R
(h)
3 (x′) − v

(h)
,3 (x′, z) dz

∣∣∣∣
2

dx

≤ Cηhh
2.

Finally, the second term in (58) is bounded by

C

∫
Z′

h(ξh)×Ih

|∇′w(h)(x′)|2+|∇′w̃(h)(x′) −Wh|2 + |Wh|2 dx

≤ C
(
ηhh

2 + |Z ′
h(ξh) × Ih||Wh|2

)
.

We have applied (52) and (45) multiplied by h (recall that ξh ∈ G
(h)
1 ), since here we

are integrating over the thickness on the left-hand side. This proves (56) and finishes
the first interpolation step.

Step 2. Interpolation to an affine displacement. We apply Lemma 16 to the
mapping u(h) defined in (55) with Jh = (ξh−a, ξh) instead of J1, (so Jh×(− 1

2 ,
1
2 ) = Uh)

and with t = ξh− a
2 and b = a

4 . Lemma 16 furnishes a mapping ũ(h) which agrees with

u(h) on {x ∈ S × Ih : x1 > ξh − a
2} and on {x ∈ S × Ih : x1 < ξh − 3a

4 } agrees with an

affine function f (h) with sym ∇f (h) = 0 (the mapping ũ(h) is at first not defined on
{x1 < ξh−a}, but since it is affine on {x ∈ S×Ih : x1 ∈ (ξh−a, ξh− 3a

4 )} we can extend

it affinely). Moreover, ũ(h) satisfies
∫
Uh×Ih

|sym ∇ũ(h)|2 ≤ C
a4

∫
Uh×Ih

|sym ∇u(h)|2.
Combining this with (56) and with the fact that ũ(h) = v(h) on {x ∈ S×Ih : x1 > ξh}
and sym ∇ũ(h) = 0 on {x ∈ S × Ih : x1 < ξh − 3a

4 }, we conclude that

(59) Ih(ũ(h);S) → k(ν1).

Step 3. Convergence. Now we apply Steps 1 and 2 with obvious modifications also

on the other side of the interface. Let us denote the resulting mappings by ũ
(h)
a . Hence

ũ
(h)
a is a (+, 1)-recovery sequence on S which is affine on {x ∈ S × Ih : |x1| > 5a}

with sym ∇ũ
(h)
a = 0 on {x ∈ S× Ih : x1 < −5a} and sym ∇ũ

(h)
a = B on {x ∈ S× Ih :

x1 > 5a}. By Proposition 19 there exists a sequence a(h) → 0 such that

(60) lim sup
h→0

Ih(ũ
(h)

a(h) ;S) = lim sup
a→0

lim sup
h→0

Ih(ũ(h)
a ;S) = k(ν1).

Theorem 6 implies that there exist affine mappings f (h) with sym ∇f (h) = 0 and
w ∈ A(S) such that, after passing to an unrelabeled subsequence,

(61) w̄(h) + f (h) → w strongly in W 1,2(S; R2),

where we have set w̄(h)(x′) = −
∫
Ih

(ũ
(h)

a(h)(x
′, x3))

′ dx3. By Theorem 12 and (60) the

limiting function w satisfies I0(w;S) ≤ k(ν1). But by (61) and the properties of ũ
(h)

a(h)

necessarily sym ∇′w = 0 on {x ∈ S : x1 < 0} and sym ∇′w = B̄ on {x ∈ S : x1 > 0}.
Hence after possibly adding w+

1 − w to all f (h) (notice that w+
1 − w is affine with

sym ∇′(w+
1 −w) = 0) we may assume that (61) holds with w = w+

1 on the right-hand
side. Since the same limit is obtained for every subsequence, (61) holds for the full
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sequence with w = w+
1 , whence x �→ ũ

(h)

a(h)(x) + ( f(h)(x′)
0

) is the sought recovery
sequence.

Lemma 16. Let J1, J2 be open intervals, set U = J1 × J2, let i ∈ {1, 2}, and
let D ∈ R

3×3 be a symmetric matrix. Then there is a constant C > 0 such that
the following holds: For every h ∈ (0, 1), for every u(h) ∈ W 1,2(U × Ih; R3), for
every t ∈ Ji, and for every b ∈ (0, 1) satisfying t + b ∈ Ji (resp., t − b ∈ Ji), there
exist c(h) ∈ R

3, T (h) ∈ R
3×3 with sym T (h) = 0, and ũ(h) ∈ W 1,2(U × Ih; R3) such

that ũ(h) = u(h) on {x ∈ U × Ih : xi < t} (resp., {x ∈ U × Ih : xi > t}) and
ũ(h) = Dx+T (h)x+c(h) on {x ∈ U ×Ih : xi > t+ b} (resp., {x ∈ U ×Ih : xi < t− b})
and such that

∫
U×Ih

|sym ∇ũ(h) −D|2 ≤ C
b4

∫
U×Ih

|sym ∇u(h) −D|2. One can take

(62) T (h) = skew −
∫
U×Ih

∇u(h)(x) dx and c(h) = −
∫
U×Ih

u(h)(x) dx.

Proof. We may assume without loss of generality that D = 0. (In fact, if D 	= 0,
then apply the lemma with D = 0 to û(h)(x) = u(h)(x)−Dx instead of u(h) to obtain
û(h). Then define ũ(h)(x) = û(h)(x) + Dx.) Moreover, we prove only the case when
i = 1 and t + b ∈ J1. By Proposition 17(ii) and Poincaré’s inequality the mappings
f (h)(x) = T (h)x + c(h) with T (h) and c(h) as in (62) satisfy

(63)

∫
U×Ih

|u(h)(x) − f (h)|2 + |∇u(h)(x) − T (h)|2dx ≤ C

h2

∫
U×Ih

|sym ∇u(h)(x)|2dx.

Also, by Proposition 17(iii)

(64)

∫
U×Ih

|(u(h))′(x) − (f (h))′(x)|2dx ≤ C

∫
U×Ih

|sym ∇u(h)(x)|2dx.

Fix a smooth cutoff function φ(x1) which decreases from one to zero within the interval
(t + b

4 , t + 3b
4 ). Set

ũ(h)(x) = f (h)(x) + φ(x1)(u
(h)(x) − f (h)(x)) − x3φ

′(x1)(u
(h)
3 (x) − f

(h)
3 (x))e1.

Then

∇ũ(h)(x) = T (h) + φ(x1)(∇u(h)(x) − T (h)) +

(
(u(h) − f (h))′(x)

0

)
⊗ e1φ

′(x1)

+ (u(h) − f (h))3(x)e3 ⊗ e1φ
′(x1) − (u(h) − f (h))3(x)e1 ⊗ e3φ

′(x1)

− x3

(
φ′′(x1)(u

(h) − f (h))3(x)e1 ⊗ e1 + φ′(x1)e1 ⊗ (∇u
(h)
3 (x) − (T (h))T e3)

)
.

Upon taking the symmetric part of the above expression, the second line cancels, so
we obtain∫

U×Ih

|sym ∇ũ(h)|2 dx ≤ C

∫
U×Ih

|sym ∇u(h)|2 +
1

b2
|(u(h) − f (h))′|2 dx

+ h2

∫
U×Ih

(
1

b4
|u(h) − f (h)|2 +

1

b2
|∇u(h) − T (h)|2

)
dx,

since |φ′| ≤ C
b and |φ′′| ≤ C

b2 . The last term is controlled by (63) and the (u(h)−f (h))′-
term is controlled by (64).
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Proof of Theorem 1. By Lemma 2 we must prove the theorem only for the special
case A = 0 and B as in (7). Statement (i) just rephrases the content of Theorem 12.
The proof of (ii) is similar to that of Proposition 5.1 in [19]; compare also Step 2 in
the proof of Theorem 5.6 in [18]. If I0(w) = ∞, then the proof is trivial. Otherwise,

w ∈ A(S), so by Proposition 7, w is affine on each connected component of S\
⋃M

i=1 Ji,
where the interfaces Ji ⊂ S, i = 1, . . . ,M (M ∈ N∪ {∞}), are straight line segments
parallel to e1 or e2 which intersect ∂S at their ends. By bounded variation we have∑M

i=1 H1(Ji) < ∞, so if M = ∞, then H1(Ji) → 0 as i → ∞, so the Ji can
accumulate only at ∂S. By translation invariance we may assume without loss of
generality that S is strictly star-shaped with respect to the origin, so S̄ ⊂ ηS for
any η > 1. Hence the restriction of wη(x) = ηw(xη ) to S is well defined and satisfies

wη|S ∈ A(S). The mapping wη|S has only finitely many interfaces J η
i , i = 1, . . . ,Mη

(recall that the Ji accumulate only near ∂S), and they satisfy dist(J η
i ,J

η
k ) > 0

whenever k 	= i. By construction we have J η
i = J̃ η

i ∩ S, where J̃ η
i ⊂ ηS are the

interfaces of wη ∈ A(ηS). For i = 1, . . . ,Mη, let ki ∈ {1, 2} be such that νki is normal
to J η

i . Let ε > 0 be small (fixed below) and define the rectangles Si = {x ∈ R
2 :

πki(x) ∈ πki(J̃
η
i ) + (−ε, ε) and π⊥

ki
(x) ∈ π⊥

ki
(J̃ η

i )}. Since the endpoints of J̃ η
i lie in

∂(ηS) and since the J̃ η
i do not intersect in ηS, for ε small enough the sides of ∂Si

which are parallel to νki
do not intersect S̄ and the Si are pairwise disjoint. Define

σi ∈ {−,+} by the requirement that wη = wσi

ki,Si
on Si ∩ ηS.

Now let hn → 0 be given and for all i = 1, . . . ,Mη let (u
(i)
n , hn) be a (σi, ki)-

recovery sequence on Si. By Lemma 15 we may assume that u
(i)
n is affine with

sym ∇u
(i)
n ∈ {A,B} in a neighborhood (relatively open in S× Ihn

) of (S ∩∂Si)× Ihn
.

Hence we can extend each u
(i)
n to all of S × Ihn in such a way that u

(i)
n is affine

on each connected component of (S \ Si) × Ihn . For i, j = 1, . . . ,Mη let us write

i ∼ j whenever there exists a connected component S′
ij of S \

⋃Mη

i=1 J
η
i satisfying

S ∩ ∂S′
ij = J η

i ∪ J η
j (i.e., J η

i and J η
j are neighbors). By star-shapedness and the

fact that Mη < ∞, and recalling that u
(i)
n is affine on (S \ Si) × Ihn , one inductively

finds affine mappings f
(i)
n : R

3 → R
3 with sym ∇f

(i)
n = 0, i = 1, . . . ,Mη, such

that f
(i)
n + u

(i)
n = f

(j)
n + u

(j)
n on S′

ij \ (Si ∪ Sj) whenever i ∼ j. Now, for every

i = 1, . . . ,Mη, we set vηn = u
(i)
n + f

(i)
n on Si and extend it affinely to S × Ihn .

Then vηn ∈ W 1,2(S × Ihn ; R3) is well defined by the choice of the f
(i)
n . Moreover,

lim supn→∞ Ihn(vηn;S) ≤ I0(wη;S)+ρη, where ρη ↓ 0 as η ↓ 1. By a diagonal sequence
argument, this implies part (ii) of Theorem 1, since wη|S → w in W 1,2(S; R2) and
I0(wη;S) → I0(w;S) as η ↓ 1 (i.e., limiting displacements which arise as rescalings
wη of some w ∈ A(S) are energy dense; compare [2, p. 3]).

Appendix. The following proposition was used in the proof of Lemma 16. State-
ment (ii) is Korn’s inequality for thin films as presented in [3]; see also Problem 1.12
in [17].

Proposition 17. Let S ⊂ R
2 be a bounded Lipschitz domain and let A,B ∈ R

3×3

be such that rank(A − B + F ) ≥ 2 for all F ∈ R
3×3 with sym F = 0. Then there is

a constant C(S) such that for all h ∈ (0, 1) and for all v(h) ∈ W 1,2(S × Ih; R3) the
following hold:

(i) There exists a matrix sym T (h) ∈ {A,B} such that∫
S×Ih

|∇v(h)(x) − T (h)|2 dx ≤ C(S)

h2

∫
S×Ih

dist2(sym ∇v(h)(x), {A,B}) dx.
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(ii) The estimate∫
S×Ih

|∇v(h)(x) − T (h)|2 dx ≤ C(S)

h2

∫
S×Ih

|sym ∇v(h)(x)|2dx

holds for T (h) = skew −
∫
S×Ih

∇v(h).

(iii) There exists c(h) ∈ R
2 such that∫

S×Ih

|(v(h))′(x) − (T (h)x)′ − c(h)|2dx ≤ C(S)

∫
S×Ih

|sym ∇v(h)(x)|2 dx

for the same T (h) as in (ii).
Proof. The proof of (i) is analogous to that of Theorem 10 in [29], with Theorem 3

replacing their geometric rigidity theorem. Statement (ii) can be proven in the same
way, with Korn’s inequality for one well replacing their geometric rigidity theorem.
Another proof is given in [3] and [33]. Notice that if (ii) holds for some skew matrix,
then it will also hold for the special choice T (h) = skew −

∫
S×Ih

∇v(h)dx.

To prove statement (iii), set w(h)(x′) = −
∫
Ih

(v(h))′(x′, x3)dx3. From Korn’s in-
equality in the plane and from Jensen’s inequality we obtain∫

S

∣∣∣∇′w(h)(x′) − T̄ (h)
∣∣∣2 dx′ ≤ C

∫
S

∣∣∣sym ∇′w(h)(x′)
∣∣∣2 dx′

≤ C

h

∫
S×Ih

|sym ∇v(h)(x)|2 dx.(65)

With c(h) = −
∫
S
(w(h)(x′) − T̄ (h)x′)dx′ we obtain

∫
S×Ih

∣∣∣(v(h))′(x) − (T (h)x)′ − c(h)
∣∣∣2 dx

≤ C

∫
S×Ih

∣∣∣(v(h))′(x) − (T
(h)
3 )′x3 − w(h)(x′)

∣∣∣2 +
∣∣∣w(h)(x′) − T̄ (h)x′ − c(h)

∣∣∣2 dx,

where T
(h)
3 denotes the third column of T (h). The second term is estimated by ap-

plying Poincaré’s inequality on S and then (65). To estimate the first term, no-
tice that since the integration domain is symmetric, we have w(h)(x′) = −

∫
Ih

(v′(x) −
(T

(h)
3 )′x3) dx3. Applying Poincaré’s inequality in the x3-direction for almost every

x′ and subsequently using (ii) shows that the first term is controlled by
∫
S×Ih

|sym

∇v(h)|2.
The following lemma is a corollary of Proposition 4.1 in [19]. Notice that their ε

corresponds to our h.
Lemma 18. Let a, l, d > 0, let U = (−l, l) × (−d, d), let Ā = 0 and B̄ =

e1 ⊗ e2 + e2 ⊗ e1, and let F̄ ∈ {Ā, B̄}. Then there are constants η0, C0 > 0 such that
for every h ∈ (0, 1) and w ∈ W 2,2(U ; R2) with

Ih2D(w;U) ≤ η0 and

∫
U

|sym ∇′w(x′) − F̄ |2 dx′ ≤ η0

the set of ξ ∈ (−l, l) satisfying property (Ph) for w has measure not smaller than l.
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We say ξ ∈ (−l, l) satisfies property (Ph) for w ∈ W 2,2(U ; R2) if, setting U1 =
(ξ − a, ξ) × (−d

2 ,
d
2 ) and U2 = (ξ, ξ + a) × (−d

2 ,
d
2 ), for each i = 1, 2 there exist

w̃i ∈ W 1,2
(
Ui; R

2
)

with w̃(ξ, ·) = w(ξ, ·) on (−d/2, d/2) and

1

h

∫
Ui

|sym ∇′w̃i(x
′) − F̄ |2dx′ ≤ C0

(
Ih2D
(
w;U
)

+

∫
U

|sym ∇′w(x′) − F̄ |2dx′
)
.

An analogous result holds for lines of the form {x2 = ξ}.
Proof. Set η = Ih2D(w;U) +

∫
U
|sym ∇′w − F̄ |2. By Proposition 4.1 in [19] there

exists a Borel set Σ ⊂ (−l, l) with |Σ| ≥ l and such that for all ξ ∈ Σ there exists an
affine mapping wξ : R

2 → R
2 with sym ∇′wξ = F̄ and

(66) ‖w(ξ, ·) − wξ(ξ, ·)‖2
H1/2((− d

2 ,
d
2 );R2)

≤ Chη.

By the properties of the H1/2-norm (see, e.g., the appendix of [32] for a review), for
i = 1, 2 there exist vi ∈ W 1,2(Ui; R

2) such that

(67)

∫
Ui

|∇′vi(x
′)|2 dx′ ≤ ‖w(ξ, ·) − wξ(ξ, ·)‖2

H1/2((− d
2 ,

d
2 );R2)

and vi(ξ, ·) = w(ξ, ·) − wξ(ξ, ·) on (−d
2 ,

d
2 ) in the trace sense. Setting w̃i = vi + wξ,

we find

1

h

∫
Ui

|sym ∇′w̃i(x
′) − F̄ |2 dx′ ≤ C

h

∫
Ui

|∇′vi(x
′)|2 + |sym ∇′wξ(x

′) − F̄ |2 dx′ ≤ Cη

and w̃i(ξ, ·) = w(ξ, ·) on (−d
2 ,

d
2 ) in the trace sense. We have used (66)–(67) and the

fact that sym ∇′wξ = F̄ .
The following proposition is a standard diagonalization lemma (compare [4, Corol-

lary 1.16] or [13, Lemma 7.2]).
Proposition 19. Let ak,j be a doubly indexed sequence of real numbers, k, j →

∞. Then there exists a subsequence kj → ∞ such that

lim sup
j→∞

akj ,j = lim sup
k→∞

lim sup
j→∞

ak,j .
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Basel, 1993.

[32] R. V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions,
Comm. Pure Appl. Math., 47 (1994), pp. 405–435.

[33] R. V. Kohn and M. Vogelius, A new model for thin plates with rapidly varying thickness
II: A convergence proof, Quart. Appl. Math., 43 (1985), pp. 1–22.

[34] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear
three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), pp. 549–578.



214 PETER HORNUNG

[35] L. Modica and S. Mortola, Un esempio die Γ-convergenza, Boll. Un. Mat. Ital. B (5), 14
(1977), pp. 285–299.

[36] M. G. Mora and S. Müller, Derivation of a rod theory for multiphase materials, Calc. Var.
Partial Differential Equations, 28 (2007), pp. 161–178.

[37] Y. C. Shu, Heterogeneous thin films of martensitic materials, Arch. Ration. Mech. Anal., 153
(2000), pp. 39–90.

[38] P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch.
Ration. Mech. Anal., 101 (1988), pp. 209–260.

[39] K. Zhang, Isolated microstructures on linear elastic strains, Proc. R. Soc. Lond. A Ser. A
math. Phys. Eng. Sci., 460 (2004), pp. 2993–3011.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 40, No. 1, pp. 215–237

DERIVATION OF A MACROSCOPIC RECEPTOR-BASED MODEL
USING HOMOGENIZATION TECHNIQUES∗

ANNA MARCINIAK-CZOCHRA† AND MARIYA PTASHNYK‡

Abstract. We study the problem of diffusive transport of biomolecules in the intercellular space,
modeled as porous medium, and of their binding to the receptors located on the surface membranes
of the cells. Cells are distributed periodically in a bounded domain. To describe this process we
introduce a reaction-diffusion equation coupled with nonlinear ordinary differential equations on the
boundary. We prove existence and uniqueness of the solution of this problem. We consider the
limit, when the number of cells tends to infinity and at the same time their size tends to zero,
while the volume fraction of the cells remains fixed. Using the homogenization technique of two-
scale convergence, we show that the sequence of solutions of the original problem converges to the
solution of the so-called macroscopic problem. To show the convergence of the nonlinear terms on
the surfaces we use the unfolding method (periodic modulation). We discuss applicability of the
result to mathematical description of membrane receptors of biological cells and compare the derived
model with those previously considered.

Key words. homogenization, two-scale convergence, intercellular communication, receptor-
ligand binding, reaction-diffusion equations, unfolding method (periodic modulation)
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1. Introduction. Regulatory and signaling molecules (ligands) act by binding
and activating receptor molecules. Receptors are usually located in the cell membrane,
with some exceptions such as lipophilic ligands, which are located in the cytoplasm
[24, 33, 34]. Some receptors interact with surface-bound ligands, such as adhesion
proteins and extracellular matrix components. Other receptors bind soluble ligands,
such as growth factors and cytokines. There are also many ligands which are present
in both forms. As an example, antibodies, which are secreted by B cells as soluble
molecules, become surface-bound ligands for the Fc receptors upon binding to antigens
deposited on the surface [25].

Soluble molecules which are secreted to the intercellular space and transported
via diffusion provide cell-to-cell communication, which results in the activation of
processes in cells at a distance from the original signal. This happens, for example, in
the case of the bystander effect. There is strong evidence that unirradiated bystander
cells respond to signals emitted by irradiated cells [28]. In another case, the interplay
between the spatial transport of virons and interferons results in the formation of
patterns of infected and resistant cells [10]. Intercellular signaling can also lead to
the formation of spatially nonhomogeneous structures, which is especially evident in
developmental processes [33, 34]. The effects of the spatial transport of the soluble
molecules are even visible in experiments in which only spatial averages are measured
in order to understand the time dynamics of a signaling pathway. There is evidence
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that different mixing conditions strongly influence quantitative and also qualitative
results of such experiments [17]. Therefore, there arises a need to explain how the
intercellular transport of the molecules should be described on the macroscopic level.

Models proposed so far are mainly phenomenological and describe all the processes
on the macroscale level represented by a two- or three-dimensional sheet of cells [29,
30, 31, 32, 42, 46]. However, the real geometry is much more complicated, and binding
a soluble ligand to a cell surface receptor requires interaction of molecules diffusing in
three-dimensional space with some molecules attached to a two-dimensional surface.
Since the size of a cell is very small compared to the dimension of the whole tissue,
systems that include cells have to be treated as multiscale systems.

The aim of the present work is to derive a macroscopic model of receptor-ligand
binding, based on a microscopic description, using methods of asymptotic analysis.
Such an approach is called homogenization and it hinges on demonstrating the con-
vergence of solutions of a sequence of microscopic problems to the solution of the
macroscopic problem in properly chosen function spaces. We use here the two-scale
convergence, which was introduced in [2] and [36] for sequences of functions {uε}
bounded in L2 or in H1 on an ε-periodic domain. Then, in [37] and [3], the definition
of two-scale convergence was extended to sequences of functions defined on ε-periodic
hypersurfaces, with dependence on parameters. This extension was used to homog-
enize a diffusion-reaction process in a catalyst consisting of distributed bars [37]. A
similar problem with convection was studied in [19] using the standard homogenization
technique, the energy method. A model describing processes of diffusion, convection,
and nonlinear reactions in a periodic array of cells was studied in [20]. In that paper,
the convergence of the nonlinear terms was shown using their monotonicity. Homoge-
nization of models of chemical reactive flows in domains with periodically distributed
reactive solid grains was also recently studied by Conca et al. [9]. They considered
a stationary reaction-diffusion model with nonlinear, fast growing but monotone ki-
netics on the the surface of reactive solid grains and a model of reaction-diffusion
processes both inside and outside of grains. Homogenization of the reaction-diffusion-
convection processes with linear reactions on the surface of microstructures was also
considered by Hornung in [18].

The model presented in this paper includes the dynamics of molecule concen-
trations on the surface of microstructures described by nonlinear ordinary differential
equations. Therefore, we apply the concept of two-scale convergence of functions from
L∞ on ε-periodic hypersurfaces. To show convergence of the nonlinear terms on the
surface of microstructures we use the unfolding method (periodic modulation); see
[5, 6, 7].

Our paper is organized as follows. First, we present a precise description of
the considered ε-periodic geometry (section 2) and of the equations describing the
microscopic nature of the receptor-ligand binding process (section 3). These equations
are spatially scaled by ε. Then we show existence and uniqueness of solutions of the
microscopic model (section 3.2) and a priori estimates (section 3.3). In section 4,
after extension of the solutions from the porous domain to the whole domain, using a
priori estimates, we show the convergence of solutions of the microscopic problem to
the solutions of a macroscopic homogenized model. Effective macroscopic equations
are derived in section 4.2 and formulated in Theorem 4.4. In section 5 we compare a
derived macroscopic model of the receptor-ligand binding on cells surfaces with the
phenomenological models previously discussed in the literature.



DERIVATION OF MACROSCOPIC MODEL 217

Cell

bound receptors

ligands

free receptors

Fig. 1. Geometry of the model. The array of the cells (on the right-hand side) consists of
periodic repetition of the so-called standard cell, Z = [0, 1]3 (on the left-hand side), which corresponds
to a single biological cell with the surrounding intercellular space.

2. Problem formulation. We consider a model involving a system of cells,
periodically distributed in a three-dimensional cube Ω = [a, b]3, a, b ∈ R, a < b, with
boundary ΓN . For the mathematical formulation of the problem we consider the so-
called standard cell, Z = [0, 1]3, periodically repeated over R

3 with Y0 ⊂ Z, an open
subset with a smooth boundary Γ; Y = Z\Y 0; and ν, the outer normal of Y (see
Figure 1).

Let ε > 0 be a given scale factor such that ε = b−a
n , n ∈ N, denoting the

ratio between the size of the cells and the size of the whole domain Ω. Then the
geometric structure within the fixed domain Ω is obtained by intersecting the ε-
multiple εZ with Ω. We define, for k ∈ Z

3, a triple of integers; and ei, unit vectors,
Γk = Γ +

∑3
i=1 kiei, Y

k
0 = Y0 +

∑3
i=1 kiei, Z

k = Z +
∑3

i=1 kiei, Γ∗ = ∪{Γk, k ∈
Z

3}, Z∗ = ∪{Zk, k ∈ Z
3}. We further define Ωε

0 = ∪{εY k
0 |εZk ⊂ Ω, k ∈ Z

3},
Ωε = Ω\Ωε

0, Γε = ∪{εΓk|εZk ⊂ Ω, k ∈ Z
3}.

Remark 2.1. The geometry defined above fulfills the assumptions that
1. cells (holes in the domain) do not touch the boundary ∂Ω;
2. cells do not touch each other;
3. cells have smooth boundary.

These assumptions allow for the definition of the functions on the cell boundaries using
periodic repetition, and the definition of extension as proposed in [8]. Therefore, these
assumptions are important for the methods applied in this paper. Homogenization of
the Neumann problem in domains with more complicated geometry was considered
in [1] and [4].

We assume that new ligands and new free receptors are produced on the cell
surface through a combination of recycling (dissociation of bound receptors) and de
novo production within the cell. Free receptors exist only on the surfaces, while
ligands are transported by diffusion within the intercellular space, which is a porous
medium. A ligand reversibly binds to a free receptor, which results in a bound receptor
that can be internalized into the cell. Bound receptors also dissociate. Both ligands
and free receptors undergo natural decay. We denote the concentration of ligands
by lε : (0, T ) × Ωε → R. Bound and free receptor densities are denoted by rεb :
(0, T ) × Γε → R and rεf : (0, T ) × Γε → R, respectively. For simplicity we assume
that all binding processes are governed by the law of mass action without saturation
effects.
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3. Microscopic model.

3.1. Model assumptions. The microscopic model consists of the following
equations:

Diffusion equation for ligands in the intercellular space,

∂

∂t
lε(t, x) = ∇ · (Dε(t, x)∇lε(t, x)) − με

l (t, x)lε(t, x) + pεl (t, x, l
ε(x, t)) in (0, T ) × Ωε,

νε · ∇xl
ε(t, x) = 0 on (0, T ) × ΓN ,

lε(x, t) = l0(x), t = 0, x ∈ Ωε.(1)

Binding equation on the surfaces,

(2) −Dε(t, x)∇lε(t, x)·νε = ε(bε(t, x)lε(t, x)rf
ε(t, x)−dε(t, x)rεb(t, x)) on (0, T )×Γε.

Reaction equations for receptors on the surfaces,

∂

∂t
rf

ε(x, t) = −με
f (t, x)rf

ε(x, t) + pεr(t, x, r
ε
b(x, t)) − bε(t, x)rf

ε(x, t)lε(x, t)

+ dε(t, x)rb
ε(x, t),(3)

∂

∂t
rb

ε(x, t) = −με
b(t, x)rb

ε(x, t) + bε(t, x)rf
ε(x, t)lε(x, t) − dε(t, x)rb

ε(x, t),(4)

with initial conditions

rf
ε(x, t) = rf 0(x), t = 0, x ∈ Γε,(5)

rb
ε(x, t) = rb0(x), t = 0, x ∈ Γε.(6)

The following is a list of functional coefficients in these equations:

με
l : (0, T ) × Ω → R rate of decay of ligands,

pεl : (0, T ) × Ω × R → R production of ligands,

Dε : (0, T ) × Ω → R
3×3 diffusion coefficient for ligands,

pεr : (0, T ) × Γε × R → R production of new free receptors,

με
f : (0, T ) × Γε → R rate of decay of free receptors,

με
b : (0, T ) × Γε → R rate of decay of bound receptors,

dε : (0, T ) × Γε → R rate of dissociation of bound receptors,

bε : (0, T ) × Γε → R rate of binding of ligands and free receptors,

where functions on Ω or Γε are defined by Z-periodic function: Dε
i,j(t, x) = Di,j(t,

x
ε ),

pεl (t, x, ξ) = pl(t,
x
ε , ξ), με

l (t, x) = μl(t,
x
ε ), με

f (t, x) = μf (t, x
ε ), με

b(t, x) = μb(t,
x
ε ),

bε(t, x) = b(t, x
ε ), dε(t, x) = d(t, x

ε ), pεr(t, x, ξ) = pr(t,
x
ε , ξ), defined on Z∗ and Γ∗,

respectively.
We assume that decay processes are linear and that binding is a product of the

density of ligands and free receptors. The proposed functions are the simplest func-
tions usually used to describe decay or binding processes (see the models described
in [35]), modeled by the law of mass action. We assume that de novo production of
free receptors, denoted by pr, is regulated by bound receptors. We assume that pr
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is a bounded Lipschitz continuous function in rb and is nonnegative for nonnegative
values of rb, for example a Michaelis–Menten function pr = m1rb

1+rb
. In addition, we

assume that the production of ligands depends on their density. It could be regulated
via some other receptors not considered in our model. Thus, we assume that pl is a
Lipschitz continuous function in l, nonnegative for nonnegative values of l.

Assumption 3.1.

1. D ∈ L∞((0, T ) × Z)3×3, ∂tD ∈ L∞((0, T ) × Z)3×3, (D(t, x)ξ, ξ) ≥ d0|ξ|2 for
some d0 > 0, for every ξ ∈ R

3, a.a. (t, x) ∈ (0, T ) × Z.
2. μl ∈ L∞((0, T ) × Z) and μl ≥ 0 a.e. in (0, T ) × Z.
3. pl is measurable in t and x, sublinear, i.e., |pl(t, x, ξ)| ≤ c1 + c2|ξ| for a.a.

(t, x) ∈ (0, T ) × Z, Lipschitz continuous in ξ, and pl(t, x, ξ) ≥ 0 for ξ ≥ 0.
4. b ∈ C([0, T ];C0,α(Γ)), b ≥ 0, in [0, T ] × Γ, ∂tb ∈ L∞((0, T ) × Γ).
5. d ∈ C([0, T ];C0,α(Γ)), d ≥ 0, in [0, T ] × Γ, ∂td ∈ L∞((0, T ) × Γ).
6. μf , μb ∈ C([0, T ];C0,α(Γ)), μf ≥ 0, μb ≥ 0, in [0, T ] × Γ.
7. pr(ξ) ∈ C([0, T ];C0,α(Γ)) for all ξ ∈ R, pr(t, x, ξ) ≥ 0 for ξ ≥ 0, pr is bounded,

i.e., |pr(t, x, ξ)| ≤ m1 for all (t, x, ξ) ∈ (0, T )×Γ×R and is Lipschitz continuous
in ξ.

3.2. Existence of the solutions of the microscopic model. We start with
a weak formulation of the microscopic model.

Definition 3.2. The triple (lε, rεf , r
ε
b) is a solution of problem (1)–(6) if lε ∈

L2((0, T );H1(Ωε)), ∂tl
ε ∈ L2((0, T )×Ωε), lε ∈ L∞((0, T )×Ωε), rεf , r

ε
b ∈ L∞((0, T )×

Γε), ∂tr
ε
f , ∂tr

ε
b ∈ L∞((0, T ) × Γε) such that

1.
(∂tl

ε, φ)(0,T )×Ωε = −(Dε∇lε,∇φ)(0,T )×Ωε − (με
l l

ε, φ)(0,T )×Ωε

+ (dεrεb − bεrεf l
ε, φ)(0,T )×Γε + (pεl (l

ε), φ)(0,T )×Ωε(7)

for all φ ∈ L2((0, T );H1(Ωε));
2. lε satisfies the initial condition, i.e., lε → l0 in L2(Ωε) as t → 0;
3.

(8)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂t
rf

ε(x, t) = −με
frf

ε(x, t) + pεr(t, x, r
ε
b(x, t))

− bεrf
ε(x, t)lε(x, t) + dεrb

ε(x, t),

∂

∂t
rb

ε(x, t) = −με
brb

ε(x, t) + bεrf
ε(x, t)lε(x, t)

− dεrb
ε(x, t)

a.e. (0, T ) × Γε;
4. rf

ε, rb
ε satisfy the initial conditions (5)–(6).

Here (u, v)(0,T )×Ωε =
∫ T

0

∫
Ωε u v dx dt and (u, v)(0,T )×Γε = ε

∫ T

0

∫
Γε u v dγx dt.

Theorem 3.3. Let Assumption 3.1 be satisfied and

l0 ∈ C0,α(Ω), l0 ∈ H1(Ω), l0 ≥ 0,

rf0, rb0 ∈ C0,α(Ω), rf0 ≥ 0, rb0 ≥ 0.

Then there exists a unique solution (lε, rεf , r
ε
b) of problem (1)–(6), such that

lε ∈ H1(0, T ;L2(Ωε)), lε ∈ L2(0, T ;H1(Ωε)),

lε ∈ C0,β/2([0, T ];C0,β(Ω
ε
)),

rεf , r
ε
b ∈ C1([0, T ];C0,β(Γε)), where β ∈ (0, α],

and lε ≥ 0, rεf ≥ 0, rεb ≥ 0.
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Proof. Existence. The existence of a solution of the system (1), (3), (4) will be
proved by showing the existence of a fix point of the operator K defined on C([0, T ]×
Ω

ε
) by ln,ε = K(ln−1,ε) with ln,ε given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t l
n,ε = ∇ · (Dε∇ln,ε) − με

l l
n,ε + pεl (l

n−1,ε), t > 0, x ∈ Ωε,

∇ln,ε · νε = 0, t > 0, x ∈ ΓN ,

ln,ε = l0, t = 0, x ∈ Ωε,

−Dε∇ln,ε · νε = ε(bεln,εrf
n,ε − dεrb

n,ε), t > 0, x ∈ Γε,

(9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂trf
n,ε = −με

frf
n,ε + pεr(rb

n,ε) − bεrf
n,εln−1,ε + dεrb

n,ε, t > 0, x ∈ Γε,

∂trb
n,ε = −με

brb
n,ε + bεrf

n,εln−1,ε − dεrb
n,ε, t > 0, x ∈ Γε,

rf
n,ε = rf 0, t = 0, x ∈ Γε,

rb
n,ε = rb0, t = 0, x ∈ Γε.

(10)

For a given ln−1,ε ∈ C([0, T ] × Ω
ε
), ln−1,ε ≥ 0 on [0, T ] × Ω

ε
, there exists a unique

solution of system (10), rn,εf , rn,εb ∈ C1([0, T ];C(Γε)), because the right-hand side of
the system of ordinary differential equations (10) is Lipschitz continuous [45]. Since
pr is a nonnegative function for nonnegative values of rb and ln−1,ε ≥ 0 on [0, T ]×Γε

and rf0 ≥ 0, rb0 ≥ 0, we deduce that rn,εf ≥ 0, rn,εb ≥ 0 on [0, T ] × Γε.
Using the Galerkin method and a priori estimates similar to the estimates in

Lemma 3.4, we obtain the existence of a weak solution of (9), ln,ε ∈ L2(0, T ;H1(Ωε)),
∂tl

n,ε ∈ L2(0, T ;L2(Ωε)); see [23]. Since l0 ∈ C0,α(Ω), there exists maxΩ̄ε |l0| = M . In
addition, rn,εf ≥ 0 and |rn,εb | ≤ C. Thus, we may apply the result from [26] (Theorem
6.40) stating that for parabolic equations with uniformly elliptic operator, sublinear
terms of lower order, bounded free terms, and bounded coefficients of Robin boundary
conditions, the boundedness of the initial conditions implies the boundedness of the
supremum of a solution. From this, we conclude that sup(0,T )×Ωε |ln,ε| ≤ M1. Then,

since l0 ∈ C0,α(Ω), rn,εf ≥ 0, and rn,εb ∈ C1([0, T ];C(Γε)), we conclude also that ln,ε ∈
C0,β/2([0, T ];C0,β(Ω

ε
)) (see Theorem III.10.1 in [23], generalized for Robin boundary

conditions, or [11] and [26]). Using the maximum principle and the continuity of ln,ε,
we obtain that ln,ε ≥ 0 in [0, T ] × Ω

ε
[12].

The space C0,β/2([0, T ];C0,β(Ω
ε
)) is compact embedded in C([0, T ]×Ω

ε
). Then,

by virtue of the Schauder theorem, there exists a fixed point of K, a solution of the
microscopic problem lε, rεf , and rεb . In addition, we obtain that lε ≥ 0, rεf ≥ 0, and

rεb ≥ 0. Since rf0, rb0 ∈ C0,α(Ω) and lε ∈ C0,β/2([0, T ];C0,β(Ω
ε
)), we conclude also

that rεf , r
ε
b ∈ C1([0, T ];C0,β(Γε)).

Uniqueness. Suppose there are two solutions of the problem (l1,ε, r1,ε
f , r1,ε

b ) and

(l2,ε, r2,ε
f , r2,ε

b ). We denote lε = l1,ε − l2,ε and choose φ = lε. We calculate

1

2

∫ τ

0

∫
Ωε

(
∂t|lε|2 + (Dε∇lε,∇lε) + με

l |lε|2
)
dx dt =

∫ τ

0

∫
Ωε

(pεl (l
1,ε) − pεl (l

2,ε))lε dx dt

+ ε

∫ τ

0

∫
Γε

((dεr1,ε
b − bεr1,ε

f l1,ε) − (dεr2,ε
b − bεr2,ε

f l2,ε)) lε dγ dt
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for any τ ∈ [0, T ]. For rεf and rεb we obtain

∂

∂t
(r1,ε

f − r2,ε
f ) = −με

f (r1,ε
f − r2,ε

f ) + (pεr(rb
1,ε) − pεr(rb

2,ε)) − bε(r1,ε
f l1,ε − r2,ε

f l2,ε)

+ dε(r1,ε
b − r2,ε

b ),

∂

∂t
(r1,ε

b − r2,ε
b ) = −με

b(r
1,ε
b − r2,ε

b ) + bε(r1,ε
f l1,ε − r2,ε

f l2,ε) − dε(r1,ε
b − r2,ε

b ).

Integrating by parts with respect to time and summing up side by side the last two
equations, we obtain

|r1,ε
f − r2,ε

f | + |r1,ε
b − r2,ε

b | ≤
∫ τ

0

(
μ1
f |r

1,ε
f − r2,ε

f | + μ1
b |r

1,ε
b − r2,ε

b | + cr|r1,ε
b − r2,ε

b |
)
dt

+

∫ τ

0

(
2b1 max

[0,T ]×Γε
|l1,ε||r1,ε

f − r2,ε
f | + 2b1 max

[0,T ]×Γε
|r2,ε

f ||l1,ε − l2,ε| + 2d1|r1,ε
b − r2,ε

b |
)
dt,

where cr is the Lipschitz constant of pr, μ
1
f = sup[0,T ]×Γε |με

f |, μ1
b = sup[0,T ]×Γε |με

b|,
b1 = sup[0,T ]×Γε |bε|, d1 = sup[0,T ]×Γε |dε|. The Gronwall lemma implies

|r1,ε
f − r2,ε

f | + |r1,ε
b − r2,ε

b | ≤ C

∫ τ

0

|l1,ε − l2,ε| dt.(11)

Using the above estimate and nonnegativity of bε and r2,ε
f , we obtain

1

2

∫ τ

0

∫
Ωε

∂t|lε|2 dx dt + d0

∫ τ

0

∫
Ωε

|∇lε|2 dx dt +

∫ τ

0

∫
Ωε

με
l |lε|2 dx dt

≤ Cd2
1ε

1

2δ

∫ τ

0

∫
Γε

∫ t

0

|lε|2 ds dγ dt + ε
δ

2

∫ τ

0

∫
Γε

|lε|2 dγ dt + cl

∫ τ

0

∫
Ωε

|lε|2 dx dt

+Cb1ε max
[0,T ]×Γε

|l1,ε|
∫ τ

0

∫
Γε

∫ t

0

|lε|2 ds dγ dt + Cb1ε max
[0,T ]×Γε

|l1,ε|
∫ τ

0

∫
Γε

|lε|2 dγ dt,

where cl is the Lipschitz constant of pl. Furthermore, using the estimate

ε

∫ τ

0

∫
Γε

|lε|2 dγ dt ≤ c

∫ τ

0

∫
Ωε

|lε|2 dx dt + cε2

∫ τ

0

∫
Ωε

|∇lε|2 dx dt,(12)

we obtain

1

2

∫
Ωε

|lε|2 dx + (d0 − ε2δ)

∫ τ

0

∫
Ωε

|∇lε|2 dx dt +

∫ τ

0

∫
Ωε

με
l |lε|2 dx dt

≤ C
1

δ

∫ τ

0

∫ t

0

∫
Ωε

(|lε|2 + |∇lε|2) dx ds dt + cl

∫ τ

0

∫
Ωε

|lε|2 dx dt.

From the Gronwall lemma and με
l ≥ 0, taking the supremum over τ ∈ [0, T ], we

conclude that ∫
Ωε

|lε|2 dx + C

∫ T

0

∫
Ωε

|∇lε|2 dx dt ≤ 0

and, therefore, l1,ε = l2,ε in (0, T ) × Ωε. Due to (11), also r1,ε
f = r2,ε

f and r1,ε
b = r2,ε

b

on [0, T ] × Γε.
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3.3. A priori estimates for the microscopic solutions.
Lemma 3.4. For any solution of problem (1)–(6) from Theorem 3.3 the following

estimates hold:

‖lε‖L2(0,T ;H1(Ωε)) ≤ C, ‖∂tlε‖L2(0,T ;L2(Ωε)) ≤ C,

‖rεf‖L∞((0,T )×Γε) ≤ C, ‖rεb‖L∞((0,T )×Γε) ≤ C,

‖∂trεf‖L2((0,T )×Γε) ≤ C, ‖∂trεb‖L2((0,T )×Γε) ≤ C,

where C is a constant independent on ε.
Proof. To show the estimates for rεf and rεb we add (3) and (4) side by side and

obtain

∂t(r
ε
f + rεb) ≤ m1.

Since rεf and rεb are nonnegative (see Theorem 3.3), we conclude that

||rεf ||L∞((0,T )×Γε) ≤ C and ||rεb ||L∞((0,T )×Γε) ≤ C.

Now we show the estimates for lε. We choose φ = lε as a test function in (7) and
calculate

1

2

∫ τ

0

∫
Ωε

∂t|lε|2 dx dt +

∫ τ

0

∫
Ωε

(Dε∇lε,∇lε) dx dt +

∫ τ

0

∫
Ωε

με
l |lε|2 dx dt

= ε

∫ τ

0

∫
Γε

(dεrεb − bεrεf l
ε) lε dγ dt +

∫ τ

0

∫
Ωε

pεl (l
ε)lε dx dt

for any τ ∈ [0, T ]. Applying the Young inequality we obtain

1

2

∫
Ωε

|lε|2 dx +

∫ τ

0

∫
Ωε

d0|∇lε|2 dx dt +

∫ τ

0

∫
Ωε

με
l |lε|2 dx dt

≤ εd1

2δ

∫ τ

0

∫
Γε

|rεb |2 dγ dt + ε
δ

2

∫ τ

0

∫
Γε

|lε|2 dγ dt

− ε

∫ τ

0

∫
Γε

bεrεf |lε|2 dγ dt + c1

∫ τ

0

∫
Ωε

|lε|2 dx dt +
1

2

∫
Ωε

|lε0|2 dx.

Now we use (12), με
l ≥ 0, bε ≥ 0, and rεf ≥ 0 and obtain

1

2

∫
Ωε

|lε|2 dx +

∫ τ

0

∫
Ωε

(
d0 −

δε2

2

)
|∇lε|2 dx dt

≤ ε

2δ

∫ τ

0

∫
Γε

|rεb |2 dγ dt + c1

∫ τ

0

∫
Ωε

|lε|2 dx dt +
1

2

∫
Ωε

|lε0|2 dx.

Then, from the Gronwall lemma and the estimate for rεb , it follows that

∫
Ω

|lε|2 dx +

∫ T

0

∫
Ωε

|∇lε|2 dx dt ≤ C.
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Using the estimates for lε, rεf , and rεb , we conclude from (8) that

||∂trεf ||L2((0,T )×Γε) ≤ C,

||∂trεb ||L2((0,T )×Γε) ≤ C.

To obtain the estimates for ∂tl
ε we choose φ = ∂tl

ε as a test function and calculate∫ τ

0

∫
Ωε

|∂tlε|2 dx dt +
1

2

∫ τ

0

∫
Ωε

(
∂t(D

ε∇lε,∇lε) − (∂tD
ε∇lε,∇lε)

)
dx dt

=

∫ τ

0

∫
Ωε

(pεl (l
ε) − με

l l
ε)∂tl

ε dx dt + ε

∫ τ

0

∫
Γε

(
∂t(d

εrεb l
ε) − dε∂tr

ε
b l

ε − ∂td
εrεb l

ε
)
dγ dt

+ ε

∫ τ

0

∫
Γε

(
−∂t(b

εrεf |lε|2) + bε∂tr
ε
f |lε|2 + ∂tb

εrεf |lε|2
)
dγ dt.

Using the Young inequality we obtain

(1 − δ)

∫ τ

0

∫
Ωε

|∂tlε|2 dx dt +
d0

2

∫
Ωε

|∇lε|2 dx

≤ ε

2δ

∫
Γε

d2
1|rεb |2dγ + D2

∫ τ

0

∫
Ωε

|∇lε|2 dx dt

+ ε
δ

2

∫
Γε

|lε|2 dγ +
ε

2

∫ τ

0

∫
Γε

(d2
1|∂trεb |2 + |∂td|2|rεb |2) dγ dt

+
ε

2

∫ τ

0

∫
Γε

|lε|2 dγ dt− ε

∫
Γε

bεrεf |lε|2 dγ

+
1

2δ

∫ τ

0

∫
Ωε

(|pεl (lε)|2 + με
l |lε|2) dx dt + ε

∫
Γε

(d1rb0l0 + b1rf0|l0|2) dγ

+ D1

∫
Ωε

|∇l0|2 dx + ε

∫ τ

0

∫
Γε

(∂tb
εrεf + bε|∂trεf |) |lε|2 dγ dt,

where D1 = sup(0,T )×Ω |Dε|, D2 = sup(0,T )×Ω |∂tDε|. For the estimate of the last

integral we use the embedding for a space of dimension n = 3, i.e., L∞(0, T ;H1(Ωε)) ⊂
L4((0, T ) × Γε),

ε

∫ τ

0

∫
Γε

bε|∂trεf ||lε|2 dγ dt ≤
b21ε

2δ

∫ τ

0

∫
Γε

|∂trεf |2 dγ dt +
δε

2

∫ τ

0

∫
Γε

|lε|4 dγ dt

≤ b21ε

2δ

∫ τ

0

∫
Γε

|∂trεf |2 dγ dt +
δ

2
sup
[0,T ]

∫
Ωε

|lε|2 dx +
δε2

2
sup
[0,T ]

∫
Ωε

|∇lε|2 dx.

Using estimate (12) and the positivity of bε and rεf we obtain

∫ T

0

∫
Ωε

|∂tlε|2 dx dt + sup
[0,T ]

∫
Ωε

|∇lε|2 dx ≤ C.

To obtain a priori estimates for functions defined in the domain independent of ε, we
extend functions lε defined on Ωε to functions l̄ε defined on the whole Ω.
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3.4. Extension of lε. Since lε is defined only on Ωε, we extend it onto Ω; see
[8] or [19] for the proof.

Lemma 3.5. 1. For l ∈ H1(Y ) there exists an extension l̃ to Z, such that

‖l̃‖L2(Z) ≤ c‖l‖L2(Y ) and ‖∇l̃‖L2(Z) ≤ c‖∇l‖L2(Y ).

2. For lε ∈ H1(Ωε) there exists an extension l̃ε to Ω, such that

‖l̃ε‖H1(Ω) ≤ c‖lε‖H1(Ωε).

Remark 3.1. For lε ∈ L2(0, T ;H1(Ωε)) we define l̄ε(·, t) := l̃ε(·, t) for a.a. t. Since
the extension operator is linear, then l̄ε ∈ L2(0, T ;H1(Ω)).

We identify lε with the extension l̄ε. For the extended functions, we obtain a
priori estimate of the supremum norm of lε.

Lemma 3.6. For any solution of problem (1)–(6), the following estimate holds:

(13) ||lε||L∞((0,T )×Ω) ≤ C,

where C is a constant independent on ε.
Estimate (13) follows from the nonnegativity of lε, rεf , rεb , the boundedness of rεb

and l0, and the estimate in Lemma 3.5; see Theorem 6.40 in [26] (for the sketch of
proof see Appendix 6.1).

4. Convergence of solutions of microscopic problem.

4.1. Convergence of lε, rε
f , and rε

b. To show the convergence results we apply
the method of two-scale convergence, introduced in [2] and [36], and extended further
in [3, 37]. The definition and theorems concerning the two-scale convergence, used in
this section are outlined in Appendix 6.2.

To show the compactness of lε we use the following Hilbert space.
Definition 4.1 (see [47]). Let W β,2(Ω) with β ∈ R, β > 0 be a Hilbert space

defined as the completion of C∞(Ω) with respect to the norm

‖u‖Wβ,2(Ω) = ‖u‖Wk,2(Ω) +
{∫

Ω

∫
Ω

|u(x) − u(y)|2
|x− y|n+2(β−k)

dxdy
} 1

2

,

where k = [β].
Lemma 4.2. 1. For a function vε ∈ H1(Ωε) the following estimate holds:

ε

∫
Γε

|vε|2 dγx ≤ C

∫
Ωε

|vε|2dx + Cε2

∫
Ωε

|∇vε|2dx,

where C is a constant independent on ε.
2. For a function vε ∈ W β,2(Ωε), where 1

2 < β < 1, the following estimate holds:

ε

∫
Γε

|vε|2 dγx ≤ C

∫
Ωε

|vε|2dx + Cε2β

∫
Ωε

∫
Ωε

|vε(x1) − vε(x2)|2
|x1 − x2|n+2β

dx1dx2,

where C is a constant independent on ε.
Proof. 1. For the proof see [19, Lemma 3].
2. For a function v ∈ W β,2(Y ) the trace theorem implies∫

Γ

|v|2 dγy ≤ C

∫
Y

|v|2dy + C

∫
Y

∫
Y

|v(y1) − v(y2)|2
|y1 − y2|n+2β

dy1dy2.
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Changing variables, y = x/ε, we obtain

∫
εΓi

|vε|2 dγx
εn−1

≤ C

∫
εYi

|vε|2 dx
εn

+ C

∫
εYi

∫
εYi

|vε(x1) − vε(x2)|2
|x1 − x2|n+2β

εn+2β dx1

εn
dx2

εn
.

Multiplying the inequality side by side with ε−n and summing up over i from 1 to N
implies the estimate of the lemma.

Using a priori estimates derived in section 3.3 and the concept of the two-scale
convergence, we obtain the following compactness result.

Lemma 4.3. There exist functions l, rf , and rb such that

1. lε ⇀ l in L2(0, T ;H1(Ω)), ∂tl
ε ⇀ ∂tl in L2((0, T )×Ω), lε

∗
⇀ l in L∞((0, T )×

Ω),
2. lε → l in L2(0, T ;W β,2(Ω)) for 1

2 < β < 1 and limε→0 ||lε−l||L2((0,T )×Γε) = 0,
3. lε → l two-scale, ∇lε → ∇xl+∇yl1 two-scale, l1 ∈ L2((0, T )×Ω;H1

per(Z)/R),
4. rεf → rf , r

ε
b → rb two-scale and rf , rb ∈ L∞((0, T ) × Ω × Γ),

5. ∂tr
ε
f → ∂trf , ∂tr

ε
b → ∂trb two-scale, and ∂trf , ∂trb ∈ L2((0, T ) × Ω × Γ).

Proof. From the a priori estimates in Lemma 3.4, we obtain weak convergence
lε ⇀ l in L2(0, T ;H1(Ω)), ∂tl

ε ⇀ ∂tl in L2((0, T )×Ω), and lε
∗
⇀ l in L∞((0, T )×Ω).

To obtain strong convergence of lε in L2((0, T ),W β,2(Ω)), 1
2 < β < 1, we use

the compact embedding of W β,2(Ω) in H1(Ω) and apply the Lions–Aubin lemma [27]
with B = W β,2(Ω). Applying Lemma 4.2 we obtain the inequality

‖lε‖2
Γε ≤ c‖lε‖2

Wβ,2(Ωε).

It follows that

‖lε− l‖L2((0,T )×Γε) ≤ c‖lε− l‖2
L2(0,T ;Wβ,2(Ωε)) ≤ c‖lε− l‖2

L2(0,T ;Wβ,2(Ω)) → 0 for ε → 0.

Since lε is bounded in L2(0, T ;H1(Ω)), the compactness theorem (see Theorem 6.3 in
Appendix 6.2) implies the two-scale convergence of lε to the same function l and the
existence of a function l1 ∈ L2((0, T )×Ω;H1

per(Z)/R) such that, up to a subsequence,
∇lε two-scale converges to ∇xl(x) + ∇yl1(x, y).

Invoking Theorem 6.5 (see Appendix 6.2) we obtain the two-scale convergence of
rεf and rεb to functions in L∞((0, T )×Ω×Γ). Due to ||∂trεf ||L2((0,T )×Γε) ≤ C and [37,

Theorem 2.2], we conclude that ∂tr
ε
f → v two-scale and v ∈ L2((0, T )×Ω×Γ). Then

∫ T

0

∫
Γ×Ω

v φ dx dγy dt = lim
ε→0

∫ T

0

∫
Γε

∂tr
ε
f φdγx dt

= − lim
ε→0

∫ T

0

∫
Γε

rεf ∂tφdγx dt = −
∫ T

0

∫
Γ×Ω

rf ∂tφdx dγy dt.

Consequently, we conclude that v = ∂trf . Analogously we obtain the two-scale con-
vergence of ∂tr

ε
b to ∂trb.

4.2. Macroscopic equations.
Theorem 4.4. As ε → 0, the sequence of solutions of the microscopic problem

(1)–(6) converges to the weak solution (l, rf , rb), l ∈ H1(0, T ;L2(Ω)), l ∈ L2(0, T ;
H1(Ω)), l ∈ L∞((0, T )×Ω), rf , rb ∈ H1(0, T ;L2(Ω×Γ)), rf , rb ∈ L∞((0, T )×Ω×Γ),
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of the following macroscopic problem:

(14)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tl(t, x) = − 1
|Y |

∫
Γ
(b(t, y)rf (t, x, y)l(t, x) − d(t, y)rb(t, x, y))dγy

+ (∇(S(t)∇l(t, x))) + p̃l(t, l(t, x)) − μ̃l(t)l(t, x), t > 0, x ∈ Ω,

∇l(t, x) · ν = 0, t > 0, x ∈ ΓN ,

l(t, x) = l0(x), t = 0, x ∈ Ω,

(15)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂trf (t, x, y) = pr(t, y, rb(t, x, y)) − b(t, y)rf (t, x, y)l(t, x)

+ d(t, y)rb(t, x, y) − μf (t, y)rf (t, x, y), y ∈ Γ, x ∈ Ω,

∂trb(t, x, y) = b(t, y)rf (t, x, y)l(t, x) − d(t, y)rb(t, x, y)

−μb(t, y)rb(t, x, y), y ∈ Γ, x ∈ Ω,

rf (t, x, y) = rf 0(x, y), t = 0, y ∈ Γ, x ∈ Ω,

rb(t, x, y) = rb0(x, y), t = 0, y ∈ Γ, x ∈ Ω,

where μ̃l(t) = 1
|Y |

∫
Y
μl(t, y) dy, p̃(t, l) = 1

|Y |
∫
Y
p(t, y, l) dy, and the matrix S is defined

as sij = 1
|Y |

∑3
k=1

∫
Y

(Dij(t, y) +Dik(t, y)∂yk
wj) dy with wi being the solutions of the

cell problem

−∇y(D(t, y)∇ywi) =

3∑
k=1

∂yk
Dki(t, y) in Y, −D(t, y)

∂wi

∂ν
=

3∑
k=1

Dki(t, y)νk on Γ.

Proof. To derive a limit equation for lε we apply a standard two-scale convergence
method and strong convergence of lε. Using in (7) a test function of the form φ(t, x) =
ψ0(t, x)+εψ1(t, x,

x
ε ), ψ0 ∈ C∞((0, T )×Ω), ψ1 ∈ C∞((0, T )×Ω;C∞

per(Z)) and passing
to the two-scale limit applying Lemma 4.3 yields

|Y |
∫ T

0

∫
Ω

∂tlψ0(t, x) dx dt + |Y |
∫ T

0

∫
Ω

μ̃l(t) l(t, x)ψ0(t, x) dx dt

+

∫ T

0

∫
Ω

∫
Y

D(t, y)(∇xl(t, x) + ∇yl1(t, x, y))(∇xψ0 + ∇yψ1) dy dx dt

= −
∫ T

0

∫
Ω

∫
Γ

[b(t, y)rf (t, x, y)l(t, x) − d(t, y)rb(t, x, y)]ψ0(t, x) dγy dx dt

+ |Y |
∫ T

0

∫
Ω

p̃l(t, l)ψ0 dx dt.

To show the convergence of the nonlinear term bεrεf l
ε of the boundary integral, we

rewrite this integral as a sum of two integrals,

ε

∫ T

0

∫
Γε

bεrεf l
ε
(
ψ0(t, x) + εψ1

(
t, x,

x

ε

))
dγx dt

= ε

∫ T

0

∫
Γε

bεrεf l
(
ψ0(t, x) + εψ1

(
t, x,

x

ε

))
dγx dt

+ ε

∫ T

0

∫
Γε

bεrεf (lε − l)
(
ψ0(t, x) + εψ1

(
t, x,

x

ε

))
dγx dt.
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The first integral converges to
∫ T

0

∫
Ω

∫
Γ
b(t, y)rf (t, x, y)l(t, x)ψ0(t, x) dγy dx dt due to

the two-scale convergence of rεf . Since ||lε − l||L2((0,T )×Γε) → 0 as ε → 0, we obtain
for the second integral

ε

∫ T

0

∫
Γε

bεrεf (lε − l)
(
ψ0(t, x) + εψ1

(
t, x,

x

ε

))
dγx dt

≤ ε

(∫ T

0

∫
Γε

|bεrεfψ0|2dγx dt
)1/2 (∫ T

0

∫
Γε

|lε − l|2dγx dt
)1/2

+ ε2

(∫ T

0

∫
Γε

|bεrεfψ1|2dγx dt
)1/2 (∫ T

0

∫
Γε

|lε − l|2dγx dt
)1/2

→ 0 as ε → 0.

To determinate the unknown function l1 ∈ L2((0, T ) × Ω;H1
per(Y )/R), we set ψ0 = 0

and obtain the equation

∫ T

0

∫
Ω×Y

D(t, y)(∇xl(t, x) + ∇yl1(t, x, y))∇yψ1(t, x, y) dt dx dy = 0

for all ψ1. From this it follows that l1 depends linearly on ∇xl, and it can be written
in the form

l1 =

n∑
i=1

∂l

∂xi
· wi,

where the functions wi are defined as solutions of the cell problem

−∇(D(t, y)∇wi) =

3∑
k=1

∂yk
Dki(t, y) in Y, −D(t, y)

∂wi

∂ν
=

3∑
k=1

Dki(t, y) νk on Γ.

Next, setting ψ1 = 0, we obtain

∫ T

0

∫
Ω

∫
Y

n∑
i,j=1

Dij(t, y)(∂xi l(t, x) +

n∑
k=1

∂yiwk∂xk
l(t, x))∂xjψ0(t, x) dy dx dt

= |Y |
∫ T

0

∫
Ω

n∑
i,j=1

sij∂xiψ0(t, x)∂xj l(t, x) dy dx dt

with sij = 1
|Y |

∑3
k=1

∫
Y

(Dij(t, y) + Dik(t, y)∂yk
wj) dy.

The difficulty arises in passing to the limit in nonlinear terms in the ordinary
differential equations on the surface of microstructures. We have to show that pεr
(t, x, rεb(t, x)) → pr(t, y, rb(t, x, y)) in the two-scale sense. To cope with this difficulty
we apply the unfolding method (periodic modulation), developed in [7, 5, 6]. Following
[5] and [6], we define a dilation operator.

Definition 4.5. For a given ε > 0, we define a dilation operator Dε mapping
measurable functions on (0, T ) × Γε to measurable functions on (0, T ) × Ω × Γ by

Dεu(t, x, y) = u(t, cε(x) + εy), y ∈ Γ, (t, x) ∈ (0, T ) × Ω,
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where cε(x) denotes the lattice translation point of the ε-cell domain containing x,
cε(x) = ε[xε ]. We extend Dεu from Γ to

⋃
k(Γ + k) periodically.

Remark 4.1. The dilation operator Dε is well defined for all (t, x, y) ∈ (0, T ) ×
Ω × Γ under the assumption on the geometry of domain Ωε (cf. Remark 2.1).

To proceed, we have to establish the link between the two-scale convergence and
the weak convergence of the dilated sequences. Following [6], we formulate the lemma
on the convergence of Dεuε : (0, T ) × Ω × Γ → R. We define L2

per(Γ) as the space of
functions f ∈ L2(Γ) defined on Γ and periodically extended to Γ∗ =

⋃
k(Γ + k).

Lemma 4.6. If Dεuε ⇀ u∗ weakly in L2((0, T ) × Ω;L2
per(Γ)) and uε → u two-

scale, then u∗ = u a.e. in (0, T ) × Ω × Γ.
Proof. Let u∗ be a weak limit of Dεuε. Then, for a test function ψ(t, x)h(y),

where ψ ∈ C∞
0 ((0, T ) × Ω) and h ∈ C∞

per(Γ), we obtain

∫ T

0

∫
Ω×Γ

Dεuε(t, x, y)ψ(t, x)h(y)dγydxdt

→
∫ T

0

∫
Ω×Γ

u∗(t, x, y)ψ(t, x)h(y)dγydxdt as ε → 0.

On the other hand, we have∫ T

0

∫
Ω×Γ

Dεuε(t, x, y)ψ(t, x)h(y)dγydxdt

=

∫ T

0

∫
Ω×Γ

uε(t, εy + cε(x))ψ(t, x)h(y)dγydxdt

=

N∑
k=1

∫ T

0

∫
ε(Z+k)

∫
Γ

uε(t, εy + cε(x))ψ(t, x)h(y)dγydxdt.

Changing variables z = ε(y + k), where cε(x) = ε[xε ] = εk, and using the periodicity
of h, we obtain

∫ T

0

N∑
k=1

ε−2

∫
ε(Γ+k)

uε(t, z)h
(z
ε

)∫
ε(Z+k)

ψ(t, x) dx dγz dt

= ε

∫ T

0

N∑
k=1

∫
ε(Γ+k)

uε(t, z)h
(z
ε

)
ψ(t, z)dγzdt + cε2

→
∫ T

0

∫
Ω

∫
Γ

u(t, x, y)h(y)ψ(t, x)dγydxdt,

since from the continuity of ψ we have the estimate

|ε−3

∫
ε(Z+k)

(
ψ(t, x) − ψ(t, z)

)
dx| ≤ cε for z ∈ ε(Γ + k).

Therefore, we conclude that u∗ = u a.e. in (0, T ) × Ω × Γ.
In analogy to the above lemma and Lemma 2 in [5], we can prove the following

properties of the dilation operator for oscillating surfaces.
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Lemma 4.7. For u ∈ L2((0, T ) × Γε)

||Dεu||L2(Ω×Γ) = ||u||L2(Γε).

If u ∈ L2(Ω × Γ) is constant in y, then Dεu → u as ε → 0 strongly in L2(Ω × Γ).
Changing variables, Γε 
 x → εy + cε(x), cε(x) = εk for x ∈ Γε, we obtain

equations on the fixed domain (0, T ) × Ω × Γ,

∂

∂t
Dεrf

ε(t, x, y) = −μf (t, y)Dεrf
ε(t, x, y) + pr(t, y,D

εrεb(t, x, y))

− b(t, y)Dεrf
ε(t, x, y)Dεlε(t, x, y) + d(t, y)Dεrb

ε(t, x, y),

∂

∂t
Dεrb

ε(t, x, y) = −μb(t, y)D
εrb

ε(t, x, y)

+ b(t, y)Dεrf
ε(t, x, y)Dεlε(t, x, y) − d(t, y)Dεrb

ε(t, x, y).

Applying the estimates for rεf and rεb , we obtain the estimates for Dεrf
ε and Dεrb

ε

and the weak convergence of Dεrf
ε to rf and Dεrb

ε to rb in L2((0, T ) × Ω;L2
per(Γ))

(see Lemma 4.6). Since sup[0,T ]×Ω |lε| ≤ C, we conclude that sup[0,T ]×Ω×Γ |Dεlε| ≤ C.

Now we prove the strong convergence of Dεrf
ε and Dεrb

ε in L2((0, T )×Ω;L2
per(Γ)).

For this we show that Dεrf
ε and Dεrb

ε are Cauchy sequences. We consider the equa-
tions for Dεnrf

εn−Dεmrf
εm and Dεnrb

εn−Dεmrb
εm , with n > m, multiply them side

by side with Dεnrf
εn −Dεmrf

εm and Dεnrb
εn −Dεmrb

εm , respectively, and integrate
over Ω × Γ.

∂

∂t

∫
Ω×Γ

|Dεnrf
εn −Dεmrf

εm |2dxdγ = −
∫

Ω×Γ

μf (t, y)|Dεnrf
εn −Dεmrf

εm |2dxdγ

+

∫
Ω×Γ

(pr(t, y,D
εnrb

εn) − pr(t, y,D
εmrεmb ))(Dεnrf

εn −Dεmrf
εm)dxdγ

−
∫

Ω×Γ

b(t, y)(Dεnrf
εnDεn lεn −Dεmrf

εmDεm lεm)(Dεnrf
εn −Dεmrf

εm)dxdγ

−
∫

Ω×Γ

d(t, y)(Dεnrb
εn −Dεmrb

εm)(Dεnrf
εn −Dεmrf

εm)dxdγ,

∂

∂t

∫
Ω×Γ

|Dεnrb
εn −Dεmrb

εm |2dxdγ = −
∫

Ω×Γ

μb(t, y)|Dεnrb
εn −Dεmrb

εm |2dxdγ

+

∫
Ω×Γ

b(t, y)(Dεnrf
εnDεn lεn −Dεmrf

εmDεm lεm)(Dεnrb
εn −Dεmrb

εm)dxdγ

−
∫

Ω×Γ

d(t, y)|Dεnrb
εn −Dεmrb

εm |2 dxdγ.
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Using the Young inequality, we obtain

∂

∂t

∫
Ω×Γ

|Dεnrf
εn −Dεmrf

εm |2dxdγ(16)

≤ C1

∫
Ω×Γ

|Dεnrf
εn −Dεmrf

εm |2dxdγ

+ C2

∫
Ω×Γ

|Dεnrb
εn −Dεmrb

εm |2dxdγ

+ b1 sup
(0,T )×Ω×Γ

|Dεn lεn |
∫

Ω×Γ

|Dεnrf
εn −Dεmrf

εm |2dxdγ

+ C3

∫
Ω×Γ

|Dεn lεn −Dεm lεm |2dxdγ,

∂

∂t

∫
Ω×Γ

|Dεnrb
εn −Dεmrb

εm |2dxdγ(17)

≤ C4

∫
Ω×Γ

|Dεnrb
εn −Dεmrb

εm |2dxdγ

+ b1 sup
(0,T )×Ω×Γ

|Dεn lεn |
∫

Ω×Γ

|Dεnrf
εn −Dεmrf

εm |2dxdγ

+ C5

∫
Ω×Γ

|Dεn lεn −Dεm lεm |2dxdγ.

Due to Lemma 4.7 and strong convergence of lε on Γε, we obtain

∫ T

0

∫
Ω×Γ

|Dεlε −Dεl|2dγdxdt = ε

∫ T

0

∫
Γε

|lε − l|2dγxdt ≤ Cε.

Therefore, since Dεn l → l strongly in L2((0, T ) × Ω × Γ) (see Lemma 4.7),

∫ T

0

∫
Ω×Γ

|Dεn lεn −Dεm lεm |2dγdxdt

≤
∫ T

0

∫
Ω×Γ

(
|Dεn lεn −Dεn l|2 + |Dεn l − l|2

)
dγdxdt

+

∫ T

0

∫
Ω×Γ

(
|Dεm l − l|2 + |Dεm lεm −Dεm l|2

)
dγdxdt

≤ εn

∫ T

0

∫
Γεn

|lεn − l|2dγxdt

εm

∫ T

0

∫
Γεm

|lεm − l|2dγxdt +

∫ T

0

∫
Ω×Γ

(
|Dεn l − l|2 + |Dεm l − l|2

)
dγdxdt

≤ C(εn + εm).
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We add (16) and (17) side by side and integrate with respect to time. Using addi-
tionally the boundedness of Dεlε on (0, T ) × Ω × Γ, we obtain

||Dεnrf
εn −Dεmrf

εm ||2 + ||Dεnrb
εn −Dεmrb

εm ||2

≤ C1

∫ τ

0

(
||Dεnrf

εn −Dεmrf
εm ||2 + ||Dεnrb

εn −Dεmrb
εm ||2

)
dt + C2

1

n
,

where C1 = C1(sup(0,T )×Ω |lε|, sup(0,T )×Γ |μf |, sup(0,T )×Γ |μb|, sup(0,T )×Γ |b|, sup(0,T )×Γ |d|,
sup(0,T )×Γε |rεf |). Then the Gronwall lemma yields

||Dεnrf
εn −Dεmrf

εm ||L2(Ω×Γ) ≤ C
1

n
,

||Dεnrb
εn −Dεmrb

εm ||L2(Ω×Γ) ≤ C
1

n
.

Using strong convergence of Dεrb
ε, continuity of pr, and weak convergence of pr(t, y,

Dεrεb), which results from the boundedness of pr, we obtain that pr(t, y,D
εrεb) weakly

converges to pr(t, y, rb(t, x, y)) in L2((0, T ) × Ω;L2
per(Γ)).

Now we can take the two-scale limit in the equations on the boundary,

ε

∫ T

0

∫
Γε

∂tr
ε
fψ1

(
t, x,

x

ε

)
dγx dt = ε

∫ T

0

∫
Γε

pεr(t, x, r
ε
b(t, x))ψ1

(
t, x,

x

ε

)
dγx dt

+ ε

∫ T

0

∫
Γε

(
−bεrεf (t, x)lε(t, x) + dε(t, x)rεb(t, x) − με

fr
ε
f (t, x)

)
ψ1

(
t, x,

x

ε

)
dγx dt,

ε

∫ T

0

∫
Γε

∂tr
ε
b(t, x)ψ1

(
t, x,

x

ε

)
dγx dt = ε

∫ T

0

∫
Γε

bεrεf (t, x)lε(t, x)ψ1 dγx dt

+ ε

∫ T

0

∫
Γε

(
−dεrεb(t, x) − με

br
ε
b(t, x)

)
ψ1

(
t, x,

x

ε

)
dγx dt.

The linear terms converge two-scale to their limit functions. The proof of conver-
gence for the nonlinear term bεrεf (t, x)lε(t, x) is the same as in the equation for
lε. Due to boundedness of pεr and Lemma 4.6, pεr(t, x, r

ε
b) converges two-scale to

pr(t, y, rb(t, x, y)). Therefore, we obtain the macroscopic equations for rf and rb.
The uniqueness of the solution of the macroscopic problem can be proved in the

same way as for the microscopic problem.
Remark 4.2. Properties of the macroscopic model: Using the framework of

bounded invariant rectangles (see [44]) we can show that solutions of system (14)–
(15) remain positive for positive initial conditions and that they are also uniformly
bounded. This results from the assumption of the nonnegativity of the model parame-
ters and their boundedness independent of time. Methods outlined in [44, Chapter 14]
can be used without major modifications.

5. Discussion. In this work, using homogenization techniques, we studied the
macroscopic limit of the microscopic model describing receptor-ligand dynamics on
cell membranes and in the intercellular space. We tried to answer the question of how
processes which take place in different “spaces,” such as cells membranes, intercellular
space, and also intracellular space, can be described by macroscopic models operating
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in homogenized space. On one hand, this work provides a justification of previously
proposed models, and on the other hand it is a starting point for further models.

Comparison of the macroscopic model (14)–(15) to the previously considered
receptor-based model of the form

∂

∂t
rf = −μfrf + pr(rb) − brf l + drb,

∂

∂t
rb = −μbrb + brf l − drb,(18)

∂

∂t
l =

1

γ

∂2

∂x2
l − μll − brf l + pl(l) + drb,

defined on the macroscopic domain Ω, shows in which cases the “older” models can
be derived from the microscopic description. Model (14)–(15) is equivalent to model
(18) in the case when neither the model parameters nor the initial conditions for rf
and rb depend on the surface variable y. It means that the processes described are
homogeneous within each cell and that there is no heterogeneity in the dissociation or
binding processes on the cell surfaces. For nonadherent cells one can consider receptor
production, binding, dissociation, or decay to be uniformly distributed on the cell
surface, which results in model coefficients being constant with respect to the surface
variable y. Under such assumptions we obtain a macroscopic model, in which the
integral in the equation for the ligands disappears and the only difference with respect
to model (18) is that the kinetics are multiplied by a coefficient

∫
Γ
dγy/|Y |. However,

there is now considerable evidence of the existence of lipid raft microdomains, called
membrane rafts, which organize the membrane into specialized functional units [14,
15, 38, 39, 41]. Rafts were described mainly for T-cells and T-cell receptor [15, 39, 40],
but now it is clear that they play an important role for many different receptor classes
[13, 41]. There are observations that the structure of lipid rafts could control cellular
processes such as signaling cascades [40, 43] and receptor synthesis and trafficking
[21] as well as cell adhesion and migration [16]. Some membrane proteins are located
preferentially on the raft domains, whereas others are excluded from them [14]. Such
a situation corresponds to the nonhomogeneous initial distribution of receptors on
the cell surface and also de novo production terms depending on the surface variable.
Our studies show that in such a case the “older” type of receptor-based model is not
relevant.

Another example of cells with nonhomogeneous membrane properties are adherent
cells. In the case of adherent cells there are two types of polarity, top-bottom and
front-back, and it is not easy for the ligand to get in contact with the bottom of the
cell. One can imagine that receptors may be concentrated on the frontal end of the
cell (this determines cell motility in the case of chemotaxis), and, therefore, all the
receptor-ligand processes are nonhomogeneous within the membrane [22].

6. Appendix.

6.1. Supremum estimate for lε. We present here a sketch of the proof of
Lemma 3.6 used in section 4.

Lemma. For any solution of problem (1)–(6), the following estimate holds:

||lε||L∞((0,T )×Ω) ≤ C + 2k,

where C is a constant independent on ε and k = max{1, supΩ |l0|}.
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Proof. To show the boundedness of lε we use the Moser iteration technique,
described in the proof of [26, Theorem 6.15]. We choose as a test function v =
ψ(lε)(lε−k)+, where ψ ≥ 0 is a bounded C1(R) function and which satisfies for s > k

0 ≤ ψ
′
(s)(s− k)

ψ(s)
≤ k1.

Due to the fact that l0 ≤ k, we obtain∫
Ω

∫ lε

0

ψ(s)(s− k)+ dsχε dx +

∫ τ

0

∫
Ω

(Dε∇lε, ψ(lε)∇lε)χε dxdt(19)

+

∫ τ

0

∫
Ω

(Dε∇lε, ψ
′
(lε)(lε − k)+∇lε)χε dxdt

+

∫ τ

0

∫
Ω

με
l l

εψ(lε)(lε − k)+χ
εdxdt

=

∫ τ

0

∫
Ω

pεl (l
ε)ψ(lε)(lε − k)+χ

ε dxdt

+ ε

∫ τ

0

∫
Γε

(dεrεb − bεrεf l
ε)ψ(lε)(lε − k)+dγxdt,

where χ is a characteristic function of Y periodically extended to Z∗, and χε(x) =
χ(xε ). From the properties of ψ, we obtain∫ s

k

ψ(t)(t− k)dt ≥ 1

2 + k1
ψ(s)(s− k) for s ≥ k.

The third and fourth terms on the left-hand side of (19) are nonnegative; the third
term on the right-hand side is nonpositive. Using lε ≥ k ≥ 1 and Lemma 4.2, we
obtain the estimate

ε

∫ τ

0

∫
Γε

ψ(lε)(lε − k)+dγxdt

≤ C

∫ τ

0

∫
Ωε

(
ψ(lε)(lε − k)+ + ε2∇(ψ(lε)(lε − k)+)

)
dxdt

≤ C(1 +
1

δ
)(1 + k1)

∫ τ

0

∫
Ω

ψ(lε)|lε|2χεdxdt + Cε2δ

∫ τ

0

∫
Ω

ψ(lε)|∇lε|2χεdxdt.

Then boundedness of coefficients and sublinearity of pl yields∫
Ω

ψ(lε)(lε − k)2χεdx + d0

∫ τ

0

∫
Ω

ψ(lε)|∇lε|2χεdxdt

≤ C(1 + k1)
2

∫ τ

0

∫
Ω

ψ(lε)|lε|2χεdxdt.

Choosing ψ(s) = (min{s, Z}(1− k/s)+)q, where q, Z are positive constants, applying
the Gronwall and Young inequalities, and taking Z → ∞ leads to∫ T

0

∫
Ω

|lε|q+2χε dxdt ≤ C(q)|Ω|Tkq+2
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for any positive q. Thus, for a fixed q > 1 we can choose ψ(s) = s2q−2(1− k
s )

(n+2)(q−1)
+

and conclude that∫
Ω

(lε)2q
(

1 − k

lε

)(n+2)q−n

+

χεdx + c(d0)

∫ τ

0

∫
Ω

(lε)2q−2

(
1 − k

lε

)(n+2)(q−1)

+

|∇lε|2χεdxdt

≤ Cq2

∫ τ

0

∫
Ω

(lε)2q
(

1 − k

lε

)(n+2)(q−1)

+

χεdxdt.

Setting h = (lε)q((1 − k
lε )

(n+2)q−n
+ )1/2 gives |∇h|2 ≤ c(n)q2(lε)2q−2(1 − k

lε )
(n+2)(q−1)
+

|∇lε|2. Using the property of extended function of lε, i.e., ||lε||H1(Ω) ≤ C||lε||H1(Ωε),
with a constant C independent of ε, yields

sup
(0,T )

∫
Ω

h2dx +

∫ T

0

∫
Ω

|∇h|2dxdt ≤ Cq4

∫ T

0

∫
Ω

(lε)2q
(

1 − k

lε

)(n+2)(q−1)

dxdt.

Invoking the Sobolev embedding theorem on (0, T ) × Ω, we obtain

(∫ T

0

∫
Ω

h2κdxdt

)1/κ

≤ Cq4

∫ T

0

∫
Ω

(lε)2q
(

1 − k

lε

)(n+2)q−n−2

+

dxdt,

where κ = (n + 2)/n. Iterating the last inequality for q = 1, κ, κ2, . . . , as in [26],
implies that

sup
(0,T )×Ω

|lε|2
(

1 − k

lε

)n+2

+

≤ C

∫ T

0

∫
Ω

|lε|2dxdt.

Considering separately the cases sup(0,T )×Ω lε ≤ 2k and sup(0,T )×Ω lε ≥ 2k results in
the estimate of the lemma.

6.2. Two-scale convergence with parameters. We recall here the definition
of two-scale convergence for functions dependent on parameters and several impor-
tant results concerning this notion presented in [37]. The proofs are straightforward
modifications of the proofs for the standard two-scale convergence method presented
in [2].

Definition 6.1. Let (uε) be a sequence in L2(Λ × Ω), where ε is a sequence of
strictly positive numbers, which tends to zero. (uε) is said to two-scale converge to a
(unique) limit u0 ∈ L2(Λ × Ω × Z) iff for any φ ∈ D(Λ × Ω, C∞

per(Z)) we have

lim
ε→0

∫
Λ

∫
Ω

uε(λ, x)φ
(
λ, x,

x

ε

)
dxdλ =

∫
Λ

∫
Ω

∫
Z

u0(λ, x, y)φ(λ, x, y)dxdydλ.

Theorem 6.2. From each bounded sequence (uε) in L2(Λ × Ω) we can extract a
subsequence which two-scale converges to u0 ∈ L2(Λ × Ω × Z).

Theorem 6.3. 1. Let (uε) be a bounded sequence in L2(Λ, H1(Ω)), which con-
verges weakly to a limit function u ∈ L2(Λ, H1(Ω)). Then there exists u1 ∈ L2(Λ ×
Ω, H1

per(Z)) such that, up to a subsequence, uε two-scale converges to u and ∇uε

two-scale converges to ∇u(λ, x) + ∇yu1(λ, x, y).
2. Let (uε) and (ε∇uε) be bounded sequences in L2(Λ × Ω)). Then there exists

u0 ∈ L2(Λ × Ω, H1
per(Z)) such that, up to a subsequence, uε and ε∇uε two-scale

converge to u0(λ, x, y) and ∇yu0(λ, x, y), respectively.
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Now, we transfer the compactness results to the case of a sequence uε defined on
an (n− 1)-dimensional ε-periodic manifold Γε ∈ Ω. Let Γ ∈ Z be a smooth (n− 1)-
dimensional manifold (in our application a sphere, n = 3). Then Γε is the union of
all εΓ. For each Γε we consider the space L2(Γε) equipped with the scalar product
(u, v)Γε := ε

∫
Γε u(x)v(x)dx.

Definition 6.4 (see [37]). A sequence of functions (wε) ∈ L2(Λ× Γε) is said to
two-scale converge to a limit w ∈ L2(Λ×Ω×Γ) iff for any ψ ∈ D(Λ×Ω, C∞

per(Γ)) we
have

lim
ε→0

ε

∫
Λ

∫
Γε

wε(λ, x)ψ
(
λ, x,

x

ε

)
dγxdλ =

∫
Λ

∫
Ω

∫
Γ

w(λ, x, y)ψ(λ, x, y)dxdγydλ.

Theorem 6.5. 1. From each bounded sequence (wε) in L2(Λ×Γε) we can extract
a subsequence which two-scale converges to w ∈ L2(Λ × Ω × Γ).

2. If the sequence (wε) is bounded in L∞(Λ × Γε), then the limit w belongs to
L∞(Λ × Ω × Γ).

Proof. For the proof of 1, see [37].
2. We know that if wε is bounded in L2((0, T ) × Γε), then there exists w ∈

L2((0, T ) × Ω × Γ) such that wε → w two-scale [37]. Now we use the proof of that
theorem and show that if wε is bounded in L∞((0, T ) × Γε), then wε → w two-scale

and w ∈ L∞((0, T ) × Ω × Γ). We define με(φ) = ε
∫ T

0

∫
Γε w

ε(t, x)φ(t, x, x
ε ) dγε

x dt and
obtain

|με(φ)| ≤ ||wε||L2((0,T )×Γε)

(∫ T

0

∫
Γε

ε
∣∣∣φ(

x,
x

ε

)∣∣∣2 dγε
x dt

) 1
2 ≤ c||φ||2C0([0,T ]×Ω̄;C0

per(Γ)).

Therefore, {με} is a bounded sequence of functionals on C0([0, T ]×Ω̄;C0
per(Γ)). Since

this space is a separable Banach space, there exists a subsequence of με that converges
weakly∗ to μ. Using the boundedness of wε and a variant of the oscillation lemma [2],
we obtain

|μ(φ)| = lim
ε→0

|με(φ)| ≤ C lim
ε→0

(∫ T

0

∫
Γε

ε
∣∣∣φ(

x,
x

ε

)∣∣∣2 dγε
x dt

) 1
2

= c||φ||L2((0,T )×Ω×Γ).

Therefore, μ is a bounded functional on L2((0, T )×Ω×Γ). The Riesz representation
theorem implies the existence of a function w ∈ L2((0, T ) × Ω × Γ). Furthermore,
||wε||L∞((0,T )×Γε) ≤ C yields

|μ(φ)| = lim |με(φ)| ≤ C lim
ε→0

∫ T

0

∫
Γε

ε
∣∣∣φ(

x,
x

ε

)∣∣∣ dγε
x dt = c||φ||L1((0,T )×Ω×Γ).

Finally, we conclude

||w||L∞((0,T )×Ω×Γ) =
〈w, φ〉

||φ||L1((0,T )×Ω×Γ)

=
|μ(φ)|

||φ||L1((0,T )×Ω×Γ)
≤

C||φ||L1((0,T )×Ω×Γ)

||φ||L1((0,T )×Ω×Γ)
= C.

Theorem 6.6 (see [37]). Let (uε) and (ε∇uε) be bounded sequences in L2(Λ ×
Γε)). Then there exists u0 ∈ L2(Λ × Ω, H1

per(Γ)) such that, up to a subsequence, uε

and ε∇uε, two-scale converge to u0(λ, x, y) and ∇yu0(λ, x, y), respectively.
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TWO LAMÉ COEFFICIENTS BY BOUNDARY DATA∗
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Abstract. In this paper we study an inverse problem of determining spatially varying density
and two Lamé coefficients by a single measurement of solution in a subboundary over a time interval.
By assuming that, in a neighborhood of the boundary of the spatial domain, the density and the
Lamé coefficients are known, we prove a logarithmic stability estimate for the inverse problem with
a single measurement of data on an arbitrarily given subboundary.
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1. Introduction. This paper is concerned with the global stability in determin-
ing density and two Lamé coefficients in the classical isotropic elasticity system from
data of the solution on a subboundary over a time interval. We will formulate our
problem as follows: In a bounded domain Ω ⊂ R

3 with sufficiently smooth boundary
Γ = ∂Ω, we consider the isotropic elasticity system

ρ(x)∂2
t u(x, t) − Lλ,μ(x, ∂x)u(x, t) = 0, (x, t) ∈ Q = Ω × (−T, T ),(1.1)

where

Lλ,μ(x, ∂x)v(x) ≡ μ(x)Δv(x) + (μ(x) + λ(x)) (∇divv(x))

+ (divv(x))∇λ(x) +
(
∇v + (∇v)T

)
∇μ(x), x ∈ Ω.

Throughout this paper, t and x = (x1, x2, x3) denote the time variable and the spatial
variable, respectively, and u = (u1, u2, u3)

T denotes the displacement at the location
x and the time t, where ·T denotes the transpose of matrices. We will assume that
the density ρ and the Lamé parameters μ and λ satisfy

ρ, λ, μ ∈ C3(Ω), ρ(x) > 0, μ(x) > 0, λ(x) + μ(x) > 0 for x ∈ Ω.

To system (1.1), we attach initial and boundary conditions:

u = Φ, ∂tu = Ψ on Ω × {0}(1.2)
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and

u = g on Σ ≡ Γ × (−T, T ).(1.3)

There exists a unique weak solution u ∈ C([−T, T ];H1
0(Ω)) for suitable Φ,Ψ,g under

sufficient compatibility conditions, and by u(λ, μ, ρ,Φ,Ψ,g) we denote the solution
to (1.1)–(1.3).

The main subject of this paper is the inverse problem of determining ρ = ρ(x),
λ = λ(x), and μ = μ(x) from observed data of the solution on a part of the boundary.
It is an important problem, for example, in the geophysics to determine ρ, λ, and
μ inside an elastic body from measurements on a subboundary. Thus our inverse
problem is physically motivated.

1.1. Inverse problem. Let Γ1 ⊂ Γ be given arbitrarily, and let Φj , Ψj , gj ,
1 ≤ j ≤ N , be appropriately given. Then we want to determine λ(x), μ(x), ρ(x),
x ∈ Ω, by measurements

∂νu(λ, μ, ρ,Φj ,Ψj ,gj)(x, t), (x, t) ∈ Σ1 ≡ Γ1 × (−T, T ), 1 ≤ j ≤ N .

Here ν = ν(x) denotes the unit outward normal vector and ∂ν = ∇ · ν.
Our formulation of the inverse problem requires only a finite number of obser-

vations (i.e., N < ∞). As for inverse problems for a nonstationary Lamé system
by infinitely many boundary observations (i.e., Dirichlet-to-Neumann map), we refer
to Rachele [42], for example. Moreover see a monograph by Yakhno [48] for inverse
problems for the Lamé system.

For the formulation with a finite number of observations, Bukhgeim and Klibanov
[10] proposed a remarkable method based on a Carleman estimate and established
the uniqueness for similar inverse problems for scalar partial differential equations.
See also Baudouin and Puel [2], Bellassoued [4], [5], Bellassoued and Yamamoto
[6], [7], Bukhgeim [8], Bukhgeim, Cheng, Isakov, and Yamamoto [9], Imanuvilov
and Yamamoto [20], [21], [22], [23], [24], Isakov [25], [26], Isakov and Yamamoto
[27], Khaidarov [29], Klibanov [30], [31], Klibanov and Timonov [33], Klibanov and
Yamamoto [34], Kubo [35], Li [39], Puel and Yamamoto [40], [41], and Yamamoto [49].

A Carleman estimate is an inequality for a solution to a partial differential equa-
tion with weighted L2-norm and is a strong tool also for proving the uniqueness in
the Cauchy problem or the unique continuation for a partial differential equation
with nonanalytic coefficients. Moreover Carleman estimates have been applied es-
sentially for estimating the energy (e.g., Kazemi and Klibanov [28], Klibanov and
Malinsky [32]), while we refer to [1] as another method for the energy estimate, which
is, however, not applicable to our inverse problem.

As a pioneering work concerning a Carleman estimate, we refer to Carleman’s
paper [11], which proved what is now called a Carleman estimate and applied it for
proving the uniqueness in the Cauchy problem for a two-dimensional elliptic equation.
Since [11], the theory of Carleman estimates has been studied extensively. We refer to
a general theory by Hörmander [14] in the case where the symbol of a partial differ-
ential equation is isotropic and functions under consideration have compact supports
(that is, they and their derivatives of suitable orders vanish on the boundary of a
domain). Later Carleman estimates for functions with compact supports have been
obtained for partial differential operators with anisotropic symbols by Isakov [26]. For
Carleman estimates for functions without compact supports, see Imanuvilov [17] and
Tataru [46]. We further refer to Fursikov and Imanuvilov [13] and Imanuvilov [16]. As
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for a direct derivation of pointwise Carleman estimates for hyperbolic equations which
are applicable to functions without compact supports, see Klibanov and Timonov [33]
and Lavrent’ev, Romanov, and Shishat·skĭı [36].

The Carleman estimate for the nonstationary Lamé system was obtained for func-
tions with compact supports, by Eller, Isakov, Nakamura, and Tataru [12], Ikehata,
Nakamura, and Yamamoto [15], Imanuvilov, Isakov, and Yamamoto [18], and Isakov
[25]. Lemma 2.3 is our Carleman estimate for the Lamé system whose solutions
have not necessarily compact supports, and the Carleman estimate bounds also the
second-order x-derivatives, which is possible because the right-hand side is estimated
in the weighted H1-norm in x, and we can use the identity Δv = −rot rot v+∇(div v)
and the a priori estimate for the Dirichlet problem for the Laplace equation. By
the methodology by [10] or [22] with such Carleman estimates, several uniqueness
and stability results are available for the inverse problem for the Lamé system (1.1).
That is, in [25] Isakov established the uniqueness in determining a single coefficient
ρ(x), using four measurements (i.e., N = 4). Later [15] reduced the number of mea-
surements to three. Recently [18] proved conditional stability and the uniqueness in
the determination of all three functions λ, μ, and ρ, with two measurements, and
Imanuvilov and Yamamoto [23], [24] proved conditional stability results with a single
measurement, provided that initial data satisfy some nondegeneracy condition.

In all of the works [15], [18], [23], [24], [25], the authors assume some geometric
condition of the observation subboundary. For such a kind of inverse problems, the
uniqueness as well as the stability with boundary measurement on an arbitrary part
of Γ are open problems. As for the corresponding unique continuation, we can refer
to Bellassoued [3], Robbiano [43], and Tataru [46]. However, their methods are not
applicable to the inverse problem. In our paper, by assuming that coefficients under
consideration are given in a neighborhood of Γ, we will prove a stability result in
the inverse problem. The coincidence of coefficients near the boundary is technically
restrictive but acceptable from practical viewpoints, because one can directly know
physical properties near the boundary.

Our main achievement of this paper is that we can take an arbitrary observation
subboundary Γ1 for the stability estimate. The key idea is a combination of the
method (e.g., [10], [23]) by the Carleman estimates and the Fourier–Bros–Iagolnitzer
(FBI) transformation which was used for sharp unique continuation by Robbiano
[44]. More precisely, we apply the FBI transformation to change the problem near
the boundary into a problem to which elliptic estimates can be applied.

1.2. Notation and statement of main results. In order to formulate our re-
sults, we need to introduce some notation. Let x0 ∈ R

3 \ Ω, M0 ≥ 0, 0 < θ0 ≤ 1,
and θ1 > 0 be arbitrarily fixed, and let us introduce the conditions on a scalar
function p:

⎧⎪⎪⎨
⎪⎪⎩

p(x) ≥ θ1 > 0, x ∈ Ω,

‖p‖C3(Ω) ≤ M0,
(∇p(x) · (x− x0))

2p(x)
≤ 1 − θ0, x ∈ Ω \ ω.

(1.4)

Next we define an admissible set of unknown coefficients λ, μ, ρ. Let ω ⊂ Ω be a
given arbitrary neighborhood of the boundary Γ. For fixed functions ρ0, λ0, μ0 on ω
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and Φ, Ψ in Ω, and a given constant M1 > 0, we set Λ = ΛM0,M1,θ0,θ1

Λ =

{
(λ, μ, ρ) ∈

(
C3(Ω)

)3
; (ρ, λ, μ) = (ρ0, λ0, μ0) in ω,

(
λ + 2μ

ρ

)
,

(
μ

ρ

)
satisfy(1.4), ‖u(λ, μ, ρ,Φ,Ψ,g)‖W 8,∞(Q) ≤ M1

}
.(1.5)

Throughout this paper, let I3 be the 3 × 3 identity matrix. We note that
Lλ,μ(x, ∂x)Φ(x) is the 3-column vector for a 3-column vector Φ. Moreover by {a}j
we denote the matrix (or vector) obtained from a after deleting the jth row, detj A
means det {A}j for a square matrix A, and 〈A〉j is the matrix which is obtained from
A by deleting the jth column of A. Furthermore we assume that the observation data
are measured by the norm:

ε(Σ1) =

2∑
|α|=1

‖∂α
xu(λ, μ, ρ,Φ,Ψ,g) − ∂α

xu(λ̃, μ̃, ρ̃,Φ,Ψ,g)‖2
L2(Σ1)

(1.6)

for (λ, μ, ρ), (λ̃, μ̃, ρ̃) ∈ Λ.

1.3. Hypotheses (H1)–(H2). Let (λ, μ, ρ) be an arbitrarily fixed element of
Λ. For Φ = (φ1, φ2, φ3)

T and Ψ = (ψ1, ψ2, ψ3)
T , we assume that there exist j1, j2,∈

{1, . . . , 6} such that for all x ∈ Ω
(H1)

detj1

⎛
⎝ Lλ,μ(x, ∂x)Φ(x) (div Φ(x))I3

(
∇Φ(x) + (∇Φ(x))T

)
(x− x0)

Lλ,μ(x, ∂x)Ψ(x) (div Ψ(x))I3

(
∇Ψ(x) + (∇Ψ(x))T

)
(x− x0)

⎞
⎠ �= 0,

(H2) detj2

⎛
⎝ Lλ,μ(x, ∂x)Φ(x) ∇Φ(x) + (∇Φ(x))T (div Φ)(x− x0)

Lλ,μ(x, ∂x)Ψ(x) ∇Ψ(x) + (∇Ψ(x))T (div Ψ)(x− x0)

⎞
⎠ �= 0.

Now we are ready to state the main result, which proves that only one observation
with a suitable initial value yields the logarithmic conditional stability for our inverse
problem.

Theorem 1.0. Let T > 0 be sufficiently large for Ω, ω, and let Λ = ΛM0,M1,θ0,θ1

be defined by (1.5). Moreover let (Φ,Ψ) satisfy the conditions (H1)–(H2). Then there
exist constants C > 0 and κ ∈ (0, 1) such that the following estimate holds:

‖λ̃− λ‖H2(Ω) + ‖μ̃− μ‖H2(Ω) + ‖ρ̃− ρ‖H1(Ω) ≤ C

[
log

(
2 +

C

ε(Σ1)

)]−κ

for any (λ̃, μ̃, ρ̃) ∈ Λ.
Here we note that ε(Σ1) is given by (1.6) and the constants C and κ ∈ (0, 1) are

dependent on, Ω, ω, T , M0, M1 and independent of (λ, μ, ρ) ∈ Λ.
Our stability result requires only one measurement, N = 1, and the stability result

is of logarithmic rate and weaker than any Hölder stability. We notice that, with a
suitable geometric condition of the observation subboundary, we can prove Hölder (or
the Lipschitz) stability by means of the method in Imanuvilov and Yamamoto [23],
[24]. By Theorem 1.0, we can readily derive the uniqueness in the inverse problem.
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Corollary 1.1 (uniqueness). Under the assumptions in Theorem 1, for all
(λ, μ, ρ), (λ̃, μ̃, ρ̃) ∈ Λ, we have the uniqueness

∂νu(x, t) = ∂ν ũ(x, t), (x, t) ∈ Σ1 implies (λ, μ, ρ) = (λ̃, μ̃, ρ̃) in Ω.

For the determination of the three coefficients by a single measurement, we have
to choose initial data satisfying conditions (H1)–(H2). Thus conditions (H1)–(H2)
are not generic properties, and we should satisfy them artificially and a posteriori.
Moreover, as the following example shows, we can take such Φ and Ψ.

Example of Ω, Φ, Ψ meeting (H1)–(H2). For simplicity, we assume that x0 =
(0, 0, 0), Ω does not intersect any of {x1 = 0}, {x2 = 0}, {x3 = 0}, and {x1 +x3 = 0},
and λ, μ are positive constants. For example, we take

Φ(x) =

⎛
⎝ 0

x1x2

0

⎞
⎠ , Ψ(x) =

⎛
⎝ x2

2

0
x2

2

⎞
⎠ .

Then, by choosing j1 = j2 = 6, we can verify that (H1)–(H2) are satisfied.
Thanks to the extra information (λ, μ, ρ) = (λ̃, μ̃, ρ̃) in a neighborhood ω of ∂Ω,

the sharp unique continuation by Bellassoued [3], implies u(λ, μ, ρ,Φ,Ψ,g)(x, t) =

u(λ̃, μ̃, ρ̃,Φ,Ψ,g)(x, t) on ∂(Ω\ω)× (−T, T ), provided that T > 0 is sufficiently large.
Therefore the method in Imanuvilov, Isakov, and Yamamoto[18], and Imanuvilov and
Yamamoto [24] directly yields the uniqueness in our inverse problem. However, our
main result is concerned with the stability in the inverse problem, and the direct
combination of the existing results in [18], [21], [22] does not work. For our purpose,
we will use the FBI transformation according to Robbiano [44], [43].

The remainder of the paper is organized as follows. In section 2, we give key
estimates. In section 3, we prove Theorem 1.0 on the basis of the weak observation
estimate, that is, an estimate of u(λ, μ, ρ,Φ,Ψ,g)−u(λ̃, μ̃, ρ̃,Φ,Ψ,g) by data on any
small part of the boundary. Section 4 is devoted to the proof of the weak observation
estimate.

2. Preliminaries and Carleman estimates. We set

ω(ε) = {x ∈ Ω; dist(x, ∂Ω) ≤ ε}

and

ω(ε1, ε2) = {x ∈ Ω; ε1 ≤ dist(x, ∂Ω) ≤ ε2} ,

with 0 < ε1 < ε2 and ε > 0.
In this section we first derive several estimates. We choose ε0, ε1, ε2 > 0 such that

ω(3ε0) ⊂ ω(2.1)

and

ω(ε1, ε2) ⊂ ω, ε1 < ε2 < 8ε0.(2.2)

We set

ωT (ε) = ω(ε) × [−T, T ], ωT (ε1, ε2) = ω(ε1, ε2) × [−T, T ].
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For δ0 such that 0 < δ0 < T , we set

Qδ0 = Ω × [−T + δ0, T − δ0], Qδ0(ε) = (Ω \ ω(ε)) × [−T + δ0, T − δ0].

For formulating our Carleman estimate, we need some notation. Set

d = (sup
x∈Ω

|x− x0|2 − inf
x∈Ω

|x− x0|2)
1
2 ,(2.3)

where x0 �∈ Ω is arbitrarily fixed. We choose θ > 0 such that

θ +
M0d√
θ1

√
θ < θ0θ1, θ1 inf

x∈Ω
|x− x0|2 − θ sup

x∈Ω
|x− x0|2 > 0.(2.4)

Here we note that, since x0 �∈ Ω, such θ > 0 exists.
We introduce two functions ψ,ϕ : Ω × R −→ R of class C1 by setting

ψ(x, t) = |x− x0|2 − θ |t|2 for all x ∈ Ω, −T ≤ t ≤ T,

ϕ(x, t) = eβψ(x,t), β > 0,(2.5)

where T > d√
θ
. Therefore, by (2.4) and (2.5), we have

ϕ(x, 0) ≥ d0, ϕ(x,±T ) < d0,(2.6)

with d0 = exp(β infx∈Ω |x− x0|). Thus, for a given sufficiently small η > 0, we can
choose a sufficiently small δ0 = δ0(η) such that

ϕ(x, t) ≤ d0 − η for all (x, t) ∈ Q\Q2δ0 .(2.7)

We set ∇x,tv(t, x) = ( ∂v
∂x1

, ∂v
∂x2

, ∂v
∂x3

, ∂v
∂t ) = (∇v, ∂tv), and we shall use the weighted

norm:

‖u‖2
H1,τ (Q) = τ2 ‖u‖2

L2(Q) + ‖∇x,tu‖2
L2(Q) .

Moreover Hk,τ
x (Q) is the Sobolev space equipped with the norm

‖u‖2
Hk,τ

x (Q) =
∑
|α|≤k

τ2(k−|α|) ‖∂α
x u‖

2
L2(Q) .

In what follows, C > 0 denote generic constants depending on β̂, τ0, M0, M1, θ0, θ1,
Ω, T , x0, ω, χ and Φ, Ψ, ε, δ but independent of τ > τ̂ .

2.1. Preliminary estimates. The first lemma is a classical Carleman estimate
for a scalar hyperbolic equation (e.g., [14], [17], [25], [26]). See also Triggiani and
Yao [47].

Lemma 2.1. Let ϕ be defined by (2.5). If a
ρ satisfies (1.4), then there exists β̂ > 0

such that for any β > β̂ we can choose τ̂(β) > 0 such that the following estimate holds
true:

τ ‖eτϕu‖2
H1,τ (Q) ≤ C

∥∥eτϕ (ρ∂2
t − aΔ

)
u
∥∥2

L2(Q)
,

whenever a function u ∈ H2(Q) is supported in Q and τ > τ̂ .
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The next lemma is a weighted estimate for the elliptic equation which follows
from the formula

|Δ(veτϕ)| = O(τ2)eτϕ|v| + O(τ)eτϕ|∇v|

+eτϕ|rot (rotv) −∇(divv)|

in Q and the standard a priori estimate for the Dirichlet problem for the Poisson
equation.

Lemma 2.2. There exists a constant C > 0 such that

1

τ
‖eτϕv‖2

H2,τ
x (Q) ≤ C(τ ‖eτϕv‖2

H1,τ
x (Q) + ‖eτϕ(∇divv)‖2

L2(Q) + ‖eτϕ(∇rotv)‖2
L2(Q)),

whenever v ∈ H2(Q) and v|Σ = 0.

2.2. Carleman estimate for the Lamé system. In order to prove a Carle-
man estimate, we have to assume a condition called the pseudoconvexity (e.g., [14])
where the coefficient of the principal term is involved. Since such a coefficient is un-
known in our inverse problem, we need to establish a Carleman estimate with one
possible explicit characterization (1.4) of the coefficients for the pseudoconvexity, and
we will argue similarly to Bellassoued [4]. Moreover for our stability estimates, unlike
[12], [26], we require a Carleman estimate for functions which do not have compact
supports.

Now we will consider the three-dimensional isotropic nonstationary Lamé system

P (x, ∂x, ∂t)y(x, t) = ρ(x)∂2
t y(x, t) − Lλ,μ(x, ∂x)y(x, t) = f(x, t), (x, t) ∈ Q.(2.8)

We have a Carleman estimate.
Lemma 2.3. There exists β̂ > 0 such that for any β > β̂ we can choose τ0 =

τ0(β) > 0 such that for any solution y ∈ H2(Q) to problem (2.8) the following estimate
holds true:

1

τ
‖eτϕy‖2

H2,τ
x (Qδ0

(3ε0))
≤ C(‖eτϕf‖2

L2(Q) + ‖eτϕ∇f‖2
L2(Q) + eCτ ‖y‖2

H2(ωT (ε0,3ε0))

+ e2τ(d0−η) ‖y‖2
H2(Q))

for any τ ≥ τ0, where the constant C = C(β) > 0 is independent of τ .
Proof. We introduce a cutoff function χ satisfying 0 ≤ χ ≤ 1, χ ∈ C∞

0 (R3 × R),
χ1 ∈ C∞

0 (R3), χ2 ∈ C∞
0 (R), and

χ(x, t) = χ1(x)χ2(t), χ1(x) =

{
0, x ∈ ω(ε0),

1, x ∈ Ω \ ω(3ε0),
χ2(t) =

{
0, |t| > T − δ0,
1, |t| < T − 2δ0.

Set v(x, t) = χ(x, t)y(x, t). Then we have

∂2
t v − 1

ρ
Lλ,μ(x, ∂x)v =

1

ρ
f̃ in Q, v = 0 in ω(ε0),(2.9)

where

f̃(x, t) = χ(x, t)f + [P, χ1]χ2y + χ1[P, χ2]y.(2.10)
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Let v = divv and w = rotv. Therefore, by [12], for example, we apply rot and div
to (2.9) and obtain

ρ(x)∂2
t v − μ(x)Δv + A1(v, v) = f̃ ,

ρ(x)∂2
t v − (2μ(x) + λ(x)) Δv + A2(v, v,w) = R1f̃ ,

ρ(x)∂2
t w − μ(x)Δw + A3(v, v,w) = R2f̃ ,

where Aj and Rj are linear differential operators of the first order with bounded
coefficients in Ω.

Since μ
ρ and 2μ+λ

ρ satisfy (1.4), we have by Lemma 2.1

τ(‖eτϕv‖2
H1,τ (Q) + ‖eτϕv‖2

H1,τ (Q) + ‖eτϕw‖2
H1,τ (Q))

≤C(‖f̃eτϕ‖2
L2(Q) + ‖(∇f̃)eτϕ‖2

L2(Q) + ‖veτϕ‖2
L2(Q) + ‖(∇v)eτϕ‖2

L2(Q)

+‖veτϕ‖2
L2(Q) + ‖(∇v)eτϕ‖2

L2(Q) + ‖weτϕ‖2
L2(Q) + ‖(∇w)eτϕ‖2

L2(Q)).

By taking τ > 0 sufficiently large, we have

τ(‖eτϕv‖2
H1,τ (Q) + ‖eτϕv‖2

H1,τ (Q) + ‖eτϕw‖2
H1,τ (Q))

≤ C(‖f̃eτϕ‖2
L2(Q) + ‖(∇f̃)eτϕ‖2

L2(Q)).(2.11)

On the other hand, since [P, χ1] is a first-order differential operator which is sup-
ported in ωT (ε0, 3ε0) and [P, χ2] is a first-order differential operator which is supported
in Q\Q2δ0 , we obtain by (2.7) and (2.10)

‖eτϕf̃‖2
L2(Q) + ‖eτϕ∇f̃‖2

L2(Q) ≤ C(‖eτϕf‖2
L2(Q) + ‖eτϕ∇f‖2

L2(Q) + eCτ ‖y‖2
H2(ωT (ε0,3ε0))

+e2τ(d0−η) ‖y‖2
H2(Q)).

Thus, in terms of (2.11), we have

τ(‖eτϕv‖2
H1,τ (Q) + ‖eτϕdivv‖2

H1,τ (Q) + ‖eτϕrotv‖2
H1,τ (Q))

≤C(‖eτϕf‖2
L2(Q) + ‖eτϕ∇f‖2

L2(Q) + eCτ ‖y‖2
H2(ωT (ε0,3ε0))

+ e2τ(d0−η) ‖y‖2
H2(Q)).

By applying Lemma 2.2, we obtain

1

τ
‖eτϕv‖2

H2,τ
x (Q)

≤ C(τ ‖eτϕv‖2
H1,τ (Q) + ‖eτϕdivv‖2

H1,τ (Q) + ‖eτϕrotv‖2
H1,τ (Q))

≤ C(‖eτϕf‖2
L2(Q) + ‖eτϕ∇f‖2

L2(Q) + eCτ ‖y‖2
H3(ωT (ε0,3ε0))

+ e2τ(d0−η) ‖y‖2
H2(Q)).

Since v = χy and χ = 1 in Qδ0(3ε0), we can replace v by y on the left-hand side, so
that the proof of Lemma 2.3 is complete.
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2.3. Carleman estimate for a first-order partial differential operator.
We consider a first-order partial differential equation

Av =

n∑
j=1

aj(x)∂jv + a0(x)v ≡ f(x), x ∈ Ω,(2.12)

where

a0 ∈ C(Ω), a = (a1, . . . , an) ∈
[
C1(Ω)

]n
,(2.13)

and

|a(x) · (x− x0)| ≥ c0 > 0 on Ω,(2.14)

with a constant c0 > 0. We set

ϕ0(x) = ϕ(x, 0), x ∈ Ω.

We have the following.
Lemma 2.4. In addition to (2.14), we assume that ‖a0‖C2(Ω) ≤ M and ‖ai‖C2(Ω) ≤

M , 1 ≤ i ≤ 3. Then there exists a constant β̂ > 0 such that for all β > β̂ there exist
τ̂ = τ̂(β) > 0 and C = C(τ̂ , β̂,Ω, ω) > 0 such that

τ2
∑
|α|≤2

∫
Ω

|∂α
x v|

2
e2τϕ0(x)dx ≤ C

∑
|α|≤2

∫
Ω

|∂α
x f(x)|2 e2τϕ0(x)dx

for all τ > τ̂ and v ∈ C2
0 (Ω).

Proof. We will repeat the argument of Lemma 3.2 in [23], and, for completeness,
we give the proof. We multiply both sides of (2.12) by v(x)e2τϕ0(x), and, by using the
divergence theorem and v ∈ C2

0 (Ω), we obtain∫
Ω

Av(x) · v(x)e2τϕ0(x)dx =

∫
Ω

∇v(x) ·
(
e2τϕ0(x)v(x)a(x)

)
dx +

∫
Ω

a0(x) |v(x)|2 dx

= −
∫

Ω

v(x)div
(
e2τϕ0(x)v(x)a(x)

)
dx +

∫
Ω

a0(x) |v(x)|2 e2τϕ0(x)dx

= −
∫

Ω

|v|2 e2τϕ0(x)div(a(x))dx− 2τ

∫
Ω

|v(x)|2 ∇ϕ0 · a(x)e2τϕ0(x)dx

−
∫

Ω

e2τϕ0(x)v(x)∇v(x) · a(x)dx +

∫
Ω

a0(x) |v(x)|2 e2τϕ0(x)dx.

By (2.14), we obtain

|∇ϕ0(x) · a(x)| ≥ 2βc0, ∇v(x) · a(x) = Av − a0(x)v(x), x ∈ Ω,

so that the Cauchy–Schwarz inequality yields

τ

∫
Ω

|v(x)|2 e2τϕ0(x)dx ≤ C

∫
Ω

|(Av(x) · v(x))| e2τϕ0(x)dx + C

∫
Ω

|v(x)|2 e2τϕ0(x)dx

≤ Cε

τ

∫
Ω

|Av(x)|2 e2τϕ0(x)dx + ετ

∫
Ω

|v(x)|2 e2τϕ0(x)dx

+C

∫
Ω

|v(x)|2 e2τϕ0(x)dx.
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By choosing τ large and ε small, we obtain

τ2

∫
Ω

|v(x)|2 e2τϕ0(x)dx ≤ C

∫
Ω

|Av(x)|2 e2τϕ0(x)dx.(2.15)

Since A(∂jv) = ∂jf(x) −
∑n

k=1(∂jak)∂kv − (∂ja0)v and ∂jv|∂Ω = 0, we apply (2.15)
to ∂jv, so that

τ2

∫
Ω

|∂jv(x)|2 e2τϕ0dx ≤ C

∫
Ω

(|v(x)|2 + |∇v(x)|2)e2τϕ0dx + C

∫
Ω

|∂jf(x)|2 e2τϕ0dx

≤ C

∫
Ω

(|f(x)|2 + |∂jf(x)|2)e2τϕ0dx + C

∫
Ω

|∇v(x)|2 e2τϕ0dx.

Therefore

τ2

∫
Ω

|∇v(x)|2 e2τϕ0dx ≤ C

∫
Ω

(|f(x)|2 + |∇f(x)|2)e2τϕ0dx + C

∫
Ω

|∇v(x)|2 e2τϕ0dx.

By taking τ0 > 0 sufficiently large, we have

τ2

∫
Ω

|∇v(x)|2 e2τϕ0dx ≤ C

∫
Ω

(
|f(x)|2 + |∇f(x)|2

)
e2τϕ0dx.

Next we have

A(∂k∂�v) = ∂k∂�f −
3∑

j=1

(∂kaj)(∂�∂jv) + (∂�aj)(∂k∂jv) + K(v,∇v),

where K is a linear operator of v and ∇v with bounded coefficients in Ω. Noting
that ∂k∂�v = 0 on ∂Ω, we apply (2.15) to ∂k∂�v, and we can complete the proof of
Lemma 2.4.

2.4. Weak observation estimate. Let v satisfy

ρ(x)∂2
t v − Lλ,μ(x, ∂x)v = R(x, t) in Q ≡ Ω × (−T, T )

and

v(x, t) = 0 on Σ ≡ Γ × (−T, T ),

where we assume that

R(x, t) = 0, (x, t) ∈ ω × (−T, T ).

The following proposition shows the stability in the unique continuation of solutions
of the Lamé system from lateral boundary data on an arbitrarily small part Γ1 of ∂Ω.

Lemma 2.5. For sufficiently large T > 0, there exists a constant C > 0 such that

‖v‖2
H2(ωT (ε0,3ε0))

≤ C

[
log

(
2 +

C∑2
|α|=1 ‖∂α

xv‖2
L2(Σ1)

)]−1

.

In our case, the corresponding uniqueness is already proved in Bellassoued [3]
and Eller, Isakov, Nakamura, and Tataru [12]. For similar stability results for a scalar
hyperbolic equation, see Bellassoued and Yamamoto [6] and Robbiano [44]. The proof
of the lemma is given in section 4.
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3. Proof of the main result. This section is devoted to the proof of Theo-
rem 1.0. The key is the combination of Lemma 2.5 and the existing method (e.g.,
[4]).

3.1. Notation and preliminary estimates. For simplicity, we set

u = u(λ, μ, ρ,Φ,Ψ,g), ũ = u(λ̃, μ̃, ρ̃,Φ,Ψ,g),

and

u∗ = u − ũ, ρ∗ = ρ− ρ̃, λ∗ = λ− λ̃, μ∗ = μ− μ̃.

Then we obtain

ρ̃∂2
t u∗(x, t) = Lλ̃,μ̃(x, ∂x)u∗(x, t) + f(x, t) in Q,(3.1)

u∗(x, 0) = ∂tu∗(x, 0) = 0, x ∈ Ω,(3.2)

and

u∗ = 0 on Σ = Γ × (−T, T ).(3.3)

Here we set

f(x, t) = −ρ∗(x)∂2
t u(x, t) + (λ∗(x) + μ∗(x))∇(divu)(x, t) + μ∗(x)Δu(x, t)

+ (divu)(x, t)∇λ∗(x) +
(
∇u(x, t) + (∇u(x, t))T

)
∇μ∗(x)

= −
(
ρ∗(x)∂2

t u − Lλ∗,μ∗(x, ∂x)u
)
.

Moreover we set

y1(x, t) = ∂2
t u∗(x, t), y2(x, t) = ∂3

t u∗(x, t), y3(x, t) = ∂4
t u∗(x, t).

Then we have

ρ̃∂2
t yj − Lλ̃,μ̃(x, ∂x)yj = ∂j+2

t f .(3.4)

For simplicity, it is convenient to use the following notation:

D =

4∑
j=2

‖∂j
tu∗‖2

H2(ωT (ε0,3ε0))
=

3∑
j=1

‖yj‖2
H2(ωT (ε0,3ε0))

and

E =
∑
|α|≤1

‖eτϕ∂α
x ρ∗‖

2
L2(Q) +

∑
|α|≤2

(‖eτϕ∂α
xλ∗‖2

L2(Q) + ‖eτϕ∂α
xμ∗‖2

L2(Q)),

z1(x) = y1(x, 0), z2(x) = y2(x, 0).

We have the following.
Lemma 3.1. There exists a constant β̂ > 0 such that for all β ≥ β̂ there exist τ̂

and C > 0 such that∑
|α|≤2

∫
Ω\ω(3ε0)

τ4−2|α|
(
|∂α

x z1(x)|2 + |∂α
x z2(x)|2

)
e2τϕ0(x)dx ≤ C(τ4e2τ(d0−η) + τ2E + eCτD)

for all large τ > τ̂ .



INVERSE PROBLEM LAME COEFFICIENTS BY BOUNDARY DATA 249

Here we recall that ϕ0(x) = ϕ(x, 0), x ∈ Ω.
Proof. Noting that u∗ ∈ W 8,∞(Q), we can apply Lemma 2.3 to (3.4), so that we

have

1

τ
‖eτϕyj‖2

H2,τ
x (Qδ0

(3ε0))
≤ C(‖eτϕ∂j+2

t f‖2
L2(Q) + ‖eτϕ∇(∂j+2

t f)‖2
L2(Q)

+eCτ ‖yj‖2
H2(ωT (ε0,3ε0))

+e2τ(d0−η) ‖yj‖2
H2(Q)), j = 1, 2, 3.(3.5)

By the definition of f , we have

∣∣∣∇(∂j+2
t f(x, t))

∣∣∣2 ≤ C

⎛
⎝∑

|α|≤1

|∂α
x ρ∗(x)|2 +

∑
|α|≤2

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)⎞⎠
and

∣∣∣∂j+2
t f(x, t)

∣∣∣2 ≤ C

⎛
⎝|ρ∗(x)|2 +

∑
|α|≤1

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)⎞⎠ in Q.

Therefore

5∑
j=1

(
‖eτϕ∇(∂j

t f)‖2
L2(Q) + ‖eτϕ∂j

t f‖2
L2(Q)

)
≤ CE .

Thus (3.5) implies that

1

τ

3∑
j=1

‖eτϕyj‖2
H2,τ

x (Qδ0
(3ε0))

≤ C(e2τ(d0−η) + E + eCτD).(3.6)

On the other hand, we introduce a cutoff function χ2 ∈ C∞
0 (R) satisfying 0 ≤ χ2 ≤ 1

and

χ2(t) =

{
0, |t| > T − δ0,
1, |t| < T − 2δ0.

Then we have

∫
Ω\ω(3ε0)

|∂α
x zj(x)|2 e2τϕ0(x)dx =

∫ 0

−T

∂

∂t

(∫
Ω\ω(3ε0)

|(∂α
xyj)(x, t)|2 χ2(t)

2e2τϕdx

)
dt

= 2

∫ 0

−T

∫
Ω\ω(3ε0)

(∂α
xyj+1 · ∂α

xyj)χ
2
2(t)e

2τϕdxdt

+ 2τ

∫ 0

−T

∫
Ω\ω(3ε0)

|∂α
xyj |2 χ2

2(∂tϕ)e2τϕdxdt

+ 2

∫ 0

−T

∫
Ω\ω(3ε0)

|∂α
xyj |2 χ′

2(t)χ2(t)e
2τϕdxdt, j = 1, 2.

Since χ′
2(t) is supported in [−T,−T + 2δ0] ∪ [T − 2δ0, T ], by the Cauchy–Schwarz



250 M. BELLASSOUED, O. IMANUVILOV, AND M. YAMAMOTO

inequality we obtain

2∑
j=1

∑
|α|≤2

∫
Ω\ω(3ε0)

τ4−2|α| |∂α
x zj(x)|2 e2τϕ0(x)dx

≤ C

⎛
⎝τ

3∑
j=1

‖eτϕyj‖2
H2,τ

x (Qδ0
(3ε0))

+ τ4e2τ(d0−η)

⎞
⎠ .(3.7)

Therefore (3.6) completes the proof of the lemma.

3.2. Estimation for the two Lamé coefficients. We will consider a first-
order partial differential equations in λ∗, μ∗, and ρ∗. That is, by (3.1), (3.2), and
u,v ∈ W 8,∞(Q), we have

ρ̃∂2
t u∗(x, 0) = f(x, 0), ρ̃∂3

t u∗(x, 0) = ∂tf(x, 0).(3.8)

For simplicity, for x ∈ Ω, we set

a =

⎛
⎜⎜⎜⎝

−1

ρ
Lλ,μ(x, ∂x)Φ

−1

ρ
Lλ,μ(x, ∂x)Ψ

⎞
⎟⎟⎟⎠ , b1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

div Φ
0
0

div Ψ
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

b2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
div Φ

0
0

div Ψ
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, b3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

div Φ
0
0

div Ψ

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(d1,d2,d3) =

⎛
⎝ ∇Φ + (∇Φ)T

∇Ψ + (∇Ψ)T

⎞
⎠ , G =

⎛
⎝ ρ̃z1(x) − (λ∗ + μ∗)∇(div Φ) − μ∗ΔΦ

ρ̃z2(x) − (λ∗ + μ∗)∇(div Ψ) − μ∗ΔΨ

⎞
⎠ .

Then we can rewrite (3.8) as

aρ∗ +

3∑
k=1

bk∂kλ∗(x) = G −
3∑

k=1

dk∂kμ∗(x).(3.9)

In view of (3.9), we show the following.
Lemma 3.2. Let assumptions (H1)–(H2) hold true. Then there exists a constant

C > 0 such that the following estimate holds:∑
|α|≤2

∫
Ω

(
|∂α

xμ∗(x)|2 + |∂α
xλ∗(x)|2

)
e2τϕ0(x)dx ≤ C(τ2e2τ(d0−η) + E + eCτD)

provided that τ is large.
Proof. By (3.9), for j1 ∈ {1, 2, 3, 4, 5, 6}, we have

{a}j1ρ∗ +

3∑
k=1

{bk}j1∂kλ∗(x) = {G}j1 −
3∑

k=1

{dk}j1∂kμ∗(x) on Ω.
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For any fixed x ∈ Ω, we regard this as a system of five linear equations with respect
to four unknowns ρ∗, ∂1λ∗, ∂2λ∗, ∂3λ∗, and so, for the existence of solutions, we need
the consistency of the coefficients, that is,

detj1

(
a,b1,b2,b3,G −

3∑
k=1

dk∂kμ∗

)
= 0 on Ω.

Hence

3∑
k=1

detj1 (a,b1,b2,b3,dk)∂kμ∗ = detj1 (a,b1,b2,b3,G) := f on Ω(3.10)

by the linearity of the determinant with respect to the column vectors. Here we note
that

∑
|α|≤2

|∂α
x f(x)| ≤ C

⎛
⎝∑

|α|≤2

(|∂α
x z1(x)| + |∂α

x z2(x)|) +
∑
|α|≤2

(|∂α
xλ∗(x)| + |∂α

xμ∗(x)|)

⎞
⎠ .

(3.11)

By (3.10) the function μ∗ ∈ C2
0 (Ω) solves the following first-order partial differ-

ential equation:

3∑
k=1

ak(x)∂kμ∗(x) = f(x), x ∈ Ω,

where

ak(x) = detj1 (a,b1,b2,b3,dk).

In view of (H1), we can apply Lemma 2.4 to v = μ∗, and we obtain

τ2
∑
|α|≤2

∫
Ω

|∂α
xμ∗|2 e2τϕ0(x)dx ≤ C

∑
|α|≤2

∫
Ω\ω(3ε0)

|∂α
x f(x)|2 e2τϕ0(x)dx,

where we have used μ∗ ≡ 0 in ω ⊃ ω(3ε0). Hence (3.11) and Lemma 3.1 yield

τ2
∑
|α|≤2

∫
Ω

|∂α
xμ∗(x)|2 e2τϕ0(x)dx ≤ C

2∑
j=1

∑
|α|≤2

∫
Ω\ω(3ε0)

|∂α
x zj(x)|2 e2τϕ0(x)dx

+C
∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕ0(x)dx

≤ C
∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕ0(x)dx + C(eCτD + τ4e2τ(d0−η) + τ2E)

for all large τ > 0. Similarly, by assumption (H2) we can argue for λ∗ and obtain

τ2
∑
|α|≤2

∫
Ω

|∂α
xλ∗(x)|2 e2τϕ0(x)dx

≤ C
∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕ0(x)dx + C(eCτD + τ4e2τ(d0−η) + τ2E).
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Hence by adding the two inequalities, we have

τ2
∑
|α|≤2

∫
Ω

(
|∂α

xμ∗(x)|2 + |∂α
xλ∗(x)|2

)
e2τϕ0(x)dx

≤ C
∑
|α|≤2

∫
Ω

(
|∂α

xμ∗(x)|2 + |∂α
xλ∗(x)|2

)
e2τϕ0(x)dx

+ C(τ4e2τ(d0−η) + τ2E + eCτD)

for all large τ > 0. By taking τ > 0 large, we can absorb the first term on the
right-hand side into the left-hand side, and the proof is complete.

3.3. Estimation for the density.
Lemma 3.3. Let assumptions (H1)–(H2) hold true. Then there exists a constant

C > 0 such that∑
|α|≤1

∫
Ω

|∂α
x ρ∗(x)|2 e2τϕ0(x)dx ≤ C(τ2e2τ(d0−η) + E + eCτD),

provided that τ is large.
Proof. By (3.9), we have

aρ∗(x) = −
3∑

k=1

bk∂kλ∗(x) + G −
3∑

k=1

dk∂kμ∗(x), x ∈ Ω.

Moreover, by (H1)–(H2), we see that |a(x)| > 0 for x ∈ Ω, so that

|ρ∗(x)| ≤ C |G(x)| + C
∑
|α|≤1

(|∂α
xλ∗(x)| + |∂α

xμ∗(x)|) .

Similarly we have

|∂jρ∗(x)| ≤ C

⎛
⎝|G(x)| + |∇G(x)| +

∑
|α|≤2

(|∂α
xλ∗(x)| + |∂α

xμ∗(x)|)

⎞
⎠ .

Hence∑
|α|≤1

∫
Ω

|∂α
x ρ∗(x)|2 e2τϕ0(x)dx ≤ C

∑
|α|≤1

∫
Ω\ω(3ε0)

|∂α
xG(x)|2 e2τϕ0(x)dx

+ C
∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕ0(x)dx.

Furthermore we see that∑
|α|≤1

|∂α
xG(x)|2 ≤ C

∑
|α|≤1

(
|∂α

x z1(x)|2 + |∂α
x z2(x)|2

)
+C

∑
|α|≤1

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
.

Therefore∑
|α|≤1

∫
Ω

|∂α
x ρ∗(x)|2 e2τϕ0(x)dx ≤ C

∑
|α|≤1

∫
Ω\ω(3ε0)

(
|∂α

x z1(x)|2 + |∂α
x z1(x)|2

)
e2τϕ0(x)dx

+ C
∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕ0(x)dx.

By Lemmas 3.1 and 3.2, we obtain the conclusion of the lemma.
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3.4. Completion of the proof of the main result. In terms of Lemmas 3.2
and 3.3, we will now complete the proof of Theorem 1.0.

Since ϕ(x, 0) > ϕ(x, t) for t �= 0, by the Lebesgue theorem, we have

∑
|α|≤1

∫
Q

|∂α
x ρ∗(x)|2 e2τϕdxdt =

∑
|α|≤1

∫
Ω

|∂α
x ρ∗(x)|2 e2τϕ(x,0)

(∫ T

−T

e2τ(ϕ(x,t)−ϕ(x,0))dt

)
dx

= o(1)
∑
|α|≤1

∫
Ω

|∂α
x ρ∗(x)| e2τϕ(x,0)dx

as τ → ∞. Similarly we obtain

∑
|α|≤2

∫
Q

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕdxdt

= o(1)
∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
e2τϕ(x,0)dx,

as τ → ∞. We set

E0 =
∑
|α|≤1

‖eτϕ0∂α
x ρ∗‖

2
L2(Ω) +

∑
|α|≤2

(‖eτϕ0∂α
xλ∗‖2

L2(Ω) + ‖eτϕ0∂α
xμ∗‖2

L2(Ω)).

Therefore, by Lemmas 3.2 and 3.3, we obtain

E0 ≤ C(τ2e2τ(d0−η) + eCτD) + o(1)E0

for all large τ > 0.
By (2.6) and supτ>0(τ

2e−τη) < ∞, we have

∑
|α|≤1

∫
Ω

|∂α
x ρ∗(x)|2 dx +

∑
|α|≤2

∫
Ω

(
|∂α

xλ∗(x)|2 + |∂α
xμ∗(x)|2

)
dx ≤ Ce−τη + CeCτD

(3.12)

for all large τ > τ0. We replace C by CeCτ0 , and (3.12) holds for any τ > 0. We may
assume that D < 1.

Now we choose τ > 0 such that

eCτD = e−τη,

that is,

τ = − 1

η + C
logD.

Therefore (3.12) implies

‖ρ∗‖2
H1(Ω) + ‖λ∗‖2

H2(Ω) + ‖μ∗‖2
H2(Ω) ≤ 2CD

η
η+C

and

‖ρ∗‖2
H1(Ω) + ‖λ∗‖2

H2(Ω) + ‖μ∗‖2
H2(Ω) ≤ C ‖u∗‖2σ

H6(ωT (ε0,3ε0))
,
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with σ = η
η+C ∈ (0, 1). Then, noting that ‖u∗‖W 8,∞(Q) ≤ M1 and the interpolation

inequality

‖u∗‖H6(ωT (ε0,3ε0)) ≤ C‖u∗‖
1
3

H2(ωT (ε0,3ε0))
‖u∗‖

2
3

H8(ωT (ε0,3ε0))
,

we apply Lemma 2.5 to v = u∗, so that

‖ρ∗‖2
H1(Ω) + ‖λ∗‖2

H2(Ω) + ‖μ∗‖2
H2(Ω) ≤ C

[
log

(
2 +

C

ε(Σ1)

)]−2κ

,

where κ ∈ (0, 1). Thus the proof of Theorem 1.0 is complete.

4. Proof of Lemma 2.5. We will now prove Lemma 2.5. This will be done
in terms of the FBI transformation. For (λ, μ, ρ) ∈ Λ, let us recall that v is a given
solution to

ρ(x)∂2
t v − Lλ,μ(x, ∂x)v = R(x, t) in Q ≡ Ω × (−T, T ),(4.1)

with the Dirichlet boundary condition

v(x, t) = 0 on Σ ≡ Γ × (−T, T ).(4.2)

Here and henceforth we assume that

R(x, t) = 0, (x, t) ∈ ω × (−T, T ).(4.3)

4.1. Preliminary and elliptic estimation. Since we can choose T > 0 suffi-
ciently large, we may assume that T > 2. Denote for r > 0

Ωr = Ω × (−r, r); ωr(ε0, 3ε0) = ω(ε0, 3ε0) × (−r, r);

Σr = Γ × (−r, r), Σ1,r = Γ1 × (−r, r).

We introduce θ ∈ C∞
0 (R) to be a cutoff function defined by

θ(t) =

{
1, |t| ≤ (T − 2),
0, |t| ≥ (T − 1).

Let γ > 0. We introduce the partial FBI transformation Fγ . It is defined for u ∈
{S(R4)}3, the space of rapidly decreasing functions, by

uγ,t(x, s) = Fγu(x, z) =

√
γ

2π

∫
R

e−
γ
2 (z−y)2θ(y)u(x, y)dy, z = t + is.

Then

|Dα
xFγu(x, z)| ≤ C

√
γ

2π
eγs

2

e−
γ
2 (dist(t,supp(θu)))2 sup

x∈R3

‖Dα
xu(x, .)‖2

L2(R)

for any u ∈ C∞
0 (R3 × R) (see [45]).

Henceforth Cj , C denote generic constants which are independent of λ, γ, r, τ .
Next we assume that T is sufficiently large, s ∈ [−3r, 3r], and t ∈

[
−T

2 ,
T
2

]
. In

particular we assume that T
2 > r. We introduce a cutoff function χ3 satisfying

0 ≤ χ3 ≤ 1, χ3 ∈ C∞
0 (R3), and

χ3(x) =

{
1, if x ∈ ω(6ε0),
0, if x ∈ Ω \ ω(7ε0).



INVERSE PROBLEM LAME COEFFICIENTS BY BOUNDARY DATA 255

Let v(x, t) satisfy (4.1). By setting u(x, t) = χ3(x)v(x, t) and noting that R(x, t) is
zero in ω(7ε0), we obtain

ρ(x)∂2
t u − Lλ,μ(x, ∂x)u = − [Lλ,μ(x, ∂x), χ3]v in Q(4.4)

and

u(x, t) = 0 on Σ.(4.5)

In connection with the operator ρ(x)∂2
t −Lλ,μ(x, ∂x), we define an elliptic operator by

Qρ,λ,μ = ρ(x)∂2
s + Lλ,μ(x, ∂x).

Noting that

∂s

∫
R

e−
γ
2 (is+t−y)2θ(y)u(x, y)dy = i

∫
R

e−
γ
2 (z−y)2∂y [θ(y)u(x, y)] dy,

by integration by parts, we have

Qρ,λ,μuγ,t(x, s) = Fγ,t(x, s) + Gγ,t(x, s) := f(x, s), (x, s) ∈ Ω3r,

uγ,t(x, s) = 0, (x, s) ∈ Σ3r,(4.6)

where

Fγ,t(x, s) = −
√

γ

2π

∫
R

e−
γ
2 (z−y)2 (2θ′(y)∂yu(x, y) + θ′′(y)u(x, y)) dy

and

Gγ,t(x, s) =

√
γ

2π

∫
R

e−
γ
2 (z−t)2θ(y) [Lλ,μ(x, ∂x), χ]v(x, y)dy.

Since θ′ = dθ
dy and θ′′ = d2θ

dy2 are supported in T − 2 ≤ |y| ≤ T − 1, there exists η > 0,
independent of T , such that

‖Fγ,t‖H1(Ω3r) ≤ Ce−ηγT ‖u‖H2(Q) ∀t ∈
[
−T

2
,
T

2

]
.(4.7)

Moreover there exists C1 > 0, independent of T , such that

‖uγ,t‖H2(Ω3r) ≤ CeC1γ ‖u‖H2(Q) ∀t ∈
[
−T

2
,
T

2

]
.(4.8)

By the definition, we easily obtain

Gγ,t(x, s) = 0 ∀x ∈ ω(6ε0).(4.9)

Let K be a compact set in Ω × (−3r, 3r) and let ψ(x, s) be a C∞ function satisfying
∇x,sψ(x, s) �= 0 on K. Let

ϕ(x, s) = e−βψ(x,s),

where β > 0 is sufficiently large.
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Henceforth we set

‖u‖2
Hj

τ (Ω3r) =
∑
|α|≤j

τ2j−2|α| ‖∂αu‖2
L2(Ω3r)

and

‖u‖2
Hj

τ (Σ3r) =
∑
|α|≤j

τ2j−2|α| ‖∂αu‖2
L2(Σ3r) .

We note that the right-hand sides include not only tangential derivatives but also
normal derivatives on Σ3r.

Consider a scalar second-order elliptic operator

P (x,D) = ρ(x)∂2
s +

n∑
j,k=1

ajk(x)∂j∂k +

n∑
j=1

bj(x)∂j + c.

If we assume that P has C2 coefficients, then the following Carleman estimate holds
true:

C

τ
‖eτϕu‖2

H2
τ (Ω3r) ≤ ‖eτϕPu‖2

L2(Ω3r) + ‖eτϕu‖2
H2

τ (Σ3r) ,

Cτ ‖eτϕu‖2
H1

τ (Ω3r) ≤ ‖eτϕPu‖2
L2(Ω3r) + τ ‖eτϕu‖2

H1
τ (Σ3r) ,(4.10)

whenever u ∈ C∞
0 (K) and τ > τ0 (see, for example, [37] and [19], respectively, for the

first and second Carleman estimates).
By (4.10) we can derive the following Carleman estimate for the elliptic system

(4.6).
Lemma 4.1. There exist τ0 > 0 and C > 0 such that

C

τ
‖eτϕu‖2

H2
τ (Ω3r) ≤ ‖eτϕQρ,λ,μu‖2

H1(Ω3r) + ‖eτϕu‖2
H2

τ (Σ3r),

whenever u ∈ C∞
0 (K) and all τ > τ0.

Proof. In order to prove Lemma 4.1 we will extend system (4.6) for three unknown
functions u1, u2, u3 to a new one for four unknown functions by introducing v = divu.
We refer to Eller, Isakov, Nakamura, and Tataru [12] and Ikehata, Nakamura, and
Yamamoto [15]. If u solves

Qρ,λ,μu = ρ(x)∂2
su + Lλ,μ(x, ∂x)u = f ,

then

ρ(x)∂2
sv + (λ(x) + 2μ(x))Δv + A1,1(v,u) = divf

and

ρ(x)∂2
su + μ(x)Δu + A1,2(v,u) = f ,

where A1,1, A1,2 are (matrix) linear partial differential operators with measurable and
bounded coefficients. By using the scalar Carleman estimate (4.10), we obtain

C

τ
‖eτϕu‖2

H2
τ (Ω3r) ≤ ‖eτϕf‖2

L2(Ω3r) + ‖eτϕu‖2
H2

τ (Σ3r) + ‖eτϕv‖2
H1

τ (Ω3r)
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and

Cτ ‖eτϕv‖2
H1

τ (Ω3r) ≤ ‖eτϕdivf‖2
L2(Ω3r) + τ ‖eτϕv‖2

H1
τ (Σ3r) + ‖eτϕu‖2

H1
τ (Ω3r) .

Therefore, by choosing τ large, we obtain

C

τ
‖eτϕu‖2

H2
τ (Ω3r) ≤ ‖eτϕf‖2

L2(Ω3r) +
1

τ
‖eτϕ∇f‖2

L2(Ω3r)

+ ‖eτϕu‖2
H2

τ (Σ3r) + ‖eτϕv‖2
H1

τ (Σ3r) .

This completes the proof of Lemma 4.1.
Now we can argue similarly to [6], with suitable modifications. We introduce a

cutoff function χ4 satisfying 0 ≤ χ4 ≤ 1, χ4 ∈ C∞
0 (R), and

χ4(η) =

{
0, if η ≤ 1

2 , η ≥ 8,

1, if η ∈
[
3
4 , 7

]
.

Now we proceed to the estimation near Γ1.

4.2. Estimation near the boundary part Γ1. We shall estimate uγ,t in a
ball B1 = B(x(1), r) =

{
x ∈ R

3; |x− x(0)| ≤ r
}

over a small interval (−r, r) by the
velocity trace (in the normal direction) in the given part Σ1,3r = Γ1×(−3r, 3r) ⊂ Σ3r.

Lemma 4.2. Let uγ,t be a solution to (4.6). Then there exist B̃1 ≡ B1×(−r, r) ⊂
Ωr and ν0 ∈ ]0, 1[ such that

‖uγ,t‖H2(B̃1)
≤ C

(
‖Fγ,t‖H1(Ω3r) + ‖uγ,t‖H2(Σ1,3r)

)ν0
(
‖uγ,t‖H2(Ω3r)

)1−ν0

(4.11)

for some positive constant C.
Proof. Let us choose δ > 0 and x(0) ∈ R

3\Ω such that

δ <
ε0
4
, B(x(0), δ) ∩ Ω = ∅, B(x(0), 2δ) ∩ Ω �= ∅, B(x(0), 4δ) ∩ Γ ⊂ Γ1.

(4.12)

That is, x(0) is an outer point of Ω and is near Γ1. We define the functions ψ0(x, s)
and ϕ0(x, s) by

ψ0(x, s) =
∣∣∣x− x(0)

∣∣∣2 + s2, ϕ0(x, s) = e−
β̃

δ2
ψ0(x,s).

Here we choose β̃ > 0 sufficiently large. Denote

wγ,t(x, s) = χ4

(
ψ0

δ2

)
uγ,t(x, s).

By applying Lemma 4.1, we obtain

C

τ
‖eτϕ0wγ,t‖2

H2
τ (Ωr) ≤ ‖eτϕ0Qρ,λ,μwγ,t‖2

H1(Ω3r) +

∥∥∥∥eτϕ0χ4

(
ψ0

δ2

)
uγ,t

∥∥∥∥
2

H2
τ (Σ3r)
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for τ > τ0. Therefore by (4.9), we have

Qρ,λ,μwγ,t(x, s) = χ4

(
ψ0

δ2

)
Qρ,λ,μuγ,t(x, s) +

[
Qρ,λ,μ, χ4

(
ψ0

δ2

)]
uγ,t(x, s)

= χ4

(
ψ0

δ2

)
(Fγ,t(x, s) + Gγ,t(x, s)) +

[
Qρ,λ,μ, χ4

(
ψ0

δ2

)]
uγ,t(x, s)

= χ4

(
ψ0

δ2

)
Fγ,t(x, s) +

[
Qρ,λ,μ, χ4

(
ψ0

δ2

)]
uγ,t(x, s).

Since [Qρ,λ,μ, χ4(
ψ0

δ2 )] is supported in

∣∣∣x− x(0)
∣∣∣2 + s2 ≤ 3

4
δ2, 7δ2 ≤

∣∣∣x− x(0)
∣∣∣2 + s2 ≤ 8δ2,

by taking (4.12) into account, we see that
∣∣x− x(0)

∣∣ ≥ δ for all x ∈ Ω and Ω∩{
x;

∣∣x− x(0)
∣∣ ≤ 3

4δ
2
}
�= ∅, so that we obtain

C

τ
e2τe−4β̃ ‖uτ,t‖2

H2
τ ((δ2≤ψ0≤4δ2)∩Ω) ≤ τ2e2τe−7β̃ ‖uγ,t‖2

H2(ψ0≤8δ2)

+τ2e2τe−β̃/2 ‖Fγ,t‖2
H1(Ω3r)

+e2τe−β̃/2‖uγ,t‖2
H2(Σ1,3r).

We can select r > 0 and x(1) ∈ Ω such that

dist(x(1),Γ) ≥ 4r, B̃1 = B(x(1), r) × [−r, r] ⊂
{
δ2 ≤ ψ0(x, s) ≤ 4δ2

}
.

Then for τ > τ0 we have

‖uγ,t‖2
H2(B̃1)

≤ CeC1τ
[
‖Fγ,t‖2

H1(Ω3r) + ‖uγ,t‖2
H2(Σ1,3r)

]
+ e−C2τ ‖uγ,t‖2

H2(Ω3r) .

The inequality holds for any τ > 0 by replacing C > 0 by CeC1τ0 . Now minimize the
right-hand side with respect to τ , and with ν0 = C2

C1+C2
we have

‖uγ,t‖2
H2(B̃1)

≤ C
(
‖Fγ,t‖2

H1(Ω3r) + ‖uγ,t‖2
H2(Σ1,3r)

)ν0
(
‖uγ,t‖2

H2(Ω3r)

)1−ν0

.

This completes the proof of the lemma.

4.3. Estimation near the boundary. In this subsection we extend the es-
timation from B̃1 to ωr(ε0, 4ε0). In order to accomplish this, we use the tech-
niques developed in [44]. This will be done by continuing estimates (4.11). Let
B(x(j), r), 2 ≤ j ≤ N , be a covering of ω(ε0, 4ε0). We can assume that x(j) satisfies
dist(x(j),Γ) ≥ 4r. In what follows, we assume without any restriction in generality
that

B(x(j+1), r) ⊂ B(x(j), 2r),

and we set

B̃j = B(x(j), r) × (−r, r); 2 ≤ j ≤ N.
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Lemma 4.3. Let uγ,t be a solution to (4.6). Then there exist a constant ν ∈ (0, 1)
and C > 0 such that

‖uγ,t‖H2(B̃k+1)
≤ C

(
‖Fγ,t‖H1(Ω3r) + ‖uγ,t‖H2(B̃k)

)ν (
‖uγ,t‖H2(Ω3r)

)1−ν

, k ≥ 1.

(4.13)

Proof. We define the functions ψk(x, s) and ϕk(x, s) by

ψk(x, s) =
∣∣∣x− x(k)

∣∣∣2 + s2, ϕk(x, s) = e−
β̃

r2
ψk(x,s).

Moreover we set

wγ,t(x, s) = χ4

(
ψk

r2

)
uγ,t(x, s).

By applying Lemma 4.1 in an interior domain, we obtain

C

τ
‖eτϕkwγ,t‖2

H2
τ (Ωr) ≤ ‖eτϕkQρ,λ,μwγ,t‖2

H1(Ω3r) .(4.14)

In the same way as the proof of Lemma 4.2, we have

Qρ,λ,μwλ,t(x, s) = χ4

(
ψk

r2

)
Fλ,t(x, s) +

[
Qρ,λ,μ, χ4

(
ψk

r2

)]
uγ,t(x, s).

Since [Qρ,λ,μ, χ4(
ψk

r2 )] is supported in

r2

2
≤
∣∣∣x− x(0)

∣∣∣2 + s2 ≤ r2, 7r2 ≤
∣∣∣x− x(0)

∣∣∣2 + s2 ≤ 8r2,

it follows from (4.14) that

C

τ
e2τe−5β̃ ‖uγ,t‖2

H2
τ (r2≤ψk≤5r2) ≤ τ2e2τe−β̃/2 ‖uγ,t‖2

H2(ψk≤r2) + τ2e2τe−7β̃ ‖uγ,t‖2
H2(Ω3r)

+τ2e2τe−β̃/2 ‖Fγ,t‖2
H1(Ω3r) ,

and hence for τ large we obtain

Ce2τe−5β̃ ‖uγ,t‖2
H2

τ (ψk≤5r2) ≤ e2τe−β̃/3 ‖uγ,t‖2
H2(ψk≤r2) + e2τe−6β̃ ‖uγ,t‖2

H2(Ω3r)

+e2τe−β̃/3 ‖Fγ,t‖2
H1(Ω3r) .

Thus we obtain

‖uγ,t‖2
H2(ψk≤5r2) ≤ eC1τ

[
‖uγ,t‖2

H2(ψk≤r2) + ‖Fγ,t‖2
H1(Ω3r)

]
+ e−C2τ ‖uγ,t‖2

H2(Ω3r) .

Now minimize the right-hand side with respect to τ , and with ν = C2

C1+C2
we obtain

‖uγ,t‖2
H2(ψk≤5r2) ≤ C

(
‖Fγ,t‖2

H1(Ω3r) + ‖uγ,t‖2
H2(ψk≤r2)

)ν (
‖uγ,t‖2

H2(Ω3r)

)1−ν

.

Since

B̃k+1 ⊂
{
ψk(s, x) ≤ 5r2

}
,

{
ψk(x, s) ≤ r2

}
⊂ B̃k,
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we obtain (4.13). This completes the proof of the lemma.
Lemma 4.4. Let uγ,t be a solution to (4.6). Then there exist a constant C > 0

and μ = νn such that

‖uγ,t‖H2(B̃n) ≤ C
(
‖Fγ,t‖H1(Ω3r) + ‖uγ,t‖H2(B̃1)

)μ (
‖uγ,t‖H2(Ω3r)

)1−μ

, n ≥ 1.

Here ν ∈ (0, 1) is the constant given in Lemma 4.3.
Proof. Put

ak = ‖uγ,t‖H2(B̃k) , A = ‖Fγ,t‖H1(Ω3r) , B = ‖uγ,t‖H2(Ω3r) .

By (4.13) we have

ak+1 ≤ (C
1

1−ν B)1−ν(ak + A)ν .

By applying Lemma 4 in [38] (see also [37]), we obtain for all μ ∈ ]0, νn]

an ≤ 2
1

1−ν CB1−μ(a1 + A)μ.

This completes the proof of the lemma.
Lemma 4.5. Let uλ,t be a solution to (4.6). Then there exist C > 0 and C1 > 0

such that for all n there exist Cn > 0 and Tn > 0 such that

C ‖uγ,t‖2
H2(B̃n) ≤ e−C1γ ‖u‖2

H2(Q) + eCnγ ‖u‖2
H2(Σ1)

(4.15)

for all t ∈
[
−T

2 ,
T
2

]
, where T > Tn.

Proof. By Lemma 4.4 and the Young inequality, we easily obtain

‖uγ,t‖H2(B̃n) ≤ εp ‖uγ,t‖H2(Ω3r) + ε−p′
[
‖Fγ,t‖H1(Ω3r) + ‖uγ,t‖H2(B̃1)

]
for all ε > 0. Here

p =
1

1 − μ
, p′ =

1

μ
, and μ = νn.

By using estimates (4.7) and (4.8), we have for all t ∈
[
−T

2 ,
T
2

]
‖uγ,t‖H2(B̃n) ≤ εpeC1γ ‖u‖H2(Q) + ε−p′

[
e−ηTγ ‖u‖H2(Q) + ‖uγ,t‖H2(B̃1)

]
.

By selecting

ε = e−
2C1
p γ ,

we obtain

‖uγ,t‖H2(B̃n) ≤ e−C1γ ‖u‖H2(Q) + e−(ηT− 2C1p′
p )γ ‖u‖H2(Q) + e

2C1p′
p γ ‖uγ,t‖H2(B̃1)

for all t ∈
[
−T

2 ,
T
2

]
and γ > 0. Take T sufficiently large such that

ηT − 2C1p
′

p
> C1,
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and we obtain

‖uγ,t‖H2(B̃n) ≤ e−C1γ ‖u‖H2(Q) + eκ1γ ‖uγ,t‖H2(B̃1)
,(4.16)

where we set

κ1 =
2C1p

′

p
.

Similarly we obtain from Lemma 4.2 and the Young inequality

‖uγ,t‖H2(B̃1)
≤ εp0eC1γ ‖u‖H2(Q) + ε−p′

0

[
e−ηTγ ‖u‖H2(Q) + ‖uγ,t‖H2(Σ1,3r)

]
,

where

p0 =
1

1 − ν0
, p′0 =

1

ν0
.

Selecting ε = e−(
2C1+κ1

p0
)γ , we obtain for some positive constant κ2

‖uγ,t‖H2(B̃1)
≤ e−(C1+κ1)γ ‖u‖H2(Q)+e−(ηT− (2C1+κ1)p′0

p0
)γ ‖u‖H2(Q)+eκ2γ‖uγ,t‖H2(Σ1,3r).

Take T large such that (
ηT − (2C1 + κ1)p

′
0

p0

)
> C1 + κ1.

Then we obtain

‖uγ,t‖H2(B̃1)
≤ e−(C1+κ1)γ ‖u‖H2(Q) + eκ2γ‖uγ,t‖H2(Σ1,3r).

By inserting this into (4.16), we have

‖uγ,t‖H2(B̃n) ≤ e−C1γ ‖u‖H2(Q) + eCnγ‖uγ,t‖H2(Σ1,3r)

for some positive constant Cn. This completes the proof of (4.15).

4.4. End of the proof of Lemma 2.5. We shall complete the proof of Lemma
2.5 in this subsection.

We fix T > max1≤n≤N Tn. Addition of inequalities (4.15) for n ∈ {1, . . . , N}
yields

‖uγ,t‖H2(ωr(ε0,3ε0))
≤ e−C3γ ‖u‖H2(Q) + eC4γ‖u‖H2(Σ1), t ∈

[
−T

2
,
T

2

]
,(4.17)

for some positive constants C3 and C4. We set uγ(x, t) = uγ,t(x, 0). Then we have

uγ(x, t) =

√
γ

2π

∫
R

e−
γ
2 (t−y)2θ(y)u(x, y)dy = (Kγ ∗ θu)(x, t),

where

Kγ(t) =

√
γ

2π
e−

γ
2 t

2

.
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Lemma 4.6. Let T 1 = T
2 − r. Then we have

‖uγ‖2
H2(ωT1 (ε0,3ε0))

≤ e−μγ ‖u‖2
H1(Q) + eμ

′γ‖u‖2
H2(Σ1)

for some positive constants μ and μ′.
Proof. By the Cauchy formula, for � such that 0 < � < r, we obtain

uγ(x, a) =
1

2iπ

∫
|w−a|=�

uγ(x,w)

w − a
dw.

Thus, by using the polar coordinate, we obtain

|uγ(x, a)|2 ≤ C5

∫ 2π

0

∣∣uγ(x, a + �eiθ)
∣∣2 dθ.

We integrate � ∈ (0, r) and obtain

|uγ(x, a)|2 ≤ C5

r

∫ r

0

∫ 2π

0

∣∣uγ(x, a + �eiθ)
∣∣2 dθd�.

Therefore, for x ∈ ω(ε0, 3ε0) and a ∈ [−T
2 + r, T

2 − r], we have

|uγ(x, a)|2 ≤ C6

∫
|s|≤r,|t−a|≤r

|uγ(x, t + is)|2 dsdt = C6

∫
|s|≤r,|t−a|≤r

|uγ,t(x, s)|2 dsdt

and

‖uγ(·, a)‖2
L2(ω(ε0,3ε0))

≤ C6

∫ r

−r

∫
|t−a|≤r

‖uγ,t‖2
L2(ωr(ε0,3ε0))

dtds

≤ C7

∫ r

−r

∫ T/2

−T/2

‖uγ,t‖2
L2(ωr(ε0,3ε0))

dtds.(4.18)

We integrate a ∈ [−T 1, T 1], and by using (4.17) we obtain

‖uγ‖2
L2(ωT1 (ε0,3ε0))

≤ CT (e−C3γ ‖u‖2
H2(Q) + eC4γ‖u‖2

H2(Σ1)
).

By using the same argument to ∂αuγ , |α| ≤ 2, we complete the proof of Lemma 4.6.
Lemma 4.7. Let u be a solution of (4.4). Then there exist C7 > 0 and C8 > 0

such that

‖u‖H2(ωT1 (ε0,3ε0))
≤ C7√

γ
‖u‖H3(Q) + eC7γ‖u‖H2(Σ1).

Proof. By û(x, τ) we denote the Fourier transform of u(x, t) in t. We have

θ̂u(x, τ) − ûγ(x, τ) = (1 − K̂γ)θ̂u(x, τ).

Furthermore we can directly verify that

∣∣∣(1 − K̂γ)(τ)
∣∣∣ ≤ τ2

γ
,
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so that we obtain for T 1 = T/2 − r

‖u − uγ‖L2(ωT1 (ε0,3ε0))
≤ C8√

γ
‖u‖H1(Q) .

Similarly we have

‖u − uγ‖H2(ωT1 (ε0,3ε0))
≤ C9√

γ
‖u‖H3(Q) .

Hence

‖u‖H2(ωT1 (ε0,3ε0))
≤ C10

[
‖u − uγ‖H2(ωT1 (ε0,3ε0))

+ ‖uγ‖H2(ωT1 (ε0,3ε0))

]

≤ C11

[
1
√
γ
‖u‖H3(Q) + ‖uγ‖H2(ωT1 (ε0,3ε0))

]
.

On the other hand, by Lemma 4.6, we obtain

‖uγ‖2
H2(ωT1 (ε0,3ε0))

≤ e−μγ ‖u‖2
H2(Q) + eμ

′γ‖u‖2
H2(Σ1)

for some positive constants μ and μ′. This complete the proof of the lemma.
We now turn to the proof of Lemma 2.6. By Lemma 4.7 and u = χ3v, we obtain

‖v‖H2(ωT1 (ε0,3ε0))
≤ C7√

γ
‖v‖H3(Q) + eC7γ‖v‖H2(Σ1).

By (1.6), we obtain

‖u‖H2(ωT1 (ε0,3ε0))
≤ M

√
γ

+ eC7γε(Σ1).

By selecting

γ =
1

2C7
log

(
2 +

M

ε(Σ1)

)
,

the proof of Lemma 2.5 is complete.
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THE HUNTER–SAXTON EQUATION: A GEOMETRIC APPROACH∗
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Abstract. We provide a rigorous foundation for the geometric interpretation of the Hunter–
Saxton equation as the equation describing the geodesic flow of the Ḣ1 right-invariant metric on
the quotient space Rot(S)\Dk(S) of the infinite-dimensional Banach manifold Dk(S) of orientation-
preserving Hk-diffeomorphisms of the unit circle S modulo the subgroup of rotations Rot(S). Once
the underlying Riemannian structure has been established, the method of characteristics is used to
derive explicit formulas for the geodesics corresponding to the Ḣ1 right-invariant metric, yielding,
in particular, new explicit expressions for the spatially periodic solutions of the initial-value problem
for the Hunter–Saxton equation.
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1. Introduction. The Hunter–Saxton equation

(1.1) utxx = −2uxuxx − uuxxx, t > 0, x ∈ R,

models the propagation of weakly nonlinear orientation waves in a massive nematic
liquid crystal director field, x being the space variable in a reference frame moving
with the unperturbed wave speed and t being a slow time variable [6]. Equation (1.1)
is a bivariational, completely integrable system with a bi-Hamiltonian structure [7],
leading to the existence of an infinite family of commuting Hamiltonian flows together
with associated conservation laws. Smooth solutions of (1.1) break down in finite time
as the slope ux → −∞. The existence of global weak solutions was considered in [8].
Weak dissipative solutions of (1.1) have been studied in [1], where also a discussion
of different notions of weak solutions can be found.

It was first noticed in [9] that, for spatially periodic functions, (1.1) describes the
geodesic flow on the homogeneous space Rot(S)\D(S) of the infinite-dimensional Lie
group D(S) of orientation-preserving diffeomorphisms of the unit circle S modulo the
subgroup of rotations Rot(S), endowed with the Ḣ1 right-invariant metric given at
the identity by

〈[u], [v]〉 =

∫
S

uxvxdx, [u], [v] ∈ T[id]

(
Rot(S)\D(S)

)
,

where [id] denotes the equivalence class in Rot(S)\D(S) of the identity map id ∈ D(S).
This makes (1.1) one of the equations (others include the well-known Euler, Burgers,
Korteweg–de Vries, and Camassa–Holm equations [4, 3, 15, 13]) that arises as the
Euler equation for the geodesic flow corresponding to a right-invariant metric.

In this paper we provide a rigorous foundation for this geometric interpretation of
(1.1) within the periodic setting (for the case on the line further technical complica-
tions arise due to the need of considering weighted Sobolev spaces—see the discussion
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in [2]). Two similar but distinct approaches are possible. We may choose to consider
the geodesic flow of the Ḣ1 right-invariant metric either (1) on the homogeneous space
Rot(S)\D(S), where D(S) denotes the Fréchet Lie group of smooth diffeomorphisms of
S, or (2) on the Banach manifold Rot(S)\Dk(S) for k > 3/2, where Dk(S) incorporates
all diffeomorphisms of S of Sobolev class Hk. We will pursue the latter approach. Note
that Dk(S) is a topological group but not a Lie group as the group operation (ψ,ϕ) �→
ψ ◦ ϕ for ψ,ϕ ∈ Dk(S) is continuous but not smooth due to derivative loss (cf. [5]).
The advantage of working on Rot(S)\Dk(S) is that the theory of Riemannian geome-
try on Banach manifolds is available—whereas nearly all results familiar from finite-
dimensional Riemannian geometry immediately generalize to Banach manifolds (see
[10]); a transition to Fréchet manifolds introduces several technical complications (see
[5]). In particular, there are no general existence and uniqueness results for differen-
tial equations in Fréchet spaces, making it difficult to study geodesic flow and parallel
translation. Also, on a Fréchet manifold, since the inverse mapping theorem does not
hold, neither the Lie group exponential map nor the Riemannian exponential map is
necessarily a local diffeomorphism at the identity. Another advantage of working with
the wider class Rot(S)\Dk(S) is that when studying partial differential equations it is
often preferable to work in Sobolev spaces rather than in the category of C∞-maps.

We will construct a smooth affine connection on Rot(S)\Dk(S) compatible with
the Ḣ1 right-invariant metric. Once this has been established, the general the-
ory of Riemannian geometry on Banach manifolds immediately yields existence of
a smooth curvature tensor, existence of normal neighborhoods, existence and unique-
ness results for the geodesic flow and parallel translation, locally length-minimizing
properties of the geodesics, etc. In this paper we focus on the geodesic flow and
its relation to the Hunter–Saxton equation. In particular, we find that if ϕ ∈
C2([0, T );Dk(S)) is a C2-curve in Dk(S), then the quotient curve t �→ [ϕ(t)] is a
geodesic in Rot(S)\Dk(S) with respect to the Ḣ1 right-invariant metric if and only
if u = ϕt ◦ ϕ−1 ∈ C([0, T );Hk(S)) ∩ C1([0, T );Hk−1(S)) satisfies (1.1). In a subse-
quent section the method of characteristics is used to derive explicit formulas for the
geodesics corresponding to the Ḣ1 right-invariant metric. As a byproduct we also ob-
tain explicit formulas for the spatially periodic solutions of the initial-value problem
for (1.1). Note that this presents new solutions to (1.1) with respect to earlier presen-
tations (cf. [6, 1])—the requirement that the solutions be spatially periodic introduces
nontrivial constants of integration which alter the derivation and its outcome.

The quotient space Rot(S)\Dk(S), the Ḣ1 right-invariant metric 〈·, ·〉, and a
Christoffel map Γ are introduced in section 2. In section 3 it is proved that the
covariant derivative induced by Γ is the unique covariant derivative compatible with
the Ḣ1 right-invariant metric. In section 4 the connection between the geodesic flow
and the Hunter–Saxton equation is explained, while in section 5 explicit formulas for
the geodesics are obtained by means of the method of characteristics.

2. The quotient space Rot(S)\Dk(S). Let S be the circle of length one and
let Dx denote differentiation with respect to x. For X = [0, 1] or X = S we let, for
n ≥ 0, Hn(X) be the space of all functions on X of Sobolev class Hn. By restriction
of a periodic function to the unit interval, Hn(S) may be viewed as a closed linear
subspace of Hn[0, 1].

For an integer k ≥ 3,1 let Dk(S) denote the Banach manifold of orientation-

1Even though k > 3/2 is sufficient for Dk(S) to be a topological group [4], we will assume k ≥ 3
for simplicity; see [11] for an extension of the geometric approach which incorporates weak solutions.
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preserving diffeomorphisms of S of class Hk (cf. [14]). By Rot(S) ⊂ Dk(S) we denote
the subgroup of rotations x �→ x + d, d ∈ R. Let Rot(S)\Dk(S) be the space of right
cosets Rot(S) ◦ ϕ = {ϕ(·) + d

∣∣ d ∈ R} for ϕ ∈ Dk(S). We will construct a global
canonical chart on Rot(S)\Dk(S).

Put Mk = {ϕ ∈ Dk(S)
∣∣ϕ(0) = 0}. Then the map

(2.1) ϕ �→
(
ϕ(0), ϕ(·) − ϕ(0)

)
: Dk(S) → S ×Mk

is a diffeomorphism. Note that Mk can be characterized as

Mk = {ϕ ∈ Hk[0, 1]
∣∣ϕx ∈ Hk−1(S), ϕx > 0, ϕ(0) = 0, ϕ(1) = 1},

or, equivalently,

(2.2) Mk = {u + id
∣∣u ∈ Hk(S), ux > −1, u(0) = 0},

where id ∈ Dk(S) is the identity map id(x) = x for x ∈ S.
From (2.1) we obtain a natural identification Rot(S)\Dk(S) � Mk given by

(2.3) [ϕ] �→ ϕ− ϕ(0),

where [ϕ] denotes the equivalence class of ϕ ∈ Dk(S). Let Ek ⊂ Hk(S) be the closed
linear subspace

Ek = {u ∈ Hk(S)
∣∣u(0) = 0}

with topology induced from Hk(S). The representation (2.2) shows that Mk is an
open subset of the closed hyperplane id+Ek ⊂ Hk[0, 1]. Hence Mk provides a global
chart for Rot(S)\Dk(S). Moreover, T (Rot(S)\Dk(S)) � TMk � Mk × Ek, so that a
vector field X on Rot(S)\Dk(S) can be viewed as a map Mk → Ek.

The Ḣ1 right-invariant metric 〈·, ·〉 on Rot(S)\Dk(S) is most easily defined in the
global chart Mk as follows (see also [9]). Let A = −D2

x and introduce a positive
definite symmetric bilinear form 〈·, ·〉id on TidM

k � Ek by

〈u, v〉id =

∫
S

uAvdx =

∫
S

uxvxdx, u, v ∈ Ek.

and extend it to TϕM
k for any ϕ ∈ Mk by right-invariance, so that, for U, V ∈

TϕM
k � Ek,

〈U, V 〉ϕ =

∫
S

U ◦ ϕ−1A(V ◦ ϕ−1)dx.

We also introduce the closed linear subspace

Fk =

{
f ∈ Hk(S)

∣∣∣∣
∫

S

fdx = 0

}
.

It is straightforward to check that A = −D2
x is an isomorphism Ek → Fk−2. Denoting

its inverse by A−1 : Fk−2 → Ek, we infer that, for u ∈ Hk−1(S),

(2.4) −
(
A−1Dx(u)

)
(x) =

∫ x

0

u(y)dy − x

∫
S

udx.
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Now define Γ : Mk × Ek × Ek → Ek by

(2.5) Γ(ϕ,U, V ) = −1

2

(
A−1Dx

(
(U ◦ ϕ−1)x(V ◦ ϕ−1)x

))
◦ ϕ,

and notice that Γ is right-invariant in the sense that

(2.6) Γ(ψ,U, V ) ◦ ϕ = Γ(ψ ◦ ϕ,U ◦ ϕ, V ◦ ϕ), ϕ, ψ ∈ Mk, U, V ∈ Ek.

The motivation for the definition of Γ comes in section 3, where we will see that Γ is
the Christoffel map (the infinite-dimensional analogue of the Christoffel symbols Γi

jk

well known from finite-dimensional Riemannian geometry) for the affine connection
on Rot(S)\Dk(S) compatible with the Ḣ1 right-invariant metric.

Although Dk(S) is a smooth Banach manifold it is not a Lie group. Indeed,
the group operation (ψ,ϕ) �→ ψ ◦ ϕ : Dk(S) × Dk(S) → Dk(S) is continuous but
not C1; right multiplication Rϕ : ψ �→ ψ ◦ ϕ is smooth, whereas left multiplication
Lψ : ϕ �→ ψ ◦ ϕ is continuous but not C1 due to derivative loss (see [5]). Similarly,
Mk is a Banach manifold and a topological group but not a Lie group. Therefore, it
is not a priori clear that the Ḣ1 metric and the Christoffel map Γ are smooth objects
(that right multiplication is smooth is not enough). The following two propositions
deal with this technicality (see [12] for detailed proofs of similar results in the case of
the Camassa–Holm equation).

Proposition 2.1. The map

[ϕ] �→ 〈·, ·〉[ϕ] : Rot(S)\Dk(S) → L2
sym(T[ϕ]

(
Rot(S)\Dk(S)

)
; R)

is a smooth section of the bundle L2
sym(T

(
Rot(S)\Dk(S)

)
; R).

Proposition 2.2. Let Γ be defined by (2.5). The map

ϕ �→ Γ(ϕ, ·, ·) : Mk → L2
sym(Ek;Ek)

is smooth.

3. Covariant derivative. In this section the covariant derivative induced by
the Christoffel map Γ is shown to be compatible with the Ḣ1 right-invariant metric.

We first recall the general definition of a covariant derivative. Let M be a Banach
manifold endowed with a Riemannian metric 〈·, ·〉 and let X(M) denote the space of
smooth vector fields on M. For X,Y ∈ X(M) the Lie bracket [X,Y ] is defined locally
by

[X,Y ](m) = DY (m) ·X(m) −DX(m) · Y (m).

Definition 3.1. An R-bilinear operator (X,Y ) �→ ∇XY : X(M) × X(M) →
X(M) is a Riemannian covariant derivative if it satisfies

(a) X(m) = 0 implies (∇XY )(m) = 0 for m ∈ M and X,Y ∈ X(M) (punctual
dependence on X),

(b) ∇XY −∇Y X = [X,Y ] for X,Y ∈ X(M) (torsion-free),
(c) ∇X(fY ) = (LXf)Y + f∇XY for f ∈ C∞(M), X,Y ∈ X(M) (derivation in

Y ),
(d) LX〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉 for X,Y, Z ∈ X(M) (compatible with the

metric).
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Define the operator ∇ : X(Rot(S)\Dk(S))×X(Rot(S)\Dk(S)) → X(Rot(S)\Dk(S))
in the global chart Mk by

(3.1) (∇XY )(ϕ) = DY (ϕ) ·X(ϕ) − Γ(ϕ, Y (ϕ), X(ϕ)),

where X,Y : Mk → Ek are representatives in the chart Mk of two vector fields on
Rot(S)\Dk(S).

In the finite-dimensional case, given a Riemannian metric 〈·, ·〉 on a manifold M
there automatically exists a Riemannian covariant derivative ∇ compatible with 〈·, ·〉.
For vector fields X,Y, Z on M, ∇XY is defined as the unique vector field such that
(3.2)
2〈∇XY,Z〉 = −〈[Y,X], Z〉−〈X, [Y,Z]〉−〈Y, [X,Z]〉+LX〈Y,Z〉+LY 〈Z,X〉−LZ〈X,Y 〉.

Indeed, the bracket 〈·, ·〉 establishes an isomorphism TmM → T ∗
mM for each m ∈ M,

so since the right-hand side is a continuous linear functional of Z(m), existence of
(∇XY )(m) follows immediately.

This approach does not apply to Rot(S)\Dk(S) endowed with the Ḣ1 right-
invariant metric. The right-hand side of (3.2) is a continuous linear functional of
Z(ϕ) for each ϕ ∈ Mk. But the topology of TϕM

k � Ek induced by the Hk inner

product is much stronger than the topology defined by the Ḣ1 right-invariant metric
〈·, ·〉ϕ—the Ḣ1 right-invariant metric is a weak Riemannian metric on Rot(S)\Dk(S).
Therefore there are elements in T ∗

ϕM
k that cannot be expressed as 〈V, ·〉ϕ for some

V ∈ TϕM
k; the spaces TϕM

k � Ek and T ∗
ϕM

k � Ek∗ are in duality with respect to

the Hk inner product, not with respect to 〈·, ·〉ϕ. The explicit formula for Γ will help
us circumvent this difficulty.

However, even for weak Riemannian metrics uniqueness of the Riemannian covari-
ant derivative can be deduced from (3.2). For if ∇ satisfies (a)–(d) of Definition 3.1,
then, writing down property (d) for the cyclic permutations of X,Y, Z ∈ X(M), we
get

LX〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉,

LY 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇Y X〉,

LZ〈X,Y 〉 = 〈∇ZX,Y 〉 + 〈X,∇ZY 〉.

Adding the first two and subtracting the third of these relations, (3.2) drops out.
Since 〈·, ·〉 is nondegenerate, (3.2) shows the uniqueness of ∇.

In the proof of Theorem 3.2 the identity

(3.3)
d

dε

∣∣∣∣
ε=0

U ◦ (ϕ+ εV )−1 = −(U ◦ϕ−1)xV ◦ϕ−1, ϕ ∈ Dk(S), U, V ∈ Hk(S),

will be used. It is a consequence of

d

dε

∣∣∣∣
ε=0

(ϕ + εV )−1 = − V ◦ ϕ−1

ϕx ◦ ϕ−1
and

Ux ◦ ϕ−1

ϕx ◦ ϕ−1
= (U ◦ ϕ−1)x.

Theorem 3.2. The bilinear map ∇ given by (3.1) defines a unique Riemannian
covariant derivative on Rot(S)\Dk(S) compatible with the Ḣ1 right-invariant metric.
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Proof. Properties (a)–(c) are immediate from the local formula defining ∇. To
establish (d) we compute, for vector fields X,Y, Z : Mk → Ek,

(LX〈Y,Z〉)(ϕ)

=
d

dε

∣∣∣∣
ε=0

∫
S

A
(
Y (ϕ + εX(ϕ)) ◦ (ϕ + εX(ϕ))−1

)

· Z(ϕ + εX(ϕ)) ◦ (ϕ + εX(ϕ))−1dx

=

∫
S

A

(
(DY (ϕ) ·X(ϕ)) ◦ ϕ−1 − (Y (ϕ) ◦ ϕ−1)xX(ϕ) ◦ ϕ−1

)
Z(ϕ) ◦ ϕ−1dx

+

∫
S

A

(
(DZ(ϕ) ·X(ϕ)) ◦ ϕ−1 − (Z(ϕ) ◦ ϕ−1)xX(ϕ) ◦ ϕ−1

)
Y (ϕ) ◦ ϕ−1dx,

where formula (3.3) was used to carry out the differentiation. Define u, v, w ∈ Ek by
u = X(ϕ) ◦ ϕ−1, v = Y (ϕ) ◦ ϕ−1, and w = Z(ϕ) ◦ ϕ−1. We get

(LX〈Y,Z〉)(ϕ) =

∫
S

A

((
DY (ϕ) ·X(ϕ)

)
◦ ϕ−1

)
wdx(3.4)

+

∫
S

A

((
DZ(ϕ) ·X(ϕ)

)
◦ ϕ−1

)
vdx−

∫
S

A(vxu)wdx−
∫

S

A(wxu)vdx.

On the other hand

〈∇XY,Z〉ϕ =

∫
S

(
DY (ϕ) ·X(ϕ) − Γ

(
ϕ, Y (ϕ), X(ϕ)

))
◦ ϕ−1A(Z(ϕ) ◦ ϕ−1)dx.

Since Γ(ϕ, Y (ϕ), X(ϕ)) = − 1
2

(
A−1Dx(vxux)

)
◦ ϕ, we get

(3.5) 〈∇XY,Z〉ϕ =

∫
S

(
DY (ϕ) ·X(ϕ)

)
◦ ϕ−1A(w)dx +

1

2

∫
(vxux)xwdx.

Now, recalling that A = −D2
x, it is easy to check that

−
∫

S

A(vxu)wdx−
∫

S

A(wxu)vdx =
1

2

∫
(vxux)xwdx +

1

2

∫
(wxux)xvdx

so by (3.4) and (3.5) we obtain

(LX〈Y,Z〉)(ϕ) = 〈∇XY,Z〉ϕ + 〈Y,∇XZ〉ϕ.

This proves that ∇ also satisfies (d).

4. Geodesics and the Hunter–Saxton equation. Since the map Γ defined
in (2.5) is a smooth Christoffel map (see Proposition 2.2), all the usual constructions
for affine connections on Banach manifolds (cf. [10]) can easily be carried out on
Rot(S)\Dk(S). Here we will be concerned with the geodesics on Rot(S)\Dk(S) and
their relation to the Hunter–Saxton equation.
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4.1. Parallel translation. Let J ⊂ R be an open interval and let ϕ : J → Mk

be a C2-curve. A lift V : J → TMk of ϕ is ϕ-parallel if

Vt = Γ(ϕ, V, ϕt), t ∈ J,

which is equivalent to ∇ϕt
V ≡ 0. Applying the general theory for Banach manifolds,

we get the following result.
Proposition 4.1. Let t0 ∈ J . Given V0 ∈ Tϕ(0)M

k, there exists a unique

ϕ-parallel lift t �→ V (t;V0) : J → TMk such that V (t0;V0) = V0.
Define two continuous maps u, v : J → TidM

k � Ek by

u(t) = Tϕ(t)Rϕ(t)−1(ϕt(t)) = ϕt(t) ◦ ϕ(t)−1

and

v(t) = Tϕ(t)Rϕ(t)−1(V (t)) = V (t) ◦ ϕ(t)−1.

Note that u, v are not C1-maps as

ut = ϕtt ◦ ϕ−1 +
ϕtx ◦ ϕ−1

ϕx ◦ ϕ−1

is in general an element in Ek−1 but not in Ek. Nevertheless, it is clear that

u, v ∈ C(J ;Ek) ∩ C1(J ;Ek−1).

Theorem 4.2. Let ϕ : J → Mk be a C2-curve and V : J → TMk a lift of ϕ.
Define u, v : J → Ek by

v(t) = V (t) ◦ ϕ(t)−1, u(t) = ϕt(t) ◦ ϕ(t)−1,

so that u, v ∈ C(J ;Ek) ∩ C1(J ;Ek−1). The following statements are equivalent:
(a) V is ϕ-parallel.
(b) u and v satisfy, for t ∈ J ,

(4.1) vt = Γ(id, v, u) − vxu in Ek−1.

(c) u and v solve the equation

(4.2) vtxx = −3

2
vxxux − 1

2
vxuxx − vxxxu, t ∈ J, x ∈ S.

Proof. First note that

(4.3) vxu = (V ◦ ϕ−1)xϕt ◦ ϕ−1 =
Vx ◦ ϕ−1

ϕx ◦ ϕ−1
ϕt ◦ ϕ−1 = −Vx ◦ ϕ−1 · (ϕ−1)t.

Suppose V is ϕ-parallel. Using (4.3), we compute in Ek−1

vt = Vt ◦ ϕ−1 + Vx ◦ ϕ−1 · (ϕ−1)t = Γ(ϕ, V, ϕt) ◦ ϕ−1 − vxu = Γ(id, v, u) − vxu,

where we used the right invariance (2.6) of Γ. Conversely, if (4.1) holds, then (4.3)
yields

Vt◦ϕ−1 = vt−Vx◦ϕ−1 ·(ϕ−1)t = Γ(id, v, u)−vxu−Vx◦ϕ−1 ·(ϕ−1)t = Γ(ϕ, V, ϕt)◦ϕ−1,



HUNTER–SAXTON: A GEOMETRIC APPROACH 273

showing that V is ϕ-parallel. This establishes the equivalence of (a) and (b).
Suppose (b) holds. By the definition (2.5) of Γ we rewrite (4.1) as

(4.4) vt = −1

2
A−1Dx(vxux) − vxu.

Applying A = −D2
x to both sides of (4.4) gives (4.2). Conversely, suppose (c) holds.

Since at each fixed time both sides of (4.2) belong to Fk−3, we may apply the isomor-
phism A−1 : Fk−3 → Ek−1 to obtain (4.4). Hence (b) and (c) are equivalent.

4.2. Geodesics. A C2-map ϕ : J → Mk is a geodesic if

ϕtt = Γ(ϕ,ϕt, ϕt).

Just like for parallel translation we can express the geodesic equation as an equation
for u = ϕt ◦ ϕ−1.

Theorem 4.3. Let ϕ : J → Mk be a C2-curve and define u : J → Ek by
u(t) = ϕt(t) ◦ϕ(t)−1 so that u ∈ C(J ;Ek)∩C1(J ;Ek−1). Then ϕ is a geodesic if and
only if u solves the Hunter–Saxton equation

(4.5) utxx = −2uxuxx − uuxxx, t ∈ J, x ∈ S.

Proof. ϕ is a geodesic if and only if ϕt is ϕ-parallel. The equivalence of (a) and
(c) of Theorem 4.2 shows that ϕt is ϕ-parallel if and only if u satisfies (4.5).

The condition that ϕ : J → Mk ⊂ Dk(S) imposes the condition ϕ(t)
∣∣
x=0

= 0 for
all t. We now remove this restriction.

Let ρ : Dk(S) → Rot(S)\Dk(S) be the quotient map. Assume ϕ : J → Dk(S)
is a C1-curve and denote by [ϕ] = ρ ◦ ϕ : J → Rot(S)\Dk(S) the induced curve
in Rot(S)\Dk(S). A lift V : J → TDk(S) of ϕ gives rise to a lift [V ] : J →
T
(
Rot(S)\Dk(S)

)
of [ϕ] given by [V ] = Tρ ◦ V . The next result, which is a fairly

straightforward consequence of Theorem 4.2, characterizes the [ϕ]-parallel lifts [V ] of
[ϕ].

Proposition 4.4. Let ϕ : J → Dk(S) be a C2-curve and let V be a C1-lift of ϕ.
Define u, v ∈ C(J ;Hk(S)) ∩ C1(J ;Hk−1(S)) by

u(t) = ϕt(t) ◦ ϕ(t)−1, v(t) = V (t) ◦ ϕ(t)−1.

Then [V ] = Tρ ◦ V is [ϕ]-parallel if and only if u, v satisfy

(4.6) vtxx = −3

2
vxxux − 1

2
vxuxx − vxxxu, t ∈ J, x ∈ S.

The final theorem in this section says that t �→ [ϕ(t)] : J → Rot(S)\Dk(S) is a
geodesic if and only if u = ϕt ◦ ϕ−1 solves the Hunter–Saxton equation.

Theorem 4.5. Let ϕ : J → Dk(S) be a C2-curve and define u : J → Hk(S)
by u(t) = ϕt(t) ◦ ϕ(t)−1 so that u ∈ C(J ;Hk(S)) ∩ C1(J ;Hk−1(S)). Then [ϕ] is a
geodesic in Rot(S)\Dk(S) if and only if u is a solution of the Hunter–Saxton equation

(4.7) utxx = −2uxuxx − uuxxx, t ∈ J, x ∈ S.

Proof. [ϕ] is a geodesic if and only if [ϕ]t = [ϕt] is [ϕ]-parallel. By Proposition 4.4
this occurs if and only if (4.6) holds with u = v = ϕt ◦ ϕ−1.
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5. Explicit formulas. In this section the method of characteristics is adopted
to obtain explicit formulas for the geodesics; as a byproduct new explicit solutions of
the periodic Hunter–Saxton equation drop out.

Definition 5.1. By a solution of the Hunter–Saxton equation with initial data
u0 ∈ Hk(S), k ≥ 3, we mean a function u(t, x) with u ∈ C([0, T );H3(S)) ∩ C1([0, T );
H2(S)) for some maximal time of existence T > 0 such that u(0) = u0 and

(5.1) utxx = −2uxuxx − uuxxx, t ∈ [0, T ), x ∈ S.

The next lemma is straightforward to prove.
Lemma 5.2. Let J ⊂ R be an open interval and let u ∈ C(J ;H3(S))∩C1(J ;H2(S)).

The map

F : (t, ψ) �→ u(t) ◦ ψ : J ×D2(S) → H2(S)

is C1.
Now let u0 ∈ Hk(S) and suppose u(t, x) is a solution of the Hunter–Saxton

equation with initial data u0. Integration of (5.1) from 0 to x for each fixed time t
gives

(5.2) utx = −1

2
u2
x − uuxx + c(t), t ∈ [0, T ), x ∈ S,

for some function c : [0, T ) → R. Since
∫

S
utx(t, x)dx = 0 for each t ∈ [0, T ), we get

∫
S

(
−1

2
u2
x − uuxx + c(t)

)
dx = 0.

An integration by parts yields

c(t) = −1

2

∫
S

u2
x(t, x)dx.

Moreover, by (5.2),

1

2

d

dt

∫
S

u2
xdx =

∫
S

uxutxdx = −
∫

S

(
1

2
u3
x + uuxuxx

)
dx = 0,

showing that c(t) = − 1
2

∫
S
u2
x(t, x)dx is a constant function. Assuming that u0 is

nontrivial, we may rescale u0 so that
∫

S
u2

0xdx = 4. Then (5.2) becomes

utx = −1

2
u2
x − uuxx − 2, t ∈ [0, T ), x ∈ S.

By Lemma 5.2 and the local existence and uniqueness theorem for differential
equations in Banach spaces, there exists a unique map ϕ ∈ C1([0, T1);D2(S)) such
that ϕ(0) = id and

(5.3) ϕt(t) = u(t) ◦ ϕ(t), t ∈ [0, T1),

for some maximal existence time T1 > 0. Since

(ux ◦ ϕ)t = utx ◦ ϕ + uxx ◦ ϕ · ϕt =
(
utx + uuxx

)
◦ ϕ,
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this gives

(ux ◦ ϕ)t =

(
−1

2
u2
x − 2

)
◦ ϕ = −1

2
(ux ◦ ϕ)2 − 2, t ∈ [0, T1), x ∈ S.

Therefore, for a fixed x ∈ S, the function t �→ (ux ◦ ϕ)(t, x) solves the differential
equation

(5.4) ż(t) = −1

2
(z(t)2 + 4).

The general solution of (5.4) is

z(t) = 2 tan

(
arctan

(
z(0)

2

)
− t

)
.

As (ux ◦ ϕ)(0, x) = u0x(x) for x ∈ S, we infer that

(5.5) (ux ◦ ϕ)(t, x) = 2 tan

(
arctan

(
u0x(x)

2

)
− t

)
, t ∈ [0, T1), x ∈ S.

Differentiation of (5.3) yields ϕtx = ux ◦ ϕ · ϕx, so that, by (5.5),

ϕtx(t, x) = 2 tan

(
arctan

(
u0x(x)

2

)
− t

)
ϕx(t, x).

Using the fact that ϕx(0, x) = 1 for x ∈ S, we get

(5.6) ϕx(t, x) = exp

(
2

∫ t

0

tan

(
arctan

(
u0x(x)

2

)
− s

)
ds

)
, t ∈ [0, T1), x ∈ S.

Since

2

∫ t

0

tan

(
arctan

(
u0x(x)

2

)
− s

)
ds = ln

(
cos2

(
arctan

(
u0x(x)

2

)
− t

))
− C(x),

where

C(x) = ln

(
cos2

(
arctan

(
u0x(x)

2

)))
,

equation (5.6) yields

(5.7) ϕx(t, x) =
cos2

(
arctan

(u0x(x)
2

)
− t

)
cos2

(
arctan

(u0x(x)
2

)) .

We rewrite this as

(5.8) ϕx(t, x) =

(
cos t +

u0x(x)

2
sin t

)2

, t ∈ [0, T1), x ∈ S.

Hence

ϕ(t, x) − ϕ(t, 0) = x
1 + cos 2t

2
+

1

4

∫ x

0

u2
0x(y)dy

1 − cos 2t

2
+

u0(x) − u0(0)

2
sin 2t.
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Since, by (2.4),

−
(
A−1Dx(u2

0x)
)
(x) =

∫ x

0

u2
0x(y)dy − x

∫
S

u2
0xdx =

∫ x

0

u2
0x(y)dy − 4x,

we infer that, for t ∈ [0, T1) and x ∈ S,

(5.9) ϕ(t, x) − ϕ(t, 0) = x− 1

8

(
A−1Dx(u2

0x)
)
(x)

(
1 − cos 2t

)
+

u0(x) − u0(0)

2
sin 2t.

The right-hand side of this equation is well-defined for all times t < T ∗, where

T ∗ =
π

2
+ arctan

(
1

2
min
x∈S

u0x(x)

)
.

Indeed, it follows from (5.8) that T ∗ is the first time for which the right-hand side of
(5.9) ceases to be a bijective map S → S.

The invariance of (5.9) under the transformation ϕ(t, x) �→ ϕ(t, x) + c(t) for an
arbitrary function c(t) corresponds to the invariance of the Hunter–Saxton equation
under the transformation u(t) �→ u(t, ·−c(t))+c′(t). It follows that the geodesic ϕ(t, x)
can be extended to all times t < T ∗ unless limt↑T |ϕ(t, 0)| = ∞ for some T < T ∗.
This artificial blow-up at some T < T ∗ can be avoided by requiring that u0(0) = 0
and that ϕ be a curve in Mk; this fixes ϕ(t, 0) = 0 at all times. We summarize what
we have obtained in a theorem.

Theorem 5.3. Suppose u0 ∈ Hk(S) satisfies 〈u0, u0〉id =
∫

S
u2

0xdx = 4 and

u0(0) = 0. Let ϕ : [0, T ∗) → Mk be the unique geodesic with ϕ(0) = id and ϕt(0) = u0

existing for some maximal time T ∗ > 0.
Then

(5.10) ϕ(t) = id− 1

8

(
A−1Dx(u2

0x)
)(

1 − cos 2t
)

+
u0

2
sin 2t,

and T ∗ is the first time for which ϕ(t) : S → S ceases to be bijective given by

T ∗ =
π

2
+ arctan

(
1

2
min
x∈S

u0x(x)

)
<

π

2
.

Moreover, defining u ∈ C([0, T ∗);Ek) ∩ C1([0, T ∗);Ek−1) by

u(t) =

(
−1

4

(
A−1Dx(u2

0x)
)
sin 2t + u0 cos 2t

)
◦ ϕ(t)−1,

the set of solutions of the Hunter–Saxton equation with initial data u0 (see Defini-
tion 5.1) is exactly the set of maps{

t �→ u(t, · − c(t)) + c′(t)
}
⊂ C([0, T );Hk(S)) ∩ C1([0, T );Hk−1(S)),

where T ≤ T ∗ is the maximal time of existence, c : [0, T ) → R is an arbitrary C1-
function with c(0) = c′(0) = 0, and, if T < T ∗, then |c(t)| → ∞ as t ↑ T < T ∗.

Remark. For nonconstant initial data u0 the assumption
∫

S
u2

0xdx = 4 is just a
matter of scaling; it sets the speed of the geodesic to be 4. The case of a constant
u0 is degenerate as it means that the initial velocity of the geodesic vanishes. For
the sake of completeness we note that if u0 is constant the general solution of (1.1) is
u(t, x) ≡ ū(t), where ū : [0, T ) → R is a C1-function of time with ū(0) = u0.
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ON THE SCHRÖDINGER EQUATION WITH DISSIPATIVE
NONLINEARITIES OF DERIVATIVE TYPE∗
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Abstract. We consider the cubic nonlinear Schrödinger equations of derivative type with small
initial data. We present a structural condition on the nonlinear terms under which the corresponding
Cauchy problem has a dissipative nature.
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1. Introduction. We consider the initial value problem for the nonlinear Schrö-
dinger equation of derivative type:{

i∂tu + 1
2∂

2
xu = N(u, ∂xu), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.1)

where i =
√
−1, ∂t = ∂/∂t, ∂x = ∂/∂x, and u is a complex-valued unknown function.

We will occasionally write ux for ∂xu, and u denotes the complex conjugate of u.
The nonlinear term N(u, ux) is a cubic homogeneous polynomial in (u, u, ux, ux) with
complex coefficients, and it satisfies so-called gauge invariance, that is,

N(eiθv, eiθq) = eiθN(v, q) for v, q ∈ C and θ ∈ R.(1.2)

The aim of this paper is to present a structural condition on the nonlinear term N
under which the corresponding forward Cauchy problem (1.1) has a dissipative nature.
To explain the motivation, let us begin with the simplest case where N is independent
of ux, i.e., N = λ|u|2u with λ ∈ C. Then it is easy to see that

‖u(t)‖2
L2 − 2 Imλ

∫ t

0

‖u(τ)‖4
L4 dτ = ‖u0‖2

L2 ,(1.3)

which suggests a dissipative structure if Imλ < 0. In fact, it is proved in [18] that
the solution decays like O((t log t)−1/2) in L∞

x as t → +∞ if Imλ < 0 and u0 is
small enough. Since the nontrivial free solution (i.e., the solution to (1.1) for N ≡ 0,
u0 �= 0) only decays like O(t−1/2), this gain of additional logarithmic time decay
reflects a dissipative character. Now we turn our attention to the general gauge-
invariant cubic nonlinear terms involving both u and ux. Note that we cannot expect
the conservation law like (1.3) anymore. However, as we shall show below, similar

∗Received by the editors April 23, 2007; accepted for publication (in revised form) September 14,
2007; published electronically April 16, 2008.

http://www.siam.org/journals/sima/40-1/68910.html
†Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Os-

aka 560-0043, Japan (nhayashi@math.wani.osaka-u.ac.jp, sunagawa@math.sci.osaka-u.ac.jp). The
third author was partially supported by MEXT through a Grant-in-Aid for Young Scientists (B)
(18740066).
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time decay is still valid if supξ∈R ImN(1, iξ) < 0. It gives an answer to one of the
questions left unsolved in the previous work [20].

Before stating our result, we introduce function spaces. For s, ν ≥ 0, let Hs,ν be
the weighted Sobolev space given by

{
φ ∈ L2 : ‖φ‖Hs,ν = ‖〈x〉ν〈i∂x〉sφ‖L2 < ∞

}
,

where 〈x〉 = (1 + x2)1/2. In particular we set Hs = Hs,0, which is typically an
L2-based Sobolev space of order s. The main result is as follows.

Theorem 1.1. Suppose that N satisfies

ImN(1, iξ) ≤ 0 for ξ ∈ R.(1.4)

Let u0 ∈ H2,1 ∩ H3, and ε = ‖u0‖H2,1 + ‖u0‖H3 is sufficiently small. Then (1.1)
admits a unique global solution u ∈ C([0,∞);H2,1 ∩ H3). Moreover, the following
asymptotic expression is valid as t → +∞ uniformly in x ∈ R:

u(t, x)(1.5)

=
a(xt ) exp

{
ix

2

2t − i|a(xt )|2 ReN(1, ixt )
∫ log t

0
dσ

1−2 ImN(1,i x
t )(|a( x

t )|2σ+b( x
t ))

}
√
t
√

1 − 2 ImN(1, ixt )
(
|a(xt )|2 log t + b(xt )

)
+ O

(
t−3/4+μ

)
,

where μ > 0 is an arbitrarily small constant, and a(ξ), b(ξ) are complex-valued con-
tinuous functions of ξ ∈ R which satisfy |a(ξ)| ≤ Cε〈ξ〉−2, |b(ξ)| ≤ Cε4〈ξ〉−4 with
some positive constant C.

Remark 1.1. As an immediate consequence of (1.5), we can see that

‖u(t)‖L∞ = O((t log t)−1/2) as t → +∞

if supξ∈R ImN(1, iξ) < 0. Moreover, as we shall see in Remark 4.1 below, the L2

norm of u(t) also decays like O((log t)−1/2). Therefore, by interpolation, we obtain

‖u(t)‖Lp = O
(
t−(1/2−1/p)(log t)−1/2

)
as t → +∞

for all p ∈ [2,∞].
Remark 1.2. Our result can be also viewed as an extension of [9] (see also [3], [2],

[4], [10], [13], [15], [16], [17], [18], and [21]) because (1.5) is reduced to

u(t, x) =
1√
t
a(x/t)ei

(
x2/(2t)−|a(x/t)|2 ReN(1,ix/t) log t

)
+ O

(
t−3/4+μ

)
as t → +∞

when ImN(1, iξ) ≡ 0. An example of the nonlinearity which was not considered
previously but satisfies (1.4) is N = αuu2

x with Imα > 0.
Remark 1.3. When ImN(1, iξ0) > 0 for some ξ0 ∈ R, the authors do not

know any global existence or nonexistence results for (1.1). However, in view of
the denominator of the leading term of (1.5), it is quite reasonable to expect that
small amplitude solutions can blow up in finite time if condition (1.4) is violated.
Concerning the lifespan Tε of the solution for (1.1) with u0(x) = εϕ(x), the following
explicit lower bound is obtained in [20]:

lim inf
ε ↓ 0

ε2 log Tε ≥
1

sup
ξ∈R

(
2|ϕ̂(ξ)|2 ImN(1, iξ)

) ,
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where ϕ̂ denotes the Fourier transform of ϕ. It may be an interesting open problem
to consider whether the corresponding upper estimate holds or not.

Remark 1.4. When we put

A(s, ξ) =
a(ξ) exp

{
−i|a(ξ)|2 ReN(1, iξ)

∫ s

0
dσ

1−2 ImN(1,iξ)(|a(ξ)|2σ+b(ξ))

}
√

1 − 2 ImN(1, iξ)(|a(ξ)|2s + b(ξ))
,

the asymptotic expression (1.5) can be interpreted as

u(t, x)
t→∞∼ eix

2/(2t)

√
t

A
(
log t,

x

t

)
; i∂sA = N(1, iξ)|A|2A.

This tells us that asymptotic behavior of the solution for (1.1) is characterized by
that of the solution for the simpler ordinary differential equation. At the level of the
reduced equation, the dissipative nature is transparent via the identity

∂s
(
|A(s, ξ)|2

)
= 2 ImN(1, iξ)|A(s, ξ)|4.

Note that analogous results have been obtained in [19] for nonlinear Klein–Gordon
equations and in [14] for nonlinear wave equations.

The rest of this paper is organized as follows: In the next section, we recall several
useful identities and inequalities. Section 3 is devoted to getting an a priori estimate,
from which global existence follows immediately. After that, we will derive the large
time asymptotics of u(t) in section 4 by applying a lemma on ordinary differential
equations.

2. Preliminaries. We collect here several identities and inequalities which are
useful in the proof of our main theorem. In what follows, we will denote several
positive constants by the same letter, C, which is possibly different line by line.

First we put J = J (t) = x + it∂x. It is well known that

[∂x,J ] = 1 and

[
i∂t +

1

2
∂2
x,J

]
= 0,(2.1)

where [·, ·] denotes the commutator, i.e., [A,B] = AB−BA for linear operators A and
B. Also we have

∂x(φψ) =
1

it

{
(J φ)ψ − φ(Jψ)

}
,(2.2)

J
(
θφψ

)
= (J θ)φψ + θ(J φ)ψ − θφ(Jψ)(2.3)

for smooth functions θ, φ, and ψ. Next we denote by U = U(t) the free Schrödinger
evolution group defined by

(
Uφ

)
(x) =

e−iπ/4

√
2πt

∫
R
ei(x−y)2/(2t)φ(y) dy.

From the relation J = UxU−1, we see that

‖FU−1φ‖H1
ξ
≤ C‖(1 + |x|)U−1φ‖L2

x
≤ C

(
‖φ‖L2

x
+ ‖J φ‖L2

x

)
,(2.4)

where (
Fφ

)
(ξ) = φ̂(ξ) =

1√
2π

∫
R
e−iyξφ(y) dy.
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It is also well known that U is decomposed into MDFM, where(
Mφ

)
(x) = eix

2/(2t)φ(x),

(
Dφ

)
(x) =

e−iπ/4

√
t

φ
(x
t

)
.

With this notation, we set W = FMF−1 so that U = MDWF . It follows from the

inequalities ‖φ‖L∞ ≤ C‖φ‖1/2
L2 ‖∂xφ‖1/2

L2 and |eix2/(2t) − 1| ≤ Ct−1/2|x| that

‖(W − 1)φ‖L∞ ≤ Ct−1/4‖φ‖H1 , ‖(W−1 − 1)φ‖L∞ ≤ Ct−1/4‖φ‖H1 .(2.5)

Consequently we have

‖φ−MDFU−1φ‖L∞ = ‖MD(W − 1)FU−1φ‖L∞(2.6)

= t−1/2‖(W − 1)FU−1φ‖L∞

≤ Ct−3/4‖FU−1φ‖H1

≤ Ct−3/4
(
‖φ‖L2 + ‖J φ‖L2

)
and

‖φ‖L∞ ≤ ‖MDFU−1φ‖L∞ + ‖φ−MDFU−1φ‖L∞(2.7)

≤ t−1/2‖FU−1φ‖L∞ + Ct−3/4
(
‖φ‖L2 + ‖J φ‖L2

)
.

Also it follows from the inequality ‖W−1φ‖L∞ ≤ Ct1/2‖φ‖L1 that

‖FU−1(θφψ)‖L∞ =
1

t

∥∥∥W−1
{

(WFU−1θ)(WFU−1φ)(WFU−1ψ)
}∥∥∥

L∞
(2.8)

≤ C

t1/2

∥∥(WFU−1θ)(WFU−1φ)(WFU−1ψ)
∥∥
L1

≤ C

t1/2
‖θ‖L2‖φ‖L2

∥∥WFU−1ψ
∥∥
L∞

≤ C‖θ‖L2‖φ‖L2

{
‖ψ‖L∞ + t−3/4

(
‖ψ‖L2 + ‖Jψ‖L2

)}
.

3. A priori estimates. This section is devoted to getting suitable a priori es-
timate for the solution of (1.1). Since the local existence is well known (see, e.g., [1],
[11], [13]), we can deduce global existence from this estimate. From now on, let u(t)
be the solution of (1.1) for t ∈ [0, T ] with some T > 0 and define

Eδ(T ) = sup
0≤t≤T

⎧⎨
⎩(1 + t)−δ

1∑
j=0

‖J ju(t)‖H3−j + (1 + t)1/2‖u(t)‖W 2,∞

⎫⎬
⎭

with δ ∈ (0, 1/8] fixed. Here and later on as well, W k,p denotes an Lp-based Sobolev
space of order k. What we are going to show is the following.

Lemma 3.1. Let K ≥ 1 and assume Eδ(T ) ≤ Kε, where ε = ‖u0‖H2,1 + ‖u0‖H3 .
Then we have

Eδ(T ) ≤ C1e
C2K

2ε2(1 + K3ε2 + K5ε4)ε,
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where C1, C2 are positive constants independent of ε, K, and T , but possibly dependent
on δ.

Once this lemma is established, global existence follows immediately. Indeed,
when we put ε0 = K−2 and choose K so large that C1e

C2K
−2

(1+K−1+K−3) ≤ K/2,
it follows from the above lemma that Eδ(T ) ≤ Kε implies Eδ(T ) ≤ Kε/2 for any
ε ∈ (0, ε0]. Then, by the continuity argument (see, e.g., [12]), we see that Eδ(T ) ≤ Kε
must hold as long as the solution exists. Therefore the local solution can be extended
to the global one.

Now, we turn to the proof of Lemma 3.1. It will be divided into two parts, i.e.,
L∞ and L2 estimates. The argument below is a refinement of section 2 of [9].

3.1. L∞ estimates. In this part, we consider the estimate of (1+t)1/2‖u(t)‖W 2,∞ .
We set

α(t, ξ) = F
(
U−1u(t)

)
(ξ)

and αk(t, ξ) = (iξ)kα(t, ξ) so that ∂k
xu = MDWαk. Using the inequality (2.7) for

t ∈ [1, T ] and the Sobolev imbedding for t ∈ [0, 1], we can see that the problem is
reduced to getting the bound of ‖αk(t)‖L∞ for t ∈ [1, T ], 0 ≤ k ≤ 2, under the
assumption Eδ(T ) ≤ Kε. More precisely, our objective here is to obtain the following
estimate:

sup
t∈[1,T ]

‖αk(t)‖L∞ ≤ C(ε + K3ε3), k = 0, 1, 2.

Let us first consider the case of k = 0. Applying the operator FU−1 to the
equation, we have

i∂tα = FU−1N(u, ux)

= W−1D−1M−1N(MDWα,MDWα1)

=
1

t
W−1N(Wα,Wα1)

=
1

t
N(1, iξ)|α|2α + ρ0,

where

ρ0 =
1

t

{
W−1N(Wα,Wα1) −N(α, α1)

}
.

Observe that (1.4) implies

∂t
(
|α|2

)
= 2 Im

(
α i∂tα

)
=

2

t
ImN(1, iξ)|α|4 + 2 Im

(
αρ0

)
≤ 2|α||ρ0|

and that (2.5) yields

‖ρ0‖L∞ ≤ t−1‖(W−1 − 1)N(Wα,Wα1)‖L∞(3.1)

+ t−1‖N(Wα,Wα1) −N(α, α1)‖L∞

≤ CK3ε3t−5/4.



DISSIPATIVE NLS OF DERIVATIVE TYPE 283

So we deduce that

‖α(t)‖L∞ ≤ ‖α(1)‖L∞ +

∫ t

1

‖ρ0(τ)‖L∞dτ ≤ Cε + CK3ε3.

Next we turn to the case of k = 1, 2. We split N(u, ux) into g0(u, ux)u+ g1(u, ux)ux,
where g0(u, q) = λ1|u|2 +λ2uq+λ3|q|2, g1(u, q) = λ4|u|2 +λ5qu+λ6|q|2 with complex
constants λ1, . . . , λ6, and we set

hk = ∂k
x

(
N(u, ux)

)
−

1∑
j=0

gj(u, ux)∂j+k
x u

so that

i∂tαk = FU−1
1∑

j=0

gj(u, ux)∂j+k
x u + FU−1hk.

To find out the leading term of the right-hand side, we analyze the action of FU−1

to gj(u, ux)∂j+k
x u carefully. For j = 0, we have

FU−1
(
g0(u, ux)∂k

xu
)

= W−1D−1M−1
(
g0(MDWα,MDWα1)MDWαk

)
=

1

t
W−1

(
g0(Wα,Wα1)Wαk

)
=

1

t
g0(α, α1)αk + σk,

where

σk =
1

t

{
W−1

(
g0(Wα,Wα1)Wαk

)
− g0(α, α1)αk

}
.

For j = 1, let us introduce

h̃k = g1(u, ux)∂1+k
x u + (λ4uux + λ5|ux|2 + λ6uxuxx)∂k

xu.

Then, noting the relation λ4αα1 + λ5|α1|2 + λ6α1α2 = −iξg1(1, iξ)|α|2, we see that

FU−1
(
g1(u, ux)∂1+k

x u
)

= −FU−1
{
(λ4uux + λ5|ux|2 + λ6uxuxx)∂k

xu
}

+ FU−1h̃k

= −1

t
W−1

{(
λ4(Wα)(Wα1) + λ5|Wα1|2 + λ6(Wα1)(Wα2)

)
Wαk

}
+ FU−1h̃k

= −1

t
(λ4αα1 + λ5|α1|2 + λ6α1α2)αk + σ̃k + FU−1h̃k

=
1

t
iξg1(1, iξ)|α|2αk + σ̃k + FU−1h̃k,

where

σ̃k = −λ4

t

{
W−1

(
(Wα)(Wα1)Wαk

)
− (αα1)αk

}

−λ5

t

{
W−1

(
|Wα1|2Wαk

)
− |α1|2αk

}

−λ6

t

{
W−1

(
(Wα1)(Wα2)Wαk

)
− α1α2αk

}
.
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Summing up, we have

i∂tαk =
(
g0(1, iξ) + iξg1(1, iξ)

)
|α|2αk + σk + σ̃k + FU−1(hk + h̃k)

= N(1, iξ)|α|2αk + ρk,

where ρk = σk + σ̃k + FU−1(hk + h̃k). Thus we deduce as in the previous case that

‖αk(t)‖L∞ ≤ ‖αk(1)‖L∞ +

∫ t

1

‖ρk(τ)‖L∞ dτ ≤ Cε + CK3ε3,

provided that the estimate ‖ρk‖L∞ ≤ CK3ε3t−5/4 is verified. So the remaining task
is to check this for k = 1, 2. In order to estimate ‖FU−1(hk + h̃k)‖L∞ , we rewrite hk

as

1∑
j=0

k∑
l=1

(
k
l

)
∂l−1
x

(
∂x

(
gj(u, ux)

))
∂j+k−l
x u

and apply (2.2) to ∂x
(
gj(u, ux)

)
. Also we express h̃k as

λ4u∂x
(
u∂k

xu
)

+ λ5ux∂x
(
u∂k

xu
)

+ λ6ux∂x
(
ux∂

k
xu

)
and use (2.2). Then we see that hk + h̃k can be written as a linear combination of

1

t

(
J ∂k1

x u
)(
∂k2
x u

)(
∂k3
x u

)
or

1

t

(
J ∂k1

x u
)(
∂k2
x u

)(
∂k3
x u

)
with k1, k2, k3 ≤ 2. Hence it follows from (2.8) that

‖FU−1(hk + h̃k)‖L∞ ≤ CK3ε3t−3/2+2δ.(3.2)

On the other hand, we deduce as the derivation of (3.1) that

‖σk + σ̃k‖L∞ ≤ CK3ε3t−5/4.(3.3)

From (3.2) and (3.3), it follows that

‖ρk‖L∞ ≤ CK3ε3t−5/4 + CK3ε3t−3/2+2δ ≤ CK3ε3t−5/4(3.4)

for k = 1, 2, as desired.

3.2. L2 estimates. In the remainder of this section, we consider the bound of
(1 + t)−δ

∑1
j=0 ‖J ju(t)‖H3−j . It is enough to show that

1∑
j=0

‖J ju(t)‖L2 ≤ Cε + CK3ε3(1 + t)δ(3.5)

and

1∑
j=0

‖∂3−j
x J ju(t)‖L2 ≤ CeCK2ε2(ε + K3ε3 + K5ε5)(1 + t)δ(3.6)

for t ∈ [0, T ] under the assumption Eδ(T ) ≤ Kε.
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First we consider the easier estimate (3.5). It follows from the standard energy
method that

d

dt
‖u(t)‖L2 ≤ C‖u‖2

W 1,∞‖u‖H1 ≤ CK3ε3(1 + t)−1+δ.

Also, when we remember (2.1) and (2.3), we see that(
i∂t +

1

2
∂2
x

)
J u

=
∂N

∂u
(u, ux)J u− ∂N

∂u
(u, ux)J u +

∂N

∂q
(u, ux)J ∂xu− ∂N

∂q
(u, ux)J ∂xu,

where the variable q is responsible for ux, and ∂/∂u, ∂/∂u, ∂/∂q, ∂/∂q are defined by

∂

∂u
=

1

2

(
∂

∂ Reu
− i

∂

∂ Imu

)
,

∂

∂u
=

1

2

(
∂

∂ Reu
+ i

∂

∂ Imu

)
,

∂

∂q
=

1

2

(
∂

∂ Re q
− i

∂

∂ Im q

)
,

∂

∂q
=

1

2

(
∂

∂ Re q
+ i

∂

∂ Im q

)
,

respectively. Then the energy method again implies

d

dt
‖J u(t)‖L2 ≤ C‖u‖2

W 1,∞(‖u‖H1 + ‖J u‖H1) ≤ CK3ε3(1 + t)−1+δ,

which gives us (3.5).
Next we consider (3.6). To obtain this estimate, we use the gauge transformation

technique since the standard energy estimate may cause a derivative loss, as we have
just seen. The following energy inequality is established in section 2 of [13] (see also
[1] and [11]).

Lemma 3.2. Let ψ(t, x) be a smooth function satisfying

i∂tψ +
1

2
∂2
xψ + b1(t, x)∂xψ + b2(t, x)∂xψ = f(t, x)

for (t, x) ∈ [0, T ] × R with some smooth functions b1(t, x), b2(t, x), f(t, x) and some
T > 0. Then we have

d

dt
‖eP (t,·)ψ(t, ·)‖L2 ≤ CB(t)‖eP (t,·)ψ(t, ·)‖L2 + ‖eP (t,·)f(t, ·)‖L2

for t ∈ [0, T ], where

P (t, x) =

∫ x

−∞
Re b1(t, y) dy,(3.7)

B(t) =
2∑

k=1

(
‖∂xbk(t, ·)‖L∞ + ‖bk(t, ·)‖2

L∞
)

+ sup
x∈R

∣∣∣∣
∫ x

−∞
∂tb1(t, y) dy

∣∣∣∣ .(3.8)

Since ∂3−j
x J ju satisfies(
i∂t +

1

2
∂2
x

)
(∂3−j

x J ju)

=
∂N

∂q
(u, ux)∂x(∂3−j

x J ju) + (−1)j
∂N

∂q
(u, ux)∂x(∂3−j

x J ju) + Rj
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with

‖Rj‖L2 ≤ CK3ε3(1 + t)−1+δ(3.9)

for j = 0, 1, we can apply Lemma 3.2 to obtain

d

dt
‖eP (t)∂3−j

x J ju(t)‖L2 ≤ CB(t)‖eP (t)∂3−j
x J ju(t)‖L2 + ‖eP (t)Rj(t)‖L2 ,(3.10)

where P (t, x) and B(t) are given by (3.7) and (3.8) with

b1 = −∂N

∂q
(u, ux), b2 = (−1)j+1 ∂N

∂q
(u, ux).

Note that

‖u(t)‖H1
x

= ‖〈ξ〉FU−1u(t)‖L2
ξ

=
∥∥∥〈ξ〉−1

(
α(t) + ξ2α(t)

)∥∥∥
L2

ξ

≤
(∫ ∞

−∞

dξ

1 + ξ2

)1/2 (
‖α(t)‖L∞

ξ
+ ‖α2(t)‖L∞

ξ

)
≤ CKε,

whence

e±P (t,x) ≤ eC‖u(t)‖2
H1 ≤ eCK2ε2 .(3.11)

As for the estimate of B(t), we observe that the identity

∂t
(
φψ

)
= − i

2
∂x

(
φψx − φxψ

)
+ iφ

(
i∂t +

1

2
∂2
x

)
ψ − iψ

(
i∂t +

1

2
∂2
x

)
φ

adapted to b1 =
∑1

j,k=0 λjk(∂
j
xu)(∂k

xu). Then we have

B(t) ≤ C‖u‖2
W 2,∞ + C‖u‖4

W 1,∞ + C

1∑
j,k=0

∫
R
|∂j

xu| |∂k
xN(u, ux)| dx(3.12)

≤ C‖u‖2
W 2,∞ + C‖u‖4

W 1,∞ + C‖u‖2
W 2,∞‖u‖2

H1

≤ C(K2ε2 + K4ε4)(1 + t)−1.

By (3.9)–(3.12) we obtain

d

dt
‖eP (t)∂3−j

x J ju(t)‖L2 ≤ C(K2ε2 + K4ε4)(1 + t)−1eCK2ε2‖∂3−j
x J ju(t, ·)‖L2

+ CeCK2ε2K3ε3(1 + t)−1+δ

≤ CeCK2ε2(K3ε3 + K5ε5)(1 + t)−1+δ,
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whence

1∑
j=0

‖∂3−j
x J ju(t)‖L2 ≤ eCK2ε2

1∑
j=0

‖eP (t)∂3−j
x J ju(t)‖L2

≤ eCK2ε2
{
Cε + CeCK2ε2(K3ε3 + K5ε5)

∫ t

0

(1 + τ)−1+δ dτ

}

≤ CeCK2ε2(ε + K3ε3 + K5ε5)(1 + t)δ.

The proof of Lemma 3.1 is complete.

4. Large time asymptotics. Now we are in a position to show the asymptotic
expression (1.5). In view of (2.6), it suffices to find the asymptotics of α(t, ξ). The
following lemma is essentially due to [7], [8], [14], [19], though we shall state a slightly
refined version here. For the convenience of the readers, the proof will be provided in
the appendix.

Lemma 4.1. Let β0(ξ), κ(ξ) be bounded continuous functions and suppose that
Imκ(ξ) ≤ 0 for all ξ ∈ R. Let r(t, ξ) satisfy

sup
ξ∈R

|r(t, ξ)| = O(t−1−λ) (t → +∞)

with some constant λ > 0. If β(t, ξ) solves the differential equation

i
∂β

∂t
= ε2κ(ξ)

t
|β|2β + ε2r(t, ξ), β(1, ξ) = β0(ξ)(4.1)

for sufficiently small ε, then there exist continuous functions β∞(ξ) and γ(ξ), which
satisfy |β∞(ξ)| ≤ C and |γ(ξ)| ≤ Cε2, such that

β(t, ξ) =
β∞(ξ) exp

{
−iε2|β∞(ξ)|2 Reκ(ξ)

∫ log t

0
dσ

1−2ε2 Imκ(ξ)(|β∞(ξ)|2σ+γ(ξ))

}
√

1 − 2ε2 Imκ(ξ)(|β∞(ξ)|2 log t + γ(ξ))

+ O
(
t−λ+μ

)
as t → +∞ uniformly in ξ ∈ R, where μ is an arbitrarily small number.

Now, we set β(t, ξ) = ε−1〈ξ〉2α(t, ξ), κ(ξ) = 〈ξ〉−4N(1, iξ), and

r(t, ξ) =
1

ε2

(
i
∂β

∂t
− ε2κ(ξ)

t
|β|2β

)
.

Then, since

r(t, ξ) =
1

ε3

{(
i
∂α

∂t
− 1

t
N(1, iξ)|α|2α

)
+
(
i
∂α2

∂t
− 1

t
N(1, iξ)|α|2α2

)}

=
1

ε3

(
ρ0(t, ξ) + ρ2(t, ξ)

)
,

we deduce from (3.1) and (3.4) that

sup
ξ∈R

|r(t, ξ)| ≤ 1

ε3
(‖ρ0(t)‖L∞ + ‖ρ2(t)‖L∞) ≤ Ct−5/4.
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Therefore we can apply Lemma 4.1 with λ = 1/4 to get the asymptotics of β as
t → +∞. Putting a(ξ) = e−iπ/4ε〈ξ〉−2β∞(ξ) and b(ξ) = ε2〈ξ〉−4γ(ξ), we have

α(t, ξ) =
a(ξ) exp

{
iπ/4 − i|a(ξ)|2 ReN(1, iξ)

∫ log t

0
dσ

1−2 ImN(1,iξ)(|a(ξ)|2σ+b(ξ))

}
√

1 − 2 ImN(1, iξ)(|a(ξ)|2 log t + b(ξ))

+ O
(
t−1/4+μ

)
as t → +∞. Finally, using (2.6), we arrive at the desired asymptotic expression for
u(t, x).

Remark 4.1. We can also deduce the L2-decay of u(t) because

‖u(t)‖L2
x

= ε‖〈ξ〉−2β(t)‖L2
ξ
≤ Cε‖β(t)‖L∞

ξ

and

‖β(t)‖L∞
ξ

= O((log t)−1/2) as t → +∞

if supξ∈R ImN(1, iξ) < 0.
Remark 4.2. It is possible to weaken (1.2) to a certain extent, but impossible to

remove it completely. In fact, when (1.2) is replaced by

N(eiθ, 0) = eiθN(1, 0) for θ ∈ R,(4.2)

we can modify the above argument combining the idea of [5], [6] (see also the appendix
of [19]) to show that Theorem 1.1 is still valid if N(1, iξ) in the statement is replaced
by

1

2π

∫ 2π

0

N(eiθ, iξeiθ)e−iθ dθ.

Note that (4.2) is just what excludes u3, u3, uu2 from all possible cubic nonlinear
terms, but it is not a technical assumption because for these three nonlinearities we
can find a class of initial data for which the solution has another kind of asymptotic
profile than (1.5) (see [7] and [8] for details).

Appendix. We give a proof of Lemma 4.1 following [19] and [14] with some
modifications. Because of the uniqueness for (4.1), β(t, ξ) admits the decomposition

β(t, ξ) =
p(t, ξ)√
q(t, ξ)

,

where p(t, ξ) and q(t, ξ) satisfy⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tp(t, ξ) = −iε2 Reκ(ξ)

t

∣∣p(t, ξ)∣∣2
q(t, ξ)

p(t, ξ) − iε2
√
q(t, ξ)r(t, ξ),

∂tq(t, ξ) = −2ε2 Imκ(ξ)

t

∣∣p(t, ξ)∣∣2,
p(1, ξ) = β0(ξ), q(1, ξ) = 1.

(A.1)

Note that p(t, ξ) is complex-valued, while q(t, ξ) is real and strictly positive. In order
to obtain the desired conclusion, it is sufficient to get the asymptotics of p(t, ξ) and
q(t, ξ) as t → +∞.
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We first show that there exists a positive constant A such that

sup
(t,ξ)∈[1,∞)×R

|p(t, ξ)| < A.(A.2)

We shall argue by contradiction: Suppose that for any A > supξ∈R |β0(ξ)| there exists
a finite time TA ∈ (1,∞) such that

sup
(t,ξ)∈[1,TA)×R

|p(t, ξ)| ≤ A and sup
ξ∈R

|p(TA, ξ)| = A.

Then, from the second equation of (A.1), we have

1 ≤ q(t, ξ) ≤ 1 − 2ε2 Imκ(ξ)A2 log t

for t ∈ [1, TA]. On the other hand, it follows from the first equation of (A.1) that

∂t

(
|p(t, ξ)|2

)
= 2 Re

(
p(t, ξ)∂tp(t, ξ)

)
= 2ε2 Re

(
p(t, ξ)

√
q(t, ξ)r(t, ξ)

)
≤ 2ε2

∣∣p(t, ξ)∣∣ ∣∣√q(t, ξ)r(t, ξ)
∣∣.

So we have

|p(TA, ξ)| ≤ |β0(ξ)| +
∫ TA

1

ε2
∣∣√q(τ, ξ)r(τ, ξ)

∣∣ dτ
≤ C +

∫ ∞

1

Cε2(1 + A2ε2 log τ)1/2τ−1−λdτ

≤ C(1 + Aε).

When we choose A = 4C and ε1 = 1/A, we have

sup
ξ∈R

|p(TA, ξ)| ≤
A

2
< A

for ε ∈ (0, ε1], which is the desired contradiction. Hence (A.2) must hold for some A.
Also we have

1 ≤ q(t, ξ) ≤ 1 − 2ε2 Imκ(ξ)A2 log t

for any t ≥ 1. Next we define

Θ(t, ξ) =

∫ t

1

Reκ(ξ)|p(τ, ξ)|2
q(τ, ξ)

dτ

τ

so that ∂t(p(t, ξ)e
iε2Θ(t,ξ)) = −iε2

√
q(t, ξ)r(t, ξ)eiε

2Θ(t,ξ). Since

sup
ξ∈R

∣∣∣√q(t, ξ)r(t, ξ)
∣∣∣ ≤ C(1 + ε2 log t)1/2t−1−λ ≤ Ct−1−λ+μ,

we obtain

sup
ξ∈R

|p(t, ξ) − p∞(ξ)e−iε2Θ(t,ξ)| ≤ Cε2t−λ+μ,
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where

p∞(ξ) = β0(ξ) − iε2

∫ ∞

1

√
q(τ, ξ)r(τ, ξ)eiε

2Θ(τ,ξ) dτ.

We also set q∞(t, ξ) = 1 − 2ε2 Imκ(ξ)
(
|p∞(ξ)|2 log t + γ(ξ)

)
with

γ(ξ) =

∫ ∞

1

(
|p(τ, ξ)|2 − |p∞(ξ)|2

)dτ
τ
.

Noting that∣∣|p(t, ξ)|2 − |p∞(ξ)|2
∣∣ ≤ ∣∣p(t, ξ) − p∞(ξ)e−iε2Θ(t,ξ)

∣∣(|p(t, ξ)| + |p∞(ξ)|
)

≤ Cε2t−λ+μ,

we can see that

|q(t, ξ) − q∞(t, ξ)| ≤ 2ε2| Imκ(ξ)|
∫ ∞

t

∣∣|p(τ, ξ)|2 − |p∞(ξ)|2
∣∣dτ
τ

≤ Cε4t−λ+μ.

Let us also introduce

Φ(t, ξ) =
Reκ(ξ)

t

(
|p(t, ξ)|2
q(t, ξ)

− |p∞(ξ)|2
q∞(t, ξ)

)
.

Then we have

iε2Θ(t, ξ) = iε2|p∞(ξ)|2 Reκ(ξ)

∫ t

1

dτ

q∞(τ, ξ)
+ iε2

∫ ∞

1

Φ(τ, ξ) dτ − iε2

∫ ∞

t

Φ(τ, ξ) dτ

and∫ ∞

t

|Φ(τ, ξ)| dτ ≤ C

∫ ∞

t

(∣∣|p(τ, ξ)|2 − |p∞(ξ)|2
∣∣

q(τ, ξ)
+

|p∞(ξ)|2
∣∣q(τ, ξ) − q∞(τ, ξ)

∣∣
q(τ, ξ)q∞(τ, ξ)

)
dτ

τ

≤ Cε2

∫ ∞

t

dτ

τ1+λ−μ

≤ Cε2t−λ+μ.

Therefore, putting β∞(ξ) = p∞(ξ) exp
(
−iε2

∫∞
1

Φ(τ, ξ) dτ
)
, we obtain

p(t, ξ) = p∞(ξ)e−iε2Θ(t,ξ) + O(t−λ+μ)

= β∞(ξ) exp

(
−iε2|p∞(ξ)|2 Reκ(ξ)

∫ t

1

dτ

q∞(τ, ξ)

)
+ O(t−λ+μ)

= β∞(ξ) exp

(
−iε2|β∞(ξ)|2 Reκ(ξ)

∫ log t

0

dσ

1 − 2ε2 Imκ(ξ)
(
|β∞(ξ)|2σ + γ(ξ)

))

+ O(t−λ+μ)

as well as

1√
q(t, ξ)

=
1√

q∞(t, ξ)
+

q∞(t, ξ) − q(t, ξ)√
q(t, ξ)q∞(t, ξ)(

√
q(t, ξ) +

√
q∞(t, ξ))

=
1√

1 − 2ε2 Imκ(ξ)
(
|β∞(ξ)|2 log t + γ(ξ)

) + O(t−λ+μ),
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whence

β(t, ξ) =
p(t, ξ)√
q(t, ξ)

=

β∞(ξ) exp

(
−iε2|β∞(ξ)|2 Reκ(ξ)

∫ log t

0
dσ

1−2ε2 Imκ(ξ)
(
|β∞(ξ)|2σ+γ(ξ)

))
√

1 − 2ε2 Imκ(ξ)
(
|β∞(ξ)|2 log t + γ(ξ)

)
+ O(t−λ+μ)

as t → +∞.
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Abstract. In this paper we investigate quasilinear systems of reaction-diffusion equations with
mixed Dirichlet–Neumann boundary conditions on nonsmooth domains. Using techniques from max-
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1. Introduction. The theory of quasilinear parabolic systems has many applica-
tions to evolution problems in natural sciences, see, e.g., [2], [1], [5], [6], [20], [10], [16],
[30], and [41]. In this paper we investigate in particular systems of reaction-diffusion
equations with mixed Dirichlet–Neumann boundary conditions on nonsmooth do-
mains Ω ⊂ R

n for n = 2, 3 of the form

u′
k − div(Gk(v)μk∇vk) = Rk(t, v), t ∈]T0, T [, x ∈ Ω,

uk = bk Fk(vk), t ∈ [T0, T [, x ∈ Ω,

ν · μk∇vk = 0, t ∈ [T0, T [, x ∈ ΓN ,(1.1)

vk = φk, t ∈ [T0, T [, x ∈ ΓD,

vk(T0) = v0k, x ∈ Ω.

Here v = (v1, . . . , vm), μk ∈ L∞(Ω,Mn×n) are diffusion coefficients, bk ∈ L∞(Ω) are
reference densities, and Rk, Gk, Fk denote the reaction, diffusion, and superposition
terms for k ∈ {1, . . . ,m}.

In many concrete problems which are described as a system of the form (1.1),
the underlying domain is nonsmooth and the coefficient functions bk and μk are dis-
continuous. We therefore aim for minimal smoothness assumptions on the boundary
∂Ω of Ω, the coefficient functions bk and μk, as well as on the interface between the
Neumann boundary part ΓN of ∂Ω and the Dirichlet boundary part ΓD = ∂Ω \ ΓN .
More precisely, we generally assume that Ω ⊂ R

n is a Lipschitz domain and Ω ∪ ΓN

is regular in the sense of Gröger (see the definition below). Note that the situation
where the boundary of Ω is smooth and consists of two separated parts, one with
Dirichlet and the other with Neumann boundary conditions, has been studied before
by Amann in [2].

Our setting includes even nonlocal diffusion terms as occurring in models describ-
ing the diffusion of bacteria (see [7], [8] and the references therein). In detail, the
velocity at which the motion takes place is given by Fourier’s law and the (relative)
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diffusion coefficient G = Gk depends on the solution v in the form

G(v) = η

(∫
Ω

z(x)v(x) dx

)
,

where η is a (strictly) positive, continuously differentiable function on R.
Our approach includes reaction terms Rk depending discontinously on time t,

which is important in many examples (see [41], [26], [30]), in particular in the control
theory of parabolic equations. Alternatively, the reader should think, e.g., of a man-
ufacturing process for semiconductors, where at a certain moment light is switched
on/off and, of course, parameters in the chemical process change abruptly.

An interesting example for a reaction term stems from the thermistor problem (see
[38], [3] and the references therein, see also [6]) which describes the combined processes
of heat conduction and electrical conduction in a body. This is of importance in the
industrially important process of electrical welding. To be precise, the reaction term
is of the form σ(v)|∇ϕ|2, where ϕ is the solution of an auxiliary elliptic problem, into
which v enters as a parameter (see details in section 4.2). Observe that the quadratic
gradient term is a critical one and in general not easy to handle (see [38]), while in
our context it does not cause additional difficulties.

Note that the original formulation of the evolution equation in terms of balance
laws takes the form (see [39, Ch. 21], see also [5])

(1.2)
∂

∂t

∫
Ω′

uk dx +

∫
∂Ω′

ν · jk dσ =

∫
Ω′

Rk dx; jk = jk(v) = Gk(v)μk∇vk,

where Ω′ stands for any (Lipschitzian) subdomain of Ω. Within the variational theory
of weak solutions, however, the indicator functions of the subdomains are not admis-
sible test functions. Therefore the integral formulation (1.2) is equivalent to the above
evolution equation only if the weak solutions have some additional regularity. It is
the main advantage of the present concept that the divergence of the corresponding
current jk(v) indeed is a function, not only a distribution. In a strict sense, only this
justifies the application of Gauss’ theorem to calculate the normal components of the
currents over boundaries of suitable subdomains. Moreover, the fact div jk ∈ Lp is
also of importance for the numerical treatment of (1.1), as the formulation (1.2) is
the basis of finite volume methods (see [18])—namely in the sense of local balances.
Global existence results for (1.1) cannot be expected within such a general approach
(see, e.g., [17] or [6] and the references therein).

In contrast to many papers where existence and uniqueness results for quasilinear
parabolic systems are based on the construction of an appropriate evolution operator
(see, e.g., [1]), our approach relies heavily on maximal Lp-estimates for the linear part
of (1.1). In fact, after rewriting (1.1) as an abstract evolution equation in Lp(Ω)m of
the form

w′ −H(t, w)
(
div(μ∇w)

)
= S(t, w),

w(T0) = v0 − φ(T0),(1.3)

our strategy to solve (1.3) follows the approach of Clément and Li [10] and Prüss [34].
The advantage of the given situation (1.1) is that subtle techniques from harmonic
analysis as well as heat-kernel methods can be used to prove the central Lp-estimates of
the linear part. In order to apply these methods in our situation, one needs embedding
properties of certain interpolation spaces between the domain of the Lp-realization of
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the underlying elliptic operators and Lp(Ω) into W 1,2p(Ω). This embedding property
rests on the assumption that the operators formally defined by

−∇ · μk∇ + 1 : W 1,q
ΓN

(Ω) → W−1,q
ΓN

(Ω)

provide topological isomorphisms for some q > n. Note that this assumption restricts
the physical dimension of the problems to two and three, because one knows that the
solution for a mixed boundary value problem generically has singularities, precisely,
one cannot expect that its gradient lies in L4; see Shamir’s famous counterexample
[37]. On the other hand, in two and three dimensions the assumption is fulfilled
for many geometric constellations and (even discontinuous) coefficient functions; see
section 4.

2. Preliminaries. Let Ω ⊂ R
n be a bounded Lipschitz domain and assume

that n = 2 or n = 3. (Concerning the notions “Lipschitz domain” and “domain
with Lipschitz boundary” we follow [23, section 1.2.1].) Denote by ΓN ⊂ ∂Ω an open
subset of ∂Ω. For 1 < q < ∞ we define W 1,q

ΓN
(Ω) as the closure of

{ψ|Ω : ψ ∈ C∞
c (Rn), suppψ ∩ (∂Ω\ΓN ) = ∅}

in the Sobolev space W 1,q(Ω). If q = 2, we write H1(Ω) or H1
ΓN

(Ω) instead of W 1,2(Ω)

or W 1,2
ΓN

(Ω). Of course, if ΓN = ∅, then W 1,q
ΓN

(Ω) = W 1,q
0 (Ω). Moreover, throughout

this work we always suppose that Ω ∪ ΓN is regular in the sense of Gröger (see [24]),
this means that, for all x ∈ ∂Ω there exist open sets Ux, Vx ⊂ R

n and a bi-Lipschitz
transform Ψx from Ux onto Vx such that x ∈ Ux,Ψx(x) = 0 and Ψx(Ux ∩ (Ω ∪ ΓN ))
coincides with one of the sets

E1 := {x ∈ R
n : max

l=1...,n
|xl| < 1, xn < 0},

E2 := {x ∈ R
n : max

l=1,...,n
|xl| < 1, xn ≤ 0},

E3 := {x ∈ E2 : xn < 0 or x1 > 0}.

It is not hard to see that every Lipschitz domain, and also its closure, is regular in
the sense of Gröger, the corresponding model sets are then E1 or E2, respectively; see
[23]. Moreover, if Ω ⊂ R

2 is a bounded Lipschitz domain and ∂Ω \ ΓN is the finite
union of (nondegenerate) closed arc pieces from the boundary, then Ω∪ΓN is regular
in the sense of Gröger.

Finally, for k ∈ {1, . . . ,m}, let μk ∈ L∞(Ω,Mn×n), where Mn×n denotes the set
of all real, symmetric n× n matrices. Suppose that additionally

(2.1) inf
x∈Ω

inf
|ς|=1

μk(x)ς · ς > 0.

For a closed subspace V ⊆ H1(Ω) such that H1
0 (Ω) ⊆ V we define the form ak :

V × V → R by

ak(u, v) := −
∫

Ω

μk∇u · ∇v dx, u, v ∈ V.

The form induces a continuous mapping Ak : V → V ′ such that

(2.2) ak(u, v) = (Aku|v), u, v ∈ V.
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Here, for v ∈ L2(Ω), fv(u) := (v|u)L2 defines an element fv ∈ V ′ and v �→ fv :
L2(Ω) → V ′ defines a continuous injection. In the following, we identify v with fv.
We then define the operator Ak as

D(Ak) := {u ∈ V : ∃f ∈ L2(Ω), ak(u, φ) = (f |φ) ∀φ ∈ V },(2.3)

Aku := f.(2.4)

It is well known that Ak generates an analytic semigroup on L2(Ω) which is positivity
preserving. Furthermore, this semigroup extends to a C0-semigroup of contractions
on Lp(Ω) for all 1 < p < ∞; see, [22, Thm. 4.9]. The realization of its generator in
Lp is denoted by Ap

k.

3. Main result. We start this section by giving precise assumptions on the
coefficients and functions being involved in problem (1.1). In order to do so, let
0 ≤ T0 < T1 and set J :=]T0, T1[. For k ∈ {1, . . . ,m} let μk ∈ L∞(Ω,Mn×n) and
assume that (2.1) is satisfied.

Moreover, let for every k ∈ {1, . . . ,m} the functions bk ∈ L∞(Ω; R) be bounded
from below by some positive constant.

We assume the following for all k ∈ {1, . . . ,m}.
(Op) There exists p > n

2 such that each Ak − Id is a topological isomorphism from

W 1,2p
ΓN

(Ω) onto W−1,2p
ΓN

(Ω). For all what follows we fix a number r > 4p
2p−n .

(Su) There exists fk ∈ C2(R), positive, with strictly positive derivative, such that
Fk is the superposition operator induced by fk; i.e., Fk(v)(x) = (fk ◦ v)(x) =
fk(v(x)), x ∈ Ω.

(Ga) The mapping Gk :
(
W 1,2p(Ω)

)m → W 1,2p(Ω) is locally Lipschitz.

(Gb) For any ball in
(
W 1,2p(Ω)

)m
there exists δ > 0 such that Gk(u) ≥ δ for all u

from this ball.
(Ra) The function Rk : J ×

(
W 1,2p(Ω)

)m → Lp(Ω) is of Carathéodory type, i.e.,

Rk(·, u) is measurable for all u ∈
(
W 1,2p(Ω)

)m
and Rk(t, ·) is continuous for

a.a. t ∈ J .
(Rb) Rk(·, 0) ∈ Lr(J, Lp(Ω)) and for β > 0 there exists gβ ∈ Lr(J) such that

‖Rk(t, u) −Rk(t, ũ)‖Lp ≤ gβ(t)‖u− ũ‖W 1,2p , t ∈ J,

provided max(‖u‖W 1,2p , ‖ũ‖W 1,2p) ≤ β.
(BC) φk ∈ C(J ;W 1,2p(Ω)) ∩W 1,r(J ;Lp(Ω)) and Akφk(t) = 0 for all t ∈ J .
(IC) v0k − φk(T0) ∈ (Lp(Ω), D(Ap

k))1− 1
r ,r

.

The assumptions imply that the system (1.1) may be (formally) rewritten as a
quasilinear system of the form

w′
k −Hk(t, w)Akwk = Tk(t, w), k = 1, . . . ,m,(3.1)

w(T0) = v0 − φ(T0),

where
(3.2)

Tk(t, w) := (bkf
′
k(wk+φk(t)))

−1[∇Gk(w+φ(t))·[μk∇(wk+φk(t))]]+Qk(t, w)− ∂φk

∂t
(t)

with

Hk(t, z) :=
Gk(z + φ(t))

bk f ′
k(zk + φk(t))

, t ∈ J, z ∈
(
W 1,2p(Ω)

)m
,(3.3)

Qk(t, z) :=
Rk(t, z + φ(t))

bk f ′
k(zk + φk(t))

, t ∈ J, z ∈
(
W 1,2p(Ω)

)m
.(3.4)
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We are now in the position to state the main result of this paper.
Theorem 3.1. Let 1 < r, p < ∞ such that r > 4p

2p−n , where n ∈ {2, 3}. Assume

that the assumptions (Op), (Su), (Ga), (Gb), (Ra), (Rb), (BC), and (IC) are satisfied.
Then there exists a unique local solution w = (w1, . . . , wm) for (3.1) on an interval
I =]T0, T [ satisfying

(3.5) wk ∈ W 1,r(I;Lp(Ω)) ∩ Lr(I;D(Ak)), k ∈ {1, . . . ,m}.

Corollary 3.2. Each wk is Hölder-continuous simultaneously in space and
time.

Some remarks at this point are in order.
Remark 3.3.

(a) We refer the reader to section 4 for precise geometric and smoothness condi-
tions implying the validity of assumption (Op).

(b) Besides the exponential, a typical example for a function f satisfying assump-
tion (Su) is the Fermi–Dirac distribution function

f(t) :=
2√
π

∫ ∞

0

√
s

1 + es−t
ds.

(c) Suppose that vk coincides on ΓD with a function φ ∈ C1(J,W 1,2p(Ω)). Then
there exists φk satisfying assumption (BC).

(d) Note that condition (BC) implies ν · μk∇φk = 0 on ΓN . This, together with
the property (3.5), yields the Neumann boundary condition for vk on ΓN ; see
[19, section II.2], [9, section 1.2].

4. Examples. Consider Ω and ΓN , the subset of ∂Ω on which the Neumann
boundary condition is prescribed. In this section we describe geometric configurations
and coefficient functions for which Theorem 3.1 holds true. Furthermore, we present
concrete examples of mappings Gk and reaction terms Rk fitting in our framework.

4.1. Geometric configurations and coefficients. In this subsection we will
give a list of examples in order to show that (Op) is not an unjustified ad hoc assump-
tion but fulfilled in many cases, even if the geometry is nonsmooth, the boundary
conditions are mixed, and the coefficients may jump. Notice that for—realistic—
nonsmooth situations a (strict) upper bound for the integrability index for the gra-
dient of the solution is (at most) 4. That means in detail that, this limitation may
be caused only by nonsmoothness of the domain (see [28, Thm. A]), only by the oc-
currence of mixed boundary conditions (despite smooth data, see [37]), or only by
nonsmooth coefficients (see [33] or [14]).

We start with a result, due to Gröger [24], which completely covers the two-
dimensional case.

Proposition 4.1. Assume that Ω∪ΓN is regular in the sense of Gröger and that
the coefficient function satisfies the assumptions made in section 2. Then there exists
q > 2 such that Ak − Id is a topological isomorphism from W 1,q

ΓN
(Ω) onto W−1,q

ΓN
(Ω).

In what follows we present three-dimensional settings, here always supposing that
the domain Ω is a domain with Lipschitz boundary. We begin with the case where
the coefficient function is continuous at least in a neighborhood of the boundary.

Proposition 4.2. Assume that ΓN = ∅ or ΓN = ∂Ω (pure Dirichlet or pure
Neumann case). Ω◦ ⊂ Ω is another domain which is C1 and which does not touch the
boundary of Ω. μk|Ω◦ ∈ BUC(Ω◦) and μk|Ω\Ω̄◦ ∈ BUC(Ω \ Ω̄◦). Then (Op) holds.
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Remark 4.3. The proposition is one of the main results from [15] and rests
heavily on regularity results for the Dirichlet/Neumann Laplacian (see [28], [42]) and
nontrivial estimates around points from ∂Ω◦. In particular, the reader should carefully
notice that the C1 property of Ω◦ is not dispensable without completely losing the
result; see Elschner’s counterexample in [15], see also [14].

The next proposition describes two cases with pure Dirichlet conditions (ΓN = ∅),
where the discontinuities of the coefficient function are located also near the boundary.

Proposition 4.4. There exists q > 3 such that Ak − Id is a topological isomor-
phism from W 1,q

ΓN
(Ω) onto W−1,q

ΓN
(Ω) if one of the following conditions is satisfied.

(i) Ω is a polyhedron. There are hyperplanes H1, . . . ,Hn in R
3 which meet at

most in a vertex of the polyhedron such that the coefficient function μk is
constantly a real, symmetric, positive definite 3 × 3 matrix on each of the
connected components of Ω \∪n

l=1Hl. Moreover, for every edge on the bound-
ary, induced by a hyperplane Hl, the angles between the outer boundary plane
and the hyperplane Hl do not exceed π.

(ii) Ω◦ ⊂ Ω is a Lipschitz domain such that ∂Ω◦ ∩ Ω is a C1 surface. Moreover,
∂Ω and ∂Ω◦ meet suitably, this means that for any point x from the boundary
of ∂Ω ∩ ∂Ω◦ whithin ∂Ω there is an open neighborhood Ux of x in R

3 and a
C1 diffeomorphism Φx from Ux onto an open subset of R

3 such that
• Φx(Ux ∩ Ω) equals a convex polyhedron Kx,
• Φx(Ux ∩ Ω ∩ ∂Ω◦) = Kx ∩ Hx, where Hx is a plane which contains Φx(x)
and an inner point of Kx. μk|Ω◦ ∈ BUC(Ω◦) and μk|Ω\Ω̄◦ ∈ BUC(Ω \ Ω̄◦).

The constellation (i) is treated in [14], the second in [15].
The last cases we present really affect the case of mixed boundary conditions.
Proposition 4.5. Assumption (Op) is also satisfied in any of the following two

cases.
(i) Ω is a convex polyhedron, ΓN ∩ (∂Ω\ΓN ) is a finite union of line segments,

μk ≡ 1.
(ii) Ω is a three-dimensional prismatic domain with triangular basis. Γ is half of

one of its upright sides. Ξ is a plane that intersects the (relative) boundary of
Γ within ∂Ω in only finitely many points. The coefficient function is constant
on both components of Ω \ Ξ.

Remark 4.6. The assertion for (i) is shown in [11] (see Corollary 3.12), while
the proof for (ii) is given in [25]. Notice that (ii) is by no means artificial: Ω ∪ Γ
may (alternatively) be taken as Gröger’s third local model set in the description of
geometric settings including mixed boundary conditions; see section 2 or [24] for fur-
ther details. Additionally, it is the first three-dimensional constellation treated in the
literature—in view of (Op)—which includes mixed boundary conditions and a discon-
tinuous coefficient function, which is necessary, e.g., in the modeling of heterogeneous
semiconductors [36]. (See [25] for other settings and further details.)

Remark 4.7. The operator Ak − Id also fulfills (Op) if the following condition
is satisfied: there is a covering of Ω̄ by open sets U1, . . . ,Ul such that for every j ∈
{1, . . . , l} the setting Ωj := Ω∩Uj , Γj := ΓN ∩Uj , and the restriction of μk to Ω∩Uj

satisfy one of the conditions of the foregoing propositions; compare [24, Lemma 2].
Additionally, one can show by perturbation arguments (as, e.g., carried out in [15])
that in many cases admissible constellations are preserved under C1 diffeomorphisms.

In the following we illustrate two admissible three-dimensional settings. On the
left-hand side of Figure 4.1 one assumes Neumann conditions on the top of the upper
cuboid, otherwise Dirichlet conditions. On the right-hand side of the figure, the
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Fig. 4.1.

boundary of the cylinder is subject to Dirchlet conditions exept for the upper “hat,”
where Neumann conditions are prescribed.

4.2. Examples for the nonlinearities Gk and the reaction terms Rk.
Next we give two examples for the operators Gk.

Example 4.8. Let gk : R
m �→]0,∞[ be a twice continuously differentiable function

and define Gk(z)(x) = gk(z(x)) if z ∈
(
W 1,2p

)m
and x ∈ Ω.

In many applications gk depends only on one variable and is a multiple of the
exponential function.

As the second example we present a nonlocal operator arising in the diffusion of
bacteria; see [7], [8], and the references therein.

Example 4.9. Let η be a continuously differentiable function on R which is
bounded from above and below by positive constants. Assume ϕ ∈ L2(Ω) and define

Gk(z) := η

(∫
Ω

zkϕdx

)
, z = (z1, . . . , zm) ∈

(
W 1,2p

)m
.

Now we give two examples for mappings Rk.
Example 4.10. Assume that [T0, T1[= ∪j

l=1[tl, tl+1[ is a (disjoint) decomposition
of [T0, T1[ and let for l ∈ {1, . . . , j}

Sl : R
m × R

nm �→ R

be a function which satisfies the following condition: for any compact set K ⊂ R
m

there is a constant LK such that for any a, ã ∈ K and b, b̃ ∈ R
nm the inequality

|Sl(a, b) − Sl(ã, b̃)| ≤LK |a− ã|Rm

(
|b|2

Rnm + |b̃|2
Rnm

)
+ LK |b− b̃|Rnm

(
|b|Rnm + |b̃|Rnm

)
holds. We define a mapping S : [T0, T1[×R

m × R
nm �→ R by setting

S(t, a, b) := Sl(a, b) if t ∈ [tl, tl+1[.

The function S defines a mapping R in the following way: if z is the restriction of an
R

m-valued, continuously differentiable function on R
n to Ω, then we put

(4.1) R(t, z,∇z)(x) = S(t, z(x), (∇z)(x)) for x ∈ Ω

and afterwards extend R by continuity to the whole set [T0, T1[×
(
W 1,2p(Ω)

)m
.
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Example 4.11 (electrical and heat conduction). Assume that σ : R �→]0,∞[ is a
continuously differentiable function. Further, let S : W 1,2p �→ W 1,2p be the mapping
which assigns to z ∈ W 1,2p the solution ϕ of the elliptic problem

−∇ · σ(z)∇ϕ = 0

(including boundary conditions, see [38], [3], [6]). If one defines

R(z) = σ(z)|∇(S(z))|2,

then, under a reasonable supposition on the domain and the boundary conditions, the
mapping R satisfies assumption (Ra).

5. Tools for the proof of Theorem 3.1. Let 1 < s < ∞ and let B be a
densely defined sectorial operator in a Banach space X. Let again J =]T0, T1[ for
some T0, T1 > 0. We say that the linear evolution equation

u′ + Bu = f,(5.1)

u(T0) = 0

admits maximal Ls-regularity on J if for any f ∈ Ls(J ;X) there exists a unique
function u ∈ W 1,s(J ;X) ∩ Ls(J ;D(B)) satisfying (5.1) in the Ls-sense. In that case,
we write B ∈ MR(s,X). Observe that

(5.2) W 1,s(J ;X) ∩ Ls(J ;D(B)) ↪→ C(J ;Xs),

where Xs is the real interpolation space (X,D(B))1− 1
s ,s

. Consider now the quasi-
linear problem

u′(t) + B(t, u(t))u(t) = F (t, u(t)), t ∈ J,(5.3)

u(T0) = u0.

Here u0 ∈ Xs, B := B(T0, u0), and B : J × Xs → L(D(B);X) is continuous. F :
J ×Xs → X is a Carathéodory map. We assume the following Lipschitz conditions
on B and F .

(B) For each R > 0 there exists a constant CR > 0, such that

(5.4)
‖B(t, u)v − B(t, ũ)v‖X

≤ CR ||u− ũ||Xs ||v||D(B), t ∈ J, u, ũ ∈ Xs, ||u||s, ||ũ||s ≤ R, v ∈ D(B).

(F) F (·, 0) ∈ Ls(J ;X) and for each R > 0 there is a function ηR ∈ Ls(J) such
that

(5.5) ‖F (t, u) − F (t, ũ)‖X ≤ ηR(t) ‖u− ũ‖s a.a. t ∈ J, u, ũ ∈ Xs, ||u||s, ‖ũ‖s ≤ R.

Then the following existence and uniqueness result due to Clément and Li [10]
and Prüss [34] holds true.

Theorem 5.1. Assume that (B) and (F) are satisfied and that B := B(T0, u0)
has the property of maximal Ls-regularity. Then there exists T ∈]T0, T1[ such that
(5.3) admits a unique solution u on I :=]T0, T [ satisfying

u ∈ W 1,s(I;X) ∩ Ls(I;D(B)).
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In order to verify the crucial condition that B = B(T0, u0) has maximal Ls-
regularity in our situation, we need the following results on traces, heat kernels, their
multiplicative perturbations, and maximal Ls-regularity.

Consider a closed subspace V of H1(Ω) which includes H1
0 (Ω). Let � ∈

L∞(Ω,Mn×n) and assume that it is elliptic in the sense of (2.1). Define a bilinear
form a : V × V → R on V by

a(u, v) = −
∫

Ω

�∇u · ∇u dx, u, v ∈ V.

Let A be the operator associated with a in L2(Ω) and let (etA)t≥0 be the semigroup on
L2(Ω) generated by A. The following result gives sufficient conditions on the subspace
V such that (etA)t≥0 satisfies an upper Gaussian bound. More precisely, the following
Proposition holds; see, [4, Ch. 4].

Proposition 5.2. Assume that V is a closed subspace of H1(Ω) satisfying
(a) H1

0 (Ω) ⊆ V ,
(b) V has the L1-H1 extension property,
(c) u ∈ V implies |u|, inf(|u|, 1) ∈ V ,
(d) u ∈ V, v ∈ H1(Ω), |v| ≤ u implies v ∈ V .

Then etA satisfies an upper Gaussian estimate, i.e.,

(etAf)(x) =

∫
Ω

Kt(x, y)f(y)dy a.a. x ∈ Ω, f ∈ L2(Ω)

for some measurable function Kt : Ω × Ω → R+ and there exists constants M,a > 0
and ω ∈ R such that

(5.6) 0 ≤ Kt(x, y) ≤
M

t
n
2
e

−a|x−y|2
t eωt, t > 0, a.a. x, y ∈ Ω.

Lemma 5.3. Let H1
ΓN

(Ω) be defined as above. Then V := H1
ΓN

(Ω) satisfies the
assumptions (a)–(d) of Proposition 5.2.

Proof. We will not give a detailed proof—which is given in [4] in the case of
domains with Lipschitz boundary. Let us only notice that assertion (a) is obvious
and that (b) is assured by the fact that Lipschitz domains are extensions domains
for H1,2; see [21, Thm. 3.10] or [32, section 1.1.16]. Inspecting the corresponding
proofs (which are given via localization, Lipschitz diffeomorphism, and reflection),
one recognizes that the extension mapping simultaniously extends continuously to
L1. The assertions (c) and (d) may be proved essentially as in [4] (see Example 4.3).
In fact, the continuity results for the mappings u → inf(u, v) and u → |u| given in
[31] are stated without any restriction on the regularity of the domain Ω.

Consider the semigroup etAk on L2(Ω) generated by Ak associated with the form
ak defined in (2.2) with V = H1

ΓN
(Ω). It follows from Proposition 5.2 and Lemma

5.3 that etAk is a positive semigroup on L2(Ω) satisfying an upper Gaussian bound.
Hence, (etAk)t≥0 extends to a positive C0-semigroup of contractions on Lq(Ω) for all
1 ≤ q < ∞.

Proposition 5.4. Let b ∈ L∞(Ω,R) such that infx∈Ω |b(x)| ≥ δ for some δ > 0.
Let 1 < s, q < ∞. Then bAk ∈ MR(s, Lq(Ω)) for all k ∈ {1, . . . ,m}.

Proof. Let k ∈ {1, . . . ,m}. By the above remark, etAk is a positive contraction
semigroup on Lq(Ω) satisfying an upper Gaussian bound. Hence, the kernel Kt of
et(Ak−αId))t≥0 satisfies (5.6) with ω = 0 for suitable α ∈ R. Moreover, Ak − αId is
self-adjoint in L2(Ω). By a result due to Duong and Ouhabaz [13], the semigroup on
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L2(Ω) generated by b(Ak − αId) satisfies an upper Gaussian bound with ω = 0 as
well. Thus b(Ak − αId) ∈ MR(s, Lq(Ω)) by a result of Hieber and Prüss (see [27] or
[12, Thm. 4.8]). Finally, bAk ∈ MR(s, Lq(Ω)) due to the lower order perturbation
result of maximal regularity; see [12, Prop. 4.3].

Proposition 5.5. Let p > n
2 be the number from Assumption (Op) and assume

that θ ∈ ( 1
2 + n

4p , 1]. Then

[Lp, D(Ap
k)]θ ↪→ W 1,2p

ΓN
(Ω).

A proof for the three-dimensional case is given in [35]; the two-dimensional case
requires only obvious modifications. A complete, but technically more involved, proof
for the two-dimensional case is contained in [29], see Thm. 5.2.

Corollary 5.6. Let r > 4p
2p−n . Then

(Lp, D(Ap
k))1− 1

r ,r
↪→ W 1,2p

ΓN
(Ω).

Proof. Let θ be any number from the interval ]12 + n
4p , 1 − 1

r [. By interpolation

(Lp, D(Ap
k))1− 1

r ,r
↪→ (Lp, D(Ap

k))θ,1 ↪→ [Lp, D(Ap
k)]θ.

Then the assertion follows from the embedding property of the complex interpolation
space into W 1,2p

ΓN
(Ω) established in Proposition 5.5.

6. Proof of the main result. We first set X :=
(
Lp(Ω)

)m
, D := ×m

k=1D(Ap
k),

and Xr := (X,D)1− 1
r ,r

for r as above. By assumption (IC), w0 ∈ Xr. Further, for

every pair (t, z) ∈ [T0, T1) ×W 1,2p(Ω)m we define the mapping H(t, z) : X �→ X via

(6.1) ϕ := (ϕ1, . . . , ϕm) �→
(
H1(t, z)ϕ1, . . . , Hm(t, z)ϕm

)
.

Since Hk(t, z) ∈ L∞(Ω) and since Hk possesses a strictly positive lower bound, it
follows that

D(Hk(t, z)A
p
k) = D(Ap

k).

In particular, D(Hk(T0, w0)A
p
k)) is dense in Lp(Ω) (see [22, Thms. 4.5 and 4.7]).

Consider the mapping B : J ×Xr → L(D;X) given by

B(t, z)ϕ := H(t, z)(Ap
1ϕ1, . . . , A

p
mϕm), ϕ = (ϕ1, . . . , ϕm) ∈ D.

By Corollary 5.6 and Morrey’s theorem we have

Xr ↪→
(
W 1,2p

ΓN
(Ω)

)m
↪→

(
Cα(Ω)

)m
for some α > 0. Thus, the assumed properties on Fk, Gk, and φk imply that

B : J ×Xr → L(D;X)

is continuous. Moreover, for β > 0 there exists Cβ > 0 such that

‖H(t, z) −H(t, z̃)‖∞ ≤ Cβ‖z − z̃‖W 1,2p

provided t ∈ J and ‖z‖Xr and ‖z̃‖Xr ≤ β. Hence, (5.4) from assertion (B) is fulfilled.
Furthermore, (5.5) from assertion (F) holds due to the assumed properties of

Fk, Gk, φ, Rk and Corollary 5.6. It remains to verify the key condition of Theorem
5.1, namely that B := B(T0, w0) has the property of maximal regularity. To this
end, recall that H(T0, w0) ∈

(
L∞(Ω)

)m
with a strictly positive lower bound in each

component. Thus, B ∈ MR(r,X) by Proposition 5.4. Finally, an application of
Theorem 5.1 ends the proof of Theorem 3.1.
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It remains to show that if w is a solution of (3.1), then v := w + φ provides a
solution of (1.1). This will be done in the appendix.

We now give a proof of Corollary 3.2; in fact we prove the following sharper result.
Lemma 6.1. There exists β > 0 such that each component wk of the solution w

of (3.1) belongs to the space Cβ(]T0, T [;W 1,2p
Γ (Ω)) ↪→ Cβ(]T0, T [;Cα(Ω)).

Proof. We write for short Dk = D(Ak) and I =]T0, T [. Then

W 1,r(I;Lp) ∩ Lr(I;Dk) ↪→ C(Ī; (Lp, Dk)1− 1
r ,r

) ↪→ C(Ī; [Lp, Dk]θ)

if θ ∈]0, 1 − 1
r [.

Moreover, we have the embedding

W 1,r(I;Lp) ↪→ Cδ(I;Lp) with δ = 1 − 1

r
.

Fix θ ∈] 12 + n
4p , 1 − 1

r [ and let λ ∈ (0, 1) be given such that

θλ >
1

2
+

n

4p
.

In view of Proposition 5.5 and the reiteration theorem for complex interpolation (see
[40, Ch. 1.9.3]) we obtain

‖wk(t) − wk(s)‖W 1,2p

|t− s|δ(1−λ)
≤ c

‖wk(t) − wk(s)‖[Lp,Dk]θλ

|t− s|δ(1−λ)
∼

‖wk(t) − wk(s)‖[
Lp,[Lp,Dk]θ

]
λ

|t− s|δ(1−λ)

≤ ĉ
‖wk(t) − wk(s)‖1−λ

Lp

|t− s|δ(1−λ)
‖wk(t) − wk(s)‖λ[Lp,Dk]θ

= ĉ
(‖wk(t) − wk(s)‖Lp

|t− s|δ
)1−λ(

2 sup
s∈Ī

‖wk(s)‖[Lp,Dk]θ

)λ

.

7. Appendix. It remains to show that if w is a solution of (3.1), then v :=
w + φ provides a solution of (1.1). One easily recognizes that all the manipulations
which transfrom (1.1) into (3.1) are straightforward to justify within the distributional
calculus, except one. Therefore, we will give a strict justification of this point in the
following lemma. Throughout this appendix, f : R �→ R is always assumed to be
twice continuously differentiable.

Lemma 7.1. Assume p, r ∈]1,∞[ and v ∈ W 1,r(]T0, T [;Lp) ∩ C([T0, T ];C(Ω̄)).
Then the function ]T0, T [� t �→ f(v(t)) belongs to W 1,r(]T0, T [;Lp) and its distribu-
tional derivative is the function ]T0, T [� t �→ f ′(v(t))v′(t) ∈ Lr(]T0, T [;Lp).

Remark 7.2. We denote by C1(]T0, T [;Lp) the space of all Lp-valued, continuously
differentiable functions on ]T0, T [ with bounded derivatives on ]T0, T [.

In order to give a proof of Lemma 7.1 we use the following result.
Lemma 7.3. Let [T0, T ] � t �→ ψ(t, ·) be a mapping belonging to C([T0, T ];C(Ω̄))∩

C1(]T0, T [;Lp). Then the mapping

(7.1) ]T0, T [� t �→ f(ψ(t, ·))

takes its values in C(Ω̄) ↪→ Lp. It is continuously differentiable when regarded
as Lp-valued and its derivative in a point s ∈]T0, T [ is equal to the Lp-function
f ′(ψ(s, ·))ψ′(s).
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Proof. The first assertion is obvious. Concerning the second one, the set {ψ(t, x)/
x ∈ Ω, t ∈ [T0, T ]} is bounded. Since f is twice continuously differentiable, for s, t ∈
]T0, T [ and x ∈ Ω one may apply Taylor’s formulae:

(7.2)
f(ψ(t, x)) − f(ψ(s, x))

t− s
= f ′(ψ(s, x))

[ψ(t, x) − ψ(s, x)]

t− s

(7.3) +

∫ 1

0

(1 − τ)f ′′((1 − τ)ψ(t, x) + τψ(s, x)) dτ
[ψ(t, x) − ψ(s, x)]2

t− s
.

The family {f ′(ψ(s, ·)) [ψ(t,·)−ψ(s,·)]
t−s }t converges by the supposition on the differen-

tiablity of the mapping t �→ ψ(t, ·) in Lp to f ′(ψ(s, ·))ψ′(s) if t approaches s . It
remains to show that the expression in (7.3) approaches zero in Lp. This follows
easily from the uniform boundedness of the values f ′′((1 − τ)ψ(t, x) + τψ(s, x)), the

boundedness of { [ψ(t,·)−ψ(s,·)]
t−s }t in Lp, and the convergence of [ψ(t, ·) − ψ(s, ·)] to

zero in C(Ω̄) for t approaching s. The continuity of the derivative follows from the
continuity of ψ′ and the continuity of the function t �→ f ′(ψ(t, ·)) in C(Ω̄).

Lemma 7.4. Let v ∈ W 1,r(]T0, T [;Lp) ∩ C([T0, T ];C(Ω̄)). Then there is a se-
quence {ψl}l in C([T0, T ];C(Ω̄)) ∩ C1(]T0, T [;Lp(Ω)) such that ψl �→ v in C([T0, T ];
C(Ω̄)) and ψ′

l �→ v′ in Lr(]T0, T [;Lp).
Proof. Let us define a continuous extension ṽ to all of R which additionally has

compact support as follows: we put

(7.4) v̂(t) :=

⎧⎨
⎩

v(T0 + (T0 − t)) if t ∈]T0 − (T − T0), T0[,
v(t) if t ∈ [T0, T ],
v(T − (t− T ) if t ∈]T, T + (T − T0)[

(reflection at T0, T , respectively). Afterwards we multiply v̂ by a real-valued, contin-
uously differentiable function which is identical 1 on [T0, T ] and which has its support
in ]T0−(T −T0)/2, T +(T −T0)/2[. We define this product as ṽ and identify ṽ with its
extension by zero to whole R. Oviously, ṽ|[T0,T ] = v; further one verifies the property
ṽ ∈ W 1,r(R;Lp) ∩ C(R;C(Ω̄)). Let ϑ be the usual mollifier function

ϑ(s) =

⎧⎨
⎩

1∫
e
− 1

1−s2 ds
e
− 1

1−s2 if |s| < 1,

0 else on R

and ϑl(s) := lϑ(l s). Now we put

(7.5) ψl(t) :=

{ ∫ t

T0

(
ṽ′ ∗ ϑl)(s) ds + (ṽ ∗ ϑl)(T0) if t ≥ T0,

−
∫ T0

t

(
ṽ′ ∗ ϑl)(s) ds + (ṽ ∗ ϑl)(T0) if t < T0.

Then ψl is nothing else but ṽ∗ϑl. This yields ψl �→ v in C([T0, T ];C(Ω̄)). On the other
hand, (7.5) immediately gives ψ′

l = ṽ′ ∗ ϑl. This means that ψ′
l �→ ṽ′ in Lr(R;Lp),

which implies ψ′
l|]T0,T [ �→ v′ in Lr(]T0, T [;Lp).

We now turn to the proof of Lemma 7.1. Let {ψl}l be the sequence from the
previous lemma and ϕ ∈ C∞

0 (]T0, T [). Then, considering the function ]T0, T [� t �→
f(v(t)) as an Lp-valued distribution, one gets by the definition of the weak derivative

(
f(v)

)′
(ϕ) = −f(v)(ϕ′) = −

∫ T

T0

f(v(s))ϕ′(s) ds = −
∫ T

T0

lim
l 	→∞

f(ψl(s))ϕ
′(s) ds

= lim
l 	→∞

−
∫ T

T0

f(ψl(s))ϕ
′(s) ds.
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By Lemma 7.3, each f(ψl) even has a strong (time) derivative which equals f ′(ψl)ψ
′
l.

From this and integrating by parts one gets

−
∫ T

T0

f(ψl(s))ϕ
′(s) ds =

∫ T

T0

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds.

By construction, ψl �→ v in C([T0, T ];C(Ω̄)), ψ′
l �→ v′ in Lr(]T0, T [;Lp), which im-

plies f ′(ψl(·))ψ′
lϕ �→ f ′(v(·))v′ϕ in Lr(]T0, T [;Lp). But the integral is a continuous

mapping from Lr(]T0, T [;Lp) into Lp; this finally gives

∫ T

T0

f ′(v(s))v′(s)ϕ(s) ds =

∫ T

T0

lim
l 	→∞

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds

= lim
l 	→∞

∫ T

T0

f ′(ψl(s))ψ
′
l(s)ϕ(s)ds

= lim
l 	→∞

−
∫ T

T0

f(ψl(s))ϕ
′(s) ds =

(
f(v)

)′
(ϕ).

Thus, Lemma 7.1 is proved.
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Abstract. In this paper we consider a parabolic variational inequality arising from European
continuous installment call options pricing and prove the existence and uniqueness of the solution to
the problem. Moreover, we obtain C∞ regularity and the bounds of the free boundary, as well as
the limit of the free boundary as τ = T − t → +∞. Eventually we show its numerical result by the
binomial method.
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1. Introduction. In this paper we consider a parabolic variational inequality
arising from the model of European continuous installment call options pricing. More
precisely, we will find C(S, t) satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tC + σ2

2 S2∂SSC + (r − q)S∂SC − rC = L∗

if C > 0 and (S, t) ∈ (0,+∞) × (0, T ],

∂tC + σ2

2 S2∂SSC + (r − q)S∂SC − rC ≤ L∗

if C = 0 and (S, t) ∈ (0,+∞) × (0, T ],

C(S, T ) = (S −K)+, S ∈ [ 0,+∞),

(1.1)

where σ, r, L∗, and K are positive constants and q is a nonnegative constant.

In the appendix we present the financial and stochastic background of this prob-
lem.

If L∗ = 0 in problem (1.1), it is standard European call option, which has an
explicit analytic formula of solution and does not have free boundary at all (see [11]).
We will find that the case L∗ > 0 is more complicated than the case L∗ = 0.

There are some papers in the field of install options, such as [7], [8], [1], [6],
in which the authors developed the models and numerical analysis. Particularly,
Alobaidi, Mallier, and Deakin showed the behavior of the free boundary Ss(τ) in
(1.1) close to expire by Laplace transforms in [1], that is,

Ss(τ) ∼ K exp{−σ(−τ ln τ)1/2(1 + o(1))} as τ = T − t → 0+.(1.2)
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Since (1.1) is a degenerate backward parabolic problem, we transform it into
a familiar forward nondegenerate parabolic variational inequality problem. Thus,
letting

V (x, τ) = C(S, t)/K, τ = T − t, x = ln(S/K), L = L∗/K,(1.3)

then we have⎧⎪⎨
⎪⎩

∂τV − LxV = −L if V > 0 and (x, τ) ∈ R × (0, T ],

∂τV − LxV ≥ −L if V = 0 and (x, τ) ∈ R × (0, T ],

V (x, 0) = (ex − 1)+, x ∈ R,

(1.4)

where

LxV =
σ2

2
∂xxV +

(
r − q − σ2

2

)
∂xV − rV.(1.5)

We focus our attention on the monotonicity, regularity, and bounds of the free
boundary as well as the limit of the free boundary as τ → +∞ in problem (1.4).

As we know, the behavior ∂τV ≥ 0 is quite important for investigation of the
regularity properties of the free boundary. Based on this behavior it can be deduced
that ∂τV is continuous across the free boundary and C∞ regularity of the free bound-
ary follows (for the one-dimensional case, see [9], and for higher dimensions, see [4]).
In the absence of condition ∂τV ≥ 0, the latest development is that ∂τV is con-
tinuous for almost all time (see [3]) and the free boundary possesses C∞ regularity
locally around some points which are energetically characterized (see [5]). Those re-
sults manifest that the analysis for regularity of the free boundary is not thoroughly
solved.

In our case V (x, 0) = ex − 1 if x ≥ 0; combining Lemma 4.4 in this paper, we see
that

∂τV (x, 0) = Lx(ex − 1) − L = r − qex − L if x > 0.

It is clear that ∂τV (x, 0) < 0 if q > 0 and x is large enough.
In the next section, we will construct a transformation (2.1) and deduce a new

unknown function v(y, τ) satisfying the variational inequality (2.2), which is impor-
tant to the property ∂τv ≥ 0; then we prove the existence and uniqueness of the
W 2.1

p, loc solution to the new parabolic variational inequality (2.2). The main work is in
sections 3 and 4. In section 3 we prove that the new free boundary is monotonic and
C∞-smooth based on the results in section 2. Moreover, we will show the starting
point, the bounds of the free boundary, and the limit behavior of the free boundary
as τ → +∞. In section 4, we come back to consider the behavior of the free boundary
of problem (1.4): it is C∞-smooth on (0,+∞), and its monotonicity depends on the
relationship of parameters σ, r, q, and L in the problem. In section 5, we focus our
attention on the monotonicity of free boundary with respect to the parameters r, q,
and L. In the last section, we provide numerical result applying the binomial method.

2. Existence and uniqueness of W 2,1
p, loc solution of problem (1.4). As

mentioned in the previous section, applying the transformation

y = x + (r − q − p∗)τ, p∗ = max{r, L}, v(y, τ) = V (x, τ),(2.1)
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problem (1.4) then becomes⎧⎪⎨
⎪⎩

∂τv − Lyv = −L if v > 0 and (y, τ) ∈ R × (0, T ],

∂τv − Lyv ≥ −L if v = 0 and (y, τ) ∈ R × (0, T ],

v(y, 0) = (ey − 1)+, y ∈ R,

(2.2)

where

Lyv =
σ2

2
∂yyv +

(
p∗ − σ2

2

)
∂yv − rv.(2.3)

Since the problem lies in the unbounded domain ΩT = R×(0, T ], we first consider
the problem in the bounded domain Ωn

T = (−n, n) × (0, T ], n ∈ Z
+:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂τvn − Lyvn = −L if vn > 0 and (y, τ) ∈ Ωn

T ,

∂τvn − Lyvn ≥ −L if vn = 0 and (y, τ) ∈ Ωn
T ,

vn(−n, τ) = 0, ∂yvn(n, τ) = en+(p∗−r)τ , τ ∈ [ 0, T ],

vn(y, 0) = (ey − 1)+, y ∈ [−n, n ].

(2.4)

Lemma 2.1. For any fixed n ∈ Z
+, there exists a unique solution vn ∈ C(Ωn

T ) ∩
W 2,1

p (Ωn
T \Bδ(P0)) to problem (2.4), where ∀ 1 < p < +∞, and δ > 0, P0 = (0, 0),

Bδ(P0) = {(y, τ) : y2 + τ2 ≤ δ2}. Moreover, if n is large enough, we have

(ey − 1)+ ≤ vn ≤ ey+(p∗−r)τ ,(2.5)

∂τvn ≥ 0,(2.6)

∂yvn ≥ 0.(2.7)

Proof. As usual we define a penalty function βε(t) (see Figure 1), which satisfies

ε > 0 and small enough, βε(t) ∈ C∞(−∞,+∞),

βε(t) ≤ 0, 0 ≤ β′
ε(t) ≤ 2L/ε, β′′

ε ≤ 0,

and

βε(t) =

{
0, t ≥ 2ε,
2L
ε t− 3L− rε, t ≤ 3ε/2.

(2.8)

�

�

t2ε

−3L− rε•

•

Fig. 1.
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Then

βε(ε) = −L− rε, βε(0) = −3L− rε.(2.9)

Since (ey−1)+ is not smooth enough, we need to smooth it. Define πε(t) (see Figure 2):

πε(t) =

{
t, t ≥ ε,

0, t ≤ −ε,
(2.10)

πε(t) ∈ C∞, 0 ≤ π′
ε(t) ≤ 1, π′′

ε (t) ≥ 0, limε→0+ πε(t) = t+.
Following the idea in [10], construct an approximation of problem (2.4):⎧⎪⎨

⎪⎩
∂τvε, n − Lyvε, n + βε(vε, n) = −L in Ωn

T ,

vε, n(−n, τ) = 0, ∂yvε, n(n, τ) = en+(p∗−r)τ , τ ∈ [ 0, T ],

vε, n(y, 0) = πε(e
y − 1), y ∈ [−n, n ].

(2.11)

Applying Schauder’s fixed point theorem, it is not difficult to get the existence of the
W 2,1

p solution to problem (2.11). The proof of uniqueness is standard as well, so we
omit the details.

If we can prove that, as ε is small enough,

πε(e
y − 1) ≤ vε, n ≤ ey+(p∗−r)τ ,(2.12)

then

−3L− rε ≤ βε(vε,n) ≤ 0.

This means that βε(vε,n) is a bounded function and its bound is independent of ε. It
is deduced that, by W 2,1

p and Cα (0 < α < 1) estimates of the parabolic problem,

|vε,n|W 2,1
p (Ωn

T \Bδ(P0))
≤ C,

|vε,n|Cα(Ωn
T ) ≤ C,

where C is independent of ε. It is not difficult to derive that, as ε → 0+,

vε, n → vn in W 2,1
p (Ωn

T \Bδ(P0)) weakly and vε, n → vn in C(Ωn
T ),

where vn is the solution of problem (2.4).

�

�

�
�

�
�

�
�

�

• •−ε ε
t

Fig. 2.
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Next we prove (2.12). In the first, if ε is small enough, the properties of βε, πε,
and (2.9) imply that

∂τπε(e
y − 1) − Ly πε(e

y − 1) + βε(πε(e
y − 1)) + L

= −σ2

2
π′′
ε (ey − 1)e2y − max{r, L}π′

ε(e
y − 1)ey + rπε(e

y − 1) + βε(πε(e
y − 1)) + L

≤
{

rπε(e
y − 1) + βε(πε(e

y − 1)) + L ≤ rε + βε(ε) + L ≤ 0, ey − 1 ≤ ε,

−max{r, L}ey + r(ey − 1) + L ≤ 0, ey − 1 > ε.

Furthermore, from the initial and boundary conditions in (2.11), we deduce that if ε
is small enough,⎧⎪⎨

⎪⎩
πε(e

y − 1) = 0 = vε, n(y, τ), y = −n,

∂yπε(e
y − 1) = ∂y(e

y − 1) = en ≤ en+(p∗−r)τ = ∂yvε, n(y, τ), y = n,

πε(e
y − 1) = vε, n(y, 0), τ = 0.

From the comparison principle, we deduce πε(e
y − 1) ≤ vε, n.

On the other hand, if 2ε < e−n, it is not difficult to check βε(e
y+(p∗−r)τ ) ≥

βε(e
−n) ≥ βε(2ε) = 0; hence, from (2.3),

∂τe
y+(p∗−r)τ − Lye

y+(p∗−r)τ + βε(e
y+(p∗−r)τ ) + L

≥ ey+(p∗−r)τ

(
p∗ − r − σ2

2
−
(
p∗ − σ2

2

)
+ r

)
+ 0 + L = L ≥ 0 ∀ (y, τ) ∈ Ωn

T .

Moreover, if 2ε < e−n, there holds

ey = πε(e
y) ≥ πε(e

y − 1).

From the initial and boundary conditions in (2.11), we see that if 2ε < e−n,⎧⎪⎨
⎪⎩

ey+(p∗−r)τ ≥ 0 = vε, n(y, τ), y = −n,

∂ye
y+(p∗−r)τ = en+(p∗−r)τ = ∂yvε, n(y, τ), y = n,

ey+(p∗−r)τ = ey ≥ πε(e
y − 1) = vε, n(y, 0), τ = 0.

Then the comparison principle implies ey+(p∗−r)τ ≥ vε, n; hence, we obtain (2.12),
and (2.5) is a consequence of (2.12).

In the following, we prove (2.6). In fact, for any small δ > 0, vε, n(x, τ + δ)
satisfies, by (2.11),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂τvε, n(y, τ + δ) − Lyvε, n(y, τ + δ) + βε(vε, n(y, τ + δ)) = −L,

(y, τ) ∈ (−n, n) × (0, T − δ ],

vε, n(−n, τ + δ) = 0 = vε, n(−n, τ), τ ∈ [ 0, T − δ ],

∂yvε, n(n, τ + δ) = en+(p∗−r)(τ+δ) ≥ ∂yvε, n(n, τ), τ ∈ [ 0, T − δ ],

vε, n(y, 0 + δ) ≥ πε(e
y − 1) = vε, n(y, 0), y ∈ [−n, n ].

Applying the comparison principle for solutions of PDEs with respect to initial and
boundary values, we obtain

vε, n(y, τ + δ) ≥ vε, n(y, τ) ∀ (y, τ) ∈ (−n, n) × [ 0, T − δ ] and ∂τvε, n ≥ 0.

Take ε → 0+ in the above inequalities. Then (2.6) follows.
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For proving (2.7), derive (2.11) with respect to y, and denote W = ∂yvε, n; then⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τW − LyW + β ′
ε(vε, n)W = 0, (y, τ) ∈ Ωn

T ,

W (−n, τ) = ∂yvε, n(−n, τ), τ ∈ [ 0, T ],

W (n, τ) = en+(p∗−r)τ ≥ 0, τ ∈ [ 0, T ],

W (y, 0) = π′
ε(e

y − 1)ey ≥ 0, y ∈ [−n, n ].

(2.13)

Since vε, n(x, τ) achieves its minimum 0 at each point of x = −n, so ∂yvε,n(−n, τ) ≥ 0,
then the minimum principle implies

∂yvε, n = W ≥ 0.(2.14)

Take ε → 0+. Then we obtain (2.7).
At last, we prove uniqueness. Suppose v1 and v2 are two W 2.1

p, loc(Ω
n
T )

⋂
C(Ωn

T )
solutions to problem (2.4), and denote

N = {(y, τ) : v1(y, τ) < v2(y, τ), −n < y < n, 0 < τ ≤ T}.

Suppose it is not empty; then if (y, τ) ∈ N ,

v2(y, τ) > 0, ∂τv2 − Lyv2 = −L.

Denote W = v2 − v1. Then W satisfies⎧⎪⎨
⎪⎩

∂τW − LyW ≤ 0, (y, τ) ∈ N ,

W (y, 0) = 0 on ∂pN \ ({n} × [ 0, T ]),

∂yW (y, 0) = 0 on ∂pN ∩ ({n} × [ 0, T ]),

where ∂pN is the parabolic boundary of the domain N . Applying the A-B-P max-
imum principle (see [13]), we have W ≤ 0 in N , which contradicts the definition
of N .

Theorem 2.2. There exists a unique solution v ∈ C(ΩT )∩W 2,1
p (ΩR

T \Bδ(P0)) to
problem (2.2), where ∀ R > 0, δ > 0, 1 < p < +∞. And ∂yv ∈ C(ΩT ),

(ey − 1)+ ≤ v ≤ ey+(p∗−r)τ ,(2.15)

∂τv ≥ 0,(2.16)

∂yv ≥ 0.(2.17)

Proof. Applying

(∂τ − Ly) 0 = 0,

we rewrite problem (2.4) as⎧⎪⎨
⎪⎩

∂τvn − Lyvn = f(y, τ) in Ωn
T ,

vn(−n, τ) = 0, ∂yvn(n, τ) = ey+(p∗−r)τ , τ ∈ [ 0, T ],

vn(y, 0) = (ey − 1)+, y ∈ [−n, n ].

(2.18)

vn ∈ W 2.1
p, loc( Ωn

T ) implies f(y, τ) ∈ Lp
loc( Ωn

T ) and

f(y, τ) = I{vn>0} (−L) a.e. in Ωn
T ,(2.19)

where IA denotes the indicator function of the set A.
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Hence, for any fixed R > δ > 0, if n > R, combining (2.5), we have the following
W 2.1

p uniform interior estimates in the domain ΩR
T \Bδ(P0):

‖vn‖W 2.1
p (ΩR

T \Bδ(P0))

≤ C(‖vn‖L∞(ΩR
T ) + ‖(ey − 1)+‖C2([−R,−δ ]∪[ δ, R ]) + ‖f(y, τ)‖L∞(ΩR

T )) ≤ C,

where C depends on R but is independent of n. Let n → ∞; then we have, possibly
a subsequence,

vn ⇀ vR in W 2.1
p (ΩR

T \Bδ(P0)) weakly as n → +∞.

Moreover, the Sobolev imbedding theorem implies

∂yvn → ∂yvR in C(ΩR
T \Bδ(P0)) as n → +∞.

Define v = vR if y ∈ [−R,R ]. It is clear that v is reasonably defined and v is
the solution of problem (2.2); moreover, ∂yv ∈ C(ΩT ) and the Cα estimate implies
v ∈ C( ΩT ).

Inequalities (2.15), (2.16), (2.17) are a consequence of (2.5), (2.6), (2.7), respec-
tively. The proof of the uniqueness is the same as in the proof of Lemma 2.1.

From the transformation (2.1), it is not difficult to see the following.
Theorem 2.3. There exists a unique solution V ∈ C(ΩT ) ∩ W 2,1

p (ΩR
T \Bδ(P0))

to problem (1.4), where ∀ R > 0, δ > 0, 1 < p < +∞. And ∂xV ∈ C(ΩT ),

(ex+(r−q−p∗)τ − 1)+ ≤ V ≤ ex−qτ ,(2.20)

∂xV ≥ 0,(2.21)

∂τV ≥ (r − q − p∗) ∂xV.(2.22)

3. Characterizations of the free boundary of problem (2.2). In this sec-
tion, we consider the behavior of the free boundary of problem (2.2). Denote

NRy = {(y, τ) : v(y, τ) > 0} (nontransaction region),

SRy = {(y, τ) : v(y, τ) = 0} ( stop region).

Applying (2.17), v is monotonic increasing with respect to y, so we can define the
free boundary

ys(τ) = sup{y : v(y, τ) = 0}, τ > 0, between NRy and SRy.

Theorem 3.1. ys(τ) ∈ C[ 0, T ]∩C∞(0, T ] and is strictly decreasing with ys(0) =
0 (see Figure 3).

Proof. We divide the proof into four steps.
Step 1. From (2.16) and (2.17), we see that ys(τ) is decreasing in [ 0, T ].
Step 2. Prove ys(τ) is continuous in [ 0, T ] and ys(0) = 0.
In the first we prove ys(τ) is continuous in [ 0, T ]. Otherwise, there exists a

domain (y1, y2) × (τ0, T ) (y1 < y2, 0 ≤ τ0 < T ) such that{
∂τv − Lyv = −L, (y, τ) ∈ (y1, y2) × (τ0, T ),

v(y, τ0) = 0, y ∈ (y1, y2).

Then we have ∂τv(y, τ0) = −L < 0 for any y1 < y < y2, which contradicts (2.16).
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ys(τ)

v = 0 v > 0

Fig. 3.

In the same way we can prove ys(0) ≥ 0; moreover, since v(y, 0) = (ey − 1)+ > 0
if y > 0, we have ys(0) = 0.

Step 3. Prove ys(τ) is strictly decreasing in [ 0, T ].
Otherwise there exists a domain (y0, 1) × (τ1, τ2) (y0 ≤ 0, 0 < τ1 < τ2 ≤ T ) such

that {
∂τv − Lyv = −L, (x, τ) ∈ (y0, 1) × (τ1, τ2),

v(y0, τ) = 0, τ ∈ (τ1, τ2).
(3.1)

Then W = ∂τv satisfies{
∂τW − LyW = 0, (x, τ) ∈ (y0, 1) × (τ1, τ2),

W (y0, τ) = 0, τ ∈ (τ1, τ2).

Since W = ∂τv ≥ 0, W achieves its nonpositive minimum at y = y0. Applying
the maximum principle, we have ∂yW (y0, τ) > 0 for any τ ∈ (τ1, τ2). On the other
hand, we can deduce that ∂yv(y0, τ) = 0 for any τ ∈ (τ1, τ2) by ∂yv ∈ C(ΩT ). So,
∂yW (y0, τ) = ∂τyv(y0, τ) = 0 for any τ ∈ (τ1, τ2); thus we get a contradiction. Hence
ys(τ) is strictly decreasing in (0, T ].

Step 4. Since ∂τv ≥ 0 and 0 is the lower obstacle, it can be proved that ys(τ) ∈
C0,1(0, T ] by the method developed by Friedman in [9]. Moreover ys(τ) ∈ C∞(0, T ]
by a bootstrap argument.

Theorem 3.2. The free boundary ys(τ) satisfies

ln

[
2L

2r + σ2

(
1 − 1

1 + rτ

)]
≤ ys(τ) + (p∗ − r)τ ≤ ln

[
2L

2r + σ2

(
1 +

1

Lτ

)]
.(3.2)

Proof. We divide the proof into four steps.
Step 1. In the first, we give a transformation

z = y + (p∗ − r)τ, v∗(z, τ) = v(y, τ) = V (x, τ).(3.3)

Then we have⎧⎪⎨
⎪⎩

∂τv
∗ − Lzv

∗ = −L if v∗ > 0 and (z, τ) ∈ R × (0, T ],

∂τv
∗ − Lzv

∗ ≥ −L if v∗ = 0 and (z, τ) ∈ R × (0, T ],

v∗(z, 0) = (ez − 1)+, z ∈ R,

(3.4)
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where

Lzv
∗ =

σ2

2
∂zzv +

(
r − σ2

2

)
∂zv − rv.(3.5)

Denote the free boundary of problem (3.4) as zs(τ), which is the counterpart of ys(τ)
and zs(τ) = ys(τ) + (p∗ − r)τ .

Step 2. We prove that for any τ > 0, there holds

zs(τ) ≥ z1(τ) = ln

[
2L

2r + σ2

(
1 − 1

1 + rτ

)]
.(3.6)

In fact, for any T0 > 0, we will prove zs(T0) ≥ z1(T0).
Since z1(T0) = ln [ 2L

2r+σ2 (1 − 1
1+rT0

)], we define z1 by

ez1 =
2L

2r + σ2

(
1 − 1

1 + rT0

)
.

It follows that

ez1 =
2L

2r + σ2

rT0

1 + rT0
≤ LT0

1 + rT0
.(3.7)

We define

W (z, τ) =

{
L

1+rT0
(T0 − τ), (z, τ) ∈ (−∞, z1 ] × [ 0, T0 ],

ez − 1
αe

α(z−z1)+z1 − L
1+rT0

τ, (z, τ) ∈ (z1,+∞) × [ 0, T0 ],
(3.8)

where α = − 2r
σ2 .

We claim that W (x, τ) possesses the following four properties:
(I) W ∈ W 2,1

p, loc(R × (0, T0)) ∩ C(R × [ 0, T0 ]).
(II) W ≥ 0 ∀ (z, τ) ∈ R × (0, T0 ].
(III) W (z, 0) ≥ (ez − 1)+.
(IV) ∂τW − LzW ≥ −L, (z, τ) ∈ R × [ 0, T0 ].

Indeed, since

W (z1 + 0, τ) = ez1

(
1 − 1

α

)
− L

1 + rT0
τ =

L

1 + rT0
(T0 − τ),(3.9)

∂zW (z1 + 0, τ) = ez1 − ez1 = 0.(3.10)

Then property (I) follows. Next, we prove properties (II) and (III).
It is clear that W (z, τ) ≥ 0 for (z, τ) ∈ (−∞, z1 ] × [ 0, T0 ]. Moreover, it can be

seen that if z > z1,

∂zzW = ez − αeα(z−z1)+z1 ≥ ez > 0.

Combining (3.9) and (3.10), we know that for any (z, τ) ∈ (z1,+∞) × [ 0, T0 ], there
hold

∂zW (z, τ) > 0, W (z, τ) >
L

1 + rT0
(T0 − τ) ≥ 0.
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Thus we get property (II). On the other hand, applying (3.7), we obtain

W (z, 0) =

{
LT0

1+rT0
≥ ez1 > (ez − 1)+, z ≤ z1,

ez − 1
αe

α(z−z1)+z1 > ez > (ez − 1)+, z > z1.

Then we have property (III). In the following, we prove property (IV).
In fact, notice that 1 and α are the characteristic roots of the ODE LzW = 0.

Then we see that for any (z, τ) ∈ (z1,+∞) × (0, T0],

∂τW − LzW = − L

1 + rT0
− rL

1 + rT0
τ = −L

1 + rτ

1 + rT0
≥ −L.

On the other hand, for any (z, τ) ∈ (−∞, z1) × (0, T0], as above, we have

∂τW − LzW = − L

1 + rT0
+

rL

1 + rT0
(T0 − τ) ≥ − L

1 + rT0
− rL

1 + rT0
τ ≥ −L.

Hence we have property (IV).
Properties (I)–(IV) indicate that W is a supersolution of problem (3.4). Hence

W ≥ v∗ in R × [ 0, T ], especially

0 ≤ v∗(z, T0) ≤ W (z, T0) = 0, z ≤ z1,

meaning that zs(T0) ≥ z1(T0). Then (3.6) follows.
Step 3. We prove that for any τ > 0,

zs(τ) ≤ z2(τ) = ln

[
2L

2r + σ2

(
1 +

1

Lτ

)]
.(3.11)

In fact, for any T0 > 0, denote

w(z, τ)=

{
−1 + τ

T0
, (z, τ) ∈ (−∞, z2 ] × [ 0, T0 ],

ez − 1
αe

α(z−z2)+z2 −A + (−1 + τ
T0

), (z, τ) ∈ (z2,+∞) × [ 0, T0 ],
(3.12)

where α = − 2r
σ2 and

ez2 =
2L + 2/T0

2r + σ2
, A =

α− 1

α
ez2 =

L + 1/T0

r
.

We claim that w(z, τ) satisfies the following three properties:
(I) w ∈ W 2,1

p, loc(R × (0, T )) ∩ C(R × [ 0, T ]).

(II) w(z, 0) ≤ (ez − 1)+.
(III) ∂τw − Lzw ≤ −L if w > 0 and (z, τ) ∈ R × (0, T0 ].

Indeed, as in the previous step, property (I) is obvious. Next, we prove properties (II)
and (III). Considering

w(z, 0) =

⎧⎪⎨
⎪⎩

−1 < 0 < (ez − 1)+, z ≤ z2,

(ez − 1) − ( 1
αe

α(z−z2)+z2 + A) < (ez − 1) − ( 1
αe

z2 + A)

= (ez − 1) − ez2 < (ez − 1) ≤ (ez − 1)+, z > z2,

property (II) follows.
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In the following, we prove property (III). It is clear that w(z, τ) ≤ 0 for any
(z, τ) ∈ (−∞, z2 ]× [ 0, T0 ]. On the other hand, for any (z, τ) ∈ (z2,+∞)× (0, T0], by
the method in Step 2, we see that

∂τw − Lzw =
1

T0
− rA + r

(
−1 +

τ

T0

)
≤ 1

T0
− rA =

1

T0
− r

L + 1/T0

r
= −L.

Hence we have property (III).
Based on properties (I)–(III), as in the proof of the uniqueness in Lemma 2.1, we

can prove w ≤ v∗ in R × [ 0, T ]. Moreover, for z > z2,

w(z, T0) = (ez − ez2) − 1

α
ez2(eα(z−z2) − 1) > 0.

Thus v∗(z, T0) > 0 for any z > z2, and (3.11) follows.
Step 4. From (3.6) and (3.11), we see that

ln

[
2L

2r + σ2

(
1 − 1

1 + rτ

)]
≤ zs(τ) ≤ ln

[
2L

2r + σ2

(
1 +

1

Lτ

)]
.

Since zs(τ) = ys(τ) + (p∗ − r)τ , then (3.2) follows.
Remark. Let τ → +∞ in (3.2). We can deduce that

ys(τ) + (p∗ − r)τ = zs(τ) → ln

(
2L

2r + σ2

)
as τ → +∞.

Moreover, combining zs(τ) = ys(τ) + (p∗ − r)τ is continuous in [ 0, T ]. We see that
there exist two constants M1 and M2 such that M1 ≤ zs(τ) ≤ M2, which are inde-
pendent of T .

4. Characterizations of the free boundary of problem (1.4). We have
obtained some properties (Theorems 3.1 and 3.2) about the free boundary ys(τ) of
the new problem (2.2). In the following, we come back to consider the free boundary
of the original problem (1.4).

Denote xs(τ) as the free boundary between NRx and SRx, which are, respec-
tively, the counterparts of NRy and SRy in the transformation (2.1). From the
transformation (2.1), we have

V (x, τ) = v(x + (r − q − p∗)τ, τ), xs(τ) = ys(τ) + (q + p∗ − r)τ.

Theorems 3.1 and 3.2 imply Theorem 4.1
Theorem 4.1. (1) xs(τ) ∈ C[ 0, T ] ∩ C∞(0, T ] with xs(0) = 0 and satisfies

ln

[
2L

2r + σ2

(
1 − 1

1 + rτ

)]
≤ xs(τ) − qτ ≤ ln

[
2L

2r + σ2

(
1 +

1

Lτ

)]
.(4.1)

(2) If q = 0 and r ≥ L, xs(τ) = ys(τ) is strictly decreasing (see Figure 4).
(3) If q > 0, xs(τ) → +∞ as τ → +∞ (see Figure 5).
Lemma 4.2. If q = 0 and r < L ≤ r + σ2/2 (see Figure 6), then

xs(τ) ≤ 0.

Proof. Denote

w(x, τ) =

{
0, (x, τ) ∈ (−∞, 0 ] × [ 0, T ],

C1e
x + C2e

αx − L
r , (x, τ) ∈ (0,+∞) × [ 0, T ],

(4.2)
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�

�
τ

x•O

SR NR

xs(τ)

V = 0 V > 0

Fig. 4. q = 0 and r ≥ L.

�

�
τ

x•O

SR NR

xs(τ)

V = 0 V > 0

Fig. 5. q > 0.

�

�τ

x•O

SR NR

xs(τ)

V = 0 V > 0

Fig. 6. q = 0 and r < L ≤ r + σ2/2.

where

α = −2r/σ2, C1 =
−αL

r(1 − α)
=

2L

2r + σ2
≤ 1, C2 =

L

r(1 − α)
.(4.3)

We claim that w(x, τ) satisfies the following three properties:⎧⎪⎨
⎪⎩

(I) w ∈ W 2,1
p, loc(R × (0, T )) ∩ C(R × [ 0, T ]),

(II) 0 ≤ w(x, 0) ≤ (ex − 1)+,

(III) ∂τw − Lxw = −L if w > 0 and (x, τ) ∈ R × (0, T ].

(4.4)
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�

�
τ

x•O

SR NR

xs(τ)

V = 0 V > 0

Fig. 7. q = 0 and L > r + σ2/2.

Indeed, from (4.2) and (4.3), we have

w(0 + 0, τ) = C1 + C2 −
L

r
= 0, ∂xw(0 + 0, τ) = C1 + αC2 = 0.(4.5)

Then we get property (I). Next, we prove property (II). Indeed, from (4.2), we have

∂xxw(x, τ) = C1e
x + C2α

2eαx > 0 ∀x > 0.

This fact and (4.5) imply ∂xw(x, τ) ≥ 0 and w(x, τ) ≥ 0 for any x > 0. Moreover,
since as x > 0, there hold, by C1 ≤ 1,

∂xw(x, τ) − ∂x(ex − 1) = C1e
x + C2αe

αx − ex < 0 and w(0, 0) = 0,

we have w(x, τ) < ex − 1 for any x > 0. Then, combining this result with (4.2), we
get conclusion (II).

In the following, we prove property (III). Notice that 1 and α are the characteristic
roots of ODE Lxw = 0; then we have, if (x, τ) ∈ (0,+∞) × [ 0, T0 ],

∂τw − Lxw = −r
L

r
= −L.

Based on properties (I)–(III), as in the proof of the uniqueness in Lemma 2.1, we
can prove w ≤ V . Since w > 0 for any x > 0, so V > 0 for any x > 0; therefore,
xs(τ) ≤ 0.

Lemma 4.3. If q = 0 and L > r + σ2/2, then xs(τ) ≤ ln 2L
2r+σ2 (see Figure 7).

Proof. Denote

w(x, τ) =

{
0, (x, τ) ∈ (−∞, x0 ] × [ 0, T ],

ex − 1
αe

α(x−x0)+x0 − L
r , (x, τ) ∈ (x0,+∞) × [ 0, T ],

(4.6)

where

α =
−2r

σ2
, ex0 =

αL

r(α− 1)
=

2L

2r + σ2
> 1.(4.7)

The proof is analogous to that of Lemma 4.2. We claim that w(x, τ) still satisfies the
three properties in (4.4). Indeed, from (4.6) and (4.7), we have

w(x0 + 0, τ) =
α− 1

α
ex0 − L

r
= 0, ∂xw(x0 + 0, τ) = ex0 − α

ex0

α
= 0.(4.8)
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Then we get property (I).
Next, from (4.6), we have

∂xxw(x, τ) = ex − αeα(x−x0)+x0 > 0 ∀ (x, τ) ∈ (x0,+∞) × [ 0, T ],

which, combined with (4.8), implies ∂xw(x, τ) > 0 and w(x, τ) > 0 for any x > x0.
Moreover, since x0 > 0 by ex0 > 1, there hold, if x > x0,

∂xw(x, τ) − ∂x(ex − 1) = −eα(x−x0)+x0 < 0 and w(x0, 0) = 0 < ex0 − 1;

hence, w(x, τ) < ex − 1 for any x > x0. Combining this result with (4.6), we get
conclusion (II).

Finally, as in the proof of Lemma 4.2, we can check

∂τw − Lxw = −r
L

r
= −L, ∀ (x, τ) ∈ (x0,+∞) × [ 0, T0 ];

hence w ≤ V . Since w > 0 for any x > x0, then V > 0 for any x > x0; therefore
xs(τ) ≤ x0 = ln 2L

2r+σ2 .
Lemma 4.4. There exists a τ0 > 0 such that V (0, τ) > 0 for any 0 < τ < τ0 (see

Figures 4–7), i.e.,

{x = 0, 0 < τ < τ0} ⊂ NR, xs(τ) < 0 for 0 < τ < τ0.

Proof. The solution V (x, t) of (1.4) satisfies{
∂τV − LxV ≥ −L, (x, τ) ∈ R × (0, T ],

V (x, 0) = (ex − 1)+, x ∈ R.
(4.9)

Consider the Cauchy problem{
∂τV − LxV = −L, (x, τ) ∈ R × (0, T ],

V1(x, 0) = (ex − 1)+, x ∈ R.
(4.10)

Applying the comparison principle to problems (4.9) and (4.10), we see that V (x, τ) ≥
V1(x, τ). If we can prove that there exists a τ0 > 0 such that V1(0, τ) > 0 for
0 < τ < τ0, then the result of the theorem is an immediate result. To do this we
define

V1(x, τ) = V2(x, τ) +
L

r
(e−rτ − 1).

Then V2(x, τ) satisfies{
∂τV2 − LxV2 = 0, (x, τ) ∈ R × (0, T ],

V2(x, 0) = (ex − 1)+, x ∈ R.
(4.11)

This is a Cauchy problem which the price of the standard European call option sat-
isfies. Its solution has an explicit formula (see [11]):

V2(x, τ) = ex−qτN(d̂1) − e−rτN(d̂2) ,(4.12)

where

N(d̂1) =
1√
2π

∫ d̂1

−∞
e−η2/2dη,

d̂1 =
x + (r − q + σ2/2)τ

σ
√
τ

, d̂2 =
x + (r − q − σ2/2)τ

σ
√
τ

.
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Now we check

∂τV2(0, τ) = −qe−qτN(d1) + e−qτn(d1)
r − q + σ2/2

2σ
√
τ

+ re−rτN(d2)

− e−rτn(d2)
r − q − σ2/2

2σ
√
τ

≥ −q + e−qτn(d1)
σ

2
√
τ
,

where

n(d1) = e−d2
1/2/

√
2π, d1 =

(r − q + σ2/2)
√
τ

σ
, d2 =

(r − q − σ2/2)
√
τ

σ
,

and we had utilized the equality e−qτn(d1) = e−rτn(d2). As τ → 0+, we have

d1 → 0, n(d1) → 1, ∂τV2(0, τ) → +∞.

It follows that ∂τV1(0, τ) → +∞ as τ → 0+. Since V1(0, 0) = 0 and V1 ∈ C(R×[ 0, T ]),
then we see that there exists a τ0 > 0 such that V1(0, τ) > 0 for any 0 < τ < τ0.

From Theorem 4.1 and Lemmas 4.2–4.4, we can conclude the following theorem.
Theorem 4.5. (1) If q > 0, then xs(τ) is not monotonic; moreover, xs(τ)

changes its sign (see Figure 5) and

lim
τ→+∞

[xs(τ) − qτ ] = ln
2L

2r + σ2
.

(2) If q = 0 and r < L ≤ r + σ2/2, then xs(τ) ≤ 0 (see Figure 6) and

lim
τ→+∞

xs(τ) = ln
2L

2r + σ2
.

(3) If q = 0 and L > r + σ2/2, then xs(τ) is not monotonic; moreover, xs(τ)
changes its sign (see Figure 7) and xs(τ) ≤ ln 2L

2r+σ2 with

lim
τ→+∞

xs(τ) = ln
2L

2r + σ2
.

Proof. (1) From Theorem 4.1, we see that xs(0) = 0 and xs(τ) → +∞ as τ → +∞;
moreover, by Lemma 4.4, there exists a τ0 > 0 such that xs(τ) < 0 for any 0 < τ < τ0,
and hence xs(τ) is not monotonic and changes sign. Inequality (4.1) implies

lim
τ→+∞

(xs(τ) − qτ) = ln
2L

2r + σ2
.

(2) and (3) are easily obtained as above, so we omit their proofs.
Remark on the monotonicity of xs(τ) in (2) of Theorem 4.5. According to the

result of asymptotic expansion of Ss(τ) = exs(τ) close to expire in (1.2), we know that

xs(τ) ∼ −σ(−τ ln τ)1/2(1 + o(1)); x′
s(τ) ∼ −∞ as τ = T − t → 0+.

So if τ is small enough, xs(τ) is monotonic decreasing. Combining this result with
(4.1), we guess that xs(τ) should not be monotonic. But we cannot prove this con-
jecture.
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5. The monotonicity of the free boundary xs(τ ) with respect to the
parameters r, q, and L. In this section, we have the following theorem.

Theorem 5.1. xs(τ) is decreasing with respect to r and increasing with respect
to q and L.

Proof. We divide the proof into three steps.
Step 1. We prove

∂xV − V ≥ 0.(5.1)

For the proof of (5.1), we come back to the approximation problem (2.11) and denote

W ∗ = ∂yvε, n − vε, n + 2ε.

We claim that W ∗ ≥ 0; otherwise, we suppose W ∗ achieves its negative minimum at
(x0, τ0) ∈ Ωn

T .
If n is large enough, from the definition of πε and the initial and boundary values

in (2.11) and (2.13), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W ∗(−n, τ) ≥ 0 − 0 + 2ε > 0 (by (2.14)),

W ∗(n, τ) ≥ en+(p∗−r)τ − en+(p∗−r)τ + 2ε > 0 (by (2.12)),

W ∗(y, 0) = ∂yπε(e
y − 1) − πε(e

y − 1) + ε ≥ 0 − ε + 2ε > 0 if ey − 1 ≤ ε,

W ∗(y, 0) > ey − (ey − 1) + 2ε > 0 if ey − 1 > ε.

Hence, from (2.3), we deduce that

(x0, τ0) ∈ Ωn
T and ∂τW

∗(x0, τ0) − LyW
∗(x0, τ0) ≤ 0.(5.2)

On the other hand, (2.14) and W ∗(x0, τ0) < 0 imply vε, n(x0, τ0) > 2ε. Then

βε(vε, n(x0, τ0)) = 0, β ′
ε(vε, n(x0, τ0)) = 0.

Combining (2.11) and (2.13), we see that at the point (x0, τ0)

∂τW
∗ − LyW

∗ = L + 2rε > 0,

which contradicts (5.2). Hence,

W ∗ ≥ 0 and ∂yvε, n − vε, n ≥ −2ε.

Taking ε → 0+ and n → ∞, we obtain

∂yv − v ≥ 0.

Eventually, the transformation (2.1) implies (5.1).
Step 2. Suppose that V1 is the solution to (1.4), where r is r1, and that V2 is the

solution to (1.4), where r is r2 and r1 > r2. By (5.1), we deduce ∂xV1 −V1 ≥ 0. Then
V1 satisfies⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂τV1 − σ2

2 ∂xxV1 − (r2 − q − σ2

2 )∂xV1 + r2V1 = −L + (r1 − r2)(∂xV1 − V1) ≥ −L

if V1 > 0 and (x, τ) ∈ R × (0, T ],

∂τV1 − σ2

2 ∂xxV1 − (r2 − q − σ2

2 )∂xV1 + r2V1 ≥ −L + (r1 − r2)(∂xV1 − V1) = −L

if V1 = 0 and (x, τ) ∈ R × (0, T ],

V1(x, 0) = (ex − 1)+, x ∈ R.
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By the comparison principle for the solution of variational inequalities with respect
to nonhomogeneous terms, we have V1 ≥ V2. If we denote NR1, NR2 to be the
nontransaction region of V1, V2, respectively, then NR1 ⊃ NR2. Hence xs(τ) is
decreasing with respect to r.

Step 3. As in Step 2, from (2.21), we can deduce that xs(τ) is increasing with
respect to q and L.

6. Numerical methods and results. Starting from problem (1.4), we have{
min{ ∂τV − σ2

2 ∂xxV − (r − q − σ2

2 )∂xV + rV + LV } = 0, x ∈ R, τ ∈ (0, T ],

V (x, 0) = (ex − 1)+, x ∈ R.
(6.1)

Given mesh size �x, �τ > 0, V n
j = V (j�x, n�τ) represents the value of numerical

approximation at (j�x, n�τ). Then the PDE is changed into the following difference
equation: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

{
V n
j −V n−1

j

�τ − σ2

2

V n−1
j+1 −2V n−1

j +V n−1
j−1

�x2

− (r − q − σ2

2 )
V n−1
j+1 −V n−1

j−1

2�x + rV n
j + L, V n

j

}
= 0,

V 0
j = (ej�x − 1)+.

(6.2)

This means⎧⎪⎪⎨
⎪⎪⎩

V n
j = max

{
1

1+r�τ [(1 − σ2�τ
�x2 )V n−1

j + σ2+(r−q−σ2/2)�x
2�x2 �τV n−1

j+1

+ σ2−(r−q−σ2/2)�x
2�x2 �τV n−1

j−1 − L�τ ], 0
}
,

V 0
j = max{0, ej�x − 1}.

(6.3)

Choosing σ2�τ(�x)−2 = 1, we have⎧⎪⎪⎨
⎪⎪⎩

V n
j = max

{
1

1+r�τ [( 1
2 + r−q−σ2/2

2σ

√
�τ)V n−1

j+1

+ ( 1
2 − r−q−σ2/2

2σ

√
�τ)V n−1

j−1 − L�τ ], 0
}
,

V 0
j = max{0, ej�x − 1}.

(6.4)

Denote u = eσ
√
�τ , d = u−1, ρ = er�τ , p = (ρe−q�τ − d)(u− d)−1.

Then it is clear, as �τ → 0+, that the following hold:

1

2
+

r − q − σ2/2

2σ

√
�τ = p + o(�τ),

1

1 + r�τ
=

1

ρ
+ O(�τ2).

Neglecting a higher order of
√
�τ , we obtain{

V n
j = max { 1

ρ [ pV n−1
j+1 + (1 − p)V n−1

j−1 − L�τ ], 0 },
V 0
j = max { 0, uj − 1}.

(6.5)

Consider the point (x, τ) = (j�x, n�τ). Then

V n
j = V (x, τ), V n−1

j = V (x, τ −�τ),

V n−1
j+1 = V (x + �x, τ −�τ), V n−1

j−1 = V (x−�x, τ −�τ).
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Fig. 8. q = 0 and r ≥ L.

Fig. 9. q > 0.

Then we get Figures 8–11.
Figure 8 shows a plot of the optimal stop boundaries xs(τ) (ys(τ)) as a function

of time τ when q = 0, r ≥ L. The parameter values used in the calculations are
r = 0.4, q = 0, σ = 0.7, L = 0.1, T = 5, n = 600. xs(τ), ys(τ) are the free
boundaries of problems (1.4) and (2.2), respectively. Observe that xs(0) = ys(τ) =
0, −1.587 ≤ xs(τ) = ys(τ) ≤ 0, and xs(τ), ys(τ) are strictly decreasing with respect
to τ . The numerical result is consistent with that of our proof (see Figure 8).

Figure 9 shows a plot of the optimal stop boundaries xs(τ) (ys(τ)) as a function of
time τ when q > 0. The parameter values used in the calculations are r = 0.25, q =
0.2, σ = 0.7, L = 0.3, T = 5, n = 600. xs(τ), ys(τ) are the free boundaries of
problems (1.4) and (2.2), respectively. Observe that xs(0) = ys(τ) = 0, xs(τ) ≥
−0.1917, and xs(τ) is not monotonic and ys(τ) is decreasing. The numerical result is
consistent with that of our proof (see Figure 9).
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Fig. 10. q = 0 and r < L ≤ r + σ2/2.

Fig. 11. q = 0 and L > r + σ2/2.

Figure 10 shows a plot of the optimal stop boundaries xs(τ) (ys(τ)) as a function
of time τ when q = 0 and r < L ≤ r + σ2/2. The parameter values used in the
calculations are r = 0.1, q = 0, σ = 0.7, L = 0.3, T = 5, n = 600. xs(τ), ys(τ) are
the free boundaries of problems (1.4) and (2.2), respectively. Observe that xs(0) =
ys(τ) = 0, −0.2556 ≤ xs(τ) ≤ −0.1278, and ys(τ) is decreasing. The numerical result
is consistent with that of our proof (see Figure 10).

Figure 11 shows a plot of the optimal stop boundaries xs(τ) (ys(τ)) as a function
of time τ when q = 0 and L > r+σ2/2. The parameter values used in the calculations
are r = 0.2, q = 0, σ = 0.6, L = 0.5, T = 5, n = 600. xs(τ), ys(τ) are the free
boundaries of problems (1.4) and (2.2), respectively. Observe that xs(0) = ys(τ) =
0, −0.0548 ≤ xs(τ) ≤ 0.2739, and xs(τ) is not monotonic and ys(τ) is decreasing.
The numerical result is consistent with that of our proof (see Figure 11).



VARIATIONAL INEQUALITY 325

Appendix. Formulation of the model. A European call option is a contract
which gives the owner the right but not the obligation to buy an asset at a fixed price
K at the expiry date T . Because the holder of the option stands to make a profit
without risking a loss, the holder must pay some premium for the option.

In a conventional European call option contract (see [2]), the holder pays the pre-
mium entirely up front and acquires the right. In a continuous installment European
call option contract, the holder pays a smaller up-front premium and then a constant
stream of installments at a certain rate per unit time. However, the holder can choose
at any time to stop making installment payments by stopping the option contract.

There are some papers about install options, such as [7], [8], [1], [6]. Particularly,
there are a variational inequality model in [7] and some numerical results about the
model. In the following, we deduce a parabolic variational inequality model using
their idea.

We consider a standard model for perfect market, continuous trading, no-arbitrage
opportunity, a constant interest rate r > 0, and an asset with constant continuous
dividend yield q ≥ 0 with price S following a geometric Brownian motion

dS = μSdt + σSdB,(A.1)

where B is a Wiener process on a risk neutral probability space, μ > 0 is the expected
return rate, and σ > 0 is the constant volatility.

Let C(S, t) denote the value of a European continuous installment call option and
let L∗ be the continuous install rate. Applying Itô’s formula to C(S, t) and combining
(A.1), we obtain the dynamics

dC =

(
∂C

∂t
+

σ2

2
S2 ∂C

∂S2
+ μS

∂C

∂S

)
dt + σS

∂C

∂S
dB.(A.2)

We construct the �-hedging portfolio consisting of one continuous installment option
and an amount −� asset. The value of this portfolio is

Π = C −�S.(A.3)

Then its dynamics is given by

dΠ = dC −�Sqdt−�dS − L∗dt ≤ rΠdt = r(C −�S)dt.(A.4)

Combining (A.1) and (A.3), we get

0 ≥ dΠ − r(C −�S)dt

=

(
∂C

∂t
+

σ2

2
S2 ∂C

∂S2
+ μS(

∂C

∂S
−�) + (r − q)�S − rC − L∗

)
dt

+ σS

(
∂C

∂S
−�

)
dB.(A.5)

Setting � = ∂SC the coefficient of dB vanishes. The portfolio is instantaneously
riskless; then we see that C(S, t) satisfies

∂tC +
σ2

2
S2∂SSC + (r − q)S∂SC − rC ≤ L∗.(A.6)

Moreover, in the nontransaction region, C(S, t) satisfies

∂tC +
σ2

2
S2∂SSC + (r − q)S∂SC − rC = L∗.(A.7)
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At expiry date T , if S > K, the holder of the option will buy the asset with price
S at K and can make a profit S − K. On the other hand, if S ≤ K, he will not
exercise the option and stand any loss. Hence, the value of the option is (S −K)+ at
expiry date T , that is,

C(S, T ) = (S −K)+.(A.8)

Because the owner must keep paying premiums to keep the option alive, if S is
small enough at some t, the present value of the expected pay-off may be less than the
present value of the remaining installments; then the holder would allow the option
to lapse and stop paying installment payments. Hence, the value of the option is 0 in
the case in which (S, τ) lies in the stop region.

It is clear that C(S, t) ≥ 0 in nontransaction region. Otherwise, he can choose to
stop the option for increased profit; hence we have

C(S, t) ≥ 0.(A.9)

From the above deduction, we see that the following equality holds in the stop
region and the nontransaction region:[

∂tC +
σ2

2
S2∂SSC + (r − q)S∂SC − rC − L∗

]
C(S, τ) = 0.(A.10)

Then we see that the value of the European continuous installment call option
C(S, t) satisfies (A.6), (A.8)–(A.10), that is, (1.1). Moreover, from the smooth fit
conditions [12], we know that C, ∂SC are continuous.
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DETERMINATION OF THE SPECTRAL GAP IN THE KAC MODEL
FOR PHYSICAL MOMENTUM AND ENERGY-CONSERVING

COLLISIONS∗
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Abstract. The Kac model describes the local evolution of a gas of N particles with three-
dimensional velocities by a random walk in which the steps correspond to binary collisions that
conserve momentum as well as energy. The state space of this walk is a sphere of dimension 3N − 4.
The Kac conjecture concerns the spectral gap in the one-step transition operator Q for this walk.
In this paper, we compute the exact spectral gap. As in previous work by Carlen, Carvalho, and
Loss, where a lower bound on the spectral gap was proved, we use a method that relates the spectral
properties of Q to the spectral properties of a simpler operator P , which is simply an average of
certain noncommuting projections. The new feature is that we show how to use a knowledge of
certain eigenfunctions and eigenvalues of P to determine spectral properties of Q, instead of simply
using the spectral gap for P to bound the spectral gap for Q, inductively in N , as in previous work.
The methods developed here can be applied to many other high-dimensional stochastic process, as
we shall explain. We also use some deep results on Jacobi polynomials to obtain the required spectral
information on P , and we show how the identity through which Jacobi polynomials enter our problem
may be used to obtain new bounds on Jacobi polynomials.

Key words. Kac model, orthogonal polynomials, spectral gap
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1. The Markov transition operator Q for the Kac walk. Let XN be the
N particle state space consisting of N -tuples �v = (v1, . . . , vN ) of vectors vj in R

3 with

N∑
j=1

|vj |2 = 1 and

N∑
j=1

vj = 0.

We think of a point �v as specifying the velocities of N particles and shall consider
a random walk on XN that was introduced by Kac [7]. At each step of this random
walk, �v is updated due to the effect of a binary collision that conserves energy and
momentum—hence the constraints defining XN .

To specify this walk in more detail, we consider a collision in which particles i
and j collide. Suppose that v∗i and v∗j are the postcollisional velocities, while vi and vj
are the precollisional velocities. Then by momentum conservation, the center of mass
velocity is conserved; i.e.,

v∗i + v∗j = vi + vj .

Furthermore, by energy conservation, i.e., |v∗i |2 + |v∗j |2 = |vi|2 + |vj |2, and the paral-
lelogram law, it follows that

|v∗i − v∗j | = |vi − vj |.
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This leads to a natural parameterization of all of the possible binary collision outcomes
that conserve energy and momentum: The parameter σ is a unit vector in S2, and,
when particles i and j collide, one updates �v → �v∗ = Ri,j,σ(�v), where

v∗i =
vi + vj

2
+

|vi − vj |
2

σ,

v∗j =
vi + vj

2
− |vi − vj |

2
σ,

v∗k = vk for k �= i, j.(1.1)

The Kac walk on XN is a random walk in which the steps are such binary collisions
between pairs of particles. At each step, one picks a pair (i, j), i < j uniformly at
random, and also a unit vector σ in S2. One then makes the update described in (1.1).
Of course it remains to specify the probabilistic rule according to which σ should be
selected. In the physics being modeled here, the likelihood of selecting a particular
σ will depend only on the resulting scattering angle θ, which is the angle between
v∗i − v∗j and vi − vj . In the parameterization above, this is the angle between σ and
vi − vj . That is,

cos(θ) = σ · vi − vj
|vi − vj |

.

The scattering rate function b is a nonnegative integrable function on [−1, 1] with

1

2

∫ 1

−1

b(u)du = 1.

Then for any vi �= vj , and with dσ being the uniform probability measure on S2,

(1.2)

∫
S2

b

(
σ · vi − vj

|vi − vj |

)
dσ = 1.

(If vi = vj , the collision has no effect and can be ignored.) One selects σ according to
the probability density that is integrated in (1.2).

There are several choices of b of particular interest. One is the uniform redirection
model, given by b(x) = 1 for all −1 ≤ x ≤ 1. In this case, the new direction of the
relative velocity σ is chosen uniformly from S2.

Another is the Morgenstern model [10], [11], or the uniform reflection model: For
any unit vector ω ∈ S2, let Hω be the reflection given by

Hω(v) = v − 2(v · ω)ω.

In the uniform reflection model, one updates the relative velocity according to

vi − vj → Hω(vi − vj) = v∗i − v∗j ,

with ω chosen uniformly. The relation between ω and σ is given by σ = Hω((vi −
vj)/|vi − vj |), and, by computing the Jacobian of the map ω → σ, one finds

b(x) =
1√

2
√

1 − x
.
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Both of these belong to the one-parameter family

(1.3) bα(x) = (1 − α)2α(1 − x)−α.

By leaving the particular choice of b open, this completes the specification of the steps
in the Kac walk. For more detail and background, see [7] and [3].

The main object of study here is the spectrum of the one-step transition operator
Q for this random walk, and the manner in which this spectrum depends on N . Q is
defined as follows: Let �vn be the state of the process after the nth step. The one-step
Markov transition operator Q is given by taking the conditional expectation

Qφ(�v) = E(φ(�vn+1) | �vn = �v)

for any continuous function φ on XN .
From the above description, one deduces the formula

(1.4) Qφ(�v) =

(
N
2

)−1 ∑
i<j

∫
S2

φ(Ri,j,σ(�v))b

(
σ · vi − vj

|vi − vj |

)
dσ.

Let σN denote the uniform probability measure on XN , which is the normalized
measure induced on XN as a manifold embedded in R

3N .
For any two unit vectors σ and ω, one sees from (1.1) that

Ri,j,σ(Ri,j,ω�v) = Ri,j,σ�v.

From this and the fact that the measure dσN is invariant under �v �→ Ri,j,σ�v, it follows
that, for any continuous functions φ and ψ on XN ,∫

XN

ψ(�v)Qφ(�v)dσN =

∫
XN

∫
S2

∫
S2

ψ(Ri,j,ω�v)φ(Ri,j,σ�v)b(ω · σ)dωdσdσN .

It follows that Q is a self-adjoint Markov operator on L2(XN , σN ). Moreover, it is
clearly a Markov operator; that is, in addition to being self-adjoint, Q is positivity
preserving and Q1 = 1.

The motivation for considering the spectral properties of Q stems from a theorem
of Kac [7] that relates the continuous time version of the Kac walk to the nonlinear
Boltzmann equation. For the details, see [7] or [3]. Let �v(t) denote the random variable
giving the state of the system at time t for the process run in continuous time with
the jumps taking place in a Poisson stream with the mean time between jumps being
1/N . Then the equation describing the evolution of the probability law of �v(t) is called
the Kac master equation: If the initial law on XN has a density F0, then the law at
time t has a density F (�v, t) satisfying

∂

∂t
F (�v, t) = N(Q− I)F (�v, t), with F (�v, 0) = F0(�v).

The solution F (�v, t) is of course given by

F (�v, t) = etLF0(�v),

where

L = N(Q− I).
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Since Q is a self-adjoint Markov operator, its spectrum lies in the interval [−1, 1],
and since Q1 = 1, the constant function is an eigenfunction with eigenvalue 1. It is
easily seen that, as long as b(x) is strictly positive on a neighborhood of x = 1, the
eigenvalue 1 of Q has multiplicity one. It then follows that the spectrum of L lies in
[−2N, 0] and that 0 is an eigenvalue of multiplicity one. We impose this assumption
on b throughout what follows.

The Kac conjecture for this stochastic process pertains to the spectral gap

ΔN = inf

{
−

∫
XN

φ(�v)Lφ(�v)dσN

∣∣∣∣
∫
XN

φ2(�v)dσN = 1,

∫
XN

φ(�v)dσN = 0

}

and states that

lim inf
N→∞

ΔN > 0.

This was proved by Carlen, Carvalho, and Loss [3], but without an explicit lower
bound. Kac also made a similar conjecture for a simplified model with one-dimensional
velocities and no conservation of momentum. For this model, the conjecture was first
proved by Janvresse [6], though her approach provided no explicit lower bound. The
sharp bound for the simplified model was first established in [2]. See Maslen [9] for a
representation theoretic approach.

The main goal of the present paper is to compute exactly lim infN→∞ ΔN . We shall
be able to do this under an easily checked condition relating Δ2 and the quantities

(1.5) B1 =
1

2

∫ 1

−1

xb(x)dx and B2 =
1

2

∫ 1

−1

x2b(x)dx.

The condition, given in (1.6) below, will turn out to be satisfied when b is given by
bα, as in (1.3), for all 0 ≤ α ≤ 7/9.

Theorem 1.1. Suppose that B2 > B1 and that

(1.6) Δ2 ≥ 20

9
(1 −B2).

Then for all N ≥ 3,

(1.7) ΔN = (1 −B2)
N

(N − 1)
.

Moreover, the eigenspace is three-dimensional and is spanned by the functions

(1.8) φ(�v) =

N∑
j=1

|vj |2vαj , α = 1, 2, 3,

where vαj denotes the αth component of vj.
As we shall see in the next section, for many choices of b, including the bα, there

is a simple monotonicity of the eigenvalues of Q for N = 2 which ensures that the
eigenfunction providing the gap comes from a first degree polynomial and thus that

(1.9) Δ2 = 2(1 −B1).

When (1.9) is satisfied, the condition (1.6) reduces to (1 −B1)/(1 −B2) > 10/9.
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Next, notice that the eigenfunctions listed in (1.8) are symmetric under permuta-
tion of the particle indices. Indeed, the operator Q commutes with such permutations,
so that the subspace of functions with this symmetry is invariant. As explained in [7]
and [3], it is the spectrum of Q on this subspace that is relevant for the study of the
Boltzmann equation.

Moreover, notice that, in the collision rules (1.1), exchanging v∗i and v∗j has the
same effect as changing σ to −σ. For this reason, if one’s primary object of interest
is the Boltzmann equation, one may freely assume that b is a symmetric function on
[−1, 1], since then replacing b(x) by (b(x) + b(−x))/2 will have no effect on the spec-
trum of Q on the invariant subspace of symmetric functions or on the corresponding
Boltzmann equation. (See the introduction of [4] for more discussion of this point in
the context of the Boltzmann equation.) If B is symmetric, then B1 = 0, and we do
have B1 < B2.

However, it is interesting that the Kac conjecture holds without restriction to the
symmetric subspace and that the methods developed here can be used to determine
the spectral gap even when b is not symmetric, and the eigenfunctions corresponding
to the gap eigenvalue are not symmetric.

When b is not symmetric, it may happen that B1 ≤ B2. We shall give examples of
this below. The next theorem gives the spectral gap and the eigenfunctions whenever
Δ2 = 2(1 − B1), regardless of whether B1 < B2 or B2 < B1. However, it gives the
exact value of ΔN only for N ≥ 7. Since we are interested in large values of N , this
is fully satisfactory. Indeed, it is remarkable that the two theorems show that already
at relatively small values of N , the behavior of the system is very close, qualitatively
and quantitatively to the behavior in the large N limit.

Theorem 1.2. Suppose that Δ2 = 2(1 −B1). Then, for all N ≥ 7,

(1.10) ΔN = min{ (1 −B1), (1 −B2) } N

(N − 1)
.

Moreover, if B2 > B1, the eigenspace is three-dimensional and is spanned by the
functions

(1.11) φ(�v) =

N∑
j=1

|vj |2vαj , α = 1, 2, 3,

where vαj denotes the αth component of vj.
On the other hand, if B2 < B1, the eigenspace is spanned by the functions of the

form

(1.12) |vi|2 − |vj |2 and vαi − vαj , α = 1, 2, 3,

for all i < j.
Finally, if B1 = B2, the eigenspace is spanned by both of the sets of functions

listed in (1.8) and (1.12) together.
For the family of collision rates introduced so far, the bα, one may apply The-

orem 1.1, as we have indicated, but only for α ≤ 7/9. As we shall see in section 2,
Theorem 1.2 applies for all 0 ≤ α < 1 and in this case gives ΔN = (N/N − 1)(1−B2)
for N ≥ 7. In order to illustrate the case in which Theorem 1.2 yields the gap
ΔN = (N/N − 1)(1 −B1), we introduce

(1.13) b̃α(x) = 2(α + 1)1[0,1](x)xα, α ≥ 0.
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Since x2 < x on (0, 1), it is clear that B2 < B1 for all α in this case. We show at the
end of section 2 that, at least for 0 ≤ α ≤ 1, Δ2 = 2(1 − B1), so that Theorem 1.2
applies in these cases.

The method of proof is quite robust, and in section 10 we shall describe how it
may be extended to determine the spectral gap of Q for still other choices of b that
are not covered by Theorems 1.1 and 1.2.

The method of proof of these theorems relies on a basic strategy introduced in
[3] but which is extended significantly here. The strategy consists of exploiting an
inductive link between the spectral gap of Q and the one of an operator P , an average
over projections introduced in section 3. In fact,

(1.14) ΔN ≥ N

N − 1
(1 − μN )ΔN−1,

where 1− μN is the gap of P . The eigenvalues of P are much easier to compute than
the ones of Q since the range of P consists of sums of functions of single variables vj .

In the case of the original model treated by Kac, one is in the happy circumstance
that Q has a single gap eigenfunction φ which is also the gap eigenfunction of P for
all N , and, when this is used as a trial function in the derivation of (1.14), one sees
that (1.14) actually holds with equality, giving an identity relating ΔN and ΔN−1.
Thus, starting at N = 2, where the gap can be easily calculated, the above formula
yields a lower bound on ΔN that turns out to be exact. The model treated in this
paper does not have this simplifying feature, even when the gap eigenfunctions of Q
are also the gap eigenfunctions of P . Nevertheless, the ideas that lead to (1.14) can
be used in such a way that we can still calculate the gap of Q exactly. Very briefly,
here is how.

Let μ∗
N < μN be any number, and assume that there are finitely many eigenvalues

μ∗
N ≤ μ

(m)
N ≤ · · · ≤ μ

(1)
N ≤ μN of P . Denote the corresponding eigenspaces by Ej . Let

Vj be the smallest invariant subspace of Q that contains Ej . Lemma 4.1 in section 4
provides us with the following dichotomy: Either

(1.15) ΔN ≥ N

N − 1
(1 − μ∗

N )ΔN−1

or else

(1.16) the gap of Q is the same as the gap of Q restricted to ⊕m
j=1 Vj .

If the threshold has been chosen so that the lower bound on ΔN provided by (1.15)
is at least as large as the upper bound on ΔN provided by some trial function in
⊕m

j=1Vj , then ΔN is the gap of Q restricted to ⊕m
j=1Vj . As we shall see, the Vj are

finite-dimensional, so determining the gap of Q on ⊕m
j=1Vj is a tractable problem. In

this case we have determined the exact value of ΔN .
To proceed to the determination of ΔN for all large N , one needs a strategy for

choosing the threshold μ�
N . The lower the value of μ�

N that is chosen, the stronger
the bound (1.15) will be, but also the higher the value of m will be. The basis for

the choice of μ�
N is a trial function calculation, providing a guess Δ̃N for the value

of ΔN . Indeed, natural trial functions can often be chosen on the basis of physical
considerations. (The spectrum of the linearized Boltzmann equation is the source in

the case at hand.) To show that the guess is correct, so that Δ̃N = ΔN , we are led to
choose μ�

N so that

(1.17) Δ̃N ≤ N

N − 1
(1 − μ∗

N )Δ̃N−1.
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Since Δ̃N−1 ≥ ΔN−1, this forces us into the second alternative in the dichotomy
discussed above, so that the gap eigenfunction for N particles lies in ⊕m

j=1Vj . Indeed,

if the physical intuition behind the guess was correct, the trial function leading to Δ̃N

will lie in ⊕m
j=1Vj and yield the gap.

Choosing μ�
N small enough that (1.17) is satisfied might in principle lead to a

value of m that depends on N . However, in the case at hand, we are fortunate and
can work with a choice of μ�

N that leads to a fixed and small value of m but for which
(1.17) is satisfied for all sufficiently large values of N—hence the restriction to N ≥ 7
in Theorem 1.2.

As will be clear from this summary of the strategy, the determination of the
spectrum of P is the main technical step that must be accomplished. As we mentioned
before, this is relatively simple, compared to the determination of the spectrum of Q,
since the range of P consists of functions that are a sum of functions of a single
variable.

For this reason, we can reduce the study of the spectrum of P to that of a much
simpler Markov operator K acting on functions on the unit ball B in R

3. In the analysis
of K, we shall draw on some deep results on Jacobi polynomials [8], [12]. In fact, it
turns out that the connection between our eigenvalue problems and pointwise bounds
on Jacobi polynomials is through a simple identity, and applications of this identity
can be made in both directions: We not only use bounds on Jacobi polynomials to
bound eigenvalues, we shall use simple eigenvalue estimates to sharpen certain best
known bounds on Jacobi polynomials, as we briefly discuss in section 11.

First, however, we deal with a simpler technical problem, the computation of the
spectral gap of Q for N = 2.

2. The spectral gap for N = 2. For N = 2, the state space X2 consists of
pairs (v,−v), with v ∈ R

3 satisfying |v|2 = 1/2. Note that for N = 2 the collision
rules (1.1) reduce to

v∗1 = σ/
√

2 and v∗2 = −σ/
√

2,

since v1 + v2 = 0.
The map (v,−v) �→

√
2v identifies X2 with the unit sphere S2, and the measure

dσ2 on X2 with dσ on S2. Thus, we may think of Q as operating on functions on S2.
In this representation, we have the formula

Qφ(u) =

∫
S2

φ(σ)b(u · σ)dσ.

Notice that if R is any rotation of R
3

(Qφ)(Ru) =

∫
S2

φ(σ)b(Ru · σ)dσ

=

∫
S2

φ(Rσ)b(Ru ·Rσ)dσ

=

∫
S2

φ(Rσ)b(u · σ)dσ = Q(φ ◦R)(u).

That is, (Qφ) ◦ R = Q(φ ◦ R), and this means that for each n the space of spherical
harmonics of degree n is an invariant subspace of Q, contained in an eigenspace of
Q. In turn, this means that we can determine the spectrum of Q by computing its
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action on the zonal spherical harmonics, i.e., those of the form Pn(e · u), where e is
any fixed unit vector in R

3 and Pn is the nth degree Legendre polynomial. Now, for
any function φ(u) of the form φ(u) = f(e · u),

Qφ(u) =

∫
S2

φ(σ · e)b(σ · u)dσ.

We choose coordinates in which u and e span the x, z plane with

u =

⎡
⎣ 0

0
1

⎤
⎦ and e =

⎡
⎣

√
1 − t2

0
t

⎤
⎦ ,

so that t = u · e. Then with

σ =

⎡
⎣ sin θ cosψ

sin θ sinψ
sin θ

⎤
⎦ ,

Qφ(u) = Qf(e · u),

where

Qf(t) =
1

4π

∫ π

0

∫ 2π

0

f(t cos θ +
√

1 − t2 sin θ cosϕ)b(cos θ) sin θdθdϕ

=
1

4π

∫ π

0

∫ 1

−1

f(ts +
√

1 − t2
√

1 − s2 cosϕ)b(s)dsdϕ.(2.1)

Now, if f is any eigenfunction of Q, with Qf = λf , then by evaluating both sides at

t = 1, we have λf(1) = 1
2

∫ π

0

∫ 1

−1
f(s)b(s)ds. Thus, the eigenvalue is given by

λ =
1

2

∫ 1

−1

f(s)

f(1)
b(s)ds.

As we have observed above, the eigenfunctions of Q are the Legendre polynomials.
Thus, if Pn is the Legendre polynomial of nth degree with the standard normalization
Pn(1) = 1, and λn is the corresponding eigenvalue,

(2.2) λn =
1

2

∫ 1

−1

Pn(s)b(s)ds.

This explicit formula enables one to easily compute Δ2. For example, we can now
easily prove the following.

Lemma 2.1. When b(x) = bα(x), as in (1.3), then 1−B2 < 1−B1 for all α < 1,
and moreover

(2.3) Δ2 = 2(1 − λ1) =
4(1 − α)

2 − α
= (1 −B2)(3 − α),

so that (1.6) is satisfied for all α with 0 ≤ α ≤ 7/9.
Proof. By using Rodrigues’s formula [13, equation 4.3.1]

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)

and integration by parts, one computes
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λn = (1 − α)
(α)n

(1 − α)n+1
=

(α)n
(2 − α)n

,

where (α)n = α(α + 1)(α + 2) . . . (α + n − 1). Notice that, for all 0 ≤ α < 1, λn

decreases as n increases, so with the collision rate given by bα,

(2.4) Δ2 = 2(1 − λ1) =
4(1 − α)

2 − α
.

Next, one computes

1 −B1 =
2(1 − α)

(2 − α)
and 1 −B2 =

4(1 − α)

(2 − α)(3 − α)
.

Since 2 > 4/(3 − α) for α < 1, 1 − B2 < 1 − B1 for all α < 1. Moreover, from this
computation, one readily obtains (2.3) and the statement concerning (1.6).

In particular, the condition (1.6) is satisfied in both the uniform redirection model
(α = 0) and the Morgenstern model (α = 1/2). Thus in these cases we have the exact
spectral gaps

ΔN =
2

3

N

N − 1
for the uniform redirection model,

ΔN =
8

15

N

N − 1
for the Morgenstern model.(2.5)

We close this section with a remark that may provide a useful perspective on
what follows. In determining the spectral gap of Q for N = 2, general symmetry
conditions told us right away what all of the eigenfunctions were. A less obvious,
though still simple, argument then provided us with the explicit formula (2.2) for
all of the eigenvalues. There is one last hurdle to cross: There are infinitely many
eigenvalues given by (2.2), and for a general b, we cannot determine which is the
second largest by computing them all explicitly. What was particularly nice about bα
is that in this case the eigenvalues of Q were monotone-decreasing:

λn+1 ≤ λn.

For other choices of b, this need not be the case. However, there are ways to use
pointwise bounds on Legendre polynomials to reduce the problem of determining Δ2

to the computation of a finite number of eigenvalues by using (2.2). For example, one
has the classical bound (see [13, Theorem 7.3.3]):

(2.6) |Pn(x)|2 <
2

nπ

1√
1 − x2

.

As long as b(x)(1 − x2)−1/4 is integrable, this gives an upper bound on λn that is
proportional to n−1/2: Define

λ̃n =

(
1

8πn

)1/2 ∫ 1

−1

b(x)(1 − x2)−1/4dx.

Then let n0 be the least value of n such that λ̃n ≤ λ1. Then the second largest
eigenvalue of Q is

max
1≤n≤n0

λn.
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We illustrate this by showing that, for the rate function b̃α introduced in (1.13),
Δ2 = 2(1 − B1) at least for 0 ≤ α ≤ 1. (Of course, the integrals in (2.2) can be
computed exactly in this case; see [5, section 7.231, page 822]. However, we prefer to
illustrate the use of (2.6).)

By (2.6) and (2.2),

|λn| ≤ (α + 1)

(∫ 1

0

x2αdx

)1/2 (∫ 1

0

Pn(x)2dx

)1/2

<
α + 1√
2α + 1

1√
n
.(2.7)

Also, by (2.2), λ1 = B1 = (α + 1)/(α + 2). Comparison of the formulas shows
that, for 0 ≤ α ≤ 1, λn < λ1 for all n > 4. Thus it suffices to check that λj < λ1 for
j = 2, 3, and 4 by direct computation with (2.2). By doing so, one finds that this is
the case. Hence, Theorem 1.2 applies and yields ΔN = (N/N − 1)(1−B1) for N ≥ 7.

Further calculation would extend this result to higher values of α. Notice that, as
α tends to infinity, b̃α(x) is more and more concentrated at x = 1, which corresponds

to θ = 0. Thus, for large values of α, b̃α represents a “grazing collision model.”
For N > 2, the operator Q is much more complicated, and direct determination

of the spectrum is not feasible. Instead, we use an inductive procedure involving an
auxiliary operator that we now introduce.

3. The average of projections operator P and its relation to Q. A simple
convexity argument shows that, for each j,

sup{|vj |2 : �v ∈ XN} =
N − 1

N
.

For each j, define πj(�v) by

πj(�v) =

√
N

N − 1
vj ,

so that πj maps XN onto the unit ball B in R
3.

For any function φ in L2(XN ,dσN ), and any j with 1 ≤ j ≤ N , define Pj(φ)
to be the orthogonal projection of φ onto the subspace of L2(XN ,dσN ) consisting of
square integrable functions that depend on �v through vj alone. That is, Pj(φ) is the
unique element of L2(XN ,dσN ) of the form f(πj(�v)) such that∫

XN

φ(�v)g(πj(�v))dσN =

∫
XN

f(πj(�v))g(πj(�v))dσN

for all continuous functions g on B.
The average of projections operator P is then defined through

P =
1

N

N∑
j=1

Pj .

If the individual projections Pj all commuted with one another, then the spectrum
of P would be very simple: The eigenvalues of each Pj are 0 and 1. Moreover, Pjφ = φ
if and only if φ depends only on vj so that it cannot then also satisfy Pkφ = φ for
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k �= j, unless φ is constant. It would then follow that the eigenvalues of P would be
0, 1/N , and 1, with the last having multiplicity one.

However, the individual projections Pj do not commute with one another, due to
the nature of the constraints defining XN .

We now define

(3.1) μN = sup

{∫
XN

φ(�v)Pφ(�v)dσN

∣∣∣∣
∫
XN

φ2(�v)dσN = 1,

∫
XN

φ(�v)dσN = 0

}
.

The P operator is simpler than the Q operator in that if φ is any eigenfunction of P
with a nonzero eigenvalue, then clearly φ has the form

φ =
N∑
j=1

fj ◦ πj

for some functions f1, . . . , fN on B. For N ≥ 4, most of the eigenfunctions of Q have a
more complicated structure. Nonetheless, there is a close relation between the spectra
of Q and P , as we now explain.

To do this, we need a more explicit formula for P , such as the formula (1.4) that
we have for Q. The key to computing Pjφ is a factorization formula [3] for the measure
σN . Define a map TN : XN−1 ×B → XN as follows:

(3.2) TN (�y, v) =

(
α(v)y1 −

1√
N2 −N

v, . . . , α(v)yN−1 −
1√

N2 −N
v,

√
N − 1

N
v

)
,

where

α2(v) = 1 − |v|2.

This map induces coordinates (�y, v) on XN , and, in terms of these coordinates,
one has the integral factorization formula

∫
XN

φ(�v)dσN =
|S3N−7|
|S3N−4|

∫
B

[∫
XN−1

φ(TN (�y, v))dσN−1

]
(1 − |v|2)(3N−8)/2dv.

It follows from this and the definition of PN that

PNφ(�v) = f ◦ πN (�v),

where

f(v) =

∫
XN−1

φ(TN (�y, v))dσN−1.

For j < N , one has analogous formulas for Tj and Pj , except the roles of vN and
vj are interchanged.

Next, we make the definition for Q that is analogous to (3.1) for P : Define λN by

(3.3) λN = sup

{∫
XN

φ(�v)Qφ(�v)dσN

∣∣∣∣
∫
XN

φ2(�v)dσN = 1,

∫
XN

φ(�v)dσN = 0

}
.

With this explicit formula in hand, and the definitions of μN and λN , we come
to the fundamental fact relating P and Q.
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Lemma 3.1. For any square integrable function φ on XN that is orthogonal to
the constants,

(3.4) 〈φ,Qφ〉 ≤ λN−1‖φ‖2
2 + (1 − λN−1)〈φ, Pφ〉,

where 〈·, ·〉 denotes the inner product on L2(XN , σN ).
Proof. To bound 〈φ,Qφ〉 in terms of λN−1, define, for 1 ≤ k ≤ N , the operator

Q(k) by

Q(k)φ(�v) =

(
N − 1

2

)−1 ∑
i<j,i �=k,j �=k

∫
S2

φ(Ri,j,σ(�v))dσ.

That is, we leave out collisions involving the kth particle and average over the rest.
Clearly,

Q =
1

N

N∑
k=1

Q(k).

Therefore, for any φ in L2(XN , σN ),

〈φ,Qφ〉 =
1

N

N∑
k=1

〈φ,Q(k)φ〉.

By using the coordinates (�y, v) induced by the map Tk : XN−1 ×B → XN , it is easy
to see that, for i �= k, j �= k, Ri,j,σ acts only on the �y variable. That is, for such i
and j,

Ri,j,σ(Tk(�y, v)) = Tk(Ri,j,σ(�y), v).

Thus, if we hold v fixed as a parameter, we can think of (Q(k)φ)(Tk(�y, v)) as resulting
from applying the N − 1 dimensional version of Q to φ with vk held fixed.

To estimate λN , we need to estimate 〈φ,Qφ〉 when φ is orthogonal to the con-
stants. When φ is orthogonal to the constants, and we fix v, the function

�y �→ φ(Tk(�y, v))

is not, in general, orthogonal to the constants on XN−1. However, we can correct for
that by adding and subtracting Pkφ. Therefore

〈(φ− Pkφ), Q(k)(φ− Pkφ)〉 ≤ λN−1‖φ− Pkφ‖2
2

= λN−1(‖φ‖2
2 − ‖Pkφ‖2

2)

= λN−1(‖φ‖2
2 − 〈φ, Pkφ〉).(3.5)

Then since Q(k)Pkφ = Pkφ and since Pkφ is orthogonal to φ− Pkφ,

〈φ,Q(k)φ〉 = 〈((φ− Pkφ) + Pkφ)Q(k)((φ− Pkφ) + Pkφ)〉
= 〈(φ− Pkφ), Q(k)(φ− Pkφ)〉 + 〈Pkφ, Pkφ〉
= 〈(φ− Pkφ), Q(k)(φ− Pkφ)〉 + 〈φ, Pkφ〉
≤ λN−1(‖φ‖2

2 − 〈φPkφ〉) + 〈φPkφ〉 .(3.6)

By averaging over k, we have (3.4).
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Lemma 3.1 was used as follows in [3]: Any trial function φ for λN is a valid trial
function for μN , so that

(3.7) λN ≤ λN−1 + (1 − λN−1)μN .

Then since ΔN = N(1 − λN ), we have

(3.8) ΔN ≥ N

N − 1
(1 − μN )ΔN−1.

Therefore, with aN = N
N−1 (1 − μN ), for all N ≥ 3,

ΔN ≥

⎛
⎝ N∏

j=3

aj

⎞
⎠Δ2.

Thus, one route to proving a lower bound on ΔN is to prove an upper bound on μN

and hence a lower bound on aN . This route led to a sharp lower bound for ΔN—the
exact value—for the one dimension Kac model investigated in [2]. However, it would
not lead to a proof of Theorem 1.1. The reasons for this are worth pointing out before
we proceed.

As we shall see below, the eigenspace of P with the eigenvalue μN—the gap
eigenspace of P—is spanned by the functions specified in (1.8). Granted this, and
granted Theorem 1.1, whenever condition (1.6) is satisfied:

For (1 −B2) < (1 −B1), Qφ = λNφ ⇒ Pφ = μNφ,

while

for (1 −B1) < (1 −B2), Qφ = λNφ ⇒ Pφ �= μNφ.

In the second case (1−B1) < (1−B2), the mismatch between the gap eigenspaces
for Q and P means that equality cannot hold in (3.7), and hence the recursive relation
(3.8) cannot possibly yield exact results in this case.

Moreover, even in the first case (1 − B2) < (1 − B1), where there is a match
between the gap eigenspaces of Q and P , there still will not be equality in (3.7). The
reasons for this are more subtle: The inequality (3.7) comes from the key estimate
(3.6). By considering (3.6), one sees that equality will hold there if and only if

Q(k)(φ− Pkφ) = λN−1(φ− Pkφ)

for each k, where (φ−Pkφ) is regarded as a function on XN−1 through the change of
variables Tk : (XN−1, B) → XN that was introduced just before Lemma 3.1.

However, if φ is in the gap eigenspace for Q on XN , Theorem 1.1 tells us that
it is a linear combination of the three functions specified in (1.8), all of which are
homogeneous of degree 3 in v. Because of the translation in (3.2), which is due to
momentum conservation, (φ− Pkφ) is regarded as a function on XN−1 that will not
be homogeneous of degree 3—it will contain lower order terms. Hence (φ− Pkφ) will
not be in the gap eigenspace for Q(k).

The main result of the next section provides a way to use more detailed spectral
information about P to sharpen the recursive estimate so that we do obtain the exact
results announced in Theorem 1.1.
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4. How to use more detailed spectral information on P to determine
the spectral gap of Q. The following lemma is the key to using (3.4) to obtain
sharp results for the model considered here.

Lemma 4.1. For any N ≥ 3, let μ�
N be a number with

μ�
N < μN

such that there are only finitely eigenvalues of P between μ�
N and μN :

μ�
N ≤ μ

(m)
N < · · · < μ

(1)
N < μN .

Let μ
(0)
N denote μN , and then, for j = 0, . . . ,m, let Ej denote the eigenspace of P

corresponding to μ
(j)
N . Let Vj denote the smallest invariant subspace of Q that contains

Ej. Let νj be the largest eigenvalue of Q on Vj.
Then either

(4.1) λN = max{ν0, . . . , νm}

or else

(4.2) ΔN ≥ N

N − 1
(1 − μ�

N )ΔN−1.

If μ�
N = μ

(m)
N , then we have the same alternative except with strict inequality in (4.2).

Proof. If λN > max{ν0, . . . , νm}, then in the variational principle for λN we
need only consider functions φ that are orthogonal to the constants and also in the
orthogonal complement of each of the Vj . This means also that φ belongs to the
orthogonal complement of each of the Ej . But then

〈φ, Pφ〉 ≤ μ�
N‖φ‖2

2.

By using this estimate in (3.4), we have (4.2). Moreover, if μ�
N = μ

(m)
N , then strict

inequality must hold in the last inequality.
Lemma 4.1 gives us the dichotomy between (1.15) and (1.16) that plays a key

role in the strategy described in the introduction. To put this strategy into effect, we
must first carry out a more detailed investigation of the spectrum of P . The main
result of the next section reduces the investigation of the spectrum of P to the study
of a simpler operator—the correlation operator K, which is a Markov operator on
functions on the unit ball B in R

3.

5. The correlation operator K and its relation to P . While Q and P are
both operators on spaces of functions of a large number of variables, the problem of
computing the eigenvalues of P reduces to the problem of computing the eigenvalues
of an operator on functions on B, the unit ball in R

3.
First, define the measure νN on B to be the “push forward” of σN under the map

πj . That is, for any continuous function f on B,∫
B

f(v)dνN =

∫
XN

f(πj(�v))dσN .

By the permutation invariance of σN , this definition does not depend on the choice
of j. By direct calculation [3], one finds that

(5.1) dνN (v) =
|S3N−7|
|S3N−4| (1 − |v|2)(3N−8)/2dv.
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Now define the self-adjoint operator K on L2(B,dνN ) through the following
quadratic form:

(5.2) 〈f,Kf〉L2(ν) =

∫
XN

f(π1(�v))f(π2(�v))dσN

for all f in L2(B,dνN ). Equivalently,

(5.3) (Kf) ◦ π1 = P1(f ◦ π2).

Note that, by the permutation invariance of σN , one can replace the pair (1, 2) of
indices by any other pair of distinct indices without affecting the operator K defined
by (5.3). This is the correlation operator.

To see the relation between the spectra of P and the spectra of K, suppose that φ
is an eigenfunction of P that is symmetric under permutation of the particle indices.
(These symmetric eigenfunctions are the ones that are significant in the physical

application.) Then since any vector in the image of P has the form
∑N

j=1 fj ◦ πj for
functions f1, . . . , fN on B, we must have, for φ symmetric,

(5.4) φ =
N∑
j=1

f ◦ πj .

Now we ask: For which choices of f will φ given by (5.4) be an eigenfunction of
P? To answer this, note that, by (5.3),

(5.5) Pkφ = f ◦ πk +

N∑
j=1,j �=k

Pk(f ◦ πj).

Therefore, from (5.5) and the definition of K, Pkφ = f ◦ πk + (N − 1)(Kf) ◦ πk.
Thus, by averaging over k,

(5.6) Pφ =
1

N
φ +

N − 1

N

N∑
j=1

(Kf) ◦ πj .

In the case Kf = κf , this reduces to

Pφ =
1

N
(1 + (N − 1)κ)φ,

and thus eigenfunctions of K yield eigenfunctions of P . It turns out that all symmetric
eigenfunctions arise in exactly this way and that all eigenfunctions, symmetric or not,
arise in a similar way, specified in the next lemma.

Lemma 5.1. Let V be the orthogonal complement in L2(XN , σN ) of the kernel of
P . There is a complete orthonormal basis of V consisting of eigenfunctions φ of P of
one of the two forms:

(i) For some eigenfunction f of K, φ =
∑N

k=1 f ◦ πk. In this case, if Kf = κf ,
then Pφ = μφ, where

(5.7) μ =
1

N
(1 + (N − 1)κ) .
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(ii) For some eigenfunction f of K, and some pair of indices i < j, φ = f ◦ πi

−f ◦ πj. In this case, if Kf = κf , then Pφ = μφ, where

(5.8) μ =
1 − κ

N
.

Proof. Suppose that φ is an eigenfunction of P with nonzero eigenvalue μ, and φ
is orthogonal to the constants. By the permutation invariance we may assume that
either φ is invariant under permutations or that there is some pair permutation, which
we may as well take to be σ1,2, such that φ ◦ σ1,2 = −φ. We will treat these two cases
separately.

First, suppose that φ is symmetric. We have already observed that, in this case, the
recipe φ =

∑N
j=1 f ◦πj , with f an eigenfunction of K, yields symmetric eigenfunctions

of P . We now show that all symmetric eigenfunctions of P on V have this form.
First, simply because such a φ is in the image of P and is symmetric, φ must have

the form (5.4). It remains to show that f must be an eigenfunction of K. Then by
(5.6), μφ = Pφ becomes

μ

N∑
k=1

f ◦ πk =
1

N

N∑
k=1

(f + (N − 1)Kf) ◦ πk.

Apply P1 to both sides to obtain

1

N
([f + (N − 1)Kf ] + (N − 1)K [f + (N − 1)Kf ]) = μ(f + (N − 1)Kf),

which is

(5.9)
1

N
(I + (N − 1)K)

2
f = μ(I + (N − 1)K)f.

Since μ �= 0, f is not in the null space of either I + (N − 1)K or (I + (N − 1)K)2. It
then follows from (5.9) that

1

N
(I + (N − 1)K) f = μf.

Thus, when φ is symmetric, there is an eigenfunction f of K with eigenvalue κ such
that φ =

∑N
k=1 f ◦ πk and

μ =
1

N
(1 + (N − 1)κ) .

We next consider the case in which

φ ◦ σ1,2 = −φ.

Note that

Pk(φ ◦ σ1,2) = Pkφ = 0

whenever k is different from both 1 and 2. It follows that

1

N

N∑
k=1

Pkφ =
1

N
(P1φ + P2φ) .
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The right-hand side is of the form f(v1) − f(v2), and hence φ must have this form if
it is an eigenvector. By taking φ = f ◦ π1 − f ◦ π2 we have

1

N

N∑
k=1

Pkφ =
1

N
((f −Kf) ◦ π1 − (f −Kf) ◦ π2) .

Hence when Pφ = μφ and φ is antisymmetric as above, there is an eigenvalue κ of K
such that

μ =
1 − κ

N
.

This proves the second part.
Lemma 5.1 reduces the computation of the spectrum of P to the computaton of

the spectrum of K. We undertake this in the next three sections.

6. Explicit form of the correlation operator K. For any two functions f
and g on B that are square integrable with respect to νN , consider the bilinear form∫
XN

f(π1(�v))g(π2(�v))dσN . It is easily seen from (5.3) that

〈f,Kg〉 =

∫
XN

f(π1(�v))g(π2(�v))dσN ,

where 〈·, ·〉 is the inner product on L2(B, νN ).
By computing the right-hand side using the factorization formula (3.2), but for

T1 instead of TN , one finds, for N > 3:

Kg(v) =
|S3N−10|
|S3N−7|

∫
B

g

(√
N2 − 2N

N − 1

√
1 − |v|2y − 1

N − 1
v

)
(1 − |y|2)(3N−11)/2dy.

The explicit form of K is slightly different for N = 3. We can see this different form
as a limiting case, if we make the dimension a continuous fact. The following way of
doing this will be convenient later on.

For α > −1, define the constant Cα by

Cα =

(∫
B

(1 − |y|2)αdy

)−1

,

so that, for

α =
3N − 8

2
,

dνN (v) = Cα(1 − |y|2)αdy,

and then

Kg(v) = Cα−3/2

∫
B

g

(√
N2 − 2N

N − 1

√
1 − |v|2y − 1

N − 1
v

)
(1 − |y|2)α−3/2dy.

Now, as N approaches 3, α−3/2 approaches −1. Then the measure Cα(1−|y|2)αdy
concentrates more and more on the boundary of the ball B, so that, in the limit, it
becomes the uniform measure on S2. Understood in this way, the formula remains
valid at α = 1/2, i.e., at N = 3.

It is clear that K is a self-adjoint Markov operator on L2(B, νN ) and that 1 is an
eigenvalue of multiplicity one. With more effort, there is much more that can be said;
the spectrum of K can be completely determined.
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7. The spectrum of K and ratios of Jacobi polynomials. In studying the
spectrum of the correlation operator, it is in fact natural and useful to study a wider
family of operators of this type. Fix any α > 1/2 and any numbers a and b such that

a2 + b2 = 1.

Then define the generalized correlation operator, still simply denoted by K, through

(7.1) Kg(v) = Cα−3/2

∫
B

g
(
a
√

1 − |v|2y + bv
)

(1 − |y|2)α−3/2dy.

Notice that, as v and y range over B, the maximum of |a
√

1 − |v|2y + bv| occurs
when ay and bv are parallel. In that case,

|a
√

1 − |v|2y+ bv| = |a||y|
√

1 − |v|2 + |b||v| ≤ (a2 + b2)1/2((1−|v|2)|y|2 + |v|2)1/2 ≤ 1.

Thus, as v and y range over B, so does

(7.2) u(y, v) = a
√

1 − |v|2y + bv,

and g(a
√

1 − |v|2y + bv) is well defined for any function g on B. Thus, K is well
defined.

Now when

(7.3) a =

√
N2 − 2N

N − 1
and b = − 1

N − 1
,

we know that K is self-adjoint because in that case it is defined in terms of a manifestly
symmetric bilinear form. We shall show here that K is always self-adjoint for all
a2 + b2 = 1 and that the eigenvalues of K are given by an explicit formula involving
ratios of Jacobi polynomials.

To explain this, we fix some terminology and notation. For any numbers α > −1

and β > −1, P
(α,β)
n denotes the nth degree polynomial in the sequence of orthogonal

polynomials on [−1, 1] for the measure

(1 − x)α(1 + x)βdx

and is referred to as the nth degree Jacobi polynomial for (α, β). As is well known,

{P (α,β)
n }n≥0 is a complete orthogonal basis for L2([−1, 1], (1 − x)α(1 + x)βdx).

Of course, what we have said so far specifies P
(α,β)
n only up to a multiplicative

constant. One common normalization is given by Rodrigues’s formula

P (α,β)
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β dn

dxn

(
(1 − x)α+n(1 + x)β+n

)
.

For this normalization,

(7.4) P (α,β)
n (1) =

(
n + α
n

)
and P (α,β)

n (−1) =

(
n + β
n

)
.

Lemma 7.1. Fix any α > 1/2 and any numbers a and b such that a2+b2 = 1, and
define K through the formula (7.1). Then K is a self-adjoint Markov operator, and
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the spectrum of K consists of eigenvalues κn,	 enumerated by nonnegative integers n
and �; these eigenvalues are given by the explicit formula

(7.5) κn,	 =
P

(α,β)
n (−1 + 2b2)

P
(α,β)
n (1)

b	,

where β = � + 1/2 and α is the parameter α entering into the definition of K.
Proof. To see that K is self-adjoint, we write it as a bilinear form and change

variables to reveal the symmetry. The change of variable that we make is naturally
(y, v) → (u, v), with u(y, v) given by (7.2). From (7.2), one computes y = (u − bv)/
(a

√
1 − |v|2), so that

1 − |y|2 =
a2 − a2|v|2 − |u|2 − b2|v|2 + 2bu · v

a2(1 − |v|2)

=
b2 − (|u|2 + |v|2) + 2bu · v

a2(1 − |v|2) .(7.6)

The Jacobian is easy to work out, and one finds that dudv = a3(1 − |v|2)3/2dydv, so
that ∫

B

f(v)Kg(v)Cα(1 − |v|2)αdv

=

∫
B

∫
B

f(v)g(u)a−2α
[
a2 − (|u|2 + |v|2) + 2bu · v

]α−3/2

+
Cα−3/2dudv.(7.7)

This shows that the operator K is self-adjoint on L2(B,Cα(1−|v|2)α) for all α ≥ 1/2
and all a and b with a2 + b2 = 1.

Our next goal is to prove the eigenvalue formula (7.5). This shall follow from
several simple properties of K.

First, K commutes with rotations in R
3. That is, if R is a rotation on R

3, it is
evident that

K(g ◦R) = (Kg) ◦R.

Hence we may restrict our search for eigenfunctions g of K to functions of the form

g(v) = h(|v|)|v|	Y	,m(v/|v|)

for some function h on [0,∞) and some spherical harmonic Y	,m.
Second, for each n ≥ 0, K preserves the space of polynomials of degree n. To

see this, notice that any monomial in
√

1 − |v|2y that is of odd degree is annihilated

when integrated against (1− |y|2)α−3/2dy, and any even monomial in
√

1 − |v|2y is a
polynomial in v.

By combining these two observations, we see that K has a complete basis of
eigenfunctions of the form

gn,	,m(v) = hn,	(|v|2)|v|	Y	,m(v/|v|),

where hn,	 is a polynomial of degree n.
To determine these polynomials, we use the fact that K is self-adjoint, so that

the eigenfunctions gn,	,m can be taken to be orthogonal. In particular, for any two
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distinct positive integers n and p, the eigenfunctions gn,	,m and gp,	,m are orthogonal
in L2(B,Cα(1 − |v|2)α). Hence for each �, and for n �= p,∫

|v|≤1

hn,	(|v|2)hp,	(|v|2)(1 − |v|2)α|v|2	dv = 0.

By taking r = |v|2 as a new variable, we have

∫ 1

0

hn,	(r)hp,	(r)(1 − r)αr	+1/2dr = 0.

This is the orthogonality relation for a family of Jacobi polynomials in one standard
form, and this identifies the polynomials hn,	. A more common standard form, and one
that is used in the sources to which we shall refer, is obtained by the change of variable
t = 2r− 1, so that the variable t ranges over the interval [−1, 1]. Then for α, β > −1,

P
(α,β)
n (t) is the nth degree orthogonal polynomial for the weight (1−t)α(1+t)β . With

the variables t and |v|2 related as above, i.e.,

t = 2|v|2 − 1,

hn,	(|v|2) = P (α,β)
n (t)

for

β = � +
1

2
.

Now that we have all of the eigenfunctions determined, a further observation gives
us a simple formula for the eigenvalues. Consider any eigenfunction g with eigenvalue
κ, so that Kg(v) = κg(v). Let ê be any unit vector in R3. Then since g is a polynomial
and hence continuous,

lim
t→1

Kg(tê) = lim
t→1

∫
B

g
(
a
√

1 − t2y + btê
)
Cα−3/2(1 − |y|)α−3/2dy

= g (bê) ,(7.8)

since K1 = 1. By combining this with Kg(v) = κg(v), we have

g (bê) = κg(ê).

Now consider any eigenfunction gn,	,m of the form given above, and let κn,	 be
the corresponding eigenvalue, which will not depend on m. Then by taking any ê so
that Y	,m(ê) �= 0, we have

(7.9) κn,	 =
hn,	(b

2)

hn,	(1)
b	.

By changing variables as above to express this as a ratio of Jacobi polynomials, we
finally have proved (7.5).

One might expect the largest eigenvalues of K to correspond to eigenfunctions that
are polynomials of low degree. After all, in a system of orthogonal polynomials, those
with high degree will have many changes of sign, and one might expect considerable
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cancellation when applying an averaging operator, such as K, to them. Therefore, let
us compute the κn,	 for low values of n and �. We find from (7.5), by using the value
b = −1/(N − 1) from (7.3), that

(7.10) κ0,1 = κ1,0 =
−1

N − 1
,

so that κn,	 is negative for n + � = 1. For n + � = 2, we find from (7.5) that

κ1,1(N) =
5N − 3

3(N − 1)3
,

κ2,0(N) =
(N − 3)(15N2 − 15N + 4)

3(3N − 4)(N − 1)4
,

κ0,2(N) =
1

(N − 1)2
.(7.11)

Evidently, for large N ,

κ0,2(N) =
1

N2
+ O

(
1

N3

)
,

while

κ1,1(N) =
5

3N2
+ O

(
1

N3

)
and κ0,2(N) =

5

3N2
+ O

(
1

N3

)
.

Thus, one might expect that, at least for large values of N , 1, κ1,1(N), κ2,0(N), and
κ0,2(N) are the four largest eigenvalues of K and that κ0,1 = κ1,0 is the most negative,
with all other eigenvalues of K lying strictly between these. We shall show in the next
section that this is indeed the case for all N ≥ 4 and that 1 and κ1,1 are the two
largest eigenvalues of K for all N ≥ 3.

When we use Lemma 5.1 to convert this to spectral information on P , we find
that κ0,1, κ1,0, and κ0,2 all correspond to the same eigenvalues of P , namely,

1

N

(
1 +

1

N − 1

)
=

1

N

(
1 + (N − 1)

1

(N − 1)2

)
=

1

N − 1
.

This is the eigenvalue of P that shall play the role of μ
(m)
N in our application of

Lemma 4.1.
Let us conclude this section by recording a number of useful calculations that can

be made by using (7.5).
For N = 3, we have

(7.12) κ1,1(3) =
1

2
> κ2,2(3) =

13

40
> κ0,2(3) =

1

4
> κ2,0(3) = 0.

For N = 4, we have

(7.13) κ1,1(4) =
17

81
> κ0,2(4) =

1

9
> κ2,0(4) =

23

243
.

For N = 5, we have

(7.14) κ1,1(5) =
11

96
> κ2,0(5) =

19

264
> κ0,2(5) =

1

16
.
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In each case, the second largest eigenvalue after 1, among the ones listed, is κ1,1. In
the next section we shall see that the list is not misleading: κ1,1 is the gap eigenvalue.
However, note that the third largest eigenvalue comes from different values of n and
� for each of N = 3, N = 4, and N = 5. As we shall see, things do settle down for
N ≥ 5; the third largest eigenvalue does turn out to be κ2,0 in all such cases.

Lemma 7.2. For all N ≥ 5, κ1,1(N) > κ2,0(N) > κ0,2(N).
Proof. From (7.11),

κ2,0(N) − κ0,2(N) =
2N(3N2 − 15N + 8)

3(3N − 4)(N − 1)4
.

A simple calculation shows that the roots of the polynomial in the numerator are
less than 5, so that κ2,0(N) > κ0,2(N) for N ≥ 5. A similar argument applied to
κ1,1(N) − κ2,0(N) yields the conclusion of the lemma.

Our goal in the next section is to show that, for all N ≥ 4, there are no eigenvalues
κn,	 with n+ � > 2 that are larger than the ones listed above and that, for N = 3, the
three largest eigenvalues are 1 = κ0,0 > 1/2 = κ1,1 > 13/40 = κ2,2. However, since
there is no simple monotonicity in n + �, this shall require some detailed estimate on
ratios of Jacobi polynomials.

We shall also need to know that in all cases κ0,1 = κ1,0 = −1/(N − 1) is the most
negative eigenvalue. This will tell us the four largest eigenvalues of P for N ≥ 4 and
the three largest for n = 3, and this shall turn out to be enough to prove the main
result, Theorem 1.1.

Finally, the value of κ2,2(N) will play an important role in the proof of Theorem
1.2, and so we record the expression here:

(7.15) κ2,2(N) =
21N3 − 60N2 + 27N − 4

(3N − 4)(N − 1)6
.

8. The determination of the spectrum of K. The main result in this section
is the following theorem.

Theorem 8.1. For N ≥ 5 and all n and � with n + � > 2,

(8.1) − 1

N − 1
≤ κn,	(N) < κ0,2(N).

For N = 4 and all n and � with n + � > 2,

(8.2) − 1

N − 1
≤ κn,	(4) < κ2,0(4).

For N = 3 and all n and � with n + � > 0, except for n = 1, � = 1,

(8.3) − 1

N − 1
≤ κn,	(3) ≤ κ2,2(3) =

13

40
.

We present the proof at the end of this section after a number of preparatory
lemmas. These lemmas rest on two deep results about Jacobi polynomials. One is a
formula due to Koornwinder [8] (see also [1, p. 31]) that was already applied in [3].

For all −1 ≤ x ≤ 1, all n, and all α > β,

(8.4)
J

(α,β)
n (x)

J
(α,β)
n (1)

=

∫ π

0

∫ 1

0

[
1 + x− (1 − x)r2

2
+ i

√
1 − x2r cos(θ)

]n
dmα,β(r, θ),
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where

mα,β(r, θ) = cα,β(1 − r2)α−β−1r2β+1 (sin θ)
2β

drdθ,

and cα,β is a normalizing constant that makes dmα,β a probability measure.
Koornwinder’s bound is very useful for obtaining uniform control in n for given �

and N . But since in Lemma 7.1

(8.5) α =
3N − 8

2
and β = � +

1

2
,

we can apply (8.4) only when

(8.6) � < �� =
3N − 9

2
.

As in [3], one may use this formula to show the following.
Lemma 8.2. For all � with 2 ≤ � < ��, and all n > 0 and N ≥ 3,

|κn,	(N)| < 1

(N − 1)2
= κ0,2(N).

Note that, while this lemma does not address the case n = 0, this is not a problem:
We have the explicit formula

(8.7) κ0,	 =

(
−1

N − 1

)	

.

To handle large values of �, we need another deep result, which is a uniform
pointwise bound on the orthonormal Jacobi polynomials that was obtained by Nevai,
Erdelyi, and Magnus [12]. Let pα,βn be the orthonormal Jacobi polynomial of degree
n with a positive leading coefficient for the weight w(x) = (1 − x)α(1 + x)β . It was
shown in [12] that, for all α ≥ −1/2 and β ≥ −1/2 and all nonnegative integers n,

(8.8) max
x∈[−1,1]

√
1 − x2w(x)pα,βn (x)2 ≤ 2e(2 +

√
α2 + β2)

π
.

Of course, we could use the orthonormal Jacobi polynomials in the ratio formula
(7.5), since any normalization factor would cancel out in the ratio. However, the exact
formula (7.4) for the denominator in (7.5) is simplest in the other normalization. Hence
we need the relation between pα,βn and Pα,β

n , which is given by pα,βn = lnP
α,β
n , where

ln =

(
2n + α + β + 1

2α+β+1

Γ(n + 1)Γ(n + α + β + 1)

Γ(n + α + 1)Γ(n + β + 1)

)1/2

.

Therefore

(8.9)
Pα,β
n (x)2

Pα,β
n (1)2

≤ 1

l2n

2eΓ(n + 1)2Γ(α + 1)2(2 +
√
α2 + β2)√

1 − x2w(x)πΓ(n + α + 1)2
.

At this point it is perhaps worth noting that, since the spectrum of K lies in
[−1, 1], any upper bound on its eigenvalues by a number larger than one is vacuous.
This implies that for certain regions the identity (7.9) will provide a stronger bound
than (8.9). We shall return to this point at the end of the paper.
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Substituting x = −1 + 2
(N−1)2 , β = � + 1

2 , and α = 3
2N − 4 in (8.9) and then mul-

tiplying by 1
(N−1)2l

yields

(8.10) κn,	(N) ≤ κ̃n,	(N),

where

(8.11) κ̃2
n,	(N) =

2e

π
g1(n, �,N)g2(N)g3(n,N)g4(n, �,N),

with

g1(n, �,N) =

(
4 +

√
9N2 − 48N + 65 + 4�2 + 4�

3N + 4n + 2�− 5

)
,

g2(N) =

(
(N − 1)2

N(N − 2)

)(3N−7)/2

,

g3(n,N) =
Γ(n + 1)Γ

(
3
2N − 3

)
Γ
(
n + 3

2N − 3
) ,

g4(n + �,N) =
(N − 1)2Γ

(
n + � + 3

2

)
Γ
(

3
2N − 3

)
Γ
(
n + � + 3

2N − 5
2

) .(8.12)

Our goal now is to extract a reasonably tight upper bound for κ̃n,	(N) with as
much monotonicity in n, �, and N as possible. The next lemmas address this goal.

Lemma 8.3. For � ≥ 0, N ≥ 3, and n ≥ 0,

(8.13) g1(n, �,N) ≤
(

4

3N + 4n + 2�− 5
+ 1

)
,

where the right-hand side is clearly decreasing in n, �, and N .
Proof. Note that, for n ≥ 0, � ≥ 0, and N ≥ 3,

(8.14)

√
9N2 − 48N + 65 + 4�2 + 4�

3N + 4n + 2�− 5
≤ 1

since then

(3N + 4n + 2�− 5)2 − (9N2 − 48N + 65 + 4�2 + 4�)

= (24N − 40)n + (12N − 24)� + 16n2 + 16n� + 18N − 40 > 0.(8.15)

Lemma 8.4. For N ≥ 4, g2(N) is a decreasing function of N .
Proof. Let h(x) = (1− 1/x2)2−3x/2, so that g2(N) = h(N − 1). By computing the

derivative of ln(h(x)), one finds that it is negative for x ≥ 3.
Lemma 8.5. For n ≥ 0 and N ≥ 3, g3(n,N) is a decreasing function of n and

N .
Proof. For n a nonzero integer

(8.16)
Γ(n + 1)Γ

(
3
2N − 3

)
Γ
(
n + 3

2N − 3
) =

n

n + 3
2N − 4

n− 1

n + 3
2N − 5

· · · 1
3
2N − 3

.

Since each factor is less than 1 for N ≥ 3 and is a decreasing function of N , the
assertion follows.
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Lemma 8.6. For N ≥ 3, g4(n + �,N) is a decreasing function of n + �, with

(8.17) lim
n+	→∞

g4(n + �,N) = 0.

Moreover, for n + � ≥ �� = 3(N − 3)/2,

(8.18) g4(n, �,N) ≤
(N − 1)2Γ

(
3
2N − 3

)2

Γ(3N − 7)
≤ f(N),

where

(8.19) f(N) =
(N − 1)2

√
π( 3

2N − 4)

23N−8
.

Finally, for N ≥ 5, (N − 1)4f(N) is a decreasing function of N .
Proof. Since

(8.20)
Γ
(
n + � + 5

2

)
Γ
(
n + � + 3

2N − 3
2

) Γ
(
n + � + 3

2N − 5
2

)
Γ
(
n + � + 3

2

) =

(
n + � + 3

2

)
n + � + 3

2N − 5
2

< 1

for N ≥ 3, it follows that, for fixed nonnegative integers N ,

(8.21)
Γ
(
n + � + 3

2

)
Γ
(
n + � + 3

2N − 5
2

)
is a decreasing function of n + �. Hence, for n + � ≥ 3(N − 3)/2,

Γ
(
n + � + 3

2

)
Γ
(
n + � + 3

2N − 5
2

) ≤
Γ
(

3
2N − 3

)
Γ (3N − 7)

.

This together with the definition of g4 proves the first inequality in (8.18). Use of the
duplication formula for the Γ function yields

Γ
(

3
2N − 3

)2

Γ(3N − 7)
=

√
πΓ

(
3
2N − 3

)
23N−8Γ

(
3
2N − 7

2

) =

√
π
(

3
2N − 4

)
Γ
(

3
2N − 4

)
23N−8Γ

(
3
2N − 7

2

) <

√
π
(

3
2N − 4

)
23N−8

.

This implies the second inequality in (8.18). A check of the logarithmic derivative of
(N − 1)4f(N) shows that it is negative for N ≤ 5.

Now, by combining the results in the last four lemmas, we have, for N ≥ 3 and
n + � ≥ �� = 3(N − 3)/2,

(8.22) κ̃2
n,	(N) ≤ κ̂2

n,l(N) ≤ κ2(N),

where

(8.23) κ̂2
n,l(N) =

2e

π

(
4

3N + 4n + 2�− 5
+ 1

)
g2(N)g3(n,N)g4(n, l,N)

and

(8.24) κ2(N) =
2e

π

(
4

6N − 14
+ 1

)
g2(N)f(N),

where g2, g3, and f are given by (8.12) and (8.19).
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We are now ready to prove the main theorem of this section.
Proof of Theorem 8.1. First, we take care of large values of N . By Lemmas 8.4 and

8.6, (N −1)4κ(N) is a decreasing function of N for N ≥ 5. Direct computation shows
that at N = 12 this quantity is less than one. Hence for N ≥ 12, κ(N) ≤ (N −1)−4 =
κ2

0,2. For � ≥ ��, so that (8.22) is satisfied, this proves (8.1) for N ≥ 12. On the other
hand, if 2 ≤ � < ��, we have this from Lemma 8.2 or (8.7). Thus, in any case, (8.1) is
valid for N ≥ 12.

For 4 ≤ N ≤ 11, we again use Lemma 8.2 or (8.7) for 2 ≤ � < �∗ and computation
of κ̂n,	. By (8.17), for each such N there is a finite value k(N) so that we need only
consider values of n + � < k(N). By checking these cases, we obtain (8.1) and (8.2).

We finally turn to N = 3, which requires the greatest amount of computation.
First for n = 0, we have from (8.7)

κ0,	(3) =

(
−1

2

)	

so κ0,1(3) = −1/2 and |κ0,	(3)| < 1/3 for � ≥ 2.
The exact forms of the eigenvalues are simple enough to be useful for n = 1 and

2 as well. We have

κ1,	(N) =
(−1)	+1

3

[2�N + 3(N − 1)]

(N − 1)	+2

and

κ2,	(N) =
(−1)	((4�2 + 16� + 15)N3 − (8�2 + 44� + 60)N2 + (49 + 16�)N − 12)

3(3N − 4)(N − 1)	+4
.

By specializing to N = 3,

κ1,	(3) = (−1)	+1 � + 1

2	+1

so that |κ1,	(3)| ≤ 3/8 for � ≥ 2. Likewise, for N = 3,

κ2,	(3) =
�

20

(7 + 3�)

2	
(−1)	,

which implies that

(8.25) |κ2,	(3)| ≤ |κ22(3)| =
13

40
.

For higher values of n, we estimate κ2
n,	 by means of κ̂2

n,	. Since �� = 0 for N = 3,
we may use Lemma 8.6 for all �, and then by (8.17), for each fixed n, there is a
maximal value �(n) that needs to be considered and a maximum value of n that needs
to be considered. Table 1 gives the values of n, �, and κ̂2

n,	, (3) when κ̃2
n,	(3) < 1/4.

The monotonicity of κ2
n,	(3) in n and l shows that κ̂2

n,	(3) ≤ κ̂2
n0,	0

(3) for n ≥ n0 and
� ≥ �0 where (n0, �0) is chosen from the table. The remaining values can be computed
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Table 1

n � κ̂2
n,� n � κ̂2

n,� n � κ̂2
n,� n � κ̂2

n,�

3 1253 0.10562 20 210 0.10547 37 90 0.10543 54 34 0.10514

4 989 0.10562 21 198 0.10559 38 86 0.10531 55 31 0.10538

5 817 0.10556 22 188 0.10546 39 82 0.105277 56 29 0.10506

6 694 0.10561 23 178 0.10552 40 78 0.10528 57 26 0.10538

7 604 0.10555 24 169 0.10549 41 74 0.10537 58 24 0.10511

8 533 0.10560 25 161 0.10537 42 70 0.10551 59 21 0.10551

9 477 0.10558 26 153 0.10540 43 67 0.10523 60 19 0.10529

10 431 0.10558 27 145 0.10558 44 63 0.10552 61 17 0.10509

11 393 0.10555 28 138 0.10561 45 60 0.10534 62 14 0.10560

12 360 0.10561 29 132 0.10542 46 57 0.10521 63 12 0.10545

13 333 0.10548 30 126 0.10534 47 54 0.10512 64 10 0.10534

14 308 0.10558 31 120 0.10540 48 50 0.10562 65 8 0.10523

15 287 0.10554 32 114 0.10554 49 48 0.10508 66 6 0.10514

16 268 0.10556 33 109 0.10543 50 45 0.10512 67 4 0.10509

17 251 0.10558 34 104 0.10540 51 42 0.10521 68 2 0.10506

18 236 0.10554 35 99 0.10546 52 39 0.10535 69 0 0.10503

19 222 0.10560 36 94 0.10562 53 36 0.10552

from the exact formula for κn,	(3) from (7.1), and the results are all consistent with
(8.3).

9. The determination of the spectrum of P . For given values of N , n, and
�, let μn,	(N) be the eigenvalue of P corresponding to the eigenvalue κn,	(N) of K
through Theorem 8.1, where we use (5.7) if κn,	(N) > 0 and use (5.8) if κn,	(N) < 0.
(This is the relevant choice, as we are concerned with the largest eigenvalues of P .)

By consulting the calculations in (7.10) for n + � = 1, and in (7.12), (7.13), and
(7.14) for n+ � = 2, and finally the bounds in Theorem 8.1 for n+ � > 2, we see that
for all N ≥ 3 the largest eigenvalues of K is κ1,1, and the least (most negative) is
κ0,1 = κ1,0. Thus, by turning to Lemma 5.1 and using the positive eigenvalue in (5.7)
and the negative one in (5.8), we see that the positive one yields the greater value for
each N . Thus, the gap eigenvalue of P , μN , is given by

(9.1) μN = μ1,1(N) =
3N − 1

3(N − 1)2
.

Use of this result in (3.8) would yield a strictly positive lower bound on ΔN ,
uniform in N , but, as we have said above, it would not yield the exact lower bound.
To obtain this, we now carry out the strategy outlined in the introduction.

First, we combine Lemma 5.1 and Theorem 8.1 to produce the information neces-
sary for the application of Lemma 4.1. We must now make a choice of the thresholds
μ�
N that appear in Lemma 4.1. The choice we shall make is based on trial function

computations with Q that suggest that the gap eigenfunctions are the ones specified
in Theorem 1.1.
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Notice that in Theorem 1.1 the formula given for ΔN is of the form C N
N−1 for

some constant C. This value can be guessed by computing the eigenvalues of Q on
the invariant subspace of polynomials of degree 4 or less in the vj . If we are to prove
this guess correct by using (4.2) of Lemma 4.1, we require a value of μ�

N such that

(9.2)
N

N − 1
(1 − μ�

N )
N − 1

N − 2
≥ N

N − 1
,

at least for N ≥ 4. (The guess is valid only for N − 1 ≥ 3. For N − 1 = 2, there is a
different value of Δ2 which has been determined already in section 2.)

The largest value of μ�
N that will satisfy (9.2) is

(9.3) μ�
N =

1

N − 1
for N ≥ 4.

This turns out to be an eigenvalue of P : Indeed, we have found in (7.11) that κ0,2 =
1/(N − 1)2. Furthermore, we have found in (7.10) that κ0,1 = κ1,0 = −1/(N − 1).
By using the first of these results in (5.7) of Lemma 5.1 and the second in (5.8), we
find that

μ0,2 = μ1,0 = μ0,1 =
1

N − 1
.

For N = 3 we need to make a different choice, as the spectrum of Q is quite
different for N = 2 and for N ≥ 3. The choice that will work is μ�

3 = μ2,2(3). Since
κ2,2(3) = 13/40, we have from Lemma 5.1 that μ2,2(3) = 1

3 (1 + 2(13/40)) = 11
20 . Thus,

(9.4) μ�
3 =

11

20
.

Now, to apply Lemma 4.1, we need the eigenspaces of P for the eigenvalues μ
satisfying 1 > μ > μ�

N . By Theorem 8.1 and (7.13), for N = 3 and N = 4, there is
just one such eigenvalue, namely, μ1,1(4), the gap eigenvalue, and for N ≥ 5, there
are two: μ1,1(N) and μ2,0(N).

Let En,	 be the eigenspace of P corresponding to the eigenvalue μn,	(N). For all
values of n and � with n+� ≤ 2, we have determined the corresponding eigenfunctions
of K and thus, through Lemma 5.1, the corresponding eigenfunctions of P . Thus, we
have the following explicit descriptions of the En,	 for n + � ≤ 2.

First, for n+ � = 1, the eigenvalues of K are negative, and so by Lemma 5.1, the
eigenfunctions are antisymmetric. If we are concerned only with the spectrum of Q
on the subspace of symmetric functions (which is all that is of significance for Kac’s
application to the Boltzmann equation), we can ignore these eigenspaces. However,
they turn out to be very simple. The n = 0, � = 1 eigenfunctions of K are degree one
spherical harmonics, and the n = 1, � = 0 eigenfunctions of K are degree one Jacobi
polynomials in |v|2. Hence

(9.5) E0,1 is spanned by the functions vαi − vαj , α = 1, 2, 3, and i < j,

while

(9.6) E1,0 is spanned by the functions |vi|2 − |vj |2, i < j.

Next, for n + � = 2, the eigenvalues of K are positive, and so by Lemma 5.1, the
eigenfunctions are symmetric. The n = 0, � = 2 eigenfunctions of K are degree two
spherical harmonics and so have the form
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f0,2(v) =

3∑
α,β=1

Aα,βv
αvβ

for some traceless symmetric 3 × 3 matrix A. Hence, by Lemma 5.1,

(9.7) E0,2 is spanned by the functions

N∑
j=1

f0,2(vj),

with f0,2 given as above.
For n = 1, � = 1, the eigenfunctions of K are the product of a degree one

spherical harmonic and a degree one Jacobi polynomial in |v|2. When we sum over the
particles, the constant term in the Jacobi polynomial drops out due to the momentum
constraint, and we see that

(9.8) E1,1 is spanned by the functions

N∑
j=1

f1,1(vj),

where

f1,1(v) = |v|2vα, α = 1, 2, 3.

Finally, for n = 2, � = 0, the eigenfunction of K is a degree two Jacobi polynomial
in |v|2. After summing on the particles, the linear term can be absorbed into the
constant by the energy constraint, and so we see that

(9.9) E2,0 is spanned by the function

N∑
j=1

f2,0(vj),

where

f2,0(v) = |v|4 −
∫
B

|v|4dνN .

We close this section with a lemma that we shall need to prove Theorem 1.2. There
we shall need to know the next largest eigenvalue of P below maxn+	≤2 μn,	(N). One
might guess that this occurs for some values of n and � with n + � = 3, but this
is not the case: By (8.3) of Theorem 8.1, and (7.12), we see that for N = 3 the
most negative eigenvalue of K is −1/2, and by Lemma 5.1, this corresponds to the
eigenvalue 1/2 of P . On the other hand, the largest eigenvalue of K apart from κ1,1(3)
is κ2,2(3) = 13/40. This corresponds to the eigenvalue 11/20 of P . Since 11/20 > 1/2,
we do indeed have

sup
n+	>2

μn, �(3) = μ2,2(3) =
11

20
.

It seems likely, on the basis of computations that we have made, that in fact

(9.10) sup
n+	>2

μn, �(N) = μ2,2(N)

for all N ≥ 3. However, for the proof of Theorem 1.2, all that we require is the
following.
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Lemma 9.1. For N = 3, 4, 5, 6, and 7, (9.10) is true.
Proof. Note that the case N = 3 has already been proved in the remarks above.

To deal with the other cases, we proceed essentially as in the proof of Theorem 8.1,
using (8.23) to reduce the number of cases to be checked to a finite number and then
checking these. We will therefore be brief in our remarks on the remaining cases.

Perhaps the most important point to recall is that (8.23) is valid for n + � ≥
3(N − 3)/2. Since the right-hand side evaluates to zero for N = 3, we could use it
without restriction. For N = 7, though, 3(N −3)/2 evaluates to 6, and so we may use
(8.23) only for n + � ≥ 6. So these cases must be checked by direct computation of
the eigenvalues by using 7.1 and then converting these to eigenvalues of P by using
Lemma 5.1.

Then, by using (8.23) for n + � > 6, one finds that

κ2
n,	(7) < κ2

2,2(7)

unless 0 ≤ n ≤ 6 and 0 ≤ � ≤ 27. By computing the rest of the eigenvalues of P in
this 6 by 27 rectangle, we find that the stated result is true for N = 7.

A similar analysis takes care of N = 4, N = 5, and N = 6.
We shall not need to know the corresponding eigenfunctions in our application of

Lemma 9.1, since we will be concerned only with the eigenspaces of eigenvalues lying
strictly above μ2,2(N), and those have been determined already in this section.

10. The spectrum of Q on invariant subspaces containing eigenspaces
of P . For each n and �, let Vn,	 be the smallest invariant subspace of Q containing
En,	. As we shall see, for n + � ≤ 2, Vn,	 = En,	 except for n = 2, � = 0, in which
case V2,0 is two-dimensional, while E1,0 is one-dimensional. This is established in the
next lemma, which also specifies the spectrum of Q on these invariant subspaces. The
eigenvalues of course depend on the particular choice of b in the definition of Q, but
in a very simple way: The dependence on b is only through the quantities (1 − B1)
and (1 −B2), where Bj is the jth moment of b, as defined in (1.5).

Lemma 10.1. Every nonzero function in E0,1 and in E1,0 is an eigenfunction of
Q with eigenvalue

(10.1) λQ
0,1 = λQ

1,0 = 1 − (1 −B1)
1

N − 1
,

so that V0,1 = E0,1 and V1,0 = E1,0.
Every nonzero function in E1,1 is an eigenfunction of Q with the eigenvalue

(10.2) λQ
1,1 = 1 − (1 −B2)

1

(N − 1)
,

so that V1,1 = E1,1.
Furthermore, every nonzero function in E0,2 is an eigenfunction of Q with the

eigenvalue

(10.3) λQ
0,2 = 1 − (1 −B2)

3

2(N − 1)
,

so that V0,2 = E0,2.
Finally, while V2,0 is larger than E2,0, there are only two eigenvalues of Q in V2,0.

These are

(10.4) 1 − (1 −B2)

(
1

N(N − 1)

[
(2N − 1) ±

√
N2 − 3N + 1

])
.
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For all N ≥ 3, the largest of these eigenvalues is λQ
1,1.

Before beginning the proof, we note that, if (1/2)b(x)dx is a Dirac mass at x = 1,
the collisions are all trivial (zero scattering angle), and thus Q = I in this case. But

also in this case (1 − B1) = (1 − B2) = 0, so all of the eigenvalues λQ
n,	 listed above

are 1—as they must be for Q = I.
Proof. We begin with the last case, n = 2, � = 0, which is the most involved.

Consider the function

(10.5) φ =
N∑
i=1

|vi|4,

and note that φ−
∫
XN

φdσN spans E2,0, as we have noted above.
One simple way to calculate Qφ is to take advantage of the permutation symmetry

of Q: Define the symmetrization operator S by

Sf(v1, . . . , vN ) =
1

N !

∑
π

f(vπ(1), . . . , vπ(N)),

where the sum runs over all permutations π of {1, . . . , N}. Then it is easy to see that

S(|v1|4) =
1

N
φ.

Thus, since SQ = QS,

Qφ = NSQ(|v1|4).

One now directly calculates Q(|v1|4) and then symmetrizes. In carrying out the cal-
culation, we make use of the following.

Lemma 10.2. Let c and d be any two vectors in R
3, and let e be any unit vector

in R
3. Then with B1 and B2 defined as in (1.5), we have the following identities:∫

S2

(c · σ)b(e · σ)dσ = (c · e)B1

and ∫
S2

(c · σ)(d · σ)b(e · σ)dσ = (c · d)1 −B2

2
+ (e · c)(e · d)3B2 − 1

2
.

Proof. We choose coordinates in which c and e span the x, z plane with

e =

⎡
⎣ 0

0
1

⎤
⎦ and c =

⎡
⎣ c1

0
c3

⎤
⎦ .

Then with

σ =

⎡
⎣ sin θ cosψ

sin θ sinψ
sin θ

⎤
⎦ ,

the computations are easily accomplished.
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Now to compute Qφ, go back to the definition of Q given in (1.4), and note first
of all that with η(�v) = |v1|4, unless i = 1,

η(Ri,j,σ(�v)) = η(�v).

Hence

Qη(�v) =

(
1 − 2

N

)
η(�v) +

2

N(N − 1)

N∑
j=2

∫
S2

η(R1,j,σ(�v))b

(
σ · vi − vj

|vi − vj |

)
dσ.

Then from (1.1),

η(R1,j,σ(�v)) =

∣∣∣∣v1 + vj
2

+
|v1 − vj |

2
σ

∣∣∣∣
4

=
1

8

∣∣|v1|2 + |vj |2 + |v1 − vj |(v1 + vj) · σ
∣∣2

=
1

8

(
(|v1|2 + |vj |2)2 + 2(|v1|2 + |vj |2)|v1 − vj |(v1 + vj) · σ

+ |v1 − vj |2((v1 + vj) · σ)2
)
.(10.6)

Integrating over S2 using Lemma 10.2 yields∫
S2

η(R1,j,σ(�v))b

(
σ · vi − vj

|vi − vj |

)
dσ =

1

8
(|v1|2 + |vj |2)2

+
1

4
(|v1|2 + |vj |2)B1(|v1|2 − |vj |2)

+ |v1 − vj |2|v1 + vj |2
1 −B2

16

+ ((v1 − vj) · (v1 + vj))
2 3B2 − 1

16
.(10.7)

The right-hand side simplifies to

1

8
(|v1|4 + |vj |4 + 2|v1|2|vj |2) +

B1

4
(|v1|4 − |vj |4)

+ (|v1|4 + |vj |4 + 2|v1|2|vj |2 − 4(v1 · vj)2)
1 −B2

16

+ (|v1|4 + |vj |4 − 2|v1|2|vj |2)
3B2 − 1

16
.(10.8)

It is now a simple matter to carry out the sum on j ≥ 2. By using the identities

N∑
j=2

|vj |4 = φ(�v) − |v1|4 and

N∑
j=2

|vj |2 = φ(�v) − |v1|2

and the symmetrizing, one finds that

(10.9) Qφ = φ− 1 −B2

N

[
N + 1

N − 1
φ +

1

(N − 1)
ψ − 2

(N − 1)

]
,

where

(10.10) ψ =
∑
i �=j

(vi · vj)2.
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For N ≥ 4, the two functions φ and ψ are linearly independent, although for
N = 3 they are not. In fact for N = 3, one has the identity

(10.11) ψ = 2φ− 1

2
.

Evidently, for N ≥ 4, φ−
∫
XN

φdσN is not an eigenfunction of Q, so that E0,2 is not
an eigenspace of Q. We are required to compute Qψ.

We again take advantage of the permutation symmetry and note that

S((v1 · v2)
2) =

2

N(N − 1)
ψ and Qψ =

N(N − 1)

2
S(Q(v1 · v2)

2).

We carry out the calculation in the same way that we calculated Qφ and find that

(10.12) Qψ = ψ − 1 −B2

N

[
3ψ +

(N − 3)

(N − 1)
φ− 1

N

]
.

We see that the subspace spanned by φ−
∫
XN

φdσN and ψ−
∫
XN

φdσN is invari-

ant under Q. By using (10.12) and (10.9) we easily find that the two eigenvalues of
N(I −Q) on the two-dimensional space V2,0 are the eigenvalues of

1 −B2

N − 1

[
N + 1 1
N − 3 3N − 3

]
,

which are

1 −B2

N − 1

[
(2N − 1) ±

√
N2 − 3N + 1

]
.

The minus sign clearly gives the lesser of these and gives the gap for N(I − Q) on
V2,0. From here, one easily deduces (10.4).

A further, much simpler calculation shows that the three functions

(10.13) ψα
1,1 =

N∑
k=1

|vk|2vαk ,

where α indexes the components, are also eigenfunctions of Q; more precisely,

(10.14) Qψα
1,1 =

(
1 − 1 −B2

N − 1

)
ψα

1,1.

Thus the unique eigenvalue of A on V1,1 is

λQ
1,1 = 1 − 1 −B2

N − 1
.

For E0,2, a simple computation shows that the functions

(10.15) ψα,β
0,2 =

∑
k

vαk v
β
k ,

where α �= β are indices for the components, are also eigenfunctions for Q; in fact,

(10.16) Qψα,β
0,2 =

(
1 − 3(1 −B2)

2(N − 1)

)
ψα,β

0,2 .
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Thus, V0,2 = E0,2, and the unique eigenvalue of Q on this subspace is

λQ
0,2 = 1 − 1

N − 1
.

Finally, we consider the spectrum on Q on the eigenspaces of P corresponding
to n + � = 1. In this case, as noted above, the eigenfunctions are antisymmetric, so
that if we are concerned only with the spectrum of Q on the subspace of symmetric
functions (which is all that is of significance for Kac’s application to the Boltzmann
equation), we can ignore these eigenspaces. However, if we define η0,1(�v) = v1 − v2

and η1,0(�v) = |v1|2 − |v2|2, we find, as above, that

Qη1,0 =

(
1 − (1 −B1)

1

N − 1

)
η1,0 and(10.17)

Qη0,1 =

(
1 − (1 −B1)

1

N − 1

)
η0,1.(10.18)

Now that we have all of our eigenvalues, we need to order them. By a simple
comparison, we determine that for all N the largest eigenvalue of Q on our three
invariant subspaces with n + � = 2 is λQ

1,1. This is true for all choices of b, since the
only dependence on b in these eigenvalues is a common factor of (1 −B2).

It is worth noting, however, that for large N

λQ
1,1 = 1 − (1 −B2)

1

N
+ O

(
1

N2

)
and λQ

2,0 = 1 − (1 −B2)
1

N
+ O

(
1

N2

)
,

so that these eigenvalues merge as N tends to infinity. Still, for all finite N ,

λQ
1,1 = 1 − (1 −B2)

1

N − 1

is strictly larger.
Next, the invariant subspaces of Q with n + � = 1 are also eigenspaces of Q with

the eigenvalue

λQ
0,1 = λQ

1,0 = 1 − (1 −B1)
1

N − 1
.

In summary, the largest eigenvalue of Q on the invariant subspaces Vn,	 in
L2(XN ,dσN ) with n + � = 1, 2 and N ≥ 3 is either

1 − (1 −B2)
1

N − 1
or 1 − (1 −B1)

1

N − 1
,

depending on which of these is larger. In particular,

(10.19) Δ3 ≤ min{(1 −B2), (1 −B1)}
3

2
.

With the above arguments we have all of the ingredients needed to prove Theorem
1.1.

Proof of Theorem 1.1. First, we wish to apply Lemma 4.1 to estimate Δ3 in terms
of Δ2. In (9.4), we have set μ�

3 = 11/20, and with this choice of the threshold, we
have seen that there is just one eigenvalue of P between μ�

3 and 1, namely, the gap
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eigenvalue μ3 = μ1,1(3) = μ0,1(3) = μ1,0(3). Thus, from Lemma 4.1 and the eigenvalue
computations in Lemma 10.1, either the gap eigenvalue of Q for N = 3 is

(10.20) max

{
1 − (1 −B2)

1

N − 1
, 1 − (1 −B1)

1

N − 1

}

or else

(10.21) Δ3 ≥ 3

2

(
1 − 11

20

)
Δ2 =

27

40
Δ2.

If (10.20) does give the gap eigenvalue of Q for N = 3, then

(10.22) Δ3 = min{ (1 −B1), (1 −B2) }3

2
.

Since, according to Lemma 4.1, at least one of (10.21) and (10.22) is true, the
condition

(10.23)
27

40
Δ2 ≥ 3

2
min{ (1 −B1), (1 −B2) }

and (10.19) ensure that (10.22) is true and thus give us the gap eigenvalue for N = 3.
Note that the condition (10.23) is equivalent to the condition (1.6) in Theorem 1.1.

Now we proceed by induction. For any n ≥ 4, assume that

(10.24) ΔN−1 = min{ (1 −B1), (1 −B2) }N − 1

N − 2
.

In (9.3) we have set

μ�
N =

1

N − 1

for all N ≥ 4, and we have seen that the only eigenvalues μ of P with 1 > μ ≥ μ�
N

are the gap eigenvalue μN = μ1,1(N) = μ0,1(N) = μ1,0(N), and for N > 4, μ2,0(N).
Thus, by Lemma 4.1 and the eigenvalue computations in Lemma 10.1, either the gap
eigenvalue of Q for N is

(10.25) max

{
1 − (1 −B2)

1

N − 1
, 1 − (1 −B1)

1

N − 1

}

or else

(10.26) ΔN >
N

N − 1

(
1 − 1

N − 1

)
ΔN−1.

There is strict inequality in (10.26) since all remaining eigenvalues of P not taken
into account in (10.25) are strictly less than μ�

N . By the inductive hypothesis (10.24)
yields

ΔN > min{ (1 −B1), (1 −B2) } N

N − 1
.

This is impossible, as the trial functions leading to (10.25) yield the upper bound

(10.27) ΔN ≤ min{ (1 −B1), (1 −B2) } N

N − 1
.
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Thus equality holds in (10.27), which completes the proof of the inductive step. Be-
cause of the strict inequality in (10.26), the only eigenfunctions with the gap eigenvalue
are found in the invariant subspaces considered here, i.e., in the Vn,	 with 0 < n+� ≤ 2.
By the results of Lemma 10.1, this yields the statement in Theorem 1.1 concerning
the gap eigenfunctions of Q.

Proof of Theorem 1.2. We proceed as in the previous proof except that, for low
values of N , we shall use a different choice for the threshold μ�

N , namely,

(10.28) μ�
N = μ2,2(N).

We know from Lemma 9.1 that for all N ≤ 7

μn,	(N) ≤ μ2,2(N) for all n + � > 2.

Thus, at least for such N , the only eigenvalues μ of P with μ > μ�
N = μ2,2(N) are those

with n + � ≤ 2. We have already computed the gap for Q on the invariant subspaces
containing these eigenvalues, and we have found that the gap in these subspaces is

Δ̃N = min{ (1 −B1), (1 −B2) } N

N − 1
.

If for any N0 ≥ 3 it turns out that Δ̃N0
= ΔN0

, the gap on the whole space, then
we can switch from that point onwards to the use of μ�

N = μ0,2(N) as in the proof of

Theorem 1.1 to show that Δ̃N = ΔN for all N ≥ N0 and that the eigenfunctions are
exactly as claimed for all N > N0.

We now show that it is always the case that Δ̃N0
= ΔN0

for some N0 ≤ 7. To do
this, pick any value N1 ≥ 4, and suppose that for 3 ≤ j ≤ N1 we have

(10.29) Δj < min{ (1 −B1), (1 −B2) } j

j − 1
.

Then by Lemmas 4.1 and 9.1, by using the value μ�
j = μ2,2(j), for 3 ≤ j ≤ N1,

we have

ΔN1 ≥ N1

2

N1∏
j=3

(1 − μ2,2(j))Δ2.

By using the hypothesis Δ2 = 2(1 −B1), we have

ΔN1 ≥ N1

2

N1∏
j=3

(1 − μ2,2(j))2(1 −B1).

Of course we can rewrite this as

ΔN1 ≥ N1

2

⎛
⎝N1∏

j=4

(1 − μ0,2(j))

⎞
⎠ (1 − μ2,2(3))

⎛
⎝N1∏

j=4

(1 − μ2,2(j))

(1 − μ0,2(j))

⎞
⎠ 2(1 −B1)

=
N1

N1 − 1

⎛
⎝N1∏

j=4

(1 − μ2,2(j))

(1 − μ0,2(j))

⎞
⎠ 9

10
(1 −B1),(10.30)
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since, as in the last proof, (1 − μ2,2(3)) = 9/20, and

N1

2

N1∏
j=4

(1 − μ0,2(j)) =
N1

N1 − 1
.

Now, by direct computation, we find that

7∏
j=4

(1 − μ2,2(j))

(1 − μ0,2(j))
=

558018643

495720000
>

10

9
.

For N1 ≥ 7, this would lead to

ΔN1
>

N1

N1 − 1
(1 −B1),

and this is impossible, since we have a trial function showing that the gap cannot be
so large. Hence it must be that (10.29) is false for some j ≤ 7. By what we have said
above, from this point onward, we can proceed as in the proof of Theorem 1.1, and
we obtain Theorem 1.2.

While the results presented here cover a very wide range of models, it is possible
to come up with choices of b for which Δ2 �= 2(1 − B1). If one found a need to deal
with such an example, one might have to go deeper into the spectrum of P . It is very
likely that Lemma 9.1 holds for all N ≥ 3, based on extensive computations. These
computations also show that, as N increases, μ2,1(N) comes very close to μ2,2(N), so
that to get much more leverage one would need to compute all of the eigenvalues of Q
on the smallest invariant subspaces of Q that contain both of these eigenspaces of P .
This could be done by using the methods illustrated above, but the computations
would be considerably more involved than the ones we have presented in this section.
Thus, having treated a wide range of models, we shall conclude our discussion of Q
here. In the brief final section, we discuss a point we raised earlier concerning bounds
on Jacobi polynomials.

11. Bounds on Jacobi polynomials. As alluded to in section 8, the identity
(7.9), together with the trivial bound on the |κn,	| ≤ 1, which comes from the fact
that K is a Markov operator, will for certain regions provide a stronger bound than
(8.8), the bound of Nevai, Erdelyi, and Magnus. We close this section by showing how
(7.9) can be used to obtain better bounds.

To begin, write

b2β−1P
α,β
n (−1 + 2b2)

Pα,β
n (1)

≤ 2e

π

Γ(n + 1)

b(1 − b2)α+1/2

2 +
√

α2 + β2

2n + α + β + 1

Γ(n + β + 1)

Γ(n + α + β + 1)

Γ(α + 1)2

Γ(n + α + 1)
,(11.1)

where β = l+1/2, with l an integer. In regions where the right-hand side of the above
equation becomes larger than one, the simple bound

b2β−1P
α,β
n (−1 + 2b2)

Pα,β
n (1)

≤ 1

becomes stronger. In the region 2n + 1 < α < β, we find
2+

√
α2+β2

2n+α+β+1 > 1
4 . This plus

Stirling’s formula with the remainder yields
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2e

π

Γ(n + 1)

b(1 − b2)α+1/2

2 +
√

α2 + β2

2n + α + β + 1

Γ(n + β + 1)

Γ(n + α + β + 1)

Γ(α + 1)2

Γ(n + α + 1)

>
en√
2π

Γ(n + 1)

b(1 − b2)α+1/2

αα+1/2−nβ−α

(1 + α
β )n+α+β+1

(1 + 1
α )2α+1

(1 + n+1
α )n+α+1/2(1 + n+1

α+β )β
∗ r

>
en√
2π

Γ(n + 1)

b(1 − b2)α+1/2

αα+1/2−nβ−α

22n+2α+2β+3/2
r,

where r = (1 − 1
12(n+α+β+1) )(1 − 1

12(n+α+1) ) and n is assumed to be fixed. Choosing

b(1 − b2)α+1/2 so that the last inequality is greater than one provides a region where
the combination of (7.9) and |κn,	| ≤ 1 does better than (7.9). It would be interesting
to obtain better bounds on |κn,	| by direct analysis of K and to use these to sharpen
the argument just made.

Acknowledgment. We thank Doron Lubinsky for valuable discussions concern-
ing (8.8), the bound of Nevai, Erdelyi, and Magnus, and related results.
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NONLINEAR SCHRÖDINGER EQUATIONS WITH

CRITICAL NONLINEARITY∗
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Abstract. We consider the orbital stability of single-spike bound states of semiclassical nonlinear
Schrödinger equations with critical nonlinearity and a trap potential. Due to the effect of the trap
potential, we derive the asymptotic expansion formulas and obtain the necessary conditions for orbital
stability and instability of single-spike bound states. Our argument is applied to two-component
systems of nonlinear Schrödinger equations with a common trap potential, cubic nonlinearity in two
spatial dimensions. The orbital stability of bound states with spikes of these systems is investigated.
Our results show the existence of stable spikes in two-dimensional Bose–Einstein condensates.

Key words. orbital stability, spike, trap potential
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1. Introduction. The nonlinear Schrödinger (NLS) equation with a trap poten-
tial is central to the understanding of many physical phenomena. For example, it has
become a well-known model referred to as the Gross–Pitaevskii equation governing
the evolution of Bose–Einstein condensates (BEC) given by

(1.1) −i�
∂ψ

∂t
=

�
2

2m
�ψ − Vtrapψ − μ|ψ|2ψ

for x ∈ R
N , N ≤ 3, and t > 0, where ψ = ψ(x, t) ∈ C is the wavefunction of BEC

and Vtrap = Vtrap(x) is the trap potential. Also, � is the Planck constant, m is the

atom mass, and μ ∼ 4π �
2

2ma, where a denotes the s-wave scattering length.

In BEC, spikes may occur when the s-wave scattering length is negative and large.
Due to Feshbach resonance, the s-wave scattering length of a single condensate can be
tuned over a very large range by adjusting the externally applied magnetic field. As
the s-wave scattering length of a single condensate is negative and large enough, the
interactions of atoms are strongly attractive and the associated condensate tends to
increase its density at the center of the trap potential in order to lower the interaction
energy (cf. [28]). Under the effect of trap potentials, spikes of BEC are observable by
physical experiments (cf. [10]) so there must be stability to ensure spikes appearing in
the condensate wavefunction (cf. [7]). In [24], stable bright solitons (spikes) of BEC
can be observed by numerical simulations, provided that the strength of the trap
potential exceeds a threshold value. Here we want to develop mathematical theorems
to support the existence of stable spikes in BEC.
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To get spikes in BEC, we may assume the s-wave scattering length a, i.e., μ is
negative and large. Setting h2 = �

2/(2mμ), Vtrap(x) = μ−1 V (x), and suitable time
scale, (1.1) with negative and large μ can be equivalent to a semiclassical NLS given by

−ih
∂ψ

∂t
= h2�ψ − V ψ + |ψ|2ψ, x ∈ R

N , t > 0,(1.2)

where 0 < h � 1 is a small parameter (semiclassical limit) and V = V (x) is a smooth
nonnegative function. We may generalize (1.2) to an NLS equation having the form

−ih
∂ψ

∂t
= h2�ψ − V ψ + |ψ|p−1ψ, x ∈ R

N , t > 0,(1.3)

with critical nonlinearity

p = 1 +
4

N
, N ≥ 1.(1.4)

In particular, when N = 2, (1.3) is exactly the same as (1.2).
Bound states of (1.3) are of the form ψ(x, t) = eiλ t/hu(x), where λ > 0 and u

satisfies the following nonlinear elliptic equation:

h2�u− (V + λ)u + up = 0 , u ∈ H1(RN ) , u > 0 in R
N ,(1.5)

with zero Dirichlet boundary condition, i.e., u(x) → 0 as |x| → ∞.
In the case when V (x) ≡ 0, for any λ > 0, problem (1.5) admits a unique radially

symmetric ground state, which is stable for any λ > 0 if p < 1 + 4
N and unstable for

any λ > 0 if p ≥ 1 + 4
N (see [5], [6], and [36]).

When V (x) �≡ 0, the existence of single- or multiple-spike solutions of (1.5) was
first established by Floer and Weinstein [11] in the one-dimensional case, i.e., N = 1
and 1 < p < 5, and later extended by Oh [25], [26] to the higher-dimensional case,
i.e., N ≥ 2 and 1 < p < N+2

N−2 under the condition that the trap potential V has
nondegenerate critical points. When the trap potential V becomes degenerate, there
have been many works in recent years. The reader may refer to [1], [3], [17], [8], [9]
[19], [29], [30], [32], [33], and the references therein.

The trap potential V may also play a crucial role in the orbital (dynamic) sta-
bility of single-spike bound states. As the trap potential V is switched off, it is well
known that all bound states of (1.3) with the condition (1.4) are orbitally unstable
if the dimension N = 2 (cf. [37]). To stabilize bound states, one has to turn on the
trap potential. However, in general, some nonzero trap potentials may still cause
dynamic instability in BEC. For instance, one may find bending-wave instability of
vortex ring dynamics under some nonzero trap potentials (cf. [18]). Consequently,
to get the dynamic stability of single-spike bound states, we have to choose trap po-
tentials properly. For suitable trap potentials, Oh [26] and Grillakis, Shatah, and
Strauss [14] proved that when N = 1, the single-spike bound state (concentrating at
local nondegenerate minimum of the trap potential V ) is stable if 1 < p < 1 + 4

N and
unstable if p > 1 + 4

N . Generically, the case of p = 1 + 4
N is left open and referred

to as a critical case in the literature. In this paper, we give an affirmative answer
for such a case by studying the orbital stability and instability of single-spike bound
states when the trap potential V has nondegenerate critical points.

In [25] and [26], a single-spike bound state solution uh of (1.5) can be obtained,
provided the trap potential V is of class (V )a and fulfills other conditions. Hereafter,
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we set uh as a single-spike bound state constructed in [25] and [26] and satisfying
(1.5). Of course, the trap potential V is also of class (V )a and fulfills other conditions
in [25] and [26]. Hence ψh(x, t) = eiλt/huh(x) may form an orbit of (1.3). From [14],
the orbital stability of ψh’s is defined as follows: For all ε > 0, there exists δ > 0
such that if ‖ψ0 − uh‖H1 < δ and ψ is a solution of (1.3) in some interval [0, t0) with
ψ|t=0 = ψ0, then ψ(t, ·) can be extended to a solution in 0 ≤ t < ∞ and

sup
0<t<∞

inf
s∈R

‖ψ(·, t) − ψh(·, s)‖H1 < ε .

Otherwise, the orbit ψh is called orbitally unstable. To check the orbital stability of
ψh, we use the linearized operator defined by

Lh = h2�− (V + λ) + pup−1
h , p = 1 +

4

N
.(1.6)

Observe that uh may depend on the variable λ. Moreover, we assume uh to be
nondegenerate due to [16]. Let n(Lh) be the number of positive eigenvalues of Lh and

d(λ) =

∫
RN

[
h2

2
|∇uh|2 +

1

2
(V + λ)u2

h − 1

p + 1
up+1
h

]
.(1.7)

Assume that d is nondegenerate, i.e., d′′ �= 0. Let p(d′′) = 1 if d′′ > 0 and p(d′′) = 0 if
d′′ < 0. According to the general theory of orbital stability of bound states (cf. [14],
[15]), uh is orbitally stable if n(Lh) = p(d′′) and orbitally unstable if n(Lh)− p(d′′) is
odd (see page 309 of [15]).

It is worth noting that if V ≡ C and p = 1 + 4
N , then d′′(λ) = 0, i.e., the

function d becomes degenerate, where C is a positive constant. Consequently, we
may assume that the trap potential V has nondegenerate critical points in order to
derive the asymptotic expansion formulas for the operator Lh and the function d as
the parameter h goes to zero. These formulas are crucial to obtaining the orbital
stability and instability of single-spike bound states as follows.

Theorem 1.1. Let N be a positive integer and p = 1 + 4
N . For 0 < h < 1, let

uh be a bound state of (1.3) concentrated at a nondegenerate critical point x0 of the
potential V such that ΔV (x0) �= 0. Let m denote the number of negative eigenvalues
of the matrix (∇2V (x0)). Suppose the parameter h is sufficiently small. Then uh

is orbitally stable if x0 is a nondegenerate local minimum point of the potential V .

Furthermore, uh is orbitally unstable if m− 1
2 (1 + ΔV (x0)

|ΔV (x0)| ) is even.

Remark. In [12], Fukuizumi considered the orbital stability of the standing wave
solution to (1.3) in the critical case p = 1 + 4

N under the following conditions:

(1.8) h = 1, V (x) = V (|x|), u(x, t) = u(|x|, t).

He studied the stability of the standing wave solution eiλtu(x) for λ large (in the
radially symmetric class). After suitable scaling, the standing wave solution satisfies

(1.9) ε2Δu− (1 + ε2V (|x|))u + up = 0, u > 0, where ε2 =
1

λ
.

There is a slightly subtle difference between (1.5) and (1.9). However, the main
difference is that we consider the full functional space here. The method of proving
Theorem 1.1 can also be applied to obtain a more general result to Fukuizumi’s
problem for general V (x).
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Another motivation of studying (1.3) in the critical case may come from two-
component systems of NLS equations which describe a double condensate, i.e., a
binary mixture of BEC (cf. [28]). To get stable spikes of a double condensate with
two spatial dimensions, we study orbitally stable bound states with spikes of a two-
component system of NLS equations given by

(1.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ih

∂Φ

∂t
= h2�Φ − V Φ + |Φ|2Φ + β|Ψ|2Φ ,

−ih
∂Ψ

∂t
= h2�Ψ − V Ψ + |Ψ|2Ψ + β|Φ|2Ψ

for x ∈ R
2 and t > 0, where V = V (x) is a smooth nonnegative function, β ∈ R is

a nonzero constant, and 0 < h � 1 is a small parameter. Bound states of (1.10) are
of the form Φ(x, t) = eiλ t/hu(x) and Ψ(x, t) = eiλ t/hv(x), where (u, v) satisfies the
following nonlinear elliptic system:

(1.11)

⎧⎪⎪⎨
⎪⎪⎩
h2�u− (V + λ)u + u3 + βuv2 = 0, x ∈ R

2,

h2�v − (V + λ)v + v3 + βu2v = 0, x ∈ R
2,

u(x), v(x) > 0, u, v ∈ H1(R2).

Note that in R
2, the nonlinearity u3, v3 are a critical nonlinearity by the simple

algebra p = 3 = 1 + 4
N with N = 2. The system (1.11) admits a bound state

solution ( 1√
1+β

uh,
1√
1+β

uh), where β > −1 and uh satisfies (1.5). Generically, such

a solution may be neither a unique positive solution nor a ground state solution of
the system (1.11). Thus the stability problem is nontrivial. Here we want to get the
orbital stability of such a solution using suitable trap potentials V ’s. To study the
orbital stability of such a bound state solution, we set the linearized operator of (1.10)
around ( 1√

1+β
uh,

1√
1+β

uh) given by

Lh

(
φ
ψ

)
=

(
h2�φ− (V + λ)φ + 3+β

1+βu
2
hφ + 2β

1+βu
2
hψ

h2�ψ − (V + λ)ψ + 3+β
1+βu

2
hψ + 2β

1+βu
2
hφ

)
.(1.12)

Furthermore, we also need a function defined as follows:

d(λ1, λ2) =

∫
R2

h2

2
|∇uh,λ1,λ2 |2 +

V (x) + λ + λ1

2
u2
h,λ1,λ2

− 1

4

∫
R2

u4
h,λ1,λ2

+

∫
R2

h2

2
|∇vh,λ1,λ2 |2 +

V (x) + λ + λ2

2
v2
h,λ1,λ2

− 1

4

∫
R2

v4
h,λ1,λ2

− β

2

∫
R2

u2
h,λ1,λ2

v2
h,λ1,λ2

,(1.13)

where (uh,λ1,λ2 , vh,λ1,λ2) is the solution of{
h2�u− (V + λ + λ1)u + u3 + βuv2 = 0 in R

2 ,

h2�v − (V + λ + λ2)v + v3 + βu2v = 0 in R
2 ,

(1.14)

such that (uh,λ1,λ2
, vh,λ1,λ2

) → ( 1√
1+β

uh,
1√
1+β

uh) as |λ1| + |λ2| → 0 .
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Suppose the solution ( 1√
1+β

uh,
1√
1+β

uh) is nondegenerate, i.e., the operator Lh

has no zero eigenvalue. Let n(Lh) denote the positive eigenvalues of Lh, and set p as
the number of positive eigenvalues of the Hessian matrix (∇2d(0, 0)). From [14] and
[15], we know that the solution ( 1√

1+β
uh,

1√
1+β

uh) is orbitally stable if n(Lh) = p

and orbitally unstable if n(Lh) − p is odd. The parameter β may affect the orbital
stability of the solution ( 1√

1+β
uh,

1√
1+β

uh). Now we state our result as follows.

Theorem 1.2. For 0 < h < 1, let uh be a single-spike solution concentrated at a
local minimum point of the function V . Suppose the parameter h is sufficiently small.
Then ( 1√

1+β
uh,

1√
1+β

uh) is an orbitally stable solution to (1.10) if 0 < β �= 1.

Remark. The orbital instability of ( 1√
1+β

uh,
1√
1+β

uh) for −1 < β < 0 can also

be investigated. However, the condition is quite complicated so we may omit it here.
On the other hand, as β = 1, the system (1.11) may have infinitely many solutions
with the form (u, v) = (w, ηw) for η �= 0, where w is the solution of h2�w − (V +
λ)w + (1 + η2)w3 = 0 in R

2. This may provide a reason to ignore the case β = 1 in
Theorem 1.2.

For the existence of other bound states to the system (1.11), the reader may refer
to [2], [4], [13], [20], [21], [23], [31], and the references therein. Our result here seems
to be the first in studying the orbital stability of (1.11) with a trapping potential.

The argument of Theorem 1.2 is applicable to studying another two-component
system of NLS equations having symbiotic bright solitons (cf. [22] and [27]) given by

(1.15)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−ih

∂Φ

∂t
= h2�Φ − V Φ − |Φ|2Φ + β|Ψ|2Φ ,

−ih
∂Ψ

∂t
= h2�Ψ − V Ψ − |Ψ|2Ψ + β|Φ|2Ψ

for x ∈ R
2 and t > 0, where V = V (x) is a smooth nonnegative function, β ∈ R is

a nonzero constant, and 0 < h � 1 is a small parameter. It is remarkable that the
coefficients of the terms |Φ|2Φ and |Ψ|2Ψ of the system (1.15) have opposite sign to
those of the system (1.10). As for the system (1.11), bound states of (1.15) are of the
form Φ(x, t) = eiλ t/hu(x) and Ψ(x, t) = eiλ t/hv(x), where (u, v) satisfies the following
nonlinear elliptic system:

(1.16)

⎧⎪⎪⎨
⎪⎪⎩
h2�u− (V + λ)u− u3 + βuv2 = 0, x ∈ R

2,

h2�v − (V + λ)v − v3 + βu2v = 0, x ∈ R
2,

u(x), v(x) > 0, u, v ∈ H1(R2).

It is easy to check that the system (1.16) has a solution ( 1√
β−1

uh,
1√
β−1

uh) for β > 1.

As for Theorem 1.2, we may have the following corollary.
Corollary 1.3. For 0 < h < 1, let uh be a single-spike solution concentrated

at a local minimum point of the function V . Suppose the parameter h is sufficiently
small. Then ( 1√

β−1
uh,

1√
β−1

uh) is an orbitally stable solution to (1.15) if β > 1.

The proof of Corollary 1.3 is quite similar to that of Theorem 1.2 so we may
neglect the detailed proof here.

The rest of this paper is organized as follows. In section 2, we figure out the
properties of uh and the spectrum of the linearized operator Lh as the parameter h
goes to zero. Then we state the proof of Theorem 1.1 in section 3. Finally, we provide
the proof of Theorem 1.2 in section 4.
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2. Properties of uh. In this section, we study the properties of uh, which is a
single-spike solution concentrated at a nondegenerate critical point x0 of V (x). Let
xh be the unique local maximum point of uh. So xh → x0. Let us recall the following
results of Grossi [16].

Lemma 2.1.

(1) xh = x0 + o(h);
(2) uh is unique and nondegenerate, i.e., Lh has no zero eigenvalue.
Proof. (1) follows from Lemma 5.4 of [16], while (2) follows from Theorem 1.1 of

[16].
We need the following two lemmas. The first one is an asymptotic behavior of uh.
Lemma 2.2.

(2.1) uh(xh + hy) = (V (xh) + λ)
1

p−1 w(
√

V (xh) + λy) + h2φ0 + o(h2),

where w is the unique positive solution of

(2.2) �w − w + wp = 0, w(0) = max
y∈RN

w(y), w > 0 in R
N , w → 0 as |y| → +∞,

φ0 satisfies

�φ0 − (V (xh) + λ)φ0 + pwp−1
xh

φ0 −
1

2

∑
i,j

Vij(x0)yiyjwxh
= 0(2.3)

with

wxh
(y) := (V (xh) + λ)

1
p−1 w(

√
V (xh) + λy).(2.4)

Proof. Note that for fixed s, ws(y) satisfies

�ws − (V (s) + λ)ws + wp
s = 0.(2.5)

Let φh(y) = uh(xh + hy) − wxh
(y). Then |φh| → 0 uniformly and φh satisfies

�φh − (V (xh + hy) + λ)φh + pwp−1
xh

φh + N(φh) − (V (xh + hy) − V (xh))wxh
= 0,

(2.6)

where N(φh) = (wxh
+ φh)p − wp

xh
− pwp−1

xh
φh. Note that ∇φh(0) = 0 and

(V (xh + hy) − V (xh)) = (∇V (xh))hy +
1

2

∑
i,j

Vij(xh)h2yiyj + O(h3|y|3)

= o(h2)|y| + 1

2

∑
i,j

Vij(x0)h
2yiyj + o(h2|y|2).(2.7)

Here we have used Lemma 2.1(1).
Now we claim that |φh| ≤ ch2. In fact, suppose not. We may assume that

|φh|L∞h−2 → ∞ . Let φ̃h = φh

|φh|L∞ . Then φ̃h satisfies

�φ̃h − (V + λ)φ̃h + pwp−1
xh

φ̃h +
N(φh)

|φh|L∞
− (V (xh + hy) − V (xh))wxh

|φh|L∞
= 0.(2.8)
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Note that by (2.7),

|V (xh + hy) − V (xh)||wxh
|

|φh|L∞
≤ h2|y|2|wxh

|
|φh|L∞

≤ o(1)|y|2|wxh
|(2.9)

for |y| ≥ 1. Let yh be the global maximum point of φ̃h, i.e., φ̃h(yh) = maxy
φh(y)
|φh|L∞ = 1.

Then by (2.8) and (2.9) and the maximum principle, we have |yh| ≤ C. Here we have
used the fact that V ≥ 0 and λ > 0.

By the usual elliptic regularity theory, we may take a subsequence φ̃h → φ0,
where φ0 satisfies

�φ0 − (V (x0) + λ)φ0 + pwp−1
x0

φ0 = 0, ∇φ0(0) = 0.(2.10)

Since ∇φ0(0) = 0, we see that φ0 =
∑N

j=1 cj
∂wx0

∂yj
, and hence cj = 0. Consequently,

φ0 ≡ 0. This may contradict the fact that 1 = φ̃h(yh) → φ0(y0) for some y0. Therefore
|φh| ≤ ch2. Now we let φh = h2φ0 + h2φh. Then, as for the previous argument, we
may have φh = o(1) and complete the proof of Lemma 2.2.

As in Proposition 3.6 of [19], one may get two lemmas, as follows.
Lemma 2.3. For each s ∈ R

N , the map

Lsφ := �φ− (V (s) + λ)φ + pwp−1
s φ(2.11)

is invertible from K⊥
s to C⊥

s , where

K⊥
s =

{
φ ∈ H2(RN )

∣∣∣∣
∫

RN

φ
∂ws

∂yj
(y) dy = 0 , j = 1, . . . , N

}
⊂ H2(RN ),

C⊥
s =

{
φ ∈ L2(RN )

∣∣∣∣
∫

RN

φ
∂ws

∂yj
(y) dy = 0 , j = 1, . . . , N

}
⊂ L2(RN ).

Lemma 2.4. The map

L0φ := �φ− (V (x0) + λ)φ + pwp−1
x0

φ(2.12)

admits the following eigenvalues:

λ1 > 0 , λ2 = · · · = λN+1 = 0 , λN+2 < 0,

where the kernel of L0 is spanned by
∂wx0

∂yj
, j = 1, . . . , N .

Our main result in this section is the following.
Theorem 2.5. The eigenvalue problem

Lhψh = λhψh(2.13)

admits eigenvalues

λh,1 > λh,2 > · · · > λh,N+1 > λh,N+2,(2.14)

satisfying, as h → 0, λh,1 → λ1 > 0, λh,N+2 → λN+2 < 0, and

λh,j

h2
→ c0νj−1, j = 2, . . . , N + 1,(2.15)
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where c0 is a negative constant and νj’s are eigenvalues of the Hessian matrix (∇2V (x0)).

Proof. We follow the proofs given in section 5 of [35]. Assume that ‖ψh‖L2 = 1.
It is easy to see that for eigenvalues λh ∈ [ 12λN+2,

1
2λ1], as h ↓ 0, λh → λj for some j,

where λj ’s are given in Lemma 2.4. Now we focus on the case λh,j → 0, i.e., λh → 0
as h ↓ 0. Then the corresponding eigenfunctions can be written as

ψh(xh + hy) =

N∑
j=1

cj
∂wxh

∂yj
(y) + ψ⊥

h (y),(2.16)

where
∫

RN

∂wxh

∂yj
ψ⊥
h (y) dy = 0, j = 1, 2, . . . , N . Hence by (2.13) and (2.16), ψ⊥

h may

satisfy

(2.17)

�ψ⊥
h − (V (xh + hy) + λ)ψ⊥

h + pwp−1
xh

(y)ψ⊥
h + p(up−1

h (xh + hy) − wp−1
xh

(y))ψ⊥
h

+
∑
j

cjLh
∂wxh

∂yj
= λh

⎛
⎝∑

j

cj
∂wxh

∂yj
+ ψ⊥

h

⎞
⎠ .

Using (2.1) and (2.7) of Lemma 2.2, we have

Lh
∂wxh

∂yj
= �

(
∂wxh

∂yj

)
− (V (xh + hy) + λ)

∂wxh

∂yj
+ pup−1

h (xh + hy)
∂wxh

∂yj

= (V (xh) − V (xh + hy))
∂wxh

∂yj
+ p(up−1

h (xh + hy) − wp−1
xh

(y))
∂wxh

∂yj

= O(h2).(2.18)

From Lemma 2.3, the map Lxh
= �− (V (xh) + λ) + pwp−1

xh
is invertible in the space

K⊥
xh

. Thus by (2.1), (2.7), and (2.18), (2.17) may give

||ψ⊥
h ||H2 ≤ c(h2 + |λh|)

∑
j

|cj | .(2.19)

Now we set zj(y) =
∂wxh

∂yj
(y) for j = 1, . . . , N . Then multiplying (2.17) by zk and

integrating over R
N , it is obvious that

∫
RN

(
Lhψ

⊥
h

)
zk dy +

∑
j

cj

∫
RN

(
Lh

∂wxh

∂yj

)
zk dy = λh

⎛
⎝∑

j

cj

∫
RN

zjzk

⎞
⎠ dy .

(2.20)

Here we have used the fact that ψ⊥
h ∈ K⊥

xh
. Using (2.18), (2.19), λh = o(1), and

integration by parts, we obtain∫
RN

(
Lhψ

⊥
h

)
zk =

∫
RN

ψ⊥
h Lhzk = o(h2)(2.21)
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and∫
RN

(Lhzj) zk =

∫
RN

(V (xh) − V (xh + hy))zjzk + p

∫
RN

(
up−1
h − wp−1

xh

)
zjzk

:= I1 + I2,(2.22)

where

I1 =

∫
RN

(V (xh) − V (xh + hy))zjzk

= o(h2) − h2

2

∑
l,m

Vlm(xh)

∫
RN

ylymzjzk

= −h2

2
Vjk(xh)

∫
RN

yjzjykzk .(2.23)

Here we have used (2.7) to get (2.23). For I2, we use Lemma 2.2:

I2 = p(p− 1)h2

∫
RN

φ0w
p−2
xh

zjzk + o(h2)

= −h2

∫
RN

L0

(
∂2w

∂yj∂yk

)
φ0 + o(h2)

= −h2

∫
RN

(L0φ0)
∂2w

∂yj∂yk
+ o(h2)

= −h2

2

∑
l,m

Vlm(xh)

∫
RN

ylymwxh

∂2w

∂yj∂yk
+ o(h2)

=
h2

2

∑
l,m

Vlm(xh)

∫
RN

∂

∂yj
(ylymwxh

)zk + o(h2)

=
h2

2
Vjk(xh)

∫
RN

yjykzjzk − h2

2
Vjk(xh)

∫
RN

w2
xh

+ o(h2) .(2.24)

Here we have used the following identity:∫
RN

∂

∂yj
(ylymwxh

)zk =

∫
RN

δjlymwxh
zk +

∫
RN

δjmylwxh
zk +

∫
RN

ylymzjzk

=
1

2

∫
RN

δjlym
∂

∂yk
(w2

xh
)

+
1

2

∫
RN

δjmyl
∂

∂yk
(w2

xh
) +

∫
RN

ylymzjzk

= −(δjlδkm + δjmδlk)
1

2

∫
RN

w2
xh

+

∫
RN

ylymzjzk.
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Combining (2.23) and (2.24), we have

I1 + I2 = −h2

2
Vjk(xh)

∫
RN

w2
x0

+ o(h2).(2.25)

Substituting (2.21) and (2.25) into (2.20), we may obtain λj/h
2 → c0νj for j =

1, . . . , N , where c0 = −
∫

RN w2
x0

dy∫
RN z2

j dy
is a negative constant. The rest of the proof follows

from a perturbation result, similar to pages 1473–1474 of [35]. We may omit the
details here.

From Theorem 2.5, we may deduce the following.
Theorem 2.6. uh is smooth in λ. Moreover, let Rh = ∂uh

∂λ . Then Rh satisfies

LhRh − uh = 0(2.26)

and

Rh =

N∑
j=1

chj zj + R0 + o(1) ,(2.27)

where R0 = ∂
∂λwxh

= (V (xh) + λ)−1( 1
p−1wxh

+ 1
2y · ∇wxh

) and |chj | = O(1) for
j = 1, . . . , N .

Proof. Since uh is unique and Lh is invertible, it is easy to see that uh is smooth
in λ and Rh satisfies (2.26). Now we decompose Rh as

Rh =

N∑
j=1

chj zj + R0 + Rh,

where
∫

RN zjRh = 0, j = 1, . . . , N . Then Rh satisfies

LhRh − uh + LhR0 +

N∑
j=1

chjLhzj = 0.(2.28)

As for the proof of Theorem 2.5, we have

‖Rh‖H2 ≤ c
(
|chj |h2 + ‖LhR0 − uh‖L2

)
.(2.29)

From (2.4) and (2.5), it is easy to check that R0 = ∂
∂λwxh

= (V (xh)+λ)−1( 1
p−1wxh

+
1
2y · ∇wxh

) and Lxh
R0 = wxh

by differentiating (2.5) with respect to λ. Hence

LhR0 − uh = p(up−1
h (xh + hy)−wp−1

xh
(y))R0 − (V (xh + hy) − V (xh))R0 +wxh

− uh .

Consequently, by Lemma 2.2 and (2.7), we obtain

‖LhR0 − uh‖L2 = O(h2) ,(2.30)

and then by (2.29),

‖Rh‖H2 = (1 + |chj |)O(h2) .(2.31)
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To estimate chj ’s, we may multiply (2.28) by zk and integrate over R
N . Then

N∑
j=1

chj

∫
RN

(Lhzj)zk +

∫
RN

(LhR0 − uh)zk +

∫
RN

(LhRh)zk = 0 .(2.32)

Hence by (2.22) and (2.25), (2.32) may imply

|chj | ≤
C

h2

(∣∣∣∣
∫

RN

(LhR0 − uh)zk

∣∣∣∣+
∣∣∣∣
∫

RN

(LhRh)zk

∣∣∣∣
)
.(2.33)

Using integration by parts and (2.18), we have∫
RN

(LhRh)zk =

∫
RN

(Lhzk)Rh = ‖Rh‖L2 O(h2) .(2.34)

Therefore by (2.30), (2.31), (2.33), and (2.34), we may obtain |chj | = O(1) and com-
plete the proof.

3. Proof of Theorem 1.1. Let p = 1+ 4
N . By Theorem 2.5, Lh has m + 1 posi-

tive eigenvalues and no zero eigenvalue, where m is the number of negative eigenvalues
of the matrix (∇2V (x0)). Let us now compute d′′(λ).

From (1.7), it is easy to get

d′(λ) =
1

2

∫
RN

u2
h

and hence

d′′(λ) =

∫
RN

∂uh

∂λ
uh =

∫
RN

Rhuh.

By direct computations,

Lh

(
1

p− 1
uh +

1

2
hy · ∇uh

)
=

1

2
hy · ∇V (xh + hy)uh + (V (xh + hy) + λ)uh.(3.1)

Consequently,

(V (xh) + λ)

∫
RN

Rhuh =

∫
RN

Rh(V (xh) − V (xh + hy))uh

+

∫
RN

Rh(V (xh + hy) + λ)uh

=

∫
RN

Rh

(
V (xh) − V (xh + hy) − 1

2
hy · ∇V (xh + hy)

)
uh

+

∫
RN

RhLh

(
1

p− 1
uh +

1

2
hy · ∇uh

)
.(3.2)

Using integration by parts and (2.26), we may obtain∫
RN

RhLh

(
1

p− 1
uh +

1

2
hy · ∇uh

)
=

∫
RN

(LhRh)

(
1

p− 1
uh +

1

2
hy · ∇uh

)

=

∫
RN

uh

(
1

p− 1
uh +

1

2
hy · ∇uh

)

=

(
1

p− 1
− N

4

)∫
RN

u2
h = 0 ,(3.3)
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since p = 1 + 4
N . So by (2.7), (3.2), (3.3), Lemma 2.2, and Theorem 2.6, we have

d′′(λ) =
1

V (xh) + λ

∫
RN

Rh

(
V (xh) − V (xh + hy) − 1

2
hy · ∇V (xh + hy)

)
uh

=
h2

V (xh) + λ

∫
RN

Rh

⎡
⎣∑

i,j

−Vij(xh)yiyj

⎤
⎦uh + o(h2)

=
h2

V (xh) + λ

∫
RN

(∑
l

chl zl + R0 + o(1)

)⎛
⎝∑

i,j

−Vij(xh)yiyj

⎞
⎠

(wxh
+ O(h2)) + o(h2)

= − h2

V (xh) + λ

∑
i

Vii(xh)

∫
RN

R0y
2
iwxh

+ o(h2)

= − h2

(V (xh) + λ)2

∑
i

Vii(xh)

∫
RN

(
1

p− 1
wxh

+
1

2
y · ∇wxh

)
y2
iwxh

+ o(h2)

= − h2

(V (xh) + λ)2

(
1

p− 1
− N + 2

4

)∑
i

Vii(xh)

∫
RN

y2
iw

2
xh

+ o(h2)

=
h2

2(V (x0) + λ)2
ΔV (x0)

∫
RN

y2
iw

2
x0

+ o(h2)

(
because p = 1 +

4

N

)
.(3.4)

If x0 is a local minimum point, then m = 0 and n(Lh) = 1. Since the Hessian
matrix (∇2V (x0)) is positive definite, then

d′′(λ) > 0, p(d′′(λ)) = 1,(3.5)

which implies that uh is orbitally unstable by the orbital stability criteria of [14] and
[15].

If x0 is not a local minimum, then m ≥ 1 and n(Lh) ≥ 2. In this case, by

the formula (3.4), p(d′′(λ)) = 1
2 (1 + ΔV (x0)

|ΔV (x0)| ). By the instability criteria of [15], we

conclude that uh is orbitally unstable if m− 1
2 (1 + ΔV (x0)

|ΔV (x0)| ) is even. This completes

the proof of Theorem 1.1.

4. Proof of Theorem 1.2. Let ( 1√
1+β

uh,
1√
1+β

uh) be a solution of (1.11). The

linearized operator of (1.10) around ( 1√
1+β

uh,
1√
1+β

uh) is

Lh

(
φ
ψ

)
=

(
h2�φ− (V (x) + λ)φ + 3+β

1+βu
2
hφ + 2β

1+βu
2
hψ

h2�ψ − (V (x) + λ)ψ + 3+β
1+βu

2
hψ + 2β

1+βu
2
hφ

)
.(4.1)

We first define a sequence of numbers βj ∈ (−1, 0). By Lemma 4.2 of [34], the
eigenvalue problem

�ψ − (V (x0) + λ)ψ + μw2
x0
ψ = 0(4.2)
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admits eigenvalues

μ1 = 1, μ2 = · · · = μN+1 = 3, μN+2 > 3.(4.3)

We then define βj by

(4.4) βj =
3 − μj

1 + μj
, j = 1, 2, . . . .

The following lemma shows the nondegeneracy of L.
Lemma 4.1. Lh has no zero eigenvalue if β �= βj , j = 1, 2, . . . .

Proof. Let Lh

(
φ
ψ

)
=
(
0
0

)
. Then by an orthonormal transformation it is equivalent

to

Lh,1φ̃ = 0,(4.5)

Lh,2ψ̃ = 0,(4.6)

where Lh,1 = Lh, Lh,2 = h2�− (V (xh + hy) + λ) + 3−β
1+βu

2
h. By Theorem 2.5, we may

conclude that φ̃ = 0. It remains to consider (4.6). As h → 0, (4.6) may tend to the
limiting equation given by

�ψ − (V (x0) + λ)ψ +
3 − β

1 + β
w2

x0
ψ = 0.(4.7)

Since β �= βj , i.e., 3−β
1+β �= μj , then by Lemma 4.2 of [34], (4.7) has only a trivial

solution. Therefore, ψ̃ = 0 and we may complete the proof.
The next lemma computes the Morse index of ( 1√

1+β
uh,

1√
1+β

uh). Here the Morse

index is defined to be the number of positive eigenvalues of Lh, which is just n(Lh).
Lemma 4.2. If −1 < β < 0 and β �∈ {β2, . . . , βj , . . . }, then the Morse index

of ( 1√
1+β

uh,
1√
1+β

uh) is at least N + 2. If 0 < β < 1, then the Morse index of

( 1√
1+β

uh,
1√
1+β

uh) is two. If β > 1, then the Morse index of ( 1√
1+β

uh,
1√
1+β

uh) is
one.

Proof. The eigenvalue problem Lh

(
φ
ψ

)
= λ̄

(
φ
ψ

)
can be decomposed to

Lh,1φ̃ = λ̄φ̃,(4.8)

Lh,2ψ̃ = λ̄ψ̃.(4.9)

By Theorem 2.5, Lh,1 has only one positive eigenvalue. It remains to consider the
spectrum of Lh,2. If β < 0, then the eigenvalue problem

�ψ − (V (x0) + λ)ψ +
3 − β

1 + β
w2

x0
ψ = λ̄ψ(4.10)

has at least N + 1 positive eigenvalues. We may define a space of functions by

V = span

{
wx0

,
∂wx0

∂yj
, j = 1, . . . , N,

}
.

Since −1 < β < 0, we have 3−β
1+β > 3. Hence∫

RN

[
∇φ|2 + (V (x0) + λ)φ2 − 3 − β

1 + β
w2

x0
φ2

]
< 0 ∀φ ∈ V.(4.11)
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Thus by the variational characterization of the eigenvalues of (4.10), we see that
λN+1 > 0. Moreover, by the perturbation argument, (4.9) has at least N + 1 positive
eigenvalues.

So when β < 0, Lh has at least N + 2 positive eigenvalues.
When 0 < β < 1, 1 < 3−β

1+β < 3, (4.10) has only one positive eigenvalue. So the
Morse index is two.

When β > 1, (4.10) has no positive eigenvalue. So the Morse index is one.
Since Lh is invertible, ( 1√

1+β
uh,

1√
1+β

uh) is nondegenerate. Thus the system

{
h2�u− (V (x) + λ + λ1)u + u3 + βuv2 = 0 in R

N ,

h2�v − (V (x) + λ + λ2)v + v3 + βu2v = 0 in R
N

(4.12)

has a solution (uh,λ1,λ2 , vh,λ1,λ2) satisfying

(uh,λ1,λ2 , vh,λ1,λ2) =

(
1√

1 + β
uh,

1√
1 + β

uh

)
+ O

(
(|λ1| + |λ2|)h−2

)
(4.13)

as |λ1| + |λ2| � 1.
Let us define

d(λ1, λ2) =

∫
RN

h2

2
|∇uh,λ1,λ2 |2 +

V (x) + λ + λ1

2
u2
h,λ1,λ2

− 1

4

∫
RN

u4
h,λ1,λ2

+

∫
RN

h2

2
|∇vh,λ1,λ2 |2 +

V (x) + λ + λ2

2
v2
h,λ1,λ2

− 1

4

∫
RN

v4
h,λ1,λ2

− β

2

∫
RN

u2
h,λ1,λ2

v2
h,λ1,λ2

.(4.14)

It is easy to see that

∂d

∂λ1
=

1

2

∫
RN

u2
h,λ1,λ2

,
∂2d

∂λ2
1

=

∫
RN

uh,λ1,λ2

∂uh,λ1,λ2

∂λ1
,

∂d

∂λ2
=

1

2

∫
RN

v2
h,λ1,λ2

,
∂2d

∂λ2
2

=

∫
RN

vh,λ1,λ2

∂vh,λ1,λ2

∂λ2
,

∂2d

∂λ1∂λ2
=

∫
RN

uh,λ1,λ2

∂uh,λ1,λ2

∂λ2
.

Now we may define functions as

Φ1 =
∂uh,λ1,λ2

∂λ1

∣∣∣∣
(λ1,λ2)=(0,0)

and Ψ1 =
∂uh,λ1,λ2

∂λ2

∣∣∣∣
(λ1,λ2)=(0,0)

.

Then by (4.12),
(
Φ1

Ψ1

)
satisfies

Lh

(
Φ1

Ψ1

)
=

(
uh,0,0

0

)
.(4.15)
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Similarly, if we set Φ2 =
∂vh,λ1,λ2

∂λ1
|(λ1,λ2)=(0,0) and Ψ2 =

∂vh,λ1,λ2

∂λ2
|(λ1,λ2)=(0,0), then by

(4.12), we have

Ψ2 = Φ1, Φ2 = Ψ1.(4.16)

Let B =
(

1 1
1 −1

)
. Then (4.15) is equivalent to

BLh

(
Φ1

Ψ1

)
=

(
Lh,1(Φ1 + Ψ1)

Lh,2(Φ1 − Ψ1)

)
=

(
uh,0,0

uh,0,0

)
.(4.17)

So

Φ1 + Ψ1 = Rh,1 and Φ1 − Ψ1 = Rh,2,(4.18)

where

Rh,1 =
1√

1 + β
Rh and Rh,2 = L−1

h,2

(
1√

1 + β
uh

)
.(4.19)

Now we compute the Hessian matrix

(∇2d)
∣∣
(λ1,λ2)=(0,0)

=

(
1√
1+β

∫
RN uhΦ1

1√
1+β

∫
RN uhΨ1

1√
1+β

∫
RN uhΨ1

1√
1+β

∫
RN uhΦ1

)
,

B (∇2d)
∣∣
(λ1,λ2)=(0,0)

B
T =

(
1√
1+β

∫
RN uhRh1

1√
1+β

∫
RN uhRh1

1√
1+β

∫
RN uhRh2

− 1√
1+β

∫
RN uhRh2

)(
1 1
1 −1

)

=

(
2√
1+β

∫
RN uhRh1

0

0 2√
1+β

∫
RN uhRh2

)
.

By the results in section 3, 2√
1+β

∫
RN uhRh1

= 2
1+β

∫
RN uhRh > 0. It is enough to

compute
√

1 + β
∫

RN uhRh2 =
∫

RN uhL
−1
h,2(uh). Note that as h → 0+,∫

RN

uhL
−1
h,2(uh) →

∫
RN

wx0L
−1
μ (wx0),

where

(4.20) Lμφ = �φ− (V (x0) + λ)φ + μw2
x0
φ

with μ = 3−β
1+β .

Let ρ(μ) =
∫

RN wx0L
−1
μ (wx0

) and φμ the unique solution of �φμ − (V (x0)+λ)φμ+

μw2
x0
φμ = wx0

, i.e., Lμφμ = wx0
for μ �= μj , j = 1, 2, . . . . Then

∂φμ

∂μ satisfies

Lμ

(
∂φμ

∂μ

)
= −w2

x0
φμ, i.e.,

∂φμ

∂μ
= −L−1

μ (w2
x0
φμ).

Hence

ρ′(μ) =

∫
RN

wx0

∂φμ

∂μ
= −

∫
RN

wx0L
−1
μ (w2

x0
φμ)

= −
∫

RN

(L−1
μ wx0)(w

2
x0
φμ)

= −
∫

RN

w2
x0
φ2
μ < 0 for μ �= μj , j = 1, 2, . . . ,
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i.e.,

(4.21) ρ′(μ) < 0 for μ �= μj , j = 1, 2, . . . .

Due to (4.3), ρ is smooth on (−∞, 1) ∪ (1, 3) ∪ (3,∞) \ {μj : j = N + 2, N + 3, . . . }.
On the other hand, as μ → 3,

φμ → L−1
0 wx0 =

1

2
wx0 +

1

2
y · ∇wx0 ,(4.22)

ρ(μ) →
∫

R2

wx0

(
1

2
wx0 +

1

2
y · ∇wx0

)
= 0.(4.23)

Here we have used the fact that N = 2 and p = 3. Thus for 1 < μ < 3, ρ(μ) > 0.
This implies that for 0 < β < 1,

∫
R2 uhRh,2 > 0 and thus (∇2d(0, 0)) has two positive

eigenvalues.
Now we consider μ ∈ (−∞, 1), i.e., β > 1. By the standard maximal principle,

φμ < 0 in R
2 for μ < 0. Consequently, ρ(μ) < 0 for μ < 0. Hence by (4.21), ρ(μ) < 0

for μ ∈ (−∞, 1), i.e., β > 1. This implies that
∫

R2 uhRh,2 < 0 and thus (∇2d(0, 0))
has only one positive eigenvalue.

In conclusion, we see that the matrix (∇2d(0, 0)) has two positive eigenvalues
when 0 < β < 1 and one positive eigenvalue when β > 1. That is p = 2 when
0 < β < 1 and p = 1 when β > 1. By Lemmas 4.1 and 4.2, we also deduce that
n(Lh) = 2 when 0 < β < 1 and n(Lh) = 1 when β > 1. Hence for β > 0, β �= 1, we
have n(Lh) = p. Therefore, we conclude that (uh,0,0, vh,0,0) = ( 1√

1+β
uh,

1√
1+β

vh) is

orbitally stable if 0 < β, β �= 1. This completes the proof of Theorem 1.2.
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FORCED VIBRATIONS OF A NONHOMOGENEOUS STRING∗
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Abstract. We prove existence of vibrations of a nonhomogeneous string under a nonlinear time
periodic forcing term in the case in which the forcing frequency avoids resonances with the vibration
modes of the string (nonresonant case). The proof relies on a Lyapunov–Schmidt reduction and a
Nash–Moser iteration scheme.
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1. Introduction. In this paper we study forced vibrations of a nonhomogeneous
string, {

ρ(x)utt − (p(x)ux)x = μf(x, ωt, u),

u(0, t) = u(π, t) = 0,
(1)

where ρ(x) > 0 is the mass per unit length, p(x) > 0 is the modulus of elasticity
multiplied by the cross-sectional area (see [15, p. 291]), μ > 0 is a parameter, and
the nonlinear forcing term f(x, ωt, u) is (2π/ω)-periodic in time (i.e., f(x, ·, u) is 2π-
periodic).

Equation (1) is a nonlinear model also for propagation of waves in nonisotropic
media describing seismic phenomena; see, e.g., [2].

We look for (2π/ω)-time periodic solutions u(x, t) of (1).
This problem has received wide attention since the pioneering paper of Rabinowitz

[26] dealing with the weakly nonlinear homogeneous string with ρ(x) = p(x) = 1, μ
small, and ω = 1. In this case the forcing frequency ω enters in resonance with the
proper eigenfrequencies ωj = j ∈ N of the string.

For functions 2π-periodic in time and satisfying spatial Dirichlet boundary condi-
tions, the spectrum {−l2 + j2, l ∈ Z, j ≥ 1} of the D’Alembertian operator ∂tt − ∂xx
possesses the zero eigenvalue with infinite multiplicity (for |l| = j), but the other
eigenvalues are well separated. The corresponding infinite-dimensional bifurcation
problem is solved in [26] for nonlinearities f which are monotone in u; see [7] for
nonmonotone f .

Subsequently many other results, both of bifurcation and of a global nature (μ =
1), have been obtained, still for rational forcing frequencies ω ∈ Q, relying on the
separation properties of the spectrum; see, e.g., [27, 28, 14, 31, 4].

When the forcing frequency ω ∈ R\Q is irrational (nonresonant case) the situation
is completely different. Indeed the wave operator ω2∂tt − ∂xx does not possess the
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14, 2007; published electronically April 25, 2008. This work was supported by MURST under the
national project “Variational Methods and Nonlinear Differential Equations.”
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zero eigenvalue, but its spectrum {−ω2l2 + j2, l ∈ Z, j ≥ 1} accumulates to zero for
almost every ω. This is a “small divisors problem.”

We underline that this “small divisors” phenomenon arises naturally for more
realistic model equations like (1) where the density ρ(x) and the modulus of elasticity
p(x) are not constant. Indeed in this case the eigenfrequencies ωj of the string are no
longer integer numbers, having the asymptotic expansion

ω2
j =

j2

c2
+ b + O

(1

j

)
(2)

with suitable constants c, b depending on ρ, p; see (66).
If ω = m/n ∈ Q, good separation properties of the spectrum can be recovered

when p(x) = ρ(x) (so c = 1) and assuming the extra condition b �= 0; see [3, 29].
Indeed in this case the linear spectrum

−ω2l2 + ω2
j = −ω2l2 + j2 + b + O

(1

j

)
possesses at most finitely many zero eigenvalues and the remaining part of the spec-
trum is far away from zero. On the other hand, if b = 0, the eigenvalues with
(l, j) ∈ (n,m)N tend to zero (also in the case ω ∈ Q !).

Existence of weak solutions in the nonresonant case was proved by Acquistapace
[1] for ρ = 1, μ small, and for a zero measure set of forcing frequencies ω for which
the eigenvalues −ω2l2 + ω2

j are far away from zero. These frequencies are essentially
the numbers whose continued fraction expansion is bounded; see [30].

For a similar zero measure set of frequencies, McKenna [23] has obtained some
result when μ = 1, ρ = p = 1, and f(x, t, u) = g(u) + h(x, t) with g uniformly
Lipschitz, via a fixed point argument; see also [5]; for related results using variational
methods see [18, 10].

Existence of classical solutions of (1) for a positive measure set of frequencies was
proved by Plotnikov and Yungerman [24] for the homogeneous string ρ = p = 1, μ
small, and f monotone in u. This monotonicity condition allows one to control the
constant coefficient in the asymptotic expansion of the eigenvalues (like b in (2)) of
some perturbed linearized operator.

Recently Fokam [19] has proved existence of classical periodic solutions for large
frequencies ω in a set of asymptotically full measure for the homogeneous string
ρ = p = 1 plus a potential, μ = 1 and f = u3 + h(x, t) with h a trigonometric
polynomial odd in time and space.

In the present paper we prove existence of classical solutions of the nonhomoge-
neous string (1) for every ρ(x), p(x) > 0 for general nonlinear terms f(x, ωt, u), and
for (μ, ω) belonging to a large measure Cantor set Bγ , when the ratio μ/ω is small.
Our Theorem 1 covers both the case μ → 0 (weak forcing) and the case ω → +∞
(rapid forcing).

In the limit μ/ω → 0 the solution we find tends to a static equilibrium v(x) with
smaller, zero average oscillations w(x, t) of amplitude O(μ/ω); see (13), (14), and Fig-
ure 1. The nonlinearity f selects such v through the infinite-dimensional bifurcation
equation (10), which possesses nondegenerate solutions under natural assumptions
on f ; see Hypothesis (V). This problem is not present in [19], where, thanks to the
symmetry assumptions on f , there is no bifurcation equation.

Considering the structure of the expected solution, it is natural to attack the
problem via a Lyapunov–Schmidt decomposition.
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0

π

v

w

u = v + w

Fig. 1. The solution u(x, t) = v(x) + w(x, t) of (1).

ω

μ = C ′γ5ω

μ̄μ
μ

2γ

0

Fig. 2. The Cantor set Bγ .

In the range equation (to find w) a small divisors problem arises, and we solve
it with a Nash–Moser-type iterative scheme. The inversion of the “linearized opera-
tors”—which is the core of any Nash–Moser scheme—is obtained adapting the tech-
niques of [8] to the present time-dependent case (section 6). This method is also
reminiscent of the approach of Kuksin (unpublished) explained by Bourgain in [13,
pp. 90–94]. See also the works of Craig and Wayne [16, 17] and Bourgain [11, 12] for
related techniques.

It is in the solution of the range equation where the interaction between the forcing
frequency ω and the normal modes of oscillations of the string linearized at different
positions (approximating better and better the final string configuration) appears.

The set Bγ of “nonresonant” parameters (μ, ω) for which we find a solution of the
range equation (and then of (1)) is constructed avoiding these primary resonances.
In particular the forcing frequency ω must not enter in resonance with the normal
frequencies of oscillations of the string linearized at the limit solution; see (15). At
the end of the construction we obtain a large measure Cantor set Bγ which looks like
Figure 2. Outside this set the effect of resonance phenomena shall in general destroy
the existence of periodic solutions like those found in Theorem 1.
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Finally we recall that related existence results of periodic and quasi-periodic so-
lutions for autonomous Hamiltonian PDEs have been obtained via KAM-type tech-
niques since the pioneering works of Kuksin [21] and Wayne [32]; see also [22] and the
references therein.

We now present rigorously our results.

1.1. Main result. After a time rescaling we look for 2π-periodic solutions of{
ω2ρ(x)utt − (p(x)ux)x = μf(x, t, u),

u(0, t) = u(π, t) = 0,
(3)

where μ ∈ [0, μ̄] for some given μ̄ > 0, under the 2π-periodic forcing term

f(x, t, u) =
∑
l∈Z

fl(x, u)eilt = f0(x, u) + f̄(x, t, u),(4)

where

f̄(x, t, u) :=
∑
l �=0

fl(x, u)eilt .

We suppose that f is analytic in (t, u); more precisely,

f(x, t, u) =
∑

l∈Z, k∈N

flk(x)uk eilt,

where flk(x) ∈ H1((0, π); C), f−l,k = f∗
lk (the symbol z∗ denotes the complex conju-

gate of z ∈ C), and we assume the following hypothesis on the decay of the coefficients
‖flk‖H1 .

Hypothesis (F). There exist 2σ0 > 0, r > 0 such that

∑
l∈Z

‖flk‖2
H1(1 + l2)e(2σ0)2|l| := C2

k(f) < ∞ and

+∞∑
k=0

Ck(f) rk < ∞ .

For example, trigonometric polynomials in t and polynomials in u, namely,

f(x, t, u) =
∑

|l|≤L,0≤k≤K

flk(x)uk eilt(5)

for some L,K ∈ N, satisfy Hypothesis (F) for every σ0, r.
Remark 1. We notice that if f(x, t, 0) =

∑
l∈Z

fl0(x) eilt �= 0, then (3) does not
possess the trivial solution u = 0.

We look for periodic solutions of (3) in the Hilbert space

Xσ,s :=
{
u : T → H1

0 ((0, π); R), u(x, t) =
∑
l∈Z

ul(x) eilt, ul ∈ H1
0 ((0, π); C),

u−l = u∗
l , ‖u‖2

σ,s :=
∑
l∈Z

‖ul‖2
H1(1 + l2s)e2σ|l| < ∞

}

of 2π-periodic-in-time functions valued in H1((0, π); R) which have a bounded analytic
extension on the complex strip |Im t| < σ with trace function on |Im t| = σ belonging
to Hs(T;H1((0, π); C)).
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For s > 1/2, Xσ,s is a multiplicative Banach algebra:

‖uv‖σ,s ≤ cs‖u‖σ,s‖v‖σ,s ∀u, v ∈ Xσ,s(6)

with

cs := 2s
(∑

n∈Z

1

1 + n2s

)1/2

;(7)

see, e.g., [6]. We shall use the notation Xσ, resp., ‖ ‖σ, for Xσ,1, resp., ‖ ‖σ,1.
1.2. The Lyapunov–Schmidt reduction. To find solutions of (3) we imple-

ment the Lyapunov–Schmidt reduction according to the decomposition

Xσ,s = V ⊕ (W ∩Xσ,s),

where

V := H1
0 (0, π) , W :=

{
w =

∑
l �=0

wl(x) eilt ∈ X0,s

}
,

writing every u ∈ Xσ,s as u = u0(x) +
∑

l �=0 ul(x) eilt.
Projecting (3) with

u = v + w , v ∈ V, w ∈ W ,

yields {
−(pv′)′ = μΠV f(v + w) (bifurcation equation),

Lωw = μΠW f(v + w) (range equation),
(8)

where ΠV , ΠW denote the projectors, f(u)(x, t) := f(x, t, u(x, t)), and

Lωu := ω2ρ(x)utt − (p(x)ux)x .

We shall find solutions of (8) when μ/ω is small. In this limit w tends to 0 and the
bifurcation equation reduces to the time-independent equation

−(pv′)′ = μf0(v)(9)

because, by (4), for w = 0

ΠV f(v) = ΠV f0(x, v(x)) + ΠV f̄(x, t, v(x)) = f0(v) .

The infinite-dimensional “0th order bifurcation equation” (9) is a second order ODE,
which, under natural conditions on f0, possesses nondegenerate solutions satisfying
the boundary conditions v(0) = v(π) = 0.

Hypothesis (V). The problem{
−(p(x)v′(x))′ = μf0(x, v(x)),

v(0) = v(π) = 0
(10)

admits a solution v̄ ∈ H1
0 (0, π) which is nondegenerate, namely, the linearized equation

−(ph′)′ = μ f ′
0(v̄)h

possesses in H1
0 (0, π) only the trivial solution h = 0.
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We note that, for μ = 0, the trivial solution v̄ = 0 is nondegenerate, so, by the
implicit function theorem, Hypothesis (V) is automatically satisfied for μ small. We
deal also with the case μ not small; see, for example, Lemmas 2 and 3.

By the implicit function theorem, Hypothesis (V) implies the existence of a
smooth map

(μ,w) �→ v(μ,w) ∈ V

such that v(μ,w) solves the bifurcation equation in (8); see Lemma 4.
Remark 2. For a discussion about the difficulties caused by a degenerate solution,

we refer to [9].
Let λj denote the eigenvalues of the Sturm–Liouville problem{

−(p(x)y′(x))′ = λρ(x)y(x),

y(0) = y(π) = 0
(11)

and ωj :=
√

λj . These are the frequencies of the free vibrations of the string (note that
all the eigenvalues λj are positive). Physically, it is the sequence of the fundamental
tone ω1 and all its overharmonics ω2, ω3, . . . which compose the musical note of the
string.

For γ ∈ (0, 1) we define

Aγ :=
{

(μ, ω) ∈ (μ1, μ2) × (γ,+∞) :
μ

ω
< C ′γ5, |ωl − ωj | >

γ

lτ
(12)

∀ l = 1, . . . , N0, j ≥ 1
}
,

where ωj are given by (11), and (μ1, μ2), N0 ∈ N, C ′ > 0 shall be fixed in the next
theorem.

Theorem 1 (existence). Suppose p(x), ρ(x) > 0 are of class H3(0, π), f satisfies
Hypothesis (F), and Hypothesis (V) holds for some μ0 ∈ [0, μ̄].

Fix τ ∈ (1, 2), γ ∈ (0, 1). There exist a neighborhood (μ1, μ2) of μ0, N0 ∈ N,
positive constants C,C ′ (depending on ρ, p, f, μ̄, v̄, τ), a map

w̃ ∈ C∞(Aγ , Xσ0/2 ∩W ),

and a Cantor set Bγ ⊂ Aγ of positive measure such that, for all (μ, ω) ∈ Bγ ,

ũ(μ, ω) := v(μ, w̃(μ, ω)) + w̃(μ, ω) ∈ V ⊕ (W ∩Xσ0/2)(13)

is a classical solution of (3) and satisfies

ũ(·, t) ∈ H3(0, π) ∩H1
0 (0, π) ∀t ∈ R .

The Cantor set Bγ is defined in (15) and satisfies the measure estimate (56).
Furthermore, for all (μ, ω) ∈ Aγ the following estimates hold:

‖w̃(μ, ω)‖σ0/2 ≤ C
μ

γω
, ‖v(μ, w̃(μ, ω)) − v(μ, 0)‖H1 ≤ C

μ

γω
,(14)

and ‖v(μ, 0) − v̄‖H1 ≤ C|μ− μ0|.
The neighborhood (μ1, μ2) of μ0 is fixed in Lemma 4, the integer N0 is fixed in

Lemma 9, and the constant C ′ is fixed in Lemma 13.



388 PIETRO BALDI AND MASSIMILIANO BERTI

Estimate (14) shows how close the solution ũ is to the static configuration v(μ, 0);
see Figure 1.

Remark 3. We underline that the function w̃(μ, ω), as well as ũ(μ, ω), is defined
for all the values of the parameters (μ, ω) ∈ Aγ and not only on the Cantor set
Bγ (w̃(μ, ω) is introduced in Lemma 11). What is true is that if (μ, ω) ∈ Bγ , then
w̃(μ, ω) solves the range equation; see Theorem 3. As a consequence, if (μ, ω) ∈ Bγ ,
then ũ(μ, ω) solves (3).

The Cantor set Bγ is explicitly defined by

Bγ :=
{

(μ, ω) ∈ (μ1, μ2) × (2γ,+∞) : |ωl − ωj | >
2γ

lτ
∀ l = 1, . . . , N0, j ≥ 1,

μ

ω
< C ′γ5,

∣∣∣ωl − j

c

∣∣∣ > 2γ

lτ
, |ωl − ω̃j(μ, ω)| > 2γ

lτ
∀ l, j ≥ 1

}
,(15)

where

c :=
1

π

∫ π

0

(ρ(x)

p(x)

)1/2

dx(16)

and λ̃j(μ, ω) := ω̃2
j (μ, ω) denote the eigenvalues of the Sturm–Liouville problem{

−(py′)′ − μΠV f
′(ũ(μ, ω)) y = λρy,

y(0) = y(π) = 0 .
(17)

Note that Bγ is constructed by means of the function ũ(μ, ω), which is defined for all
(μ, ω) ∈ Aγ ; see Remark 3.

Remark 4. If some λ̃j(μ, ω) is negative, then ω̃j(μ, ω) = i
√

|λ̃j(μ, ω)| is a purely
imaginary complex number and the nonresonance conditions in (15) are trivially sat-
isfied.

The Cantor set Bγ is large in a measure theoretical sense; see section 4.3. In
particular, for all μ ∈ (μ1, μ2),

S(μ) :=
{
ω : (μ, ω) ∈ ∪γ∈(0,1)Bγ

}
has asymptotically full measure at ω → +∞, i.e.,

lim
ω→+∞

|S(μ) ∩ (ω, ω + 1)| = 1 .(18)

Analogously,

S(ω) :=
{
μ : (μ, ω) ∈ ∪γ∈(0,1)Bγ

}
satisfies, for all ω′ > 0 and for all γ′ ∈ (0, 1),

lim
μ→0

∣∣∣{ω ∈ (ω′, ω′ + 1) :
|S(ω) ∩ (0, μ)|

μ
≥ 1 − γ′

}∣∣∣ = 1 .(19)

Finally we discuss the regularity of the solution ũ(x, t) found in Theorem 1 with
respect to x (by construction ũ is analytic with respect to t).

Theorem 2 (regularity). Assume the hypotheses of Theorem 1. In addition,
suppose that, for some m ≥ 3,

ρ(x) ∈ Hm(0, π) , p(x) ∈ Hm+1(0, π) , flk(x) ∈ Hm(0, π) ∀ l, k(20)



FORCED VIBRATIONS OF A NONHOMOGENEOUS STRING 389

and, for some rm > 0, ∑
l∈Z, k≥0

‖flk‖Hmrkm < +∞ .(21)

If ‖ũ(· , t)‖H1r−1
m is small enough, then

ũ(· , t) ∈ Hm+2(0, π) ∩H1
0 (0, π) .(22)

This conclusion holds true, for example, when f0(x, 0) = duf0(x, 0) = 0 and μ/γω is
small enough.

Note that the regularity (22) requires no skewsymmetry assumptions on f and
requires just a smallness condition for the H1 norm of ũ(· , t).

Remark 5. If f(x, t, u) is a trigonometric polynomial in t and a polynomial in u
as in (5), then the series in (21) is a finite sum. Therefore the conclusion (22) is true
without smallness conditions for ũ.

In particular, if ρ(x), p(x), flk(x) are C∞ (for example, f = cosx cos t (1 + u2)),
then the solution ũ is C∞ also in the variable x (the above f does not satisfy the
skewsymmetry assumption (24)).

The subtle problem to prove Theorem 2 is that, because of Dirichlet boundary
conditions, the Sobolev regularity of a function with respect to x is not character-
ized by the rapid decaying properties of the Fourier coefficients (unless we assume
skewsymmetry assumptions on the nonlinearity and restrict solutions to u(x, t) odd
in x; see Remark 6). Theorem 2 is proved in section 5 via bootstrap arguments.

1.3. Outline of the proof. In section 2 we prove that, under assumption (F),
the composition operator induced by the nonlinearity f on Xσ,s is an analytic map.

In section 3, we find a solution v(μ,w) of the infinite-dimensional bifurcation equa-
tion in (8). Thanks to assumption (V) (which is verified on several examples in Lem-
mas 2 and 3), v(μ,w) is obtained in Lemma 4 by a standard implicit function theorem.

In section 4 we solve the range equation by means of an iterative Nash–Moser
implicit function theorem. The final theorem, Theorem 3, is proved in several steps.

In section 4.1 we find inductively a sequence of approximate solutions wn(μ, ω)
defined on smaller and smaller subsets An of the parameters (μ, ω) (see (39)). The
reason for these “excisions” is to avoid resonance phenomena in order to prove the
invertibility of the linearized operators obtained at each step of the iteration; see
conditions (33)–(34) in Lemma 7.

In section 4.2 we extend these approximate solutions wn(μ, ω) to C∞-functions
w̃n(μ, ω) defined for all the values of the parameters (μ, ω) and converging (superex-
ponentially fast) to a C∞ map w̃ defined for all (μ, ω); see Lemma 11. It is in proving
the regularity of wn with respect to the parameters (μ, ω) that we find it convenient
to define the approximate solutions wn as exact solutions of (41) (with k = n); see
Remark 9.

In Lemma 12, we prove that the Cantor set Bγ , defined in (15) by means of w̃,
is contained in An (which depends on wn−1) for each n. This is a consequence of the
superexponentially fast convergence of w̃n to w̃; see (52).

In section 4.3 we prove that Bγ is a large set in a measure theoretical sense.
In all the previous steps we have to assume smallness conditions for μ/ω. The

most restrictive one is μ/ω < C ′γ5 in the definition (12) of Aγ .
In section 5 we conclude the proof of the existence Theorem 1, and we prove the

regularity Theorem 2.
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In section 6 we study the key step for the inversion of the linearized operators.
Lemma 7 is obtained by a variant of the techniques developed in [8]. In particular,
the key estimate on the small divisors of Lemma 18 is reminiscent of the method of
Kuksin explained in [13, pp. 90–94].

Notation. The symbols K,Ki,K
′
i shall denote positive constants depending only

on ρ, p, f, μ̄, v̄, τ .

2. Regularity of the composition operator. We first prove the analyticity
of the composition operator

u(x, t) �→ f(x, t, u(x, t))

induced by f on Xσ,s.
By the Banach algebra property (6) of Xσ,s the composition operator

u �→ uk ∀k ∈ N

is an analytic map from Xσ,s into itself. Thanks to the rapid decay of the coefficients
‖flk‖H1 assumed in Hypothesis (F), this property holds true also for the composition
operator f(u).

Lemma 1. Let f satisfy assumption (F). For every σ ∈ [0, σ0], s > 1/2, the
composition operator f is analytic on the ball {u ∈ Xσ,s : ‖u‖σ,s < r/cs}, where cs is
defined in (7).

Proof. First note that

∑
l∈Z

‖ul‖∞ ≤
√

π

2

∑
l∈Z

‖ul‖H1 ≤
√

π

2

(∑
l∈Z

‖ul‖2
H1(1 + l2s)

)1/2(∑
l∈Z

1

1 + l2s

)1/2

so ‖u‖∞ ≤ cs‖u‖σ,s for all u ∈ Xσ,s, σ ≥ 0, s > 1/2, and f(x, t, u(x, t)) is well-defined.
By definition of the norm ‖ · ‖σ,s, there exists C := C(σ0, s) > 0 such that for all

σ ∈ [0, σ0] and for all k ∈ N,∥∥∑
l∈Z

flk(x)eilt
∥∥
σ,s

≤ C
∥∥∑

l∈Z

flk(x)eilt
∥∥

2σ0,1
.

Next ∥∥∑
l∈Z

flk(x)eilt
∥∥2

2σ0,1
=

∑
l∈Z

‖flk‖2
H1(1 + l2)e(2σ0)2|l| =: C2

k(f) < +∞

by assumption (F). Therefore
∑

l∈Z
flk(x)eilt ∈ Xσ,s and∥∥∑

l∈Z

flk(x)eilt
∥∥
σ,s

≤ C Ck(f) .(23)

Using the algebra property (6) of Xσ,s and (23)

‖f(u)‖σ,s ≤
∞∑
k=0

∥∥(∑
l∈Z

flk(x)eilt
)
uk

∥∥
σ,s

≤
∞∑
k=0

cs
∥∥∑

l∈Z

flk(x)eilt
∥∥
σ,s

‖uk‖σ,s

≤ C

∞∑
k=0

Ck(f) (cs‖u‖σ,s)k < C

∞∑
k=0

Ck(f) rk < +∞

for cs‖u‖σ,s < r, by (F) again.
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The analyticity of the composition operator f with respect to ‖ · ‖σ,s follows from
the properties of the power series as explained in [25, Appendix A].

We emphasize that the analyticity of f as a map in Xσ,s is not an assumption
but follows from (F).

Remark 6. If f(x, t, u) admits an analytic extension, which is 2π-periodic in x
and skewsymmetric, namely,

f(−x, t,−u) = −f(x, t, u) ,(24)

then the Dirichlet problem on [0, π] is equivalent to the 2π-periodic problem within the
space of all functions odd in x. In this case also the spatial regularity is characterized
by the decay properties of the Fourier coefficients. Therefore we could look for analytic
solutions of (3),

u(x, t) =
∑
l∈Z

ul(x)eilt,

which are periodic and odd in x, more precisely with

ul(x) ∈ Y :=
{
y(x) =

∑
j≥1

yj sin(jx) :
∑
j≥1

|yj |2j2be2aj < +∞
}

for some a ≥ 0, b > 1/2. Without the oddness assumption (24) the composition
operator f does not map this subspace into itself. It is for this reason that we consider
the space Xσ,s of functions valued in H1

0 (0, π): also without (24), f sends Xσ,s into
itself (Lemma 1).

Throughout this paper we shall use spaces Xσ,s with σ ∈ [σ0/2, σ0] and s ∈ S :=

{1, 1 − τ−1
2 , 1 + (τ−1)τ

2−τ }. So we choose c̄ := maxs∈S cs as a multiplicative algebra
constant for all spaces Xσ,s.

By Lemma 1, f is analytic in the ball

{
u ∈ Xσ,s : ‖u‖σ,s < R0 :=

r

c̄

}

and f, f ′, f ′′, . . . are bounded, uniformly in σ, s.

3. The bifurcation equation. Now we give some examples in which Hypoth-
esis (V) holds.

Lemma 2. Suppose f0(x, u) = um for m ≥ 3 odd and p(x) ≡ 1. Then, for all μ,
there exists an unbounded sequence of nondegenerate solutions vn of (10).

Proof. All the solutions of the autonomous equation −v′′ = μvm are periodic and
can be parametrized by their energy

E =
1

2
v′2 +

μ

m + 1
vm+1 .

Let TE denote the period of the solution vE . We can suppose vE(0) = 0, so v′E(0) =√
2E. The other boundary condition vE(π) = 0 is satisfied iff

k
TE

2
= π for some k ∈ N .(25)
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By symmetry and energy conservation vE(TE/4) = [(m + 1)E/μ]
1

m+1 . So

TE = 4

∫ [
(m+1)E

μ

] 1
m+1

0

[
2
(
E − μxm+1

m + 1

)]−1/2

dx

=
4(m + 1/μ)

1
m+1

E
1
2−

1
m+1

∫ 1

0

dy√
2(1 − ym+1)

=:
C(m,μ)

E
1
2−

1
m+1

by the change of variable y = x [E(m + 1)/μ]−
1

m+1 , and (25) is satisfied at infinitely
many energy levels. Let Ē > 0 such that TĒ = 2π/k and denote the solution v̄ := vĒ .

Let us prove that v̄ is nondegenerate. Any solution h of the linearized equation
at v̄,

−h′′(x) = μm v̄m−1(x)h(x) ,(26)

can be written as h = Av̄′ +Bβ, A,B ∈ R, because v̄′(x) and β(x) := (∂EvE)|E=Ē(x)
are solutions of (26); they are independent because v̄′(0) �= 0 while β(0) = 0. If
h(0) = 0, then A = 0. We claim that β(π) �= 0; as a consequence, if h(π) = 0, then
B = 0, and so h = 0, i.e., v̄ is nondegenerate. To prove that β(π) �= 0, we differentiate
at Ē the identity vE(kTE/2) = 0,

β(π) + v̄′(π)(∂ETE)|E=Ē = 0 .

Since v̄′(π) = (−1)k
√

2E �= 0 and ∂ETE �= 0, we get β(π) �= 0.
Lemma 3. If f0(x, 0) = duf0(x, 0) = 0, then v̄ = 0 is a nondegenerate solution of

(10) for every μ.
Proof. The linearized equation −(ph′)′ = 0, h(0) = h(π) = 0 has only the trivial

solution.
When Hypothesis (V) holds at some (μ0, v̄), we solve first the bifurcation equation

in (8) using the standard implicit function theorem. We find, for every w small enough
and μ in a neighborhood of μ0, a unique solution v(μ,w) of the bifurcation equation.

Lemma 4 (solution of the bifurcation equation). There exist 0 < R < R0, a
neighborhood [μ1, μ2] of μ0, and a C∞ map

[μ1, μ2] ×
{
w ∈ W ∩Xσ,s : ‖w‖σ,s < R

}
→ V, (μ,w) �→ v(μ,w)

such that v(μ,w) solves the bifurcation equation in (8).
Proof. The linear operator

h �→ −(ph′)′ − μ0dvΠV f(v)[h] = −(ph′)′ − μ0 f
′
0(v)h

is invertible on H1
0 (0, π) by Hypothesis (V). Then we apply the implicit function

theorem.
Remark 7. The solutions of the 0th order bifurcation equation (10) found in

Lemmas 2 and 3 are nondegenerate for every μ, so, in that case, we can continue
v(μ,w) for all [μ1, μ2] = [0, μ̄].

We denote by λj(μ,w) := ω2
j (μ,w) the eigenvalues of the Sturm–Liouville problem

{
−(py′)′ − μΠV f

′(v(μ,w) + w) y = λρy,

y(0) = y(π) = 0 .
(27)
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Lemma 5. The eigenvalues of (27) satisfy the continuity property

|λj(μ,w) − λj(μ
′, w′)| ≤ K

(
|μ− μ′| + ‖w − w′‖σ,s

)
(28)

for some constant K > 0 independent of j.
Proof. For the proof of the lemma, see the appendix.
The nondegeneracy of v̄ = v(μ0, 0) means that λj(μ0, 0) �= 0 for all j. By (28),

δ0 := inf
{∣∣λj(μ,w)

∣∣ : j ≥ 1, μ ∈ [μ1, μ2], ‖w‖σ0/2 ≤ R
}
> 0,(29)

taking, if necessary, |μ2 − μ1| and R smaller in Lemma 4.
Note also that the index j0 of the smallest positive eigenvalue is constant, inde-

pendently of (μ,w).

4. Solution of the range equation. It remains to solve the range equation

Lωw = μΠWF(μ,w),(30)

where

F(μ,w) := f(v(μ,w) + w) .

By Lemmas 1 and 4, F is C∞ and bounded, together with its derivatives, on [μ1, μ2]×
BR, where BR := {w ∈ W ∩Xσ,s : ‖w‖σ,s < R}.

4.1. The Nash–Moser recursive scheme. We define the sequence of finite-
dimensional subspaces

W (n) :=
{
w =

∑
1≤|l|≤Nn

wl(x)eilt
}
⊂ W,

where

Nn := N02
n

and N0 ∈ N will be fixed in Lemma 9. We also set

W (n)⊥ :=
{
w =

∑
|l|>Nn

wl(x)eilt ∈ W
}

and denote by Pn, resp., P⊥
n , the projection on W (n), resp., W (n)⊥. Note that

Pn ◦ ΠW = Pn.
Lemma 6 (smoothing estimate). For w ∈ W (n)⊥, if 0 < σ′′ < σ′,

‖w‖σ′′,s ≤ exp[−(σ′ − σ′′)Nn] ‖w‖σ′,s .(31)

Proof. It follows from the definition of the norms ‖ · ‖σ,s and W (n)⊥; see, e.g.,
[16, 8].

The key property for the construction of the iterative sequence is the invertibility
of the linear operator

Ln(w)h := −Lωh + μPn[dwF(μ,w)h](32)

= −Lωh + μPn

[
f ′(v(μ,w) + w)

(
h + dwv(μ,w)[h]

)]
∀h ∈ W (n) .
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Lemma 7 (inversion of the linear problem). Let ω > 0, τ ∈ (1, 2), γ ∈ (0, 1),
γ < ω, and σ ∈ (0, σ0]. Assume the “Melnikov” nonresonance conditions

∣∣∣ωl − j

c

∣∣∣ > γ

lτ
∀ l = 1, 2, . . . , Nn, ∀ j ≥ 1,(33)

where c is defined in (16), and

|ω2l2 − λj(μ,w)| > γω

lτ−1
∀ l = 1, 2, . . . , Nn, j ≥ 1,(34)

where λj(μ,w) are the eigenvalues of (27).
Let u := v(μ,w) + w. There exist K1,K

′
1 such that if

μ

γ3ω
‖ΠW f ′(u)‖

σ,1+ τ(τ−1)
2−τ

< K ′
1 ,(35)

then Ln(w) is invertible and

‖Ln(w)−1h‖σ ≤ K1N
τ−1
n

γω
‖h‖σ ∀h ∈ W (n) .(36)

Proof. For the proof of the lemma, see section 6.
Remark 8. The condition ω > 0 means that (1) is nonautonomous. Indeed, if

ω = 0, the nonlinearity f(x, ωt, u) = f(x, 0, u) is independent of t.
For ϑ := 3σ0/π

2 we define the sequence

σn+1 := σn − ϑ

(n + 1)2
, σ0 > σ1 > σ2 > · · · > σ0

2
.(37)

Let A0 denote the open set

A0 :=
{

(μ, ω) ∈ (μ1, μ2) × (γ,+∞) : |ωl − ωj | >
γ

lτ
∀ l = 1, . . . , N0, j ≥ 1

}
,

where ωj are defined by (11).
Lemma 8 (approximate solution). There exist K2,K

′
2 such that if (μ, ω) ∈ A0

and μNτ−1
0 /γω < K ′

2, then there exists a solution w0 := w0(μ, ω) ∈ W (0) of

Lωw0 = μP0F(μ,w0)

satisfying ‖w0‖σ0 ≤ μK2N
τ−1
0 /γω.

Proof. By definition of A0, the eigenvalues of (1/ρ)Lω satisfy

|ω2l2 − λj | >
γω

lτ−1
∀ l = 1, 2, . . . , N0, j ≥ 1 ,

so Lω is invertible on W (0) and, for some K,

‖L−1
ω h‖σ0 ≤ KNτ−1

0

γω
‖h‖σ0 ∀h ∈ W (0) .(38)

Then we look for a solution w0 ∈ W (0) of w0 = μL−1
ω P0F(μ,w0). The right-hand side

term is a contraction in {‖w0‖σ0 < R} if μNτ−1
0 /γω is sufficiently small.
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Given wn ∈ W (n), ‖wn‖σn
< R, and An ⊆ A0, we define

An+1 :=
{

(μ, ω) ∈ An :
∣∣ωl − ωj(μ,wn)

∣∣ > γ

lτ
,

∣∣∣ωl − j

c

∣∣∣ > γ

lτ
(39)

∀ l = 1, 2, . . . , Nn+1, j ≥ 1
}

⊆ An,

where λj(μ,wn) = ω2
j (μ,wn) are defined in (27) with w = wn.

In Lemma 8 we have constructed h0 := w0 for (μ, ω) ∈ A0. Next, we proceed
by induction. By means of w0 we define the set A1 as above, and we find w1 :=
h0 + h1 ∈ W (1) for every (μ, ω) ∈ A1 by Lemma 9 below. Then we define A2, we
find w2 ∈ W (2), and so on. The main goal of the construction is to prove that, at the
end of the recurrence, the set of parameters (μ, ω) ∈ ∩nAn is actually a large set (see
Lemmas 12 and 13).

Lemma 9 (inductive step). Fix χ := 3/2. There exist N0 ∈ N (depending only
on ρ, p, f, μ̄, v̄, τ) and K ′

3 ≤ K ′
2/N

τ−1
0 with the following property.

Suppose that hi ∈ W (i) for all i = 0, . . . , n satisfy

‖hi‖σi
<

μK3N
τ−1
0

γω
exp(−χi),(40)

where K3 := eK2 and K2 is the constant in Lemma 8; for all k = 0, . . . , n, let
wk := h0 + · · · + hk satisfy ‖wk‖σk

< R and

Lωwk = μPkF(μ,wk)(41)

and suppose that (μ, ω) ∈ An, where Ai+1 is constructed by means of wi as shown
above.

If (μ, ω) ∈ An+1 and μ/γ3ω < K ′
3, then there exists hn+1 ∈ W (n+1) satisfying

‖hn+1‖σn+1 <
μK3N

τ−1
0

γω
exp(−χn+1)(42)

such that wn+1 = wn + hn+1 verifies ‖wn+1‖σn+1 < R and

Lωwn+1 = μPn+1F(μ,wn+1) .(43)

Proof. In short F(w) := F(μ,w) and DF(w) := dwF(μ,w). Equation (43) for
wn+1 = wn + hn+1 is Lω[wn + hn+1] = μPn+1F(wn + hn+1).

By assumption, wn satisfies (41) for k = n, namely, Lωwn = μPnF(wn), so the
equation for hn+1 can be written as

Ln+1(wn)hn+1 + μ(Pn+1 − Pn)F(wn) + μPn+1Q = 0,(44)

where, as defined in (32), Ln+1(wn)hn+1 := −Lωhn+1+ μPn+1DF(wn)hn+1, and Q
denotes the quadratic remainder

Q = Q(wn, hn+1) := F(wn+1) −F(wn) −DF(wn)hn+1 .

Step 1. Inversion of Ln+1(wn). We verify the assumptions of Lemma 7. By
definition of An+1, ω satisfies (33). If λj(μ,wn) < 0, then |ω2l2 −λj(μ,wn)| ≥ ω2l2 >
γω/lτ−1 because ω > γ. If λj(μ,wn) > 0, we have

|ω2l2 − λj(μ,wn)| ≥ |ωl − ωj(μ,wn)|ωl > γω

lτ−1
∀ l = 1, . . . , Nn+1

because (μ, ω) ∈ An+1. In both cases the nonresonance condition (34) holds.
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To verify (35) we need an estimate for wn. Let η := τ(τ − 1)/(2 − τ) and α > 0.
Using the elementary inequality

1 + l2(1+η)

1 + l2
· e

2(σ−α)|l|

e2σ|l| ≤ 2l2η

e2α|l| ≤ 2 max
y>0

(y2ηe−2αy) = 2
( η

αe

)2η

∀ l �= 0 ,

we deduce

‖hi‖σn+1,1+η ≤ Cη

(σi − σn+1)η
‖hi‖σi

,

where Cη :=
√

2(η/e)η. Since σi − σn+1 ≥ σi − σi+1 for every i ≤ n,

‖wn‖σn+1,1+η ≤
n∑

i=0

‖hi‖σn+1,1+η ≤ Cη

n∑
i=0

‖hi‖σi

(σi − σi+1)η
≤ Sη

μK3N
τ−1
0

γω
,

using (40) where Sη := (Cη/ϑ
η)

∑+∞
i=0 (i + 1)2η exp(−χi) < +∞. If

Sη μK3N
τ−1
0

γω
< R,

then

‖f ′(un)‖σn+1,1+η ≤ K

for some K, where un := v(μ,wn) + wn. Hence Hypothesis (35) is verified for μ/γ3ω
sufficiently small.

Analogously we get ‖wn‖σn
< R if μNτ−1

0 /γω is small enough.
By Lemma 7 the operator Ln+1(wn) is invertible on W (n+1) and

‖Ln+1(wn)−1h‖σn+1 ≤
K1N

τ−1
n+1

γω
‖h‖σn+1 ∀h ∈ W (n+1) .(45)

Equation (44) amounts to the fixed point problem

hn+1 = −μLn+1(wn)−1
[
(Pn+1 − Pn)F(wn) + Pn+1Q

]
:= G(hn+1)

for hn+1 ∈ W (n+1).
Step 2. G is a contraction. We prove that G is a contraction on the ball Bn+1 :=

{‖h‖σn+1 < rn+1}, where rn+1 := (μK3N
τ−1
0 /γω) exp(−χn+1), implying (42). By

(31)

‖(Pn+1 − Pn)F(wn)‖σn+1 ≤ ‖F(wn)‖σn exp[−(σn − σn+1)Nn] .

Since ‖wn‖σn < R, we have ‖Q‖σn+1 ≤ K‖hn+1‖2
σn+1

. Hence, by (45),

‖G(hn+1)‖σn+1 ≤ K
μNτ−1

n+1

γω

(
exp[−(σn − σn+1)Nn] + ‖hn+1‖2

σn+1

)
.

Therefore G(Bn+1) ⊆ Bn+1 if

μKNτ−1
n+1

γω
exp[−(σn − σn+1)Nn] <

rn+1

2
,

μKNτ−1
n+1

γω
r2
n+1 <

rn+1

2
.(46)
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By the definition of σn in (37) and Nn := N02
n, the first inequality is verified for

every n ≥ 0 if σ0N0 is greater than a constant depending only on χ,K,K3. The
second inequality is verified for every n ≥ 0 if μNτ−1

0 /γω is small enough.
The estimate for ‖Gh−Gk‖, h, k ∈ Bn+1 is similar. The lemma now follows from

the contraction mapping theorem.
Remark 9. In the previous scheme hn+1 is found as an exact solution of (44). We

find this convenient to prove the regularity of hn+1 with respect to the parameters
(μ, ω) in Lemma 10. However, other schemes are possible. For example, we could
define hn+1 as a solution of the linearized equation Ln+1(wn)h+μ(Pn+1−Pn)F(wn) =
0.

Corollary 1 (existence). Suppose A∞ := ∩n≥0An �= ∅. If (μ, ω) ∈ A∞ and
μ/γ3ω < K ′

3, then

w∞(μ, ω) :=
∑
n≥0

hn(μ, ω) ∈ W ∩Xσ0/2

is a solution of the range equation (30) satisfying ‖w∞‖σ0/2 ≤ K∞μ/γω for some
K∞.

Proof. Since wn solves (41) for k = n,

−Lωwn + μΠW f(un) = μP⊥
n f(un) ∈ W (n)⊥,

where un := v(μ,wn) + wn. By (31)

lim
n→+∞

‖ − Lωwn + μf(un)‖σ0/2 ≤ lim
n→+∞

K exp[−(σn − σ0/2)Nn] = 0 .

Since wn → w∞ in ‖ · ‖σ0/2 also f(un) → f(u∞) in the same norm, while Lωwn →
Lωw∞ in the sense of distributions. So w∞ is a weak solution of the range equation
(30).

Remark 10. We shall prove, as a consequence of Lemma 12 and section 4.3, that
A∞ is actually a positive measure set. One possible way to prove it uses the Whitney
extension of w∞ of section 4.2.

4.2. Whitney C∞ extension. The functions hn constructed in Lemmas 8
and 9 depend smoothly on the parameters (μ, ω).

Lemma 10. There exist K4 and K ′
4 ≤ K ′

3 such that the maps

hi : Ai ∩ {μ/γ3ω < K ′
4} → W (i)

are C∞ and

‖∂ωhi(μ, ω)‖σi ≤
K4μ

γ2ω
exp(−χi

0), ‖∂μhi(μ, ω)‖σi ≤
K4

γω
exp(−χi

0),

where χ0 := (1 + χ)/2 = 5/4.
Proof. Since w0 = μL−1

ω P0F(μ,w0), by the implicit function theorem the map
w0 is C∞. Differentiating the identity Lω(L−1

ω h) = h with respect to ω, by (38) we
get ‖∂ωL−1

ω h‖σ0 ≤ (K/γ2ω) ‖h‖σ0 . For μ/γω small,

‖∂ωw0‖σ0
≤ Kμ

γ2ω
.

Differentiating with respect to μ we get ‖∂μw0‖σ0
≤ K ′/γω for some K ′.
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By induction, suppose that hi depends smoothly on (μ, ω) ∈ Ai for every i =
0, . . . , n. For (μ, ω) ∈ An+1, by (43), hn+1 is a solution of

−Lωhn+1 + μPn+1[F(wn + hn+1) −F(wn)] + μ(Pn+1 − Pn)F(wn) = 0 .(47)

By the implicit function theorem hn+1 ∈ C∞ once we prove that

Ln+1(wn+1)[z] := −Lωz + μPn+1DF(wn + hn+1)[z]

is invertible. By (45), Ln+1(wn) is invertible. Hence it is sufficient that∥∥∥L−1
n+1(wn)(Ln+1(wn+1) − Ln+1(wn))

∥∥∥
σn+1

<
1

2
,

which holds true for μ2/γω small enough; indeed, by (42),

‖Ln+1(wn+1) − Ln+1(wn)‖σn+1
≤ Kμ‖hn+1‖σn+1

≤ μ2K ′Nτ−1
0

γω
exp(−χn+1) .

Finally (45) implies

‖Ln+1(wn+1)
−1‖σn+1 ≤

2K1N
τ−1
n+1

γω
.(48)

Differentiating (47) with respect to ω

Ln+1(wn+1)[∂ωhn+1] = 2ωρ(x)(hn+1)tt − μ(Pn+1 − Pn)DF(wn)∂ωwn(49)

−μPn+1

[
DF(wn + hn+1) −DF(wn)

]
∂ωwn

and, using (48) and (31),

‖∂ωhn+1‖σn+1
≤

KNτ−1
n+1

γω

(
ωN2

n+1‖hn+1‖σn+1
+

μ‖∂ωwn‖σn

exp[(σn − σn+1)Nn]

+μ‖hn+1‖σn+1 ‖∂ωwn‖σn

)
.

We note that ‖∂ωwn‖σn ≤
∑n

i=0 ‖∂ωhi‖σi . Using (46) the sequence an := ‖∂ωhn‖σn

satisfies

an+1 ≤
KNτ−1

n+1

γω

(
ωN2

n+1rn+1 +
ωγrn+1

Nτ−1
n+1

n∑
i=0

ai + μrn+1

n∑
i=0

ai

)

≤ bn+1

(
1 +

n∑
i=0

ai

)
, where bn+1 :=

Kμ

γ2ω
Nτ+1

n+1 exp(−χn+1),

recalling that rn+1 = (μK/γω) exp(−χn+1). By induction, for Kμ/ωγ2 < 1, we have
an ≤ 2bn and

‖∂ωhn+1‖σn+1 ≤ Kμ

γ2ω
Nτ+1

n+1 exp(−χn+1) ≤ K ′μ

γ2ω
exp(−χn+1

0 ),

where χ0 := (1 + χ)/2. It follows that ‖∂ωwn+1‖σn+1
≤ Kμ/γ2ω.
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Differentiating (47) with respect to μ we obtain the estimate for ∂μhn+1.
Define, for ν0 > 0,

A∗
n :=

{
(μ, ω) ∈ An : dist

(
(μ, ω), ∂An

)
>

ν0γ
4

N3
n

}
,(50)

Ãn :=
{

(μ, ω) ∈ An : dist
(
(μ, ω), ∂An

)
>

2ν0γ
4

N3
n

}
⊂ A∗

n .

Lemma 11 (Whitney extension). There exists a C∞ map

w̃ : A0 ∩
{

(μ, ω) :
μ

γ3ω
< K

′

4

}
→ W ∩Xσ0/2

satisfying

‖w̃(μ, ω)‖σ0/2 ≤ K5μ

γω
,(51)

‖∂ωw̃(μ, ω)‖σ0/2 ≤ C(ν0)μ

γ5ω
, ‖∂μw̃(μ, ω)‖σ0/2 ≤ C(ν0)

γ5ω

for some K5 and for some C(ν0) > 0, such that, for (μ, ω) ∈ Ã∞ := ∩n≥0Ãn, w̃(μ, ω)
solves the range equation (30).

Moreover there exists a sequence of C∞ maps

w̃n : A0 ∩
{

(μ, ω) :
μ

γ3ω
< K

′

4

}
→ W (n)

such that w̃n(μ, ω) = wn(μ, ω) for (μ, ω) ∈ Ãn, and

‖w̃(μ, ω) − w̃n(μ, ω)‖σ0/2 ≤ K5μ

γω
exp(−χn) .(52)

Proof. Let ϕ : R
2 → R

+ be a C∞-function supported in the open ball B(0, 1) of
center 0 and radius 1 and with

∫
R2 ϕ = 1. Let ϕn : R

2 → R
+ be the mollifier

ϕn(x) :=
N6

n

ν2
0γ

8
ϕ
( N3

n

ν0γ4
x
)
.

Supp (ϕn) ⊂ B(0, ν0γ
4/N3

n) and
∫

R2 ϕn = 1. We define ψn : R
2 → R as

ψn(x) :=
(
ϕn ∗ χA∗

n

)
(x) =

∫
R2

ϕn(y − x)χA∗
n
(y) dy,

where χA∗
n

is the characteristic function of the set A∗
n. ψn is C∞,

|Dψn(x)| ≤
∫

R2

|Dϕn(x− y)|χA∗
n
(y) dy ≤ N3

n

ν0γ4
C,(53)

where C :=
∫

R2 |Dϕ| dy,

0 ≤ ψn(x) ≤ 1, supp(ψn) ⊂ An, ψn(x) = 1 ∀x ∈ Ãn .
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We define, for (μ, ω) ∈ A0, the C∞-functions

h̃n(μ, ω) :=

{
ψn(μ, ω)hn(μ, ω) if (μ, ω) ∈ An,

0 if (μ, ω) /∈ An,

and

w̃n(μ, ω) :=

n∑
i=0

h̃i , w̃(μ, ω) :=
∑
i≥0

h̃i,

which is a series if (μ, ω) ∈ A∞ := ∩n≥0An.

The estimate for ‖w̃‖σ0/2 follows by ‖h̃i‖σi ≤ ‖hi‖σi (because 0 ≤ ψi ≤ 1) and
(40). The estimates for the derivatives in (51) follow by differentiating the product
h̃i = ψihi and using (53), (40), and Lemma 10. Similarly it follows that w̃ is in C∞;
see [8] for details.

For (μ, ω) ∈ Ãn, ψn(μ, ω) = 1, implying w̃n = wn. As a consequence, for (μ, ω) ∈
Ã∞ := ∩n≥0Ãn, by Corollary 1, w̃ = w∞ solves (30).

Finally, using (40),

‖w̃ − w̃n‖σ0/2 ≤
∑

i≥n+1

‖h̃i‖σi
≤

∑
i≥n+1

Kμ

γω
exp(−χi) ≤ K ′μ

γω
exp(−χn) .

In the next lemma we fix the constant ν0 introduced in (50).
Lemma 12. There exist ν0 > 0 and K ′

5 ≤ K ′
4 such that if μ/γ3ω < K ′

5, then

Bγ ⊆ Ãn ⊂ An ∀n ≥ 0,

where Bγ is defined in (15) taking C ′ ≤ K ′
5.

Proof. The proof is by induction. Let (μ, ω) ∈ Bγ . Then (μ, ω) ∈ Ã0 if A0

contains the closed ball of center (μ, ω) and radius 2ν0γ
4/N3

0 . Let (ω′, μ′) belong to
such a ball. Then, for all l = 1, . . . , N0,

|ω′l − ωj | ≥ |ωl − ωj | − |ω − ω′|l > 2γ

lτ
− 2ν0γ

4

N3
0

l ≥ γ

lτ

if ν0 ≤ 1/2.
Suppose now that Bγ ⊆ Ãn and let (μ, ω) ∈ Bγ . To prove that (μ, ω) ∈ Ãn+1, we

have to show that the closed ball of center (μ, ω) and radius 2ν0γ
4/N3

n+1 is contained
in An+1. Let (μ′, ω′) belong to such a ball. The nonresonance condition on |ω′l− j/c|
is verified, as above, for ν0 ≤ 1/2. For the other condition, we denote in short
ωn
j (μ′, ω′) := ωj(μ

′, wn(μ′, ω′)) (see (27) for the definition of ωj(μ,w)). It results, for
all l = 1, . . . , Nn+1, in

|ω′l − ωn
j (μ′, ω′)| ≥ |ωl − ω̃j(μ, ω)| − |ω − ω′|l − |ωn

j (μ′, ω′) − ω̃j(μ, ω)|

>
2γ

lτ
− 2ν0γ

4l

N3
n+1

− |ωn
j (μ′, ω′) − ω̃j(μ, ω)|

>
3γ

2lτ
− |ωn

j (μ′, ω′) − ω̃j(μ, ω)|(54)
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if ν0 ≤ 1/4. Now we estimate the last term

|ωn
j (μ′, ω′) − ω̃j(μ, ω)| =

|λn
j (μ′, ω′) − λ̃j(μ, ω)|

|ω̃j(μ, ω)| + |ωn
j (μ′, ω′)| ≤

|λn
j (μ′, ω′) − λ̃j(μ, ω)|

√
δ0

by (29), both for j < j0 and for j ≥ j0. By the comparison principle (28)

δ
−1/2
0 |λn

j (μ′, ω′) − λ̃j(μ, ω)| ≤ K|μ− μ′| + K‖wn(μ′, ω′) − w̃(μ, ω)‖σ0/2 .

By Lemma 10, ‖∂ωwn‖σ0/2, ‖∂μwn‖σ0/2 ≤K/γ2ω for some other K, and being ω, ω′ >
γ,

K‖wn(μ′, ω′) − wn(μ, ω)‖σ0/2 ≤ K ′

γ3

ν0γ
4

N3
n+1

<
γ

8lτ
∀l = 1, . . . , Nn+1

if ν0 is small enough (1 < τ < 2). On the other hand, since (μ, ω) ∈ Ãn we have
wn(μ, ω) = w̃n(μ, ω) (Lemma 11) and, by (52),

K‖wn(μ, ω) − w̃(μ, ω)‖σ0/2 ≤ K ′μ

γω
exp(−χn) <

γ

8lτ
∀l = 1, . . . , Nn+1

for μ/γ2ω sufficiently small. By (54), collecting the previous estimates,

|ω′l − ωn
j (μ′, ω′)| > γ

lτ
∀l = 1, . . . , Nn+1

and (μ′, ω′) belongs to An+1.

4.3. Measure of the Cantor set Bγ . In the following R := (μ′, μ′′)× (ω′, ω′′)
denotes a rectangle contained in the region {(μ, ω) ∈ [μ1, μ2] × (2γ,+∞) : μ <
K ′

6γ
5ω}. Furthermore we consider ω′′ − ω′ as a fixed quantity (“of order 1”).
Lemma 13. There exist K6 and K ′

6 ≤ K ′
5 such that, taking C ′ ≤ K ′

6 in the
definition (15) of Bγ , for all μ ∈ (μ1, μ2) the section

Sγ(μ) := {ω : (μ, ω) ∈ Bγ}

satisfies the measure estimate

|Sγ(μ) ∩ (ω′, ω′′)| ≥ (1 −K6γ)(ω′′ − ω′) .(55)

As a consequence, for every R := (μ′, μ′′) × (ω′, ω′′)

|Bγ ∩R| ≥ |R| (1 −K6γ) .(56)

Proof. We consider the inequalities |ωl − ω̃j(μ, ω)| > 2γ/lτ in the definition of
Bγ . The analogous inequalities for |ωl − ωj | and |ωl − j/c| are simpler because j/c
and ωj do not depend on (μ, ω).

The complementary set we have to estimate is

C :=
⋃

l,j≥1

Rlj ,

where Rlj := {ω ∈ (ω′, ω′′) : |lω − ω̃j(μ, ω)| ≤ 2γ/lτ}.
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We claim that ∣∣∂ωω̃j(μ, ω)
∣∣ ≤ Kμ

γ5ω
.(57)

Indeed, by the same arguments as in the proof of Lemma 12 and the comparison
principle (28), we have

|ω̃j(μ, ω) − ω̃j(μ, ω
′)| ≤ K‖w̃(μ, ω) − w̃(μ, ω′)‖σ0/2 ≤ Kμ

γ5ω
|ω − ω′|

using (51). As a consequence of (57)

∂ω
(
lω − ω̃j(μ, ω)

)
≥ l − Kμ

γ5ω
≥ l

2
∀l ≥ 1

for μ/γ5ω small enough; we deduce |Rlj | ≤ 4γ/lτ+1.
Furthermore the set Rlj is nonempty only if

ω′l − 2γ

lτ
< ω̃j(μ, ω) < ω′′l +

2γ

lτ
.

So, for every fixed l, the number of indices j such that Rlj �= ∅ is

�{j} ≤ 1

δ

(
l(ω′′ − ω′) +

4γ

lτ

)
+ 1 ≤ Kl(ω′′ − ω′),

where

δ := inf
{
|ω̃j+1(μ, ω) − ω̃j(μ, ω)| : j ≥ 1, (μ, ω) ∈ Bγ

}
.

For ‖w̃‖σ0/2 ≤ K ′μ/γω < R we have δ ≥ δ1, where

δ1 := inf
{∣∣ωj+1(μ,w) − ωj(μ,w)

∣∣ : j ≥ 1 , μ ∈ [μ1, μ2], ‖w‖σ0/2 ≤ R
}
> 0,(58)

as proved in the appendix.
In conclusion, the measure of the complementary set is

|C| ≤
+∞∑
l=1

4γ

lτ+1
K l(ω′′ − ω′) ≤ K ′(ω′′ − ω′)γ

and (55) is proved. Integrating on (μ′, μ′′) we obtain (56).
By Fubini’s theorem also the section Sγ(ω) is large for ω in a large set.
Lemma 14. Let

Sγ(ω) := {μ : (μ, ω) ∈ Bγ} .

For every R := (μ′, μ′′) × (ω′, ω′′), γ′ ∈ (0, 1) we obtain∣∣∣{ω ∈ (ω′, ω′′) :
|Sγ(ω) ∩ (μ′, μ′′)|

μ′′ − μ′ ≥ 1 − γ′
}∣∣∣ ≥ (ω′′ − ω′)

(
1 −K6

γ

γ′

)
.(59)

Proof. Consider

Ω+ :=
{
ω ∈ (ω′, ω′′) : |Sγ(ω) ∩ (μ′, μ′′)| ≥ (μ′′ − μ′)(1 − γ′)

}
,

Ω− :=
{
ω ∈ (ω′, ω′′) : |Sγ(ω) ∩ (μ′, μ′′)| < (μ′′ − μ′)(1 − γ′)

}
.
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Using Fubini’s theorem

|Bγ ∩R| =

∫ ω′′

ω′
|Sγ(ω) ∩ (μ′, μ′′)| dω

=

∫
Ω+

|Sγ(ω) ∩ (μ′, μ′′)| dω +

∫
Ω−

|Sγ(ω) ∩ (μ′, μ′′)| dω

≤ (μ′′ − μ′)|Ω+| + (μ′′ − μ′)(1 − γ′)|Ω−| .(60)

By (56), |Bγ ∩R| ≥ (ω′′ − ω′)(μ′′ − μ′)(1 −K6γ) and therefore, by (60),

(ω′′ − ω′)(1 −K6γ) ≤ |Ω+| + (1 − γ′)|Ω−| = (ω′′ − ω′) − γ′|Ω−|(61)

because |Ω+| + |Ω−| = ω′′ − ω′. Then

|Ω−| ≤ (ω′′ − ω′)K6
γ

γ′

and, by the first inequality in (61), |Ω+| ≥ (ω′′−ω′)(1−K6γ/γ
′), which is (59).

Inequalities (55) and (59) imply the measure estimates (18)–(19).
The main conclusions of this section are summarized in the following theorem,

which follows by Lemmas 11, 12, and 13.
Theorem 3 (solution of the range equation). There exist w̃ ∈ C∞(Aγ , W ∩

Xσ0/2) satisfying (51) and the large (see (56)) Cantor set Bγ defined in (15) such
that, for every (μ, ω) ∈ Bγ , the function w̃(μ, ω) solves the range equation (30).

5. Proof of Theorems 1 and 2.
Proof of Theorem 1. By Theorem 3 for all (μ, ω) ∈ Bγ the function w̃(μ, ω) ∈

Xσ0/2 solves the range equation (30). By Lemma 4, v(μ, w̃(μ, ω)) solves the bifurcation
equation in (8), and therefore

ũ := v(μ, w̃(μ, ω)) + w̃(μ, ω) ∈ Xσ0/2

is a solution of (3). Estimates (14) follow by (51).
Since ũ solves

−(p(x)ũx)x = μf(x, t, ũ) − ω2ρ(x)ũtt(62)

we deduce

−(p(x)ũx(t, x))x ∈ H1(0, π) ∀t ∈ R .

This implies, since p(x) ∈ H3(0, π), that

ũ(t, x) ∈ H3(0, π) ∩H1
0 (0, π) ⊂ C2(0, π) ∀t ∈ R .

Proof of Theorem 2. For every fixed t, by the algebra property of Hm

∥∥f(x, t, u(x, t))
∥∥
Hm ≤

∑
l,k

‖flk(x)uk(x)‖Hm ≤ K
∑
l,k

‖flk‖Hm ‖uk‖Hm

for some K > 0.
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Using the Gagliardo–Nirenberg-type inequality

‖uk‖Hm ≤ (Cm‖u‖H1)k−1‖u‖Hm

valid for every u ∈ H1
0 ∩Hm (see, e.g., [26, 20]), we get∥∥f(x, t, u(x, t))

∥∥
Hm ≤ K‖u‖Hm

∑
l,k

‖flk‖Hm

(
Cm‖u‖H1

)k−1
,(63)

which is convergent for ‖u‖H1 < rm/Cm by (21).
The solution ũ satisfies (62) and ũ(· , t) ∈ H3(0, π) for all t.
By assumption ‖ũ‖H1 < rm/Cm. By induction, assume ũ(· , t) ∈ Hk for k =

3, . . . ,m. Hence ũtt(· , t) ∈ Hk and ρ(x)ũtt(· , t) ∈ Hk because ρ ∈ Hm. Furthermore,
by (63), f(x, t, ũ) ∈ Hk. We deduce, by (62), that p(x)ũx ∈ Hk+1. Finally ũ ∈ Hk+2

because p ∈ Hm+1.
If f0(x, 0) = duf0(x, 0) = 0, then, by Lemma 3, we can take v(μ, 0) = 0 for all μ.

Therefore, by (14),

‖ũ(t, ·)‖H1 ≤ ‖ũ‖σ0/2 ≤ 2Cμ

γω
∀t ,

and, for μ/γω small enough, we deduce the regularity in (22).

6. Inversion of the linearized problem. Here we prove Lemma 7. Decom-
posing in Fourier series

f ′(u) =
∑
k∈Z

ak(x)eikt

we write, for all h =
∑

1≤|l|≤Nn
hl(x)eilt ∈ W (n),

−Lωh + μPn[f ′(u)h] =
∑

1≤|l|≤Nn

[
ω2l2ρhl + ∂x

(
p ∂xhl

)]
eilt

+μPn

[(∑
k∈Z

ake
ikt

)( ∑
1≤|l|≤Nn

hle
ilt

)]

=
∑

1≤|l|≤Nn

[
ω2l2ρhl + ∂x

(
p ∂xhl

)
+ μa0hl

]
eilt

+μ
∑

|l|,|k+l|∈{1,...,Nn}, k �=0

ak hl e
i(k+l)t .

Hence Ln(w) defined in (32) can be decomposed as

Ln(w)h = ρ
(
Dh + M1h + M2h

)
,(64)

where

Dh :=
1

ρ

Nn∑
|l|=1

[
ω2l2ρ hl +

(
p h′

l

)′
+ μa0 hl

]
eilt,

M1h :=
μ

ρ

∑
|l|,|k|∈{1,...,Nn}, l �=k

ak−l hl e
ikt,(65)

M2h :=
μ

ρ
Pn

[
f ′(u) dwv(μ,w)[h]

]
.
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Note that D is a diagonal operator in time Fourier basis. To study the eigenvalues
of D, we use Sturm–Liouville-type techniques.

Lemma 15 (Sturm–Liouville). The eigenvalues λj(μ,w) of the Sturm–Liouville
problem (27) form a strictly increasing sequence which tends to +∞. Every λj(μ,w)
is simple and the following asymptotic formula holds:

λj(μ,w) =
j2

c2
+ b + M(μ,w) + rj(μ,w), |rj(μ,w)| ≤ K

j
(66)

for all j ≥ 1, (μ,w) ∈ [μ1, μ2] ×BR, where

c :=
1

π

∫ π

0

(ρ
p

)1/2

dx, b :=
1

4πc

∫ π

0

[
(ρp)′

ρ 4
√
ρp

]′
1

4
√
ρp

dx,

M(μ,w) := − μ

cπ

∫ π

0

ΠV f
′(v(μ,w) + w)

√
ρp

dx .

The eigenfunctions ϕj(μ,w) of (27) form an orthonormal basis of L2(0, π) with respect
to the scalar product (y, z)L2

ρ
:= c−1

∫ π

0
yzρ dx. For K big enough

(y, z)μ,w :=
1

c

∫ π

0

p y′z′ +
[
Kρ− μΠV f

′(v(μ,w) + w)
]
yz dx

defines an equivalent scalar product on H1
0 (0, π) and

K ′‖y‖H1 ≤ ‖y‖μ,w ≤ K ′′ ‖y‖H1 ∀y ∈ H1
0 .(67)

ϕj(μ,w) is also an orthogonal basis of H1
0 (0, π) with respect to the scalar product

(·, ·)μ,w and, for y =
∑

j≥1 ŷj ϕj(μ,w),

‖y‖2
L2

ρ
=

∑
j≥1

ŷ2
j , ‖y‖2

μ,w =
∑
j≥1

ŷ2
j

(
λj(μ,w) + K

)
.(68)

Proof. For the proof of the lemma, see the appendix.
We develop

Dh =
∑

1≤|l|≤Nn

Dlhle
ilt,

where

Dlz :=
1

ρ

[
ω2l2ρz +

(
p z′

)′
+ μa0z

]
∀ z ∈ H1

0 (0, π)

and a0 = ΠV f(v(μ,w) + w).
By Lemma 15 each Dl is diagonal with respect to the basis ϕj(μ,w):

z =

+∞∑
j=1

ẑj ϕj(μ,w) ∈ H1
0 (0, π) ⇒ Dlz =

+∞∑
j=1

(
ω2l2 − λj(μ,w)

)
ẑj ϕj(μ,w) .

Lemma 16. Suppose all the eigenvalues ω2l2 − λj(μ,w) are not zero. Then

|Dl|−1/2z :=

+∞∑
j=1

ẑj ϕj(μ,w)√
|ω2l2 − λj(μ,w)|
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satisfies

∥∥ |Dl|−1/2z
∥∥
H1 ≤ K

√
αl

‖z‖H1 ∀z ∈ H1
0 (0, π),(69)

where αl := minj≥1 |ω2l2 − λj(μ,w)| > 0.
Proof. By (68) ‖ |Dl|−1/2z‖2

μ,w ≤ (1/αl) ‖z‖2
μ,w. Hence (69) follows by the equiv-

alence of the norms (67).
Lemma 17 (inversion of D). Assume the nonresonance condition (34). Then

|D|−1/2 : W (n) → W (n) defined by

|D|−1/2h :=
∑

1≤|l|≤Nn

|Dl|−1/2hl e
ilt

satisfies

‖ |D|−1/2h‖σ,s ≤
K

√
γω

‖h‖σ,s+ τ−1
2

≤ KN
τ−1
2

n√
γω

‖h‖σ,s ∀h ∈ W (n) .

Proof. By (69) and α−l = αl ≥ γω/|l|τ−1

‖ |D|−1/2h‖2
σ,s =

∑
1≤|l|≤Nn

‖ |Dl|−1/2hl‖2
H1(1 + l2s)e2σ|l|

≤
∑

1≤|l|≤Nn

K2|l|τ−1

γω
‖hl‖2

H1(1 + l2s)e2σ|l|

≤ K ′

γω
‖h‖2

σ,s+ τ−1
2

because |l|τ−1(1 + l2s) < 2(1 + |l|2s+τ−1) for all |l| ≥ 1.
To prove the invertibility of Ln(w) we write (64) as

Ln(w) = ρ|D|1/2
(
U + T1 + T2

)
|D|1/2,(70)

where {
U := |D|−1/2 D |D|−1/2,

Ti := |D|−1/2 Mi |D|−1/2 , i = 1, 2 .
(71)

With respect to the basis ϕj(μ,w) eilt the operator U is diagonal and its (l, j)th
eigenvalue is sign(ω2l2 − λj(μ,w)) ∈ {±1}, implying that the operator norm is

‖U‖σ := sup
‖h‖σ≤1

‖Uh‖σ = 1 .(72)

The smallness of T1 requires an analysis of the small divisors. Formula (66) implies,
by Taylor expansion, the asymptotic dispersion relation

∣∣∣ωj(μ,w) − j

c

∣∣∣ ≤ K

j
,(73)
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and there exists K such that, for every x ≥ 0,

|x2 − λj∗(μ,w)| = min
j≥1

|x2 − λj(μ,w)| ⇒ j∗ ≥ Kx .(74)

Lemma 18 (analysis of the small divisors). Assume the nonresonance conditions
(33)–(34) and ω > γ. Then for all |k|, |l| ∈ {1, . . . , Nn}, k �= l,

αlαk ≥
(

Kγ3ω

|k − l|
τ(τ−1)
2−τ

)2

,

where αl := minj≥1 |ω2l2 − λj(μ,w)|.
Proof. Since α−l = αl for all l, we can suppose l, k ≥ 1.
We distinguish two cases, if k, l are close to or far from each other. Let β :=

(2 − τ)/τ ∈ (0, 1).
Case 1. Let 2|k − l| > (max{k, l})β . By (34)

αkαl ≥
(γω)2

(kl)τ−1
≥ (γω)2

(max{k, l})2(τ−1)
≥ C(γω)2

|k − l|
2(τ−1)

β

.

Case 2. Let 0 < 2|k − l| ≤ (max{k, l})β . In this case 2k ≥ l ≥ k/2. Indeed, if
k > l, then 2(k − l) ≤ kβ , so 2l ≥ 2k − kβ ≥ k because β ∈ (0, 1)—analogously if
l > k.

Let i, resp., j, be an integer which realizes the minimum αk, resp., αl, and write
in short λj(μ) := λj(μ,w), ωj(μ) := ωj(μ,w).

If both λi(μ), λj(μ) ≤ 0, then αl ≥ ω2l2, αk ≥ ω2k2, αlαk ≥ ω4 > γ2ω2.
If only λj(μ) ≤ 0, then αlαk ≥ γω3l2/kτ−1 ≥ 21−τγω3 ≥ 21−τγ2ω2.
The really resonant cases happen if λi(μ), λj(μ) > 0. Suppose, for example, that

max{k, l} = k. By (73), |ωj(μ) − (j/c)| ≤ K/j, and, by (74), i ≥ Kωk, j ≥ Kωl.
Hence, using also (33),

|(ωk − ωi(μ)) − (ωl − ωj(μ))| =
∣∣ω(k − l) − (ωi(μ) − ωj(μ))

∣∣
≥

∣∣∣ω(k − l) − i− j

c

∣∣∣− K

ωl
− K

ωk

≥ γ

(k − l)τ
− 3K

ωk
≥ 2τγ

kβτ
− 3K

ωk

because 2(k − l) ≤ kβ , 2l ≥ k. Since βτ < 1 and k ≤ 2l,

∣∣(ωk − ωi(μ)) − (ωl − ωj(μ))
∣∣ ≥ 1

2

( γ

kβτ
+

γ

lβτ

)
∀ k ≥

( K

ωγ

) 1
1−βτ

=: k∗ .

We reach the same conclusion if max{k, l} = l. It follows that, for max{k, l} ≥ k∗,
there holds |ωk − ωi(μ)| ≥ γ/2kβτ or |ωl − ωj(μ)| ≥ γ/2lβτ . Suppose |ωk − ωi(μ)| ≥
γ/2kβτ . Then

αk = |ω2k2 − ω2
i (μ)| ≥ |ωk − ωi(μ)|ωk ≥ γω

2
k1−βτ .

Since l ≤ 2k, for αl we can use (34),

αkαl ≥
γωk1−βτ

2

γω

lτ−1
≥ γ2ω2

2τ
k2−τ−βτ =

γ2ω2

2τ

because 2 − τ − βτ = 0.
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On the other hand, if max{k, l} < k∗ = (K/ωγ)1/(τ−1), we can use (34) for both
k, l:

αkαl ≥
(γω)2

(kl)τ−1
>

(γω)2

(k∗)2(τ−1)
= (γω)2

(ωγ
K

) 1
τ−1 2(τ−1)

>
γ6ω2

K2

(using ω > γ). Since γ < 1, taking the minimum for all these cases concludes the
proof.

Lemma 19 (estimate of T1). Assume the nonresonance conditions (33)–(34),
ω > γ, and ΠW f ′(u) =

∑
l �=0 al(x)eilt ∈ X

σ,1+ τ(τ−1)
2−τ

. There exists K such that

‖T1h‖σ ≤ Kμ

γ3ω
‖ΠW f ′(u)‖

σ,1+ τ(τ−1)
2−τ

‖h‖σ ∀h ∈ W (n) .

Proof. For all h ∈ W (n), T1h =
∑

1≤|k|≤Nn
(T1h)k e

ikt, where

(T1h)k = |Dk|−1/2
(
M1|D|−1/2h

)
k

= |Dk|−1/2

[ ∑
1≤|l|≤Nn, l �=k

μ
ak−l

ρ
|Dl|−1/2hl

]
.

Setting Am := ‖am/ρ‖H1 , using (69) and Lemma 18, we obtain

‖(T1h)k‖H1 ≤ K μ
∑

1≤|l|≤Nn, l �=k

Ak−l√
αk

√
αl

‖hl‖H1 ≤ Kμ

γ3ω
Sk,(75)

where

Sk :=
∑

|l|≤Nn, l �=k

Ak−l |k − l|
τ(τ−1)
2−τ ‖hl‖H1 .

By (75) we get, defining S(t) :=
∑Nn

|k|=1 Sk e
ikt,

‖T1h‖2
σ =

Nn∑
|k|=1

‖(T1h)k‖2
H1(1 + k2)e2σ|k|

≤
(Kμ

γ3ω

)2
Nn∑

|k|=1

S2
k(1 + k2)e2σ|k| =

(Kμ

γ3ω

)2

‖S‖2
σ .

Since S = Pn(ϕψ) with ϕ(t) :=
∑

l∈Z
Al|l|

τ(τ−1)
2−τ eilt and ψ(t) :=

∑Nn

|l|=1 ‖hl‖H1 eilt

‖T1h‖σ ≤ Kμ

γ3ω
‖ϕ‖σ‖ψ‖σ ≤ Kμ

γ3ω

∥∥∥ΠW f ′(u)
∥∥∥
σ,1+ τ(τ−1)

2−τ

‖h‖σ

because ‖ϕ‖σ ≤ 2‖ΠW f ′(u)‖
σ,1+ τ(τ−1)

2−τ
and ‖ψ‖σ = ‖h‖σ.

Lemma 20 (estimate of T2). Suppose that ΠW f ′(u) ∈ Xσ,1+ τ−1
2

. Then

‖T2h‖σ ≤ Kμ

γω
‖ΠW f ′(u)‖σ,1+ τ−1

2
‖h‖σ ∀h ∈ W (n)

for some K.
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Proof. By the definitions (71) and (65) and by Lemma 17,

‖T2h‖σ ≤ K
√
γω

‖M2|D|−1/2h‖σ,1+ τ−1
2

≤ K ′μ
√
γω

‖ΠW f ′(u)‖σ,1+ τ−1
2

∥∥dwv(μ,w)
[
|D|−1/2h

] ∥∥
σ,1+ τ−1

2

=
K ′μ
√
γω

‖ΠW f ′(u)‖σ,1+ τ−1
2

∥∥dwv(μ,w)
[
|D|−1/2h

] ∥∥
H1

because dwv(μ,w)[|D|−1/2h] ∈ V . By Lemmas 4 and 17

∥∥dwv(μ,w)
[
|D|−1/2h

] ∥∥
H1 ≤ K ‖ |D|−1/2h‖σ,1− τ−1

2
≤ K

√
γω

‖h‖σ,1,

implying the thesis.
Proof of Lemma 7. By (72), ‖U‖σ = 1. If

‖T1 + T2‖σ <
1

2
,(76)

then by Neumann series U + T1 + T2 is invertible in (W (n), ‖ ‖σ) and

‖(U + T1 + T2)
−1‖σ < 2 .

By Lemmas 19 and 20, condition (76) is verified if

‖T1‖σ ≤ Kμ

γ3ω
‖ΠW f ′(u)‖

σ,1+ τ(τ−1)
2−τ

<
1

4
(77)

and

‖T2‖σ ≤ Kμ

γω
‖ΠW f ′(u)‖σ,1+ τ−1

2
≤ Kμ

γ3ω
‖ΠW f ′(u)‖

σ,1+ τ(τ−1)
2−τ

<
1

4
(78)

(we recall that γ ∈ (0, 1) and (τ − 1)/2 < τ(τ − 1)/(2 − τ) because τ > 1). Both
conditions (77) and (78) are satisfied if

μ

γ3ω
‖ΠW f ′(u)‖

σ,1+ τ(τ−1)
2−τ

<
1

4K
=: K ′

1 ,

which is condition (35). Hence, inverting (70)

Ln(w)−1h = |D|−1/2
(
U + T1 + T2

)−1|D|−1/2
(h
ρ

)
,

which, using Lemma 17, yields (36).

7. Appendix.
Proof of Lemma 15. Let a(x) ∈ L2(0, π). Under the “Liouville change of variable”

x = ψ(ξ) ⇔ ξ = g(x), g(x) :=
1

c

∫ x

0

(ρ(s)
p(s)

)1/2

ds ,(79)
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we have that (λ, y(x)) satisfies{
−(p(x)y′(x))′ + a(x)y(x) = λρ(x)y(x),

y(0) = y(π) = 0
(80)

iff (ν, z(ξ)) satisfies {
−z′′(ξ) + [q(ξ) + α(ξ)] z(ξ) = νz(ξ),

z(0) = z(π) = 0,
(81)

where

ν = c2λ, r(x) = 4
√
p(x) ρ(x), z(ξ) = y(ψ(ξ)) r(ψ(ξ)),

α(ξ) = c2
a(ψ(ξ))

ρ(ψ(ξ))
, q(ξ) = c2Q(ψ(ξ)), Q =

p

ρ

r′′

r
+

1

2

(p
ρ

)′ r′

r
.

By [25, Theorem 4 in Chapter 2, p. 35], the eigenvalues of (81) form an increasing
sequence νj satisfying the asymptotic expansion

νj = j2 +
1

π

∫ π

0

(q + α) dξ − 1

π

∫ π

0

cos(2jξ)
(
q(ξ) + α(ξ)

)
dξ + rj , |rj | ≤

C

j
,

where C := C(‖q + α‖L2) is a positive constant. Moreover every νj is simple [25,
Theorem 2, p. 30].

Since p, ρ are positive and belong to H3, if a ∈ H1, then q, α ∈ H1. Integrating
by parts, |

∫ π

0
cos(2jξ)(q + α) dξ| ≤ ‖q + α‖H1/j and so

νj = j2 +
1

π

∫ π

0

(q + α) dξ + r′j , |r′j | ≤
C ′

j

for some C ′ := C ′(‖q + α‖H1). Dividing by c2 and using the inverse Liouville change
of variable, we obtain the formula for the eigenvalues λj(a) of (80),

λj(a) =
j2

c2
+

1

πc

∫ π

0

Q
√
ρ

√
p

dx +
1

πc

∫ π

0

a
√
ρp

dx + rj(a), |rj(a)| ≤
C

j
(82)

for some C(ρ, p, ‖a‖H1) > 0. Formula (66) follows for a(x) = −μΠV f
′(v(μ,w) +w)(x)

and some algebra.
By [25, Theorem 7, p. 43], the eigenfunctions of (81) form an orthonormal basis for

L2. Applying the Liouville change of variable (79) in the integrals, the eigenfunctions
ϕj(a) of (80) form an orthonormal basis for L2 with respect to the scalar product
(· , · )L2

ρ
.

Finally, since ϕj := ϕj(a) solves

−(pϕ′
j)

′ + (Kρ + a)ϕj = (λj(a) + K)ρϕj ,

multiplying by ϕi and integrating by parts gives

(ϕj , ϕi)μ,w = δi,j(λj(a) + K),

and (68) follows (note that λj(a) + K > 0 for all j and for K large enough).
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Proof of Lemma 5. Let a, b ∈ H1(0, π) and consider α := c2a(ψ)/ρ(ψ), β :=
c2b(ψ)/ρ(ψ) constructed as above via the Liouville change of variable (79). By [25,
p. 34], for every j

|λj(a) − λj(b)| =
1

c2
|νj(α) − νj(β)| ≤ 1

c2
‖α− β‖∞ ≤ K‖a− b‖H1 ,(83)

and (28) follows by the mean value theorem because μΠV f(v(μ,w)+w) has bounded
derivatives on bounded sets.

Proof of (58). By the asymptotic formula (73)

min
j≥1

|ωj+1(μ,w) − ωj(μ,w)| ≥ 1

c
− 2K

j
>

1

2c

if j > 4Kc, uniformly in μ ∈ [μ1, μ2], w ∈ BR. For 1 ≤ j ≤ 4Kc the minimum

mj := min
(μ,w)∈[μ1,μ2]×BR

|ωj+1(μ,w) − ωj(μ,w)|

is attained because a �→ λj(a) is a compact function on H1 by the compact embedding
H1(0, π) ↪→ L∞(0, π) and by (83) (see also [25, Theorem 3, pp. 31 and 34]). Each
mj > 0 because all the eigenvalues λj are simple.
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NORMAL FORMS, QUASI-INVARIANT MANIFOLDS, AND
BIFURCATIONS OF NONLINEAR DIFFERENCE-ALGEBRAIC

EQUATIONS∗
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Abstract. We study the existence of quasi-invariant manifolds in a neighborhood of a fixed point
of the difference-algebraic equation (ΔAE) F (zn, zn+1) = 0, where F : R

2m → R
m is a smooth map

satisfying F (0, 0) = 0. We demonstrate the existence of quasi-invariant manifolds on which one can
define forward and backward orbits of the ΔAE under mild assumptions on its linearization at the
fixed point z = 0. Indeed, by assuming this linearization to be a regular matrix pencil, one obtains
a functional equation satisfied by invariant manifolds which can be solved using an extension of the
contraction mapping to spaces that satisfy an interpolation property. If the ΔAE under study is
permitted to depend smoothly on a parameter, we then obtain a Neimark–Sacker bifurcation theorem
as a corollary that can be deduced from the existence of a normal form for nonlinear ΔAEs.
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1. Introduction. The purpose of this paper is to provide an analysis of the
invariant manifolds and bifurcations found in a class of difference-algebraic equations
(ΔAEs) of the form

F (zn, zn+1) = 0;(1.1)

the nomenclature and chosen acronym for (1.1) have been taken from [4, 22]. We
assume that F (= F (z, z̄)) : R

2m → R
m is a smooth map satisfying F (0, 0) = 0 and

say that (1.1) is singular because the partial derivative dz̄F (0, 0) is not an isomorphism
from R

m to itself. The purpose of the first part of this paper is to provide conditions
under which (1.1) has suitably defined invariant manifolds that contain the fixed point
z = 0, where the main difficulty to overcome in this analysis is the fact that forward
orbits of (1.1) are not necessarily uniquely defined in a neighborhood of the fixed
point.

The second part of the paper utilizes the existence of the aforementioned invariant
manifolds to investigate the presence of bifurcations in ΔAEs in the sense that by
extending F to be a Ck-mapping of the form F : R

2m × R → R
2m, where k ≥ 5, we

examine the structure of invariant sets in the family of ΔAEs

F (zn, zn+1, μ) = 0.(1.2)

Our rationale is taken from bifurcation theory for maps which leads to the fol-
lowing question. If F (0, 0, μ) = 0 for all μ in some interval and the one-parameter
family of matrix pencils

P(μ) := (A(μ), B(μ)) := (dzF (0, 0, μ), dzF (0, 0, μ)),
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where F has (z, z, μ) as its argument, is such that P(μ0) has a finite eigenvalue of
unit modulus in the complex plane, does an invariant set of (1.2) bifurcate from the
fixed point z = 0 at μ = μ0?

Due to the lack of forward uniqueness we modify what we mean by the term
invariant, which we do by using the prefixed quasi-invariant, and say that a set
Q ⊂ F−1{0} is quasi-invariant for (1.1) if, for (z, z) ∈ Q, there is a subsequent iterate
(z, z) ∈ Q for some z ∈ R

m.
The paper is organized in the following way: The remainder of section 1 briefly

covers the linear prerequisites for (1.1). Section 2 then provides some motivating
applications. Section 3 presents the basic definitions of how (1.1) defines a local
dynamical system and gives the invariant manifold equation of fixed points of (1.1).
Section 4 provides a reformulation of the invariant manifold equation from section 3 as
a nonlinear fixed-point problem in suitable Banach spaces which then is shown to have
a solution in section 4.3. Section 5 gives a normal form for (1.1) with and without the
presence of a bifurcation parameter. This section concludes with theorems that can
be deduced using these normal forms, giving bifurcation results for (1.1) when that
parameter is included. Finally, section 6 finishes the paper with a series of examples.

1.1. The linear case: Kronecker normal form. As a precursor to the anal-
ysis of the nonlinear problem (1.1), consider the linear case

Bzn + Azn+1 = 0,(1.3)

where A,B : R
m → R

m are linear maps and A is singular. In order to discuss the
behavior of (1.3) we first introduce a normal form for matrix pencils.

When A is singular, the matrix pencil (A,B) is said to be regular if there is an
ω ∈ C such that det(ωA+B) �= 0. The following result is well known for regular matrix
pencils (see [7, 3]): There are complementary subspaces K1 � R

p,K2 � R
q ⊂ R

m

such that p+ q = m and nonsingular linear mappings P,Q on R
m, L : K1 → K1, and

N : K2 → K2 such that

PAQ =

(
Ip 0
0 N

)
, PBQ =

(
L 0
0 Iq

)
;(1.4)

Ip and Iq are identities on K1 and K2, respectively. Moreover, there is a ν ≥ 1 such
that Nν = 0, and ν is said to be the Kronecker index of (A,B).

The Kronecker normal form (KNF) in (1.4) can be used to rewrite (1.3) as a
coupled system of difference equations

Lun + un+1 = 0, vn + Nvn+1 = 0,(1.5)

which has the solution un = (−L)nu0 and vn ≡ 0 for all n, and thus (1.3) has a
quasi-invariant subspace that arises from the quasi-invariant space {(u, v) : v = 0}
associated with (1.5). It is the presence of the former that we shall exploit in the
remainder of the paper to study nonlinear perturbations of (1.5) that arise from a
consideration of problems of the form (1.1).

1.2. Notation. If we define the spectrum of a matrix pencil to be

σ(A,B) = {λ ∈ C : det(λA + B) = 0},

then σ(A,B) = −σ(L) (note the minus sign), and p as defined within the KNF
above coincides with the number of finite eigenvalues of (A,B), where eigenvalues are
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counted according to their algebraic multiplicity. The matrix pencil (A,B) is said
to be hyperbolic if σ(A,B) is nonempty and contains no elements of unit modulus;
otherwise, it is said to be elliptic. We shall also write ρ(A,B) = sup{|λ| : λ ∈ σ(A,B)}
and denote the spectral radius of any linear mapping L by ρ(L). Throughout we shall
use # to denote the cardinality of a set of eigenvalues, counted according to algebraic
multiplicity.

We shall use BL(X,Y ) to denote the space of continuous linear maps from one
normed linear space X to another Y , even when X and Y are finite-dimensional. We
shall use Bε(x) for the open ball of radius ε about x, and Bε(x;X) will specify that
this ball is contained in the space X. If L ∈ BL(X,Y ), we shall denote the usual
operator norm by ‖L‖BL(X,Y ), which is given by sup{‖Lx‖Y : x ∈ X, ‖x‖X = 1}. If
the context is clear, we shall simply write ‖L‖, and BL(X) is also used for BL(X,X).
Throughout, if F : X → Y is a nonlinear mapping, then dF (x) ∈ BL(X,Y ) shall
denote the Fréchet derivative, and when acting on h ∈ X it will be written with
square brackets, as in dF (x)[h]. Similarly, d2F (x)[h, k] denotes the second derivative,
and this is bilinear in [h, k].

If n is a positive integer, we shall use On(x) on occasion to denote any mapping,
H, say, with the property that limx→0 ‖H(x)‖/‖x‖n exists.

2. Motivation. There are several problems from control theory and numerical
analysis that lead to discrete systems where the relationship between the current and
future states of a system are not explicit; see [12, 10, 6, 14] for examples.

2.1. Discretized differential-algebraic equations. In [11] the authors apply
a Runge–Kutta method to solve a differential-algebraic boundary-value problem aris-
ing from an optimal control problem, yielding a nonlinear difference-algebraic equation
where the control plays the role of an implicit variable. For example, using a forward-
Euler method to discretize the differential-algebraic equation (DAE)

ẋ = f(x, y), 0 = g(x, y) ((x(0), y(0)) given)

yields the ΔAE

xn+1 = xn + hf(xn, yn), 0 = g(xn, yn) ((x0, y0) given),

where h is a small parameter. A singularity in this context occurs when the partial
derivative dyg(x, y) is singular on some subset of g−1{0}.

Over the past decade a great deal of attention has been devoted to singular DAEs

F (z, ż) = 0,(2.1)

where dżF (z, ż) changes rank on some set, and our study of (1.1) can be viewed as
an extension of the work undertaken on (2.1) to the discrete-time case.

It is well known that (2.1) supports a range of singular and regular behavior,
including impasse points and pseudoequilibria [16, 19, 17, 20]. However, not a great
deal of the current literature is devoted to the study of bifurcations of DAEs nor to the
unfolding of singularities in DAEs, such as the image and kernel singularities defined
in [23]. One reason for this is the difficulty of proving a suitable center manifold
theorem that can cope with the kind of singularities peculiar to DAE. We do note,
however, that a Hopf bifurcation theorem is presented in [9] for systems of the form
ẋ = f(x, ẋ, α), where α is a bifurcation parameter, x ∈ R

m, and f is nonexpansive with
respect to ẋ, a case that does include certain DAE singularities; a Hopf bifurcation
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theorem for regular DAEs can be found in [15]. We also note that there are results
in the DAE literature that yield the existence of an invariant manifold containing an
equilibrium point; for regular DAEs see [18], and for singular DAEs see [24, 2].

2.2. Output-nulling control. Take a discrete dynamical system of the form

xn+1 = f(xn, un), yn = g(xn, un),(2.2)

where (xn) is a sequence of states, (un) are controls, and (yn) is a sequence of outputs.
One may ask whether there is an admissible control that nullifies or fixes the outputs:
Given (yn), does there exist a sequence pair ((xn), (un)) satisfying (2.2)? The re-
sulting equation is an infinite-dimensional system of equations that has a structure
reminiscent of the semiexplicit, index-1 DAE (for terminology, see [3]).

2.3. Optimal control. The preprint [14] is relevant to the present work as it
presents an invariant manifold result which leads to the existence of a control for the
following variational problem with an infinite horizon:

min
(uk)

{ ∞∑
k=0

	(xk, uk) : xk+1 = f(xk, uk), x0 ∈ R
m, uk ∈ Bε(0; Rp)

}

such that f(0, 0) = 0 and 	(0, 0) = 0. An optimal orbit satisfies the first-order
optimality conditions given by the quasi-linear, implicit difference equation

xk+1 = f(xk, uk),(2.3)

∂H

∂x
(xk, uk, λk+1) = λk,(2.4)

0 =
∂H

∂u
(xk, uk, λk+1),(2.5)

where H is the Hamiltonian H(x, u, λ) = λT f(x, u) + 	(x, u). In [14] the author
demonstrates the existence of a stable manifold associated with (2.3)–(2.5) which has
a dimension that coincides with the number of eigenvalues of the linearization about
its fixed point, and the existence of this stable manifold then provides the necessary
optimal control. The obstacle treated in [14] is the existence of a zero closed-loop
eigenvalue which is analogous to the type of singularity treated in this paper. One
can see the resemblance of (2.3)–(2.5) to (1.5) in that state variables (xk) propagate
forwards in time in (2.3)–(2.5), whereas adjoint variables (λk) propagate backwards,
a property shared by (1.5).

3. A functional equation for quasi-invariant manifolds. Let us now define
in what sense we expect (1.1) to induce a dynamical system. An element z ∈ R

m is
said to be a fixed point of (1.1) if F (z, z) = 0. If z denotes the first argument of F
and z the second, as in F (z, z), then we define the following conditions:

(A1) z = 0 is a fixed point of (1.1): F (0, 0) = 0,
(A2) det(dzF (0, 0)) = 0, and
(A3) there is a ξ ∈ C such that det(dzF (0, 0) + ξdzF (0, 0)) �= 0.

Throughout we make use of the matrix pencil (A,B), where

A := dzF (0, 0) and B := dzF (0, 0),(3.1)

and (A3) is the condition that (A,B) is regular. We shall assume that F ∈ Ck(R2m,
R

m) for k > 3 and seek local and global orbits of the ΔAE (1.1) in the following sense.
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Definition 1. A sequence (zn)Jj=0 is said to be a J-orbit of (1.1) for J ∈ N if

F (zj , zj+1) = 0 for 0 ≤ j ≤ J − 1 and 2 ≤ J < ∞,

and a local orbit is a J-orbit for some J ≥ 2. If there is a z2 ∈ R
m such that

(z0, z1; z2) is a local 2-orbit, then we say that the initial condition (z0, z1) supports
this orbit. A sequence (zn)∞j=0 is said to be a global orbit of (1.1) as it is a J-orbit
for each J ≥ 2.

Following the terminology used for DAEs, a pair (z0, z1) such that F (z0, z1) = 0
is said to be consistent, and if this pair supports some orbit, then it is said to be a
consistent initial condition. We could also have analogously defined backward orbits
for J ≤ −2, but we omit this for brevity. Note that initial conditions lie in R

2m and
not R

m, a property that is analogous to DAEs whereby initial positions and certain
initial derivatives must be provided in order to obtain the existence of solutions.

We now give the definition which stipulates how we expect (1.1) to induce a
dynamical system.

Definition 2. (1.1) induces a local dynamical system on a manifold M ⊂
F−1{0} ⊂ R

2m which contains the origin of R
2m if there is a ball Mr := M ∩

Br(0; R2m) such that for each (z, z) ∈ Mr there is a unique (z, z) ∈ M. If these
conditions hold, M is said to be a solution manifold of (1.1).

This definition ensures that every point (z, z) ∈ Mr supports the nontrivial 3-
orbit (z, z; z) and that the point z ∈ R

m is uniquely determined if we are to impose
the requirement that (z, z) ∈ M.

Definition 3. A set Q ⊂ F−1{0} ⊂ R
2m is said to be quasi-invariant if, for

each (z, z) ∈ Q, there exists a z ∈ R
m such that (z, z) ∈ Q.

As an aside, note that (1.1) induces a trivial dynamical system on the quasi-
invariant set {(0, 0)} by virtue of (A1), even if assumption (A3) fails. Note also that
a solution manifold M is not necessarily unique; it is the local orbit within M that
must be uniquely determined. Indeed, there may well be many possible choices for z
in order to keep the orbit on F−1{0}, many of which may not be elements of M.

3.1. The functional equation. Our strategy for locating quasi-invariant man-
ifolds of (1.1) is to study a functional equation obtained in an analogous manner to
the center-manifold equation from the theory of invariant manifolds for maps. The
solution of this equation then provides the manifold M needed to form a local dy-
namical system for (1.1). We shall show in Theorem 1 that one can find a linear
space K1 ⊂ R

2m with an associated locally defined, differentiable map ϕ : K1 → K1,
a manifold M ⊂ F−1{0}, and a local diffeomorphism θ : K1 → M such that

F (θ(u)) = 0 =⇒ F (θ(ϕ(u))) = 0.

As a result, we will be able to ensure that (1.1) induces a local dynamical system
on M essentially by iterating the map ϕ. This simply means that if (z, z) = θ(u) is

a consistent initial condition, then (z, z) = θ(ϕ(u)) and (z, z) = θ(ϕ(ϕ(u))) provide
subsequent iterates of (1.1).

Returning to (1.1), let us change the form of the problem by setting wn = zn+1,
so that along an orbit of (1.1) we have

zn+1 = wn,(3.2)

0 = Bzn + Awn + Φ(wn, zn),(3.3)



418 R. BEARDMORE AND K. WEBSTER

where Φ is the Ck function which satisfies Φ(0, 0) = 0, dΦ(0, 0) = 0 and which is
defined by

F (z, w) −Bz −Aw := Φ(w, z).

The problem of finding an initial condition which is consistent, (z0, w0), say, is of
an algebraic nature, whereas the problem of finding an orbit which is supported by
this initial condition is a dynamic problem. This means that the problem of finding
a manifold of orbits of a ΔAE will lead not to an algebraic equation that one could
tackle using an elementary version of the implicit function theorem but instead to a
functional equation.

Let us now obtain this functional equation. By applying the condition that (A,B)
is a regular matrix pencil (condition (A3)), it follows that

(A,B) :=

((
I 0
0 0

)
,

(
0 I
B A

))
(3.4)

is also a regular matrix pencil. If we define the vector Wn = (zn, wn) ∈ R
2m, using

(3.2)–(3.3), (1.1) can be written in the semilinear form

AWn+1 = BWn + Ψ(Wn),

where Ψ is the Ck-mapping Ψ(W ) := (0,Φ(W )), so that Ψ(0) = 0 and dΨ(0) = 0.
There are mappings P and Q that put (A,B) in Kronecker normal form, and, by
setting Wn = QXn, we may write (3.2)–(3.3) in the form

[PAQ]Xn+1 = [PBQ]Xn + PΨ(QXn),(3.5)

where the terms in square brackets are in normal form:[
I 0
0 N

]
Xn+1 =

[
C 0
0 I

]
Xn + PΨ(QXn).

Consequently, there are linear spaces K1 � Rp and K2 � R
q such that K1⊕K2 �

R
2m and Xn = (un, vn) ∈ K1 ⊕K2, where (un, vn) satisfies the difference equation in

normal form

(NF)

{
un+1 = Cun + f(un, vn),
Nvn+1 = vn − g(un, vn).

We now ask that there is a manifold given by the graph of some function h on which
one can solve (NF) uniquely in a neighborhood of the fixed point (u, v) = (0, 0) in the
sense that vn = h(un) holds along orbits. This imposes the two conditions

un+1 = Cun + f(un, h(un)) and Nh(un+1) = h(un) − g(un, h(un))

on h, and it follows that the local orbit (un, vn) of (NF) can be found if h satisfies
the functional equation

h(u) = Nh(Cu + f(u, h(u))) + g(u, h(u)), h(0) = 0, dh(0) = 0,(3.6)

for all u in some neighborhood of the origin in R
p. The boundary conditions in (3.6)

ask first that the fixed point (u, v) = (0, 0) of (NF) lies on the graph of h and then
that this graph is tangent to the quasi-invariant subspace obtained on setting f = 0
and g = 0 in (NF).
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3.2. Further preliminaries.

3.2.1. Perturbation of eigenvalues. For completeness we have included the
following two preliminary results regarding the spectra of one-parameter families of
matrix pencils, which are mappings of the form

P : (−1, 1) → BL(Rm) ×BL(Rm);μ �→ (A(μ), B(μ)).

If we define the family of analytic functions

fμ(ω) = det(ωA(μ) + B(μ)),

the multiplicity of an eigenvalue of a matrix pencil is then the multiplicity of the
corresponding zero of fμ(·), which is at most m. The identity

d

dω
fμ(ω) = fμ(ω)tr[(ωA(μ) + B(μ))−1A(μ)],(3.7)

whenever this inverse is defined, can be used to obtain the following two lemmas.
Lemma 1 (C1-dependence of eigenvalues). Suppose that P(μ) := (A(μ), B(μ))

is a C1-parameterized family of real matrix pencils, with μ ∈ (−1, 1), such that P(0)
is a regular matrix pencil. An element λ0 ∈ σ(P(0)) is said to be an algebraically
simple eigenvalue of P(0) if

ker(λ0A(0) + B(0)) = 〈x0〉 and x0 �∈ ran(λ0A(0) + B(0)).

If λ0 is an algebraically simple eigenvalue of P(0), then there is a C1-parameter
family of algebraically simple eigenvalues λ(μ) ∈ C of P(μ) such that λ(0) = λ0, with
a corresponding C1 family of unit eigenvectors x(μ), with x(0) = x0.

Proof. This follows from the implicit function theorem applied to the system
F (λ, x, μ) = (0, 0), where F (λ, x, μ) :=

[
(λA(μ) + B(μ))x, ‖x‖2

2 − 1
]
.

Lemma 2 (C0-dependence of eigenvalues). Suppose that P(μ) := (A(μ), B(μ)) is
a C0-parameterized family of real matrix pencils, with μ ∈ (−1, 1), such that P(0) is
regular. If λ0 is an eigenvalue of P(0) of algebraic multiplicity l, then it is isolated in
the complex plane, and for each ε > 0 there is a δ > 0 such that if |μ| < δ, then P(μ)
has l eigenvalues (counted according to algebraic multiplicity) in the disk D(λ0, ε).

Proof. As f0(·) does not vanish identically because P(0) is regular by assumption,
neither can fμ(·) for sufficiently small μ. The isolatedness of eigenvalues of P(μ) is
a consequence of the fact that analytic functions have isolated zeros. Now by using
(3.7) we integrate around a closed circle in the complex plane with center ω = λ0 and
radius ε, from where

#{σ(P(μ)) ∩D(λ0, ε)} =
1

2πi

∮
∂D(λ0,ε)

tr[(ωA(μ) + B(μ))−1A(μ)]dω,

where D(λ0, ε) is an open disk of radius ε about λ0 in the complex plane. This
quantity is integer-valued and depends continuously on μ, and the result now
follows.

3.2.2. Notation. From this point we shall identify the linear space K1 from the
KNF with R

p and K2 with R
q; now let | · |p and | · |q denote norms on R

p and R
q,

and let Ωδ = {u ∈ R
p : |u|p < δ}. We also assume that the unit sphere ∂Ω1 is a C∞

manifold.
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Let C0(Ωδ,R
q) be the Banach space of continuous maps on Ωδ with norm ‖h‖C0 =

supu∈Ωδ
|h(u)|q. Similarly, let Cj(Ωδ,R

q) be the space of all j-times continuously dif-

ferentiable functions on Ωδ with norm ‖h‖Cj = max0≤i≤j supu∈Ωδ
‖dih(u)‖C0 , where

di denotes the ith (Fréchet) derivative, so that djh(u) is a j-linear form which we
denote [k1, . . . , kj ] → djh(u)[k1, . . . , kj ]. Consequently, we have the norm of a higher
derivative given by the formula

‖djh‖C0 = sup
u∈Ωδ

sup
|ki|p≤1

|djh(u)[k1, . . . , kj ]|q.(3.8)

If M is any multilinear form on a linear space Z and z ∈ Z, then M [z](k) is shorthand
for M [z, z, . . . , z].

From the smoothness of the unit sphere ∂Ω1, it follows that the embedding of
Cj+1(Ωδ) into Cj(Ωδ) is compact, so that if (hn) ⊂ Cj+1(Ωδ) is bounded in the norm
of the latter space, there is a subsequence (hnk

) which converges in Cj(Ωδ) to some
element of Cj(Ωδ). We shall also make limited use of the Hölder spaces, which we
denote by Cj+α(Ωδ) whenever j is an integer and 0 < α < 1, recalling the compact
embedding Cj+α(Ωδ) ⊂ Cj+β(Ωδ) if α > β.

It can be somewhat notationally cumbersome to include all of the references to
the underlying spaces in all of the norms that we use, so we shall limit their use and
expect that the precise meaning can be taken from context.

4. Solving the fixed-point problem (3.6). It is not (NF) that we shall seek
to solve directly, but we make the substitution

u = εũ, v = εṽ

in (NF) to give (after removal of the tildes for clarity)

(NF)ε

{
un+1 = Cun + ε−1f(εun, εvn),
Nvn+1 = vn − ε−1g(εun, εvn).

As the functions f and g are higher than linear order at the origin, (NF)ε is in fact
smooth with respect to variations in ε.

Let us define the one-parameter family of Ck functions fε and gε (with Ck−1

dependence on ε) by

fε(u, v) = ε−1f(εu, εv) and gε(u, v) = ε−1g(εu, εv),

respectively. For j ∈ N we also have

djfε(u, v) = εj−1djf(εu, εv) and djgε(u, v) = εj−1djg(εu, εv),(4.1)

whenever these derivatives are defined.
Now seek an invariant manifold M of (NF)ε given by a graph on which

vn = h(un),

and then M can be realized as such a graph if there is a solution of the nonlinear
functional equation{

h(u) = Nh(Cu + fε(u, h(u))) + gε(u, h(u)),
h(0) = 0, dh(0) = 0.

(4.2)
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4.1. Preliminary estimates. The following are simple but essential estimates
on the derivatives of f and g. By the mean-value inequality and the fact that the
mapping (u, v) �→ (f(u, v), g(u, v)) and its derivative vanish at (u, v) = (0, 0), there
exists an 	 (= 	(δ, r)) > 0 such that

|f(u, v)|p ≤ 	‖(u, v)‖2, |g(u, v)|q ≤ 	‖(u, v)‖2,(4.3)

and

‖df(u, v)‖ ≤ 	‖(u, v)‖, ‖dg(u, v)‖ ≤ 	‖(u, v)‖,(4.4)

whenever |u|p ≤ δ, |v|q ≤ r, where here and throughout we use the norm

‖(u, v)‖ = max(|u|p, |v|q) (∀(u, v) ∈ R
p × R

q).

Here ‖df(u, v)‖ and ‖dg(u, v)‖ both refer to induced operator norms, treating df(u,
v) and dg(u, v) as linear mappings. By using the mean-value inequality we obtain

‖d2g(u, v) − d2g(0, 0)‖ ≤ sup
|u|p≤δ,|v|q≤r

‖d3g(u, v)‖‖(u, v)‖,

and the triangle inequality gives

‖d2g(u, v)‖ ≤ ‖d2g(0, 0)‖ + 	‖(u, v)‖ (|u|p ≤ δ, |v|q ≤ r),

where 	 (= 	(δ, r)) = sup|u|p≤δ,|v|q≤r ‖d3g(u, v)‖, whence

‖d2gε(u, v)‖ ≤ ε
(
‖d2g(0, 0)‖ + ε	‖(u, v)‖

)
(|u|p ≤ δ, |v|q ≤ r).(4.5)

An analogous inequality holds for f and fε:

‖d2fε(u, v)‖ ≤ ε
(
‖d2f(0, 0)‖ + ε	‖(u, v)‖

)
(|u|p ≤ δ, |v|q ≤ r).(4.6)

It is the O(ε) size of these quantities that will be important later.

4.2. Introducing a cutoff function. It is not (4.2) that we shall seek to solve
directly, but we must employ a cutoff function to rewrite (4.2) in a fixed-point form
that is amenable to a Picard iteration. This is not the case at present because if we
were to define a nonlinear operator acting on h by the right-hand side of (4.2), there
is no reason for it or its iterates to be well-defined on a suitable function space.

For any δ > 0, there is a cutoff function ψ ∈ C∞(Rp) such that

ψ(u) =

{
u if |u|p ≤ δ/2,
0 if |u|p ≥ 3δ/2

and such that |ψ(u)|p ≤ δ. By using this cutoff we define a Nemitskii operator π as
follows:

π(h)(u) = ψ(Cu + fε(u, h(u))) (∀u ∈ Ωδ, h : Ωδ ⊂ R
p → R

q),(4.7)

so that

π : C0(Ωδ,R
q) → C0(Ωδ,R

p),
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and the inequality |π(h)(u)|p ≤ δ holds pointwise. Moreover, by the Ck-regularity of
f , it follows that π is itself a Ck-mapping for each ε > 0 fixed, with Fréchet derivative

dπ(h)[k](·) = dψ(C · +fε(·, h))[dvfε(·, h)[k]] (∀h, k ∈ C0(Ωδ,R
q)).(4.8)

Also note the following estimate, which will be important later.
Lemma 3. Suppose that h ∈ C0(Ωδ,R

q) satisfies ‖h‖C0 ≤ r, then

‖dπ(h)‖BL(C0) ≤ ε · ‖ψ‖C1	max(δ, r),(4.9)

and there are constants κ1, κ2 > 0, depending on 	, δ, and r, but not on ε, such that

‖d2π(h)‖BL(C0)×BL(C0) ≤ ε‖ψ‖C2 (κ1(	, δ, r) + εκ2(	, δ, r)) .(4.10)

Proof. By using (4.8) we obtain

sup
k∈C0,‖k‖C0=1

‖dπ(h)[k]‖C0 = sup
k∈C0,‖k‖C0=1

‖dψ(C · +fε(·, h))[dvfε(·, h)[k]]‖C0

≤ ‖ψ‖C1 · sup
k∈C0,‖k‖C0=1

‖dvfε(·, h)[k]‖C0

≤ ‖ψ‖C1 · sup
|u|p≤δ,|v|q≤r

‖dvfε(u, v)‖

≤ ‖ψ‖C1 · 	 · sup
|u|p≤δ,|v|q≤r

‖(εu, εv)‖ (by (4.1) and (4.3)),

and the first part follows. The second part follows from

d2π(h)[k1, k2] = d2ψ(C · +fε(·, h))[dvfε[k1], dvfε[k2]] + dψ[d2
vvfε(·, h)[k1, k2]],

so that, for i = 1, 2,

sup
ki∈C0,‖ki‖C0=1

‖d2π(h)[k1, k2]‖C0 ≤ sup
u∈Rp

‖dψ(u)‖ · ‖d2
vvfε(·, h)‖

+ sup
u∈Rp

‖d2ψ(u)‖ · ‖dvfε(·, h)‖2

≤ ‖ψ‖C2

(
sup

|u|p≤δ,|v|q≤r

‖d2
vvfε(u, v)‖ + sup

|u|p≤δ,|v|q≤r

‖dvfε(u, v)‖2

)

≤ ‖ψ‖C2

(
ε‖d2f(0, 0)‖ + ε2	max(δ, r) + sup

|u|p≤δ,|v|q≤r

‖dvf(εu, εv)‖2

)
(by (4.5))

≤ ‖ψ‖C2

(
ε‖d2f(0, 0)‖ + ε2	max(δ, r) + sup

|u|p≤δ,|v|q≤r

‖(εu, εv)‖2	2

)
(by (4.3)),

and the result follows directly from here.
In order to solve (4.2), we now tackle the following nonlinear fixed-point problem:

h = Nh(π(h)) + Gε(h),(4.11)

where Gε : C0(Ωδ,R
q) → C0(Ωδ,R

q) is the Nemitskii operator

Gε(h)(u) := gε(u, h(u)).

Notice that the cutoff ψ has been used in (4.11), but, because ψ coincides with the
identity on some balls around the origin, solutions of (4.11) will satisfy (4.2) on this
ball.
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This construction ensures that h(π(h)) ∈ C0(Ωδ,R
q) whenever h ∈ C0(Ωδ,R

q),
and we may, as a result, define the operator

T : C0(Ωδ,R
q) → C0(Ωδ,R

q); h �→ h(π(h)),

noting that the operators T : C1(Ωδ,R
q) → C1(Ωδ,R

q) and T : C2(Ωδ,R
q) →

C2(Ωδ,R
q) are also well-defined as the restrictions of T to various subspaces of

C0(Ωδ,R
q) as f and g are C3 functions.

However, it is not (4.11) that we shall solve, but we exploit the nilpotency of
N to bring the functional part of (4.2) and (4.11), that is, Nh(π(h)), into a higher-
order contribution to the problem. However, because g(u, v) is a second-, or possibly
higher-order function, the operator Gε contains no linear terms, and this will help us
to obtain a contractive sequence by iterating T .

By way of example, let us suppose that N �= 0 but N2 = 0. If there exists
a solution of h = Nh(π(h)) + Gε(h), there results Nh = NGε(h), and therefore
Nh(π(h)) = NGε(h(π(h))). In this case we find that h must satisfy

h = NGε(h(π(h))) + Gε(h),(4.12)

and one observes that the functional part of the equation (that is, h(π(h))) now sits
inside a higher-order term (and not a linear one as in (4.11)). Conversely, if h satisfies
(4.12), then Nh = NGε(h), so that NGε(h(π(h))) = Nh(π(h)) because N2 = 0, and
h = Nh(π(h)) + Gε(h) follows.

When the nilpotency index of the map N is arbitrary we extend this idea in the
following lemma, where here and in the remainder we shall write

Gε(h) =

ν−1∑
j=0

N jGε(T
j(h)),

and

T j+1 = T (T j), where T 0 = I,

and the latter denotes the identity on C0(Ωδ,R
q).

Lemma 4. Suppose that Nν = 0 but Nν−1 �= 0; then h is a solution of (4.11) if
it is a solution of the fixed-point problem

h = Gε(h).(4.13)

Proof. Let us suppose that h is a solution of (4.13); then

Nh = NGε(h) = N

⎡
⎣ν−1∑

j=0

N jGε(T
j(h))

⎤
⎦ =

ν−1∑
j=0

N j+1Gε(T
j(h)),

and so, because Nν = 0, we obtain

Nh(π(h)) =

ν−1∑
j=0

N j+1Gε(T
j(h(π(h))))

=

ν−1∑
j=0

N j+1Gε(T
j+1(h)) =

ν−1∑
j=1

N jGε(T
j(h)) = Gε(h) − Gε(h) = h− Gε(h),

which therefore provides a solution of (4.11) as required.
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4.3. The main result. Our strategy for solving (4.13), and hence (4.2), is to
show that Gε satisfies a refined Banach contraction theorem of the type given in [26,
p. 286]. The idea that we employ several times is encapsulated in the following idea.
Consider Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) such that x0 ∈ Y and Y ⊂ X, and
moreover T is a mapping satisfying T : Y → Y and T : X → X. Now, if there is an
r > 0 and a κ ∈ [0, 1) such that

1. T : Br(x0;X) → Br(x0;X),
2. ‖T (y) − T (y′)‖X ≤ κ‖y − y′‖X for all y, y′ ∈ Y ∩Br(x0;X),

then T has a fixed point y∗ ∈ Br(x0;X). In addition, if
3. T : Bρ(x0;Y ) → Bρ(x0;Y ) and
4. there is an interpolating Banach space Z such that Y ⊂ Z with compact

embedding and Z ⊂ X with continuous embedding,
then y∗ ∈ Z.

The point here is that we cannot ensure that y∗ ∈ Y , although one still obtains
a fixed point in some space from the standard iteration scheme. By using this idea
one can prove an existence and regularity result for (4.2), where we have in mind
x0 = 0, T = Gε, Y = Ck+1, Z = Ck+α, and X = Ck, where α ∈ (0, 1). We begin by
providing the details to cover the cases k = 0 and k = 1.

The following theorem is the main result of this paper from which the invariant
manifold and bifurcation theorems are deduced.

Theorem 1. Let α ∈ [0, 1). There exists an ε0 > 0 such that, for each ε ∈ (0, ε0),
(4.13) has a solution h ∈ C1+α(Ωδ,R

q); moreover h(0) = 0 and dh(0) = 0.
Proof. Let Xr be the C0-closed ball of radius r about zero in C0(Ωδ,R

q) and Yr

the C1-closed ball of radius r about zero in C1(Ωδ,R
q). Let h0 ∈ Yr, and define a

sequence

hn+1 := Gε(hn).

We shall show that we can choose ε such that (hn) is well-defined, contractive, and
hence Cauchy in Xr, and it therefore converges. Throughout the remainder of the
proof we shall use the positive constant

n∗ :=

ν−1∑
j=0

‖N‖jBL(Rq).

We now give a proof of Theorem 1 in four short steps, each placing a stronger re-
striction on ε relative to the fixed choice of δ and r to ensure that Gε contracts when
acting on C1 functions, measured in the C0 norm.

Step 1. If ε < r(	n∗ max(δ, r)2)−1 =: ε1, then Gε : Xr → Xr.
Proof. Suppose that h ∈ Xr, and then T (h) = h(π(h)) is continuous as h is.

Moreover if ‖h‖C0 ≤ r, then ‖T (h)‖C0 = ‖h(π(h))‖C0 ≤ r; similarly ‖T j(h)‖C0 ≤ r
for all 0 ≤ j ≤ ν − 1. By definition,

‖Gε(h)‖C0 ≤
ν−1∑
j=0

‖N‖j‖Gε(T
j(h))‖C0 ≤

ν−1∑
j=0

‖N‖j sup
‖h‖C0≤r

‖Gε(h)‖C0

≤ n∗ sup
|u|p≤δ,|v|q≤r

|gε(u, v)|q = n∗ sup
|u|p≤δ,|v|q≤r

ε−1|g(εu, εv)|q.

From (4.3) it follows that

‖Gε(h)‖C0 ≤ ε 	n∗ sup
|u|p≤δ,|v|q≤r

‖(u, v)‖2 = ε 	n∗ max(δ, r)2.

By assumption, ε	n∗ max(δ, r)2 < r, and Step 1 is complete.
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Step 2. If ε < min{ε1, [r	max(δ, r)‖ψ‖C1 ]−1, r[n∗(1+r)	max(δ, r)]−1} =: ε2, then
Gε : Yr → Yr.

Proof. Suppose that h ∈ Yr so that h ∈ Xr, then T j(h) is differentiable on Ωδ

as h is; moreover throughout the remainder of the proof of Step 2 we shall write
H := Gε(h) for brevity. It then follows that

dH(u) =
ν−1∑
j=0

N j
[
dugε(u, T

j(h)(u)) + dvgε(u, T
j(h)(u))[du(T j(h))(u)]

]
,(4.14)

and we now need to estimate ‖dH(u)‖C0 . By using the fact that ‖h‖C0 ≤ r, since
T : Xr → Xr from Step 1, we obtain |T j(h)(u)|q = |h(π(h(. . .)) . . .)|q ≤ r, and
therefore

sup
|u|p≤δ

‖dH(u)‖BL(Rp,Rq) ≤
ν−1∑
j=0

‖N‖j
(
‖dugε(u, T

j(h)(u))‖

+‖dvgε(u, T j(h)(u))‖‖du(T j(h))(u)‖
)

≤ n∗ sup
0≤j≤ν−1

(
‖dugε(u, T

j(h)(u))‖ + ‖dvgε(u, T j(h)(u))‖‖du(T j(h))(u)‖
)

≤ n∗ sup
0≤j≤ν−1

|u|p≤δ,|v|q≤r

(
‖dugε(u, v)‖ + ‖dvgε(u, v)‖‖du(T j(h))(u)‖

)

≤ ε n∗	max(r, δ)

(
1 + sup

0≤j≤ν−1,|u|p≤δ

‖du(T j(h))(u)‖
)
.

Now we estimate the final bracketed term in the latter expression. The linear mapping
obtained from differentiating T j(h)(u) with respect to u is

du(T j(h))(u) = du(h(π(h(. . . π(h) . . .)))),

which can be written as the recurrence

du(T j(h))(u) = dh(π(T j−1(h))(u))dπ(T j−1(h)(u)) · du(T j−1(h)(u)),(4.15)

where, by definition, du(T 0(h))(u) = du(h)(u) = dh(u). By taking C0 norms and
setting

ξj := ‖du(T j(h))(u)‖BL(Rp,Rq),

we obtain the relation

ξj ≤ ‖dh‖C0 sup
‖h‖C0≤r

‖dπ(h)‖BL(C0) · ξj−1,

where ξ0 = ‖dh‖C0 ≤ ‖h‖C1 ≤ r. From (4.9) of Lemma 3, we find that

ξj ≤ ε	rmax(δ, r)‖ψ‖C1 · ξj−1 ≤ (ε	rmax(δ, r)‖ψ‖C1)
j
ξ0 ≤ r

because ε	rmax(δ, r)‖ψ‖C1 < 1 by assumption. As a result, the inequality

sup
|u|p≤δ

‖dH(u)‖BL(Rp,Rq) ≤ ε n∗	max(r, δ)

(
1 + sup

0≤j≤ν−1
ξj

)
≤ εn∗	max(r, δ)(1 + r) ≤ r

also now follows from the assumption of the claim, and we have proven that h ∈ Yr,
as required.
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Step 3. If ε < ε2 and we define the O(ε) quantity κ(ε) by

κ(ε) := ε · 	max(δ, r)

ν−1∑
i=0

(rε · ‖ψ‖C1	max(δ, r))i,

then ‖hn+1 − hn‖C0 ≤ κ(ε)‖hn − hn−1‖C0 . As a result, (hn) is Cauchy in Xr if ε is
further restricted so that κ(ε) < 1, and so (hn) converges in Xr.

Proof. For brevity, let us write h in place of hn+1 and k for hn after setting
h0 = 0 ∈ Yr and hn+1 = Gε(hn). Now

‖Gε(h) − Gε(k)‖C0 ≤
ν−1∑
j=0

‖N‖j‖Gε(T
j(h)) − Gε(T

j(k))‖C0

≤ n∗ sup
0≤j≤ν−1

‖gε(u, T j(h)(u)) − gε(u, T
j(k)(u))‖C0 .

The mean-value inequality yields

|gε(u, T j(h)(u)) − gε(u, T
j(k)(u))|q

≤ sup
z∈[T j(h)(u),T j(k)(u)]

‖dvgε(u, z)‖‖T j(h) − T j(k)‖C0

≤ sup
|u|p≤δ,|v|q≤r

‖dvgε(u, v)‖‖T j(h) − T j(k)‖C0 (using Step 1)

≤ ε	max(r, δ) · ‖T j(h) − T j(k)‖C0 (by (4.3)),(4.16)

where, for any z1, z2 ∈ R
p, the generalized interval from z1 to z2 is given by

[z1, z2] := {λz1 + (1 − λ)z2 : 0 ≤ λ ≤ 1}.

So let us define χj := ‖T j(h) − T j(k)‖C0 , and we estimate χj as follows:

|T j(h)(u) − T j(k)(u)|q = |h(π(T j−1(h))) − k(π(T j−1(k)))|q
≤ |h(π(T j−1(h))) − k(π(T j−1(h)))|q

+ |k(π(T j−1(h))) − k(π(T j−1(k)))|q
=⇒ χj ≤ ‖h− k‖C0 + ‖k(π(T j−1(h))) − k(π(T j−1(k)))‖C0 .

However, from Step 2 we have ‖k‖C1 ≤ r, and therefore

|k(u) − k(u′)|q ≤ r|u− u′|p ∀u, u′ ∈ Ωδ.

Using the fact that π is a Fréchet differentiable mapping on C0(Ωδ,R
q) with norm

bounded according to (4.9), an application of the mean-value inequality gives

χj ≤ ‖h− k‖C0 + r sup
‖h‖C1≤r

‖dπ(h)‖BL(C0) · χj−1,

so that χj ≤ ‖h − k‖C0 + ε · r‖ψ‖C1	max(δ, r)χj−1, where χ0 = ‖h − k‖C0 . The
discrete Gronwall inequality now gives

χj ≤ ‖h− k‖C0

ν−1∑
i=0

(rε‖ψ‖C1	max(δ, r))
i
,
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and with (4.16) we have the desired inequality

‖Gε(h) − Gε(k)‖C0 ≤ κ(ε) · ‖h− k‖C0 .

The standard contraction argument now shows that (hn) ⊂ Yr is Cauchy in Xr as

claimed, and there therefore exists an h ∈ Xr such that hn
C0

→ h as n → ∞.

Since (hn) ⊂ Yr, it follows that there is a subsequence (nj) such that hnj

Cα

→ h

as j → ∞ for some h ∈ Xr ∩ Cα(Ωδ), and we deduce that h = h ∈ Cα(Ωδ). By
restricting ε further we can actually ensure that h is differentiable, as follows.

Step 4. There is an ε3 > 0 such that h ∈ C1+α(Ωδ) whenever ε < min(ε2, ε3) and
κ(ε) < 1.

Proof. Let h ∈ C2(Ωδ) satisfy ‖h‖C2 ≤ r, and recall that H := Gε(h). From
(4.14) we obtain

d2H(u) =

ν−1∑
j=0

N j{d2
uugε(u, T

j(h)(u)) + 2d2
uvgε(u, T

j(h)(u))[I, du(T j(h)(u))]

+ d2
vvgε(u, T

j(h)(u))[du(T j(h)(u)), du(T j(h)(u))]

+ dvgε(u, T
j(h)(u))[d2

uu(T j(h)(u))]}.

In seeking a bound on ‖H‖C2 , we now examine the term d2
uu(T j(h)(u)) more closely

as bounds on the remaining elements of d2H can be obtained from Steps 1 and 2. By
applying the chain rule (4.15) we obtain the recurrence

d2
uu(T j(h)(u)) = du

{
dh(π(T j−1(h))(u))dπ(T j−1(h)(u)) · du(T j−1(h)(u))

}
= d2h(π(T j−1(h))(u))[dπ(T j−1(h)(u)) · du(T j−1(h)(u))](2)

+ dh(π(T j−1(h))(u))[d2π(T j−1(h)(u))[du(T j−1(h)(u))](2)]

+ dh(π(T j−1(h))(u))[dπ(T j−1(h)(u))[d2
uu(T j−1(h)(u))]],

and taking norms gives

‖d2
uu(T j(h)(u))‖C0 ≤ ‖d2h‖C0‖dπ(h)‖2‖du(T j(h)(u))‖C0

+ ‖dh‖C0‖d2π(h)‖‖du(T j(h)(u))‖2
C0

+ ‖dh‖C0‖dπ(h)‖‖d2
uu(T j(h)(u))‖C0 .

If we write

ηj := ‖d2
uu(T j(h)(u))‖C0 ,

and use the fact that ξj = ‖du(T j(h))(u)‖BL(Rp,Rq) ≤ r for all 0 ≤ j ≤ ν − 1, which
was established in Step 2, we obtain the difference inequality

ηj ≤ r3‖dπ(h)‖2
C0 + r2‖d2π(h)‖C0 + r‖dπ‖C0 · ηj−1

such that η0 ≤ r by definition. There results, for j ≥ 1,

ηj ≤ (r‖dπ(h)‖C0)
j
η0 +

(
r3‖dπ(h)‖2

C0 + r2‖d2π(h)‖C0

) j−1∑
i=0

(r‖dπ(h)‖C0)i,

and the bounds (4.9) and (4.10) show that η := max0≤j≤ν−1 ηj has an O(1) depen-
dence on ε in the sense that there is an M > 0 such that η ≤ M whenever 0 ≤ ε ≤ 1.
(In fact, one can choose M to be less than r if ε is sufficiently small.)



428 R. BEARDMORE AND K. WEBSTER

We now obtain

‖d2H‖C0 ≤ n∗ sup
0≤j≤ν−1

{
‖d2

uugε(u, T
j(h)(u))‖C0 + 2ξj‖d2

uvgε(u, T
j(h)(u))‖C0

+ ξ2
j ‖d2

vvgε(u, T
j(h)(u))‖C0 + ηj‖dvgε(u, T j(h)(u))‖C0

}
≤ n∗ sup

‖h‖C0≤r,0≤j≤ν−1

{
‖d2

uugε(u, h)‖C0 + 2r‖d2
uvgε(u, h)‖C0

+ r2‖d2
vvgε(u, h)‖C0 + η‖dvgε(u, h)‖C0

}
,(4.17)

where η has been used to bound the last term in (4.17). By using (4.5) to estimate
the second derivative terms we find that

‖d2H‖C0 ≤ ε · n∗ sup
0≤j≤ν−1

{
‖d2g(0, 0)‖ + ε	max(r, δ)

+ 2r(‖d2g(0, 0)‖ + εr	max(r, δ))

+ r2(‖d2g(0, 0)‖ + ε	max(r, δ)) + η	max(r, δ)
}
.(4.18)

It is immediate from (4.18) and Steps 1 and 2 that a suitably small choice of ε
ensures that ‖H‖C2 ≤ r whenever ‖h‖C2 ≤ r. As a result, if we impose the following
restriction on the initial guess for a fixed point of Gε:

h0 ∈ Zr := {h ∈ C2(Ωδ,R
q) : ‖h‖C2 ≤ r},

then the C0-convergent sequence from Step 3 also satisfies (hn) ⊂ Zr. This means
that a C1+α-convergent subsequence can now be extracted from (hn), so that the
convergence of hn to h actually occurs in C1+α and h therefore lies in this smoother
space.

We have shown that there is a differentiable solution of (4.2) on a sufficiently
small ball around the origin, but there remains to prove the last part of Theorem 1
regarding the behavior of h at the origin. So let h be a C1 solution of (4.2) on some
ball Ωδ, and put ζ = h(0). It follows that ζ is a solution of the algebraic equation

−ζ + Nh(fε(0, ζ)) + gε(0, ζ) = 0,(4.19)

and (4.19) has solution ζ = 0. As the linearization of the left-hand side of (4.19) at
ζ = 0 is a multiple of the identity, the inverse function theorem ensures that ζ = 0
is the only solution of (4.19) in some neighborhood of zero, and this ensures that
h(0) = 0. Since any solution of (4.13) provides one of (4.2), we can differentiate (4.2)
with respect to u and set u = 0; this gives

dh(0) = Ndh(0)[C],

but then we can continue in an inductive manner to deduce that

Ndh(0)[C] = N2dh(0)[C2] = · · · = Nνdh(0)[Cν ] = 0,

as N is nilpotent. We find that dh(0) = 0, and this concludes the proof of Theo-
rem 1.

The question of maximal regularity of a solution of (4.2), or equivalently (4.13), is
not addressed, although the method of proof used in Theorem 1 can be continued by
restricting ε further as required to show that Gε maps the ball of radius r in Cj(Ωδ,R

p)
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into itself. This ensures that the sequence (hn) constructed in the proof of Theorem 1
converges to h in as strong a Cj norm as we like, provided that f and g are sufficiently
smooth. We cannot, however, be sure that the resulting solution h lies in C∞(Ωδ,R

p)
because the interval in which ε must reside so as to obtain a Cj fixed point of Gε could
shrink indefinitely as j grows.

Theorem 1 does not ensure the existence of a continuous fixed point of (4.2) which
is not Cα for some 0 < α < 1. If we take a continuous initial guess for a solution,
h0 ∈ C0(Ωδ,R

q), say, then, although there is a sequence of continuous functions
defined by hn+1 = Gε(hn), there is no reason to suspect that the sequence of iterates
(hn) will satisfy the property of being a C0-contractive sequence. On the other hand,
a suitably small C1 initial guess will lead to Cα convergence of the resulting iterates
for any α ∈ [0, 1).

4.4. Stability implies uniqueness. There are some simple cases where unique-
ness and smoothness can be easily established. The most obvious is where N = 0,
and then Theorem 1 can be proven using the elementary implicit function theorem.
Another occurs when the matrix denoted C that arises from the Kronecker normal
form of (A,B) in (3.5) satisfies ‖C‖ < 1 in the norm induced by | · |p. In this case the
cutoff function ψ used above is not needed in order to obtain a well-defined operator
π. If we define the Nemitskii operator

π(h)(u) = Cu + fε(u, h(u)),

and h ∈ C0(Ωδ,R
q) satisfies ‖h‖C0 ≤ r, then |Cu + fε(u, h(u))|p ≤ ‖C‖|u|p +

|fε(u, h(u))|p ≤ ‖C‖δ + ε · 	max(δ, r)2. In order for h(π(h)) to be well-defined, we
now need only to choose ε such that ‖C‖δ + ε · 	max(δ, r)2 ≤ δ, which can be done.
The proof of Theorem 1 then goes through with this minor modification, and the re-
sulting fixed point of Gε is unique in the space of continuously differentiable functions.

4.5. Polynomial approximation. Let us remove the dependence of (4.2) on ε
for clarity and return to the fixed-point problem (3.6) directly, which we recall defines
a nonlinear operator G via

h(u) = Nh(Cu + f(u, h(u))) + g(u, h(u)) =: (Gh)(u),

where h(0) = 0, dh(0) = 0.(4.20)

Proposition 1. Suppose that h ∈ Ck(Ωδ,R
q) is a solution of (4.20), and suppose

that h ∈ Ck(Ωδ,R
q) satisfies

h(u) −G(h)(u) = e(u), h(0) = 0,

where e is a given Ck function that satisfies e(0) = 0, de(0) = 0, . . . , dke(0) = 0. Then

|h(u) − h(u)|q = o(|u|kp) as u → 0.

Proof. If we define the function Δ := h− h, then we have to prove that

Δ(0) = 0, dΔ(0) = 0, . . . , dkΔ(0) = 0,

and the result then follows from the basic properties of the derivative. Clearly Δ(0) =
0, and differentiating (4.20) with respect to u gives

dh(u) = Ndh(Cu + f(u, h(u)))[C + duf(u, h(u)) + dvf(u, h(u))[dh(u)]]

+ dug(u, h(u)) + dvg(u, h(u))[dh(u)],
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and similarly,

dh(u) = Ndh(Cu + f(u, h(u)))[C + duf(u, h(u)) + dvf(u, h(u))[dh(u)]]

+ dug(u, h(u)) + dvg(u, h(u))[dh(u)] + de(u).

As a result, because h(0) = h(0) = 0, we find that

dΔ(0) = NdΔ(0)[C] + de(0) = NdΔ(0)[C],

by the assumption that de(0) = 0, so that

dΔ(0) = NdΔ(0)[C] = N2dΔ(0)[C2] = · · · = NνdΔ(0)[Cν ] = 0.

Continuing in a similar vein, we obtain

d2h(u) = Nd2h(Cu + f(u, h(u)))[C + duf(u, h(u))

+ dvf(u, h(u))[dh(u)]](2) + d2
uug(u, h(u)) + 2d2

uvg(u, h(u))[I, dh(u)]

+ d2
vvg(u, h(u))[dh(u), dh(u)] + dvg(u, h(u))[d2h(u)],

with a similar expression for d2h(u), with the additional presence of the term d2e(u).
We find that

d2h(0) = Nd2h(0)[C,C] + d2
uug(0, 0),(4.21)

and, because d2e(0) = 0, (4.21) also holds with h(0) replaced by h(0). We deduce
that the bilinear form d2Δ(0) satisfies

d2Δ(0)[X,Y ] = Nd2Δ(0)[CX,CY ] (∀X,Y ∈ R
p),

so that

d2Δ(0)[X,Y ] = Nνd2Δ(0)[CνX,CνY ] = 0 (∀X,Y ∈ R
p).

We omit the details, but by continuing inductively and assuming dje(0) = 0, one
obtains the result that the j-linear form djΔ(0) satisfies

djΔ(0)[X1, X2, . . . , Xj ] = NdjΔ(0)[CX1, CX2, . . . , CXj ]

for all X1, . . . , Xj ∈ R
p. The nilpotency of N now ensures that the latter quantity is

zero.
A simple corollary to Proposition 1 is that if (4.20) has two infinitely differentiable

solutions h and h defined on some neighborhood of zero, then they agree beyond all
orders at zero:

lim
u→0

|h(u) − h(u)|q
|u|kp

= 0 (∀k ≥ 1).
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5. Applications.

5.1. Nonlinear normal form. The first application of Theorem 1 is the fol-
lowing result, which says that (1.1) induces a local dynamical system on a manifold
in the sense of Definition 2. Recall the definition of the matrix pencil (A,B) via

(A,B) := (dzF (0, 0), dzF (0, 0)),

where F has (z, z) as its argument, and note that the following matrix pencil defined
on R

2m:

(A,B) :=

((
I 0
0 0

)
,

(
0 I
B A

))
,

satisfies σ(A,B) = −σ(A,B).
Theorem 2 (nonlinear Kronecker normal form). Let α ∈ [0, 1), and suppose that

(A1)–(A3) hold; then there is a linear space K1 and a C1+α-manifold M modeled on
K1 such that dim(K1) = #σ(A,B) and

1. for all (z, w) ∈ M there results F (z, w) = 0,
2. there is an r′ such that for each (z, w) ∈ M, with ‖(z, w)‖ < r′, there is a

unique (z, w) ∈ M such that w = z, and
3. there is a C1+α-diffeomorphism θ : K1 → M such that if (z, w) = θ(u) for

some u ∈ K1, then (z, w) = θ(ϕ(u)), where

ϕ(u) = Cu + p(u)

for some linear map C : K1 → K1 that satisfies σ(C) = σ(A,B). Moreover,
p : Bδ(0;K1) → K1 satisfies p(0) = 0 and dup(0) = 0.

Proof. From Theorem 1, first identify the linear space K1 from the KNF of (A,B)
with R

p and K2 with R
q. Now define the C1+α-graph

M̂ := {(u, h(u)) ∈ R
p ⊕ R

q : u ∈ Ωδ},

and let the r-neighborhood of zero in M̂ be M̂r := {(u, h(u)) ∈ R
p ⊕ R

q : |u|p < r}
whenever r < δ.

As a consequence of Theorem 1, there is an r > 0 such that for each (u, v) =
(u, h(u)) ∈ M̂r we can find a pair (u, v) given by (u, h(u)) ∈ M̂ such that (NF) is
satisfied:

u = Cu + f(u, v), Nv = v − g(u, v),

where C is obtained from the KNF of (A,B) so that σ(C) = −σ(A,B) = σ(A,B).
Let ϕ(u) := Cu + f(u, h(u)), and for each u ∈ R

p of sufficiently small norm set

θ(u) := Q(u, h(u)) and M ≡ Q(M̂), Mr ≡ Q(M̂r),

where the linear map Q is taken from the KNF of (A,B) from the discussion that
immediately follows (3.4). The map θ then provides a local diffeomorphism between
Ωδ and M; moreover both

F (θ(u)) = 0 and F (θ(ϕ(u))) = 0
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follow by the construction of h. The following diagram illustrates how a map is
induced on M in this way:

Mr −→ M
θ−1 ↓ ↑ θ

Ωr
ϕ−→ Ωδ

,

where θ−1(Q(u, h(u))) = u, and this concludes the proof.
The following immediate corollaries of Theorem 1 provide some information re-

garding the stable and unstable behavior of orbits in a neighborhood of a fixed point
of (1.1).

Corollary 1. Suppose that F satisfies (A1)–(A3) and (A,B) is a regular matrix
pencil with ρ(A,B) < 1; then there is a C1+α-solution manifold M of (1.1) containing
0 such that each (z, z) ∈ M supports a global orbit (zn)∞n=0 with (zn, zn+1) ∈ M, z0 =
z, z1 = z, and limn→∞ zn = 0.

Proof. The orbit is constructed by iterating the map ϕ(u) = Cu + p(u) given in
part 3 of Theorem 2: Because ρ(A,B) < 1 we have ρ(C) < 1 so that ϕ is a contraction
near the origin in some norm, and the result follows.

The following are the natural definitions of stable and unstable sets associated
with fixed points of (1.1); note that they are subsets of R

2m and not R
m.

Definition 4. The set

W s
loc(0) := {(z, z) ∈ R

2m : ∃ global orbit (zn)∞n=0, z0 = z, z1 = z, lim
n→∞

zn = 0}

is the local stable set associated with the zero fixed point of (1.1), and

Wu
loc(0) := {(z, z) ∈ R

2m : ∃ global orbit (zn)−∞
n=0, z−1 = z, z0 = z, lim

n→−∞
zn = 0}

is the local unstable set.
In case σ(A,B) contains elements outside the unit disk, one can apply the stable

manifold theorem for maps to ϕ in Theorem 2 to give the following result.
Corollary 2. Suppose that (A1)–(A3) are satisfied and (A,B) possesses ns

eigenvalues in the open unit disk; then (1.1) possesses a subset of the local stable set
which is a differentiable manifold of dimension ns.

There is an analogous corollary to show that the unstable set is nonempty and
contains a manifold of dimension nu, where nu is the number of elements of σ(A,B)
lying outside the closed unit disk. This result is obtained by applying Corollary 2 to
(1.1) but with time running backwards.

Corollary 3. Suppose that (A1)–(A3) are satisfied and (B,A) possesses nu

eigenvalues in the open unit disk; then (1.1) possesses a subset of the local unstable
set which is a differentiable manifold of dimension nu.

Proof. Let us rewrite (1.1) in the form

F (zn−1, zn) = 0(5.1)

to emphasize the fact that we are seeking an orbit that propagates backwards in time,
with (z−1, z0) given. The linearization of (5.1) is of the form

Bzn−1 + Azn

and if detB �= 0, then we may locally solve (5.1) for zn−1 = f(zn), and then one can
apply the stable manifold theorem for maps to this.
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On the other hand if detB = 0, then conditions (A1)–(A3), appropriately modi-
fied by exchanging the roles of z and z because time is flowing backwards, still apply
to (5.1) because (B,A) is a regular matrix pencil due to the fact that (A,B) is regular.
The result then follows from Corollary 2.

As A is a singular mapping it follows that the finite spectrum of (B,A) satisfies

σ(B,A) = (σ(A,B)\{0})−1 ∪ {0},

whether or not B is singular, and hence σ(B,A) contains zero so that nu ≥ 1. An
unstable manifold therefore always exists for (1.1) under conditions (A1)–(A3).

5.2. Bifurcation theorems. We now consider a Ck-mapping F : R
2m × R →

R
2m, where k ≥ 5, and examine the family of difference equations

F (zn, zn+1, μ) = 0.(5.2)

Define the one-parameter family of matrix pencils

P(μ) := (A(μ), B(μ)) := (dzF (0, 0, μ), dzF (0, 0, μ)),

where F has (z, z, μ) as its argument.
Theorem 3 (parameterized nonlinear KNF). Suppose that (0, 0) is a fixed point

of (5.2) for all μ ∈ R and that P(0) is a regular matrix pencil. Then there is a linear
space K1 and a C1+α-parameter family of C1+α-manifolds Mμ modeled on K1 such
that dim(K1) = #σ(P(0)) and

1. for all (z, w) ∈ Mμ there results F (z, w, μ) = 0,
2. there is an r′ (independent of μ) such that for each (z, w) ∈ Mμ, with

‖(z, w)‖ < r′, there is a unique (z, w) ∈ Mμ such that w = z, and
3. there is a C1+α-parameter family of C1+α-diffeomorphisms θμ : K1 → Mμ

such that if (z, w) = θμ(u) for some u ∈ K1, then (z, w) = θμ(ϕ(u, μ)), where

ϕ(u, μ) = C(μ)u + p(u, μ).

Moreover, C(·) is a C1+α-parameter family of maps in BL(K1) and, for some
δ > 0, p : Bδ(0;K1) ×Bδ(0; R) → K1 satisfies

p(0, μ) ≡ 0, dup(0, μ) ≡ 0.

4. If λ : [−δ, δ] → C is a continuous (and so bounded) curve, then λ(μ) ∈
σ(P(μ)) for all μ ∈ [−δ, δ] if and only if λ(μ) ∈ σ(C(μ)) for all μ ∈ [−δ, δ].

Proof. Consider the suspended difference equation

(S)

⎧⎨
⎩

μn+1 = μn,
zn+1 = wn,

0 = F (zn, wn, μn).

Let us write

F (z, w, μ) = A(μ)w + B(μ)z + F(z, w, μ),

where F (0, 0, μ) = 0, dzF (0, 0, μ) = B(μ), and dwF (0, 0, μ) = A(μ), and then consider
the following matrix pencil on R

2m:

(A,B(μ)) :=

((
I 0
0 0

)
,

(
0 I

B(μ) A(μ)

))
.
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This satisfies σ(A,B(μ)) = −σ(P(μ)) and is a regular matrix pencil when μ = 0, and
we can exploit this fact using the resulting Kronecker normal form to put (S) into a
normal form. If we set z = (z, w), then we may write (S) as

μ = μ,

Az = B(μ)z + F(z, μ),

where an overbar is used to denote a forward iterate. Now there is a matrix pair
(P,Q) such that PAQ = ( IK1

0
0 N

) and PB(0)Q = ( C 0
0 IK2

), where Q : R
2m →

K1 ⊕K2 = R
p+q and N is nilpotent. With (u, v) := w = Qz ∈ K1 ⊕K2, we obtain

μ = μ,(5.3)

u = α(μ)u + β(μ)v + G1(u, v, μ),(5.4)

Nv = γ(μ)u + δ(μ)v + G2(u, v, μ),(5.5)

where

α : K1 → K1, β : K2 → K1, γ : K1 → K2, and δ : K2 → K2

are differentiable linear maps in μ, and

α(0) = C, β(0) = 0, γ(0) = 0, and δ(0) = IK2 ,

where C ∈ BL(K1) is provided by the KNF of P(0) and σ(C) = −σ(A,B(0)) =
σ(P(0)). Moreover, G1 and G2 represent O2(u, v)-functions parameterized by μ.

Seeking an invariant manifold on which v = h(u, μ), we put (5.3)–(5.5) into the
form

μ = μ,(5.6)

u = Cu + O2(u, v, μ),(5.7)

Nv = v + O2(u, v, μ),(5.8)

where O2(u, v, μ) denotes a function of (u, v, μ) which vanishes to second or higher
order at the origin. From Theorem 1 we obtain a local invariant manifold of (5.6)–
(5.7) on which v = h(u, μ). Moreover h(0, 0) = 0, dh(0, 0) = 0, and we may assume
that h is C1.

It follows that h(u, μ) satisfies the functional equation

Nh(αu + βh(u, μ) + G1(u, h(u, μ), μ)) = γ(μ)u + δh(u, μ) + G2(u, h(u, μ), μ),

and if we set x = h(0, μ), then x satisfies the equation

Nh(βx + G1(0, x, μ), μ) = δ(μ)x + G2(0, x, μ).

The latter is an algebraic equation for x which we denote a(x, μ) = 0; moreover
a(0, μ) = 0 holds for all μ near 0, whence h(0, μ) ≡ 0. In addition, a short calculation
shows that

dxa(0, μ) = δ(μ) −Nduh(0, μ)[β(μ)],

which is an identity mapping when μ = 0. The implicit function theorem now ensures
that x = 0 is the only solution of a(x, μ) = 0 for all μ near 0.
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The functional equation satisfied by duh(u, μ) is then

−Nduh(αu + βh + G1(u, h, μ))[α + βduh + duG1 + dvG1 · duh]

+ γ + δduh + duG2 + dvG2 · duh = 0,

where various arguments have been omitted for brevity. If we write τ for the linear
map duh(0, μ), then

γ(μ) + δ(μ)τ = Nτ · [α(μ) + β(μ)τ ].

This is a Riccati equation for τ that can be solved near μ = 0 for τ as a function of
μ using the implicit function theorem and the properties of α, β, γ, and δ. The result
that τ(0) = 0 then follows because N is nilpotent and τ(0) = Nτ(0)[C].

We are now in a position to define the one-parameter family of matrices, denoted
by C(μ) in the statement of the theorem, namely,

C(μ) := α(μ) + β(μ)τ(μ),

so that C(0) = C. If C(μ) has an eigenvalue λ, say, then

(α + βτ)w = λw =⇒ γ + δτ = Nτ · [λw],

whence [
α β
γ δ

] [
w
τw

]
= λ

[
w

N · τw

]
,

and therefore

−λ ∈ σ

([
I 0
0 N

]
,

[
α β
γ δ

])
= σ(A,B(μ)) = −σ(P(μ)).

We have deduced that

σ(α(μ) + β(μ)τ(μ)) ⊆ σ(P(μ)),

but the left-hand side of this inclusion has dim(K1) elements counted according to
algebraic multiplicity, whereas the right-hand side may have more unless, that is,
μ = 0, in which case the inclusion is replaced by an equality because σ(α(0)) =
σ(C) = σ(P(0)).

As a result, if λ(μ) ∈ C([−δ, δ],C) is a continuous path of eigenvalues of P(μ), then
by virtue of the fact that λ(0) ∈ σ(α(μ) + β(μ)τ(μ)|μ=0), it follows by the continuous
dependence of eigenvalues on μ and by counting their location in the complex plane
that λ(μ) ∈ σ(α(μ) + β(μ)τ(μ)|μ
=0).

Conclusion 4 of Theorem 3 is not equivalent to saying that a locus of eigenvalues
of P(μ) is necessarily a locus of eigenvalues of C(μ). This is because P(μ) may have
other eigenvalues for small μ which become unbounded as μ tends to zero, and such
curves cannot correspond to eigenvalues of C(μ). This happens, for instance, in the
singularity-induced bifurcation theorem from [1] because an eigenvalue has a pole with
respect to the bifurcation parameter.
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5.2.1. Existence of bifurcations for (1.1). One can easily prove a period-
doubling bifurcation theorem for (1.1) without having recourse to the nonlinear normal
form given in Theorem 2, but we now include this result for completeness.

Theorem 4. Suppose that (5.2) satisfies the following hypotheses:
1. 1 �∈ σ(P(0)) and F (0, 0, μ) ≡ 0,
2. ker(−A(0) + B(0)) = 〈k〉, so that −1 ∈ σ(P(0)), and
3. B′(0)k �∈ im(−A(0) + B(0)).

Then μ = 0 is a period-doubling bifurcation point for (5.2) from the trivial solution
z = 0.

Proof. Consider the algebraic equation G(z, w, μ) = 0, where G : R
2m+1 → R

2m

is given by

G(z, w, μ) :=

[
F (z, w, μ)
F (w, z, μ)

]
,

and moreover G has the trivial solution branch. Also define G(z, μ) := F (z, z, μ), so
that

d(z,w)G(0, 0, μ) =

[
A(μ) B(μ)
B(μ) A(μ)

]
,

and dzG(0, μ) = A(μ)+B(μ). By assumption, A(0)+B(0) is invertible, and therefore
dzG(0, μ) is an invertible map for small |μ|, so that if G(z, w, μ) = 0 near μ = 0, then
z �= w unless z = w = 0. The theorem now follows from the simple eigenvalue
bifurcation theorem applied to G at μ = 0, noting that the kernel of d(z,w)G(0, 0, 0)
is (k,−k)T .

One can of course formulate a similarly straightforward fold bifurcation for (1.1)
in an entirely analogous fashion. However, the following theorem relies on Theorem 3
in a nontrivial way.

Theorem 5 (Neimark–Sacker bifurcation). Suppose that (5.2) has the fixed point
z = 0 for all μ ∈ R and that λ(μ) ∈ σ(P(μ)) is a curve which satisfies the following:

1. P(0) is a regular matrix pencil;
2. |λ(0)| = 1, and λ(0) is an algebraically simply eigenvalue of P(0);
3. λ(0)n �= 1 for n ∈ {1, 2, 3, 4};
4. d

dμ |λ(μ)|
∣∣
μ=0

�= 0.

Then modulo a further nonresonance condition1 there is a half-interval J ⊂ R con-
taining 0 in its closure such that (5.2) possesses a quasi-invariant circle Γμ ⊂ R

2m

for all μ ∈ J . Moreover, if diam(Γμ) = sup{‖z − w‖ : z, w ∈ Γμ}, then limμ→0

diam(Γμ) = 0.
Proof. Theorem 5 follows immediately from the Neimark–Sacker bifurcation for

maps applied to ϕ(u, μ) from Theorem 3 (part 3).

6. Examples. Example 1 (output-nulling control problem). The results in this
paper give sufficient conditions for a positive answer to the following question:

(Q) Given f(= f(x, u)) : R
n+m → R

n, g(= g(x)) : R
n → R

m such that f(0, 0) =
0, g(0) = 0, does there exist a sequence of states (xn) given by the iterates of
f and controls (un) such that g(xn) ≡ 0 and xn → 0 as n → ∞?

Thus, we seek a global orbit of the ΔAE

xn+1 = f(xn, un), g(xn) = 0.

1See [21] or [25, p. 376], where the open condition “a �= 0” is given, and this requires the
computation of third-order terms in the normal form for this bifurcation.
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A necessary condition for the existence of such a solution can be obtained by sub-
stituting the dynamic part of the problem into the constraint, to give the hidden
constraint

g(f(xn, un)) = 0 (∀n ≥ 1).

Hence, provided the function g(f(x, u)) has an invertible partial u-derivative at
(x, u) = (0, 0), by the stable manifold theorem the response to (Q) is affirmative if the
spectrum of the x-derivative of f(x, U(x)), also evaluated at (x, u) = (0, 0), contains
an element of the open unit disk. Here U(x) denotes the solution of the equation
g(f(x, U)) = 0 given locally by the implicit function theorem. Note for a moment
that if the stated u-derivative dg(0)duf(0, 0) is invertible, it follows that the matrix
pencil

(A,B) :=

((
Ix 0
0 0

)
,

(
dxf duf
dg 0

))∣∣∣∣
(x,u)=(0,0)

is regular, and thus (A1)–(A3) hold for this problem.
However, by using Theorem 1 one can dispense with the condition that dg(0)duf(0,

0) is invertible. In fact, let us assume that K := ker(dg(0)duf(0, 0)) �= {0}. In this
case, the matrix λA+B is invertible if −λ �∈ σ(dxf(0, 0)) and dg(λIx + dxf)−1duf is
also invertible at (x, u) = (0, 0). However, for λ large we have

λ2dg(λIx + dxf)−1duf = λdg(Ix + λ−1dxf)−1duf

= λdg(Ix − λ−1dxf + O(λ−2))duf

= λ dg · duf − dg · dxf · duf + O(λ−1),

evaluating all of the stated derivatives at (x, u) = (0, 0). As a result, if the weaker
condition holds that the pencil (dg ·duf, dg ·dxf ·duf) is regular, then (A,B) is regular
and (A1)–(A3) still apply. The response to (Q) is again affirmative if σ(A,B) contains
at least one member of the open unit disk.

In fact one can show that output-nulling control problems are well-posed in se-
quence spaces as follows. First consider the linear problem

Azn+1 + Bzn = Γn,(6.1)

where n ∈ N and (Γn) is a given sequence in

	∞
N

(Rm) =

{
(zn)n∈N : zn ∈ R

m, sup
n∈N

‖zn‖Rm < ∞
}
,

but detA = 0. If (A,B) is a regular matrix pencil with index ν, the KNF allows us
to write (6.1) in the form

un+1 = Cun + αn,(6.2)

Nvn+1 = vn + βn,(6.3)

where (un, vn) ∈ R
p+q. In order to solve (6.1), let us consider the linear operator

I − Nσ on a space of sequences 	∞
N

(Rq). We take linear maps T ∈ BL(Rq) to act
pointwise on 	∞

N
(Rq), so

T (wn)n∈N = (Twn)n∈N (∀(wn)n∈N ∈ 	∞
N

(Rq)),
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and we define σ the forward-shift map by

σ(wn)n∈N = (wn+1)n∈N (∀(wn)n∈N ∈ 	∞
N

(Rq)).

Any such T will commute with σ, and one can see by a direct multiplication that

(I −Nσ)

ν−1∑
i=0

N iσi = I,

where I denotes the identity on 	∞
N

(Rq).
One can solve (6.2) in a suitably weighted sequence space if no restrictions are to

be placed on the spectrum of (A,B). Equation (6.3) can also be solved:

v = −(I −Nσ)−1β = −
ν−1∑
i=0

N iσiβ,

where v = (vi)i∈N and β = (βi)i∈N, whence

vn = −
ν−1∑
i=0

N iβn+i.

So from a temporal point of view the current values of the state depend on future
values of the input, but (6.1) is still well-posed in a sequence space as v depends
continuously on β.

This means that a second- or higher-order nonlinear perturbation of (6.1),

Azn+1 + Bzn + F(zn) = Γn,(6.4)

say, where F(0) = 0, dF(0) = 0, can be written as an infinite-dimensional problem

(Aσ + B)z + F(z) = Γ(6.5)

in 	∞
N

(Rm), and one can apply the inverse function theorem to solve locally for small-
norm solutions of the form z = z(Γ), where z(0) = 0.

This solution can be found via the Picard iteration z(Γ) = limn→∞ y(n), where
y(0) = 0 and

y(n+1) = −(Aσ + B)−1[F(y(n)) − Γ].

As a result, writing the solution sequence z(Γ) as (zn(Γ))n∈N, it is clear that the
nonlinear perturbation will have the effect of making each zn depend on infinitely
many elements of the sequence Γ, unless ν happens to equal 1.

This effect has been observed before in the literature in the context of delay DAEs
[5, 13], where it is noted in the former reference that linear systems of delay DAEs
can act like advanced systems when their index is two or higher. The problem (6.5)
is displaying exactly this behavior.

Example 2. This example serves to illustrate how we can use Theorem 1 to deduce
qualitative similarities between a DAE and its discrete counterpart. Take the DAE

ẋ = f(x, y),(6.6)

g(x, y) = 0,(6.7)
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subject to x ∈ R
n, y ∈ R

m with an equilibrium at the origin, so that f(0, 0) =
0, g(0, 0) = 0. Let us impose a singularity of the form

ker(dyg(0, 0)) = 〈k〉 such that dyf(0, 0)dxg(0, 0)k �∈ im(dyg(0, 0)),(6.8)

and the equilibrium solution is isolated:

det

(
dxf(0, 0) dyf(0, 0)
dxg(0, 0) dyg(0, 0)

)
�= 0.

From [2] it is known that (6.6)–(6.7) has an invariant manifold W of dimension n− 1
that contains the origin and intersects the singularity in an n−2-dimensional manifold
of pseudoequilibria.

Now consider the forward-Euler method in state-space form [8, p. 375] applied to
(6.6)–(6.7), resulting in the difference equation

xi+1 − xi = hf(xi, yi),(6.9)

g(xi+1, yi+1) = 0.(6.10)

Using Theorem 1, in order to to show that (6.9)–(6.10) possesses a quasi-invariant
manifold of solutions Wh that contains the origin and has dimension n − 1, we need
only show that (A1)–(A3) hold, which entails showing that the derivative at the origin
of (6.9)–(6.10) is a regular matrix pencil. Hence we seek a ξ ∈ C such that

det

(
ξ

[
I 0

dxg dyg

]
+

[
I + hdxf hdyf

0 0

])∣∣∣∣
(x,y)=(0,0)

�= 0.

However, the conditions in (6.8) ensure the existence of such a ξ for any fixed h �= 0,
and the existence of Wh follows. The dimension of Wh comes from counting the
number of finite eigenvalues of the linearization of (6.9)–(6.10) which is given in [1]
as n− 1.

Example 3. Consider again (6.6)–(6.7) but now with a parameter α

ẋ = f(x, y, α), g(x, y, α) = 0,(6.11)

and suppose that (x, y) = (0, 0) is an equilibrium locus for all α ∈ R. Now suppose
that the conditions for a Hopf bifurcation are formally satisfied by (6.11) at α = α0:
ω(α) ∈ σ(M,−L(α)) is a locus of algebraically simple eigenvalues, where

M =

[
I 0
0 0

]
, L(α) =

[
dxf(0, 0, α) dyf(0, 0, α)
dxg(0, 0, α) dyg(0, 0, α)

]
;

and ω(α0) = iω0 is an eigenvalue of (M,−L(α)) such that d
dα�(ω(α))

∣∣
α=α0

is non-

zero. Also, no other eigenvalues of the regular matrix pencil (M,−L(α0)) have a zero
real part.

Then, modulo an open condition on the third-order derivatives of the smooth functions
f and g, we can show that the backward-Euler method

xi+1 − xi = hf(xi+1, yi+1),(6.12)

−h · g(xi+1, yi+1) = 0,(6.13)
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satisfies the conditions of the Neimark–Sacker bifurcation theorem for all sufficiently
small h > 0. Note that (M − hL(α),−M) is the linearization of (6.12)–(6.13) about
the zero fixed point and is a regular matrix pencil for h > 0 and α ≈ α0 such that

(1 − hω(α))−1 ∈ σ(M − hL(α),−M) (∀α).

In order to apply Theorem 5 to (6.12)–(6.13) we first note that the eigenvalue
locus (1 − hω(α))−1 has unit length if and only if 1 − hω(α) has unit length. If we
define functions R(α) and I(α) by ω(α) = R(α) + iI(α), then |1 − hω(α)| = 1 if and
only if (1 − hR(α))2 + h2I(α)2 = 1, which holds when

h

(
−R(α) +

h

2
(R(α)2 + I(α)2)

)
= 0.(6.14)

As a result, we define the function b(α, h) := −R(α) + h
2 (R(α)2 + I(α)2) and

note that b(α, h) = 0 for h > 0 ensures that the linearization of (6.12)–(6.13) at (0, 0)
has an eigenvalue of unit modulus. Now b(α0, 0) = 0 and ∂b

∂α (α0, 0) = −R′(α0) �= 0
by assumption, and, as a result, one may solve b(α, h) = 0 locally using the implicit
function theorem for α = α(h) such that α(0) = α0.

From this calculation one can show that the numerical scheme (6.12)–(6.13) has

a quasi-invariant circle for α in some half-neighborhood of α(h) = α0 +
hω2

0

R′(α) +O(h2)

provided h > 0 is sufficiently small.
Note that no assumption is made regarding the invertibility of dyg(0, 0, 0). If

this mapping were invertible in addition to the formal conditions given above for
Hopf bifurcation, then the existence of a locus of periodic solutions of (6.11) could be
deduced. However, without the invertibility of dyg(0, 0, 0), it is not known whether
a Hopf bifurcation occurs in (6.11), but (6.12)–(6.13) has a locus of invariant circles
nevertheless.

6.1. Concluding remark. The results in this paper can be used to show that
second-order problems of the form

F (zn, zn+1, zn+2) = 0(6.15)

have quasi-invariant manifolds provided that the appropriate matrix pencil is regular
simply by rewriting (6.15) as a first-order problem. However, the methods of this
paper do not easily extend to the study of invariant manifolds of the system that one
would like to study if (1.1) had a period-2 orbit (z, w, z, w, . . .), namely, the system

F (zn, zn+1) = 0,(6.16)

F (zn+1, zn+2) = 0,(6.17)

where F (z, w) = 0 and F (w, z) = 0, with w �= z. Another approach is needed to
answer the question of whether overdetermined systems of this type have any invariant
manifolds associated with them.
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Abstract. In this paper, we prove the existence and uniqueness of the solutions for the two-
dimensional viscous shallow water equations with low regularity assumptions on the initial data as
well as the initial height bounded away from zero.

Key words. shallow water equations, well-posedness, Bony’s paraproduct decomposition,
weight Besov space

AMS subject classifications. 35Q35, 76D

DOI. 10.1137/060660552

1. Introduction. In this paper, we study the two-dimensional (2D) viscous shal-
low water equations with a more general diffusion,

(1.1)

⎧⎪⎨
⎪⎩

ht + div(hu) = 0,

h(ut + u · ∇u) − ν∇ · (hD(u)) − ν∇(hdiv(u)) + h∇h = 0,

u(0, ·) = u0, h(0, ·) = h0,

where h(t, x) is the height of fluid surface, u(t, x) = (u1(t, x), u2(t, x)) is the horizontal
velocity vector field, D(u) = 1

2 (∇u+∇ut) is the deformation tensor, and ν > 0 is the
viscous coefficient.

Recently, the viscous shallow water equations have been widely studied by mathe-
maticians; see the review paper [4]. Bui [5] proved the local existence and uniqueness
of classical solutions to the Cauchy–Dirichlet problem for shallow water equations
with initial data h0, u0 in Hölder spaces as well as h0 bounded away from a vacuum.
Kloeden [17] and Sundbye [20] independently proved global existence and unique-
ness of classical solutions to the Cauchy–Dirichlet problem in Sobolev spaces. Later,
Sundbye [21] also proved global existence and uniqueness of classical solutions to the
Cauchy problem. However, for all of the above results (except those of [5]), the au-
thors only consider the case when the initial data h0 is a small perturbation of some
positive constant h̄0 and u0 is small in some sense. Very recently, Wang and Xu [23]
proved the local well-posedness of the Cauchy problem in Sobolev spaces for the large
data u0 and h0 closing to h̄0. More precisely, they obtained the following result.

Theorem 1.1 (see [23]). Let h̄0 be a strictly positive constant and s > 2. Assume
that

(i) (u0, h0 − h̄0) ∈ Hs(R2) ⊗Hs(R2);
(ii) ‖h0 − h0‖Hs � h0.
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Then there exist a positive time T and a unique solution (u, h) of (1.1) such that

u, h− h̄0 ∈ L∞([0, T ], Hs), ∇u ∈ L2([0, T ];Hs).(1.2)

Moreover, there exists a strictly positive constant c such that if

‖u0‖Hs + ‖h0 − h̄0‖Hs ≤ c,(1.3)

then we can choose T = +∞.
One purpose of this paper is to study the well-posedness of (1.1) for the initial

data with the minimal regularity. For the incompressible Navier–Stokes equations,
such research has been initiated by Fujita and Kato [16]; see also [6, 7, 18] for other
relevant results. They proved local well-posedness for the incompressible Navier–
Stokes equations in the scaling invariant space. The scaling invariance means that
if (u, p) is a solution of the incompressible Navier–Stokes equations with initial data
u0(x), then

uλ(t, x) � λu(λ2t, λx), pλ(t, x) � λ2p(λ2t, λx)(1.4)

is also a solution of the incompressible Navier–Stokes equations with u0,λ � λu0(λx).

Obviously, Ḣ
d
2−1(Rd) is a scaling invariant space under the scaling of (1.4), i.e.,

‖uλ‖
Ḣ

d
2
−1 = ‖u‖

Ḣ
d
2
−1 .

Equations (1.1) have no scaling invariance like the incompressible Navier–Stokes equa-
tions. However, due to the similarity of the structure between (1.1) and the incom-
pressible Navier–Stokes equations, we still solve (1.1) for initial data whose regularity
fits the scaling of (1.4). It should be pointed out that Danchin was the first to consider
the same problem for the compressible Navier–Stokes equations, and some ideas of
this paper are motivated by [11].

The second purpose of this paper is to prove the local well-posedness of (1.1)
under the more natural assumption that the initial height is bounded away from
zero. For the initial data with slightly higher regularity, this can be easily obtained
by modifying the argument of Danchin [13]. However, for the initial data with low
regularity, his method is not applicable anymore, since the proof of [13] relies on the
fact that some profits can be gained from the inclusion map Bs ↪→ L∞ in the case of
s > d

2 . For this reason, we have to introduce some kind of weighted Besov space Es
T

(see section 3), which is crucial to eliminating the condition that the initial height h0

is close to h̄0. One important observation is that the Es
T norm of the solution is small

for small time T .
Before stating our main result, let us first introduce some notations and defini-

tions. Choose a radial function ϕ ∈ S(Rd) such that

suppϕ ⊂
{
ξ ∈ R

d;
5

6
≤ |ξ| ≤ 12

5

}
,

∑
k∈Z

ϕ(2−kξ) = 1, ξ ∈ R
d \ {0}.

Here ϕk(ξ) = ϕ(2−kξ), k ∈ Z.
Definition 1.1. Let k ∈ Z. The Littlewood–Paley projection operators Δk and

Sk are defined as follows:

Δkf = ϕ(2−kD)f, Skf =
∑

j≤k−1

Δjf for f ∈ S ′(Rd).
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We denote the space Z ′(Rd) by the dual space of Z(Rd) = {f ∈ S(Rd); Dαf̂(0) =
0;∀α ∈ N

d multi-index}; it also can be identified by the quotient space of S ′(Rd)/P
with the polynomials space P. The formal equality

f =
∑
k∈Z

Δkf

holds true for f ∈ Z ′(Rd) and is called the homogeneous Littlewood–Paley decompo-
sition. It has nice properties of quasi-orthogonality: with our choice of ϕ,

ΔjΔkf = 0 if |j − k| ≥ 2 and Δj(Sk−1Δkf) = 0 if |j − k| ≥ 4.(1.5)

Definition 1.2. Let s ∈ R, 1 ≤ p, r ≤ +∞. The homogeneous Besov space Ḃs
p,r

is defined by

Ḃs
p,r = {f ∈ Z ′(Rd) : ‖f‖Ḃs

p,r
< +∞},

where

‖f‖Ḃs
p,r

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑
k∈Z

2ksr‖Δkf‖rp
) 1

r

for r < +∞,

sup
k∈Z

2ks‖Δkf‖p for r = +∞.

If p = r = 2, Ḃs
2,2 = Ḣs, and if d = 2, we have Ḃ1

2,1 ↪→ L∞ and

‖f‖∞ ≤ C‖f‖Ḃ1
2,1

.

We refer to [8, 22] for more details.
In addition to the general time-space space such as Lρ(0, T ; Ḃs

p,r), we introduce a

useful mixed time-space homogeneous Besov space L̃ρ
T (Ḃs

p,r), which was initiated in
[10] and will be used in the proof of the uniqueness.

Definition 1.3. Let s ∈ R, 1 ≤ p, r, ρ ≤ +∞, 0 < T ≤ +∞. The mixed
time-space homogeneous Besov space L̃r

T (Ḃs
p,q) is defined by

L̃ρ
T (Ḃs

p,r) = {f ∈ Z ′(Rd+1) : ‖f‖L̃ρ
T (Ḃs

p,r) < +∞},

where

‖f‖L̃ρ
T (Ḃs

p,r) =

∥∥∥∥2ks
(∫ T

0

‖Δkf(t)‖ρpdt
) 1

ρ
∥∥∥∥
�r
.

Using the Minkowski inequality, it is easy to verify that

Lρ
T (Ḃs

p,r) ⊆ L̃ρ
T (Ḃs

p,r) if ρ ≤ r and L̃ρ
T (Ḃs

p,r) ⊆ Lρ
T (Ḃs

p,r) if ρ ≥ r.

Next, we introduce a hybrid-index Besov space which plays an important role in
the study of compressible fluids and was initiated in [11, 12].

Definition 1.4. Let s, σ ∈ R, and set

‖f‖B̃s,σ
2

�
∑
k≤0

2ks‖Δkf‖2 +
∑
k>0

2kσ‖Δkf‖2.
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Let m = −[d2 + 1 − s]; we define

B̃s,σ
2 (Rd) = {f ∈ S ′(Rd) : ‖f‖B̃s,σ

2
< +∞} if m < 0,

B̃s,σ
2 (Rd) = {f ∈ S ′(Rd)/Pm : ‖f‖B̃s,σ

2
< +∞} if m ≥ 0,

where Pm denotes the set of polynomials of degree ≤ m.
Throughout this paper, we will denote Ḃs

2,1 by Bs and B̃s,σ
2 by B̃s,σ. The following

facts can be easily verified by using the definition of B̃s,σ:
(i) B̃s,s = Ḃs

2,1.

(ii) If s ≤ σ, then B̃s,σ = Ḃs
2,1 ∩ Ḃσ

2,1. Otherwise, B̃s,σ = Ḃs
2,1 + Ḃσ

2,1.
Now we state our main result as follows.
Theorem 1.2. Let h̄0 be a positive constant. Assume that
(i) (u0, h0 − h̄0) ∈ B0(R2) ⊗ B̃0,1(R2);
(ii) h0 ≥ h̄0.

Then there exist a positive time T and a unique solution (u, h) of (1.1) such that

u ∈ C([0, T ];B0) ∩ L1(0, T ;B2),

h− h̄0 ∈ C([0, T ]; B̃0,1) ∩ L1(0, T ; B̃2,1), h ≥ 1

2
h̄0.

(1.6)

Moreover, there exists a strictly positive constant c such that if

‖u0‖B0 + ‖h0 − h̄0‖B̃0,1 ≤ c,(1.7)

then we can choose T = +∞.
The structure of this paper is as follows. In section 2, we recall some useful

multilinear estimates in the Besov spaces. In section 3, we prove the existence of
the solution. In section 4, we prove the uniqueness of the solution. Finally, in the
appendix, we prove some multilinear estimates in the weighted Besov spaces.

Throughout the paper, C denotes various “harmless” large finite constants, and c
denotes various “harmless” small constants. We shall sometimes use X � Y to denote
the estimate X ≤ CY for some constant C. We denote ‖ · ‖p by the Lp norm of a
function.

2. Multilinear estimates in the Besov spaces. Let us first recall Bony’s
paraproduct decomposition.

Definition 2.1. We shall use the following Bony paraproduct decomposition (see
[1, 3]):

fg = Tfg + Tgf + R(f, g),(2.1)

with

Tfg =
∑
k∈Z

Sk−1fΔkg and R(f, g) =
∑
k∈Z

∑
|k′−k|≤1

ΔkfΔk′g.(2.2)

Next, let us recall some useful lemmas and multilinear estimates in the Besov
spaces.

Lemma 2.1 (Bernstein’s inequality). Let 1 ≤ p ≤ q ≤ +∞. Assume that
f ∈ S ′(Rd); then for any γ ∈ Z

d, there exist constants C1, C2 independent of f , j
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such that

suppf̂ ⊆ {|ξ| ≤ A02
j} ⇒ ‖∂γf‖q ≤ C12

j|γ|+jd( 1
p−

1
q )‖f‖p,

suppf̂ ⊆ {A12
j ≤ |ξ| ≤ A22

j} ⇒ ‖f‖p ≤ C22
−j|γ| sup

|β|=|γ|
‖∂βf‖p.

The proof can be found in [8].
Proposition 2.2. If s > 0, f, g ∈ Bs ∩ L∞, then fg ∈ Bs ∩ L∞ and

(2.3) ‖fg‖Bs ≤ C(‖f‖∞‖g‖Bs + ‖g‖∞‖f‖Bs).

If s1, s2 ≤ d
2 such that s1 + s2 > 0, f ∈ Bs1 , and g ∈ Bs2 , then fg ∈ Bs1+s2− d

2 and

‖fg‖
Bs1+s2− d

2
≤ C‖f‖Bs1‖g‖Bs2 .(2.4)

If |s| < d
2 , 1 ≤ r ≤ +∞, f ∈ Ḃs

2,r, and g ∈ B
d
2 , then fg ∈ Ḃs

2,r and

(2.5) ‖fg‖Ḃs
2,r

≤ C‖f‖Ḃs
2,r

‖g‖
B

d
2
.

If s ∈ (−d
2 ,

d
2 ], f ∈ Bs, and g ∈ Ḃ−s

2,∞, then fg ∈ Ḃ
− d

2
2,∞ and

‖fg‖
Ḃ

− d
2

2,∞

≤ C‖f‖Bs‖g‖Ḃ−s
2,∞

.(2.6)

If 1 ≤ ρ1, ρ2, ρ ≤ ∞, s ∈ (−d
2 ,

d
2 ], f ∈ L̃ρ1

T (Bs), and g ∈ L̃ρ2

T (Ḃ−s
2,∞), then there holds

‖fg‖
L̃ρ

T (Ḃ
− d

2
2,∞)

≤ C‖f‖L̃ρ1
T (Bs)‖g‖L̃ρ2

T (Ḃ−s
2,∞),(2.7)

where 1
ρ1

+ 1
ρ2

= 1
ρ .

Proof. For the sake of simplicity, we present only the proof of (2.4); the others can
be deduced in the same way (see also [14, 19]). By Bony’s paraproduct decomposition
and the property of quasi-orthogonality (1.5), for fixed j ∈ Z, we write

Δj(fg) =
∑

|k−j|≤3

Δj(Sk−1fΔkg) +
∑

|k−j|≤3

Δj(Sk−1gΔkf)

+
∑

k≥j−2

∑
|k−k′|≤1

Δj(ΔkfΔk′g)

� I + II + III.

Thanks to the definition of Besov space Bs, we have

‖fg‖
Bs1+s2− d

2
≤

(∑
j∈Z

2(s1+s2− d
2 )j‖I‖2

)
+ · · · +

(∑
j∈Z

2(s1+s2− d
2 )j‖III‖2

)

� I ′ + II ′ + III ′.(2.8)
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It suffices to estimate the above three terms separately. Using Young’s inequality and
Lemma 2.1, we have

‖Δj(Sk−1fΔkg)‖2 � ‖Sk−1f‖∞‖Δkg‖2 �
∑

k′≤k−2

‖Δk′f‖∞‖Δkg‖2

�
∑

k′≤k−2

2k
′s1‖Δk′f‖22

k′( d
2−s1)‖Δkg‖2

� ‖f‖Bs1‖Δkg‖22
k( d

2−s1),

where we have used the fact s1 ≤ d
2 in the last inequality. Hence, we get

I ′ � ‖f‖Bs1

∑
j∈Z

2(s1+s2− d
2 )j

∑
|k−j|≤3

2k( d
2−s1)‖Δkg‖2

� ‖f‖Bs1

∑
|�|≤3

2−(s1+s2− d
2 )�

∑
j∈Z

2s2(j+�)‖Δj+�g‖2 � ‖f‖Bs1‖g‖Bs2 .(2.9)

Similarly, using the fact s2 ≤ d
2 , we can obtain

II ′ � ‖f‖Bs1‖g‖Bs2 .(2.10)

Now we turn to estimate III ′. From Lemma 2.1 and the Hölder inequality, it follows
that

‖Δj(ΔkfΔk′g)‖2 � 2j
d
2 ‖ΔkfΔk′g‖1 � 2j

d
2 ‖Δkf‖2‖Δk′g‖2.

So, we get by the Minkowski inequality that for s1 + s2 > 0

III ′ �
∑
j∈Z

2(s1+s2− d
2 )j2j

d
2

( ∑
k≥j−2

∑
|k−k′|≤1

‖Δkf‖2‖Δk′g‖2

)

�
∑
�≥−2

2−(s1+s2)�
∑
j∈Z

2s1(j+�)‖Δj+�f‖2‖g‖Bs2 � ‖f‖Bs1‖g‖Bs2 .(2.11)

Summing up (2.8)–(2.11), we get the desired inequality (2.4).

Proposition 2.3. (1) Let s > 0. Assume that F ∈ W
[s]+2,∞
loc (Rd) such that

F (0) = 0. Then there exists a constant C(s, d, F ) such that if u ∈ Bs ∩ L∞, it holds
that

‖F (u)‖Bs ≤ C(1 + ‖u‖∞)[s]+1‖u‖Bs ;(2.12)

and if u ∈ Ḃs
2,∞ ∩ L∞, it holds that

‖F (u)‖Ḃs
2,∞

≤ C(1 + ‖u‖∞)[s]+1‖u‖Ḃs
2,∞

.(2.13)

(2) Assume that G ∈ W
[ d2 ]+3,∞
loc (Rd) such that G′(0) = 0. Then there exists a

functions C(s, d,G) such that if −d
2 < s ≤ d

2 , u, v ∈ B
d
2 ∩ L∞ and u − v ∈ Bs, it

holds that

‖G(u) −G(v)‖Bs ≤ C(‖u‖∞, ‖v‖∞)(‖u‖
B

d
2

+ ‖v‖
B

d
2
)‖u− v‖Bs ;(2.14)
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and if |s| < d
2 , u, v ∈ B

d
2 ∩ L∞ and u− v ∈ Ḃs

2,∞, it holds that

‖G(u) −G(v)‖Ḃs
2,∞

≤ C(‖u‖∞, ‖v‖∞)(‖u‖
B

d
2

+ ‖v‖
B

d
2
)‖u− v‖Ḃs

2,∞
.(2.15)

Proof. We can refer to [2, 19] for the proof of (1). For (2), we refer to [11, 15].
For example, we write

G(u) −G(v) = (u− v)

∫ 1

0

G′(v + τ(u− v))dτ.

Then it follows from (2.5) that for |s| < d
2

‖G(u) −G(v)‖Ḃs
2,∞

≤ C‖u− v‖Ḃs
2,∞

‖G′(v + τ(u− v))‖
B

d
2
,

which together with (2.12) implies (2.15).
Proposition 2.4. Let A be a homogeneous smooth function of degree m. Assume

that −d
2 < s1, t1, s2, t2 ≤ 1 + d

2 . Then it holds that if k ≥ 1,

|(A(D)Δk(v · ∇f), A(D)Δkf)|

� αk2
−k(s2−m)‖v‖

B
d
2

+1‖f‖B̃s1,s2
‖A(D)Δkf‖2;(2.16)

if k ≤ 0,

|(A(D)Δk(v · ∇f), A(D)Δkf)|

� αk2
−k(s1−m)‖v‖

B
d
2

+1‖f‖B̃s1,s2
‖A(D)Δkf‖2;(2.17)

if k ≥ 1,

|(A(D)Δk(v · ∇f),Δkg) + (Δk(v · ∇g), A(D)Δkf)|

� αk‖v‖
B

d
2

+1(2
−kt2‖g‖B̃t1,t2

‖A(D)Δkf‖2 + 2−k(s2−m)‖f‖B̃s1,s2
‖Δkg‖2);(2.18)

and if k ≤ 0,

|(A(D)Δk(v · ∇f),Δkg) + (Δk(v · ∇g), A(D)Δkf)|

� αk‖v‖
B

d
2

+1(2
−kt1‖g‖B̃t1,t2

‖A(D)Δkf‖2 + 2−k(s1−m)‖f‖B̃s1,s2
‖Δkg‖2),(2.19)

where
∑

k∈Z
αk ≤ 1.

For the proof we refer to [12].

3. Existence. In this section, we prove the existence of the solution for the 2D
viscous shallow water equations. Without loss of generality, we assume that h̄0 = 1
and ν = 1. Replacing h by h + 1 in (1.1), we rewrite (1.1) as

(3.1)

⎧⎪⎨
⎪⎩

ht + divu + div(hu) = 0,

ut − (∇ ·D(u) + ∇divu) + u · ∇u− ∇h
1+h (D(u) + divu) + ∇h = 0,

u(0, ·) = u0, h(0, ·) = h0.
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3.1. The linearized system. In this subsection, we consider the linearized
system of (3.1):

(3.2)

⎧⎪⎨
⎪⎩

ht + v · ∇h + divu = H,

ut − (∇ ·D(u) + ∇divu) + v · ∇u + ∇h = G,
u(0, ·) = u0, h(0, ·) = h0.

Let us first introduce some definitions. Set

erk(t) � (1 − e−cr22kt)
1
r , ωk(t) =

∑
k̃≥k

2−(k̃−k)(e1
k̃
(t) + e2

k̃
(t)),

where c is a positive constant which will be determined later. We remark that

ωk(t) ≤ C for any k ∈ Z,

which will be constantly used in the following.
Definition 3.1. Let s ∈ R and T > 0. The function space Es

T is defined by

Es
T = {f ∈ Z ′((0, T ) × R

d) : ‖f‖Es
T
< +∞},

where

‖f‖Es
T

�
∑
k∈Z

2ksωk(T )‖Δkf‖L∞
T (L2).

Definition 3.2. Let s1, s2 ∈ R and T > 0. The function space Ẽs1,s2
T is defined

by

Ẽs1,s2
T = {f ∈ Z ′((0, T ) × R

d) : ‖f‖Ẽs1,s2
T

< +∞},

where

‖f‖Ẽs1,s2
T

�
∑
k≤0

2ks1ωk(T )‖Δkf‖L∞
T (L2) +

∑
k≥1

2ks2ωk(T )‖Δkf‖L∞
T (L2).

Remark 3.1. If s1 ≤ s2, then Ẽs1,s2
T = Es1

T ∩Es2
T . Otherwise, Ẽs1,s2

T = Es1
T +Es2

T .
Let (u, h) be a smooth solution of (3.2). We want to establish the following a

priori estimates for (h, u):

‖u‖L1
T (B2) + ‖u‖L2

T (B1) + ‖h‖Ẽ0,1
T

≤ C
∑
k∈Z

ωk(T )Ek(0) + C
∑
k∈Z

ωk(T )‖ΔkG(t)‖L1
T (L2)

+C
∑
k≥1

ωk(T )‖∇ΔkH(t)‖L1
T (L2) + C

∑
k<1

ωk(T )‖ΔkH(t)‖L1
T (L2)

+C‖u‖L2
T (B1)‖v‖L2

T (B1) + C‖h‖Ẽ0,1
T

‖v‖L1
T (B2)(3.3)

and

‖u‖L∞
T (B0) + ‖h‖L∞

T (B̃0,1) + ‖h‖L1
T (B̃2,1)

≤ E0 + C

(
‖H‖L1

T (B̃0,1) + ‖G‖L1
T (B0) +

∫ T

0

V ′(t)(‖u(t)‖B0 + ‖h(t)‖B̃0,1)dt

)
,(3.4)
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where V (t) = ‖v(t′)‖L1
t (B

2) and

E0 =
∑
k∈Z

Ek(0), Ek(t) =

{
Ehk(t), k ≥ 1,

Elk(t), k < 1,

with

E2
hk(t) =

1

2
‖uk(t)‖2

2 + ‖∇hk(t)‖2
2 + (uk(t),∇hk(t)),

E2
lk(t) =

1

2
‖uk(t)‖2

2 +
1

2
‖hk(t)‖2

2 +
1

8
(uk(t),∇hk(t)).

Let us begin with the proof of (3.3) and (3.4). Set

uk = Δku, hk = Δkh, Hk = ΔkH, Gk = ΔkG.

Then we get by applying the operator Δk to (3.2) that

(3.5)

⎧⎪⎨
⎪⎩

∂thk + Δk(v · ∇h) + divuk = Hk,

∂tuk − (∇ ·D(uk) + ∇divuk) + Δk(v · ∇u) + ∇hk = Gk,

uk(0, ·) = Δku0, hk(0, ·) = Δkh0.

Multiplying the second equation of (3.5) by uk, and integrating the resulting equation
over R

2, we obtain

1

2

d

dt
‖uk‖2

2 +
1

2
‖∇uk‖2

2 +
3

2
‖divuk‖2

2 + (∇hk, uk) = (Gk, uk) − (Δk(v · ∇u), uk).(3.6)

In the following, we will deal with the high frequency and the low frequency of h
in a different manner.

High frequencies: k ≥ 1. First, applying ∇ to the first equation of (3.5) and
multiplying it by ∇hk, then integrating the resulting equation over R

2, we obtain

1

2

d

dt
‖∇hk‖2

2 + (∇divuk,∇hk) = (∇Hk,∇hk) − (∇Δk(v · ∇h),∇hk).(3.7)

Second, applying the operator ∇ to the first equation of (3.5) and taking the L2

product of the resulting equation with uk, then taking the L2 product of the second
equation of (3.5) with ∇hk, we get by summing them up that

d

dt
(uk,∇hk) − ‖divuk‖2

2 − 2(∇divuk,∇hk) + ‖∇hk‖2
2

= (∇Hk, uk) + (Gk,∇hk) − (∇Δk(v · ∇h), uk) − (Δk(v · ∇u),∇hk),(3.8)

where we used the fact that

(∇ ·D(uk) + ∇divuk,∇hk) = 2(∇divuk,∇hk).
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Then we get by summing up (3.6), (3.7)×2, and (3.8) that

d

dt

[
1

2
‖uk‖2

2 + ‖∇hk‖2
2 + (uk,∇hk)

]

+

[
‖∇hk‖2

2 +
1

2
‖∇uk‖2

2 +
1

2
‖divuk‖2

2 + (∇hk, uk)

]

=
[
(∇Hk, uk) + 2(∇Hk,∇hk) + (Gk, uk) + (Gk,∇hk)

]
−(Δk(v · ∇u), uk) − 2(∇Δk(v · ∇h),∇hk)

−
[
(∇Δk(v · ∇h), uk) + (Δk(v · ∇u),∇hk)

]
� I + II + III + IV.(3.9)

Note that

(uk,∇hk) ≤
1

3
‖uk‖2

2 +
3

4
‖∇hk‖2

2;

hence, we get by the definition of Ehk that

1

6
(‖uk‖2

2 + ‖∇hk‖2
2) ≤ E2

hk ≤ 2(‖uk‖2
2 + ‖∇hk‖2

2).(3.10)

Similarly, using the fact that 5
62k ≥ 5

3 and (3.10), we have

‖∇hk‖2
2 +

1

2
‖∇uk‖2

2 +
1

2
‖divuk‖2

2 + (∇hk, uk) ≥
1

8
E2

hk.(3.11)

By summing up (3.9)–(3.11), we obtain

d

dt
E2

hk + cE2
hk ≤ C|I + II + III + IV |.(3.12)

In order to obtain (3.3), we use Lemma 5.1 to deal with the right-hand terms of
(3.12). First, we get by using the Cauchy–Schwarz inequality and (3.10) that

|I| ≤ C(‖∇Hk(t)‖2 + ‖Gk(t)‖2)Ehk.(3.13)

From Lemma 5.1 and (3.10), it follows that

|II + III + IV | ≤ C(‖F1
k (t)‖2 + ‖F̃0

k (t)‖2)Ehk.(3.14)

By summing up (3.12), and (3.13)–(3.14), we obtain

d

dt
Ehk + cEhk ≤ C

(
‖∇Hk(t)‖2 + ‖Gk(t)‖2 + ‖F1

k (t)‖2 + ‖F̃0
k (t)‖2

)
,(3.15)

which implies that

‖Ehk(t)‖L∞
T

≤Ehk(0) + C
(
‖∇Hk(t)‖L1

T (L2) + ‖Gk(t)‖L1
T (L2)

+ ‖F1
k (t)‖L1

T (L2) + ‖F̃0
k (t)‖L1

T (L2)

)
.(3.16)
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Furthermore, by (5.4) and (5.5), it holds that∑
k∈Z

ωk(T )
(
‖F1

k (t)‖L1
T (L2) + ‖F̃0

k (t)‖L1
T (L2)

)

≤ C
(
‖u‖L2

T (B1)‖v‖L2
T (B1) + ‖h‖E1

T
‖v‖L1

T (B2)

)
.

Multiplying ωk(T ) on both sides of (3.16), then summing up the resulting equation
over k ≥ 1, we obtain∑

k≥1

ωk(T )‖Ehk(t)‖L∞
T

≤
∑
k≥1

ωk(T )Ehk(0)

+ C
∑
k≥1

ωk(T )
(
‖∇Hk(t)‖L1

T (L2) + ‖Gk(t)‖L1
T (L2)

)

+ C
(
‖u‖L2

T (B1)‖v‖L2
T (B1) + ‖h‖E1

T
‖v‖L1

T (B2)

)
.(3.17)

Next, we use the decay effect of the parabolic operators to estimate ‖u‖L2
T (B1)∩

L1
T (B2). It follows from (3.6) and Lemma 5.1 that

d

dt
‖uk‖2 + c22k‖uk‖2 ≤ C(‖∇hk(t)‖2 + ‖Gk(t)‖L2 + ‖F̃0

k (t)‖L2),

which implies that

‖uk‖2 ≤ e−ct22k‖uk(0)‖2 + Ce−ct22k ∗t
(
‖∇hk(t)‖2 + ‖Gk(t)‖2 + ‖F̃0

k (t)‖2

)
,

where the sign ∗ denotes the convolution of functions defined in R
+; more precisely,

e−ct22k ∗t f �
∫ t

0

e−c(t−τ)22k

f(τ)dτ.

Taking the Lr norm for r = 1, 2 with respect to t, we get by using Young’s inequality
that

‖uk‖Lr
T (L2) ≤ C2−2k/rerk(T )

(
‖uk(0)‖2 + ‖∇hk‖L1

T (L2) + ‖Gk‖L1
T (L2) + ‖F̃0

k‖L1
T (L2)

)
,

which together with (5.5) implies that∑
k≥1

(
22k‖uk‖L1

T (L2) + 2k‖uk‖L2
T (L2)

)
≤ C

∑
k≥1

ωk(T )‖uk(0)‖2

+ C
∑
k≥1

ωk(T )
(
‖∇hk‖L1

T (L2) + ‖Gk‖L1
T (L2)

)
+ C‖u‖L2

T (B1)‖v‖L2
T (B1),(3.18)

where we used the fact that

e1
k(T ) + e2

k(T ) ≤ ωk(T ).

On the other hand, it follows from (3.15) that

‖Ehk‖2 ≤ e−ctEhk(0) + Ce−ct ∗t
(
‖∇Hk(t)‖2 + ‖Gk(t)‖2 + ‖F1

k (t)‖2 + ‖F̃0
k (t)‖2

)
.
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Taking the L1 norm with respect to t, we get by using Young’s inequality that

‖Ehk‖L1
T
≤ C(1 − e−cT )Ehk(0) + C(1 − e−cT )

(
‖∇Hk(t)‖L1

T (L2) + ‖Gk(t)‖L1
T (L2)

+ ‖F1
k (t)‖L1

T (L2) + ‖F̃0
k (t)‖L1

T (L2)

)
.(3.19)

Note that for k ≥ 1

1 − e−ct ≤ 1 − e−ct22k ≤ ωk(t),

which together with (3.19) and Lemma 5.1 gives

∑
k≥1

‖Ehk‖L1
T
≤ C

∑
k≥1

ωk(T )Ehk(0) + C
∑
k≥1

ωk(T )
(
‖∇Hk(t)‖L1

T (L2) + ‖Gk(t)‖L1
T (L2)

)

+ C
(
‖u‖L2

T (B1)‖v‖L2
T (B1) + ‖h‖E1

T
‖v‖L1

T (B2)

)
.(3.20)

Plugging (3.20) into (3.18), we obtain

∑
k≥1

(
22k‖uk‖L1

T (L2) + 2k‖uk‖L2
T (L2)

)

≤ C
∑
k≥1

ωk(T )Ehk(0) + C
∑
k≥1

ωk(T )
(
‖∇Hk(t)‖L1

T (L2) + ‖Gk(t)‖L1
T (L2)

)

+ C
(
‖u‖L2

T (B1)‖v‖L2
T (B1) + ‖h‖E1

T
‖v‖L1

T (B2)

)
.(3.21)

On the other hand, in order to obtain (3.4), we use Proposition 2.4 to deal with
the right-hand terms of (3.12). Applying (2.16) with s1 = s2 = 0 to II, (2.16) with
s1 = 0, s2 = 1 to III, and (2.18) with t1 = t2 = 0, s1 = 0, s2 = 1 to IV , we obtain

|II + III + IV | ≤ CEhkαkV
′(t)(‖u‖B0 + ‖h‖B̃0,1),(3.22)

with
∑

k∈Z
αk ≤ 1 and V (t) = ‖v(t′)‖L1

t (B
2). From (3.13) and (3.22), it follows that

d

dt
Ehk + cEhk ≤ C

(
‖∇Hk(t)‖2 + ‖Gk(t)‖2 + αkV

′(t)(‖u‖B0 + ‖h‖B̃0,1)
)
,

from which a similar proof of (3.21) ensures that

∑
k≥1

(
‖Ehk‖L1

T
+ ‖Ehk‖L∞

T

)
≤ C

∑
k≥1

Ehk(0)

+C
(
‖H‖L1

T (B̃0,1) + ‖G‖L1
T (B0) +

∫ T

0

V ′(t)(‖u(t)‖B0 + ‖h(t)‖B̃0,1)dt
)
.(3.23)

Low frequencies: k < 1. Multiplying the first equation of (3.5) by hk, we get
by integrating the resulting equation over R

2 that

1

2

d

dt
‖hk‖2

2 + (divuk, hk) = (Hk, hk) − (Δk(v · ∇h), hk).(3.24)
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Summing up (3.6), (3.8) × 1
8 , and (3.24), we obtain

d

dt

[
1

2
‖uk‖2

2 +
1

2
‖hk‖2

2 +
1

8
(uk,∇hk)

]

+

[
1

8
‖∇hk‖2

2 +
1

2
‖∇uk‖2

2 +
11

8
‖divuk‖2

2 −
1

4
(∇divuk,∇hk)

]

=

[
1

8
(∇Hk, uk) + (Hk, hk) + (Gk, uk) +

1

8
(Gk,∇hk)

]

− (Δk(v · ∇u), uk) − (Δk(v · ∇h), hk)

− 1

8

[
(∇Δk(v · ∇h), uk) + (Δk(v · ∇u),∇hk)

]

� I + II + III + IV.(3.25)

Note that 2k ≤ 1. We get by the Cauchy–Schwarz inequality that

1

8
(uk,∇hk) ≤

3

10
‖uk‖2‖hk‖2 ≤ 1

4
‖uk‖2

2 +
1

4
‖hk‖2

2;

hence, we get by the definition of Elk that

1

4
(‖uk‖2

2 + ‖hk‖2
2) ≤ E2

lk ≤ 2(‖uk‖2
2 + ‖hk‖2

2).(3.26)

Similarly, we can prove

1

4
(∇divuk,∇hk) ≤

3

5
‖divuk‖2‖∇hk‖2 ≤ 9

10
‖∇uk‖2

2 +
1

10
‖∇hk‖2

2,

which together with (3.26) implies that

1

8
‖∇hk‖2

2 +
1

2
‖∇uk‖2

2 +
11

8
‖divuk‖2

2 −
1

4
(∇divuk,∇hk)

≥ 1

160
22k(‖uk‖2

2 + ‖hk‖2
2) ≥

1

320
22kE2

lk.(3.27)

By summing up (3.25)–(3.27), we obtain

d

dt
E2

lk + c22kE2
lk ≤ C|I + II + III + IV |.(3.28)

In order to obtain (3.3), we use Lemma 5.1 to estimate the right-hand terms of
(3.28). Using the fact that 2k ≤ 1, we get by the Cauchy–Schwarz inequality and
(3.26) that

|I| ≤ C(‖Hk(t)‖2 + ‖Gk(t)‖2)Elk.(3.29)

Using Lemma 5.1 and (3.26), we have

|II + III + IV | ≤ C(‖F1
k (t)‖2 + ‖F0

k (t)‖2 + ‖F̃0
k (t)‖2)Elk.(3.30)
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By summing up (3.28)–(3.30), we obtain

d

dt
Elk + c22kElk ≤ C

(
‖Hk(t)‖2 + ‖Gk(t)‖2 + ‖F1

k (t)‖2 + ‖F0
k (t)‖2 + ‖F̃0

k (t)‖2

)
,

which implies that

Elk ≤ e−c22ktElk(0)

+ Ce−c22kt ∗t
(
‖Hk(t)‖2 + ‖Gk(t)‖2 + ‖F1

k (t)‖2 + ‖F0
k (t)‖2 + ‖F̃0

k (t)‖2

)
.

Taking the Lr norm with respect to t, we get by using Young’s inequality that

‖Elk‖Lr
T
≤ C2−2k/rerk(T )

(
Elk(0) + ‖Hk(t)‖L1

T (L2) + ‖Gk(t)‖L1
T (L2)

+ ‖F1
k (t)‖L1

T (L2) + ‖F0
k (t)‖2 + ‖F̃0

k (t)‖L1
T (L2)

)
,

from which, together with Lemma 5.1, it follows that∑
k<1

ωk(T )‖Elk‖L∞
T

(3.31)

≤ C
∑
k<1

ωk(T )Elk(0) +
∑
k<1

ωk(T )(‖Hk(t)‖L1
T (L2) + ‖Gk(t)‖L1

T (L2))

+C
(
‖u‖L2

T (B1)‖v‖L2
T (B1) + ‖h‖Ẽ0,1

T
‖v‖L1

T (B2)

)
and ∑

k<1

(22k‖Elk‖L1
T

+ 2k‖Elk‖L2
T
)

≤ C
∑
k<1

ωk(T )Elk(0) +
∑
k<1

ωk(T )(‖Hk(t)‖L1
T (L2) + ‖Gk(t)‖L1

T (L2))

+ C
(
‖u‖L2

T (B1)‖v‖L2
T (B1) + ‖h‖Ẽ0,1

T
‖v‖L1

T (B2)

)
.(3.32)

On the other hand, in order to obtain (3.4), we use Proposition 2.4 to deal with
the right-hand terms of (3.28). Applying (2.17) with s1 = s2 = 0 to II, (2.17) with
s1 = 0, s2 = 1 to III, and (2.19) with t1 = t2 = 0, s1 = 0, s2 = 1 to IV , we obtain

|II + III + IV | ≤ CElkαkV
′(t)(‖u‖B0 + ‖h‖B̃0,1),(3.33)

with
∑

k∈Z
αk ≤ 1 and V (t) = ‖v(t′)‖L1

t (B
2). From (3.32) and (3.36), it follows that

d

dt
Elk + c22kElk ≤ C

(
‖Hk(t)‖2 + ‖Gk(t)‖2 + αkV

′(t)(‖u‖B0 + ‖h‖B̃0,1)
)
,

which, together with a similar proof of (3.21), ensures that∑
k<1

(
22k‖Elk‖L1

T
+ ‖Elk‖L∞

T

)
≤

∑
k<1

Ehk(0)

+C

(
‖H‖L1

T (B̃0,1) + ‖G‖L1
T (B0) +

∫ T

0

V ′(t)(‖u(t)‖B0 + ‖h(t)‖B̃0,1)dt

)
.(3.34)
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The completion of the a priori estimates. First, adding up (3.17), (3.21),
(3.31), and (3.32) yields that

‖u‖L1
T (B2) + ‖u‖L2

T (B1) + ‖h‖Ẽ0,1
T

≤ C
∑
k∈Z

ωk(T )Ek(0) + C
∑
k∈Z

ωk(T )‖Gk(t)‖L1
T (L2)

+C
∑
k≥1

ωk(T )‖∇Hk(t)‖L1
T (L2) + C

∑
k<1

ωk(T )‖Hk(t)‖L1
T (L2)

+C‖u‖L2
T (B1)‖v‖L2

T (B1) + C‖h‖Ẽ0,1
T

‖v‖L1
T (B2),(3.35)

where we used the fact that

‖h‖E1
T
≤ C‖h‖Ẽ0,1

T
.

On the other hand, adding up (3.23) and (3.34) gives rise to

‖u‖L∞
T (B0) + ‖h‖L∞

T (B̃0,1) + ‖h‖L1
T (B̃2,1)

≤ E0 + C
(
‖H‖L1

T (B̃0,1) + ‖G‖L1
T (B0) +

∫ T

0

V ′(t)(‖u‖B0 + ‖h‖B̃0,1)dt
)
,(3.36)

which, together with the Gronwall inequality, implies that

‖u‖L∞
T (B0) + ‖h‖L∞

T (B̃0,1) + ‖h‖L1
T (B̃2,1)

≤ Ce
C‖v‖

L1
T (B2)

(
E0 + ‖H‖L1

T (B̃0,1) + ‖G‖L1
T (B0)

)
.(3.37)

Finally, let us remark that

E0 ≈ (‖h0‖B̃0,1 + ‖u0‖B0).

3.2. The uniform estimate of the approximate sequence of solutions. In
this subsection, we will construct the approximate solutions of (3.1) and present the
uniform estimate of the approximate solutions. Let us first define the approximate
sequence (hn, un)n∈N of (3.1) by the following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂th
n+1 + un · ∇hn+1 + divun+1 = Hn,

∂tu
n+1 − (∇ ·D(un+1) + ∇divun+1) + un · ∇un+1 + ∇hn+1 = Gn,

(hn+1, un+1)|t=0 =
∑

|k|≤n+N

Δk(h0, u0),

(3.38)

where

Hn � −hndivun, Gn � ∇hn

1 + hn
∇̃un, with ∇̃un = D(un) + divun,

and N is a fixed large integer such that

1 + hn(0) ≥ 3

4
for n ≥ 1.
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Set (h0, u0) = (0, 0) and solve the linear system. We can define (hn, un)n∈N0
by the

induction. Next, we are going to prove by the induction that there exist positive
constants η, K, and T such that the following bounds hold for all n ∈ N0:

1 + hn ≥ 1

2
,(3.39)

‖un‖L1
T (B2)∩L2

T (B1) + ‖hn‖Ẽ0,1
T

≤ η,(3.40)

‖un‖L∞
T (B0) + ‖hn‖L∞

T (B̃0,1)∩L1
T (B̃2,1) ≤ KE0.(3.41)

Assume that (3.39)–(3.41) hold for (hn, un). We need to prove that (3.39)–(3.41)
also hold for (hn+1, un+1). Applying the a priori estimates (3.35) and (3.37) to
(hn+1, un+1), we obtain

‖un+1‖L1
T (B2) + ‖un+1‖L2

T (B1) + ‖hn+1‖Ẽ0,1
T

≤ CQ0(T ) + C
∑
k∈Z

ωk(T )‖Gn
k (t)‖L1

T (L2) + C
∑
k≥1

ωk(T )‖∇Hn
k (t)‖L1

T (L2)

+C
∑
k<1

ωk(T )‖Hn
k (t)‖L1

T (L2) + C‖un+1‖L2
T (B1)‖un‖L2

T (B1)

+C‖hn+1‖Ẽ0,1
T

‖un‖L1
T (B2)(3.42)

and

‖un+1‖L∞
T (B0) + ‖hn+1‖L∞

T (B̃0,1) + ‖hn+1‖L1
T (B̃2,1)

≤ Ce
C‖un‖

L1
T (B2)

(
E0 + ‖Hn‖L1

T (B̃0,1) + ‖Gn‖L1
T (B0)

)
,(3.43)

with

Q0(T ) �
∑
k∈Z

ωk(T )Ek(0).

Thanks to (2.4), we have

‖Hn‖B0 ≤ C‖hn‖B0‖un‖B2 and ‖Hn‖B1 ≤ C‖hn‖B1‖un‖B2 ,

which, together with the fact that B̃0,1 = B0 ∩B1, yields

‖Hn‖L1
T (B̃0,1) ≤ C‖hn‖L∞

T (B̃0,1)‖u
n‖L1

T (B2) ≤ CKE0η.(3.44)

We rewrite Gn as

∇hn

1 + hn
∇̃un = (1 + hn)∇

(
hn

1 + hn

)
∇̃un.

Using (2.4) and (2.12), we get

‖Gn‖L1
T (B0) ≤ C

∥∥∥∥∇
(

hn

1 + hn

)∥∥∥∥
L∞

T (B0)

‖(1 + hn)∇̃un‖L1
T (B1)

≤ C(1 + ‖hn‖L∞
T (L∞))

2‖hn‖L∞
T (B1)(1 + ‖hn‖L∞

T (B1))‖un‖L1
T (B2)

≤ C(1 + ‖hn‖L∞
T (B̃0,1))

3‖hn‖L∞
T (B1)‖un‖L1

T (B2)

≤ CKE0(1 + KE0)
3η.(3.45)
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Plugging (3.44) and (3.45) into (3.43) yields

‖un+1‖L∞
T (B0) + ‖hn+1‖L∞

T (B̃0,1) + ‖hn+1‖L1
T (B̃2,1)

≤ CeCη
(
E0 + KE0(1 + KE0)

3η
)
.

(3.46)

We take η > 0 small enough and K = 4C such that

eCη ≤ 2, K(1 + KE0)
3η ≤ 1,(�1)

from which, together with (3.46), it follows that

‖un+1‖L∞
T (B0) + ‖hn+1‖L∞

T (B̃0,1) + ‖hn+1‖L1
T (B̃2,1) ≤ KE0.

This proves (3.41) for (un+1, hn+1).
Next, we prove (3.40) for (un+1, hn+1). Applying Lemma 5.2 with s1 = 0 and

s2 = 1, (2.4) with s1 = s2 = 1, and Lemma 5.4 with s = 1, we obtain

∑
k∈Z

ωk(T )‖Gn
k (t)‖L1

T (L2) ≤ C

∥∥∥∥∇
(

hn

1 + hn

)∥∥∥∥
E0

T

‖(1 + hn)∇̃un‖L1
T (B1)

≤ C(1 + ‖hn‖L∞
T (L∞))

3‖hn‖E1
T
(1 + ‖hn‖L∞

T (B1))‖un‖L1
T (B2)

≤ C(1 + ‖hn‖L∞
T (B̃0,1))

4‖hn‖Ẽ0,1
T

‖un‖L1
T (B2)

≤ C(1 + KE0)
4η2.(3.47)

On the other hand, we apply Lemma 5.2 with s1 = 0, s2 = 1 to get∑
k≥1

ωk(T )‖∇Hn
k (t)‖L1

T (L2) +
∑
k<1

ωk(T )‖Hn
k (t)‖L1

T (L2)

≤ C
∑
k∈Z

ωk(T )(‖∇hn
k‖L∞

T (L2) + ‖hn
k‖L∞

T (L2))‖divun‖L1
T (B1)

+C
∑
k∈Z

ωk(T )22k‖un
k‖L1

T (L2)‖hn‖L∞
T (B̃0,1)

� I + II.

Obviously, we have

I ≤ C‖hn‖Ẽ0,1
T

‖un‖L1
T (B2) ≤ Cη2.(3.48)

In order to estimate II, we first fix k0 ≥ 1 such that∑
k≥k0

‖uk(0)‖2 ≤ η

16CKE0
.(3.49)

Then we write

II = C
∑
k≥k0

ωk(T )22k‖un
k‖L1

T (L2)‖hn‖L∞
T (B̃0,1) + C

∑
k≤k0

ωk(T )22k‖un
k‖L1

T (L2)‖hn‖L∞
T (B̃0,1)

� II1 + II2.
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Using (3.18), (3.47), and (3.49), we obtain

II1 ≤ CKE0

[∑
k≥k0

ωk(T )‖uk(0)‖2 +
∑
k≥k0

ωk(T )
(
‖∇hn

k‖L1
T (L2) + ‖Gn−1

k ‖L1
T (L2)

)

+ ‖un‖L2
T (B1)‖un−1‖L2

T (B1)

]

≤ CKE0

[ η

16CKE0
+

∑
k≥k0

ωk(T )‖∇hn
k‖L1

T (L2) + (1 + KE0)
4η2

]
.(3.50)

On the other hand, thanks to (3.19) and Lemma 5.1, we have∑
k≥k0

ωk(T )‖∇hn
k‖L1

T (L2) ≤ C(1 − e−cT )
∑
k≥k0

ωk(T )Ehk(0)

+ C(1 − e−cT )
∑
k≥k0

ωk(T )

(
‖∇Hn−1

k (t)‖L1
T (L2) + ‖Gn−1

k (t)‖L1
T (L2)

)
+ C‖un‖L2

T (B1)‖un−1‖L2
T (B1) + C‖hn‖E1

T
‖un−1‖L2

T (B1)

≤ C(1 − e−cT )E0 + C(1 − e−cT )KE0η + C(1 + KE0)
4η2,

where we used (3.44) and (3.47) in the second inequality. Plugging the above inequal-
ity into (3.50) yields

II1 ≤ CKE0

[ η

16CKE0
+ (1 − e−cT )(E0 + KE0η) + (1 + KE0)

4η2
]
.(3.51)

Note that for k ≤ k0, we can choose T > 0 small enough such that

ωk(T ) ≤ 1

16CKE0
,(�2)

so we get

|II2| ≤
η

16
.(3.52)

Plugging (3.47), (3.48), (3.51), and (3.52) into (3.42), we get

‖un+1‖L1
T (B2) + ‖un+1‖L2

T (B1) + ‖hn+1‖Ẽ0,1
T

≤ CQ0(T ) +
η

8
+ C(1 + KE0)

5η2 + CKE0(1 − e−cT )(E0 + KE0η)

+Cη(‖un+1‖L2
T (B1) + ‖hn+1‖Ẽ0,1

T
).(3.53)

Note that Q0(0) = 0. We can take T, η small enough such that

Cη ≤ 1

2
, CQ0(T ) ≤ η

8
, C(1 + KE0)

5η <
1

8
, and

CKE0(1 − e−cT )(E0 + KE0η) ≤
η

8
,(�3)
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which, together with (3.53), gives

‖un+1‖L1
T (B2) + ‖un+1‖L2

T (B1) + ‖hn+1‖Ẽ0,1
T

≤ η.

Finally, let us prove (3.39) for hn+1. We rewrite the first equation of (3.38) as

∂t(1 + hn+1) + un · ∇(1 + hn+1) + divun+1 −Hn = 0.

Then 1 + hn+1 can be represented as

(1 + hn+1)(t, x) = (1 + hn+1
0 )((ψn)−1

t (x)) +

∫ t

0

divun+1(τ, ψn
τ ((ψn)−1

t (x)))dτ

+

∫ t

0

Hn(τ, ψn
τ ((ψn)−1

t (x)))dτ,(3.54)

where the flow map ψn
t is defined by{

∂tψ
n
t (x) = un(t, ψn

t (x)),

ψn
t |t=0 = x.

Thanks to the inclusion map B1 ↪→ L∞ and (2.4), we get∫ t

0

‖divun+1(τ, ψn
τ ((ψn)−1

t (x)))‖∞dτ ≤ ‖un+1‖L1
t (B

2) ≤ η,

∫ t

0

‖Hn(τ, ψτ (ψ
−1
t (x)))‖∞dτ ≤ ‖hndivun‖L1

t (B
1)

≤ C‖hn‖L∞
t (B̃0,1)‖u

n‖L1
t (B

2) ≤ CKE0η,

from which, together with (3.54), it follows that

1 + hn+1 ≥ 3

4
− (1 + CKE0)η.(3.55)

We take η small enough such that

(1 + CKE0)η ≤ 1

4
,(�4)

which, together with (3.55), ensures that

1 + hn+1 ≥ 1

2
.

So far, we have shown that T , η can be chosen small enough such that the assumptions
(�1)–(�4) hold, under which the approximate solutions (un, hn)n∈N0 are uniformly
bounded in

ET �
(
L∞
T (B0) ∩ L1

T (B2)
)
×
(
L∞
T (B̃0,1) ∩ L1

T (B̃2,1)
)
.

It should be pointed out that if ‖u0‖B0 + ‖h0‖B̃0,1 is small enough, we can take
T = +∞ such that the assumptions (�1)–(�4) hold.
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3.3. The existence of the solution. Now let us turn to prove the existence
of the solution, and the standard compact arguments will be used. We should point
out that in order to obtain the convergence of the terms un · ∇un+1 and un · ∇hn+1

in (3.38), we need to show that both (un, hn) and (un+1, hn+1) have the same limit.
Indeed, following the argument in the proof of uniqueness (section 4), it can be proved
that (un, hn)n is a Cauchy sequence in some weak topology which particularly ensures
the uniqueness of the limit for any subsequence of (un, hn)n. In section 3.2, we have
showed that the approximate solutions (hn, un)n∈N satisfy (3.39)–(3.41), and without
loss of generality, we can assume the following:

1 + hn ≥ 1

2
,(3.56)

‖un‖L∞
T (B0)∩L1

T (B2) + ‖hn‖L∞
T (B̃0,1)∩L1

T (B̃2,1) ≤ KE0.(3.57)

Using the interpolation and the fact that B0 ∩B1 = B̃0,1, we have

‖hn‖L2
T (B1) � ‖hn‖

1
2

L∞
T (B̃0,1)

‖hn‖
1
2

L1
T (B̃2,1)

, ‖un‖L2
T (B1) � ‖un‖

1
2

L∞
T (B0)‖u

n‖
1
2

L1
T (B2)

,

‖hn‖
L4

T (B
1
2 )

� ‖hn‖
1
2

L∞
T (B̃0,1)

‖hn‖
1
2

L2
T (B1)

, ‖un‖
L

4
3
T (B

3
2 )

� ‖un‖
1
4

L∞
T (B0)‖u

n‖
3
4

L1
T (B2)

,

from which, together with (3.57), it follows that

‖hn‖L2
T (B1) + ‖un‖L2

T (B1) + ‖hn‖
L4

T (B
1
2 )

+ ‖un‖
L

4
3
T (B

3
2 )

� KE0.(3.58)

Now, we show that (hn, un) is uniformly bounded in C
1
2

loc(B
0)×C

1
4

loc(B
− 1

2 ). Using
(2.4), (3.57), and (3.58), it is easy to verify that

‖un · ∇hn+1‖L2
T (B0) � ‖un‖L2

T (B1)‖hn+1‖L∞
T (B̃0,1) � (KE0)

2,

‖hndivun‖L2
T (B0) � ‖un‖L2

T (B1)‖hn‖L∞
T (B̃0,1) � (KE0)

2,

from which, together with the first equation of (3.38), it follows that ∂th
n is uniformly

bounded in L2
T (B0), which implies that hn is uniformly bounded in C

1
2

loc(B
0). On the

other hand, thanks to (2.4), (3.58), and (2.12), we have

‖un · ∇un+1‖
L

4
3
T (B− 1

2 )
� ‖un‖L∞

T (B0)‖un+1‖
L

4
3
T (B

3
2 )

� (KE0)
2,

∥∥∥∥ ∇hn

1 + hn
∇̃un

∥∥∥∥
L

4
3
T (B− 1

2 )

� C(1 + ‖hn‖L∞
T (B1))

3‖un‖
L

4
3
T (B

3
2 )

� C(1 + KE0)
3KE0,

from which, together with the second equation of (3.38), it follows that ∂tu
n is

uniformly bounded in L
4
3

T (B− 1
2 ), which implies that un is uniformly bounded in

C
1
4

loc(B
− 1

2 ).

Next, we claim that the inclusions B0∩B1 ↪→ L2 and B− 1
2∩B0 ↪→ Ḣ− 1

2 are locally
compact. Indeed, these can be proved by noting that for s′ < s, Ḣs′ ∩ Ḣs ↪→ Ḣs′ is
locally compact and for s ∈ R, Bs ↪→ Ḣs. Then, by the Arzelà–Ascoli theorem and
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Cantor’s diagonal process, there exist a subsequence (unk , hnk) and a function (u, h)
such that

(unk , hnk) → (u, h) in Cloc(Ḣ
− 1

2

loc ) × Cloc(L
2
loc),(3.59)

as nk → ∞. On the other hand, (unk , hnk) is uniformly bounded in ET . Then there
exists a subsequence (which is still denoted by (unk , hnk)) such that

(unk , hnk) ⇀ (u, h) in ET ,

where “⇀” denotes weak* convergence.
Finally, let us prove that (u, h) solves (1.1) in the sense of distribution. We need

only prove that the nonlinear terms such as un · ∇hn, ∇hn

1+hn ∇̃un, etc., tend to the
corresponding nonlinear terms in the sense of distribution. This can be done by using
the uniform estimates of (un, hn), (u, h) in ET and the convergence result (3.59). Here,

we show only the case of the term Y (hn)∇̃un (where Y (z) � ∇z/(1 + z)); the other
terms can be treated in the same way. For any test function θ ∈ C∞

0 ([0, T ∗) × R
2),

we write〈
Y (hn)∇̃un − Y (h)∇̃u, θ

〉
=

〈
(1 + hn)∇

( hn

1 + hn
− h

1 + h

)
∇̃un, θ

〉

+
〈
(hn − h)∇

( h

1 + h

)
∇̃un, θ

〉
+
〈
(1 + h)∇

( h

1 + h

)
∇̃(un − u), θ

〉
� I1 + I2 + I3.

Thanks to (2.4) and (3.56), we have

I1 ≤
∥∥∥∥ ψ(hn − h)

(1 + hn)(1 + h)

∥∥∥∥
2

‖∇((1 + hn)∇̃unθ)‖2 � ‖ψ(hn − h)‖2‖(1 + hn)∇̃un‖B1

� ‖ψ(hn − h)‖2(1 + ‖hn‖B̃0,1)‖un‖B2 ,

where ψ ∈ C∞
0 ([0, T ∗) × R

2), and ψ = 1 on supp θ. For I2, we have

I2 ≤ ‖θ(hn − h)‖2

∥∥∥∥∇
(

h

1 + h

)
∇̃un

∥∥∥∥
2

� ‖θ(hn − h)‖2‖∇h‖2‖∇un‖L∞

� ‖θ(hn − h)‖2‖h‖B̃0,1‖un‖B2 .

Using (3.56) and the interpolation, we get

I3 ≤
∥∥∥∥(1 + h)∇

(
h

1 + h

)∥∥∥∥
2

‖∇̃(un − u)θ‖2 � (1 + ‖h‖∞)‖∇h‖2‖(un − u)θ‖Ḣ1

� (1 + ‖h‖B̃0,1)‖h‖B1‖un − u‖
3
5

H2‖(un − u)θ‖
2
5

Ḣ− 1
2
.

Thus, by (3.59), we get as n → 0〈
Y (hn)∇̃un − Y (h)∇̃u, θ

〉
−→ 0.

Following the argument in [11], we can also prove that (u, h) is continuous in time

with values in B0 × B̃0,1.
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4. Uniqueness. In this section, we will prove the uniqueness of the solution.
First, let us recall some known results.

Lemma 4.1 (Osgood’s lemma). Let ρ be a measurable positive function and γ
a positive locally integrable function, each defined on the domain [t0, t1]. Let μ :
[0,∞) → [0,∞) be a continuous nondecreasing function, with μ(0) = 0. Let a ≥ 0,
and assume that for all t in [t0, t1],

ρ(t) ≤ a +

∫ t

t0

γ(τ)μ(ρ(τ))dτ.

If a > 0, then

−M(ρ(t)) + M(a) ≤
∫ t

t0

γ(τ)dτ, where M(x) =

∫ 1

x

dτ

μ(τ)
.

If a = 0 and M = ∞, then ρ ≡ 0.
This lemma can be understood as a generalization of the classical Gronwall lemma

and can be found in [8].
Proposition 4.2. Let s ∈ (−d

p , 1 + d
p ) and 1 ≤ p, r ≤ +∞. Let v be a vector

field such that ∇v ∈ L1
T (Ḃ

d
p
p,r ∩ L∞). Assume that f0 ∈ Ḃs

p,r, g ∈ L1
T (Ḃs

p,r) and

f ∈ L∞
T (Ḃs

p,r) ∩ C([0, T ];S ′) is the solution of

{ ∂tf + v · ∇f = g,

f(0, x) = f0.

Then there exists a constant C(s, p, d) such that for t ∈ [0, T ]

‖f‖L̃∞
t (Ḃs

p,r) ≤ CeCV (t)

(
‖f0‖Ḃs

p,r
+

∫ t

0

e−CV (τ)‖g(τ)‖Ḃs
p,r

dτ

)
,(4.1)

where V (t) �
∫ t

0
‖∇v(τ)‖

Ḃ
d
p
p,r∩L∞

dτ. If r < +∞, then f belongs to C([0, T ]; Ḃs
p,r).

The proof can be found in [15].
Proposition 4.3. Let T > 0, s ∈ R, and 1 ≤ q, r ≤ +∞. Assume that u0 ∈ Ḃs

2,q,

g ∈ L̃1
T (Ḃs

2,q), and u is the solution of

{
∂tu− νΔ̃u = g,

u(0, x) = u0,

where Δ̃u = ∇ ·D(u) + ∇divu. Then there exists a constant C(s, d, ν) such that

(rν)
1
r ‖u‖

L̃r
T (Ḃ

s+ 2
r

2,q )
≤

(∑
k∈Z

(
1 − e−rν22kT

) q
r 2qks‖Δku0‖q2

) 1
q

+ C
(∑

k∈Z

(
1 − e−rν22kT

) q
r 2qks‖Δkg‖qL1

T (L2)

) 1
q

.(4.2)

If q < +∞, then u belongs to C([0, T ]; Ḃs
2,q).

The proof is similar to the case when the diffusion term Δ̃u is replaced by Δu.
We refer the reader to [9] for details.
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Now we introduce the logarithmic interpolation inequality (see [14]).
Proposition 4.4. For any 1 ≤ p, ρ ≤ +∞, s ∈ R, and 0 < ε ≤ 1, we have

‖f‖L̃ρ
T (Ḃs

p,1)
≤ C

‖f‖L̃ρ
T (Ḃs

p,∞)

ε
log

(
e +

‖f‖L̃ρ
T (Ḃs−ε

p,∞) + ‖f‖L̃ρ
T (Ḃs+ε

p,∞)

‖f‖L̃ρ
T (Ḃs

p,∞)

)
.(4.3)

Now, let us prove the uniqueness of the solution of (3.1). Let (u1, h1), (u2, h2)

∈
(
L∞
T (B0)∩L1

T (B2))×L∞
T (B̃0,1) be two solutions of (3.1) with the same initial data.

The difference ϑ � h2 − h1, w � u2 − u1 satisfies the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tϑ + u2 · ∇ϑ = −divw − w∇h1 − ϑdivu2 − h1divw,

∂tw − νΔ̃w = −∇ϑ− u2 · ∇w − w · ∇u1 + ν(1 + h1)∇
( h1

1 + h1

)
∇̃w

+ ν(1 + h1)∇
( h2

1 + h2
− h1

1 + h1

)
∇̃u2 + νϑ∇

( h2

1 + h2

)
∇̃u2,

ϑ(0, x) = 0, w(0, x) = 0.

(4.4)

Without loss of generality, we assume that there holds for sufficiently small T

1 + h1 ≥ 1

2
,(4.5)

‖h1‖Ẽ0,1
T

≤ ε,(4.6)

where ε > 0 is small enough. Applying Proposition 4.2 to the first equation of (4.4)
yields

‖ϑ(t)‖Ḃ0
2,∞

�
∫ t

0

eC(V2(t)−V2(τ))‖w · ∇h1 + ϑdivu2 + h1divw + divw‖Ḃ0
2,∞

dτ,(4.7)

with V2(t) �
∫ t

0
‖∇u2‖Ḃ1

2,∞∩L∞dτ . It follows from (2.5) with s = 0 that

‖w · ∇h1‖Ḃ0
2,∞

� ‖∇h1‖Ḃ0
2,∞

‖w‖B1 � ‖w‖B1‖h1‖B1 ,

‖ϑdivu2‖Ḃ0
2,∞

� ‖ϑ‖Ḃ0
2,∞

‖u2‖B2 ,

‖h1divw‖Ḃ0
2,∞

� ‖divw‖Ḃ0
2,∞

‖h1‖B1 � ‖w‖B1‖h1‖B1 ,

where we have used B1 ↪→ Ḃ1
2,∞. Plugging the above estimates into (4.7), we get

‖ϑ(t)‖Ḃ0
2,∞

�
∫ t

0

eC(V2(t)−V2(τ))
[
‖w‖B1(1 + ‖h1‖B1) + ‖ϑ‖Ḃ0

2,∞
‖u2‖B2

]
dτ.(4.8)

Recalling that ui ∈ L1
T (B2), we can take a T ∈ (0,∞) small enough so that

C‖u2‖L1
T (B2) ≤

1

4
,

which together with (4.8) implies that for t ≤ T

‖ϑ‖L∞
t (Ḃ0

2,∞) � ‖w‖L1
t (B

1)(1 + ‖h1‖L∞
t (B1)).(4.9)
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Applying (4.3) to the term ‖w‖L1
t (B

1) yields

‖ϑ‖L∞
t (Ḃ0

2,∞) �‖w‖L̃1
t (Ḃ

1
2,∞) log

(
e +

‖w‖L̃1
t (Ḃ

0
2,∞) + ‖w‖L̃1

t (Ḃ
2
2,∞)

‖w‖L̃1
t (Ḃ

1
2,∞)

)
(1 + ‖h1‖L∞

t (B1)).

(4.10)

Thanks to Bs ↪→ Ḃs
2,∞ and B̃0,1 ↪→ B1, we have

‖ϑ‖L∞
t (Ḃ0

2,∞) � ‖w‖L̃1
t (Ḃ

1
2,∞) log

(
e +

W (t)

‖w‖L̃1
t (Ḃ

1
2,∞)

)
(4.11)

with

W (t) �
2∑

i=1

‖ui‖L̃1
t (B

0) + ‖ui‖L̃1
t (B

2),

and for finite t, W (t) < +∞.
Next, we deal with the second equation of (4.4). We get by applying (2.7) with

s = 1, s = 0, respectively, that

‖u2 · ∇w‖L̃1
t (Ḃ

−1
2,∞) � ‖u2‖L2

t (B
1)‖w‖L̃2

t (Ḃ
0
2,∞),(4.12)

‖w · ∇u1‖L̃1
t (Ḃ

−1
2,∞) � ‖u1‖L2

t (B
1)‖w‖L̃2

t (Ḃ
0
2,∞).(4.13)

We can deduce hi ∈ C(0, T ; R2) (i = 1, 2) from the fact B1 ↪→ C. Moreover, due to
(4.5), we can assume h1(t, x) + 1 ≥ 1

2 for all t ≤ T , x ∈ R
2. Since h1, h2 have the

same initial data, from the continuity of h2, there exists a T̃ ≤ T such that

h2(x, t) + 1 ≥ 1

4
for all t ∈ [0, T̃ ], x ∈ R

2.

It follows from (2.6) with s = 1, (2.15), and B1 ↪→ Ḃ1
2,∞ ∩ L∞ that

∥∥∥(1 + h1)∇
( h2

1 + h2
− h1

1 + h1

)
∇̃u2

∥∥∥
Ḃ−1

2,∞

�
∥∥∥(1 + h1)∇

( h2

1 + h2
− h1

1 + h1

)∥∥∥
Ḃ−1

2,∞
‖∇̃u2‖B1

� (1 + ‖h1‖B1)
∥∥∥ h2

1 + h2
− h1

1 + h1

∥∥∥
Ḃ0

2,∞
‖u2‖B2

� (1 + ‖h1‖B1)(‖h1‖B1 + ‖h2‖B1)‖ϑ‖Ḃ0
2,∞

‖u2‖B2 ,

which, together with L1
t (Ḃ

−1
2,∞) ⊂ L̃1

t (Ḃ
−1
2,∞), yields

∥∥∥(1 + h1)∇
( h2

1 + h2
− h1

1 + h1

)
∇̃u2

∥∥∥
L̃1

t (Ḃ
−1
2,∞)

�
∫ t

0

(1 + ‖h1‖B1)(‖h1‖B1 + ‖h2‖B1)‖ϑ‖Ḃ0
2,∞

‖u2‖B2dτ.(4.14)
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Thanks to (2.6), (2.12), and L1
t (Ḃ

−1
2,∞) ⊂ L̃1

t (Ḃ
−1
2,∞), we get

∥∥∥ϑ∇( h2

1 + h2

)
∇̃u2

∥∥∥
L̃1

t (Ḃ
−1
2,∞)

�
∫ t

0

‖ϑ‖Ḃ0
2,∞

‖h2‖B1‖u2‖B2dτ.(4.15)

Thanks to Lemma 5.3 with s1 = s2 = 0, Lemma 5.4 with s = 1, and (2.5) with s = 0,
we have

sup
k∈Z

ωk(t)2
−k

∥∥∥Δk

(
(1 + h1)∇

( h1

1 + h1

)
∇̃w

)∥∥∥
L1

t (L
2)

�
∥∥∥∇( h1

1 + h1

)∥∥∥
E0

t

‖(1 + h1)∇̃w‖L̃1
t (Ḃ

0
2,∞)

�
∥∥∥ h1

1 + h1

∥∥∥
E1

t

(1 + ‖h1‖L∞
t (B1))‖∇w‖L̃1

t (Ḃ
0
2,∞)

� ‖h1‖Ẽ0,1
t

(1 + ‖h1‖L∞
t (B̃0,1))

4‖w‖L̃1
t (Ḃ

1
2,∞).(4.16)

In terms of Proposition 4.3, (4.12)–(4.16), and B̃0,1 ↪→ B1, we finally obtain

‖w‖L̃1
t (Ḃ

1
2,∞) + ‖w‖L̃2

t (Ḃ
0
2,∞)

�‖u2‖L2
t (B

1)‖w‖L̃2
t (Ḃ

0
2,∞) + ‖u1‖L2

t (B
1)‖w‖L̃2

t (Ḃ
0
2,∞)

+ ‖h1‖Ẽ0,1
t

(
1 + ‖h1‖L∞

t (B̃0,1)

)4‖w‖L̃1
t (B

1
2,∞)

+

∫ t

0

(1 + ‖h1‖B̃0,1)(1 + ‖h1‖B̃0,1 + ‖h2‖B̃0,1)(1 + ‖u2‖B2)‖ϑ‖Ḃ0
2,∞

dτ.(4.17)

Let us define

Z(t) � ‖w‖L̃1
t (Ḃ

1
2,∞) + ‖w‖L̃2

t (Ḃ
0
2,∞).

Due to (4.6), if T is chosen small enough, then the first three terms on the right side of

(4.17) can be absorbed by the left side Z(t). Noting that r log(e+ W (T )
r ) is increasing,

from (4.11) and (4.17), it follows that

Z(t) �
∫ t

0

(1 + W ′(τ))Z(τ) log
(
e +

W (τ)

Z(τ)

)
dτ

�
∫ t

0

(1 + W ′(τ))Z(τ) log
(
e +

W (T )

Z(τ)

)
dτ.(4.18)

It is easy to verify that

1 + W ′(τ) ∈ L1
loc(R

+) and

∫ 1

0

dr

r log(e + W (T )
r )

= +∞.

Hence by the Osgood lemma, we have Z ≡ 0 on [0, T̃ ], i.e., w ≡ 0; then from (4.9),
ϑ = h2 − h1 ≡ 0. Then a standard continuous argument gives the uniqueness.
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5. Appendix. In this appendix, we prove some multilinear estimates in the
weighted Besov space.

Lemma 5.1. Let A be a homogeneous smooth function of degree m. Assume that
−d

2 < ρ ≤ d
2 . Then it holds that∣∣∣(A(D)Δk(v · ∇h), A(D)Δkh)

∣∣∣ ≤ C‖Fm
k (t)‖2‖A(D)Δkh‖2,(5.1)

∣∣∣(A(D)Δk(v · ∇u), A(D)Δku)
∣∣∣ ≤ C‖F̃m

k (t)‖2‖A(D)Δku‖2,(5.2)

and ∣∣∣(A(D)Δk(v · ∇h),Δku) + (Δk(v · ∇u), A(D)Δkh)
∣∣∣

≤ C
(
‖Fm

k (t)‖2 + ‖F̃0
k (t)‖2

)(
‖Δku‖2 + ‖A(D)Δkh‖2

)
,(5.3)

where Fm
k (t) and F̃m

k (t) satisfy∑
k∈Z

ωk(T )2k(ρ−m)‖Fm
k (t)‖L1

T (L2) ≤ C‖h‖Eρ
T
‖v‖

L1
T (B

d
2

+1)
,(5.4)

∑
k∈Z

2k(ρ−m)‖F̃m
k (t)‖L1

T (L2) ≤ C‖u‖L2
T (Bρ+1)‖v‖L2

T (B
d
2 )
.(5.5)

Proof. Let us first prove (5.1). Using Bony’s paraproduct decomposition, we write(
A(D)Δk(v · ∇h), A(D)Δkh

)
=

(
A(D)Δk(T

′
∂jhv

j), A(D)Δkh
)

+ Jk,(5.6)

where

T ′
fg = Tfg + R(f, g), and

Jk =
∑

|k′−k|≤3

([A(D)Δk, Sk′−1v
j ]Δk′∂jh,A(D)Δkh)

+
∑

|k′−k|≤3

((Sk′−1 − Sk−1)v
jA(D)ΔkΔk′∂jh,A(D)Δkh)

+ (Sk−1v
jA(D)Δk∂jh,A(D)Δkh).

We get by integration by parts that

(Sk−1v
jA(D)Δk∂jh,A(D)Δkh) = −1

2

(
Sk−1div vA(D)Δkh,A(D)Δkh

)
.

Let us set

Fm
k,0(t) = A(D)Δk(T

′
∂jhv

j),

Fm
k,1(t) =

∑
|k′−k|≤3

[A(D)Δk, Sk′−1v
j ]Δk′∂jh,

Fm
k,2(t) =

∑
|k′−k|≤3

(Sk′−1 − Sk−1)v
jA(D)ΔkΔk′∂jh,

Fm
k,3(t) = −1

2
Sk−1div vA(D)Δkh.



THE VISCOUS SHALLOW WATER EQUATIONS 469

By the Cauchy–Schwarz inequality, we get(
A(D)Δk(v · ∇h), A(D)Δkh

)
≤ ‖Fm

k (t)‖2‖A(D)Δkh‖2,

with Fm
k (t) =

∑3
i=0 Fm

k,i(t). So, it remains to prove that Fm
k (t) satisfies (5.4). For the

simplicity, we set

Δ̃k =
∑

|k′−k|≤1

Δk′ ,
˜̃
Δk =

∑
|k′−k|≤3

Δk′ .

Thanks to the definition of Fm
k,0(t) and Lemma 2.1, we have

‖Fm
k,0(t)‖L1

T (L2) ≤
∑

|k′−k|≤3

2km‖Sk′−1∂jh‖L∞
T (L∞)‖Δk′vj‖L1

T (L2)

+
∑

k′≥k−2

2(m+ d
2 )k‖Δk(Δk′∂jhΔ̃k′vj)‖L1

T (L1)

� I + II.

Thanks to Lemma 2.1, we have

2k(ρ−m)I � 2kρ
∑

k′≤k+1

2k
′(1+ d

2 )‖Δk′h‖L∞
T (L2)‖

˜̃
Δkv‖L1

T (L2)

�
∑

k′≤k+1

2(k′−k)(1+ d
2−ρ)2k

′ρ‖Δk′h‖L∞
T (L2)2

k(1+ d
2 )‖ ˜̃Δkv‖L1

T (L2),

from which, together with the definition of ωk(T ), it follows that∑
k∈Z

ωk(T )2k(ρ−m)I

�
∑
k′∈Z

2k
′ρ‖Δk′h‖L∞

T (L2)

∑
k≥k′−1

ωk(T )2(k′−k)(1+ d
2−ρ)2k(1+ d

2 )‖ ˜̃Δkv‖L1
T (L2)

�
∑
k′∈Z

ωk′(T )2k
′ρ‖Δk′h‖L∞

T (L2)

∑
k≥k′−1

2(k′−k)( d
2−ρ)2k(1+ d

2 )‖ ˜̃Δkv‖L1
T (L2)

� ‖h‖Eρ
T
‖v‖

L1
T (B

d
2

+1)
,(5.7)

where we used the assumption ρ ≤ d
2 in the last inequality. Set ek(T ) = e1

k(T )+e2
k(T ).

Using Lemma 2.1, we also have

ωk(T )2k(ρ−m)II � ωk(T )2k(ρ+ d
2 )

∑
k′≥k−2

2k
′‖Δk′h‖L∞

T (L2)‖Δ̃k′v‖L1
T (L2)

� 2k(ρ+ d
2 )

∑
k′≥k−2

2k
′‖Δk′h‖L∞

T (L2)‖Δ̃k′v‖L1
T (L2)

∑
k′≥k̃≥k

2−(k̃−k)ek̃(T )

+ 2k(ρ+ d
2 )

∑
k′≥k−2

2k
′‖Δk′h‖L∞

T (L2)‖Δ̃k′v‖L1
T (L2)

∑
k̃≥k,k̃≥k′

2−(k̃−k)ek̃(T )

� II1 + II2.
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Note that for k̃ ≤ k′

ek̃(T ) ≤ ek′(T ) ≤ ωk′(T ),

from which, together with ρ > −d
2 , we deduce that

∑
k∈Z

II1 �
∑
k′∈Z

ωk′(T )2k
′ρ‖Δk′h‖L∞

T (L2)2
k′( d

2 +1)‖Δ̃k′v‖L1
T (L2)

∑
k≤k′+2

2(k−k′)(ρ+ d
2 )

� ‖h‖Eρ
T
‖v‖

L1
T (B

d
2

+1)
.(5.8)

Similarly, we can obtain∑
k∈Z

II2 �
∑
k′∈Z

2k
′ρ‖Δk′h‖L∞

T (L2)

∑
k≤k′+2

2(k−k′)( d
2 +ρ)

∑
k̃≥k′

2−(k̃−k)ek̃(T )‖v‖
L1

T (B
d
2

+1)

�
∑
k′∈Z

ωk′(T )2k
′ρ‖Δk′h‖L∞

T (L2)

∑
k≤k′+2

2(k−k′)( d
2 +ρ+1)‖v‖

L1
T (B

d
2

+1)

� ‖h‖Eρ
T
‖v‖

L1
T (B

d
2

+1)
.(5.9)

By summing up (5.7)–(5.9), we obtain∑
k∈Z

ωk(T )2k(ρ−m)‖Fm
k,0(t)‖L1

T (L2) � ‖h‖Eρ
T
‖v‖

L1
T (B

d
2

+1)
.(5.10)

Note that A(D)Δk = 2kmϕ̃(2−kD) with ϕ̃(ξ) = A(ξ)ϕ(ξ). Setting θ̃ = F−1ϕ̃, we
get by using Taylor’s formula that

Fm
k,1(t) =

∑
|k′−k|≤3

2k(m−1)

∫
Rd

∫ 1

0

θ̃(y)

(y · Sk′−1∇vj(x− 2−kτy))Δk′∂jh(x− 2−ky)dτdy,

from which, together with Lemma 2.1, it follows that

‖Fm
k,1(t)‖L1

T (L2) � 2k(m−1)
∑

|k′−k|≤3

‖Sk′−1∇vj‖L1
T (L∞)‖Δk′∂jh‖L∞

T (L2)

� 2km
∑

|k′−k|≤3

‖Δk′h‖L∞
T (L2)‖v‖

L1
T (B

d
2

+1)
;

thus, we get ∑
k∈Z

ωk(T )2k(ρ−m)‖Fm
k,1(t)‖L1

T (L2) � ‖h‖Eρ
T
‖v‖

L1
T (B

d
2

+1)
.(5.11)

Thanks to the fact |k′ − k| ≤ 3 and Lemma 2.1, we have

‖(Sk′−1 − Sk−1)v
jA(D)ΔkΔk′∂jh‖L1

T (L2) � 2km‖Δkh‖L∞
T (L2)‖v‖

L1
T (B

d
2

+1)
,
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from which it follows that∑
k∈Z

ωk(T )2k(ρ−m)
(
‖Fm

k,2(t)‖L1
T (L2) + ‖Fm

k,3(t)‖L1
T (L2)

)
� ‖h‖Eρ

T
‖v‖

L1
T (B

d
2

+1)
,(5.12)

which, together with (5.10) and (5.11), yields (5.4).
Using the decomposition (5.6), with h instead of u, and Lemma 2.1, (5.2) can be

easily proved. We omit the proof here. In order to prove (5.3), we use the decompo-
sition (

A(D)Δk(v · ∇h),Δku
)

+
(
Δk(v · ∇u), A(D)Δkh

)
= Ik + Jk,

with

Ik =
(
A(D)Δk(T

′
∂jhv

j),Δku
)

+
(
Δk(T

′
∂juv

j), A(D)Δkh
)

�
(
Fm

k,0(t),Δku
)

+
(
F̃0

k,0(t), A(D)Δkh
)
,

Jk =
∑

|k′−k|≤3

(
[A(D)Δk, Sk′−1v

j ]Δk′∂jh,Δku
)

+
(
(Sk′−1 − Sk−1)v

jA(D)ΔkΔk′∂jh,Δku
)

+
∑

|k′−k|≤3

(
[Δk, Sk′−1v

j ]Δk′∂ju,A(D)Δkh
)

+
(
(Sk′−1 − Sk−1)v

jΔkΔk′∂ju,A(D)Δkh
)

−
(
Sk−1divvA(D)Δkh,Δku

)
�

(
Fm

k,1(t),Δku
)

+
(
Fm

k,2(t),Δku
)

+
(
F̃0

k,1(t), A(D)Δkh
)

+
(
F̃0

k,2, A(D)Δkh
)

+
(
Fm

k,3(t),Δku
)
,

from which, using a similar proof of (5.4), we obtain (5.3). This completes the proof
of Lemma 5.1.

Lemma 5.2. Let s1 ≤ d
2 − 1, s2 ≤ d

2 , and s1 + s2 > 0. Then it holds that

∑
k∈Z

ωk(T )2k(s1+s2− d
2 )‖Δk(fg)‖L1

T (L2) ≤ C
∑
k∈Z

ωk(T )2ks1‖Δkf‖Lr1
T (L2)‖g‖Lr2

T (Bs2 ),

(5.13)

where 1 ≤ r1, r2 ≤ ∞ and 1
r1

+ 1
r2

= 1.
Proof. Using Bony’s paraproduct decomposition, we write

Δk(fg) =
∑

|k′−k|≤3

Δk(Sk′−1fΔk′g) +
∑

|k′−k|≤3

Δk(Sk′−1gΔk′f)

+
∑

k′≥k−2

Δk(Δk′fΔ̃k′g) � I + II + III.
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A similar proof of (5.7) ensures that for s1 ≤ d
2 − 1

∑
k∈Z

ωk(T )2k(s1+s2− d
2 )‖I‖L1

T (L2) �
∑
k∈Z

ωk(T )2ks1‖Δkf‖Lr1
T (L2)‖g‖Lr2

T (Bs2 ),

while II can be directly deduced for s2 ≤ d
2 . On the other hand, a similar proof of

(5.8) and (5.9) gives for s1 + s2 > 0∑
k∈Z

ωk(T )2k(s1+s2− d
2 )‖III‖L1

T (L2) �
∑
k∈Z

ωk(T )2ks1‖Δkf‖Lr1
T (L2)‖g‖Lr2

T (Bs2 ).

This completes the proof of Lemma 5.2.
Similarly, we can also prove the following lemma.
Lemma 5.3. Let s1 ≤ d

2 − 1, s2 < d
2 , and s1 + s2 ≥ 0. Then it holds that

sup
k∈Z

ωk(T )2k(s1+s2− d
2 )‖Δk(fg)‖L1

T (L2) ≤ C‖f‖Es1
T
‖g‖L̃1

T (Ḃ
s2
2,∞).(5.14)

Lemma 5.4. Let s > 0. Assume that F ∈ W
[s]+3,∞
loc (Rd) with F (0) = 0. Then it

holds that

‖F (f)‖Es
T
≤ C(1 + ‖f‖L∞

T (L∞))
[s]+2‖f‖Es

T
.(5.15)

Proof. We decompose F (f) as

F (f) =
∑
k′∈Z

F (Sk′+1f) − F (Sk′f) =
∑
k′∈Z

Δk′f

∫ 1

0

F ′(Sk′f + τΔk′f)dτ

�
∑
k′∈Z

Δk′f mk′ ,

where mk′ =
∫ 1

0
F ′(Sk′f + τΔk′f)dτ . Furthermore, we write

ΔkF (f) =
∑
k′<k

Δk(Δk′f mk′) +
∑
k′≥k

Δk(Δk′f mk′) � I + II.

By Lemma 2.1, we have

‖I‖L∞
T (L2) ≤

∑
k′<k

‖Δk(Δk′f mk′)‖L∞
T (L2)

≤
∑
k′<k

2−k|α| sup
|γ|=|α|

‖DγΔk(Δk′f mk′)‖L∞
T (L2),(5.16)

with α to be determined later. Note that for |γ| ≥ 0, we have

‖Dγmk′‖∞ � 2k
′|γ|(1 + ‖f‖∞)|γ|‖F ′‖W |γ|,∞ ,

from which, together with (5.16), it follows that

2ks‖I‖L∞
T (L2) � 2k(s−|α|)

∑
k′<k

2k
′|α|‖Δk′f‖L∞

T (L2)(1 + ‖f‖L∞
T (L∞))

|α|‖F ′‖W |α|,∞ .
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Thus, if we take |α| = [s] + 2, we get∑
k∈Z

ωk(T )2ks‖I‖L∞
T (L2)

�
∑
k′∈Z

2k
′sωk′(T )‖Δk′f‖L∞

T (L2)

∑
k>k′

2(k−k′)(s−|α|+1)(1 + ‖f‖L∞
T (L∞))

|α|‖F ′‖W |α|,∞

� (1 + ‖f‖L∞
T (L∞))

[s]+2‖F ′‖W [s]+2,∞‖f‖Es
T
.

(5.17)

Next, let us turn to the proof of II. We get by using Lemma 2.1 that

‖II‖L∞
T (L2) �

∑
k′≥k

‖Δk′f‖L∞
T (L2).

Then we write∑
k∈Z

ωk(T )2ks‖II‖L∞
T (L2) �

∑
k∈Z

2ks
∑
k′≥k

‖Δk′f‖L∞
T (L2)

∑
k′≥k̃≥k

2−(k̃−k)ek̃(T )

+
∑
k∈Z

2ks
∑
k′≥k

‖Δk′f‖L∞
T (L2)

∑
k̃≥k′,k̃≥k

2−(k̃−k)ek̃(T ),

from which a similar proof of (5.8) and (5.9) ensures that∑
k∈Z

ωk(T )2ks‖II‖L∞
T (L2) � ‖f‖Es

T
.(5.18)

By summing up (5.17) and (5.18), we deduce the inequality (5.15). This completes
the proof of Lemma 5.4.
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BLOW-UP AND DECAY OF THE SOLUTION OF THE WEAKLY
DISSIPATIVE DEGASPERIS–PROCESI EQUATION∗
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Abstract. In this paper, we mainly study several problems on the weakly dissipative Degasperis–
Procesi equation. We first establish the local well-posedness of the equation, derive a precise blow-up
scenario, and present two blow-up criteria for strong solutions to the equation. We then give the
precise blow-up rate of blow-up solutions to the equation. We finally prove that the equation has
global strong solutions and these global solutions decay to zero as time goes to infinity provided the
potentials associated with their initial data are of one sign.
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1. Introduction. Recently, Degasperis and Procesi [20] studied the following
family of third-order dispersive conservation laws:

(1.1) ut + c0ux + γuxxx − α2utxx = (c1u
2 + c2u

2
x + c3uuxx)x,

where α, c0, c1, c2, and c3 are real constants. They found [20] that there are only three
equations that satisfy the asymptotic integrability condition within this family: the
KdV equation, the Camassa–Holm equation, and the Degasperis–Procesi equation.

If α = c2 = c3 = 0, then (1.1) becomes the well-known KdV equation which
describes the unidirectional propagation of waves at the free surface of shallow water
under the influence of gravity. In this model u(t, x) represents the wave’s height above
a flat bottom, x is proportional to the distance in the direction of propagation, and t
is proportional to the elapsed time. The KdV equation is completely integrable, and
its solitary waves are solitons [21, 39]. The Cauchy problem of the KdV equation has
been the subject of a number of studies, and a satisfactory local or global (in time)
existence theory is now in hand (for example, see [31, 43]). It is shown that the KdV
equation is globally well-posed for u0 ∈ L2(R); cf. [43]. It is observed that the KdV
equation does not accommodate wave breaking (by wave breaking we mean that the
wave remains bounded, but its slope becomes unbounded in finite time [45]).

For c1 = − 3
2c3/α

2 and c2 = c3/2, (1.1) becomes the Camassa–Holm equation,
modeling the unidirectional propagation of shallow water waves over a flat bottom.
Again u(t, x) stands for the fluid velocity at time t in the spatial x direction, and
c0 is a nonnegative parameter related to the critical shallow water speed [3, 22, 30].
The Camassa–Holm equation is also a model for the propagation of axially symmetric
waves in hyperelastic rods [15, 18]. It has a bi-Hamiltonian structure [33, 27] and is
completely integrable [3, 8]. Its solitary waves are smooth if c0 > 0 and peaked in
the limiting case c0 = 0; see [4]. The orbital stability of the peaked solitons is proved
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in [16] and that of the smooth solitons in [17]. The explicit interaction of the peaked
solitons is given in [1].

The Cauchy problem of the Camassa–Holm equation has been studied extensively.
It has been shown that this equation is locally well-posed [9, 34, 42] for initial data
u0 ∈ Hs(R), s > 3

2 . More interestingly, it has global strong solutions [7, 9] and also
finite time blow-up solutions [7, 9, 10, 13]. On the other hand, it has global weak
solutions in H1(R) [2, 11, 14, 47]. It is also known that if u is the solution of the
Camassa–Holm equation with the initial data u0 in H1(R), then we have the following
a priori estimate:

‖u(t, ·)‖L∞(R) ≤
√

2‖u(t, ·)‖H1(R) ≤
√

2‖u0(·)‖H1(R)

for all t > 0. The advantage of the Camassa–Holm equation in comparison with the
KdV equation lies in the fact that the Camassa–Holm equation has peaked solitons
and models wave breaking [4].

If c1 = −2c3/α
2 and c2 = c3 in (1.1), then after rescaling, shifting the dependent

variable, and applying a Galilean boost [19], we find the Degasperis–Procesi equation
of the form

(1.2) ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R.

The integrability of (1.2) was proved in [19] by constructing a Lax pair. It was also
shown in [19] that (1.2) has a bi-Hamiltonian structure and admits exact peakon
solutions which are analogous to the Camassa–Holm peakons.

The Degasperis–Procesi equation can be regarded as a model for the motion of
shallow water waves, and its asymptotic accuracy is the same as for the Camassa–
Holm shallow water equation [23, 29]. An inverse scattering approach for computing
n-peakon solutions to (1.2) was presented in [37]. The traveling wave solutions to (1.2)
were investigated in [44, 32]. The multisoliton solutions to (1.2) and their peakon limits
were studied in [38].

The Cauchy problem of the Degasperis–Procesi equation is locally well-posed [48]
for initial data u0 ∈ Hs(R) with s > 3

2 . Analogous to the Camassa–Holm equation, it
not only has global strong solutions [35, 51] but also blow-up solutions in finite time
[35, 48]. Meanwhile, the Degasperis–Procesi equation also has global weak solutions
with initial data u0 ∈ H1(R) (cf. [50, 51]) and global entropy weak solutions in the
class of L1(R) ∩BV (R) and the class of L2(R) ∩ L4(R); cf. [5].

Despite the similarities to the Camassa–Holm equation, we would like to point
out that these two equations are truly different. One of the important features of the
Degasperis–Procesi equation is that it not only has peakon solitons [19] and periodic
peakons [49] but also shock peakons [6, 36] and periodic shock waves [25]. On the other
hand, the isospectral problem for the Degasperis–Procesi equation is the third-order
equation in the Lax pair [19], while the isospectral problem for the Camassa–Holm
equation is the second-order equation [3]. Another indication of the fact that there is
no simple transformation of the Degasperis–Procesi equation into the Camassa–Holm
equation is the entirely different form of conservation laws for these two equations
[3, 19]. Furthermore, the Camassa–Holm equation is a reexpression of geodesic flow
on the diffeomorphism group [12] or on the Bott–Virasoro group [40]. Up to now, no
geometric derivation of the Degasperis–Procesi equation has been available.

Recently, several new global existence and blow-up results for strong solutions
to the Degasperis–Procesi equation were presented in [35]. It is proved that the first
blow-up must occur as wave breaking and shock waves possibly appear afterward [35].
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Global weak solution and blow-up structure for this equation were investigated in
[24]. Initial boundary value problems for the Degasperis–Procesi equation were also
discussed in [26].

In general, it is quite difficult to avoid energy dissipation mechanisms in a real
world. Ott and Sudan [41] ever investigated how the KdV equation was modified by
the presence of dissipation and the effect of such dissipation on the solitary solution
of the KdV equation. Ghidaglia [28] studied the long time behavior of solutions to the
weakly dissipative KdV equation as a finite-dimensional dynamical system. Recently,
Wu and Yin [46] discussed the blow-up, blow-up rate, and decay of the solution of
the weakly dissipative periodic Camassa–Holm equation.

In this paper, we would like to consider the following dissipative Degasperis–
Procesi equation:

ut − utxx + 4uux + L(u) = 3uxuxx + uuxxx, t > 0, x ∈ R,

where L(u) is a dissipative term, and L can be a differential operator or a quasi-
differential operator according to different physical situations. We are interested in the
effect of the weakly dissipative term on the Degasperis–Procesi equation. In particular,
we study the following weakly dissipative Degasperis–Procesi equation:

(1.3)

⎧⎪⎨
⎪⎩

yt + uyx + 3uxy + λy = 0, t > 0, x ∈ R,

y = u− uxx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

where λy = λ(1 − ∂2
x)u is the weakly dissipative term, and λ > 0 is a constant.

We find that the behaviors of (1.3) are similar to the Degasperis–Procesi equa-
tion in a finite interval of time, such as the local well-posedness and the blow-up
phenomena. But there are considerable differences between (1.3) and the Degasperis–
Procesi equation in their long time behaviors. Global solution of (1.3) decays to zero
as time goes to infinity provided the potential y0 = (1 − ∂2

x)u0 is of one sign. This
long time behavior is an important feature that the Degasperis–Procesi equation does
not possess. It is known that the Degasperis–Procesi equation has peaked traveling
wave solutions [19]. Theorem 4.1 in what follows shows that any global solution de-
cays in the H1-norm. This means that there are no traveling wave solutions of (1.3).
This is also another considerable difference between (1.3) and the Degasperis–Procesi
equation (1.2) in their long time behaviors.

It is very interesting that (1.3) has the same blow-up rate as the Degasperis–
Procesi equation does when the blow-up occurs. This fact shows that the blow-up rate
of the Degasperis–Procesi equation is not affected by the weakly dissipative term. But
the occurrence of blow-up of (1.2) is affected by the dissipative parameter.

It should be noticed that the weakly dissipative term breaks the conservation laws
of the following Degasperis–Procesi equation [19]:

E1(u) =

∫
R

ydx, E2(u) =

∫
R

yvdx, E3(u) =

∫
R

u3dx,

where y = (1− ∂2
x)u and v = (4− ∂2

x)−1u, which play an important role in the study
of the Degasperis–Procesi equation [5, 24, 25, 35, 48, 49, 50, 51].

Notation. As above and henceforth, we denote by ∗ the convolution. We write f̂ as
the Fourier transform of f . We also use ( , ) to represent the standard inner product
in L2(R). For 1 ≤ p ≤ ∞, the norm in the Lebesgue space Lp will be written ‖ · ‖Lp ,
while ‖ · ‖r, r ≥ 0, will stand for the norm in the classical Sobolev spaces Hr(R).



478 SHUYIN WU AND ZHAOYANG YIN

2. Local well-posedness and blow-up. In this section, we establish the local
well-posedness of (1.3), derive a precise blow-up scenario, and present two blow-up
criteria for strong solutions to (1.3).

Note that if p(x) = 1
2e

−|x|, x ∈ R, then (1− ∂2
x)−1f = p ∗ f for all f ∈ L2(R) and

p ∗ y = u. Using this identity, we can rewrite (1.3) as follows:

(2.1)

{
ut + uux + ∂xp ∗ ( 3

2u
2) + λu = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

Using Kato’s semigroup approach along lines very similar to [48], one obtains the local
well-posedness of (1.3) or (2.1).

Theorem 2.1. Given u0 ∈ Hr(R), r > 3
2 , there exist a maximal T = T (λ,

‖u0‖r) > 0, and a unique solution u to (1.3) (or (2.1)), such that

u = u(·, u0) ∈ C([0, T );Hr(R)) ∩ C1([0, T );Hr−1(R)),

and the solution depends continuously on the initial data ; i.e., the mapping u →
u(·, u0) : Hr(R) → C([0, T );Hr(R)) ∩ C1([0, T );Hr−1(R)) is continuous. Moreover,
T may be chosen independent of r in the following sense. If

u = u(·, u0) ∈ C([0, T );Hr(R)) ∩ C1([0, T );Hr−1(R))

to (1.3) (or (2.1)), and if u0 ∈ Hr
′
(R) for some r

′ �= r, r
′
> 3

2 , then

u ∈ C([0, T );Hr
′

(R)) ∩ C1([0, T );Hr
′
−1(R))

with the same T .

The following results are proved only with regard to r = 3, since we can obtain
the same conclusion for the general case r > 3

2 by using Theorem 2.1 and a simple
density argument.

We now present a precise blow-up scenario for strong solutions to (1.3).

Theorem 2.2. Given u0 ∈ Hr(R), r > 3
2 , the solution of (1.3) (or (2.1)) blows

up in a finite time T > 0 if and only if

lim
t→T

inf{ inf
x∈R

ux(t, x)} = −∞.

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.3)
(or (2.1)) with initial data u0 ∈ H3(R). By (1.3), we have

d

dt

∫
R

y2dx = 2

∫
R

yytdx(2.2)

= −2

∫
R

uyyxdx− 6

∫
R

uxy
2dx− 2λ

∫
R

y2dx

= −5

∫
R

uxy
2dx− 2λ

∫
R

y2dx.
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If u0 ∈ H4(R), then we can obtain by (1.3)

d

dt

∫
R

y2
xdx = 2

∫
R

yxyxtdx(2.3)

= −8

∫
R

uxy
2
xdx− 2

∫
R

uyxyxxdx− 6

∫
R

uxxyyxdx− 2λ

∫
R

y2
xdx

= −7

∫
R

uxy
2
xdx + 3

∫
R

uxy
2dx− 2λ

∫
R

y2
xdx.

As for u0 ∈ H3(R), we will show that (2.3) still holds. In fact, we can approximate u0

in H3(R) by function un
0 ∈ H4(R). Moreover, we write un = un(·, un

0 ) for the solution
of (1.3) with initial data un

0 .
By Theorem 2.1, we know that

un ∈ C([0, Tn);H4(R)) ∩ C1([0, Tn);H3(R)), n ≥ 1,

yn = un − un
xx ∈ C([0, Tn);H2(R)) ∩ C1([0, Tn);H1(R)), n ≥ 1,

un → u in H3(R), and Tn → T as n → ∞.
Due to un

0 ∈ H4(R), we have by (2.3)

d

dt

∫
R

(ynx )2dx = −7

∫
R

un
x(ynx )2dx + 3

∫
R

un
x(yn)2dx− 2λ

∫
R

(ynx )2dx.

Since un → u in H3(R) as n → ∞, it follows that un
x → ux in L∞(R) as n → ∞. Also

note that yn → y in H1(R) and ynx → yx in L2(R) as n → ∞. Letting n go to infinity
in the above equation, we can easily deduce that (2.3) holds for u0 ∈ H3(R).

Adding (2.2) and (2.3), we get

d

dt

(∫
R

y2dx +

∫
R

y2
xdx

)
= − 7

∫
R

uxy
2
xdx− 2

∫
R

uxy
2dx

− 2λ

(∫
R

y2dx +

∫
R

y2
xdx

)
.

(2.4)

If ux is bounded from below on [0, T ), then there exists a positive constant k such
that ux ≥ −k on [0, T ). Thus, we get by (2.4) and Gronwall’s inequality

‖y‖2
1 ≤ exp{(7k − 2λ)t}‖y(0)‖2

1.

The above inequality implies that the H3-norm of the solution u of (1.3) does not
blow up in finite time.

Next, we present two blow-up criteria for (1.3) guaranteeing the occurrence of
this phenomenon. Let us first prove several useful lemmas.

Consider the following differential equation:

(2.5)

{
qt = u(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈ R.

The system (2.5) is essential in deriving invariance properties for solutions of the
Degasperis–Procesi equation [25, 35, 51] and the Camassa–Holm equation [7, 9, 13].
It is thus natural to expect it would also be useful in the present context.
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Applying classical results in the theory of ordinary differential equations, one can
obtain the following two results on q which are crucial in the proof of global existence
and blow-up solutions.

Lemma 2.1 (see [51]). Let u0 ∈ Hr(R), r ≥ 3, and let T > 0 be the maximal
existence time of the corresponding solution u to (1.3). Then (2.5) has a unique solu-
tion q ∈ C1([0, T ) × R,R). Moreover, the map q(t, ·) is an increasing diffeomorphism
of R with

qx(t, x) = exp

(∫ t

0

ux(s, q(s, x))ds

)
> 0 ∀(t, x) ∈ [0, T ) × R.

Lemma 2.2. Let u0 ∈ Hr(R), r ≥ 3, and let T > 0 be the maximal existence time
of the corresponding solution u to (1.3). Setting y := u− uxx, we have

y(t, q(t, x))q3
x(t, x) = y0(x) exp{−λt} ∀(t, x) ∈ [0, T ) × R.

Proof. Differentiation of the system (2.5) with respect to x yields

{
d
dtqx = ux(t, q)qx, t ∈ (0, T ),

qx(0, x) = 1, x ∈ R.

Let g(t, x) = y(t, q(t, x))q3
x(t, x). By Lemma 2.1, we infer from (1.3) and (2.5) that

d

dt
g(t, x) = −λg(t, x).

Integrating the above relation with respect to t < T on [0, t] yields the desired
result.

Lemma 2.3. If u0 ∈ Hr(R), r > 3
2 , then as long as the solution u(t, x) given by

Theorem 2.1 exists, we have

∫
R

y(t, x)v(t, x)dx = exp{−2λt}
∫

R

y0(x)v0(x)dx,

where y(t, x) = u(t, x) − uxx(t, x) and v(t, x) = (4 − ∂2
x)−1u. Moreover, we have

‖u(t)‖2
L2 ≤ 4 exp{−2λt}‖u0‖2

L2 .

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.3)
(or (2.1)) with initial data u0 ∈ H3(R). By (1.3), we have

1

2

d

dt

∫
R

yv dx =
1

2

∫
R

ytv dx +
1

2

∫
R

yvtdx =

∫
R

yt v dx

= −
∫

R

vyxu dx− 3

∫
R

vyuxdx− λ

∫
R

yv dx

= −
∫

R

v(yu)x dx− 2

∫
R

vyuxdx− λ

∫
R

yv dx.
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Using the relations y = u− uxx and 4v − vxx = u, it yields∫
R

v(yu)x dx = −
∫

R

vxyu dx = −
∫

R

vxu
2 dx +

∫
R

vxuuxxdx

= −
∫

R

vxu
2 dx−

∫
R

(vxu)x ux dx

= −
∫

R

vxu
2 dx−

∫
R

vxxuux dx−
∫

R

vxu
2
xdx

= −
∫

R

vxu
2 dx +

1

2

∫
R

vxxxu
2 dx−

∫
R

vxu
2
xdx

= −
∫

R

vxu
2 dx +

1

2

∫
R

(4vx − ux)u2 dx−
∫

R

vxu
2
xdx

=

∫
R

vxu
2 dx−

∫
R

vxu
2
xdx.

On the other hand,

2

∫
R

v y ux dx = 2

∫
R

vuux dx− 2

∫
R

vuxxuxdx

= −
∫

R

vx u
2 dx +

∫
R

vxu
2
x dx.

Combining the above three relations, we deduce that

1

2

d

dt

∫
R

yv dx = −λ

∫
R

yvdx.

Consequently, this implies the first desired result. In view of the proved equality, it
then follows that

‖u(t)‖2
L2 = ‖û(t)‖2

L2 ≤ 4

∫
R

1 + ξ2

4 + ξ2
|û(t, ξ)|2 dξ

= 4(ŷ(t), v̂(t)) = 4(y(t), v(t))

= 4 exp{−2λt}(y0, v0) = 4 exp{−2λt}(ŷ0, v̂0)

≤ 4 exp{−2λt}
∫

R

1 + ξ2

4 + ξ2
|û0(ξ)|2 dξ

≤ 4 exp{−2λt}‖û0‖2
L2 = 4 exp{−2λt}‖u0‖2

L2 .

This completes the proof of the lemma.
Lemma 2.4. Assume u0 ∈ Hr(R), r > 3

2 . Let T be the maximal existence time of
the solution u to (1.3) guaranteed by Theorem 2.1. Then we have

‖u(t)‖L∞ ≤ exp{−λt}
(

3

λ
‖u0‖2

L2 + ‖u0‖L∞

)
∀t ∈ [0, T ].



482 SHUYIN WU AND ZHAOYANG YIN

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.3) with
the initial data u0 ∈ H3(R). By (2.5), we get

du(t, q(t, x))

dt
= ut(t, q(t, x)) + ux(t, q(t, x))

dq(t, x)

dt

= (ut + uux)(t, q(t, x)).

By (2.1), we have

ut + uux = −3p ∗ (uux) − λu.

Note that

−3p ∗ (uux) = −3

2

∫ +∞

−∞
e−|x−η|uuηdη

= −3

2

∫ x

−∞
e−x+ηuuηdη − 3

2

∫ +∞

x

ex−ηuuηdη

=
3

4

∫ x

−∞
e−|x−η|u2dη − 3

4

∫ +∞

x

e−|x−η|u2dη.

It then follows that

−3

4

∫ +∞

q(t,x)

e−|q(t,x)−η|u2dη ≤ du(t, q(t, x))

dt
+λu(t, q(t, x)) ≤ 3

4

∫ q(t,x)

−∞
e−|q(t,x)−η|u2dη.

It thus transpires that∣∣∣∣du(t, q(t, x))

dt
+ λu(t, q(t, x))

∣∣∣∣ ≤ 3

4

∫ +∞

−∞
e−|q(t,x)−η|u2dη ≤ 3

4
‖u(t)‖2

L2 .

In view of Lemma 2.3, we have∣∣∣∣du(t, q(t, x))

dt
+ λu(t, q(t, x))

∣∣∣∣ ≤ 3 exp{−2λt}‖u0‖2
L2 .

Integrating the above inequality with respect to t < T on [0, t] yields

| exp{λt}u(t, q(t, x)) − u0(x)| ≤ 3

λ
‖u0‖2

L2 .

Thus,

|u(t, q(t, x))| ≤ ‖u(t, q(t, x))‖L∞

≤ exp{−λt}
(

3

λ
‖u0‖2

L2 + ‖u0‖L∞

)
.

(2.6)

Using the Sobolev embedding to ensure the uniform boundedness of ux(s, η) for
(s, η) ∈ [0, t] × R with t ∈ [0, T ), in view of Lemma 2.1, we get for every t ∈ [0, T ) a
constant C(t) > 0 such that

e−C(t) ≤ qx(t, x) ≤ eC(t), x ∈ R.
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We deduce from the above equation that the function q(t, ·) is strictly increasing on
R with limx→±∞ q(t, x) = ±∞ as long as t ∈ [0, T ). Thus, by (2.6) we can obtain

‖u(t, x)‖L∞ = ‖u(t, q(t, x))‖L∞ ≤ exp{−λt}
(

3

λ
‖u0‖2

L2 + ‖u0‖L∞

)
.

This completes the proof of Lemma 2.4.
We are now in the position to present the first blow-up result.
Theorem 2.3. Let u0 ∈ Hr(R), r > 3

2 , and assume that there exists x0 ∈ R such
that

u
′

0(x0) < −1

2
λ− 1

2

√
λ2 + 6

(
3

λ
‖u0‖2

L2 + ‖u0‖L∞

)2

.

Then the corresponding solution of (1.3) blows up in finite time.
Proof. Let T > 0 be the existence time of the solution u(t, ·) of (1.3) (or (2.1))

with the initial data u0 ∈ H3(R). Differentiating (2.1) with respect to x, in view of
∂2
xp ∗ f = p ∗ f − f , we get

(2.7) utx = −u2
x − uuxx +

3

2
u2 − p ∗

(
3

2
u2

)
− λux.

Note that

dux(t, q(t, x))

dt
= uxt(t, q(t, x)) + uxx(t, q(t, x))

dq(t, x)

dt

= utx(t, q(t, x)) + u(t, q(t, x))uxx(t, q(t, x)).

Thus, we have

dux(t, q(t, x))

dt
= − u2

x(t, q(t, x)) +
3

2
u2(t, q(t, x))

− p ∗
(

3

2
u2(t, q(t, x)

)
− λux(t, q(t, x)).

(2.8)

In view of p ∗
(

3
2u

2
)
(t, q(t, x)) ≥ 0, we infer from (2.8) and Lemma 2.4 that

dux(t, q(t, x))

dt
≤ −u2

x(t, q(t, x)) − λux(t, q(t, x)) +
3

2
u2(t, q(t, x))

≤ −u2
x(t, q(t, x)) − λux(t, q(t, x)) +

3

2

(
3

λ
‖u0‖2

L2 + ‖u0‖L∞

)2

.

Set m(t) = ux(t, q(t, x0)) and

α2 =
3

2

(
3

λ
‖u0‖2

L2 + ‖u0‖L∞

)2

.

Then we obtain

dm(t)

dt
≤ −m2(t) − λm(t) + α2

= −1

4

(
2m(t) + λ−

√
λ2 + 4α2

)(
2m(t) + λ +

√
λ2 + 4α2

)
.
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From the hypothesis, we have m(0) < − 1
2λ− 1

2

√
λ2 + 4α2, and thus dm

dt |t=0 < 0. By

continuity with respect to t of m(t), we have dm
dt < 0 for all t ∈ [0, T ). Therefore,

m(t) < − 1
2λ− 1

2

√
λ2 + 4α2 for all t ∈ [0, T ). Thus, we can solve the above inequality

to obtain

2m(0) + λ +
√
λ2 + 4α2

2m(0) + λ−
√
λ2 + 4α2

exp{
√
λ2 + 4α2 t} − 1 ≤ 2

√
λ2 + 4α2

2m(t) + λ−
√
λ2 + 4α2

≤ 0.

Since

0 <
2m(0) + λ +

√
λ2 + 4α2

2m(0) + λ−
√
λ2 + 4α2

< 1,

there exists T satisfying

T ≤ 1√
λ2 + 4α2

ln

(
2m(0) + λ−

√
λ2 + 4α2

2m(0) + λ +
√
λ2 + 4α2

)

such that limt↑T m(t) = −∞. Hence, the above theorem is proved according to
Theorem 2.2.

We give the second criterion that guarantees the blow-up of the solutions of (1.3).
Theorem 2.4. Assume that u0 ∈ Hr(R)

(
r > 3

2

)
is odd, and u

′

0(0) < −λ. Then
the corresponding solution of (1.3) blows up in finite time.

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.3)
(or (2.1)) with initial data u0 ∈ H3(R). As one can check, the function

v(t, x) := −u(t,−x), t ∈ [0, T ), x ∈ R,

is also a solution of (1.3) in C([0, T );H3(R)
⋂
C1([0, T );H2(R) with initial data u0.

By uniqueness we conclude that v ≡ u, and therefore u(t, ·) is odd for any t ∈ [0, T ).
In particular, by continuity with respect to the spatial variable of u and uxx, we get

u(t, 0) = uxx(t, 0) = 0, t ∈ [0, T ).

Define h(t) := ux(t, 0) for t ∈ [0, T ). Note that h ∈ C1([0, T ),R). From (2.7), we
get

dh

dt
(t) = −h2(t) − λh(t) − p ∗

(
3

2
u2

)

≤ − (h(t) + λ)h(t), t ∈ [0, T ).

From the hypothesis, we have h(0) < −λ. Therefore, h(t) < −λ for all t ∈ [0, T ).
Solving the above inequality, we get

1 − h(0)

h(0) + λ
exp{−λt} ≤ λ

h(t) + λ
≤ 0.

Since

h(0)

h(0) + λ
> 1,

we conclude that there exists T and

T ≤ 1

λ
ln

h(0)

h(0) + λ

such that limt↑T h(t) = −∞. We complete the proof of the theorem by Theorem
2.2.
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3. Blow-up rate. In this section, we give more insight into the blow-up mech-
anism for the wave-breaking solutions to (1.3).

Lemma 3.1 (see [10]). Let T > 0 and v ∈ C1([0, T );H2(R)); then for every
t ∈ [0, T ) there exists at least one point ξ(t) ∈ R with

m(t) := inf
x∈R

vx(t, x) = vx(t, ξ(t)).

The function m(t) is a.e. differentiable on (0, T ) with

dm

dt
= vtx(t, ξ(t)) a.e. on (0, T ).

Theorem 3.1. Let u0 ∈ Hr(R), r > 3
2 , and let T > 0 be the maximal existence

time of the corresponding solution to (1.3). If T is finite, we have

lim
t→T

(T − t) inf
x∈R

ux(t, x) = −1.

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.3)
(or (2.1)) with initial data u0 ∈ H3(R). We already know by Theorem 2.2 that

(3.1) lim
t→T

inf{ inf
x∈R

ux(t, x)} = −∞.

We know that u(x, t) ∈ C1([0, T );H2(R)) by Theorem 2.1; then we infer from Lemma
3.1 that, for every t ∈ [0, T ), there exists at least one point ξ(t) ∈ R with ux(t, ξ(t)) =
infx∈R ux(t, x). Let

m(t) = ux(t, ξ(t)) = inf
x∈R

ux(t, x);

then uxx(t, ξ(t)) = 0 for all t ∈ [0, T ). From (2.7) we have

(3.2)
dm

dt
+ m2(t) + λm(t) =

3

2
u2(t, ξ(t)) − p ∗

(
3

2
u2(t, ξ(t))

)
a.e. on (0, T ).

By Lemmas 2.3–2.4, we have for t ∈ [0, T ) that∣∣∣∣32u2(t, ξ(t)) − p ∗
(

3

2
u2(t, ξ(t))

)∣∣∣∣
≤
∣∣∣∣32u2(t, ξ(t))

∣∣∣∣ +

∣∣∣∣34
∫

R

e−|ξ(t)−η|u2(t, η)dη

∣∣∣∣
≤3

2
‖u‖2

L∞ +
3

4
‖u‖2

L2

≤3

2

(
3

λ
‖u0‖2

L2 + ‖u0‖L∞

)2

+ 3‖u0‖2
L2 .

Set

β =
3

2

(
3

λ
‖u0‖2

L2 + ‖u0‖L∞

)2

+ 3‖u0‖2
L2 .
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We infer from (3.2) that∣∣∣∣dmdt + m2(t) + λm(t)

∣∣∣∣ ≤ β a.e. on (0, T ).

Hence,

(3.3) −β − 1

4
λ2 ≤ dm

dt
+

(
m(t) +

1

2
λ

)2

≤ β +
1

4
λ2 a.e. on (0, T ).

Let ε ∈ (0, 1). Since limt→T inf(m(t)+ 1
2λ) = −∞ (by (3.1)), there is some t0 ∈ (0, T )

with m(t0) + 1
2λ < 0 and

(
m(t0) +

1

2
λ

)2

>
1

ε

(
β +

1

4
λ2

)
.

We claim that

(3.4)

(
m(t) +

1

2
λ

)2

>
1

ε

(
β +

1

4
λ2

)
, t ∈ [t0, T ).

In fact, since m(t) is locally Lipschitz (it belongs to W 1,∞
loc (R) by Theorem 2.1), there

is some δ > 0 such that(
m(t) +

1

2
λ

)2

>
1

ε

(
β +

1

4
λ2

)
, t ∈ (t0, t0 + δ).

From (3.3), we have

dm

dt
< (ε− 1)

(
m(t) +

1

2
λ

)2

< 0, t ∈ (t0, t0 + δ) a.e. on (0, T ).

Being locally Lipschitz, the function m(t) is absolutely continuous. Therefore, by
integrating the above relation on [t0, t0 + δ], we obtain that m(t0 + δ) ≤ m(t0). Thus,

m(t0 + δ) +
1

2
λ ≤ m(t0) +

1

2
λ < 0.

By the above inequality, we have(
m(t0 + δ) +

1

2
λ

)2

≥
(
m(t0) +

1

2
λ

)2

>
1

ε

(
β +

1

4
λ2

)
.

The relation (3.4) is proved by a continuous extension.
A combination of (3.3) with (3.4) enables us to infer that

(3.5) −1 − ε <
dm
dt(

m(t) + 1
2λ

)2 < −1 + ε a.e. on (t0, T ).

For t ∈ (t0, T ), integrating (3.5) on (t, T ), we obtain

−1 − ε <
1(

m(t) + 1
2λ

)
(T − t)

< −1 + ε, t ∈ (t0, T ).
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Letting ε go to zero, we obtain

lim
t→T

[(
m(t) +

1

2
λ

)
(T − t)

]
= −1,

that is,

lim
t→T

(T − t)m(t) = −1.

This completes the proof of the theorem.
Remark 3.1. Although the occurrence of blow-up of strong solutions to (1.3)

is affected by the dissipative parameter (see Theorems 2.3–2.4), Theorem 3.1 shows
that the blow-up rate of strong solutions to the Degasperis–Procesi equation [24] is
not affected by the weakly dissipative term.

4. Global solution and its decay. In this section we will show that there exist
global strong solutions to (1.3) and these global solutions decay to zero as time goes
to infinity provided the initial data u0 satisfy certain sign conditions.

Theorem 4.1. Assume u0 ∈ Hr(R), r > 3
2 . If y0 = u0 − u0,xx does not change

sign on R, then (1.3) (or (2.1)) has a global strong solution

u = u(·, u0) ∈ C([0,∞);Hr(R)) ∩ C1([0,∞);Hr−1(R)).

Moreover, the global solution decays to 0 in the H1-norm and the H3-norm as time
goes to infinity.

Proof. Let T > 0 be the maximal time of existence of the solution u to (1.3)
(or (2.1)) with initial data u0 ∈ H3(R). We first consider the case where y0 ≥ 0 on R.
If y0 ≥ 0, then Lemmas 2.1–2.2 ensure that y ≥ 0 for all t ∈ [0, T ). Using u = p ∗ y
and the positivity of p, we infer that u(t, ·) ≥ 0 for all t ≥ 0. Note that

u(t, x) =
e−x

2

∫ x

−∞
eηy(t, η)dη +

ex

2

∫ ∞

x

e−ηy(t, η)dη

and

ux(t, x) = −e−x

2

∫ x

−∞
eηy(η)dη +

ex

2

∫ ∞

x

e−ηy(η)dη.

From the above two equations, we deduce that

u(t, x) + ux(t, x) = ex
∫ ∞

x

e−ηy(t, η)dη,

u(t, x) − ux(t, x) = e−x

∫ x

−∞
eηy(t, η)dη.

(4.1)

By (4.1) and y ≥ 0 for all t ∈ [0, T ), we obtain, for t ∈ [0, T ),

(4.2) |ux(t, x)| ≤ u(t, x) ∀(t, x) ∈ [0, T ) × R.

By Lemma 2.4, we have

|ux(t, x)| ≤ u(t, x)

≤ exp{−λt}
(

3

λ
‖u0‖2

L2 + ‖u0‖L∞

)
∀(t, x) ∈ [0, T ) × R.

(4.3)
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The above inequality and Theorem 2.2 imply that T = ∞. This proves that the
solution u exists globally in time.

Multiplying (1.3) by u and integrating by parts, in view of (4.2) and Lemmas
2.3–2.4, we get

1

2

d

dt

∫
R

(
u2 + u2

x

)
dx + λ

∫
R

(
u2 + u2

x

)
dx

= − 4

∫
R

u2uxdx + 3

∫
R

uuxuxxdx +

∫
R

u2uxxxdx

= − 1

2

∫
R

u3
xdx ≤ 1

2

∫
R

u3dx ≤ 1

2
‖u‖L∞

∫
R

u2dx

≤2 exp{−3λt}
(

3

λ
‖u0‖2

L2 + ‖u0‖L∞

)
‖u0‖2

L2 .

Integrating the above inequality with respect to t, we have

‖u(t)‖2
1 ≤ exp{−2λt}

(
12

λ2
‖u0‖4

L2 +
4

λ
‖u0‖2

L2‖u0‖L∞ + ‖u0‖2
1

)
.

This shows that the corresponding global solution with y0 ≥ 0 decays to 0 in the
H1-norm.

By (4.3), we obtain that −ux ≤ λ
7 for sufficiently large t. This yields, in combina-

tion with (2.4) and Gronwall’s inequality,

‖y‖2
1 ≤ e−λt‖y0‖2

1

for large t. The above inequality implies that the corresponding global solution with
y0 ≥ 0 decays to 0 in the H3-norm. This completes the proof of the theorem with the
assumption y0 ≥ 0 on R. In the case when y0(x) ≤ 0 on R, one can repeat the above
proof to get the desired result.

Remark 4.1. Note that the global solution to the Degasperis–Procesi equation
does not generally decay to zero as time goes to infinity [35]. Theorem 4.1 shows that
there is a considerable difference between (1.3) and the Degasperis–Procesi equation
in their long time behaviors. More precisely, the energy dissipation will affect the long
time behavior of global solutions to the Degasperis–Procesi equation.

Remark 4.2. It is well known that the Degasperis–Procesi equation has peaked
traveling wave solutions. Theorem 4.1 shows that global H3-solutions with y0 of one
sign decay in the H1-norm and the H3-norm. Lemma 2.4 shows that any global
solution decays in the L∞-norm. This means that there are no traveling wave solutions
of the dissipative equation (1.3). This is also another considerable difference between
(1.3) and the Degasperis–Procesi equation in their long time behaviors.

Acknowledgment. The authors thank the referees for their valuable comments
and suggestions.
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NONLINEAR STABILITY OF STATIONARY SOLUTIONS FOR
SURFACE DIFFUSION WITH BOUNDARY CONDITIONS∗
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Abstract. The volume-preserving fourth order surface diffusion flow has constant mean curva-
ture hypersurfaces as stationary solutions. We show nonlinear stability of certain stationary curves
in the plane which meet an exterior boundary with a prescribed contact angle. Methods include
semigroup theory, energy arguments, geometric analysis, and variational calculus.
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1. Introduction. The surface diffusion flow

(1.1) V = −ΔSκ

is a geometrical evolution law which describes the surface dynamics for phase inter-
faces, when mass diffusion occurs only within the interface. Here V is the normal
velocity of the evolving surface, ΔS is the surface Laplacian, and κ is the mean
curvature of the surface. The flow (1.1) was first proposed by Mullins [20] in works
concerned with thermal grooving. A derivation of (1.1) within rational thermodynam-
ics was given by Davi and Gurtin [7]. In [22], Cahn and Taylor showed that (1.1) is
the H−1-gradient flow of the area functional, and in [5], Cahn, Elliott, and Novick-
Cohen used formal asymptotics to derive (1.1) as the sharp interface limit of the
Cahn–Hilliard equation with degenerate mobility. Further, the motion given by (1.1)
has the significant geometrical properties that for closed embedded hypersurfaces the
enclosed volume is preserved and surface area decreases in time (see, e.g., [10, 12]).
The evolution law (1.1) leads to a fourth order parabolic equation which is in contrast
to the second order mean curvature flow V = κ. We remark that the mean curvature
flow is also area decreasing but changes the enclosed volume.

In this paper we study the motion by surface diffusion for curves in cases where the
interface intersects an external boundary. More precisely, we consider the following
problem. Let Ω be an open bounded domain in R

2. We look for evolving curves
Γ = {Γt}t≥0 lying in Ω with ∂Γ ⊂ ∂Ω and satisfying

(1.2) V = −κss

for all points on Γt with the boundary conditions

(1.3)

{
Γt⊥∂Ω (90◦-angle condition),

κs = 0 (no-flux condition)
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at Γt ∩ ∂Ω, where a subscript s denotes differentiation with respect to the arc-length
parameter of the evolving curve Γt. The boundary conditions (1.3) are the natural
boundary conditions when viewing the flow as the H−1-gradient flow of the length
functional. It is not difficult to show that under the surface diffusion flow (1.2) with
the boundary conditions (1.3) the areas enclosed by Γt and ∂Ω are preserved and the
length of Γt decreases in time. We also find that an arc of a circle or a line segment is
stationary under (1.2) and (1.3). Our goal in this paper is to show a nonlinear stability
result for stationary solutions to (1.2) and (1.3). A proof of such a result is difficult due
to the area-preserving property and due to the fact that highly nonlinear boundary
conditions appear. We remark that for nonlinear boundary conditions satisfactory
stability results are not available within the context of semigroup theory. We also
remark that it is not possible to use methods based on maximum or comparison
principles which have been used for mean curvature flow; see [8, 9].

For closed curves evolving by surface diffusion, Elliott and Garcke [10] showed a
global existence result in the case that the initial curve is close to a circle. In addition,
they proved nonlinear stability of circles under surface diffusion. Escher, Mayer, and
Simonett [12] generalized the result in [10] to the higher-dimensional case. For evolving
curves which come into contact with the outer boundary, Garcke, Ito, and Kohsaka
[13] studied the linearized stability of stationary curves for (1.2) and (1.3). They
derived a linearized stability criterion by extending the work for mean curvature flow
of [8, 9, 15] to motion by surface diffusion. For three evolving curves with a triple
junction in the case that the outer boundary ∂Ω is a rectangle [11, 16] or a triangle
[17], global existence results when the initial curve is a small perturbation of a certain
stationary curve have been shown. Also, nonlinear stability of this stationary curve
can be shown.

Since the proof of nonlinear stability will depend heavily on the linear stability
criterion derived in [13], we will now state it in detail. Let Γ∗ be a stationary curve
parameterized by X∗ such that

Γ∗ = {X∗(σ) | σ ∈ [l−, l+]},

where σ is the arc-length parameter along Γ∗ and X∗(l±) ∈ ∂Ω. Further, we denote
by κ∗ the curvature of Γ∗ and by h∗

± the curvature of ∂Ω at X∗(l±), where we assume
the sign convention that h∗

± is negative if Ω is convex. Then the linearized stability
criterion requires that

(1.4) I∗[w,w] =

∫ l+

l−

{
w2

σ − (κ∗)2w2
}
dσ + h∗

+(w2|σ=l+) + h∗
−(w2|σ=l−)

is positive for all w ∈ H1(Γ∗) with mean value zero. In [13] this criterion was derived by
studying the stability of the linearized problem. The same bilinear form also appears if
one computes the second variation of the length functional taking boundary contacts
into account; see, e.g., Vogel [23]. We refer the reader to section 7 of [13] for several
examples in which the linearized stability criterion has been applied. In the papers
[2, 3] numerical results on the stability of stationary solutions for surface diffusion are
presented.

Our methods to obtain a nonlinear stability result are the following. First we
introduce new curvilinear coordinates in order to derive an appropriate parameteri-
zation for which we can formulate (1.2) and (1.3) in a PDE setting. We then prove a
local existence result, where the local existence time depends only on the C2+α-norm
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(0 < α < 1) of the initial curve. This is very helpful for a global existence result
because we need a priori estimates only up to two spatial derivatives. In fact, by
applying an energy method as in [6, 10, 16, 17] to a resulting evolution equation for
the curvature, we can derive an a priori estimate of the L2-norm of κs, which implies
the boundedness of the C2+α-norm (0 < α < 1/2) of the solution for t > 0. In the
derivation of this a priori estimate, the linearized stability criterion developed in [13]
is used. In addition, we need to understand the set of stationary solutions. We can use
a result by Vogel [23] which guarantees that linearly stable stationary solutions are
strict local minimizers of the length functional under an area constraint. We also show
that in the neighborhood of the linearly stable stationary solution other stationary
solutions can be represented as a one parameter family, where the parameter is the
enclosed area. This implies that the linearly stable stationary solution is isolated, a
fact which will be important in order to study the long time behavior of solutions.

This paper proceeds as follows. In section 2, a parameterization established in [13]
is employed for the geometric evolution equation (1.2) with boundary conditions (1.3).
As a consequence, we obtain a nonlinear fourth order parabolic PDE with nonlinear
boundary conditions. We show a local existence result for this nonlinear parabolic
problem. For the reader’s convenience we show an essential part of the proof of the
local existence result in Appendix A. In section 3, an evolution equation for the
curvature is derived together with some geometric identities. The evolution equation
for the curvature allows it to apply an energy method as in [6, 10, 16, 17]. In section 4,
we first derive a priori estimates for the length of Γt and the L2-norm of κs when Γt

is close to a linearly stable stationary curve. These estimates imply the boundedness
of the C2+α-norm (0 < α < 1/2) of the solution for t > 0, so that the global existence
result is proven when the initial curve is close to a linearly stable stationary curve.
Finally, in section 5, we show nonlinear stability of linearly stable stationary curves.

2. Local existence and uniqueness. In order to derive local existence and
uniqueness for the geometric evolution equation (1.2) with the boundary conditions
(1.3), we employ a parameterization which was established in [13]. We remark that
our parameterization describes the curves close to a stationary curve by a modi-
fied distance function over a fixed interval and leads to a single PDE in contrast to
parameterizations used, e.g., in Bronsard and Reitich [4] which involve vector-valued
functions and lead to a system of PDEs. We also want to avoid arc-length parameter-
izations, as they lead to time-dependent parameter intervals, which is less convenient
for semigroup theory. For the reader’s convenience, we give a detailed derivation of
our parameterization in the following.

Let Ω ⊂ R
2 be a domain such that

Ω = {x ∈ R
2 | ψ(x) < 0}, ∂Ω = {x ∈ R

2 | ψ(x) = 0}

with a smooth function ψ : R
2 → R fulfilling ∇ψ(x) �= 0 for x with ψ(x) = 0.

Also, let Γ∗ be a stationary curve under the flow (1.2) and (1.3); i.e., Γ∗ has
constant curvature κ∗. We now introduce an arc-length parameterization of Γ∗ in the
form

Γ∗ = {Φ∗(σ) | σ ∈ [l−, l+]},

where Φ∗ is a mapping from [l−, l+] to R
2 and l+ − l− is the total length of Γ∗. Note

that we can extend Γ∗ naturally either to the full circle when Γ∗ is an arc of a circle
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or to a straight line when Γ∗ is a line segment. We set

l̄ :=

{
π/|κ∗| if κ∗ �= 0,

+∞ if κ∗ = 0;

i.e., l̄ is the length of the extension of Γ∗ to a half circle if κ∗ �= 0. Without loss of
generality, we can assume [l−, l+] ⊂ (−l̄, l̄). Define{

ξ+(q) := max{σ ∈ (−l̄, l̄) | Φ∗(σ) + qN∗(σ) ∈ Ω},
ξ−(q) := min{σ ∈ (−l̄, l̄) | Φ∗(σ) + qN∗(σ) ∈ Ω},

where N∗(σ) is a unit normal vector of Γ∗ at σ and is obtained by rotating the unit
tangent vector T ∗(σ) of Γ∗ by π/2. Above, q is a parameter with q ∈ (−d̄, d̄) for a
small and given d̄ > 0. It holds that ψ(Φ∗(ξ±(q)) + qN∗(ξ±(q))) = 0 and ξ±(0) = l±.
Using the implicit function theorem, we see that ξ+(q) and ξ−(q) are smooth. Let

Ψ(σ, q) := Φ∗(ξ(σ, q)) + qN∗(ξ(σ, q))

with

ξ(σ, q) := ξ−(q) +
σ − l−
l+ − l−

(ξ+(q) − ξ−(q)).

It is not difficult to check that ξ(l±, q) = ξ±(q) and ξ(σ, 0) = σ.
In addition, one derives that Ψ : (l−, l+)×(−d̄, d̄) → Ω parameterizes the intersec-

tion W of a tubular neighborhood around the extended Γ∗ with Ω. We now consider
functions ρ : [l−, l+] → (−d̄, d̄) and obtain Ψ(σ, ρ(σ)) ∈ W for σ ∈ (l−, l+). Then we
define Φ(σ) := Ψ(σ, ρ(σ)) for σ ∈ [l−, l+], which is a parameterization of a curve Γ.
An evolving curve is now given by

(2.1) Γt := {Φ(σ, t) | σ ∈ [l−, l+]}

with Φ(σ, t) := Ψ(σ, ρ(σ, t)) for a function ρ = ρ(σ, t). We note that |ρ(σ, t)| < d̄
guarantees that Φ(σ, t) = Ψ(σ, ρ(σ, t)) ∈ W for σ ∈ (l−, l+) and t > 0. We remark
that ρ ≡ 0 corresponds to the stationary curve Γ∗.

Let us now express (1.2) and (1.3) with the help of parameterizations which have
the form (2.1). For the arc-length parameter s of Γt, we have

(2.2)
ds

dσ
= |Φσ| =

√
|Ψσ|2 + 2(Ψσ,Ψq)R2ρσ + |Ψq|2ρ2

σ =: J(ρ).

By | · | and (·, ·)R2 we denote the norm and the inner product in R
2, respectively. Then

we find

T =
1

J(ρ)
Φσ, N =

1

J(ρ)
RΦσ,

where T and N are the unit tangent and unit normal to Γt, respectively, and R is the
rotation by the angle π/2. The normal velocity V of Γt is given by

V = (Φt, N)R2 =
1

J(ρ)
(Φt, RΦσ)R2 =

1

J(ρ)
(Ψq, RΨσ)R2ρt.
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Further, the Laplace–Beltrami operator Δ(ρ) on Γt is given via (2.2) as

(2.3) Δ(ρ) = ∂2
s =

1

J(ρ)
∂σ

(
1

J(ρ)
∂σ

)
=

1

(J(ρ))2
∂2
σ +

1

J(ρ)

(
∂σ

1

J(ρ)

)
∂σ.

Then the curvature κ of Γt can be derived by using Δ(ρ) as

κ(ρ) = (Δ(ρ)Φ, N)R2 =
1

(J(ρ))3
(Φσσ, RΦσ)R2(2.4)

=
1

(J(ρ))3

[
(Ψq, RΨσ)R2ρσσ +

{
2(Ψσq, RΨσ)R2 + (Ψσσ, RΨq)R2

}
ρσ

+
{
(Ψqq, RΨσ)R2 + 2(Ψσq, RΨq)R2 + (Ψqq, RΨq)R2ρσ

}
ρ2
σ

+ (Ψσσ, RΨσ)R2

]
.

Furthermore, we note that the Neumann boundary condition (Φσ, T∂Ω)R2 = 0 on ∂Ω
is equivalent to the condition (RΦσ,∇ψ(Φ))R2 = 0 on ∂Ω. Then we compute that the
parameterization of the Neumann boundary condition is

(RΨσ + RΨqρσ,∇ψ(Ψ))R2 = 0 at σ = l±.

As a consequence, we conclude that the problem (1.2) and (1.3) is represented by

(2.5)

⎧⎪⎪⎨
⎪⎪⎩

ρt = −L(ρ)Δ(ρ)κ(ρ) for σ ∈ (l−, l+), t > 0,

(RΨσ + RΨqρσ,∇ψ(Ψ))R2 = 0 at σ = l±,

∂σκ(ρ) = 0 at σ = l±.

Here L(ρ) := J(ρ)/(Ψq, RΨσ)R2 ; Δ(ρ) and κ(ρ) are given by (2.3) and (2.4), respec-
tively.

Let I = [l−, l+] and Qt0,t1 = I × (t0, t1] for 0 ≤ t0 < t1 < ∞. For 0 < α < 1, we
define the function space

Y(Qt0,t1) = {ρ ∈ C2+α,0(Qt0,t1) ∩ C4+α,1(Qt0,t1) | ‖ρ‖Y(Qt0,t1
) < ∞}

with the norm

‖ρ‖Y(Qt0,t1
) = sup

t0≤t≤t1

‖ρ(·, t)‖C2+α(I) + sup
t0<t≤t1

(t− t0)
1/2‖∂4

σρ(·, t)‖Cα(I)

+ sup
t0<t≤t1

(t− t0)
1/2‖ρt(·, t)‖Cα(I),

where Qt0,t1 is the closure of Qt0,t1 .
Now we are ready to state a local existence theorem.
Theorem 2.1 (local existence). Let α ∈ (0, 1) and let us assume that ρ0 ∈

C2+α(I) with ‖ρ0‖C0(I) < d̄ fulfills

(RΨσ + RΨqρσ,∇ψ(Ψ))R2 = 0 at σ = l±.

Then there exists a T0 = T0(1/‖ρ0‖C2+α(I)) > 0 such that the problem (2.5) with

ρ(·, 0) = ρ0 has a unique solution in Y(Q0,T0).
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This theorem is proved by applying similar arguments as in [16]. Since we have
to take care of the boundary conditions in a different way, we will sketch the proof in
Appendix A.

Remark 2.2. Applying the local existence results used in [4] directly, we obtain
solutions for C4+α-initial curves. But this makes it difficult to derive a global existence
result because we need a priori estimates for higher order derivatives. Thus our local
existence result is an improvement of the one obtained in [4].

Remark 2.3. By using a bootstrapping argument as in [16, Theorem 3.6, Re-
mark 3.7], it can be shown that the solution ρ established in Theorem 2.1 is smooth
for t ∈ (0, T0].

3. An evolution equation for curvature. In order to show nonlinear stability
of solutions for which the linearized stability criterion of [13] is fulfilled, we apply an
energy method similar to the one used in [6, 10, 16, 17]. For this approach it is
important to derive an evolution equation for the curvature. Such an equation will be
useful for the derivation of a priori estimates with the help of the linearized stability
criterion.

For the above-mentioned purpose, we employ a parameterization of the evolving
curve Γt by arc length contrary to the one stated in section 2. Let X be a smooth
mapping so that X(·, t) is an arc-length parameterization of Γt, i.e.,

Γt := {X(s, t) | s ∈ [r−(t), r+(t)]}

for any t > 0, where r+ and r− are smooth in t. In particular, X(r±(t), t) ∈ ∂Ω and
r+(t) − r−(t) = L[Γt], where L[Γt] denotes the total length of Γt. Let N (= N(s, t))
be the unit normal vector of Γt, which is represented as

N(s, t) =

(
cos θ(s, t)

sin θ(s, t)

)
.

Also, let T (= T (s, t)) and κ (= κ(s, t)) be the unit tangent vector of Γt and the
curvature of Γt, respectively. Note that the unit tangent vector T is obtained by
rotating the unit normal vector N by −π/2. Then, using θs = κ, we have

(3.1)

{
Ns = −κT, Ts = κN,

Nt = −θtT, Tt = θtN.

In addition, set

V := (Xt, N)R2 , v := (Xt, T )R2 .

Note that V and v are the normal velocity and the tangent velocity of X, respectively.
Then it follows that

(3.2) Xt = V N + vT.

Differentiating (3.2) with respect to s and using (3.1), we have

Xts = VsN + V Ns + vsT + vTs

= (Vs + κv)N + (−κV + vs)T.

This implies the following lemma.
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Lemma 3.1. Let X be a smooth arc-length parameterization as above. Then

θt = Vs + κv, vs = κV.

Proof. Since Xts = Xst and Xs = T , it follows from (3.1) that

θtN = (Vs + κv)N + (−κV + vs)T.

Thus we obtain the desired results.
By Lemma 3.1, we have the following formula for the time derivative of curvature.
Lemma 3.2. Let X be a smooth arc-length parameterization as above. Then

κt = Vss + κ2V + κsv.

Proof. By θs = κ and Lemma 3.1, we derive

κt = θst = θts = (Vs + κv)s = Vss + κvs + κsv = Vss + κ2V + κsv.

This completes the proof.
By the assumption that Γt touches ∂Ω with the angle π/2, we have

ψ(X(r±(t), t)) = 0, (∇ψ(X), N)R2 = 0 at s = r±(t).

Then we derive the following lemma.
Lemma 3.3. Let X be a smooth arc-length parameterization as above. Then

v(r±(t), t) + r′±(t) = 0.

Proof. Differentiating ψ(X(r±(t), t))=0 with respect to t and using
(∇ψ(X), N)R2 = 0 at s = r±(t), we have at s = r±(t)

0 = (∇ψ(X), Xsr
′
± + Xt)R2 = (∇ψ(X), Xsr

′
± + V N + vT )R2

= (v + r′±)(∇ψ(X), T )R2 = ± (v + r′±)|∇ψ(X)|.

The last identity is derived with the help of T = ±∇ψ(X)/|∇ψ(X)| at s = r±(t).
Since |∇ψ(X)| �= 0, we obtain the desired result.

Now we can present an evolution equation for the curvature.
Proposition 3.4 (evolution equation for the curvature). Let evolving curves

Γ = {Γt}t≥0 be lying in Ω with ∂Γ ⊂ ∂Ω. Then a smooth solution of

(3.3) V = −κss on Γt

with the boundary conditions

(3.4)

{
�(Γt, ∂Ω) = π/2 at Γt ∩ ∂Ω,

κs = 0 at Γt ∩ ∂Ω

fulfills for t > 0

(3.5) κt = −κssss − κ2κss + κsv on Γt

and

(3.6)

{
κs = 0 at Γt ∩ ∂Ω,

(∂s ± h±)κss = 0 at Γt ∩ ∂Ω.
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Here h± is the curvature of ∂Ω at the points X(r±(t), t) ∈ Γt ∩ ∂Ω with the sign
convention that h± ≤ 0 if Ω is convex.

Proof. We immediately obtain (3.5) from (3.3) and Lemma 3.2. Next we show
(3.6). Differentiating (∇ψ(X), N)R2 = 0 at s = r±(t) with respect to t and using
(3.1), (3.2), Lemma 3.1, and Lemma 3.3, we have at s = r±(t)

0 = ([D2ψ(X)](Xsr
′
± + Xt), N)R2 + (∇ψ(X), Nsr

′
± + Nt)R2

= (v + r′±)([D2ψ(X)]T,N)R2 + V ([D2ψ(X)]N,N)R2

−κr′±(∇ψ(X), T )R2 − θt(∇ψ(X), T )R2

= V ([D2ψ(X)]T∂Ω(X), T∂Ω(X))R2 − Vs(∇ψ(X), T )R2

−κ(v + r′±)(∇ψ(X), T )R2

= V ([D2ψ(X)]T∂Ω(X), T∂Ω(X))R2 ∓ Vs|∇ψ(X)|.

Here D2ψ is the Hessian matrix of ψ. Then we observe that

κ∂Ω(X) = − 1

|∇ψ(X)| ([D
2ψ(X)]T∂Ω(X), T∂Ω(X))R2 ,

so that

Vs ± h±V = 0 at s = r±(t),

where h± are given by h± := κ∂Ω(X(r±(t), t)). This completes the proof.

4. A priori estimates and global existence. We now derive basic evolution
formulas for length and

∫
Γt

κ2
s ds.

Lemma 4.1. A smooth solution of (3.3)–(3.4) fulfills

(i)
d

dt
L[Γt] = −

∫
Γt

κ2
s ds,

(ii)
d

dt

∫
Γt

κ2
s ds = −2

{∫
Γt

V 2
s ds−

∫
Γt

κ2V 2 ds + h+(V 2|s=r+(t))

+h−(V 2|s=r−(t))

}
+

∫
Γt

κ2
sκV ds,

where h± is evaluated at X(r±(t), t).
Proof. Recalling L[Γt] = r+(t) − r−(t) and using Lemmas 3.1 and 3.3, we have

d

dt
L[Γt] = r′+(t) − r′−(t) = −v(r+(t), t) + v(r−(t), t) = −

∫
Γt

vs ds

= −
∫

Γt

κV ds =

∫
Γt

κκss ds = −
∫

Γt

κ2
s ds.

The last term is derived using integration by parts and κs = 0 at Γt ∩ ∂Ω.
In order to prove (ii), we compute

(4.1)

∫
Γt

κs(κt)s ds =

∫
Γt

κs(−κssss − κ2κss + κsv)s ds.
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Since κts = κst and κs = 0 at Γt ∩ ∂Ω, we have

(left-hand side of (4.1)) =

∫
Γt

κsκst ds =
1

2

∫
Γt

(κ2
s)t ds =

1

2

d

dt

∫
Γt

κ2
s ds.

On the other hand, by means of integration by parts and using (3.6), we derive

(right-hand side of (4.1)) = −
∫

Γt

κss(−κssss − κ2κss + κsv) ds

=

∫
Γt

κssκssss ds +

∫
Γt

κ2κ2
ss ds−

∫
Γt

κssκsv ds

= −h+(κ2
ss|s=r+(t)) − h−(κ2

ss|s=r−(t)) −
∫

Γt

κ2
sss ds

+

∫
Γt

κ2κ2
ss ds +

1

2

∫
Γt

κ2
svs ds.

Thus it follows from V = −κss and vs = κV that

1

2

d

dt

∫
Γt

κ2
s ds = −

{∫
Γt

V 2
s ds−

∫
Γt

κ2V 2 ds + h+(V 2|s=r+(t)) + h−(V 2|s=r−(t))

}

+
1

2

∫
Γt

κ2
sκV ds.

This completes the proof.
Let us define the bilinear form I as

(4.2) I[w,w] =

∫ r+

r−

(w2
s − κ2

avw
2) ds + h+(w2|s=r+) + h−(w2|s=r−)

for w ∈ H1(Γt) with ∫ r+

r−

w ds = 0.

Here s is the arc-length parameter along Γt, which belongs to the interval [r−, r+]
with L[Γt] = r+ − r−; h± is the curvature of ∂Ω at Γt ∩ ∂Ω; and κav is the averaged
curvature of Γt defined as

κav =
1

L[Γt]

∫ r+

r−

κ ds.

Since V = −κss and κs = 0 at Γt ∩ ∂Ω, it holds that

(4.3)

∫
Γt

V ds = 0.

Then we can rewrite Lemma 4.1(ii) as

(4.4)
d

dt

∫
Γt

κ2
s ds + 2I[V, V ] = −2

∫
Γt

(κ2
av − κ2)V 2 ds +

∫
Γt

κ2
sκV ds.
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Remark 4.2. Although the 90◦-angle condition in (1.3) is the natural boundary
condition when considering the gradient flow of the length functional, we can also
consider the case where the prescribed angle is not 90◦. In this case, the angle condition
is represented as

(∇ψ(X), N)R2 = |∇ψ(X)| cos Θ± at s = r±(t)

for Θ± ∈ (0, π). Then the identity in Lemma 3.3 is replaced by

v + r′± = ∓V cot Θ± at s = r±(t),

and the second boundary condition of (3.6) is replaced by{
∂s + (±h± csc Θ± ∓ κ cot Θ±)

}
κss = 0 at s = r±(t).

Further, setting

IΘ[w,w] =

∫ r+

r−

(w2
s − κ2

avw
2) ds +

{
h+ csc Θ+ − (κ|s=r+) cot Θ+

}
(w2|s=r+)

+
{
h− csc Θ− − (κ|s=r−) cot Θ−

}
(w2|s=r−)

instead of I in (4.2), we have

d

dt

∫
Γt

κ2
s ds + 2IΘ[V, V ] = −2

∫
Γt

(κ2
av − κ2)V 2 ds +

∫
Γt

κ2
sκV ds.

We remark that for the non-90◦-angle condition the stationary solutions with the
property that IΘ is positive are strict local minimizers of an energy also involving a
wetting energy at the boundary if one takes an area constraint into account (see Vogel
[23]). On the other hand,

d

dt
L[Γt] = −

∫
Γt

κ2
s ds− (V |s=r+(t)) cot Θ+ − (V |s=r−(t)) cot Θ−,

so that the monotonicity of L[Γt] with respect to t is no longer fulfilled.
The following lemmas will be crucial in order to derive an a priori estimate.
Lemma 4.3. A smooth solution of (3.3)–(3.4) fulfills

(i)

∣∣∣∣
∫

Γt

κ2
sκκss ds

∣∣∣∣ ≤ 1

3
L[Γt]‖κs‖2

L2(Γt)
‖κss‖2

L2(Γt)
,

(ii) ‖κ− κav‖C0(Γt) ≤ L[Γt]
1/2‖κs‖L2(Γt).

Proof. We first prove (i). Since κs = 0 at Γt ∩ ∂Ω, we get∫
Γt

κ2
sκκss ds = −1

3

∫
Γt

κ4
s ds.

Then it follows that ∣∣∣∣
∫

Γt

κ4
s ds

∣∣∣∣ ≤ ‖κs‖2
L2(Γt)

‖κs‖2
L∞(Γt)

≤ L[Γt]‖κs‖2
L2(Γt)

‖κss‖2
L2(Γt)

.

The last term is derived by using a Poincaré inequality since κs = 0 at Γt ∩ ∂Ω.
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Next we prove (ii). Since ∫
Γt

(κ− κav) ds = 0,

for each t > 0, there is a r0 (= r0(t)) ∈ (r−(t), r+(t)) such that κ(r0, t) − κav(t) = 0.
This implies that

|κ(s, ·) − κav| =

∣∣∣∣
∫ s

r0

(κ− κav)s ds

∣∣∣∣ =

∣∣∣∣
∫ s

r0

κs ds

∣∣∣∣ ≤
∫

Γt

|κs| ds ≤ L[Γt]
1/2‖κs‖L2(Γt).

Thus we have the desired result.
We remind the reader that for functions w1, w2 with mean values zero we can

define the H−1-inner product via

(w1, w2)−1 =

∫ l+

l−

u1,σu2,σ dσ,

where ui is the solution of −ui,σσ = wi in (l−, l+) and ui,σ = 0 at σ = l±. Accord-
ing to [13], the bilinear form I∗ as stated in the introduction (see (1.4)) is positive,
provided that the maximal eigenvalue λ for the linearized problem to (1.2) and (1.3)
is negative. In [13] it was shown that I∗[w,w] ≥ (−λ)(w,w)−1 for all w ∈ H1(Γ∗)
with mean value zero. We now want to derive a perturbation of this result. Let us
denote L = L[Γ] and L∗ = L[Γ∗] (= l+ − l−). Then we have the following lemma,
which implies a lower bound for I when the parameters κav, h±, and L are close to
κ∗, h∗

±, and L∗, respectively.
Lemma 4.4. (i) Let λ be the maximal eigenvalue of the linearized problem. For

ε > 0 there exists δ > 0 such that

I[w,w] > (−λ− ε)(w,w)−1

for w ∈ H1(Γ) with mean value zero, provided that

|κav − κ∗| < δ, |h± − h∗
±| < δ, |L− L∗| < δ.

(ii) There exists μ > 0 such that

μ‖ws‖2
L2(Γ) ≤ I[w,w] + (w,w)−1

for w ∈ H1(Γ) with mean value zero.
Proof. The largest eigenvalue λ corresponding to the bilinear form I depends

continuously on L, κav, and h±. In the case that L = L∗, κav = κ∗, and h± = h∗
±

we obtain (i) with ε = 0, and hence (i) follows from a straightforward perturbation
argument; compare [13] for similar arguments. Arguing as in the proof of Lemma 5.3
in [13], we obtain (ii).

It is significant to obtain a positive lower bound of L[Γ] in terms of ρ. The following
lemma implies that L∗ is a local minimum of L[Γ], provided that I∗ is positive.

Lemma 4.5. Let Γ∗ be a stationary curve such that the bilinear form I∗ is positive
and let ρ ∈ C1(I) be a function describing a curve Γ close to Γ∗ as in section 2.
Assume that a curve Γ encloses the same area as Γ∗. Then there exist constants
c, γ∗ > 0 such that

L[Γ] ≥ L∗ + c‖ρ‖2
H1(I)

if ‖ρ‖C1(I) < γ∗.



502 HARALD GARCKE, KAZUO ITO, AND YOSHIHITO KOHSAKA

Proof. This follows as in the proof of Theorem 2.1 of Vogel [23] (see (2.14) and
the inequality after (2.19) in [23]).

By virtue of Lemma 4.5, we have an a priori estimate of L[Γt] and can derive
useful estimates concerning κav and h±.

Lemma 4.6. Let the assumptions of Lemma 4.5 hold for a stationary curve Γ∗

and all curves Γt, t ∈ [0, T ], described by ρ(t) ∈ C1(I) for the parameterization in
section 2. Assume in particular that ‖ρ(t)‖C1(I) < γ∗ for t ∈ [0, T ], where γ∗ is as in
Lemma 4.5. We then obtain the following:

(i) L[Γ0] ≥ L[Γt] ≥ L∗ for all t ∈ [0, T ].
(ii) There exist K1,K2 > 0 such that for t ∈ [0, T ]

|κav(t) − κ∗| ≤ K1|L[Γt] − L∗|, |h±(t) − h∗
±| ≤ K2|L[Γt] − L∗|.

Proof. (i) follows from Lemma 4.1(i) and Lemma 4.5. To prove (ii), we compute

κav =
1

L[Γt]

∫
Γt

κ ds =
1

L[Γt]

∫
Γt

θs ds =
1

L[Γt]
(θ+ − θ−).

A similar computation gives

κ∗ =
1

L∗ (θ∗+ − θ∗−).

Then we have

|κav − κ∗| =

∣∣∣∣ 1

L[Γt]
(θ+ − θ−) − 1

L∗ (θ∗+ − θ∗−)

∣∣∣∣
=

1

L[Γt]L∗ |L
∗(θ+ − θ−) − L[Γt](θ

∗
+ − θ∗−)|

≤
(

1

L∗

)2 {
|L∗(θ+ − θ− − (θ∗+ − θ∗−))| + |L∗ − L[Γt]||θ∗+ − θ∗−|

}
.

By means of the mean value theorem, the smoothness of ∂Ω, and the π/2 angle
condition, we see that the quantity |θ+ − θ∗+| + |θ∗− − θ−| is estimated by ‖ρ‖C0(I).
Using Lemma 4.5 and an embedding result, we obtain the first inequality in (ii).

Recall that κ∂Ω(X) is represented by

κ∂Ω(X) = − 1

|∇ψ(X)| ([D
2ψ(X)]T∂Ω(X), T∂Ω(X))R2 .

Since this expression does not depend on derivatives of ρ, the mean value theorem
implies that the quantity |h± − h∗

±| is estimated by ‖ρ‖C0(I). Using Lemma 4.5 and
an embedding result, we derive the second inequality in (ii).

Using Lemma 4.4, we obtain the existence of constants δ∗ > 0 and μ∗ > 0 such
that

(4.5) I[w,w] > − λ

2
(w,w)−1 + μ∗‖ws‖2

L2(Γt)

for w ∈ H1(Γt) with mean value zero, provided that

(4.6) |κav(t) − κ∗| < δ∗, |h±(t) − h∗
±| < δ∗, |L[Γt] − L∗| < δ∗.
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We are now in a position to derive a priori estimates for solutions of (2.5) if the
solution is close to Γ∗.

Proposition 4.7. Let the assumptions of Lemma 4.5 hold for a stationary curve
Γ∗ and a curve Γt described by ρ(t) ∈ C1(I) for the parameterization in section 2.
Assume that for t ∈ (0, T ]

(4.7) ‖ρ(t)‖C1(I) < γ∗ and |L[Γt] − L∗| ≤ δ∗

1 + K1 + K2
(=: δ∗1),

where γ∗ is as in Lemma 4.5, K1 and K2 are as in Lemma 4.6, and δ∗ is as in (4.6).
Then there is a constant δ1 > 0 such that, if ‖κs(t)‖2

L2(Γt)
< δ1 for t ∈ (0, T ], it holds

that

‖κs(t)‖2
L2(Γt)

+ μ∗
∫ t

t0

‖Vs(τ)‖2
L2(Γt)

dτ ≤ ‖κs(t0)‖2
L2(Γt)

for t ∈ [t0, T ] with t0 > 0, where μ∗ is as in (4.5).
Proof. By (4.4), we have

d

dt
‖κs‖2

L2(Γt)
+ 2I[V, V ]

= −2

∫
Γt

(κ2
av − κ2)V 2 ds +

∫
Γt

κ2
sκV ds

= 2

∫
Γt

(κ− κav)
2V 2 ds + 4κav

∫
Γt

(κ− κav)V
2 ds +

∫
Γt

κ2
sκV ds.

By virtue of (4.7) and Lemma 4.6(ii), we also see that κav(t), h±(t), and L[Γt] satisfy
(4.6). Then it follows from Lemma 4.3, Lemma 4.6(i), and (4.5) that there exist
C1, C2 > 0 such that

d

dt
‖κs‖2

L2(Γt)
+ (−λ) (V, V )−1 + 2μ∗‖Vs‖2

L2(Γt)

≤ C1‖V ‖2
L2(Γt)

‖κs‖2
L2(Γt)

+ C2(δ
∗ + |κ∗|)‖V ‖2

L2(Γt)
‖κs‖L2(Γt).

Since ‖V ‖L∞(Γt) ≤ C‖Vs‖L2(Γt) by virtue of (4.3), we derive ‖V ‖L2(Γt) ≤ C̃‖Vs‖L2(Γt).
By means of this fact and (−λ) (V, V )−1 ≥ 0, we are led to

(4.8)
d

dt
‖κs‖2

L2(Γt)
+ {2μ∗ − C̃1‖κs‖2

L2(Γt)
− C̃2(δ

∗ + |κ∗|)‖κs‖L2(Γt)}‖Vs‖2
L2(Γt)

≤ 0.

Then we choose δ1 such that

0 < δ1 < min

⎧⎨
⎩ μ∗

2 C̃1

,

(
μ∗

2 C̃2(δ∗ + |κ∗|)

)2
⎫⎬
⎭ .

Assuming ‖κs(t)‖2
L2(Γt)

< δ1 for t ∈ (0, T ], it follows that

(4.9)
d

dt
‖κs(t)‖2

L2(Γt)
+ μ∗‖Vs(t)‖2

L2(Γt)
≤ 0.
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Integrating (4.9) with respect to t in the interval [t0, t], we derive the desired
result.

Now we arrive at the main result in this section.
Theorem 4.8 (global existence). Let Γ∗ be a stationary curve such that the

bilinear form I∗ is positive. Also, let ρ0 ∈ C2+α(I) be a function describing a curve
Γ0, which is close to Γ∗ as in section 2 and satisfies Γ0⊥∂Ω. Assume that a curve Γ0

includes the same area as Γ∗. Then there exist constants γ0 > 0 and δ0 > 0 such that if
‖ρ0‖C1(I) < γ0 and L[Γ0]−L∗ < δ0, the problem (2.5) admits a unique global-in-time
solution ρ with

‖ρ(t)‖C1(I) < γ0 and L[Γt] − L∗ < δ0 for t ≥ 0,

where Γt is the curve parameterized by Ψ(σ, ρ(σ, t)) in section 2.
Proof. Choose γ0 and δ0 satisfying

(4.10) 0 < γ0 <
γ∗

2
, 0 < δ0 <

δ∗1
2

,

where γ∗ is as in Lemma 4.5 and δ∗1 is as in (4.7). Assume that the initial curve Γ0

satisfies ‖ρ0‖C1(I) < γ0 and L[Γ0] − L∗ < δ0. Then Lemma 4.5 and an embedding
result imply that

(4.11) ‖ρ0‖C0(I) ≤ C(L[Γ0] − L∗) < Cδ0.

Further, Lemma 4.6(i) implies that for t > 0

(4.12) L[Γt] − L∗ ≤ L[Γ0] − L∗ < δ0.

We now prove that ‖κs(t)‖2
L2(Γt)

< δ1 for each time t in the existence interval of

the solution, where δ1 is as in Proposition 4.7. Let 0 < β < α < 1/2. By Theorem 2.1,
we can construct a unique local-in-time solution for ρ0 ∈ C2+β(I) and obtain the
estimate

(4.13) ‖ρ‖Y(Q0,T0
) ≤ K0,

where K0 is a constant, which depends on ‖ρ0‖C2+β(I) increasingly, and T0 is the
local existence time, which depends on 1/‖ρ0‖C2+β(I) increasingly (for details, see
Appendix B). According to the interpolation inequality for Hölder spaces and (4.11),
we have

(4.14) ‖ρ0‖C2+β(I) ≤ C(‖ρ0‖C0(I))
α−β
2+α (‖ρ0‖C2+α(I))

2+β
2+α ≤ C̃δ

α−β
2+α

0 .

Set t0 := δ
α−β
2+α

0 > 0. Then it follows from (4.13), (4.14), and the definition of Y(Q0,T0)
that there exist C > 0 and ν > 0 such that

‖κs(t0)‖2
L2(Γt)

≤ Cδν0 .

Since ‖ρ(t)‖C1(I) is continuous for t ∈ [0, T0], we see that ‖ρ(t)‖C1(I) < γ∗ for t ∈
[0, T ] with a T ∈ (0, T0]. Further, by (4.10) and (4.12), we have L[Γt] − L∗ < δ∗1
for t > 0. Choose δ0 such that t0 < T and Cδν0 < δ1. Then, by applying a similar
argument to [10, Proof of Theorem 6.1] together with Proposition 4.7, we obtain that
‖κs(t)‖2

L2(Γt)
< δ1 for t ∈ [t0, T ].
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Next we prove that ‖ρ(t)‖C1(I) < γ0 for t ∈ [t0, T ]. By Lemma 4.5 and (4.12), it
holds that for t ∈ [0, T ]

(4.15) c̄‖ρ(t)‖H1(I) ≤ L[Γt] − L∗ < δ0.

Then, by the embedding inequality and (4.15), we see that ‖ρ(t)‖C0(I) ≤ Cδ0 for
t ∈ [0, T ]. On the other hand, it follows from Lemma 4.3(ii) and Lemma 4.6(ii) that
there exists C > 0 such that for t ∈ [t0, T ]

(4.16) ‖κ(t)‖C0(Γt) ≤ ‖κ(t)−κav(t)‖C0(Γt) + |κav(t)−κ∗|+ |κ∗| ≤ C(δ1 + δ0) + |κ∗|.

Thus, by virtue of (4.15), (4.16), and ‖κs(t)‖2
L2(Γt)

< δ1 for t ∈ [t0, T ], we derive

the boundedness of ‖ρ(t)‖H3(I) for t ∈ [t0, T ], which implies the boundedness of
‖ρ(t)‖C2+α(I) for α ∈ (0, 1/2). Then, by the interpolation inequality for Hölder spaces,
we have

‖ρ(t)‖C1(I) ≤ C(‖ρ(t)‖C0(I))
1+α
2+α (‖ρ(t)‖C2+α(I))

1
2+α ≤ C̃δ

1+α
2+α

0

for t ∈ [t0, T ]. Choosing δ0 such that C̃δ
1+α
2+α

0 < γ0, we obtain ‖ρ(t)‖C1(I) < γ0 for
t ∈ [t0, T ].

Finally, let us derive the existence of a unique global-in-time solution. Repeating
the above argument until the local existence time T0, we see that Γt satisfies

(4.17) ‖ρ(t)‖C1(I) < γ0, L[Γt] − L∗ < δ0, ‖κs(t)‖2
L2(Γt)

< δ1

for t ∈ [t0, T0]. This implies that ΓT0 satisfies the same conditions as those fulfilled by
Γ0 and the boundedness of ‖ρ(T0)‖C2+α(I) for α ∈ (0, 1/2) is guaranteed. Thus, due
to Theorem 2.1, the solution of (2.5) can be extended over t = T0 by a fixed amount
of time. Further, by applying the same argument as we did in the first half of this
proof, we have the estimates (4.17) for each time t in the extended existence interval
of the solution. This procedure can be iterated as many times as we want, so that a
unique global-in-time solution of (2.5) with ρ(·, 0) = ρ0 can be obtained.

5. Stability of stationary curves. The following theorem shows nonlinear
stability of the stationary curve Γ∗ when the bilinear form I∗ is positive.

Theorem 5.1 (nonlinear stability). Let the assumption of Theorem 4.8 hold.
Then

‖ρ(t)‖H3(I) → 0 as t → ∞ .

Proof. We apply a method similar to the one used in [10, Proof of Theorem 6.4].
By Lemma 4.1(i), we see that∫ ∞

0

‖κs(τ)‖2
L2(Γτ ) dτ ≤ L[Γ0].

This implies that for any ε ∈ (0, δ1) there exists a sufficiently large tε > 0 such that

‖κs(tε)‖2
L2(Γt)

< ε.

According to the proof of Theorem 4.8, it holds that ‖κs(t)‖2
L2(Γt)

< δ1 as long as the

solution exists. Thus, applying Proposition 4.7 for t ∈ [tε,∞), we have

‖κs(t)‖2
L2(Γt)

+ μ∗
∫ t

tε

‖Vs(τ)‖2
L2(Γt)

dτ ≤ ‖κs(tε)‖2
L2(Γt)

< ε.
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This means that

(5.1) ‖κs(t)‖2
L2(Γt)

→ 0 as t → ∞.

By (5.1) and Lemma 4.3(ii), we also see that

(5.2) ‖κ(·, t) − κav(t)‖C0(Γt) → 0 as t → ∞.

On the other hand, by virtue of Lemma 4.5 and Lemma 4.6(i), we obtain the bound-
edness of ‖ρ(t)‖H1(I). Using Lemma 4.6 and (5.2), we also have the boundedness of
‖κ(t)‖L2(Γt). Then the boundedness of ‖ρ(t)‖H1(I) and ‖κ(t)‖L2(Γt) imply the bound-
edness of ‖ρ(t)‖H2(I). Since it follows from the boundedness of ‖ρ(t)‖H2(I) and (5.1)
that ‖ρ(t)‖H3(I) is bounded, there exists a sequence {tn}n∈N and ρ̃ such that

ρ(tn) → ρ̃ in C2+α(I) as n → ∞.

By virtue of (5.2), ρ̃ satisfies κ̃− κ̃av = 0. The solution of the problem

κ = κav, �(Γ, ∂Ω) = π/2, Area [Γ] = Area [Γ∗]

is unique in the C0-neighborhood of Γ∗ and given by ρ ≡ 0 (see Theorem 5.2). Since
ρ̃ is a solution of this problem, we obtain ρ̃ ≡ 0. In particular, we get

L[Γtn ] → L[Γ∗] = L∗ as n → ∞.

We remark that Γtn and Γ∗ are the curves described by ρ = ρ(tn) and ρ ≡ 0 for the
parameterization in section 2, respectively. Then, by the fact that L[Γt] decreases in
time, we obtain that

L[Γt] → L∗ as t → ∞.

Applying Lemma 4.5, we have

‖ρ(t)‖2
H1(I) → 0 as t → ∞.

Hence, using this fact together with both (5.1) and (5.2), we obtain the desired
result.

It remains to prove the following result. We refer the reader to Grosse-Brauckmann
[14] for a similar proof in the case of a different boundary condition.

Theorem 5.2. Let Γ∗ be a stationary curve such that the bilinear form I∗ is
positive and let Γ be a curve described by ρ for the parameterization in section 2.
Then there exists a C2-neighborhood of Γ∗ such that ρ ≡ 0 is the unique solution of
the problem

(5.3) κ = κav , �(Γ, ∂Ω) = π/2 , Area [Γ] = Area [Γ∗].

Proof. We use the following implicit function theorem (see Zeidler [24, Theo-
rem 4.B]).

Suppose that the following hold:
(i) The mapping F : U(x0, y0) ⊂ X×Y → Z is defined on an open neighborhood

U(x0, y0) of (x0, y0), and F (x0, y0) = 0, where X,Y , and Z are Banach spaces
over R.
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(ii) Fy exists as the partial Fréchet derivative on U(x0, y0) and

Fy(x0, y0) : Y → Z

is bijective.
(iii) F and Fy are continuous at (x0, y0).

Then the following holds true: There exist positive numbers r0 and r such that, for
every x ∈ X satisfying ‖x − x0‖ < r0, there is exactly one y(x) ∈ Y for which
‖y(x) − y0‖ ≤ r and F (x, y(x)) = 0.

We use this theorem for

X := {ρ ∈ C2(I) | ρ = const.},

Y :=

{
ρ ∈ C2(I)

∣∣∣∣
∫ l+

l−

ρ dσ = 0

}
,

Z :=

{
ρ ∈ C0(I)

∣∣∣∣
∫ l+

l−

ρ dσ = 0

}
× R

2

and

F (m,u) :=

(
κ− κav, �(∂Ω,Γt)+ − π

2
, �(∂Ω,Γt)− − π

2

)
,

where κ is computed for the curve that we get by taking ρ = u + m in section 2.
The expression �(∂Ω,Γt)± denotes the angles with the outer boundary at the two
boundary points. The derivative Fu(0, 0) is (by a similar computation as in [13]) given
by

Fu(0, 0)(v)

=

(
(∂2

σ + κ2)v − 1

l+ − l−

∫ l+

l−

(∂2
σ + κ2)v dσ, (∂σ + h+)v(l+), (∂σ − h−)v(l−)

)
.

The fact that I∗ is positive implies that Fu(0, 0) is invertible (using regularity theory
for ODEs). Straightforward computations show that F and Fu are continuous at (0, 0).

Hence, for m ∈ X small, we find exactly one u(m) such that

F (m,u(m)) = 0.

Let us define

ρm = u(m) + m

and let Γm be a curve described by ρm for the parameterization in section 2. Then
we have

Area[Γm] = Area[Γ∗] +

∫ l+

l−

(u(m) + m) dσ + O(‖u(m) + m‖2
C2(I))

= Area[Γ∗] + (l+ − l−)m + O(‖u(m) + m‖2
C2(I)) .
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This implies that for m �= 0

(5.4) |Area[Γm] − Area[Γ∗] | �= 0

if ‖(m,u(m))‖C2(I) is small enough. We now represent a solution ρ of (5.3) with
‖ρ‖C2(I) small as ρ = u + m, where u = ρ− ρav and m = ρav with

ρav =
1

l+ − l−

∫ l+

l−

ρ dσ.

Then we see that F (m,u) = 0. Due to the area-preserving property and (5.4), we
obtain m = 0 and u ≡ 0, which implies that ρ ≡ 0. This proves the theorem.

Appendix A. Proof of Theorem 2.1. The problem (2.5) is an initial boundary
value problem for a quasi-linear parabolic PDE which has the form

(A.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρt = − 1

(J(ρ))4
∂4
σρ + a(ρ, ∂σρ, ∂

2
σρ) ∂

3
σρ + f(ρ, ∂σρ, ∂

2
σρ) in Q0,T ,

b1(ρ)∂σρ + g1(ρ) = 0 at σ = l±,

b2(ρ, ∂σρ) ∂
3
σρ + g2(ρ, ∂σρ, ∂

2
σρ) = 0 at σ = l±,

ρ|t=0 = ρ0 in I,

where a, f , bi, and gi (i = 1, 2) are smooth functions with respect to ρ, ∂σρ, and
∂2
σρ; and gi (i = 1, 2) satisfy ‖g1(t)‖C0(I) = O(‖ρ(t)‖C0(I)) and ‖g2(t)‖C0(I) =

O(‖ρ(t)‖C2+α(I)) when ‖ρ‖C2+α(I) → 0. In order to prove Theorem 2.1, we apply
a fixed point argument. Let

D := {ρ ∈ Y(Q0,T ) | ρ(·, 0) = ρ0, ‖ρ‖Y(Q0,T ) ≤ K}

for positive constants K and T , and define a mapping P as

P : D � ρ̄ �→ ρ ∈ Y(Q0,T ),

where ρ is the unique solution of the linearized problem

(A.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρt = Aρ + F (σ, t) for (σ, t) ∈ Q0,T ,

B1ρ = G1(σ, t) at σ = l±, t ∈ (0, T ],

B2ρ = G2(σ, t) at σ = l±, t ∈ (0, T ],

ρ(σ, 0) = ρ0 for σ ∈ I.

Here the linearized operators A, B1, and B2 around the initial data ρ0 ∈ C2+α(I) are
given by

A = − 1

(J(ρ0))4
∂4
σ + a(ρ0, ∂σρ0, ∂

2
σρ0) ∂

3
σ ,

B1 = b1(ρ0) ∂σ, B2 = b2(ρ0, ∂σρ0) ∂
3
σ ,
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and for given ρ̄ ∈ D

F (σ, t) = −
{

1

(J(ρ̄))4
− 1

(J(ρ0))4

}
∂4
σρ̄

+
{
a(ρ̄, ∂σρ̄, ∂

2
σρ̄) − a(ρ0, ∂σρ0, ∂

2
σρ0)

}
∂3
σρ̄

+ f(ρ̄, ∂σρ̄, ∂
2
σρ̄),

G1(σ, t) = −
{
b1(ρ̄) − b1(ρ0)

}
∂σρ̄− g1(ρ̄),

G2(σ, t) = −
{
b2(ρ̄, ∂σρ̄) − b2(ρ0, ∂σρ0)

}
∂3
σρ̄− g2(ρ̄, ∂σρ̄, ∂

2
σρ̄).

The existence of a unique solution for the linearized problem (A.2) in Y(Q0,T ) is
proved by applying the optimal regularity theory for analytic semigroups to the lin-
earized problem (A.2) (see [18]). If the mapping P is a contraction on D for suitable
constants K and T depending on ‖ρ0‖C2+α(I), P has a unique fixed point in D which
is a unique solution of the nonlinear problem (A.1). Thus we show that the mapping
P is a contraction on D. In order to prove this fact, the following lemma is crucial.

Lemma A.1. (i) Assume that ρ̄ ∈ D and that ρ is a solution of the linearized
problem (A.2). Then there exist positive constants M0 and N such that

‖ρ‖Y(Q0,T ) ≤ M0 + NT
α
4 .

In particular, M0 depends on ‖ρ0‖C2+α(I) increasingly, and N depends on K increas-
ingly.

(ii) Assume that ρ̄1, ρ̄2 ∈ D and that ρ1, ρ2 are solutions of the linearized problem
(A.2). Then there exists a positive constant N such that

‖ρ1 − ρ2‖Y(Q0,T ) ≤ NT
α
4 ‖ρ̄1 − ρ̄2‖Y(Q0,T ).

In particular, N depends on K increasingly.
A method to prove this lemma is to use the optimal regularity theory of analytic

semigroups as in [18]. We prove this lemma in the next section.
Lemma A.1 implies that if we take

K = 2M0, T0 = min

{(
K

2N

)4/α

,

(
1

2N

)4/α}
,

it follows that for T ≤ T0

‖ρ‖Y(Q0,T ) ≤ K, ‖ρ1 − ρ2‖Y(Q0,T ) ≤
1

2
‖ρ̄1 − ρ̄2‖Y(Q0,T ).

This means that P maps D into itself and is a contraction on D for T ≤ T0. Thus the
proof of Theorem 2.1 is completed.

Appendix B. Proof of Lemma A.1. We prove only Lemma A.1(i). Applying
a similar argument, we can also derive Lemma A.1(ii). It is convenient to introduce
the following estimate without proof.

Lemma B.1 (see [18, section 2]). For k ∈ N, β1, β2 ∈ (0, 1), and a sectorial
operator A, there exists a constant C = C(k, β1, β2, A) such that

(B.1) ‖tk−β1+β2AketA‖L(DA(β1,∞),DA(β2,∞)) ≤ C for 0 < t ≤ 1.

The statement also holds for k = 0, provided that β1 ≤ β2.



510 HARALD GARCKE, KAZUO ITO, AND YOSHIHITO KOHSAKA

Define X := C(I) and

D(A) := {u ∈ C4(I) | B1u(l±) = B2u(l±) = 0}.

Then A : X ⊃ D(A) � u �→ Au ∈ X is the realization of A in X. It is known that A
is a sectorial operator in X (see [21]).

Let ρ be a unique solution of the linearized problem (A.2). In order to reduce the
inhomogeneous problem to a homogeneous problem at the boundaries, we introduce
an auxiliary function ζ defined as

ζ(σ, t) :=

{
(σ − l−)G1(l−, t)

b1(ρ0)
∣∣
σ=l−

+
(σ − l−)3G2(l−, t)

3! b2(ρ0, ∂σρ0)
∣∣
σ=l−

}
η(σ)

+

{
(σ − l+)G1(l+, t)

b1(ρ0)
∣∣
σ=l+

+
(σ − l+)3G2(l+, t)

3! b2(ρ0, ∂σρ0)
∣∣
σ=l+

}
η̂(σ),

where η, η̂ ∈ C∞(I) are cut-off functions satisfying

⎧⎪⎨
⎪⎩

η′(σ) < 0, η̂′(σ) > 0 for σ ∈ (l− + L∗/4, l+ − L∗/4),

η(σ) ≡ 1, η̂(σ) ≡ 0 for σ ∈ [l−, l− + L∗/4],

η(σ) ≡ 0, η̂(σ) ≡ 1 for σ ∈ [l+ − L∗/4, l+].

Then it follows that ρ− ζ fulfills homogeneous boundary conditions. Since A is secto-
rial, we represent ρ−ζ with the help of a variant of the variation of constants formula
and the analytic semigroup etA. By a simple computation, we obtain for 0 ≤ t ≤ T

ρ(·, t) = ρ1(·, t) + ρ2(·, t) + ρ3(·, t),

where

ρ1(·, t) = etA{ρ0 − ζ(·, 0)},

ρ2(·, t) =

∫ t

0

e(t−r)A{F (·, r) + Aζ(·, r)} dr,

ρ3(·, t) = −A

∫ t

0

e(t−r)A{ζ(·, r) − ζ(·, 0)} dr + ζ(·, 0).

Applying the theory of analytic semigroups as in [18], we have (see below)

(B.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖ρ1‖Y(Q0,T ) ≤ C0 ‖ρ0 − ζ(·, 0)‖DA( 2+α
4 ,∞),

‖ρ2‖Y(Q0,T ) ≤ C0 sup
0<δ<T

δ
1
2 sup
t∈[δ,T ]

‖F (·, t) + Aζ(·, t)‖DA(α
4 ,∞),

‖ρ3‖Y(Q0,T ) ≤ C0 + C0,KT
1
4 .

In particular, it is verified that a constant C0 increases with ‖ρ0‖C2+α(I) and that
a constant C0,K increases with ‖ρ0‖C2+α(I) and K. Once (B.2) is proven, it follows
from characterization of interpolation spaces DA(β,∞) (see, e.g., [1, 18, 19]) and
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the definition of F that

‖ρ‖Y(Q0,T ) ≤ ‖ρ1‖Y(Q0,T ) + ‖ρ2‖Y(Q0,T ) + ‖ρ3‖Y(Q0,T )

≤ C̃0‖ρ0 − ζ(·, 0)‖C2+α(I)

+ C̃0 sup
0<δ<T

δ
1
2 sup
t∈[δ,T ]

‖F (·, t) + Aζ(·, t)‖Cα(I)

+ C̃0 + C̃0,KT
1
4

≤ M0 + N0,KT
α
4 + N0,KT

1
4 ,

where C̃0 and M0 depend on ‖ρ0‖C2+α(I) increasingly, and C̃0,K and N0,K depend on
‖ρ0‖C2+α(I) and K increasingly. This completes the proof of Lemma A.1(i). Thus we
give the proof of (B.2) in detail.

First let us explain about the estimates for ρ1 and ρ2. Using (B.1) with k = 0 and
β1 = β2 = (2+α)/4 to ρ1, and with k = 1, β1 = (2+α)/4, and β2 = α/4 to ∂ρ1/∂t =
Aρ1, we are led to the estimate of ρ1 easily. Since F + Aζ ∈ L∞((0, T ];DA(α4 ,∞)),
applying the same argument as [18, section 4.3.2] to ρ2 in [ε, T ] (ε ∈ (0, T )), we have
an estimate for ρ2. Let us consider the estimate for ρ3. Since ζ is less regular, we
cannot derive the desired estimate for ρ3 if we use only (B.1) to ρ3 directly. Set

(B.3) z(t) =

∫ t

0

e(t−r)A{ζ(·, r) − ζ(·, 0)} dr.

Then z satisfies

ρ3(·, t) = −Az(t) + ζ(·, 0) = − d

dt
z(t) + ζ(·, t),

d

dt
ρ3(·, t) = −A

d

dt
z(t) = A{ρ3(·, t) − ζ(·, t)}.

This means that if we obtain the estimates for dz/dt, we have the desired estimates
for ρ3. In fact, the estimate for ‖ρ3‖Y(Q0,T ) is given by

‖ρ3‖Y(Q0,T ) ≤ ‖ζ(·, 0)‖C2+α(Q0,T ) + ‖ζ(·, t) − ζ(·, 0)‖C2+α(Q0,T )

+

3∑
i=1

sup
0<t<T

t
1
2 ‖Aζ(·, t)‖Cα(Q0,T )

+ C̃
(
‖ż(t)‖DA( 2+α

4 ,∞) + sup
0<δ<T

δ
1
2 sup
t∈[δ,T ]

‖Aż(t)‖DA(α
4 ,∞)

)
.

Here and hereafter we use ż instead of dz/dt to simplify the notation. For the function
z, we have the following estimates.

Lemma B.2. Let z be a function represented by (B.3). Then there exists a con-
stant N , which depends on ‖ρ0‖C2+α(I), α, and K, such that

(B.4)

⎧⎨
⎩

‖ż(t)‖DA( 2+α
4 ,∞) ≤ NT

1
4 ,

sup
0<δ<T

δ
1
2 sup
t∈[δ,T ]

‖Aż(t)‖DA(α
4 ,∞) ≤ NT

1
4 .
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Proof. The proof of the first estimate of (B.4) is similar to arguments in [16,
Appendix]. We prove only the second estimate of (B.4). For t ≥ ε with ε ∈ (0, T ), we
have

ż(t) = e(t−ε/2)Aż(ε/2) +

∫ t

ε/2

Ae(t−r)A{ζ(·, r) − ζ(·, t)} dr

+ e(t−ε/2)A{ζ(·, t) − ζ(·, ε/2)}.

This implies that

‖Aż(t)‖DA(α
4 ,∞) ≤ ‖Ae(t−ε/2)Aż(ε/2)‖DA(α

4 ,∞)

+

∥∥∥∥
∫ t

ε/2

A2e(t−r)A{ζ(·, r) − ζ(·, t)} dr
∥∥∥∥
DA(α

4 ,∞)

+ ‖Ae(t−ε/2)A{ζ(·, t) − ζ(·, ε/2)}‖DA(α
4 ,∞)

=: I1(t) + I2(t) + I3(t).

Let us first derive the estimate of I1(t). It follows that for t ≥ ε

(B.5) I1(t) ≤ C0(t− ε/2)−
α
4 ‖Aż(ε/2)‖ ≤ C0(ε/2)−

α
4 ‖Aż(ε/2)‖.

Thus it is necessary to obtain an estimate of ‖Aż(t)‖. Since ż(0) = 0, we see that

‖Aż(t)‖ ≤
∫ t

0

‖A2e(t−r)A{ζ(·, r) − ζ(·, t)}‖ dr + ‖AetA{ζ(·, t) − ζ(·, 0)}‖.

We now recall the definition of ζ. Then we have to estimate each term. We show the
estimate only for the term including the function

ζ̂(σ, t) := (σ − l−)3G2(l−, t)η(σ).

The idea for the estimation of the other terms is similar. Set

J1(t) :=

∫ t

0

‖A2e(t−r)A{ζ̂(·, σ) − ζ̂(·, t)}‖ dr,

J2(t) := ‖AetA{ζ̂(·, t) − ζ̂(·, 0)}‖.

Let us derive the estimate of J1(t). For t > r we have

|G2(·, t) −G2(·, r)|

≤ |b2(ρ̄(·, t), ∂σρ̄(·, t)) − b2(ρ0, ∂σρ0)||∂3
σρ̄(·, t) − ∂3

σρ̄(·, r)|

+ |b2(ρ̄(·, t), ∂σρ̄(·, t)) − b2(ρ̄(·, r), ∂σρ̄(·, r))||∂3
σρ̄(·, r)|

+ |g2(ρ̄(·, t), ∂σρ̄(·, t), ∂2
σρ̄(·, t)) − g2(ρ̄(·, r), ∂σρ̄(·, r), ∂2

σρ̄(·, r))|

≤ CK

{
t

1+α
4 · r− 1

2 (t− r)
1+α

4 + r−
1
2 (t− r)

3+α
4 · r− 1

4 + r−
1
2 (t− r)

2+α
4

}
.
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This fact and characterization of interpolation spaces DA(β,∞) imply that

J1(t) ≤ C0

∫ t

0

(t− r)
3
4−2‖(σ − l−)3η‖DA( 3

4 ,∞)|G2(l−, t) −G2(l−, r)| dr

≤ C0,K

∫ t

0

(t− r)
3
4−2

{
t

1+α
4 · r− 1

2 (t− r)
1+α

4

+ r−
1
2 (t− r)

3+α
4 · r− 1

4 + r−
1
2 (t− r)

2+α
4

}
dr

≤ C0,K,α (t
1+α

4 + t
1
4 + t

1
4 ) t

α
4 − 1

2

≤ C̃0,K,α (t
1+α

4 + t
1
4 ) t

α
4 − 1

2 .

Applying the similar argument to J2(t), we are led to

J2(t) ≤ C0 t
3
4−1‖(σ − l−)3η‖DA( 3

4 ,∞)|G2(l−, t) −G2(l−, 0)|

≤ C0,K t
3
4−1 (t

1+α
4 ·Kt−

1
4 + t

α
4 )

≤ C̃0,K t
1
4 · tα

4 − 1
2 .

Since the estimates for the other terms are also obtained similarly, we have

‖Aż(t)‖ ≤ C0,K,αT
1
4 · tα

4 − 1
2 .

It follows from (B.5) that

I1(t) ≤ C0,K,αT
1
4 · (ε/2)−

1
2 .

Let us derive the estimate for I2(t). Set

w(t) :=

∫ t

ε/2

A2e(t−r)A{ζ(·, r) − ζ(·, t)} dr.

In order to obtain the estimate of ‖w‖DA(α
4 ,∞), we recall the definition of ‖·‖DA(α

4 ,∞).
Since the estimate of ‖w‖ is similar to that of J1(t), we consider only the estimate of
the seminorm. According to the definition, we see that

[w]DA(α
4 ,∞) = sup

0<τ<1
‖τ1−α

4 AeτAw‖

≤ sup
0<τ<1

τ1−α
4

∫ t

ε/2

‖A3e(t+τ−r)A{ζ(·, r) − ζ(·, t)}‖ dr.
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We show the estimate only for the term including ζ̂(σ, t). In fact we obtain

τ1−α
4

∫ t

ε/2

‖A3e(t+τ−r)A{ζ̂(·, r) − ζ̂(·, t)}‖ dr

≤ C0 τ
1−α

4

∫ t

ε/2

(t + τ − r)
3
4−3‖(σ − l−)3η‖DA( 3

4 ,∞)|G2(l−, t) −G2(l−, r)| dr

≤ C0,K τ1−α
4

∫ t

ε/2

(t + τ − r)
3
4−3{t 1+α

4 · (ε/2)−
1
2 (t− r)

1+α
4

+ (ε/2)−
1
2 (t− r)

3+α
4 · r− 1

4 + (ε/2)−
1
2 (t− r)

2+α
4

}
dr

≤ C0,K τ1−α
4

∫ t

ε/2

(t + τ − r)
α
4 −2 dr · (t 1+α

4 + t
1
4 ) · (ε/2)−

1
2

+C0,K τ1−α
4

∫ t

ε/2

(t + τ − r)
α
4 −2 (r − ε/2)−

1
4 dr · (t− ε/2)

1
2 · (ε/2)−

1
2

≤ C0,K,α τ1−α
4 · τ α

4 −1{T 1
4 + (t− ε/2)

1
4 } · (ε/2)−

1
2

≤ C0,K,α T
1
4 · (ε/2)−

1
2 .

As a consequence, we are led to

I2(t) ≤ C0,K,α T
1
4 · (ε/2)−

1
2 .

The estimate of I3(t) is omitted, since we can readily obtain it by using (B.1)
together with the estimate of |G2(·, t) −G2(·, r)|.

Consequently, we have

‖Aż(t)‖DA(α
4 ,∞) ≤ C0,K,αT

1
4 · ε− 1

2 for ε ≤ t ≤ T.

This completes the proof of the second estimate of (B.4).
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DECAY ASYMPTOTICS OF THE VISCOUS CAMASSA–HOLM
EQUATIONS IN THE PLANE∗

CLAYTON BJORLAND†

Abstract. We consider the vorticity formulation of the two-dimensional viscous Camassa–Holm
equations in the whole space. We establish global existence for solutions corresponding to initial
data in L1 and describe the large time behavior of solutions with sufficiently small and localized
initial data. We calculate the rate at which such solutions approach an “unfiltered” Oseen vortex by
computing the rate at which the solution of a scaled vorticity problem approaches the solution to a
corresponding linearized equation.
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1. Introduction. The viscous Camassa–Holm equations (VCHE) are commonly
written

vt + u · ∇v + v · (∇u)T + ∇p = �v,(1.1)

H−1
α (u) = u− α2�u = v,

∇ · u = 0,

v(0) = v0.

Here Hα is the Helmholtz operator with constant α defined by solving the PDE
u − α2�u = v. This will be referred to as the filter associated with the VCHE.
For a derivation of these equations from variational principles see [11] or [15]; for a
derivation based on modifying the Navier–Stokes system see [7]. The significance of
these equations is in the combination of a close relation to the famous Navier–Stokes
equations and easily computable bounds on solutions. In particular, in dimensions 2–4,
the VCHE admit smooth global solutions which satisfy a modified Kelvin circulation
theorem where circulation is conserved around “loops” moving with the filtered flow.
The filter is responsible for the smoothing effect on solutions, and the nonlinear term
v · (∇u)T brings the solution into compliance with the Kelvin circulation theorem.
These solutions are well suited for numerical and analytic calculations and retain
many properties displayed by solutions of the Navier–Stokes equations. For proofs of
global existence and uniqueness in dimensions 2–4 see [2], [7], [8], [13], and [15]. Decay
of energy and higher norms is considered in [2]. Numerical literature is outside the
scope of this paper, and the reader is referred to [12] for a survey of the VCHE role
in computational turbulence models and a more complete bibliography.

The relation between the VCHE and the Navier–Stokes equations is particularly
visible in the vorticity form of the equations found by taking the curl (∇× v = ṽ) of
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2008; published electronically May 28, 2008. This research was partially supported by the NSF under
grant OISE-0630623.

http://www.siam.org/journals/sima/40-2/68407.html
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(1.1). In two dimensions the vorticity form is

ṽt + u · ∇ṽ = �ṽ,(1.2)

B(Hα(ṽ)) = u,

ṽ(0) = ṽ0.

In the above equation, B represents convolution with the well-known Biot–Savart
kernel which reconstructs the velocity from the vorticity; see (2.1). The aim of this
paper is to further explore the relationship between solutions of the Navier–Stokes
equation and the VCHE by describing the way a solution of (1.2) approaches the
fixed point zero, i.e., computing the first and second order decay asymptotics for
solutions with small initial data.

Similar study of the asymptotic behavior of the two-dimensional (2-D) vorticity
equation for the Navier–Stokes equation can be found in [5], [9], and [10]. In [9] the
asymptotics are calculated by applying invariant manifold techniques to the semiflow
governing the vorticity problem. Their approach is to scale the vorticity problem into
coordinates which are particularly well suited for studying the large time behavior of
the Navier–Stokes equation and then apply the invariant manifold theorem in [6] to
construct an invariant manifold in the phase space of the scaled problem and foliate
the phase space locally, near the fixed point zero. The manifolds constructed give
insight into the behavior of solutions near the fixed point, and, among other results,
the authors calculate the asymptotics through the interaction and properties of these
manifolds.

The close relation of the Navier–Stokes equations and the VCHE gives hope that
a similar program may be carried out for the 2-D VCHE, especially when comparing
the vorticity equations. In fact, such attempts are met with resistance from the filter in
the VCHE. In a functional setting the filter eases problems by smoothing the solution,
but in a dynamical setting such as this the filter adds complication to the problem. In
particular, the filter does not scale well with the other parts of the equation, and the
resulting nonlinear term has dependence on the scaled time variable not present in the
case of the Navier–Stokes equations. This time dependence carries through into the
semigroups generated by the scaled equation and complicates the invariant manifold
construction. Specifically, the theorem in [6] cannot be applied. It is possible to add
another equation to the system to express it in an autonomous form (does not depend
explicitly on the scaled time variable), but the semigroup generated is still dependent
on time and does not commute (Θ(s + t) �= Θ(s)Θ(t)). It is not immediately clear
how to construct invariant manifolds with such a time dependence or even if such a
structure exists.

The invariant manifold theorem in [6] is based on solving Lyapunov–Perron-type
equations which are generated through recursive application of the semiflow. To work
around the time dependence of this system we construct an infinite family of systems
by stepping the original system forward in time a fixed length and work with the
corresponding semigroups. These semigroups do not commute but can be composed
to reconstruct the flow of the solution. Following in spirit [6] the semiflow generated
by these systems is decomposed into a linear term, a nonlinear term for which we
can find uniform Lipschitz bounds, and a forcing function which decays sufficiently
fast. Applying this decomposition recursively we find a discrete Lyapunov–Perron-type
system which is solvable in a rapidly decaying space. The existence of a solution to this
discrete system implies decay properties of the difference system which in turn allow
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us to compute the asymptotics we desire. Although the notion of invariant manifolds
is lost we still retain enough structure to complete the asymptotic calculations. In
essence we rework part of [6] with weaker hypotheses reflecting our situation. To
calculate the decay of solutions we linearize the scaled VCHE around a fixed point
sufficiently close to zero and determined by the initial data considered, subtract the
linearized equation from the scaled one to get a system which measures distance from
the linear solution, and apply the newly constructed decay theorem. This procedure, in
theory, can be continued to arbitrary orders of asymptotics by considering sufficiently
localized data. We consider only the cases where the governing ODEs are linear.

The work is based in large part on the work in [6] and [9]; this is reflected in the
notation we use and the statements of many theorems. Following this introduction
we introduce the majority of our notation and a few useful lemmas relating to the
VCHE. Section 3 is dedicated to proving the existence and uniqueness of solutions to
the vorticity problem in two dimensions. This section is somewhat based on the work
in [1], where similar results were proved for the Navier–Stokes equations, but for us
the work is simplified thanks to the smoothing properties of the filter in functional
settings. In section 4 we introduce the scaled variables, prove bounds for solutions
with these variables in weighted spaces, and discuss other properties of the scaled
system. In this section we also discuss the linearized system and the action of the lin-
ear operator L (the scaled form of �) on the weighted spaces. Section 5 contains the
decay theorems based on the invariant manifold structure. Sections 6 and 7 hold the
theorems and computations involving the first and second order asymptotic, respec-
tively. The theorems in section 7 are very similar to section 6, and many are stated
with little or no proof when they have nearly identical analogues in section 6. To end
this introduction we state the main conclusions of this paper; proofs are contained
in sections 3, 6, and 7, respectively. The spaces L2(m) are weighted spaces; see (2.2)
below.

Theorem 1.1. Given initial conditions ṽ0 ∈ L1(R2), there exists a unique global
solution ṽ ∈ L∞([0,∞);L1(R2)) to the PDE (1.2). This solution satisfies the decay
bound

|ṽ(t)|q ≤ Ct−(1− 1
q )|ṽ(0)|1.

Theorem 1.2. For any μ ∈ (0, 1
2 ), there exists a r0 > 0 so that for any initial

data ṽ0 ∈ L2(2) with ‖ṽ0‖2 ≤ r0 the solution of (1.2) satisfies

|ṽ(·, t) − a(Ω(·, t))|p ≤ C(1 + t)−1−μ+ 1
p ,

where a =
∫

R2 ṽ0 dx and

Ω(x, t) =
1

4π(1 + t)
e

−|x|2
4(1+t) .

Theorem 1.3. For any μ ∈ ( 1
2 , 1), there exists a r0 > 0 so that for any initial

data ṽ0 ∈ L2(3) with ‖ṽ0‖3 ≤ r0 the solution of (1.2) satisfies

|ṽ(·, t) − a(Ω(·, t) −
∑
i=1,2

bi(∂iΩ(x, t)))|p ≤ C(1 + t)−1−μ+ 1
p ,

where bi =
∫
xiṽ0 dx and a, Ω are as in the previous theorem.
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2. Notation and preliminaries. Throughout this paper we use N to refer to
the natural numbers including 0. Standard Lebesgue spaces will be denoted Lp(R2)
or (Lp for short) with the norm | · |p = (

∫
| · |p dx)1/p. Other Banach spaces defined

within will use the norm ‖ · ‖X .

To denote the curl of a vector field we use the tilde. For example, the curl of a
vector field v is given by ∇ × v = ṽ. For a divergence-free vector field the curl can
be undone through convolution with the well-known Biot–Savart kernel x⊥/(2π|x|2),
x⊥ = (−x2, x1)

T . We denote this convolution as

(2.1) B(w̃) =
1

2π

∫
R2

(x− y)⊥

|x− y|2 w̃(y) dy

so that B(ṽ) = v for divergence-free vector fields.

We define 〈ξ〉 = (1+ |ξ|2)1/2 and make frequent use of the weighted Hilbert spaces
L2(m) defined by

L2(m) = {f ∈ L2(R2)| ‖f‖m < ∞ and ∇ · f = 0},(2.2)

‖f‖2
m =

∫
R2

〈ξ〉2m(ξ)|f(ξ)|2 dξ.

The remaining part of this section contains bounds that will be useful later in
the paper. To begin we recall a lemma from [9] concerning the Biot–Savart operator
B defined by (2.1) and the curl of divergence-free vector fields.

Lemma 2.1. Let

v = B(ṽ) =
1

2π

∫
R2

(x− y)⊥

|x− y|2 ṽ(y) dy.

(i) If 1 < p < 2 < q < ∞, 1
q = 1

p − 1
2 , and ṽ ∈ Lp(R2), then there exists a C > 0

such that |v|q ≤ C|ṽ|p.
(ii) If 1 ≤ p < 2 < q ≤ ∞, 1

2 = α
p + (1−α)

q , where α ∈ (0, 1), and ṽ ∈ Lp ∩Lq(R2),

then there exists a C > 0 such that |v|∞ ≤ C|ṽ|αp |ṽ|1−α
q .

(iii) If 1 < p < ∞ and ṽ ∈ Lp(R2), then there exists a C > 0 such that |∇v|p ≤
C|ṽ|p

Proof. This is Lemma 2.1 in [9].

The following bounds for the heat kernel will also be useful in proving the existence
of solutions in section 3.

Lemma 2.2. Let Φ be the fundamental solution to the heat equation. Then

|Φ(t)|p ≤ C(n, p)

t(1−
1
p )n

2

,

|∇Φ(t)|p ≤ C(n, p)

t
1
2+(1− 1

p )n
2

.

Proof. By direct calculation

|Φ(t)|pp =
1

(4πt)
pn
2

∫
Rn

e
−p|x|2

4t dx =
1

p
n
2 (4πt)

(p−1)n
2

.
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This proves the first bound. For the second, start by differentiating the heat kernel
and then take the Lp norm

|∇Φ(t)|pp ≤ C(n, p)

tp(1+
n
2 )

∫
Rn

|x|pe
−p|x|2

4t dx.

A change of variables and integration now proves the second bound.

We also recall some facts about the Helmholtz operator Hα.

Lemma 2.3. Let v ∈ Lr(Rn), r ∈ [1,∞). Then there exists a solution u ∈
W 1,r(Rn) to the Helmholtz equation

H−1
α (u) = u− α2�u = v

which satisfies the bounds

|u|p ≤ |v|p for p ∈ [1,∞],

|u|p ≤ C(n, p, r)

α1+γ
|v|r for γ =

n

2

(
1

r
− 1

p

)
< 1,

|∇u|p ≤ C(n, p, r)

α
3
2+γ

|v|r for γ =
n

2

(
1

r
− 1

p

)
<

1

2
.

Proof. This follows by standard elliptic theory.

The last lemma in this section concerns the inclusion L2(m) ↪→ L1 and will be
useful in proving many estimates later in this paper.

Lemma 2.4. If f ∈ L2(m) for some m > 1, then f ∈ Lq for 1 ≤ q ≤ 2.

Proof. The bound |f |2 ≤ ‖f‖m is immediate from the definition of L2(m). Since
〈ξ〉−m is integrable in R

2 if m > 1 we have |f |1 ≤ C‖f‖m. Interpolation finishes the
proof.

3. Vorticity problem for the VCHE. This section contains proofs for the
existence and uniqueness of solutions to the vorticity form of the VCHE (1.2) with
data in ṽ ∈ L1(R2). Decay of these solutions is provided by the optimal smoothing
results in [4].

Instead of working directly with (1.2) we prove existence and uniqueness for the
mild form of the PDE by solving the integral equation

ṽ(t) = e�tṽ0 −
∫ t

0

∇Φ(t− s) ∗ [B(Hα(ṽ)) ⊗ ṽ](s) ds.(3.1)

The corresponding result for the Navier–Stokes equation was proved in [1] using
a fixed point argument in a subspace of L1 and then extending the solution operator
to L1; see also [3] and [14]. This approach was necessary because it is difficult to write
the Navier–Stokes equations such that a fixed point argument can be applied in L1.
In the case of the VCHE the filter provides enough leverage to apply a fixed point
argument directly. We start by proving a bound on the bilinear term and then follow
with the existence of a global solution.

Lemma 3.1. The bilinear form

b(ṽ, w̃) : L∞([0, T ], L1(R2)) × L∞([0, T ], L1(R2)) → L∞([0, T ], L1(R2))
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defined by

b(ṽ, w̃) =

∫ t

0

∇Φ(t− s) ∗ [B(Hα(ṽ)) ⊗ w̃](s) ds

satisfies the bound

sup
t∈[0,T ]

|b(ṽ, w̃)(t)|1 ≤ C(T )

(
sup

t∈[0,T ]

|ṽ(t)|1

)(
sup

t∈[0,T ]

|w̃(t)|1

)
,

where C(T ) → 0 as T → 0.
Proof. First apply Young’s inequality and then Hölder’s inequality to the bilinear

form

|b(ṽ, w̃)(t)|1 ≤
∫ t

0

|∇Φ(t− s)|1|B(Hα(ṽ))(s)|∞|w̃(s)|1 ds.

Lemmas 2.1 and 2.3 give the bound |B(Hα(ṽ))(s)|∞ ≤ C|ṽ(s)|1, so

|b(ṽ, w̃)(t)|1 ≤ C

∫ t

0

|∇Φ(t− s)|1 ds
(

sup
s∈[0,t]

|ṽ(t)|1

)(
sup

s∈[0,t]

|w̃(t)|1

)
.

By Lemma 2.2, |∇Φ(t − s)|1 ≤ C/
√
t− s and the right-hand side is integrable over

finite intervals. Taking the supremum over t ∈ [0, T ] yields

sup
t∈[0,T ]

|b(ṽ, w̃)(t)|1 ≤ CT
1
2

(
sup

t∈[0,T ]

|ṽ(t)|1

)(
sup

t∈[0,T ]

|w̃(t)|1

)
.

This estimate concludes the proof.
Theorem 3.2. Given initial data ṽ0 ∈ L1(R2) there exists a unique global solution

ṽ ∈ L∞([0,∞);L1(R2)) to the integral equation (3.1). For any p ∈ [1,∞], this solution
satisfies the decay bound

(3.2) |ṽ(t)|p ≤ Ct−(1−1/p)|ṽ(0)|1.

Proof. Lemma 3.1 with a standard fixed point argument gives the existence of a
mild solution in some possibly small time interval. The length of the time interval
depends on the L1 norm of the initial data. After applying the optimal smoothing
results in [4] (see also [16]) the L1 norm of the solution does not increase beyond
the L1 norm of the data which implies the existence of a global solution. Indeed,
the vorticity equation for the VCHE is a viscously damped conservation law, so after
applying Theorem 1 in [4] we establish (3.2). In particular, |v(t)|1 ≤ C|v(0)|1, which
establishes global existence.

It remains to establish uniqueness. Let ṽ and w̃ be two solutions of (3.1) corre-
sponding to the same initial data ṽ0 ∈ L1(R2). After adding and subtracting cross
terms we see that

(ṽ − w̃)(t) = −
∫ t

0

∇Φ(t− s) ∗ [B(H(ṽ, α)) ⊗ (ṽ − w̃)](s) ds

+

∫ t

0

∇Φ(t− s) ∗ [B(H((ṽ − w̃), α)) ⊗ w̃](s) ds.
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Similar to the proof of Lemma 3.1, apply Lemmas 2.1 and 2.3 with Young’s inequality:

|ṽ(t) − w̃(t)|1 ≤ C

∫ t

0

|∇Φ(t− s)|1(|ṽ(s)|1 + |w̃(s)|1)|ṽ(s) − w̃(s)|1 ds.

Apply (3.2) to obtain

|ṽ(t) − w̃(t)|1 ≤ C|ṽ0|1
∫ t

0

|∇Φ(t− s)|1|ṽ(s) − w̃(s)|1 ds.

From here the Gronwall inequality with Lemma 2.2 is used to establish uniqueness
and conclude the proof.

This establishes Theorem 1.1.

4. The scaled equations. In this section we introduce scaled variables and
rewrite the vorticity equation for the VCHE in these variables, preparing it for use
with the theorems in section 5. An existence theorem for the scaled VCHE and related
filter equations in the weighted spaces L2(m) is provided, and we discuss the action
of the linear operator L (scaled Laplacian) on the weighted spaces L2(m).

The scaled variables are defined as

ξ =
x√

1 + t
, τ = ln(1 + t),

v(x, t) =
1√

1 + t
w(ξ, τ), u(x, t) =

1√
1 + t

ω(ξ, τ),

ṽ(x, t) =
1

1 + t
w̃(ξ, τ), ũ(x, t) =

1

1 + t
ω̃(ξ, τ).

It has been shown in [5], [9], and [10] that these variables are very useful when studying
the large time behavior of the Navier–Stokes equation in vorticity form. Under these
variables the vorticity form of the VCHE (1.2) becomes

w̃τ = Lw̃ − ω · ∇ξw̃, w̃(0) = w̃0,(4.1)

ω = B(Hα,τ (w̃)),(4.2)

where B is again convolution with the Biot–Savart kernel as in (2.1), L is the linear
operator L = �ξ + 1

2ξ ·∇ξ + I, and Hα,τ is the operator defined by solving the scaled
Helmholtz equation ω̃ − α2e−τ�ξω̃ = w̃.

The first goal of the section is to show how the filter Hα,τ acts on the weighted
spaces L2(m); in particular we will show that the Helmholtz equation has a unique
solution in these spaces.

Lemma 4.1. If w ∈ L2(m) and ω ∈ L2(m) are related by the scaled Helmholtz
equation w = ω − α2e−τ�ξω, then ‖ω(τ)‖2

m ≤ C‖w(τ)‖2
m. In the case 4m2α2 < 1,

C = 1; otherwise C = 2(1 + 2m−1(4m2α2)m). This lemma shows how the operator
Hα,τ : L2(m) → L2(m) is bounded.

Proof. The case of m = 0 follows from the well-known linear elliptic theory; the
bound is

‖w‖2
0 = ‖ω‖2

0 + 2α2e−τ‖∇ω‖2
0 + α4e−2τ‖�ω‖2

0.
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For m > 0 we proceed formally, noting that the following calculations can be applied
to a dense set of smooth functions. First square the PDE and then multiply by 〈ξ〉2m;
after integration we have

‖w‖2
m = ‖ω‖2

m + α4e−2τ‖�ω‖2
m − 2α2e−τ

∫
R2

〈ξ〉2mω�ω dξ.

Using integration by parts∫
R2

(1 + |ξ|2)mω�ω dξ = 2m

∫
R2

(〈ξ〉2m−2 + (m− 1)〈ξ〉2m−4|ξ|2)ω2 dξ

− ‖∇ω‖2
m

leaves

‖w‖2
m = ‖ω‖2

m + α4e−2τ‖�ω‖2
m + 2α2e−τ‖∇ω‖2

m

− 4mα2e−τ‖ω‖2
m−1 − 4m(m− 1)α2e−τ‖|ξ|ω‖2

m−2.

The bound

−e−τ 〈ξ〉2m−4(〈ξ〉2 + (m− 1)|ξ|2) ≥ −2m〈ξ〉2m

shows that

‖w‖2
m ≥ (1 − 4m2α2)‖ω‖2

m + α4e−2τ‖�ω‖2
m + 2α2e−τ‖∇ω‖2

m

and proves the result if 4m2α2 < 1.
If 4m2α2 ≥ 1, set β2 = 8m2α2 − 1 so that for |ξ| ≥ β we have 〈ξ〉2m ≥

8m2α2〈ξ〉2m−2. If B(β) is the ball with radius β,

−4m2α2

∫
R2

〈ξ〉2m−2ω2 dξ ≥ −4m2α2(8m2α2)m−1

∫
B(β)

ω2 dξ

− 1

2

∫
BC(β)

〈ξ〉2mω2 dξ.

Applying the case m = 0 and the bound ‖w̃‖2
2 ≤ ‖w̃‖2

m allows

−
∫
B(β)

ω2 dξ ≥ −
∫

R2

ω2 dξ ≥ −
∫

R2

w2 dξ ≥ −‖w‖2
m.

Also,

−1

2

∫
BC(β)

〈ξ〉2mω2 dξ ≥ −1

2
‖ω‖2

m.

Considering all of this leaves, in the case 4m2α2 ≥ 1,

(4.3) C‖w‖2
m ≥ 1

2
‖ω‖2

m + α4e−2τ‖�ω‖2
m + 2α2e−τ‖∇ω‖2

m,

where C = 1 + 2m−1(4m2α2)m.
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The above proof is some indication that the filter is not well suited for the weighted
spaces. There is still a smoothing effect, but as can be seen from (4.3) this effect
decreases as τ becomes large.

Theorem 4.2. Given w ∈ L2(m), there exists a unique solution ω ∈ L2(m) to
the scaled Helmholtz equations w = ω − α2e−τ�ξω. This proves that the operator
Hα,τ : L2(m) → L2(m) is well defined.

Proof. The rough estimate 〈ξ〉2m > 1 implies L2(m) ⊂ L2(0), so if w ∈ L2(m),
it is well known that there is a unique ω ∈ L2(0) solving the equation. Lemma 4.1
shows that ω ∈ L2(m).

We now turn our attention to the scaled VCHE. Using the strongly continuous
semigroup eτL generated by L in L2(m) (see the appendix of [9]) we write the mild
form of the scaled vorticity problem:

w̃(τ) = eτLw̃0 −
∫ τ

0

e−
1
2 (τ−s)∇ · e(τ−s)L(ω(s)w̃(s)) ds,(4.4)

ω̃ = Hα,τ (w̃).

The following lemma, based on Lemma 3.1 in [9], provides an estimate on the
bilinear form which will be used to prove the existence of a local solution to (4.4).

Lemma 4.3. Given w̃1, w̃2 ∈ C0([0, T ];L2(m)), define

R(w̃1, w̃2)(τ) =

∫ τ

0

e−
1
2 (τ−s)∇ · e(τ−s)L(ω1(s)w̃2(s)) ds,

where ω1 = w1 − α2e−τ�w1 and w1 is obtained from w̃1 via the Biot–Savart law.
Then R ∈ C0([0, T ], L2(m)), and there exists C0 = C0(m,T ) > 0 such that

sup
0≤τ≤T

‖R(w̃1, w̃2)(τ)‖m ≤ C0

(
sup

0≤τ≤T
‖w̃1(τ)‖m

)(
sup

0≤τ≤T
‖w̃2(τ)‖m

)
.

Moreover, the constant C0 becomes arbitrarily small as T tends to zero.

Proof. We rely on an estimate of the semigroup eτL proved in the appendix of [9];
if r ∈ ( 2

m+1 , 2), then

|〈ξ〉m∇ · eτLu|2 ≤ C

a(τ)(
1
r−

1
2 )+ 1

2

|〈ξ〉mu|r,

where a(τ) = 1 − e−τ . This allows

|〈ξ〉mR(w̃1, w̃2)(τ)|2 ≤ C

∫ τ

0

1

a(τ − s)
1
r

|〈ξ〉mω1(s)w̃2(s)|r ds.

Hölder’s inequality, Lemma 2.1, and the inclusion L2(m) ↪→ Lr(R2) provide the bound
|〈ξ〉mω1(s)w̃2(s)|r ≤ C‖w̃2‖m‖ω̃1‖m. Apply Lemma 4.1 and note that a(τ − s)−1/r is
integrable from 0 to τ to finish the proof.

In addition to providing existence and uniqueness the following theorem shows
how we can control the L2(m) norm of a solution to the integral equation (4.4) by
controlling the L2(m) norm of the initial data. Our proof is modeled after the proof
of Theorem 3.2 in [9].
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Theorem 4.4. Given w̃0 ∈ L2(m) for some m > 1, there exists a global solution
w̃ ∈ C0([0,∞), L2(m)) to the integral equation (4.4) with w̃(0) = w̃0. Moreover, there
exists a constant C1 = C1(‖w̃0‖m) such that

(4.5) ‖w̃(τ)‖m ≤ C1

and C1 → 0 as ‖w̃0‖m → 0.
Proof. The previous lemma and a fixed point argument give local in time existence

of a unique solution. Moreover, there exists a T > 0 such that

(4.6) sup
0≤τ≤T

‖w̃(τ)‖m ≤ 2‖w̃0‖m.

By scaling (3.2) and using the fact that L2(m) ↪→ L1 for m > 1 we see that this
solution satisfies, for all p ∈ [1,∞],

(4.7) |w̃(τ)|p ≤ Cp‖w̃(0)‖m
a(τ)1−

1
p

.

We will now establish (4.5), which will imply global in time existence. Multiplying
(4.1) by 〈ξ〉2mw̃ and integrating we find that

1

2

d

dτ

∫
R2

〈ξ〉2mw̃2 dξ =

∫
R2

〈ξ〉2mNL(w̃) dξ,

NL(w̃) = w̃�w̃ +
w̃

2
(ξ · ∇)w̃ + w̃2 − w̃(ω · ∇)w̃.

Integration by parts and the bound |ξ| ≤ 〈ξ〉 give the following estimates:∫
R2

〈ξ〉2mw̃�w̃ dξ ≤ −
∫

R2

〈ξ〉2m∇w̃2 dξ

+ 2m2

∫
R2

〈ξ〉2m−2w̃2 dξ,

1

2

∫
R2

〈ξ〉2mw̃(ξ · ∇w̃) = −1

2

∫
R2

〈ξ〉2mw̃2 dξ

− 1

2
m

∫
R2

〈ξ〉2m−2|ξ|2w̃2 dξ

−
∫

R2

〈ξ〉2mw̃(ω · ∇)w̃ dξ = m

∫
R2

〈ξ〉2m−2(ξ · ω)w̃2 dξ.

Furthermore, given ε > 0, there exists a Cε > 0 such that

〈ξ〉2m−2 ≤ ε〈ξ〉2m + Cε

and we can bound

2m2

∫
R2

〈ξ〉2m−2w̃2 dξ ≤ ε

∫
R2

〈ξ〉2mw̃2 dξ + Cε

∫
R2

w̃2 dξ.
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Similarly,

m

∫
R2

〈ξ〉2m−2(ξ · ω)w̃2 dξ ≤ ε

∫
R2

〈ξ〉2mw̃2 dξ + Cε|ω|2m∞
∫

R2

w̃2 dξ.

Putting these bounds together yields

1

2

d

dτ

∫
R2

〈ξ〉2mw̃2 dξ ≤ −
(

1

2
− 2ε

)∫
R2

〈ξ〉2mw̃2 dξ + Cε(1 + |ω|2m∞ )

∫
R2

w̃2 dξ.

Write δ = 1
2 − 4ε; then

d

dτ

(
eδτ

∫
R2

〈ξ〉2mw̃2 dξ

)
≤ Cεe

δτ (1 + |ω|2m∞ )

∫
R2

w̃2 dξ.

This inequality implies (4.5), provided

(4.8) sup
0≤τ≤∞

(
(1 + |ω|2m∞ )

∫
R2

w̃2 dξ

)
≤ C(‖w̃0‖m),

where C(‖w̃0‖m) → 0 as ‖w̃m‖m → 0. We now establish this estimate.
When T is such that (4.6) holds, estimate (4.7) with p = ∞ and then p = 2 implies

(4.8) when the supremum is taken over τ ∈ [T,∞). When τ ≤ T , Lemmas 2.1 and 2.3
provide the bound |ω(τ)|∞ ≤ C(T )|w̃(τ)|2; with (4.6) this implies (1 + |ω(τ)|∞) ≤
C(T )‖w̃0‖m for all τ ≤ T . In addition (4.6) implies |w̃(τ)|2 ≤ C(‖w̃0‖m) when τ ≤ T .
This concludes the proof.

We spend the remaining portion of this section recalling facts about the operator
on the spaces L2(m) useful to our discussion. The operator L is studied closely in the
appendix of [9], and the reader is referred there for proofs of the statements which
are not immediate.

The spectrum of L in the space L2(m) is

σ(L) =

{
λ ∈ C|Re(λ) ≤ 1 −m

2

}
∪
{
−k

2
|k ∈ N

}
.

The operator L generates a strongly continuous semigroup eτL on the space
L2(m). The spectrum of L acting on L2(m) has m − 1 isolated eigenvalues λj = −j

2
for 0 ≤ j ≤ m− 2. This allows a spectral decomposition that we will use throughout
the remaining parts.

Definition 4.5. Let Xm
1 ⊂ L2(m) be the finite subspace spanned by the eigen-

vectors associated with the eigenvalues λj, 0 ≤ j ≤ m − 2, and Xm
2 = L2(m) − X1.

Define Pm
1 as the spectral projection onto Xm

1 and Pm
2 the projection onto Xm

2 .
Note that Pm

1 and Pm
2 are guaranteed to exist because Xm

1 and Xm
2 are closed

subspaces of the Hilbert space L2(m).
Lemma 4.6. The projections Pm

1 and Pm
2 defined above satisfy the following

bounds for w̃ ∈ L2(m):

‖(eLPm
1 )−jw‖m ≤ C1e

j(m−2)
2 ‖w‖m,

‖(Hα,τe
LPm

2 )jw‖m ≤ C2e
−j(m−1)

2 ‖w‖m.

Proof. This follows from the definitions of the projections.
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Of particular interest to us are the first two eigenvalues and the associated eigen-
vectors.

Definition 4.7. The first two eigenvalues of L acting on L2(m) are λ0 = 1 and

λ1 = −1
2 . For the single eigenvector associated with λ0 we write G(ξ) = 1

4π e
−|ξ|

4 . For

the two eigenvalues associated with λ2 we write Fi = ∂iG(ξ) = − ξ
2G(ξ), i = 1, 2.

The eigenvalue G is the scaled “Oseen vortex” and plays an important role in
studying the Navier–Stokes system in two dimensions. It is a stationary solution of
the scaled PDE, a fact that is easily checked by finding the associated velocity field
(vG) with the Biot–Savart kernel and computing vG · ∇G = 0. For reference,

vG(ξ) =
1

2π

1 − e
−|ξ|2

4

|ξ|2 |ξ|−2

(
−ξ2
ξ1

)
.

In the scaled VCHE a similar statement is true when we consider G as the filtered
and scaled vorticity; this suggests that in describing the behavior of solutions we will
also need to consider the following “unfiltered” eigenvectors.

Definition 4.8.

Γ(ξ, τ) = G(ξ) − α2e−τ�G(ξ),

Λi(ξ, τ) = Fi(ξ) − α2e−τ�Fi(ξ).

Through straightforward calculations one can check that

vG · ∇Γ = 0, ∂τΓ = LΓ = α2e−τ�Γ.

It is then clear that Γ is a solution of the VCHE. This solution is stationary from the
perspective of the filtered flow ω and plays a similar role as G in the Navier–Stokes
equations.

By linearizing the PDE (4.1) about the “fixed” point aΓ (a ∈ R) we obtain

ψ̃τ = Lψ̃ − aη · ∇Γ − avG · ∇ψ̃, ψ̃(0) = ψ̃0,(4.9)

η = B(Hα,τ (ψ̃)).

This linear PDE has strong global solutions, a fact which can be established following
the steps in Theorem 4.4; the proof will be omitted here. Note that aΓ is a solution
to (4.9).

Letting vFi denote the velocity field associated with Fi, two other important
relations are

vFi · ∇Γ + vG · ∇Λi = 0, ∂tΛi − LΛi +
1

2
Λi = 0.

The first is quickly checked by differentiating the relation vG ·∇Γ = 0, and the second
can be checked directly. Together, these show that aΓ + b1e

−τ
2 Λ1 + b2e

−τ
2 Λ2 is a

solution to the linearized equation (4.9).
Subtracting (4.9) from (4.1) we find that

(w̃ − ψ̃)τ = L(w̃ − ψ̃) − ω · ∇(w̃ − ψ̃)(4.10)

− (ω − avG) · ∇ψ̃ + aη · ∇Γ.

This system will be studied in the final sections as the foundation for our asymptotic
results.
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5. Semigroup theorems. This section contains theorems on collections of semi-
groups which will be used in the following section to prove our decay results. These
theorems are based on the Lyapunov–Perron approach of constructing invariant mani-
folds in [6] but uses relaxed hypotheses. In particular we allow for the treatment of
semigroups which may be time dependent and therefore noncommutative. As our
hypotheses are relaxed we are not able to fully construct invariant manifolds. This
section instead culminates with a decay theorem.

Unless otherwise specified, in this section let X denote a Hilbert space with norm
‖·‖X and {Θn(f, τ)} a collection of semigroups which map X into itself. That is, each
Θn : X ×R

+ → X is a semigroup. The idea we will keep in the back of our mind is a
noncommutative semigroup Θ(·, t), where Θn(·, τ) is the action of the semigroup when
t = n+ τ . The semigroup Θ can then be reconstructed by composing the semigroups
Θn. Indeed, if t = n + τ , then

Θ(f, t) = Θn(Θn−1(· · ·Θ2(Θ1(f, 1), 1), 1), τ).

Conversely we make a definition for a natural flow through the collection.
Definition 5.1. If {Θn(f, τ)} is a collection of semigroups which, for each τ ∈

[0, 1], map X into itself, we call the function Θ : X × R
+ → X defined by

Θ(f, t) = Θn(Θn−1(· · ·Θ2(Θ1(f, 1), 1), 1), τ),

where t = n + τ and τ ∈ [0, 1), the natural flow of the collection through f .
That Θ(f, t) is well defined for each f follows from the well-defined properties of

each Θn.
Throughout this section we assume the following uniform conditions on the col-

lection of semigroups; these conditions are relaxations of (H.1)–(H.4) in [6].
(H.1) Define Lip(Θ(·, t)) := supn Lip(Θn(·, t)). Each Θn(f, t) is continuous in

(f, t) ∈ X × [0, 1] and

sup
0≤t≤1

Lip(Θ(·, t)) = D < ∞.

(H.2) Each Θn(f, 1) can be decomposed as Θn(·, 1) = L + Rn + Sn, where L :
X → X is a bounded linear operator, each Rn : X → X is a global Lipschitz map
satisfying Rn(0) = 0, and Sn ∈ X.

(H.3) There are subspaces Xi, i = 1, 2, of X and continuous projections Pi,
i = 1, 2, such that P1 + P2 = I, X1 ⊕X2 = X. L leaves Xi invariant and commutes
with Pi, i = 1, 2. Denoting by Li : Xi → Xi the restriction of L on Xi, L1 has bounded
inverse and there exist constants α1 > α2 ≥ 0, C1, and C2 such that

|L−k
1 P1| ≤ C1α

−k
1 ,

|Lk
2P1| ≤ C1α

k
1 .

We will also write Li for LPi when there is no confusion.
(H.4) Define Lip(R) := supn Lip(Rn). Let α1 and α2 be as in (H.3); there exists

α1 > γ1 > γ2 > α2 such that the Rn satisfy

C1

α1 − γ
+

C2

γ − α2
<

1

Lip(R)

for all γ ∈ (γ2, γ1).
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(H.5) With α1 as in (H.3), Sn satisfies

lim sup
n→∞

1

n
ln ‖Sn‖X < lnα1.

Definition 5.2. We call a sequence {fn}n∈N ⊂ X a discrete positive semiorbit
of {Θn} through f0 if it satisfies the relation f̃n = Lfn−1 + Rn−1(fn−1) + Sn−1 for
all n ≥ 1.

For a given initial position f0 ∈ X we find the discrete positive semiorbit {fn}n∈N

it generates using this definition recursively:

(5.1) fn = Lnf0 +

n−1∑
j=0

Ln−j−1(Rj(fj) + Sj).

We now prove a lemma based on Lemma 3.3 from [6] which will provide a link
between the semiflows {Θn} and a discrete Lyapunov–Perron system.

Lemma 5.3. We assume conditions (H.1)–(H.5) are satisfied. Let {fn}n∈N ⊂ X
satisfy

(5.2) lim sup
n→∞

1

n
ln ‖fn‖X < lnα1.

Then the sequence {fn}n∈N is a positive semiorbit of {Θn} if and only if it satisfies,
for all n ∈ N,

fn = Ln
2f0 −

∑
n≤j

L
(n−j−1)
1 (Rj(fj) + Sj) +

∑
0≤j<n

L
(n−j−1)
2 (Rj(fj) + Sj).(5.3)

Proof. Using the iterative relation (5.1) with the projection P2 shows that

P2fn = Ln
2f0 +

∑
0≤j<n

L
(n−j−1)
2 (Rj(fj) + Sj).

Likewise, if m > n, we can write (5.1) in the form

fm = Ln−mfn +
∑

n≤j<m

L
(m−j−1)
1 (Rj(fj) + Sj)

so that

P1fn = Ln−m
1 fm −

∑
n≤j<m

L
(n−j−1)
1 (Rj(fj) + Sj).

We will show that the right-hand side of the above equation converges as m → ∞;
then it remains only to add these projections together to finish the proof. Condition
(H.3) and the Lipschitz property of Rn allow∥∥∥∥∥∥

∑
n≤j<m

L
(n−j−1)
1 (Rj(fj) + Sj)

∥∥∥∥∥∥
X

≤ C1

∑
n≤j<m

αn−j−1
1 (Lip(R)‖fj‖X + ‖Sj‖X).
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The bound (5.2) and assumption (H.5) give convergence of this sum as m → ∞ as
well as the following limit:

lim sup
m→∞

‖Ln−m
1 fm‖X ≤ C1α

n
1 lim sup

m→∞
(α−m

1 ‖fm‖X)

= 0.

The next step is to show that for any initial data f0 there exists a unique solution
to the system (5.3) in a weighted space where all elements satisfy (5.2); then through
the previous lemma we can deduce that this solution is a discrete positive semior-
bit. Systems such as (5.3) are called Lyapunov–Perron equations and used in the
Lyapunov–Perron approach to invariant manifolds. The existence theorem we prove
uses a fixed point argument and is similar to Theorem 2.1 in [6].

Definition 5.4. Fix γ ∈ (γ2, γ1), where γ1 and γ2 are as in (H.4), and let
Eγ

n be the Banach space equal to X as a vector space but equipped with the norm
‖ · ‖Eμ

n
= γ−n‖ · ‖X . Eγ is the sequence space f = {fn}n∈N, fn ∈ Eγ

n equipped with
the norm ‖f‖Eγ = supn∈N ‖fn‖Eγ

n
.

As γ1 < α1 by assumption this definition is compatible with (5.2).
Theorem 5.5. We assume conditions (H.1)–(H.5) are satisfied. Pick γ ∈ (γ2, γ1).

Given initial data x ∈ X2, there exists a unique solution {fn} ∈ Eμ to (5.3).
Proof. Define J : Eγ → Eγ componentwise as

Jn({fn}) = Ln
2x +

∑
0≤j<n

L
(n−1−j)
2 (Rj(fj) + Sj) −

∑
n≤j

L
(n−1−j)
1 (Rj(fj) + Sj).

To apply a fixed point theorem we need to check that J is well defined and is a
contraction map. In that direction we start with the bound

‖Jn({fn})‖Eγ
n
≤ ‖Ln

2x‖Eγ
n

+
∑

0≤j<n

‖L(n−1−j)
2 (Rj(fj) + Sj)‖Eγ

n

−
∑
n≤j

‖L(n−1−j)
1 (Rj(fj) + Sj)‖Eγ

n
.

The first term on the right-hand side is bounded with the help of (H.3), the definition
of the space Eγ

n, and the condition γ > α2:

‖Ln
2x‖Eγ

n
≤ C2α

n
2γ

−n‖x‖X

≤ C2‖x‖X .

Assumption (H.5) and γ < α1 imply {Sn} ∈ Eγ ; then the second term is bounded
using the same ideas but adding the uniform Lipschitz constant of Rj :∑

0≤j<n

‖L(n−1−j)
2 (Rj(fj) + Sj)‖Eγ

n
≤ C2α

−1
2

∑
0≤j<n

(α2/γ)n−j‖(Rj(fj) + Sj)‖Eγ
j

≤ C2

γ − α2
(Lip(R)‖{fn}‖Eγ + ‖{Sn}‖Eγ ) .

Similarly,∑
n≤j

‖L(n−1−j)
1 (Rj(fj) + Sj)‖Eγ

n
≤ C1

α1 − γ
(Lip(R)‖{fn}‖Eγ + ‖{Sn}‖Eγ ) .
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These bounds show that ‖Jn({fn})‖Eγ
n

is bounded independent of n and therefore
J maps Eγ into itself. Given another sequence gn ∈ Eγ , following nearly the same
steps one finds the bound

‖Jn({fn}) − Jn({gn})‖Eγ
n
≤

(
C1

α1 − γ
+

C2

γ − α2

)
Lip(R)‖{fn − gn}‖Eγ .

Assumption (H.4) guarantees J is a contraction map, and a standard fixed point
argument finishes the theorem.

We would like to remark here that the system (5.3) does not “see” the component
of the initial data in X1 but instead picks out the correct component to form a solution
which satisfies (5.2). Thus, by solving the system one creates a map h : X2 → X1

defined h(x) = P1f0 such that the natural flow through x + h(x) decays rapidly.
This map is important when constructing invariant manifolds and foliations through
the Lyapunov–Perron approach (see, for example, [6]). This next corollary makes this
remark precise.

Corollary 5.6. Let {Θn} be a collection of semigroups satisfying (H.1)–(H.5).
For each x ∈ X2 there exists h(x) ∈ X1 such that the discrete positive orbit through
x + h(x) satisfies (5.2). This defines a map h : X2 → X1.

Proof. Define h by using x as initial conditions in the previous theorem to find a
sequence {fn}; then let h(x) = P1f0. As the solution is unique so h is well defined,
the remaining properties follow quickly from Lemma 5.3.

We are now in a position to prove the theorem, which is the goal of this section
and will be the basis for decay estimates in the following sections.

Theorem 5.7. Let {Θn} be a collection of semigroups satisfying (H.1)–(H.5) and
h as in the previous corollary. For each γ ∈ (γ2, γ1) and initial condition x ∈ X2

denote by Θ(x + h(x), t) the natural flow of {Θn} through x + h(x). This satisfies

(5.4) lim sup
t→∞

1

t
ln ‖Θ(x + h(x), t)‖X < γ.

Proof. {Θ(x+h(x), n)} is a discrete positive orbit of {Θn} through x+h(x). Using
Theorem 5.5 and its corollary we obtain

lim sup
n→∞

1

n
ln ‖Θ(x + h(x), n)‖X < γ.

We now apply the Lipschitz property of the semiflows Θn given by (H.1). If n ∈ N

and 0 ≤ σ < 1 are such that t = n + σ,

1

t
ln ‖Θ(x + h(x), t)‖X ≤ 1

t
| ln(D‖Θ(x + h(x), n)‖X)

≤ 1

n
ln ‖Θ(x + h(x), n)‖X +

1

t
lnD.

Taking the limit superior first as n → ∞ and then as t → ∞ in the above expression
finishes the proof.

6. First order asymptotic behavior. For the first order calculations we work
in the space L2(2) where the operator L has a single isolated eigenvalue 0 and cor-
responding eigenvector G (see Definition 4.7). This eigenvector spans the subspace
X1 as in Definition 4.5. The projection onto this subspace is defined as follows: let
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a =
∫
w̃0 dξ; then P1(w̃0) = aG. Before we proceed it is important to remark that∫

w̃ dξ is a conserved quantity under the flow of (4.9), so P1(w̃(τ)) = aG. Indeed,

since Lw̃ = ∇ · (∇w̃ + ξ
2 ),

(6.1)
1

2

d

dt

∫
w̃ dξ =

∫
∇ ·

(
∇w̃ +

ξ

2
· w̃ − ωw̃

)
dξ = 0.

Fix w̃0 (we keep this fixed throughout the calculations) and consider the system
(4.10) with initial data w̃0 − aΓ(·, 0), where a =

∫
w̃0 dξ; later we will require ‖w̃0‖m

to be sufficiently small. With these initial conditions ψ̃ = aΓ is a “stationary” solution
of the linear system (4.9). Writing f̃ = w̃ − aΓ, φ = BHα,τ (f̃), (4.10) becomes

(6.2) f̃τ = Lf̃ − ω · ∇f̃ − aφ · ∇Γ.

The associated integral equation is

(6.3) f̃ = eτLP2(w̃0) −
∫ τ

0

e
−1
2 (τ−σ)∇ · e(τ−σ)L(ωf̃ + aφΓ)(σ) dσ.

Although it is not obvious at a quick glance, the above system changes with τ .
The dependence on τ is buried in the φ term (in the filter relation) and destroys
the commutative property of the generated semiflow. Commutativity is a very use-
ful property when dealing with semiflows, but we are able to proceed in a fashion
consistent with the Lyapunov–Perron approach to constructing invariant manifolds
using the results of section 5. To make this work we need a collection of semiflows
with uniform bounds which can be put together to reconstruct the original flow. The
following system takes us in that direction, and we now change our focus to finding
properties of f̃n which solve the following system, defined for all n ∈ N:

f̃n = eτLf̃n,0 −
∫ τ

0

e
−1
2 (τ−σ)∇ · e(τ−σ)L(ω(n + σ)f̃n(σ) + aφm(σ)Γ(n + σ)) dσ,(6.4)

φn(σ) = BHα,σ+n(f̃n)(σ).

Note that this system has a global solution; existence can be proved analogously to
Theorem 4.4. It should also be noted here that the above system, (6.2), (6.3), and
therefore the flow Θn depend on w̃0, which we consider fixed when we write down the
system (a depends on w̃0); this relation is suppressed in the notation. Most solutions
of this equation will have no meaning, but by choosing f̃0,0 = P2(w̃0) and then

f̃n,0 = f̃n−1(1) we are able to recover information about the semiflow corresponding
to w̃0.

Definition 6.1. Throughout the remainder of this section let Θn(f̃n,0, τ) denote

the global solution to the system (6.4) with initial data f̃n,0.
The parameter n allows us to keep track of our progress in time. For example, if

0 ≤ σ < 1 is such that τ = n + σ and Θ(f̃0, τ) is the semiflow of (6.3), then

(6.5) Θ(f̃0, τ) = Θn(Θn−1(Θn−2(· · ·Θ0(f̃0, 1), 1), 1), σ).

We will now prove uniform properties of these semiflows.
Lemma 6.2. The semiflows Θn(f̃0, τ), n ∈ N, are all C1 in L2(2) × R

+. There
exist a constant r0 > 0 (possibly small) and D > 0 such that for all ‖w̃0‖2 < r0 and
n ∈ N the flow Θn satisfies the following Lipschitz property:

sup
n∈N

sup
0≤τ<1

Lip(Θn(·, τ)) = D < ∞.(6.6)

This bound holds as r0 → 0.



THE VISCOUS CAMASSA–HOLM EQUATIONS IN THE PLANE 533

Proof. Since the bound obtained in Lemma 4.1 is independent of τ we can prove
this lemma for all n ∈ N at once. That the semiflow is C1 is a classical result. Consider
the semiflows f̃(τ) = Θn(f̃0, τ) and g̃(τ) = Θn(g̃0, τ) found from initial data f̃0 and
g̃0, respectively, and the corresponding filtered flows φ and γ. Subtracting we have

‖Θn(f̃ , τ) − Θn(g̃, τ)‖2 ≤ ‖eτL(f̃0 − g̃0)‖2 + I(τ) + J(τ),

where

I(τ) =

∥∥∥∥
∫ τ

0

e−
1
2 (τ−σ)∇ · e(τ−σ)L(ω(n + σ)(f̃(σ) − g̃(σ))) dσ

∥∥∥∥
2

,

J(τ) =

∥∥∥∥
∫ τ

0

e−
1
2 (τ−σ)∇ · e(τ−σ)L((φ(σ) − γ(s))aΓ(n + σ)) ds

∥∥∥∥
2

.

Similar to the steps in Lemma 4.3 we obtain

I(τ) + J(τ) ≤ C(τ)

(
sup

0≤σ<τ
‖f̃(σ) − g̃(σ)‖2

)

·
(

sup
0≤σ<τ

(‖w̃(n + σ)‖m + a‖Γ(n + σ)‖2)

)

with C(τ) a continuous function and hence bounded on τ ∈ [0, 1] by a constant C.
The bound (4.5) combined with the definition of a (a ≤ ‖w̃0‖2) allows us to pick
r0 > 0 small enough so that, for all σ > 0,

‖w̃(n + σ)‖2 + a‖Γ(n + σ)‖2 <
1

2C
.

After taking the supremum over τ ∈ [0, 1] we have

sup
0≤τ<1

‖Θn(f̃ , τ) − Θn(g̃, τ)‖2 ≤ sup
0≤τ<1

‖eτL(f̃0 − g̃0)‖2

≤ D‖f̃0 − g̃0‖2.

This is the bound (6.6).
Lemma 6.3. There exists a constant r0 > 0 (possibly small) such that for all

‖w̃0‖2 < r0 and n ∈ N the flow Θn can be decomposed as Θn(f̃0, 1) = eLf̃0 + Rn(f̃0),
where Rn(·) is Lipschitz as a function from L2(2) to itself. The uniform Lipschitz
constant Lip(R) := supn∈N Lip(Rn(·)) satisfies the following conditions:

(i) For any μ ∈ (0, 1
2 ), r0 may be chosen so that, for all i ∈ N,

C1

1 − e−μ
+

C2

e−μ − e−1/2
<

1

Lip(R)
.(6.7)

(ii) This bound holds as r0 → 0.
Proof. As in the previous proof, consider the semiflows f̃(τ) = Θn(f̃0, τ) and

g̃(τ) = Θn(g̃0, τ). Define

Rn(f̃0) = Θn(f̃0, 1) − eLf̃0

= −
∫ 1

0

e−1/2(1−σ)∇ · e(1−σ)L(ω(n + σ)f̃(σ) + aφ(σ)Γ(n + σ)) dσ.
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As in Lemmas 4.3 or 6.2, after adding and subtracting cross terms,

‖Rn(f̃0) −Rn(g̃0)‖2 ≤ C

(
sup

0≤σ<τ
‖f̃(σ) − g̃(σ)‖2

)

·
(

sup
0≤σ<τ

(‖w̃(n + σ)‖2 + a‖Γ(n + σ)‖2)

)
.

Appealing to (6.6),

‖Rn(f̃0) −Rn(g̃0)‖2 ≤ CD

(
sup

0≤σ<τ
‖f̃0 − g̃0‖2

)

·
(

sup
0≤σ<τ

(‖w̃(n + σ)‖2 + a‖Γ(n + σ)‖m)

)
.

This shows that

Lip(Ri(·)) ≤ CD

(
sup

0≤σ<∞
(‖w̃(σ)‖2 + a‖Γ(σ)‖2)

)

and, with the help of (4.5), satisfies the Lipschitz condition. The bound (6.7) is
established by taking r0 sufficiently small.

For the remainder of this section we assume that r0 is small enough so the con-
clusions of Lemma 6.2 and 6.3 hold.

Theorem 6.4. Pick μ ∈ (0, 1
2 ) and choose r0 > 0 to satisfy the conclusions of

Lemmas 6.2 and 6.3. Let P 2
i and X2

i , i = 1, 2, be as in Definition 4.5. Given w̃0

such that ‖w̃0‖2 ≤ r0 and initial data f̃0 ∈ X2, there exists a unique global solution
Θ(f̃0, τ) ∈ C0([0,∞), L2(2)) of (6.3). This solution satisfies P1Θ(f̃0, τ) = 0 and

(6.8) lim sup
τ→∞

1

t
ln ‖Θ(f̃0, τ)‖2 < −μ.

Proof. The existence of a unique global solution can be argued as in Theorem 4.4;
again let Θn(f̃n,0, τ) denote the global solution with initial data f̃n,0. We now check
the assumptions for Theorem 5.7. Lemma 6.2 shows that the collection {Θn} satisfies
assumption (H.1) from section 6. Assumption (H.3) is satisfied by Lemma 4.6. As the
left-hand side of (6.7) is continuous and the inequality is strict we can find a small
neighborhood of μ, say (γ2, γ1) ⊂ (0, 1

2 ), such that the inequality is satisfied for all
numbers in this neighborhood. Taking α1 = 1

2 and α2 = 0 and applying Lemma 6.3
shows that the collection {Θn} satisfies assumptions (H.2), (H.4), and (H.5) with
Sn = 0.

Applying Theorem 5.7 gives the existence of an element h(f̃0) ∈ X1 such that

lim sup
n→∞

1

τ
ln ‖Θ(y, τ)‖2 < −μ,

where y = f̃0 +h(f̃0) and Θ is constructed as in (6.5); in other words it is the solution
of (6.3). To finish the proof we need only argue that h(f̃0) = 0, which can be inferred
from the “conservation of mass” property of (6.2) and the decay implied by the above
inequality. Indeed, using (6.2) we see that

∫
f̃ dξ is a conserved property:

(6.9)
1

2

d

dt

∫
f̃ dξ =

∫
∇ · (∇f̃ + ξf̃ − ωf̃ − aφΓ) dξ = 0.
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The orthogonal relation X2
1 ⊥ X2

2 allows (again writing y = f̃0 + h(f̃0))

‖P 2
1 Θ(y, τ)‖2 ≤ ‖Θ(y, τ)‖2

and, as ‖P1Θ(y, τ)‖2, is constant for all τ > 0; (6.9) implies that P1Θ(y, τ) =
h(f̃0) = 0.

We now prove the theorem, which is the goal of this section.
Theorem 6.5. Pick μ ∈ (0, 1

2 ) and choose r0 > 0 to satisfy the conclusions of
Lemmas 6.2 and 6.3. Given initial data w̃0 such that ‖w̃0‖2 ≤ r0, the solution w̃(τ)
of the scaled VCHE given by Theorem 4.4 is subject to the following decay estimate:

‖w̃(τ) − aΓ(τ)‖2 ≤ Ce−μτ ,

where a =
∫
w̃0 dξ.

Proof. In the previous theorem take f̃0 = P2w̃0; then f̃(τ) = w̃(τ) − aΓ(τ). The
decay follows from (6.8).

Finally, as a corollary to this theorem we prove the result listed as Theorem 1.2
in the introduction.

Corollary 6.6. For any μ ∈ (0, 1
2 ), there exists a r0 > 0 so that, for any initial

data ṽ0 ∈ L2(2) such that ‖ṽ0‖2 ≤ r0, the solution of (1.2) given by Theorem 3.2
satisfies

|ṽ(·, t) − a(Ω(·, t) − α2�Ω(·, t))|p ≤ C(1 + t)−1−μ+ 1
p ,

where a =
∫

R2 ṽ0 dx and

Ω(x, t) =
1

4π(1 + t)
e

−|x|2
4(1+t) .

Proof. This is the result of the previous theorem in unscaled coordinates. Let

(6.10) Ω(x, t) =
1

(1 + t)
G

(
x√

1 + t

)
=

1

4π(1 + t)
e

−|x|2
4(1+t) ;

then

1

(1 + t)
Γ

(
x√

1 + t
, ln(1 + t)

)
= Ω(x, t) − α2�Ω(x, t).

Thanks to the above theorem and the inclusion L2(2) ↪→ Lp for when 1 ≤ p ≤ 2,

|ṽ(·, t) − a(Ω(·, t)−α2�Ω(·, t))|p

≤ (1 + t)−1+ 1
p |w̃(·, ln(1 + t)) − aΓ(·, ln(1 + t))|p

≤ C(1 + t)−1+ 1
p ‖w̃(·, ln(1 + t)) − aΓ(·, ln(1 + t))‖2

≤ C(1 + t)−1−μ+ 1
p .

As �Ω decays faster than (1 + t)−1−μ+1/p we can include it on the right-hand
side; this is how Theorem 1.2 is stated.
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7. Second order asymptotic. This section is similar in spirit to the previous
section, and many of the proofs are omitted because they are nearly the same as the
proofs given in the previous section. We work in the space L2(3) where the operator
L has two isolated eigenvalues, 0 and −1

2 , and three corresponding eigenvectors, G
and Fi, i = 1, 2 (see Definition 4.7). Together these eigenvalues span the subspace X3

1

given by Definition 4.5. Any w̃0 ∈ L2(3) can be written as w̃0 = aG+ b1F1 + b2F2 + g̃,
where a =

∫
w̃0 dξ, bi =

∫
ξiw̃0 dξ, and g̃ ∈ X2.

In addition to the “conservation of mass” property d
dt

∫
w̃ dξ = 0 used in the

previous section (proof of Theorem 5.7), solutions to the scaled VCHE (4.1) also
satisfy the scaled form of conservation of the first moments, d

dt

∫
ξiw̃ dξ = − 1

2

∫
ξiw̃ dξ.

Indeed, let i = 1, 2 and j �= i; then

ξiLw̃ +
1

2
ξiw̃ = ∂j

(
ξi∂iw̃ +

1

2
ξ2
i w̃ − w̃

)
+ ∂j

(
ξi∂jw̃ +

1

2
ξiξjw̃

)
,

and it is clear that
∫

R2 ξiLw̃ dξ = − 1
2

∫
R2 ξiw̃ dξ. For the nonlinear term, note that if

∇ · ω = 0 and ω̃ = ∂1ω2 − ∂2ω1, then

ξiω · ∇ω̃ = ∂i(ξiωiω̃ − ωiωj) + ∂j

(
ξiωjω̃ +

1

2
(ω2

i − ω2
j )

)
.

Similarly,

ξiω · ∇∂2
i ω̃ = ∂i(ξiω · ∇∂jω̃) − ω · ∇∂iω̃ − ξi∂iω · ∇∂iω̃

= ∂i(ξiω · ∇∂jω̃) −∇(ω∂iω̃) − ∂i(ξi∂iωi∂iω̃ − ∂iωi∂iωj)

− ∂j

(
ξi∂iωj∂iω̃ +

1

2
((∂iωi)

2 − (∂iωj)
2)

)

and

ξiω · ∇∂2
j ω̃ = ∂j(ξiω · ∇∂jω̃) − ∂i(ξi∂jωi∂jω̃ − ∂jωi∂jωj)

− ∂j

(
ξi∂jωj∂jω̃ +

1

2
((∂jωi)

2 − (∂jωj)
2)

)

so that
∫

R2 ξiω · ∇w̃ dξ = 0.
Fix w̃0 ∈ L2(m) and consider the system (4.10) with initial data Pm

2 w̃0. Let

a =
∫
w̃0 dξ, bi =

∫
ξiw̃0 dξ; then ψ̃(τ) = aΓ + e

−1
2 (b1Λ1 + b2Λ2) is the solution to the

linear equation (4.9). Write f̃ = w̃−aΓ− e
−1
2 (b1Λ1 + b2Λ2), φ = BHα,τ (f̃), and after

simplification,

(7.1) f̃τ = Lf̃ − ω · ∇f̃ − φ · ∇ψ − e−τ (b1v
F1 · ∇Λ1 − b2v

F2 · ∇Λ2).

In mild form f̃ satisfies the integral equation

f̃ = eτLf̃0 −
∫ τ

0

e−1/2(τ−σ)∇

· e(τ−σ)L(ωf̃ + φ · ∇ψ + e−τ (b1v
F1 · ∇Λ1 − b2v

F2 · ∇Λ2))(σ) dσ.

The key difference between this system and (6.3) of the previous section is the “forcing
term” e−τ (b1v

F1 · ∇Λ1 − b2v
F2 · ∇Λ2).
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As in the previous section fix w̃0 and for any n ∈ N consider the system

f̃n = eτLf̃0,n −
∫ τ

0

e−1/2(τ−σ)∇·e(τ−σ)L(ω(n + σ)f̃(σ) + aφ(σ)ψ(n + σ)) dσ

(7.2)

−
∫ τ

0

e−1/2(τ−σ)∇ · e(τ−σ)L(e−(n+σ)(b1v
F1 · ∇Λ1 − b2v

F2 · ∇Λ2)(n + σ)) dσ,

φ(σ) = BHα,σ+τ (f̃)(σ), f̃(0) = f̃0 ∈ X2.

We redefine Θn for this section.
Definition 7.1. Throughout the remainder of this section let Θn(f̃n,0, τ) denote

the global solution to the system (7.2) with initial data f̃n,0.

Lemma 7.2. For each n ∈ N, the semiflows Θn(f̃0, τ) are C1 in L2(2) × R
+.

There exist a constant r0 > 0 (possibly small) and D > 0 such that for all ‖w̃0‖3 < r0
and n ∈ N the flow Θn satisfies the following Lipschitz property:

sup
n∈N

sup
0≤τ<1

Lip(Θn(·)(τ)) = D < ∞.(7.3)

This bound holds as r0 → 0.
Proof. The proof is nearly identical to the proof of Lemma 6.2.
Lemma 7.3. There exists a constant r0 > 0 (possibly small) such that for all

‖w̃0‖3 < r0 and n ∈ N the flow Θn can be decomposed as Θn(f̃0, 1) = eLf̃0 +Rn(f̃0)+
Sn, where Rn(·) is Lipschitz as a function from L2(3) to itself and Sn ∈ L2(3) satisfies

(7.4) lim sup
n→∞

1

n
ln ‖Sn‖3 < −1.

The Lipschitz constant Lip(R) := supn∈N Lip(Rn(·)) can be made arbitrarily small
and satisfies the following conditions:

(i) For any μ ∈ ( 1
2 , 1), r0 may be chosen so that, for all n ∈ N,

C1

e−1/2 − e−μ
+

C2

e−μ − e−1
<

1

Lip(R)
.(7.5)

(ii) This bound holds as r0 → 0.
Proof. Define

Sn = −
∫ τ

0

e−1/2(τ−σ)∇ · e(τ−σ)L(e−(n+σ)(b21v
F1 · ∇Λ1 − b22v

F2 · ∇Λ2)(n + σ)) dσ

and Rn(f̃0) = Θn(f̃0)(1)−eLf̃0−Sn. Proving (7.4) is similar to the proof of Lemma 4.3:

‖Sn‖3 ≤ e−n(b1‖vF1‖3‖Λ1‖3 + b2‖vF2‖3‖Λ2‖3).(7.6)

The remaining statements in this proof follow as in the proof of Lemma 6.3.
Theorem 7.4. Pick μ ∈ ( 1

2 , 1) and choose r0 > 0 to satisfy the conclusions of
Lemmas 6.2 and 6.3. Let P 3

i and X3
i , i = 1, 2, be as in Definition 4.5. Given w̃0

such that ‖w̃0‖3 ≤ r0 and initial data f̃0 ∈ X2, there exists a unique global solution
Θ(f̃0, τ) ∈ C0([0,∞), L2(2)) of (6.3). This solution satisfies P 3

1 Θ(f̃0, τ) = 0 and

(7.7) lim sup
τ→∞

1

t
ln ‖Θ(f̃0, τ)‖2 < −μ.
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Proof. The proof progresses similarly to the proof of Theorem 7.4. The main
difference is in the argument for the statement P 3

1 Θ(f̃0, τ) = 0. This is accomplished
by decomposing P1Θ(f̃0, τ) onto the first three eigenvectors of L using conservation
of mass (discussed at the beginning of section 6) and conservation of first moments
(discussed at the start of section 7):

P 3
1 Θ(f̃0, τ) = aG + e−

1
2 (b1F1 + b2F2).

That a and bi must be zero follows by comparing this expression to the decay implied
by (7.7).

Theorem 7.5. Pick μ ∈ ( 1
2 , 1) and choose r0 > 0 to satisfy the conclusions of

Lemmas 7.2 and 7.3. Given initial data w̃0 such that ‖w̃0‖3 ≤ r0, the solution w̃(τ)
of the scaled VCHE given by Theorem 4.4 is subject to the following decay estimate:

‖w̃(τ) − aΓ(τ) − e
−τ
2 (b1Λ1 + b2Λ2)‖2 ≤ Ce−μτ ,

where a =
∫
w̃0 dξ and bi =

∫
ξiw̃0 dξ.

Proof. In the previous theorem take f̃0 = P2w̃0; then f̃(τ) = w̃(τ) − aΓ(τ) −
e

−τ
2 (b1Λ1 + b2Λ2). The decay then follows from (6.8).

The following corollary proves Theorem 1.3, which was stated after removing the
fast decaying term.

Corollary 7.6. For any μ ∈ ( 1
2 , 1), there exists a r0 > 0 so that for any initial

data ṽ0 ∈ L2(3) with ‖ṽ0‖3 ≤ r0 the solution of (1.2) given by Theorem 3.2 satisfies

|ṽ(·, t)−a(Ω(·, t)−α2�Ω(·, t))−
∑
i=1,2

bi(∂iΩ(x, t)−α2�∂iΩ(x, t))|p ≤ C(1+t)−1−μ+ 1
p ,

where a =
∫
w̃0 dx and bi =

∫
xiṽ0 dx and Ω is defined by (6.10).

Proof. This is the result of the previous theorem in unscaled coordinates. Let
Ω(x, t) = 1

(1+t)G( x√
1+t

); then

1

(1 + t)
Γ

(
x√

1 + t
, ln(1 + t)

)
= Ω(x, t) − α2�Ω(x, t),

e−
τ
2

1

(1 + t)
Λi

(
x√

1 + t
, ln(1 + t)

)
= ∂iΩ(x, t) − α2�∂iΩ(x, t).

The rest follows as in Corollary 6.6.
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products with applications to continuum theories, Adv. Math., 137 (1998), pp. 1–81.
[12] D. D. Holm and E. S. Titi, Computational models of turbulence: The LANS-α model and the

role of global analysis, SIAM News, 38 (2005).
[13] A. A. Ilyin and E. S. Titi, Attractors for the two-dimensional Navier-Stokes-α model: An

α-dependence study, J. Dynam. Differential Equations, 15 (2003), pp. 751–778.
[14] T. Kato, The Navier-Stokes equation for an incompressible fluid in R2 with a measure as the

initial vorticity, Differential Integral Equations, 7 (1994), pp. 949–966.
[15] J. E. Marsden and S. Shkoller, Global well-posedness for the Lagrangian averaged Navier-

Stokes (LANS-α) equations on bounded domains, R. Soc. Lond. Philos. Trans. Ser. A Math.
Phys. Eng. Sci., 359 (2001), pp. 1449–1468.

[16] H. Osada, Diffusion processes with generators of generalized divergence form, J. Math. Kyoto
Univ., 27 (1987), pp. 597–619.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 40, No. 2, pp. 540–565

RIGOROUS DERIVATION OF INCOMPRESSIBLE e-MHD
EQUATIONS FROM COMPRESSIBLE

EULER–MAXWELL EQUATIONS∗

YUE-JUN PENG† AND SHU WANG‡

Abstract. We derive incompressible e-MHD equations from compressible Euler–Maxwell equa-
tions via the quasi-neutral regime. Under the assumption that the initial data are well prepared for
the electric density, electric velocity, and magnetic field (but not necessarily for the electric field), the
convergence of the solutions of the compressible Euler–Maxwell equations in a torus to the solutions
of the incompressible e-MHD equations is justified rigorously by studies on a weighted energy. One of
the main ingredients for establishing uniform a priori estimates is to use the curl-div decomposition
of the gradient and the wave-type equations of the Maxwell equations.

Key words. Euler–Maxwell equations, incompressible electron magnetohydrodynamics equa-
tions, quasi-neutral limit, weighted energy
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1. Introduction. Let n and u be the density and velocity vector of the electric
particles in a plasma and E and B be, respectively, the electric field and magnetic
field. They are vector functions of a three-dimensional position vector x ∈ T and of
the time t > 0, where T = (R/2πZ)3 is the torus. The fields E and B are coupled to
the electron density through the Maxwell equations and act on the electrons via the
Lorentz force. We assume that in the plasma the ions are nonmoving and become a
uniform background with a fixed unit density. This implies that the density of ions is
equal to 1 and the velocity of ions vanishes. Under these assumptions, the dynamics
of the compressible electrons obey the (scaled) one-fluid Euler–Maxwell system:

∂tn + div(nu) = 0,(1.1)

∂t(nu) + div(nu⊗ u) + ∇p(n) = −n(E + γu×B),(1.2)

γε∂tE −∇×B = γnu, γ∂tB + ∇× E = 0,(1.3)

εdivE = 1 − n, divB = 0(1.4)

for x ∈ T and t > 0 subject to initial conditions

(1.5) (n, u,E,B)(t = 0) = (nε
0, u

ε
0, E

ε
0, B

ε
0)

for x ∈ T. In the above equations, p = p(n) is the pressure, assumed to be smooth and
strictly increasing for n > 0, j = nu is the current density, and E +γu×B represents
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the Lorentz force. Equations (1.1)–(1.2) are the mass and momentum balance laws
for the electrons, respectively, while (1.3)–(1.4) are the Maxwell equations. It is easy
to see that equations (1.4) are redundant with equations (1.3) as soon as they are
satisfied by the initial data. However, we keep them in the system because this
redundancy may be lost in the asymptotic limit.

Equations (1.1)–(1.4) can be viewed as a fluid version of the Vlasov–Maxwell
system for a plasma describing the evolution of the electron phase density [3]. Their
form is similar to the two-fluid Euler–Maxwell system (see [1, 5, 19, 21]). However,
the natures of the one-fluid and the two-fluid Euler–Maxwell systems are different.
In the two-fluid model, the vanishing velocity of ions implies the vanishing electric
field and the quasi neutrality of the plasma; i.e., the density of ions is equal to the
density of electrons. Thus, the one-fluid equations (1.1)–(1.4) cannot be derived from
the two-fluid equations.

The dimensionless parameters ε and γ can be chosen independently of each other,
according to the desired scaling. Physically, ε and γ can be chosen to be proportional
to the Debye length and 1

c , where c = (ε0ν0)
− 1

2 is the speed of light, with ε0 and
ν0 being the vacuum permittivity and permeability (see [5, pp. 349–351]). The limit
ε → 0 leads to n = 1, which is called the quasi neutrality of the plasma (here the
constant 1 denotes the unit density of nonmoving ions). Thus, the limit ε → 0 is called
the quasi-neutral limit. Also, the limit γ → 0 is physically called the nonrelativistic
limit. For the other physical meaning of the dimensionless parameters ε and γ, see
[3, 10].

In the present paper, we concentrate on the so-called quasi-neutral regime. Hence
here we consider only the following quasi-neutral scaling: γ = O(1) and ε � 1.

Now, setting formally ε = 0 in the system (1.1)–(1.4), one can arrive at the
so-called electron magnetohydrodynamics (e-MHD) equations as follows [3]:

∂tu + u · ∇u + E = −γu×B,(1.6)

−∇×B = γu, divB = 0,(1.7)

γ∂tB + ∇× E = 0, n = 1.(1.8)

The e-MHD system (1.6)–(1.8) is incompressible, i.e., divu = 0, which is precisely the
limit equation obtained from (1.1) by using the fact that n = 1 in (1.8). However,
this incompressible condition need not be written separately since it can be obtained
by the first equation in (1.7).

The main purpose of this paper is to prove rigorously the above formal limit
for smooth solutions of the Euler–Maxwell system (1.1)–(1.4) on time intervals, on
which a smooth solution of the incompressible e-MHD equations exists. The precise
statement is given in section 2.

From the view of the singular perturbation theory, the quasi-neutral limit ε → 0 in
the Euler–Maxwell system is a problem of singular perturbation for hyperbolic systems
(see [8, 11, 12, 22]). However, it is very different from the theory of singular low Mach
number limit for symmetrizable hyperbolic systems by Klainerman and Majda in [11,
12]. In the latter case, the essential singularity can be cancelled using a symmetrizer of
hyperbolic systems. For the quasi-neutral limit in the Euler–Maxwell system, besides
the singularities in the Maxwell equations, there exists an extra singularity caused by
the coupling electromagnetic field (source term) in the Euler equations, which cannot
be overcome by using the symmetric technique of hyperbolic systems. Hence the
singular limit theory for symmetrizable hyperbolic systems developed by Klainerman
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and Majda [11, 12] or extended further by Schochet [22] cannot be applied here to
obtain the uniform a priori estimates of the solution with respect to ε.

In this paper, we control these singularities and then derive rigorously the e-MHD
system from the Euler–Maxwell system by an elaborate energy method based on stud-
ies on an ε-weighted energy. Let (nε, uε, Eε, Bε) be the solution to the Euler–Maxwell
problem and (u0, E0, B0) be the solution to the incompressible e-MHD equations. Our
basic idea to establish the uniform a priori estimates is the need to obtain an estimate

not just for nε − 1 − εdivE0 but also for nε−1−εdivE0
√
ε

and then for
√
ε(Eε − E0). In

particular, the order of derivatives that we need to estimate for the latter is one less
than for the other main quantities (nε−1−εdivE0, uε−u0, Bε−B0). These estimates
cannot be obtained by straightforward Sobolev energy estimates for which the same
order of derivatives for both is needed. They are achieved due to the dissipation struc-

ture of the equation for nε−1−εdivE0
√
ε

(see (4.21)). Finally, the desired estimates are

obtained through a priori estimates of vorticity and divergence (see Lemmas 4.2–4.3).

There have been a lot of studies on the Euler–Poisson equations and their asymp-
totic analysis contrarily to the study on the Euler–Maxwell equations. See [2, 4, 7,
8, 20, 23, 24, 25] and the references therein. The first mathematical study of the
Euler–Maxwell equations with an extra relaxation term is due to Chen, Jerome, and
Wang [6], where a global existence result to weak solutions in the one-dimensional
case is established by the fractional step Godunov scheme together with a compen-
sated compactness argument. Paper [6] also exhibits some applications of the model
(1.1)–(1.4) in the semiconductor theory. Since then little progress has been made on
the Euler–Maxwell equations. Recently the convergence of the Euler–Maxwell system
to the compressible Euler–Poisson system has been proved in [17] via the nonrela-
tivistic limit, in which general initial data are allowed by performing an initial layer
analysis. This limit corresponds to γ → 0 and ε > 0 being fixed. The convergence
of the compressible Euler–Maxwell equations to the incompressible Euler equations is
justified as γ = ε → 0 (see [18]). Finally, we mention that a related asymptotic limit
problem on the Vlasov–Maxwell system is discussed in [2, 3].

We stress that, in this paper, the convergence of the electron density, the current
velocity vector, and the magnetic field vector of the Euler–Maxwell systems is strong,
whereas the convergence of the electric field vector is only weak. That is why we
do not need the assumption that the initial electric field of Euler–Maxwell systems
tends to the initial value of the electric field of the limit system. The latter is not
arbitrarily given but is determined by the initial data of the limit system (2.6)–(2.9)
(see Proposition 2.1). This is different from the situation in [18], where the initial
data are prepared. Also, by checking the proof in section 4, we see that it is possible
to extend the results of this paper (γ > 0 being fixed and ε → 0) to the case γ → 0
and ε → 0 without any relation between γ and ε. This limit is still governed by the
incompressible Euler equations. To see this more clearly, the parameter γ is kept in
the estimates.

Notation and preliminary results.

(1) Throughout this paper, ∇ = ∇x is the gradient, ∇· is the divergence operator,
and α = (α1, α2, α3) and β, etc., are multi-indices. We denote by Hs(T) the standard
Sobolev space in torus T, which is defined by Fourier transform, namely, f ∈ Hs(T)
if and only if

‖f‖2
s = (2π)3

∑
k∈Z3

(1 + |k|2)s|(Ff)(k)|2 < +∞,
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where (Ff)(k) =
∫

T
f(x)e−ikxdx is the Fourier transform of f ∈ Hs(T).

(2) Recall the following basic Moser-type calculus inequalities [11, 12]: for f, g, v ∈
Hs and any nonnegative multi index α, |α| ≤ s,

(i) ‖Dα
x (fg)‖L2 ≤ Cs(‖f‖L∞‖Ds

xg‖L2 + ‖g‖L∞‖Ds
xf‖L2), s ≥ 0,

(ii) ‖Dα
x (fg) − fDα

x g‖L2 ≤ Cs(‖Dxf‖L∞‖Ds−1
x g‖L2 + ‖g‖L∞‖Ds

xf‖L2), s ≥ 1.

(3) The following vector analysis formulas will be repeatedly used (see [5]):

div(f × g) = ∇× f · g −∇× g · f,(1.9)

f · ∇g = (∇× g) × f + ∇(f · g) −∇f · g,(1.10)

f · ∇f = (∇× f) × f + ∇
(
|f |2
2

)
,(1.11)

∇× (f × g) = fdivg − gdivf + (g · ∇)f − (f · ∇)g.(1.12)

2. Well-posedness of the e-MHD and main results. For smooth solutions
of the Euler–Maxwell system (1.1)–(1.5) with n > 0, (1.2) is equivalent to

∂tu + (u · ∇)u + ∇h(n) = −(E + γu×B),

where the enthalpy h(n) is defined by

h(n) =

∫ n

1

p′(s)

s
ds.

Thus, regarding ε as a singular perturbation parameter, we can rewrite the problem
(1.1)–(1.5) as

∂tn
ε + div(nεuε) = 0,(2.1)

∂tu
ε + (uε · ∇)uε + ∇h(nε) = −(Eε + γuε ×Bε),(2.2)

γε∂tE
ε −∇×Bε = γnεuε, γ∂tB

ε + ∇× Eε = 0,(2.3)

εdivEε = 1 − nε, divBε = 0,(2.4)

(nε, uε, Eε, Bε)(t = 0) = (nε
0, u

ε
0, E

ε
0, B

ε
0),(2.5)

where γ is a positive constant of order one. This means that the magnetic field does
not vanish in the limiting process.

We also rewrite the limit system (1.6)–(1.8) as

∂tu
0 + u0 · ∇u0 + E0 = −γu0 ×B0,(2.6)

−∇×B0 = γu0, divB0 = 0,(2.7)

γ∂tB
0 + ∇× E0 = 0, n0 = 1.(2.8)

Following the idea of [3], introduce the general vorticity

ω0 = ∇× (u0 − γA0),
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where A0 is the magnetic potential such that

∇×A0 = B0 and divA0 = 0.

Noting ∇ · u0 = 0 and using the identity (1.11), we can write the e-MHD equations
(2.6)–(2.8) in a different way:

∂tω
0 + u0 · ∇ω0 − ω0 · ∇u0 = 0, −Δu0 + γ2u0 = ∇× ω0.

Therefore the existence results are the same as for the incompressible Euler equations
[14]. In particular, we have local smooth solutions of the e-MHD equations for the
smooth initial data given by

u0(t = 0) = u0
0, B0(t = 0) = B0

0 .(2.9)

Proposition 2.1 (see [3]). Assume that u0
0, B

0
0 ∈ C∞(T) satisfy

(2.10) −∇×B0
0 = γu0

0, divB0
0 = 0.

Then there exist 0 < T∗ ≤ ∞ (if d = 2, T∗ = ∞), the maximal existence time, and a
unique smooth solution (u0, B0, E0) ∈ C∞(T × [0, T∗)) of the incompressible e-MHD
equations (2.6)–(2.9) defined on [0, T∗).

For the convergence of the compressible Euler–Maxwell system (2.1)–(2.5), our
main result is stated as follows.

Theorem 2.1. Let s0 > 3
2 + 2 and γ > 0 be fixed. Let u0

0, B
0
0 ∈ C∞(T) satisfy

(2.10) and nε
0, E

ε
0, B

ε
0 ∈ C∞(T) satisfy

εdivEε
0 = 1 − nε

0, divBε
0 = 0.

Assume that

‖(nε
0 − 1, uε

0 − u0
0, B

ε
0 −B0

0)‖Hs0 (T) + ‖
√
εEε

0‖Hs0 (T) ≤ C
√
ε(2.11)

for some positive constant C independent of ε. Let T∗, 0 < T∗ ≤ ∞ (d = 2, T∗ = ∞),
be the maximal existence time of the smooth solution (u0, B0, E0) ∈ C∞(T × [0, T∗))
of the incompressible e-MHD equations (2.6)–(2.9). Then, for any T0 < T∗, there
exist constants ε0(T0) > 0 and M̃(T0) > 0, depending only upon T0 and the initial
data, such that the Euler–Maxwell system (2.1)–(2.5) has a classical smooth solution
(nε, uε, Eε, Bε), defined on [0, T0], satisfying

‖(nε − 1, uε − u0, Bε −B0)(·, t)‖Hs0 (T) + ‖
√
εEε(·, t)‖Hs0−1(T) ≤ M̃(T0)

√
ε(2.12)

for all 0 < ε ≤ ε0 and 0 ≤ t ≤ T0. As a result, the sequence (nε, uε, Bε)ε>0 converges
strongly to (1, u0, B0) in L∞(0, T0;H

s0(T)). Furthermore, the sequence (Eε)ε>0 con-
verges to E0 in W−1,∞(0, T0;H

s0−1(T)).
Remark 2.1. Condition (2.11) means that the initial data are well prepared for

(nε, uε, Bε) but not for Eε, which are only bounded. This is sufficient to conclude the
convergence of Eε to E0 in some weak sense. Since all the terms involving Eε in the
Euler–Maxwell system (2.1)–(2.5) are linear, we can pass to the limit in the system
(in the sense of distributions, for instance). The fact that the electric field Eε(·, t)
is bounded uniformly in ε for all time t ∈ [0, T0] is not surprising because, generally
speaking, this property should be maintained over time when the initial electric field
is bounded uniformly in ε and the density nε has a better convergence rate. As in
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[8, 13, 22], some new techniques are required to study the strong convergence of the
electric field when its initial value is also prepared. This is related to the initial layer
analysis and will be discussed in the future.

Remark 2.2. The convergence rate O(
√
ε) in Theorem 2.1 is probably not optimal.

It should be possible to improve it by constructing better approximate solutions under
the same assumption. Moreover, if the initial error for (nε, uε, Bε) is better than
O(

√
ε), then so should the convergence rate. On the other hand, the convergence rate

should be better in a weaker norm than ‖ · ‖s0 . For example, the estimate (2.12) on
Eε and the first equation in (2.4) already give

‖nε(·, t) − 1‖Hs0−2(T) = O(ε).

Remark 2.3. The results of this paper hold in the whole space R
3. Indeed, the key

point of the proof of Theorem 2.1 is to establish the uniform a priori estimates (2.12)
based on the study of a weighted energy combined with singular perturbation methods.
This is dealt with in the same way as that of the papers [11, 12] by Klainerman and
Majda. Here neither the compactness of T nor a Poincaré-type inequality is used.

3. Derivation of error equations and local existence. Let (nε, uε, Eε, Bε)
be the unknown solution to the problem (2.1)–(2.5) and (u0, E0, B0) be the solution
to the incompressible e-MHD equations defined on [0, T∗) given by Proposition 2.1.
Denote this by

(3.1) (N ε, U ε, F ε, Gε) = (nε − 1 + εdivE0, uε − u0, Eε − E0, Bε −B0),

which satisfies the following problem:

(3.2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tN
ε + div((N ε + 1 − εdivE0)U ε + N εu0) = ε(∂tdivE0 + div(u0divE0)),

∂tU
ε+[(U ε + u0) · ∇]U ε + (U ε · ∇)u0+F ε + ∇(h(N ε+ 1 − εdivE0)

−h(1 − εdivE0))

= −γ
(
(U ε + u0) ×Gε + U ε ×B0

)
+ εh′(1 − εdivE0)∇(divE0),

εγ∂tF
ε −∇×Gε = γ

(
(N ε + 1 − εdivE0)U ε + N εu0

)
− εγ

(
∂tE

0 + u0divE0
)
,

γ∂tG
ε + ∇× F ε = 0,

εdivF ε = −N ε, divGε = 0,

(N ε, U ε, F ε, Gε)|t=0

=
(
nε

0 − 1 + εdivE0(t = 0), uε
0 − u0

0, E
ε
0 − E0(t = 0), Bε

0 −B0
0

)
.

Note that we use 1−εdivE0 as the approximate solution of the density nε instead
of the formal approximate solution 1. This implies that the equation εdivF ε = −N ε

is homogeneous. This is a key point in the following convergence analysis. Otherwise,
an extra term divE0 appears in the divergence equation (4.21), which is just bounded
but does not converge to 0 as ε → 0. If so, by the techniques used in this paper, the
desired convergence rate O(

√
ε) cannot be obtained.
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Set

W ε
I =

(
N ε

U ε

)
, W ε

II =

(
F ε

Gε

)
, W ε =

(
W ε

I

W ε
II

)
=

⎛
⎜⎜⎜⎝

N ε

U ε

F ε

Gε

⎞
⎟⎟⎟⎠ ,

W ε
0 =

⎛
⎜⎜⎜⎝

N ε
0

U ε
0

F ε
0

Gε
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

nε
0 − 1 + εdivE0(t = 0)

uε
0 − u0

0

Eε
0 − E0(t = 0)

Bε
0 −B0

0

⎞
⎟⎟⎟⎠ , Dε

0 =

⎛
⎜⎝

I4×4 0

0

(
εγI3×3 0

0 γI3×3

)⎞
⎟⎠ ,

Ai(W
ε) =

⎛
⎜⎜⎜⎜⎝

(
(U ε + u0)i (N ε + 1 − εdivE0)eTi

h′(N ε + 1 − εdivE0)ei (U ε + u0)iI3×3

)
0

0

(
0 Bi

BT
i 0

)
⎞
⎟⎟⎟⎟⎠ ,

H1(W
ε
I ) =

⎛
⎜⎜⎜⎝

−εU ε · ∇(divE0)

(U ε · ∇)u0 − ε(h′(N ε + 1 − εdivE0) − h′(1 − εdivE0))∇(divE0)

0

0

⎞
⎟⎟⎟⎠ ,

H2(F
ε) =

⎛
⎜⎜⎜⎝

0

F ε

0

0

⎞
⎟⎟⎟⎠ , H3(W

ε
I , G

ε) =

⎛
⎜⎜⎜⎝

0

(U ε + u0) ×Gε + U ε ×B0

−
(
(N ε + 1 − εdivE0)U ε + N εu0

)
0

⎞
⎟⎟⎟⎠

and

Rε =

⎛
⎜⎜⎜⎝

Rε
n

Rε
u

Rε
E

Rε
B

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∂tdivE0 + div(u0divE0)

h′(1 − εdivE0)∇(divE0)

−γ(∂tE
0 + u0divE0)

0

⎞
⎟⎟⎟⎠ ,

where (e1, e2, e3) is the canonical basis of R
3, Id×d (d = 3, 4) is a d × d unit matrix,

yi denotes the ith component of y ∈ R
3, and

B1 =

⎛
⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎠ , B2 =

⎛
⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎠ , B3 =

⎛
⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎠ .

From (3.2)1,3, the redundant equations εdivF ε = −N ε and divGε = 0 in system (3.2)
hold as soon as they are satisfied by the initial data. Thus the problem (3.2) for the
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unknown W ε can be rewritten as

(3.3)⎧⎪⎪⎨
⎪⎪⎩

Dε
0∂tW

ε +

3∑
i=1

Ai(W
ε)∂xi

W ε + H1(W
ε
I ) = H2(F

ε) + εRε − γH3(W
ε
I , G

ε),

W ε|t=0 = W ε
0 ,

with

εdivF ε(x, 0) = −N ε(x, 0), divGε(x, 0) = 0,

which can be guaranteed by the assumptions on the initial data.
It is not difficult to see that the equations for W ε in (3.3) are symmetrizable

hyperbolic; i.e., if we introduce

A0(W
ε) =

⎛
⎜⎝
(

h′(N ε + 1 − εdivE0) 0

0 (N ε + 1 − εdivE0)I3×3

)
0

0 I6×6

⎞
⎟⎠ ,

which is positively definite when N ε+1−εdivE0 ≥ M0 > 0 for ε � 1 and ‖N ε‖L∞ ≤ 1
2 ,

then A0D
ε
0 and Ãi(W

ε) = A0(W
ε)Ai(W

ε) are symmetric for all 1 ≤ i ≤ 3. Note that,
for smooth solutions, the Euler–Maxwell system (2.1)–(2.5) is equivalent to that of
(3.2) or (3.3). Thus, by the standard existence theory of local smooth solutions for
symmetrizable hyperbolic equations (see [9, 15, 16]), we have the following result.

Proposition 3.1. Let M > 0 and u0
0, B

0
0 ∈ C∞ be given and W ε

0 satisfy W ε
0 ∈

Hs, s > 3
2 + 2, and ‖N ε

0‖Hs(T) ≤ δ for some given δ > 0 (to be chosen sufficiently

small so that MδCs ≤ 1
2 , where Cs is the Sobolev embedding constant). Then, for any

fixed ε (� 1), there exist 0 < Tε(δ) ≤ ∞, the maximal existence time, and a unique

smooth solution W ε ∈
⋂1

l=0 C
l([0, Tε);H

s−l(T)) of the system (3.2) or (3.3) on [0, Tε)
satisfying sup0<t<Tε

‖N ε(t)‖Hs(T) ≤ Mδ. Moreover, if Tε < ∞, then, for any fixed ε
(sufficiently small), we have

(3.4) either lim
t→Tε

‖N ε(t)‖Hs(T) = Mδ or lim
t→Tε

‖(U ε, F ε, Gε)(·, t)‖Hs(T) = +∞.

Note that the error equations (3.2) or (3.3) from the Euler–Maxwell system are not
in the form covered by the well-known Klainerman and Majda theory of singular limits
of hyperbolic systems because of the extra singularity caused by the coupling source
term H2(F

ε) in the Euler equations. Hence the singular limit theory for symmetrizable
hyperbolic systems developed by Klainerman and Majda [11, 12] or extended further
by Schochet [22] cannot be applied here to obtain the uniform a priori estimates of
the solution W ε with respect to ε.

4. Proof of the main results. In this section, we justify rigorously the conver-
gence of the Euler–Maxwell system to the incompressible e-MHD equations; namely,
we prove Theorem 2.1 by using the asymptotic expansion of singular perturbations
and careful classical energy methods.

4.1. Convergence rate and uniform a priori estimates. We first establish
the convergence rate of the error function (N ε, U ε, Bε) by obtaining the a priori es-
timates uniformly in ε. As a consequence, we obtain the existence of exact solutions
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(nε, uε, Eε, Bε) to (2.1)–(2.5) in a time interval independent of ε, and the convergence
of (nε, uε, Eε, Bε) to (1, u0, E0, B0) as ε → 0, where (u0, E0, B0) is the solution of the
incompressible e-MHD equations (2.6)–(2.9).

In order to justify rigorously the convergence, it suffices to obtain the uniform
estimates of the smooth solutions to (3.2) or (3.3) with respect to the parameter ε.
This is achieved by the elaborate energy method. Since the detailed estimates are
very lengthy and involved, we would like to outline some main ingredients here. First,
based on the L2 energy conservation of the Euler–Maxwell system, an ε-weighted L2

energy estimate is derived by noting that there exists a cancellation or some kind
of balance between the Euler part and Maxwell part of the Euler–Maxwell system.
Second, we introduce a general vorticity of the velocity and the magnetic field and
give the corresponding equations of the vorticity and the divergence. Then high
order Sobolev energy estimates on the vorticity and the divergence are established
by the vector analysis techniques and an elaborate energy method. Next, based on
the curl-div decomposition of the gradient, an ε-weighted high order Sobolev energy
estimate on the density and velocity of the Euler part is derived. Finally, based on
the wave-type equation of the Maxwell equations, an ε-weighted high order Sobolev
energy estimate on the electric field and magnetic field is established. Combining
these estimates, an entropy production integral inequality is derived by introducing
an ε-weighted energy, which yields the desired estimates.

In the following, (·, ·) stands for the L2 inner product of two scalar or vector
functions in T. Also, we denote

∫
T

by
∫

and

‖ · ‖ = ‖ · ‖L2(T), ‖ · ‖l = ‖ · ‖Hl(T), l ∈ N
∗.

For convenience, we introduce the ε-weighted Sobolev norms

‖W ε(t)‖l,∗ = ‖(N ε, U ε, Gε)(t)‖l,

‖|W ε(t)‖|l =

(
‖W ε(t)‖2

l,∗ +

∥∥∥∥
(
N ε

√
ε
,
√
εγF ε, εγ∂tF

ε

)
(t)

∥∥∥∥
2

l−1

) 1
2

,

‖|W ε‖|l,T = sup
0<t<T

‖|W ε(t)‖|l, l ∈ N
∗.

Note that these norms are different from those used in [18] to prove the convergence
of the compressible Euler–Maxwell equations to the incompressible Euler equations.

The key estimate of this paper is contained in the following result.
Proposition 4.1. Let l be an integer such that l > 3

2 + 2. Assume

(4.1) ‖|W ε
0‖|l ≤ D1

√
ε

for sufficiently small ε and a constant D1 > 0 independent of ε. Then, for any
T0 ∈ (0, T∗), there are constants D2 > 0 and ε0 > 0, depending upon T0, such that,
for all ε ≤ ε0, it holds that Tε ≥ T0, and the solution W ε(t) of (3.2), well defined in
[0, Tε), satisfies

(4.2) ‖|W ε‖|l,T0
≤ D2

√
ε.

The remainder of section 4 is devoted to the proof of this result.
First, according to the assumption (4.1), using the local existence results in Propo-

sition 3.1 and Sobolev’s embedding lemma, we know that there exists an ε0 > 0 such
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that, for all ε ≤ ε0, there exists a smooth solution W ε to the system (3.2) or (3.3),
defined on [0, Tε), satisfying

(4.3) sup
0<t<Tε

‖N ε(t)‖L∞(T) ≤ Cs sup
0<t<Tε

‖N ε(t)‖Hs(T) ≤ MCsD1

√
ε ≤ 1

2
.

Here we take δ = D1
√
ε in Proposition 3.1, and M will be chosen to be a sufficiently

large constant independent of ε. Hence the rest involves establishing the a priori
estimates uniformly with respect to ε so as to guarantee Tε ≥ T0 for any given T0 < T∗
and sufficiently small ε. Of course, if Tε = ∞, it suffices to obtain the a priori estimates
uniformly with respect to ε.

In the following, assuming the conditions of Proposition 4.1, we establish a priori
estimates by the elaborate energy method in several steps.

For any T1 < 1 independent of ε, denote by T = T ε = min{T1, Tε} and by C > 0
a constant which depends upon T0, D1 but does not depend upon M,T1, T , and ε.

4.2. L2-estimates. Based on the L2-conservation of solutions to the Euler–
Maxwell system, we obtain L2-estimates of the error function W ε. Our basic idea is
to control the electric field F ε using the special structure between the Euler part and
Maxwell part in the Euler–Maxwell system by introducing the extra singular term
‖Nε
√
ε
‖.
Lemma 4.1. For all 0 < t < T and sufficiently small ε, it holds that

(4.4)∫ {
|U ε|2 +

∫ Nε

0

(h(1 − εdivE0 + s) − h(1 − εdivE0))ds + ε|F ε|2 + |Gε|2
}

(t)dx

≤
∫ {

|U ε|2 +

∫ Nε

0

(h(1 − εdivE0 + s) − h(1 − εdivE0))ds + ε|F ε|2 + |Gε|2
}

(t = 0)dx

+

∫ t

0

{
‖
√
εF ε‖2 + C(‖W ε‖2

l,∗ + ‖W ε‖l,∗ + 1)

∥∥∥∥
(
N ε, U ε,∇U ε, γGε,

N ε

√
ε

)∥∥∥∥
2
}

(s)ds

+Cε2 + Cε.

Proof. Taking the L2 inner product of the second equation in the error system
(3.2) for U ε, by integration by parts, we get

d

dt
(U ε, U ε) + 2(F ε, U ε)

=
(
div(U ε + u0)U ε, U ε

)
+ 2

(
h(1 − εdivE0 + N ε) − h(1 − εdivE0),divU ε

)
− 2

(
U ε∇u0 + γ(U ε ×B0 + (U ε + u0) ×Gε) − εRε

u, U
ε
)
.(4.5)

Now we estimate each term on the right-hand side of (4.5).
For the first and third terms, using the property of the approximate solution (u0,

E0, B0), Cauchy–Schwarz’s inequality, and Sobolev’s lemma, we get(
div(U ε + u0)U ε, U ε

)
≤ C(‖W ε(t)‖l,∗ + 1)‖U ε‖2(4.6)
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and

−2
(
U ε∇u0 + γ(U ε ×B0 + (U ε + u0) ×Gε) − εRε

u, U
ε
)

≤ C(‖W ε(t)‖l,∗ + 1)‖(U ε, γGε)‖2 + Cε2.(4.7)

For the second term, noting that the first equation in (3.2) can be rewritten as

divU ε = −(∂tN
ε + div(N ε(U ε + u0))) + ε(div(divE0U ε) + Rε

n),

from (4.3) we have, for sufficiently small ε,

(h(1 − εdivE0 + N ε) − h(1 − εdivE0),divU ε)

= −
∫

(h(1 − εdivE0 + N ε) − h(1 − εdivE0))(∂tN
ε + div(N ε(U ε + u0)))dx

+ ε

∫
(h(1 − εdivE0 + N ε) − h(1 − εdivE0))(div(divE0U ε) + Rε

n)dx

= − d

dt

∫ ∫ Nε

0

(h(1 − εdivE0 + s) − h(1 − εdivE0))dsdx

+

∫ ∫ Nε

0

(h′(1 − εdivE0 + s) − h′(1 − εdivE0))∂t(1 − εdivE0)dsdx

−
∫

(h(1 − εdivE0 + N ε) − h(1 − εdivE0))div(N ε(U ε + u0))dx

+ ε

∫
(h(1 − εdivE0 + N ε) − h(1 − εdivE0))(div(divE0U ε) + Rε

n)dx

≤ − d

dt

∫ ∫ Nε

0

(h(1 − εdivE0 + s) − h(1 − εdivE0))dsdx

+C(‖W ε(t)‖l,∗ + 1)‖(N ε, U ε,∇U ε)‖2 + Cε2.(4.8)

Combining (4.5) with (4.6)–(4.8), we have

d

dt

[
(U ε, U ε) +

∫ ∫ Nε

0

(h(1 − εdivE0 + s) − h(1 − εdivE0))dsdx

]
+ 2(F ε, U ε)

≤ C(‖W ε(t)‖l,∗ + 1)‖(N ε, U ε,∇U ε, γGε)‖2 + Cε2.(4.9)

Multiplying the first equation of the Maxwell system in the error system (3.2) by 1
γF

ε

and the second one by 1
γG

ε, by integration by parts, we get

d

dt
(ε‖F ε‖2 + ‖Gε‖2) +

2

γ

∫
(∇× F ε ·Gε −∇×Gε · F ε)dx− 2(U ε, F ε)

= 2(N ε(U ε + u0), F ε) − 2(εdivE0U ε, F ε) +
2

γ
(εRε

E , F
ε).(4.10)
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On one hand, using the vector analysis formulas (1.9), the term O( 1
γ ) appearing in

Sobolev’s energy estimates vanishes, i.e.,∫
(∇× F ε ·Gε −∇×Gε · F ε)dx =

∫
div(F ε ×Gε)dx = 0.(4.11)

On the other hand, using Young’s inequality, we have

(N ε(U ε + u0), F ε) ≤ ε‖F ε‖2 +
1

4ε
‖N ε(U ε + u0)‖2

≤ ε‖F ε‖2 + C(‖U ε(t)‖2
l + 1)

∥∥∥∥N ε

√
ε

∥∥∥∥
2

,(4.12)

where a singular term ‖Nε
√
ε
‖ appears, and

−2(εdivE0U ε, F ε) +
2

γ
(εRε

E , F
ε) ≤ ε‖F ε‖2 + Cε‖U ε‖2 + Cε.(4.13)

Thus, combining (4.10) with (4.11)–(4.13), we get

d

dt
(ε‖F ε‖2 + ‖Gε‖2) − 2(U ε, F ε)

≤ ε‖F ε‖2 + Cε‖U ε‖2 + C(‖U ε(t)‖2
l + 1)

∥∥∥∥N ε

√
ε

∥∥∥∥
2

+ Cε.(4.14)

It follows from (4.9) and (4.14) that

d

dt

∫ {
|U ε|2 +

∫ Nε

0

(h(1 − εdivE0 + s) − h(1 − εdivE0))ds + ε|F ε|2 + |Gε|2
}

(t)dx

≤ ‖
√
εF ε‖2 + C(‖W ε(t)‖2

l,∗ + ‖W ε(t)‖l,∗ + 1)

∥∥∥∥
(
N ε, U ε,∇U ε, γGε,

N ε

√
ε

)∥∥∥∥
2

+Cε2 + Cε.

This completes the proof of Lemma 4.1.
Note that it follows from the estimate (4.4) that our problem is the need to obtain

an estimate not just for N ε but also for Nε
√
ε
. In particular, the order of derivatives

that we need to estimate for the latter is one less than for the other main quanti-
ties (N ε, U ε, Gε). However, straightforward Sobolev energy estimates of higher order
would require the same number for both. Hence the above method cannot be gen-
eralized directly to the high order Sobolev energy estimates. Here the idea is to
establish the uniform estimates for ‖Nε

√
ε
(t)‖l−1 through a priori estimates of vorticity

and divergence. To this end, we require the equations of vorticity and divergence.

4.3. Derivation of the vorticity and divergence equations. Taking curl
on the momentum equation and using γ∂tG

ε + ∇ × F ε = 0 of the magnetic field in
the error system (3.2), we have

∂t(∇× U ε)+∇× ([(U ε + u0) · ∇]U ε) + ∇× ((U ε · ∇)u0)−γ∂tG
ε

= −γ∇×
(
(U ε + u0) ×Gε + U ε ×B0

)
.(4.15)
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Since divGε = 0, there exists a vector function Gε such that

Gε = ∇× Gε.(4.16)

Using the vector analysis formulas (1.10) and (1.11), we get

∇× ([(U ε + u0) · ∇]U ε) = ∇×
(
(∇× U ε) × (U ε + u0)

)
−∇×

(
∇u0 · U ε

)
.(4.17)

Then, putting (4.16) and (4.17) into the equations (4.15), we obtain

∂t(∇× (U ε − γGε))+∇× ((∇× (U ε − γGε)) × (U ε + u0))= J ε
1 ,(4.18)

where

J ε
1 = ∇× (∇u0 · U ε) −∇× ((U ε · ∇)u0) − γ∇× (U ε ×B0)

satisfies

‖J ε
1 ‖l−1 ≤ C‖U ε‖l.(4.19)

Here we require u0 ∈ H l+1.
Next, introduce the general vorticity

ωε = ∇× (U ε − γGε);

then it follows from (4.18) that ωε satisfies the following vorticity equation:

∂tω
ε + (U ε + u0) · ∇ωε − ωε · ∇(U ε + u0) + ωεdiv(U ε + u0) = J ε

1 .(4.20)

Here we have again used the vector formulas (1.12).
Taking div on the momentum equations in the error system (3.2) and using the

equation εdivF ε = −N ε, we can obtain the following divergence equation:

∂tdivU ε + div([(U ε + u0) · ∇]U ε)−N ε

ε
+ Δ(h(N ε+1 − εdivE0)−h(1 − εdivE0))

= −γdiv
(
(U ε + u0) ×Gε

)
+ J ε

2 ,(4.21)

where

J ε
2 = −εdiv(Rε

u) − div((U ε · ∇)u0) − γdiv(U ε ×B0)

satisfies

‖J ε
2 ‖l−1 ≤ C‖U ε‖l + Cε.(4.22)

4.4. Estimates of the vorticity and divergence. Now we control ‖∇×U ε‖l−1

using the vorticity equations (4.20).
Lemma 4.2. For any 0 < t < T and l > 3

2 + 2, it holds that

‖∇ × U ε(t)‖2
l−1

≤ C(‖∇ × U ε(t = 0)‖2
l−1 + γ2‖Gε(t = 0)‖2

l−1) + Cγ2‖Gε(t)‖2
l−1

+C

∫ t

0

(‖W ε(s)‖l,∗ + 1)(‖∇ × U ε(s)‖2
l−1 + γ2‖Gε(s)‖2

l−1)ds.(4.23)
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Proof. Let α ∈ N
3 with |α| ≤ l − 1. Taking ∂α

x on (4.20) and multiplying the
resulting equation by ∂α

xω
ε, by integration by parts, we have the basic Friedrich energy

equation

d

dt
‖∂α

xω
ε‖2 =

(
div(U ε + u0)∂α

xω
ε, ∂α

xω
)

+ 2(H(1)
α , ∂α

xω)

+ 2
(
∂α
x

(
ωε · ∇(U ε + u0) − ωεdiv(U ε + u0) + J ε

1

)
, ∂α

xω
ε
)
,(4.24)

where the commutator H
(1)
α is defined by

H(1)
α = −[∂α

x ((U ε + u0) · ∇ωε) − (U ε + u0) · ∇∂α
xω

ε],

which can be estimated as follows:

‖H(1)
α ‖ ≤ C(‖∇(U ε + u0)‖L∞‖∂l−2

x ∇ωε‖ + ‖∇ωε‖L∞‖∂l−1
x (U ε + u0)‖)

≤ C(‖∇(U ε + u0)‖l−1‖∂l−2
x ∇ωε‖ + ‖∇ωε‖l−2‖∂s−1

x (U ε + u0)‖)

≤ C(‖W ε(t)‖l,∗ + 1)‖ωε‖l−1.(4.25)

Here we have used Sobolev’s lemma and l > 3
2 + 2.

Using the estimates (4.25) for H
(1)
α and (4.19) for J ε

1 , we have, with the aid of
Cauchy–Schwarz’s inequality and Sobolev’s lemma,

(div(U ε + u0)∂α
xω

ε, ∂α
xω) ≤ C(‖W ε(t)‖l,∗ + 1)‖ωε‖2

l−1,(4.26)

2(H(1)
α , ∂α

xω) ≤ C(‖W ε(t)‖l,∗ + 1)‖ωε‖2
l−1(4.27)

and (
∂α
x

(
ωε · ∇(U ε + u0) − ωεdiv(U ε + u0) + J ε

1

)
, ∂α

xω
ε
)

≤ C(‖W ε(t)‖l,∗ + 1)‖ωε‖2
l−1.(4.28)

Combining (4.24) with (4.26), (4.27), and (4.28), we get

d

dt
‖ωε‖2

l−1 ≤ C(‖W ε(t)‖l,∗ + 1)‖ωε‖2
l−1,

which yields, for any 0 < t < T ,

‖ωε(t)‖2
l−1 ≤ C‖ωε(t = 0)‖2

l−1 + C

∫ t

0

(‖W ε(s)‖l,∗ + 1)‖ωε(s)‖2
l−1ds.(4.29)

Using the definition of ωε, we get

‖∇ × U ε‖2
l−1 ≤ 2‖ωε‖2

l−1 + 2γ2‖Gε‖2
l−1(4.30)

and

‖ωε(t)‖2
l−1 ≤ 2‖∇ × U ε(t)‖2

l−1 + 2γ2‖Gε‖2
l−1.(4.31)

Then (4.29)–(4.31) give the estimate (4.23).
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The proof of Lemma 4.2 is complete.
Next, we estimate ‖divU ε‖l−1 using the divergence equation (4.21). The estimate

is contained in the following lemma, whose proof is long and is postponed to the
appendix.

Lemma 4.3. Let α ∈ N
3 with |α| ≤ l−1 and l > 3

2 +2. Then, for any 0 < t < T ,
we have [

‖∂α
x divU ε‖2 +

1

ε

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)

+

(
h′(N ε+1 − εdivE0)

N ε + 1 − εdivE0
∂α
x∇N ε, ∂α

x∇N ε

)]
(t)

≤C

[
‖∂α

x divU ε‖2 +
1

ε

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)

+

(
h′(N ε+1 − εdivE0)

N ε + 1 − εdivE0
∂α
x∇N ε, ∂α

x∇N ε

)]
(t = 0)

+C

∫ t

0

(‖W ε(s)‖l,∗ + 1)‖W ε(s)‖2
l,∗ds

+Cγ2

∫ t

0

(‖U ε(s)‖2
l + 1)‖Gε(s)‖2

l ds + Cε2 + Cε.(4.32)

4.5. High order energy estimates on the electromagnetic field. Finally,
we derive the high order energy estimates on the electromagnetic field. For the electric
field, we establish its estimates by using the wave formulas of the Maxwell equations
as follows.

Lemma 4.4. For any 0 < t ≤ T and l > 3
2 + 2, it holds that

(ε2γ2‖∂tF ε‖2
l−1 + εγ2‖F ε‖2

l−1 + ε‖∇ × F ε‖2
l−1)(t)

≤ (ε2γ2‖∂tF ε‖2
l−1 + εγ2‖F ε‖2

l−1 + ε‖∇ × F ε‖2
l−1)(t = 0)

+C(γ2 + 1)

∫ t

0

(‖|W ε(t)‖|4l + ‖|W ε(t)‖|2l + 1)‖|W ε(t)‖|2l (s)ds + Cγ2ε2.(4.33)

Proof. It follows from the Maxwell equation in the error equation (3.2) that F ε

satisfies the following wave-type equation:

εγ∂ttF
ε − 1

γ
ΔF ε +

1

γ
∇divF ε + γF ε = −γN εF ε + γεdivE0F ε + J ε

3 ,(4.34)

where

J3 = γ(N ε + 1 − εdivE0)
(
− [(U ε + u0) · ∇]U ε − (U ε · ∇)u0

−∇(h(N ε+1 − εdivE0)−h(1 − εdivE0)) − γ
(
(U ε + u0) ×Gε + U ε ×B0

)
+ εh′(1 − εdivE0)∇(divE0)

)
+ γ∂t(N

ε + 1 − εdivE0)U ε

+ γu0∂tN
ε + γ∂tu

0N ε + ε∂t(∂tE
0 + u0divE0)(4.35)
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satisfies

‖J3‖l−1 ≤ Cγ(‖|W ε(t)‖|2l + ‖|W ε(t)‖|l + 1)‖|W ε(t)‖|l + Cγε.(4.36)

Let α ∈ N
3 with |α| ≤ l − 1. Taking ∂α

x on (4.34), multiplying the resulting equation
by ∂t∂

α
xF

ε, by integration by parts, we get

1

2

d

dt

∫ (
εγ|∂t∂α

xF
ε|2 + γ|∂α

xF
ε|2 +

1

γ
|∂α

x (∇× F ε)|2
)
dx

= −γ

∫
∂α
x (N εF ε)∂t∂

α
xF

εdx + γε

∫
∂α
x (divE0F ε)∂t∂

α
xF

εdx

+

∫
∂α
xJ3∂t∂

α
xF

εdx.(4.37)

In the following we control the right-hand side of (4.37) by γ‖F ε‖2
l−1 and

γε‖∂tF ε‖2
l−1. First, it holds that

−γ

∫
∂α
x (N εF ε)∂t∂

α
xF

εdx(4.38)

= −γ

∫
N ε∂α

xF
ε∂t∂

α
xF

εdx− γ

∫
H(10)

α ∂t∂
α
xF

εdx

≤ γ

6

∫
|∂α

xF
ε|2dx + 6γ‖N ε‖2

L∞

∫
|∂t∂α

xF
ε|2dx + γ‖H(10)

α ‖‖∂t∂α
xF

ε‖

≤ γ

6

∫
|∂α

xF
ε|2dx + Cγ‖N ε‖2

l−1

∫
|∂t∂α

xF
ε|2dx + Cγ‖N ε‖l−1‖F ε‖l−1‖∂t∂α

xF
ε‖

≤ γ

3
‖F ε‖2

l−1 + Cγ‖N ε‖2
l−1‖∂tF ε‖2

l−1

=
γ

3
‖F ε‖2

l−1 + C

∥∥∥∥N ε

√
ε

∥∥∥∥
2

l−1

εγ‖∂tF ε‖2
l−1,

where the commutator

H(10)
α = ∂α

x (N εF ε) −N ε∂α
xF

ε

can be estimated by

‖H(10)
α ‖ ≤ C‖∇N ε‖L∞‖∂l−2

x F ε‖ + C‖F ε‖L∞‖∂l−1
x N ε‖

≤ C‖∇N ε‖l−2‖∂l−2
x F ε‖ + C‖F ε‖l−1‖∂l−1

x N ε‖

≤ C‖N ε‖l−1‖F ε‖l−1.

Then, as in the establishment of (4.38), we can get

γε

∫
∂α
x (divE0F ε)∂t∂

α
xF

εdx ≤ Cεγ(‖F ε‖2
l−1 + ‖∂tF ε‖2

l−1).(4.39)

Finally, by Cauchy–Schwarz’s inequality, we have∫
∂α
xJ3∂t∂

α
xF

εdx ≤ C

εγ
‖∂α

xJ3‖2 + Cεγ‖∂α
x ∂tF

ε‖2.(4.40)
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Combining (4.37) with (4.38), (4.39), and (4.40), we get

1

2

d

dt

∫ (
εγ|∂t∂α

xF
ε|2 + γ|∂α

xF
ε|2 +

1

γ
|∂α

x (∇× F ε)|2
)
dx

≤ γ

3
‖F ε‖2

l−1 + C

∥∥∥∥N ε

√
ε

∥∥∥∥
2

l−1

εγ‖∂tF ε‖2
l−1 + Cεγ(‖F ε‖2

l−1 + ‖∂tF ε‖2
l−1)

+
C

εγ
‖∂α

xJ3‖2 + Cεγ‖∂α
x ∂tF

ε‖2,(4.41)

from which we can easily obtain (4.33).
The proof of Lemma 4.4 is complete.
We estimate the magnetic field by using the estimates on the electric field and

the curl-div decomposition technique of the gradient for the magnetic field.
Lemma 4.5. For any 0 < t ≤ T and l > 3

2 + 2, it holds that

‖∇Gε‖l−1 ≤ ‖εγ∂tF ε‖l−1 + Cγ(‖N ε‖l−1 + 1)‖U ε‖l−1 + Cγ‖N ε‖l−1 + Cγε.(4.42)

Proof. Because divGε = 0, by the curl-div decomposition formulas of the gradient
for the magnetic field

‖∇Gε‖l−1 ≤ ‖∇×Gε‖l−1 + ‖divGε‖l−1,(4.43)

it suffices to control ‖∇ ×Gε‖l−1.
Using the third equation in the error system (3.2), we get

‖∇ ×Gε‖l−1 ≤ ‖εγ∂tF ε‖l−1 + γ‖(N ε + 1 − εdivE0)U ε + N εu0‖l−1 + Cγε

≤ ‖εγ∂tF ε‖l−1 + Cγ(‖N ε‖l−1 + 1)‖U ε‖l−1 + Cγ‖N ε‖l−1 + Cγε.(4.44)

Combining (4.43) and (4.44), we obtain (4.42).
The proof of Lemma 4.5 is complete.

4.6. The end of proof of Proposition 4.1. Introduce an ε-weighted Sobolev-
type energy function

Γε(t) = ‖|W ε(t)‖|2l .

Then it follows from (4.4), (4.23), (4.32), (4.33), and (4.42) that there exists an ε0 > 0,
depending only upon T0, such that, for any 0 < ε ≤ ε0 and any 0 < t < T ,

Γε(t) ≤ CΓε(t = 0) + C

∫ t

0

((Γε +
√

Γε + 1)Γε)(s)ds + Cε.(4.45)

Then, applying Gronwall’s lemma and using Proposition 3.1 and (3.4), it follows
from (4.45) and Γε(t = 0) ≤ Cε that there exist a 0 < T1 < 1 and an ε0 > 0 such that
Tε ≥ T1 for all 0 < ε ≤ ε0 and that there exists an ε0 sufficiently small such that, for
any ε ≤ ε0 and 0 < t < T ,

Γε(t) ≤ Cε,

which gives the desired a priori estimate (4.2). Moreover, by the standard continuous
induction method, we can extend Tε ≥ T0 for any T0 < T∗.

The proof of Proposition 4.1 is complete.
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4.7. Proof of Theorem 2.1. According to the definitions of the error functions
N ε, U ε, F ε, Gε, the regularities of u0, E0, B0, and the error system (3.2), it follows from
the assumption (2.11) in Theorem 2.1 that

‖
√
εF ε(t = 0)‖s0−1 ≤ C

√
ε,∥∥∥∥N ε

√
ε
(t = 0)

∥∥∥∥
s0−1

=
√
ε‖divF ε(t = 0)‖s0−1 ≤

√
ε‖F ε(t = 0)‖s0 ≤ C

√
ε.

Hence, the assumption (4.1) in Proposition 4.1 holds. Thus, the results of Proposi-
tion 4.1 imply (2.12). As a consequence, (nε, uε, Bε) converges strongly to (1, u0, B0)
in L∞(0, T0;H

s0(T)). It follows from (2.2), (2.6), and the uniqueness of solutions to
the limit problem (2.6)–(2.9) that Eε converges to E0 in W−1,∞(0, T0;H

s0−1(T)).
The proof of Theorem 2.1 is complete.

Appendix A. Proof of Lemma 4.3. Taking ∂α
x on (4.21) and taking the L2

inner product of the resulting equation with ∂α
x divU ε, by integration by parts, we

have the following energy equation:

d

dt
‖∂α

x divU ε‖2(A.1)

= (div(U ε + u0)∂α
x divU ε, ∂α

x divU ε) + 2(H(2)
α , ∂α

x divU ε)

+
2

ε
(∂α

xN
ε, ∂α

x divU ε) − 2
(
∂α
x Δ(h(N ε+1 − εdivE0)−h(1 − εdivE0)), ∂α

x divU ε
)

− 2γ
(
∂α
x div

(
(U ε + u0) ×Gε

)
, ∂α

x divU ε
)

+ 2(∂α
xJ ε

2 , ∂
α
x divU ε),

where the commutator is defined by

H(2)
α = −{∂α

x div([(U ε + u0) · ∇]U ε) − [(U ε + u0) · ∇]∂α
x divU ε},

which can be estimated as follows:

‖H(2)
α ‖ ≤ C‖∇(U ε + u0)‖L∞‖∂l−1

x ∇U ε‖ + C‖∇U ε‖L∞‖∂l
x(U ε + u0)‖

≤ C‖∇(U ε + u0)‖l−1‖∂l−1
x ∇U ε‖ + C‖∇U ε‖l−1‖∂l

x(U ε + u0)‖

≤ C(‖U ε‖l + 1)‖U ε‖l.

Hence, by Cauchy–Schwarz’s inequality, Sobolev’s lemma, and using the estimate
(4.22) for J ε

2 , we obtain

(div(U ε + u0)∂α
x divU ε, ∂α

x divU ε) + 2(H(2)
α , ∂α

x divU ε)

≤ C(‖U ε‖l + 1)‖U ε‖2
l + C‖H(2)

α ‖‖∂α
x divU ε‖

≤ C(‖W ε(t)‖l,∗ + 1)‖U ε‖2
l(A.2)

and

−2γ
(
∂α
x div

(
(U ε + u0) ×Gε

)
, ∂α

x divU ε
)

+ 2(∂α
xJ ε

2 , ∂
α
x divU ε)

≤ Cγ2(‖U ε‖2
l + 1)‖Gε‖2

l + ‖W ε(t)‖2
l,∗ + Cε2.(A.3)
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The rest involves dealing with the other two terms on the right-hand side of (A.1),
which are more difficult to control. To do this, we rewrite the density equation in
(3.2) into the following two formulations:

divU ε = −∂tN
ε + div(N ε(U ε + u0)) − εU ε · ∇(divE0) − εRε

n

1 − εdivE0
(A.4)

and

divU ε = −∂tN
ε + (U ε + u0) · ∇N ε + N εdivu0 − εU ε · ∇(divE0) − εRε

n

N ε + 1 − εdivE0
.(A.5)

In the following, we use the first formulation (A.4) to estimate the electric field term
and the second one (A.5) to estimate the nonlinear pressure term integral in order to
avoid the presence of the (l+1)th order derivative of the velocity because we are now
in H l energy estimates.

First, we control the singular term O( 1
ε ) in (A.1). We have

I1 =
2

ε
(∂α

xN
ε, ∂α

x divU ε)

= −2

ε

(
∂α
xN

ε, ∂α
x

(
∂tN

ε + div(N ε(U ε + u0)) − εU ε · ∇(divE0) − εRε
n

1 − εdivE0

))

= −2

ε

(
∂α
xN

ε, ∂α
x

(
∂tN

ε

1 − εdivE0

))
− 2

ε

(
∂α
xN

ε, ∂α
x

(
div(N ε(U ε + u0))

1 − εdivE0

))

+ 2

(
∂α
xN

ε, ∂α
x

(
U ε · ∇(divE0)

1 − εdivE0

))
+ 2

(
∂α
xN

ε, ∂α
x

(
Rε

n

1 − εdivE0

))

=

4∑
i=1

I
(i)
1 ,(A.6)

in which each term can be estimated as follows.
For I

(1)
1 , by Cauchy–Schwarz’s inequality and using the fact that∥∥∥∥∂t

(
1

1 − εdivE0

)∥∥∥∥
L∞

≤ Cε,

we have

I
(1)
1 = −2

ε

(
∂α
xN

ε, ∂α
x

(
∂tN

ε

1 − εdivE0

))

= −2

ε

(
1

1 − εdivE0
∂α
xN

ε, ∂α
x ∂tN

ε

)
− 2

ε
(H(2)

α , ∂α
xN

ε)

= −1

ε

d

dt

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)
+

1

ε

(
∂t

(
1

1 − εdivE0

)
∂α
xN

ε, ∂α
xN

ε

)

− 2

ε
(H(2)

α , ∂α
xN

ε)

≤ −1

ε

d

dt

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)
+ C‖∂α

xN
ε‖2 +

C

ε
‖H(3)

α ‖‖∂α
xN

ε‖,(A.7)
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where the commutator is defined by

H(3)
α = ∂α

x

(
∂tN

ε

1 − εdivE0

)
− 1

1 − εdivE0
∂α
x ∂tN

ε,

which can be controlled as follows:

‖H(3)
α ‖ ≤ C

∥∥∥∥∇
(

1

1 − εdivE0

)∥∥∥∥
L∞

‖∂l−2
x ∂tN

ε‖ + C‖∂tN ε‖L∞

∥∥∥∥∂l−1
x

(
1

1 − εdivE0

)∥∥∥∥
≤ Cε‖∂tN ε‖l−2

≤ Cε‖(N ε, U ε)‖l−1 + Cε(‖U ε‖l−1 + 1)‖N ε‖l−1 + Cε2.(A.8)

Here we have used ‖∇( 1

1−εdivE0
)‖L∞ ≤ Cε and l > 3

2 + 2. Combining (A.7) and

(A.8), we obtain

I
(1)
1 ≤ −1

ε

d

dt

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)
+ C(‖U ε‖l−1 + 1)‖W ε(t)‖2

l,∗ + Cε2.(A.9)

For I
(2)
1 , a direct calculation yields

I
(2)
1 = −2

ε

(
∂α
xN

ε, ∂α
x

(
div(N ε(U ε + u0))

1 − εdivE0

))
(A.10)

= −2

ε

(
∂α
xN

ε,
1

1 − εdivE0
∂α
x

(
div(N ε(U ε + u0))

))
− 2

ε
(∂α

xN
ε,H(4)

α )

= −2

ε

(
∂α
xN

ε,
1

1 − εdivE0
∂α
x

(
(U ε + u0) · ∇N ε + N εdiv(U ε + u0)

))

− 2

ε
(∂α

xN
εH(4)

α )

=
1

ε

(
∂α
xN

ε,div

(
1

1 − εdivE0
(U ε + u0)

)
∂α
xN

ε

)

− 2

ε

(
∂α
xN

ε,
1

1 − εdivE0
∂α
xN

εdiv(U ε + u0)

)

− 2

ε
(∂α

xN
ε,H(4)

α ) − 2

ε

i=6∑
i=5

(
1

1 − εdivE0
∂α
xN

ε,H(i)
α

)
,

where the commutators H(i)
α , i = 4, 5, 6, are defined by

H(4)
α = ∂α

x

(
div(N ε(U ε + u0))

1 − εdivE0

)
− 1

1 − εdivE0
∂α
x

(
div(N ε(U ε + u0))

)
,

H(5)
α = ∂α

x

(
(U ε + u0) · ∇N ε

)
− (U ε + u0) · ∂α

x∇N ε,

H(6)
α = ∂α

x (N εdiv(U ε + u0)) − ∂α
xN

εdiv(U ε + u0),
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which, with the aid of Sobolev’s lemma, can be estimated, respectively, as follows:

‖H(4)
α ‖ ≤ C

∥∥∥∥∇
(

1

1 − εdivE0

)∥∥∥∥
L∞

‖∂l−2
x (div(N ε(U ε + u0)))‖

+C‖div(N ε(U ε + u0))‖L∞

∥∥∥∥∂l−1
x

(
1

1 − εdivE0

)∥∥∥∥
≤ C

∥∥∥∥∇
(

1

1 − εdivE0

)∥∥∥∥
L∞

‖∂l−2
x (div(N ε(U ε + u0)))‖

+C‖div(N ε(U ε + u0))‖l−2

∥∥∥∥∂l−1
x

(
1

1 − εdivE0

)∥∥∥∥
≤ Cε(‖U ε‖l + 1)‖N ε‖l−1,(A.11)

‖H(5)
α ‖ ≤ C‖∇(U ε + u0)‖L∞‖∂l−2

x ∇N ε‖ + C‖∇N ε‖L∞‖∂l−1
x (U ε + u0)‖

≤ C‖∇(U ε + u0)‖l−1‖∂l−2
x ∇N ε‖ + C‖∇N ε‖l−2‖∂l−1

x (U ε + u0)‖

≤ C(‖U ε‖l + 1)‖N ε‖l−1,(A.12)

‖H(6)
α ‖ ≤ C‖∇div(U ε + u0)‖L∞‖∂l−2

x N ε‖ + C‖N ε‖L∞‖∂l−1
x div(U ε + u0)‖

≤ C‖∇div(U ε + u0)‖l−2‖∂l−2
x N ε‖ + C‖N ε‖l−1‖∂l−1

x div(U ε + u0)‖

≤ C(‖U ε‖l + 1)‖N ε‖l−1.(A.13)

Here we have again used ‖∇( 1

1−εdivE0
)‖L∞ ≤ Cε and l > 3

2 + 2.

Thus, combining (A.10) together with (A.11)–(A.13), we get, with the aid of
Cauchy–Schwarz’s inequality, that

I
(2)
1 ≤ C

ε
(‖U ε‖l + 1)‖N ε‖2

l−1.(A.14)

Also, by Cauchy–Schwarz’s inequality, I
(3)
1 can be estimated as follows:

I
(3)
1 = 2

(
∂α
xN

ε, ∂α
x

(
U ε · ∇(divE0)

1 − εdivE0

))
≤ C‖W ε(t)‖2

l,∗.(A.15)

Finally, we estimate I
(4)
1 . Since Rε

n is not small with respect to ε (only uniformly

bounded), we must use ‖Nε
√
ε
‖l−1 to control I

(4)
1 . Thus, we rewrite I

(4)
1 as

I
(4)
1 = 2

(
∂α
xN

ε, ∂α
x

(
Rε

n

1 − εdivE0

))
= 2

(
∂α
xN

ε

√
ε

,
√
ε∂α

x

(
Rε

n

1 − εdivE0

))
.

By Cauchy–Schwarz’s inequality and the uniform bound on Rε
n, we have

I
(4)
1 ≤ C

ε
‖N ε‖2

l−1 + Cε.(A.16)

Combining (A.6) with (A.9), (A.14), (A.15), and (A.16), we obtain

I1 ≤ −1

ε

d

dt

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)
+ C(‖U ε‖l + 1)‖|W ε(t)‖|2l + Cε.(A.17)
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Next, we control the pressure term I2. It holds that

I2 = −2(∂α
x Δ(h(N ε+1 − εdivE0)−h(1 − εdivE0)), ∂α

x divU ε)

= −2
(
∂α
x div

(
h′(N ε+1 − εdivE0)∇N ε

− ε(h′(N ε+1 − εdivE0)−h′(1 − εdivE0))∇(divE0)
)
, ∂α

x divU ε
)

= −2
(
div

(
h′(N ε+1 − εdivE0)∂α

x∇N ε
)
, ∂α

x divU ε
)
− 2(H(7)

α , ∂α
x divU ε)

+ 2ε
(
∂α
x div

(
(h′(N ε+1 − εdivE0)−h′(1 − εdivE0))∇(divE0)

)
, ∂α

x divU ε
)

= I
(1)
2 + I

(2)
2 + I

(3)
2 ,(A.18)

where

I
(1)
2 = −2

(
div

(
h′(N ε+1 − εdivE0)∇∂α

xN
ε
)
, ∂α

x divU ε
)
,

I
(2)
2 = −2(H(7)

α , ∂α
x divU ε),

I
(3)
2 = 2ε

(
∂α
x div

(
(h′(N ε+1 − εdivE0)−h′(1 − εdivE0))∇(divE0)

)
, ∂α

x divU ε
)

and the commutator H(7)
α is defined by

H(7)
α = ∂α

x div
(
h′(N ε+1 − εdivE0)∇N ε

)
− div

(
h′(N ε+1 − εdivE0)∂α

x∇N ε
)

= ∂α
x

(
h′(N ε+1 − εdivE0)div∇N ε

)
− h′(N ε+1 − εdivE0)∂α

x div∇N ε

+ ∂α
x

(
∇h′(N ε+1 − εdivE0)∇N ε

)
−∇h′(N ε+1 − εdivE0)∂α

x∇N ε.

Noting that I
(3)
2 does contain only the lth order derivatives of the error function W ε

I ,
it can be easily estimated by

I
(3)
2 ≤ ‖U ε‖2

l + C‖N ε‖2
l .(A.19)

Here we have used the regularity of the limit system, i.e., ‖E0‖l+2 ≤ C. The estimate
techniques of the commutator yield

‖H(7)
α ‖ ≤ C‖∇h′(N ε+1 − εdivE0)‖L∞‖∂l−2

x div∇N ε‖

+C‖div∇N ε‖L∞‖∂l−1
x h′(N ε+1 − εdivE0)‖

+C‖∇2h′(N ε + 1 − εdivE0)‖L∞‖∂l−2
x ∇N ε‖

+C‖∇N ε‖L∞‖∂l−1
x ∇h′(N ε + 1 − εdivE0)‖

≤ C(‖N ε‖l + 1)‖N ε‖l,

which implies by Cauchy–Schwarz’s inequality that

I
(2)
2 ≤ C(‖N ε‖l + 1)‖W ε(t)‖2

l,∗.(A.20)
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In the following, we estimate I
(1)
2 . By the relation (A.5) between the density and

the divergence, we have

I
(1)
2 = 2

(
div

(
h′(N ε+1 − εdivE0)∂α

x∇N ε
)
,

∂α
x

(
∂tN

ε + (U ε + u0) · ∇N ε − εU ε · ∇(divE0) + N εdivu0 − εRε
n

N ε + 1 − εdivE0

))

= −2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,∇∂α
x

(
∂tN

ε

N ε + 1 − εdivE0

))

− 2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,∇∂α
x

(
(U ε + u0) · ∇N ε

N ε + 1 − εdivE0

))

− 2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,

∇∂α
x

(
−εU ε · ∇(divE0) + N εdivu0 − εRε

n

N ε + 1 − εdivE0

))

=
3∑

i=1

I
(i)
21 .(A.21)

Now we estimate each term of I
(1)
2 .

For I
(1)
21 and I

(2)
21 , we have

I
(1)
21 = −2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,∇∂α
x

(
∂tN

ε

N ε + 1 − εdivE0

))

= − d

dt

(
h′(N ε+1 − εdivE0)

(N ε + 1 − εdivE0)
∂α
x∇N ε, ∂α

x∇N ε

)

+

(
∂t

(
h′(N ε+1 − εdivE0)

(N ε + 1 − εdivE0)

)
∂α
x∇N ε, ∂α

x∇N ε

)

− 2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,H(8)
α

)

≤ − d

dt

(
h′(N ε+1 − εdivE0)

2(N ε + 1 − εdivE0)
∂α
x∇N ε, ∂α

x∇N ε

)

+C(‖W ε(t)‖l,∗ + 1)‖W ε(t)‖2
l,∗(A.22)
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and

I
(2)
21 = −2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,∇∂α
x

(
(U ε + u0) · ∇N ε

N ε + 1 − εdivE0

))

=

(
div

(
h′(N ε+1 − εdivE0)(U ε + u0)

(N ε + 1 − εdivE0)

)
∂α
x∇N ε, ∂α

x∇N ε

)

− 2
(
h′(N ε+1 − εdivE0)∂α

x∇N ε,H(9)
α

)

≤ C(‖W ε(t)‖l,∗ + 1)‖W ε(t)‖2
l,∗(A.23)

because the commutators

H(8)
α = ∇∂α

x

(
∂tN

ε

N ε + 1 − εdivE0

)
− ∂t∇∂α

xN
ε

N ε + 1 − εdivE0

and

H(9)
α = ∇∂α

x

(
(U ε + u0) · ∇N ε

N ε + 1 − εdivE0

)
− (U ε + u0) · ∇(∂α

x∇N ε)

N ε + 1 − εdivE0

can be estimated, respectively, by

‖H(8)
α ‖ ≤ C

∥∥∥∥∇
(

1

N ε + 1 − εdivE0

)∥∥∥∥
L∞

‖∂l−1
x ∂tN

ε‖

+C‖∂tN ε‖L∞

∥∥∥∥∂l
x

(
1

N ε + 1 − εdivE0

)∥∥∥∥
≤ C(‖W ε(t)‖l,∗ + 1)‖W ε(t)‖l,∗ + Cε2

and

‖H(9)
α ‖ ≤ C

∥∥∥∥∇
(

U ε + u0

N ε + 1 − εdivE0

)∥∥∥∥
L∞

‖∂l−1
x ∇N ε‖

+C‖∇N ε‖L∞

∥∥∥∥∂l
x

(
U ε + u0

N ε + 1 − εdivE0

)∥∥∥∥
≤ C(‖W ε(t)‖l,∗ + 1)‖W ε(t)‖l,∗ + Cε2.

For I
(3)
21 , by Cauchy–Schwarz’s inequality and the regularities of u0, E0, we have

I
(3)
21 = −2

(
h′(N ε+1 − εdivE0)∂α

x∇N ε,

∇∂α
x

(
−εU ε · ∇(divE0) + N εdivu0 − εRε

n

N ε + 1 − εdivE0

))

≤ C‖W ε(t)‖3
l,∗ + C‖W ε(t)‖2

l,∗ + Cε2.(A.24)
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Combining (A.21) with (A.22)–(A.24), we get

I
(1)
2 ≤ − d

dt

(
h′(N ε+1 − εdivE0)

(N ε + 1 − εdivE0)
, ∂α

x∇N ε, ∂α
x∇N ε

)

+C(‖W ε(t)‖l,∗ + 1)‖W ε(t)‖2
l,∗ + Cε2.(A.25)

Similarly, combining (A.18) with (A.19), (A.20), and (A.25), we get

I2 ≤ − d

dt

(
h′(N ε+1 − εdivE0)

(N ε + 1 − εdivE0)
∂α
x∇N ε, ∂α

x∇N ε

)

+C(‖W ε(t)‖l,∗ + 1)‖W ε(t)‖2
l,∗ + Cε2,(A.26)

and combining (A.1) with (A.2), (A.3), (A.17), and (A.26), we get

d

dt

[
‖∂α

x divU ε‖2 +
1

ε

(
1

1 − εdivE0
∂α
xN

ε, ∂α
xN

ε

)

+

(
h′(N ε + 1 − εdivE0)

N ε + 1 − εdivE0
∂α
x∇N ε, ∂α

x∇N ε

)]

≤ C(‖W ε‖l,∗ + 1)‖W ε(t)‖2
l,∗ + Cγ2(‖U ε‖2

l + 1)‖Gε‖2
l + Cε2 + Cε,

which yields (4.32).
This ends the proof of Lemma 4.3.
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SYMMETRY-BREAKING BIFURCATION IN NONLINEAR
SCHRÖDINGER/GROSS–PITAEVSKII EQUATIONS∗
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Abstract. We consider a class of nonlinear Schrödinger/Gross–Pitaeveskii (NLS-GP) equations,
i.e., NLS with a linear potential. NLS-GP plays an important role in the mathematical modeling of
nonlinear optical as well as macroscopic quantum phenomena (BEC). We obtain conditions for a
symmetry-breaking bifurcation in a symmetric family of states as N , the squared L2 norm (particle
number, optical power), is increased. The bifurcating asymmetric state is a “mixed mode” which,
near the bifurcation point, is approximately a superposition of symmetric and antisymmetric modes.
In the special case where the linear potential is a double well with well-separation L, we estimate
Ncr(L), the symmetry breaking threshold. Along the “lowest energy” symmetric branch, there is an
exchange of stability from the symmetric to the asymmetric branch as N is increased beyond Ncr.
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1. Introduction. Symmetry breaking is a ubiquitous and important phenome-
non which arises in a wide range of physical systems. In this paper, we consider a class
of partial differential equations (PDEs), which are invariant under a symmetry group.
For sufficiently small values of a parameter, N , the preferred (dynamically stable)
stationary state of the system is invariant under this symmetry group. However,
above a critical parameter, Ncr, although the group-invariant state persists, the new
preferred state of the system is a state which (i) exists only for N > Ncr and (ii) is no
longer invariant. That is, symmetry is broken and there is an exchange of stability.

Physical examples of symmetry breaking include liquid crystals [31], quantum
dots [34], semiconductor lasers [13], and pattern dynamics [28]. This article focuses
on spontaneous symmetry breaking as a phenomenon in nonlinear optics [4, 20, 18], as
well as in the macroscopic quantum setting of Bose–Einstein condensation (BEC) [1].
Here, the governing equations are PDEs of nonlinear Schrödinger/Gross–Pitaevskii
(NLS-GP) type. Symmetry breaking has been observed experimentally in optics for
two-component spatial optical vector solitons (i.e., for self-guided laser beams in Kerr
media and focusing cubic nonlinearities) in [4], as well as for the electric field dis-
tribution between multiple wells of a photorefractive crystal in [20, 18]. In BECs,
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an effective double well formed by a combined (parabolic) magnetic trapping and
a (periodic) optical trapping of the atoms may have similar effects [1] and lead to
“macroscopic quantum self-trapping.”

Symmetry breaking in ground states of the three-dimensional NLS-GP equation,
with an attractive nonlinearity of Hartree type and a symmetric double-well linear
potential, was considered in Aschbacher et. al. [3]; see also Remark 2.2. An example
of a double-well potential is the function VL(x), plotted for the one-dimensional case,
in Figure 2b of Example 2.1. The spectral properties of HL = −Δ + VL(x) are
discussed in the appendix in section 8. For L sufficiently large, HL has (at least)
two eigenpairs, (Ω0, ψ0) and (Ω1, ψ1). The normalized ground state eigenfunction ψ0

is of even parity in x (“symmetric”) and the normalized excited state ψ1 is of odd

parity in x (“antisymmetric”). Moreover, ψ0(x) ∼ 2−
1
2 (ψω(x + L) + ψω(x− L)) and

ψ1(x) ∼ 2−
1
2 (ψω(x + L) − ψω(x− L)).

Ground states of NLS-GP are positive nonlinear bound states, arising as mini-
mizers of H, the NLS-GP Hamiltonian energy subject to fixed N , the squared L2

norm. For the class of equations considered in [3], ground states exist for any N > 0.
It is proved that for sufficiently large N , any ground state is concentrated in only one
of the wells, i.e., symmetry is broken. The analysis in [3] is an asymptotic study of a
variational problem (see Remark 2.2) showing that if N is sufficiently large, then it is
energetically preferable for the ground state to localize in a single well. In contrast,
for small L2 norm the ground state is even and bimodal having the symmetries of
the ground state of the linear Schrödinger operator with symmetric double-well po-
tential. For macroscopic quantum systems, the squared L2 norm, denoted by N , is
the particle number, while in optics it is the optical power. An attractive nonlinear-
ity corresponds to the case of negative scattering length in BEC and focusing Kerr
nonlinearity in optics.

An alternative approach to symmetry breaking in NLS-GP is via bifurcation the-
ory. It follows from [26, 25] that a family of “nonlinear ground states” bifurcates from
the zero solution (N = 0) at the ground state energy of the Schrödinger operator
with a linear double-well potential. This nonlinear ground state branch consists of
states having the same bimodal symmetry of the linear ground state. In this article
we prove, under suitable conditions, that there is a secondary bifurcation to an asym-
metric state at a critical N = Ncr > 0. The bifurcating asymmetric state is a “mixed
mode” (see, for example, [8]) which, near the bifurcation point, is approximately a su-
perposition of symmetric and antisymmetric modes. As N is increased beyond Ncr,
the asymmetric state tends to concentrate in only one of the two wells. Since the
double-well potential is symmetric, the bifurcating state is doubly degenerate; there
are two families of asymmetric states associated with energy concentration in each
of the wells. Figure 1 shows a typical bifurcation diagram demonstrating symmetry
breaking for the NLS-GP system with a double-well potential. At the bifurcation
point Ncr (marked by a circle in Figure 1(a)), the symmetric (even with respect to
coordinate x1) ground state becomes unstable and a stable asymmetric (neither even
nor odd parity) “mixed (degenerate) state” emanates from it. Further, we show that
there is a transfer or exchange of stability which takes place at Ncr; for N < Ncr the
symmetric state is stable, while for N > Ncr the asymmetric state is stable. Since
our method is based on local bifurcation analysis we do not require that the states we
consider satisfy a minimization principle, as in [3]. Thus, quite generally, symmetry
breaking occurs as a consequence of the (finite-dimensional) normal form arising in
systems with certain symmetry properties. Although we can treat a large class of
problems for which there is no minimization principle, our analysis, at present, is
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Fig. 1. (a) Bifurcation diagram for bound state solutions ψ(x, t) = e−iΩtΨΩ(x) of NLS-GP
equation (2.1), with double-well potential (6.1) and cubic nonlinearity. Double-well parameters are
s = 1, L = 6. Ω denotes the (nonlinear) frequency and N = N [ΨΩ], the squared L2 norm of ΨΩ

(optical power or particle number). The first bifurcation is from the zero state at the ground state
energy of the double well. This state is an even function of x (symmetric). A secondary bifurcation,
to an asymmetric state, at N = Ncr, is marked by a (red) circle. For N < Ncr the symmetric state
((blue) solid line) is nonlinearly dynamically stable. For N > Ncr the symmetric state is unstable
((blue) dashed line). The stable asymmetric state, appearing for N > Ncr, is marked by a (red)
solid line. The (unstable) odd in x (antisymmetric) state is marked by a (green) dashed-dotted line.
(b) Bound state solutions ΨΩ(x) plotted for a level set of N [ΨΩ] = 0.5.

restricted to small norm. As we shall see, a bifurcation occurring at small norm can
be ensured, for example, by taking the distance between wells in the double well to
be sufficiently large.

In [14] the precise transition point to symmetry breaking, Ncr, of the ground
state and the transfer of its stability to an asymmetric ground state was considered
(by geometric dynamical systems methods) in the exactly solvable NLS-GP, with a
double-well potential consisting of two Dirac delta functions separated by a distance
L. Additionally, the behavior of the function Ncr(L) was considered. Another solvable
model was examined by numerical means in [23]. A study of dynamics for nonlinear
double wells appeared in [27].

We study Ncr(L) in general. The value at which symmetry breaking occurs,
Ncr(L), is closely related to the spectral properties of the linearization of NLS-GP
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about the symmetric branch. Indeed, so long as the linearization of NLS-GP at the
symmetric state has no nonsymmetric null space, the symmetric state is locally unique
by the implicit function theorem [24]. The mechanism for symmetry breaking is the
first appearance of an antisymmetric element in the null space of the linearization for
some N = Ncr. This is demonstrated for a finite-dimensional Galerkin approximation
of NLS-GP in [20, 17]. The present work extends and generalizes this analysis to the
full infinite-dimensional problem using the Lyapunov–Schmidt method [24]. Control
of the corrections to the finite-dimensional approximation requires small norm of
the states considered. Since, as anticipated by the Galerkin approximation, Ncr is
proportional to the distance between the lowest eigenvalues of the double well, which
is exponentially small in L, our results apply to double wells with separation L, for L
sufficiently large.

Our bifurcation results can be viewed as a very detailed study of a class of O(2)×
Z2 symmetric dynamical systems with four degrees of freedom in which there is a
bifurcation of mixed states. We know of no classification of such systems. We show,
under the nondegeneracy condition (4.3), that they are reducible to systems with two
degrees of freedom and Z2 ×Z2 symmetry which have been classified in, for example,
[8, 11]. In addition to being a self-contained treatment, our study of the nature of
the solution set on the manifold of constant N , as N is varied, shows the key role of
N , a physical NLS-GP time-invariant, in determining the bifurcation diagram, which
encodes the dynamic stability properties.

The article is organized as follows. In section 2 we introduce the NLS-GP model
and give a technical formulation of the bifurcation problem. In section 3 we study
a finite-dimensional truncation of the bifurcation problem, identifying a relevant bi-
furcation point. In section 4, we prove the persistence of this symmetry-breaking
bifurcation in the full NLS-GP problem for N ≥ Ncr. Moreover, in section 5 we show
that the lowest energy symmetric state becomes dynamically unstable at Ncr and the
bifurcating asymmetric state is the dynamically stable ground state for N > Ncr.

The main results are stated in Theorem 4.1, Corollary 4.1, and Theorem 5.1. In
particular, we obtain an asymptotic formula for the critical particle number (optical
power) for symmetry breaking in NLS-GP,

(1.1) Ncr =
Ω1 − Ω0

Ξ[ψ0, ψ1]
+ O

(
(Ω1 − Ω0)

2

Ξ[ψ0, ψ1]3

)
.

Here, (Ω0, ψ0) and (Ω1, ψ1) are eigenvalue-eigenfunction pairs of the linear Schrö-
dinger operator H = −Δ + V , where Ω0 and Ω1 are separated from other spectrum
and Ξ is a positive constant, given by (4.2), depending on ψ0 and ψ1. (Section 8 is
an appendix where we discuss the basic spectral properties of −Δ + V , where V is a
double-well potential.) The most important case is where Ω0 < Ω1 are the lowest two
energies (linear ground and first excited states). For double wells with separation L,
we have Ncr = Ncr(L), depending on the eigenvalue spacing Ω0(L) − Ω1(L), which
is exponentially small if L is large and Ξ is of order one. Thus, for large L, the
bifurcation occurs at small L2 norm. This is the weakly nonlinear regime in which
the corrections to the finite-dimensional model can be controlled perturbatively. A
local bifurcation diagram of this type will occur for any simple even-odd symmetric
pair of simple eigenvalues of H in the weakly nonlinear regime, so long as the eigen-
frequencies are separated from the rest of the spectrum of H; see Proposition 4.1 and
the gap condition (4.13). Therefore, a similar phenomenon occurs for higher order,
nearly degenerate pairs of eigenstates of the double wells, arising from isolated single
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wells with multiple eigenstates. Section 6 contains numerical results validating our
theoretical analysis.

2. Technical formulation. Consider the initial value problem for the time-
dependent NLS-GP equation

i∂tψ = Hψ + g(x)K[ψψ̄] ψ, ψ(x, 0) given,(2.1)

H = −Δ + V (x).(2.2)

We assume the following.
(H1) The initial value problem for NLS-GP is well-posed in the space

C0([0,∞);H1(Rn)).
(H2) The potential V (x) is assumed to be real valued, smooth, and rapidly decaying

as |x| → ∞. We also assume symmetry with respect to a hyperplane which,
without loss of generality, can be taken to be {x1 = 0}:

(2.3) V (x1, x2, . . . , xn) = V (−x1, x2, . . . , xn).

We assume the nonlinear term, K[ψψ], to be attractive, cubic (local or non-
local), and symmetric with respect to the same hyperplane. Specifically, we
assume the following hypotheses on the nonlinear term:

(H3) (a) g(x1, x2, . . . , xn) = g(−x1, x2, . . . , xn) (symmetry).
(b) g(x) < 0 (attractive/focusing).
(c) K[h] =

∫
K(x− y)h(y)dy,

K(x1, x2, . . . , xn) = K(−x1, x2, . . . , xn), K > 0.
(d) Consider the map N : H2 ×H2 ×H2 �→ L2 defined by

(2.4) N(φ1, φ2, φ3) = gK[φ1φ̄2]φ3.

We also write N(u) = N(u, u, u) and note that ∂uN(u) = N(·, u, u) +
N(u, ·, u) + N(u, u, ·). We assume that there exists a constant k > 0
such that

(2.5) ‖N(φ0, φ1, φ2)‖L2 ≤ k ‖φ1‖H2‖φ2‖H2‖φ3‖H2 .
Remark 2.1. The symmetry restrictions in (H3) insure that the nonlinear term

is equivariant with respect to the action of O(2) × Z2, namely,

N(eiθu) = eiθN(u), 0 ≤ θ < 2π,

N(ū) = N(u),

N(Ru) = RN(u),

where R is the reflection with respect to the x1 = 0 hyperplane. Although, the
nonlinearity taken in (H3) is cubic, our analysis can be easily extended to more
general cases satisfying the O(2) × Z2 equivariance.

We now give several illustrative and important examples of NLS-GP.
Example 1. GP equation for BECs with negative scattering length g(x) ≡ −1,

K(x) = δ(x).
Example 2. NLS equation for optical media with a nonlocal kernel g(x) ≡ ±1,

K(x) = A exp(−x2/σ2) [22]. See also [6] for similar considerations in BECs.
Example 3. Photorefractive (saturable) nonlinearities and optically induced po-

tentials [7]. The relevant symmetry breaking phenomenology is experimentally ob-
servable, as shown in [20]. Also contained therein is the finite-dimensional Galerkin
approach of section 3.
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Nonlinear bound states. Nonlinear bound states are solutions of NLS-GP of
the form

(2.6) ψ(x, t) = e−iΩtΨΩ(x),

where ΨΩ ∈ H1(Rn) solves

(2.7) H ΨΩ + g(x) K[|ΨΩ|2] ΨΩ − ΩΨΩ = 0, ΨΩ ∈ H1.

If the potential V (x) is such that the operator H = −Δ + V (x) has a discrete
eigenvalue, Ω∗, and a correspsonding eigenstate ψ∗, then for energies Ω near Ω∗, one
expects small amplitude nonlinear bound states, which are to leading order small
multiples of ψ∗. This is the standard setting of bifurcation from a simple eigenvalue
[24], which follows from the implicit function theorem.

Theorem 2.1 (see [21, 25, 26]). Let (Ψ,Ω) = (ψ∗,Ω∗) be a simple eigenpair of
the eigenvalue problem HΨ = ΩΨ, i.e., dim{ρ : (H − Ω∗)ρ = 0} = 1. Then there
exists a unique smooth curve of nontrivial solutions α �→ ( Ψ(·;α),Ω(α) ), defined in
a neighborhood of α = 0, such that

(2.8) ΨΩ = α
(
ψ∗ + O(|α|2)

)
, Ω = Ω∗ + O(|α|2), α → 0.

Remark 2.2. For a large class of problems, a nonlinear ground state can be
characterized variationally as a constrained minimum of the NLS-GP energy subject
to fixed squared L2 norm. Define the NLS-GP Hamiltonian energy functional

(2.9) HNLS−GP [Φ] ≡
∫

|∇Φ|2 + V |Φ|2 dy +
1

2

∫
g(y)|Φ(y)|2K[|Φ|2] dy

and the particle number (optical power)

(2.10) N [Φ] =

∫
|Φ|2 dy.

In particular, the following can be proved.
Theorem 2.2. Let Iλ = infN [f ]=λ H[f ]. If −∞ < Iλ < 0, then the minimum is

attained at a positive solution of (2.7). Here, Ω = Ω(λ) is a Lagrange multiplier for
the constrained variational problem.

In [3] the nonlinear Hartree equation is studied; K[h] = |y|−1 � h, g ≡ −1. It is
proved that if V (x) is a double-well potential, then for λ sufficiently large, the mini-
mizer does not have the same symmetry as the linear ground state. By uniqueness,
ensured by the implicit function theorem, for small N , the minimizer has the same
symmetry as that as the linear ground state and has the expansion (2.8); see [3] and
section 4.

We make the following assumptions.
Spectral assumptions on H.

(H4) H has a pair of simple eigenvalues Ω0 and Ω1. ψ0 and ψ1, the corresponding
(real-valued) eigenfunctions are, respectively, even (symmetric) and odd (anti-
symmetric) in x1.

Example 2.1 (the basic example: double-well potentials). Our basic example of
V (x) is a double-well potential consisting of two identical potential wells and separated
by a distance L. Thus, assume symmetry with respect to the hyperplane which,
without loss of generality, can be taken to be {x1 = 0}:

(2.11) V (x1, x2, . . . , xn) = V (−x1, x2, . . . , xn).
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Fig. 2. This figure demonstrates a single- and a double-well potential and the spectrum of H
and HL, respectively. (a) shows a single-well potential and under it the spectrum of H, with an
eigenvalue marked by a (red) mark “o” at ω and continuous spectrum marked by a (black) line for
energies ω ≥ 0. (b) shows the double well centered at ±L and the spectrum of HL underneath. The
eigenvalues Ω0 and Ω1 are each marked by a (blue) mark “*” and a (green) mark “x,” respectively,
on either side of the location ω—(red) mark “o.” The continuous spectrum is marked by a (black)
line for energies Ω ≥ 0.

In the appendix, we discuss how spectral hypothesis (H4) is shown for a double wells
with well-separation parameter L. The simplest example, in one space dimension, is
obtained as follows. Start with a single potential well (rapidly decaying as |x| → ∞),
v0(x), having exactly one eigenvalue, ω, H0ψω = (−Δ + v0(x))ψω = ωψω; see Figure
2(a). Center this well at x = −L and place an identical well centered at x = L. Denote
by VL(x) the resulting double-well potential and by HL the Schrödinger operator:

(2.12) HL = −Δ + VL(x).

There exists L > L0 such that for L > L0, HL has a pair of eigenvalues Ω0 =
Ω0(L) and Ω1 = Ω1(L), Ω0 < Ω1, and corresponding eigenfunctions ψ0 and ψ1; see
Figure 2(b). ψ0 is symmetric with respect to x = 0 and ψ1 is antisymmetric with
respect to x = 0. Moreover, for L sufficiently large, |Ω0 − Ω1| = O(e−κL), κ > 0; see
[12] and see also the appendix.

The construction can be generalized. If −Δ + v0(x) has m bound states, then
forming a double well VL with L sufficiently large, HL = −Δ + VL will have m pairs
of eigenvalues: (Ω2j ,Ω2j+1), j = 0, . . . ,m − 1, eigenfunctions ψ2j (symmetric), and
ψ2j+1 antisymmetric.

By Theorem 2.1, for small N , there exists a unique nontrivial nonlinear bound
state bifurcating from the zero solution at the ground state energy, Ω0, of H. By
uniqueness, ensured by the implicit function theorem, these small amplitude nonlinear
bound states have the same symmetries as the double well; they are bimodal. We also
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know from [3] that for sufficiently large N the ground state has broken symmetry.
We now seek to elucidate the transition from the regime of N small to N large.

We work in the general setting of hypotheses (H1)–(H4). Define spectral projec-
tions onto the bound and continuous spectral parts of H:

(2.13) P0 = (ψ0, ·)ψ0, P1 = (ψ1, ·)ψ1, P̃ = I − P0 − P1.

Here,

(2.14) (f, g) =

∫
f̄g dx.

We decompose the solutions of (2.7) according to

(2.15) ΨΩ = c0ψ0 + c1ψ1 + η, η = P̃ η.

We next substitute the expression (2.15) into (2.7) and then act with projections
P0, P1, and P̃ on the resulting equation. Using the symmetry and antisymmetry
properties of the eigenstates, we obtain three equations which are equivalent to the
PDE (2.7):

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0,(2.16)

+ a0011c
2
1c̄0 + (ψ0g,R(c0, c1, η)) = 0,

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1(2.17)

+ a1010c
2
0c̄1 + (ψ1g,R(c0, c1, η)) = 0,

(H − Ω) η = −P̃ g [F (·; c0, c1) + R(c0, c1, η)] ,(2.18)

where F (·, c0, c1) is independent of η and R(c0, c1, η) contains linear, quadratic, and
cubic terms in η. The coefficients aklmn are defined by

(2.19) aklmn =
(
ψk, gK[ψlψ̄m]ψn

)
.

We shall study the character of the set of solutions of the system (2.16)–(2.18)
restricted to the level set

(2.20)

∫
|ΨΩ|2dx = N ⇐⇒ |c0|2 + |c1|2 +

∫
|η|2dx = N

as N varies.
Let Ω0 and Ω1 denote the two lowest eigenvalues of HL. We prove (Theorem 4.1,

Corollary 4.1, Theorem 5.1) the following.
• There exist two solution branches, parametrized by N , which bifurcate from

the zero solution at the eigenvalues Ω0 and Ω1.
• Along the branch (Ω,ΨΩ), emanating from the solution (Ω = Ω0,Ψ = 0),

there is a symmetry-breaking bifurcation at N = Ncrit > 0. In particular,
let ucrit denote the solution of (2.7) corresponding to the value N = Ncrit.
Then, in a neighborhood ucrit, for N < Ncrit there is only one solution of
(2.7), the symmetric ground state, while for N > Ncrit there are two solutions
one symmetric and a second asymmetric.

• Exchange of stability at the bifurcation point: For N < Ncrit the symmetric
state is dynamically stable, while for N > Ncrit the asymmetric state is stable
and the symmetric state is exponentially unstable.
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3. Bifurcations in a finite-dimensional approximation. It is illustrative to
consider the finite-dimensional approximation to the system (2.16)–(2.18), obtained
by neglecting the continuous spectral part, η. Let us first set η = 0, and therefore
R(c0, c1, 0) = 0. Under this assumption of no coupling to the continuous spectral part
of H, we obtain the finite-dimensional system

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0 + a0011c
2
1c̄0 = 0,(3.1)

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1 + a1010c
2
0c̄1 = 0.(3.2)

Note that in this approximation the physically meaningful parameter N is given by

(3.3) |c0|2 + |c1|2 = N .

Our strategy is to first analyze the bifurcation problem for this approximate finite-
dimensional system of algebraic equations. We then treat the corrections, coming
from coupling to the continuous spectral part of H, η, perturbatively. In fact, the
analysis in the next section indirectly shows that (3.1)-(3.2) is the universal unfolding
of bifurcation problems with four degrees of freedom and O(2)×Z2 symmetry; see [8]
for related notions.1

Our point of view, however, is not the general theory of (3.1)-(3.2), its bifur-
cations and its structural stability, but rather what it implies for solutions of the
NLS-GP system for given “data”, e.g., spectral properties of the potential V (x), the
nonlinearity term defined in terms of K[·] and g. This data, together with structural
properties of NLS-GP , such as its Hamiltonian structure and the second-order elliptic
character of the nonlinear bound state equations, imply natural assumptions as well
as constraints on the coefficients ajklm. In this section, where we study the algebraic
problem (3.1)-(3.2), we posit and comment briefly on these properties. The first are

a0000 − a1001 − 2a1010 > 0,(3.4)

a1010 �= 0.(3.5)

Condition (3.4) will guarantee a symmetry-breaking bifurcation at small amplitude,
while (3.5) is a nondegeneracy condition, easily seen to hold for generic assumptions
on V,K[·] and g in NLS-GP.

Additional conditions are

(3.6) a1001 − a0000 > 0

and

a1111 − a0110 − 2a0011 > 0,(3.7)

a1111 − a0110 > 0,(3.8)

which we shall see are related to secondary bifurcations and the exchange of stability
at the bifurcation point.

Note also that

(3.9) a0000 < 0, a1111 < 0

since K[·] preserves positivity and g < 0; see (2.19) and hypothesis (H3).

1Since the full problem, with η �= 0, adds higher order terms in (3.1)-(3.2), from singularity
theory we expect that they will not qualitatively change the bifurcation diagram. We do not make
use of results in singularity theory instead we prefer a self-contained treatment yielding a detailed
understanding of the effect of the physically important unfolding parameter Ω1 − Ω0.
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One can easily construct, using (3.9), the following two pure mode solutions of
(3.1)-(3.2):

(1) Approximate nonlinear symmetric branch:

c1 = 0, c0 =
√

Ω−Ω0

a0000
eiθ, 0 ≤ θ < 2π, Ω ≤ Ω0.

In terms of the physical parameter N : c1 = 0, c0 =
√
N eiθ, Ω = Ω0+a0000N ,

where N ≥ 0, 0 ≤ θ < 2π.
(2) Approximate nonlinear antisymmetric branch:

c0 = 0, c1 =
√

Ω−Ω1

a1111
eiθ, 0 ≤ θ < 2π, Ω ≤ Ω1.

In terms of the physical parameter N : c0 = 0, c1 =
√
N eiθ, Ω = Ω1+a1111N ,

where N ≥ 0, 0 ≤ θ < 2π.
The above two solutions correspond to those of NLS-GP given by Theorem 2.1.

Under assumptions (3.4)–(3.8) the system (3.1)-(3.2) has exactly one more (sec-
ondary) branch of solutions which bifurcates from the symmetric branch at

Ω∗ = Ω0 +
a0000(Ω1 − Ω0)

a0000 − a1001 − 2a1010
< Ω0

or, equivalently, at

Ncr =
Ω1 − Ω0

a0000 − a1001 − 2a1010
> 0.(3.10)

In terms of the physical parameter N , these mixed mode solutions of the approximate
system are given by

(3) Approximate nonlinear asymmetric branch: For N ≥ Ncr, 0 ≤ θ0, θ1 <
2π, θ1 − θ0 ∈ {0, π},

c0 =

√
(a1111 − a0110 − 2a0011)N + (Ω1 − Ω0)

a1111 − a0110 − 2a0011 + a0000 − a1001 − 2a1010
eiθ0 ,

c1 =

√
(a0000 − a1001 − 2a1010)N − (Ω1 − Ω0)

a1111 − a0110 − 2a0011 + a0000 − a1001 − 2a1010
eiθ1 ,

Ω = Ω0+

(a0000a1111 − (a1001 + 2a1010)(a0110 + 2a0011))N
− (a0000 − a1001 − 2a1010)(Ω1 − Ω0)

a1111 − a0110 − 2a0011 + a0000 − a1001 − 2a1010
.(3.11)

To derive the above solutions, first introduce polar coordinates: cj = ρje
iθj , j =

1, 2, Δθ = θ1 − θ0. Then, (3.1)-(3.2) becomes

ρ0

[
Ω0 − Ω + a0000ρ

2
0 +

(
a0110 + a0011 + a0011e

i2Δθ
)
ρ2
1

]
= 0,(3.12)

ρ1

[
Ω1 − Ω + a1111ρ

2
1 +

(
a1001 + a1010 + a1010e

−i2Δθ
)
ρ2
0

]
= 0.(3.13)

Taking the imaginary parts of both equations and using the fact that all coefficients
are real, see (2.19), we get a0011 sin(2Δθ) = 0 = a1010 sin(2Δθ). Because of (3.5), the
latter are equivalent with Δθ ∈ {0, π/2, π, 3π/2} modulo 2π, note that a0011 = a1010;
see (2.19). The real parts of (3.12)-(3.13) become

ρ0

[
Ω0 − Ω + a0000ρ

2
0 + (a0110 + 2a0011) ρ

2
1

]
= 0,(3.14)

ρ1

[
Ω1 − Ω + a1111ρ

2
1 + (a1001 + 2a1010) ρ

2
0

]
= 0(3.15)
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for Δθ ∈ {0, π}, while for Δθ ∈ {π/2, 3π/2},

ρ0

[
Ω0 − Ω + a0000ρ

2
0 + a0110ρ

2
1

]
= 0,(3.16)

ρ1

[
Ω1 − Ω + a1111ρ

2
1 + a1001ρ

2
0

]
= 0.(3.17)

Both systems (3.14)-(3.15) and (3.16)-(3.17), respectively, can be easily analyzed and
even reduced to a linear system by the change of variables: P0 = ρ2

0, P1 = ρ2
1. The

first one, under assumption (3.4), gives the mixed mode solution (3) in addition to
the pure mode solutions (1) and (2), and no other solutions provided (3.7) holds. The
second system gives no other solutions provided (3.6), (3.8) hold. Thus we have that
the finite-dimensional Galerkin approximation yields the qualitative structure of the
NLS-GP bifurcation diagram of Figure 3. Dynamic stability can also be addressed
in the context of the Galerkin-truncated time-dependent Hamiltonian dynamics. We
defer our study of stability to our considerations of the full PDE problem in the
coming sections.

The study of the systems (3.14)-(3.15) and (3.16)-(3.17) can be put in the context
of singularity theory and bifurcations in systems with symmetry [8]. These systems
exhibit a Z2 ⊕ Z2 symmetry. Actually the argument in the next section shows that
under the nondegeneracy condition (3.5), bifurcation problems with four degrees of
freedom and O(2) × Z2 symmetry are reducible to two distinct systems each with
two degrees of freedom and Z2 ⊕ Z2 symmetry. The latter have been classified, for
example, in [8, Chapter X]. Under assumptions (3.4), (3.7), our first system (3.14)-
(3.15) falls in case A subcase (1) [8, Chapter X] while under (3.6), (3.8) our second
system falls in their case A subcases (2) or (3). Note that the above-cited book uses
λ = Ω0 − Ω as bifurcation parameter and σ = Ω0 − Ω1 as the unfolding parameter
which explains the differences between our bifurcation diagram in Figure 1 and their
Figure 4.3 in Chapter X.

Finally, the posited properties of aklmn can be directly verified for general double-
well problems with L sufficiently large; see the proof of Corollary 4.1.

4. Bifurcation/symmetry breaking analysis of the PDE. In this section
we prove the following theorem.

Theorem 4.1 (symmetry breaking for NLS-GP). Consider NLS-GP with hy-
potheses (H2)–(H4). Let aklmn be given by (2.19) and let

Ξ[ψ0, ψ1, g] ≡ a0000 − a1001 − 2a1010(4.1)

=
(
ψ2

0 , gK[ψ2
0 ]
)
−
(
ψ2

1 , gK[ψ2
0 ]
)
− 2 (ψ0ψ1, gK[ψ0ψ1]) > 0,(4.2)

a1010 = (ψ0ψ1, gK[ψ0ψ1]) �= 0.(4.3)

Assume

(4.4)
Ω1 − Ω0

Ξ[ψ0, ψ1, g]2
is sufficiently small.

Then, there exists Ncr > 0 such that
(i) for any N ≤ Ncr, there is (up to the symmetry u �→ u eiγ) a locally unique

symmetric state, usym
N .

(ii) N = Ncr, usym
Ncr

is a bifurcation point. For N > Ncr, there are, in a
neighborhood of N = Ncr, u

sym
Ncr

, two branches of solutions: (a) a continuation
of the symmetric branch and (b) a new asymmetric branch.
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(iii) The critical N value for bifurcation is given approximately by

Ncr =
Ω1 − Ω0

Ξ[ψ0, ψ1, g]

[
1 + O

(
Ω1 − Ω0

Ξ[ψ0, ψ1, g]2

)]
.

(iv) The bifurcation from the zero state at Ω = Ω0 and the bifurcation described
in (i)–(iii) are the only ones along this branch for N small.

Corollary 4.1 (application to double wells, VL, with separation L). Fix a pair
of eigenvalues, (Ω2j , ψ2j), (Ω2j+1, ψ2j+1), of the linear double-well potential, VL(x);
see Example 2.1. Assume that K(x) → 0 as |x| → 0 and limL→±∞ g(x1+L, x2, . . . ) =
g±(x2, . . . ) < 0. Then, for the NLS-GP with double-well potential of well-separation
L, there exists L̃ > 0 such that for all L ≥ L̃, there is a symmetry-breaking bifurcation,
as described in Theorem 4.1, with Ncr = Ncr(L; j).

Proof of Corollary 4.1. The crux is to verify the spectral properties (H4), the
nondegeneracy condition (4.3), and the smallness condition (4.4). The spectral prop-
erties of HL = −Δ + VL are handled in Proposition 8.1 of the appendix. In what
follows we show that

lim
L→∞

a0000 − a1001 = 0,(4.5)

lim
L→∞

a1010 < 0.(4.6)

These imply both (4.3) and (4.4) since Ω0 − Ω1 → 0 as L → ∞; see Proposition 8.1.
For (4.5), (4.6) we use the large L asymptotic behavior of the eigenfunctions of

HL, given in Proposition 8.1, together with the continuity of the nonlinearity (2.5),
to rewrite them as

lim
L→∞

a0000 − a1001 = lim
L→∞

1

2

(
TLψω, gK[(TLψω + RTLψω)2]RTLψω

)
,(4.7)

lim
L→∞

a1010 = lim
L→∞

1

4

(
TLψ

2
ω −RTLψ

2
ω, gK[TLψ

2
ω −RTLψ

2
ω]
)
.(4.8)

To obtain (4.5) approximate ψω ∈ H2 by smooth functions with compact support ψ0
ω.

For sufficiently large L, TLψ
0
ω and RTLψ

0
ω have no common support and the scalar

product in (4.7) is zero. The continuity of the nonlinearity (2.5) implies (4.5).
Now, the right-hand side in (4.8) has two types of similar terms:

lim
L→∞

(
TLψ

2
ω, gK[RTLψ

2
ω]
)

= lim
L→∞

(
ψ2
ω, (T−Lg)T−2LK[Rψ2

ω]
)

= 0,

lim
L→∞

(
TLψ

2
ω, gK[TLψ

2
ω]
)

= lim
L→∞

(
ψ2
ω, (T−Lg)K[ψ2

ω]
)

=
(
ψ2
ω, g−K[ψ2

ω]
)
< 0,

where we used the symmetries of g and K and their behavior as x1 → ±∞. This
completes the proof of the corollary.

To prove Theorem 4.1 we will establish that, under hypotheses (4.2)–(4.4), the
character of the solution set (symmetry-breaking bifurcation) of the finite-dimensional
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approximation (3.1)-(3.2) persists for the full (infinite-dimensional) problem:

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0(4.9)

+ a0011c
2
1c̄0 + (ψ0g,R(c0, c1, η)) = 0,

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1(4.10)

+ a1010c
2
0c̄1 + (ψ1g,R(c0, c1, η)) = 0,

(H − Ω) η = −P̃ g [F (·; c0, c1) + R(c0, c1, η) ] , η = P̃ η,(4.11)

|c0|2 + |c1|2 +

∫
|η|2 = N .(4.12)

We analyze this system using the Lyapunov–Schmidt-type method. The strat-
egy is to solve (4.11) for η as a functional of c0, c1, and Ω. Then, substituting
η = η[c0, c1,Ω] into (4.9), (4.10), and (4.12), we obtain three closed equations, de-
pending on a parameter N , for c0, c1, and Ω. This system is a perturbation of the
finite-dimensional (truncated) system: (3.1)–(3.3). We then show that under hy-
potheses (4.2)–(4.4) there is a symmetry-breaking bifurcation. Finally, we show that
the terms perturbing the finite-dimensional model have a small and controllable effect
on the character of the solution set for a range of N , which includes the bifurcation
point. As seen in the proof, the form of the nonlinearity implies analyticity. However,
analyticity is not essential for the arguments, at the root of which is the implicit func-
tion theorem, and the methods can be adapted to situations where one has a finite
degree of smoothness.

We begin with the following proposition, which characterizes η = η[c0, c1,Ω].
Proposition 4.1. Consider (4.11) for η. By (H4) we have the following:

(4.13) Gap condition : |Ωj − τ | ≥ 2d∗ for j = 0, 1 and for all τ ∈ σ(H)\{Ω0,Ω1}.

Then there exist n∗, r∗ > 0, depending on d∗, such that in the open set

|c0| + |c1| < r∗,(4.14)

‖c0ψ0 + c1ψ1 + η‖H2 < n∗(d∗),

dist(Ω, σ(H) \ {Ω0,Ω1}) > d∗,(4.15)

the unique solution of (2.18) is given by the real-analytic mapping

(4.16) (c0, c1,Ω) �→ η[c0, c1,Ω],

defined on the domain given by (4.14)-(4.15). Moreover, there exists C∗ > 0 such that

(4.17) ‖η[c0, c1,Ω]‖H2 ≤ C∗(|c0| + |c1|)3.

Proof. Consider the map

N : H2 ×H2 ×H2 �→ L2,

N(φ0, φ1, φ2) = gK[φ1φ̄2]φ3.

By assumptions on the nonlinearity (see section 2), there exists a constant k > 0 such
that

(4.18) ‖N(φ0, φ1, φ2)‖L2 ≤ k‖φ1‖H2‖φ2‖H2‖φ3‖H2 .

Moreover, since the map is real linear in each component, it is real analytic.2

2The trilinearity follows from the implicit bilinearity of K in formulas (2.16)–(2.18).
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Let c0, c1, and Ω be restricted according to (4.14)-(4.15). Equation (2.18) can be
rewritten in the form

(4.19) η + (H − Ω)−1P̃N [c0ψ0 + c1ψ1 + η] = 0.

Since the spectrum of HP̃ is bounded away from Ω by d∗, the resolvent

(H − Ω)−1P̃ : L2 �→ H2

is a (complex) analytic map and bounded uniformly,

(4.20) ‖(H − Ω)−1P̃‖L2 �→H2 ≤ p(d−1
∗ ),

where p(s) → ∞ as s → ∞. Consequently the map F : C
2 ×{Ω ∈ C : dist(Ω, σ(H)\

{Ω0,Ω1} } ≥ d∗} ×H2 �→ H2 given by

(4.21) F (c0, c1,Ω, η) = η + (H − Ω)−1P̃N [c0ψ0 + c1ψ1 + η]

is real analytic. Moreover,

F (0, 0,Ω, 0) = 0, DηF (0, 0,Ω, 0) = I.

Applying the implicit function theorem to (4.19), we have that there exists n∗(Ω), r∗(Ω)
such that whenever |c0|+ |c1| < r∗ and ‖c0ψ0 + c1ψ1 +η‖H2 < n∗, (4.19) has a unique
solution:

η = η(c0, c1,Ω) ∈ H2

which depends analytically on the parameters c0, c1, Ω. By applying the projection
operator P̃ to (4.19), which commutes with (H−Ω)−1, we immediately obtain P̃ η = η,
i.e., η ∈ P̃L2.

We now show that n∗, r∗ can be chosen independently of Ω, satisfying (4.15).
The implicit function theorem can be applied in an open set for which

DηF (c0, c1,Ω, η) = I + (H − Ω)−1P̃DηN [c0ψ0 + c1ψ1 + η]

is invertible. For this it suffices to have

‖(H − Ω)−1P̃DηN [c0ψ0 + c1ψ1 + η]‖H2 ≤ Lip < 1.

A direct application of (2.5) and (4.20) shows that

(4.22) ‖(H − Ω)−1P̃DηN [c0ψ0 + c1ψ1 + η]‖H2 ≤ 3k p(d−1
∗ )‖c0ψ0 + c1ψ1 + η‖2

H2 .

Fix Lip = 3/4. Then, a sufficient condition for invertibility is

(4.23) 3k p(d−1
∗ ) ‖c0ψ0 + c1ψ1 + η‖2

H2 ≤ Lip = 3/4,

which allows us to choose n∗ = 1
2

√
1

kp(d−1
∗ )

independently of Ω.

But, if (4.23) holds, then, from (4.22), the H2 operator

(H − Ω)−1P̃N [c0ψ0 + c1ψ1 + ·]
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is Lipschitz with Lipschitz constant less than or equal to Lip = 3/4. The standard
contraction principle estimate applied to (4.19) gives

‖η‖H2 ≤ 1

1 − Lip
‖(H − Ω)−1P̃N [c0ψ0 + c1ψ1]‖H2

≤ 4p(d−1
∗ ) k‖c0ψ0 + c1ψ1‖3

H2 .(4.24)

Plugging the above estimate into (4.23) gives

‖c0ψ0 + c1ψ1‖H2 + 4p(d−1
∗ ) k‖c0ψ0 + c1ψ1‖3

H2 ≤ 1

2
√
p(d−1

∗ )k
.

Since the left-hand side is continuous in (c0, c1) ∈ C
2 and zero for c0 = c1 = 0, one

can construct r∗ > 0 depending only on d∗, k such that the above inequality, hence
(4.23) and (4.24), all hold whenever |c0| + |c1| ≤ r∗. Finally, (4.17) now follows from
(4.24).

In particular, for the double-well potential we have the following proposition.
Proposition 4.2. Let V = VL denote the double-well potential with well-

separation L. There exist L∗ > 0, ε(L∗) > 0, and d∗(L∗) > 0 such that for L >
L∗, we have that for (c0, c1,Ω) satisfying dist(Ω, σ(H) \ {Ω0,Ω1}) ≥ d∗(L∗) and
|c0| + |c1| < ε(L∗), η[c0, c1,Ω] is defined and analytic and satisfies the bound (4.17)
for some C∗ > 0.

Proof. Since Ω0,Ω1, ψ0, and ψ1 can be controlled uniformly in L large, both d∗
and r∗ in the previous proposition can be controlled uniformly in L large.

Next we study the symmetries of η(c0, c1,Ω) and the properties of R(c0, c1, η)
which we will use in analyzing (2.16)-(2.17). The following result is a direct conse-
quence of the symmetries of (2.18) and Proposition 4.1.

Proposition 4.3. We have

η(eiθc0, e
iθc1,Ω) = eiθη(c0, c1,Ω) for 0 ≤ θ < 2π,(4.25)

η(c0, c1,Ω) = η(c0, c1,Ω),(4.26)

in particular

η(eiθc0, c1 = 0,Ω) = eiθη(c0, c1 = 0,Ω),(4.27)

η(c0 = 0, eiθc1,Ω) = eiθη(c0 = 0, c1,Ω),(4.28)

η(c0, 0,Ω) is even in x1, η(0, c1,Ω) is odd in x1, and if c0, c1, and Ω are real-valued,
then η(c0, c1,Ω) is real-valued.

In addition

〈ψ0,R(c0, c1, η)〉 = c0 f0 (c0, c1,Ω) ,(4.29)

〈ψ1,R(c0, c1, η)〉 = c1 f1 (c0, c1,Ω) ,(4.30)

where, for any 0 ≤ θ < 2π and j = 0, 1,

fj
(
eiθc0, e

iθc1,Ω
)

= fj (c0, c1,Ω) ,(4.31)

fj(c0, c1,Ω ) = fj
(
c0, c1,Ω

)
,(4.32)

|fj (c0, c1,Ω)| ≤ C(|c0| + |c1|)4(4.33)
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for some constant C > 0. Moreover, both f0 and f1 can be written as absolutely
convergent power series:

(4.34)

fj(c0, c1,Ω) =
∑

k + l + m + n ≥ 4,
k − l + m − n = 0,

m + n = even

bjklmn(Ω)ck0 cl0 cm1 cn1 , j = 0, 1,

where bjklmn(Ω) are real valued when Ω is real valued. In particular, if c0, c1, and Ω
are real valued, then fj(c0, c1,Ω) is real valued and, in polar coordinates, for c0, c1 �= 0,
we have

(4.35) fj(|c0|, |c1|,Δθ,Ω) =
∑

k+m≥2, p∈Z

bjkmp(Ω)eip2Δθ|c0|2k|c1|2m, j = 0, 1,

where Δθ is the phase difference between c1 ∈ C and c0 ∈ C.
Proof of Proposition 4.3. We start with (4.25) which clearly implies (4.27)-(4.28).

We fix Ω and suppress dependence on it in subsequent notation. From (4.19) we have

η(eiθc0, e
iθc1)

= −(H − Ω)−1P̃

N(eiθc0ψ0 + eiθc1ψ1 + η, eiθc0ψ0 + eiθc1ψ1 + η, eiθc0ψ0 + eiθc1ψ1 + η)

= −(H − Ω)−1P̃

eiθN(c0ψ0 + c1ψ1 + e−iθη, c0ψ0 + c1ψ1 + e−iθη, c0ψ0 + c1ψ1 + e−iθη),

where we used

(4.36) N(aφ1, bφ2, cφ3) = abcN(φ1, φ2, φ3).

Consequently,

e−iθη(eiθc0, e
iθc1) = −(H − Ω)−1P̃

N [c0ψ0 + c1ψ1 + e−iθη, c0ψ0 + c1ψ1 + e−iθη, c0ψ0 + c1ψ1 + e−iθη]

which shows that both e−iθη(eiθc0, e
iθc1) and η(c0, c1) satisfy the same equation

(4.19). From the uniqueness of the solution proved in Proposition 4.1 we have the
relation (4.25).

A similar argument (and use of the complex conjugate) leads to (4.26) and to the
parities of η(c0, 0) and η(0, c1).

To prove (4.29) and (4.30), recall that

R (c0, c1, η(c0, c1,Ω)) = N(c0ψ0 + c1ψ1 + η, c0ψ0 + c1ψ1 + η, c0ψ0 + c1ψ1 + η)

−N(c0ψ0 + c1ψ1, c0ψ0 + c1ψ1, c0ψ0 + c1ψ1).(4.37)

Consider first the case c1 = ρ1 ∈ R. Note that

〈ψ1g,R(c0, ρ1 = 0, η(c0, 0))〉 = 0.

Indeed, for ρ1 = 0, all the functions in the arguments of R are even functions (in
x1) making R an even function. Since ψ1 is odd we get that the above is the in-
tegral over the entire space of an odd function, and therefore equal to zero. Since
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〈ψ1,R(c0, ρ1, η(c0, ρ1))〉 is analytic in ρ1 ∈ R by the composition rule and its Taylor
series starts with zero, we get (4.30) for real c1 = ρ1. To extend the result for complex
values c1 we use the rotational symmetry of R, namely from (4.25), (4.36), and (4.37)
we have

R
(
eiθc0, e

iθc1, η(e
iθc0, e

iθc1,Ω)
)

= eiθR (c0, c1, η(c0, c1,Ω)) , 0 ≤ θ < 2π,

hence (4.30) holds for c1 = |c1|e−iθ by extending f1 via the equality (4.31).
A similar argument holds for (4.29). Identity (4.33) follows from the definition of

R and (4.17) while identity (4.32) follows from (4.26).
We now turn to a proof of the expansions for fj : (4.34) and (4.35). Note first

that R is real analytic because in (4.37) N is real linear in each variable and η is real
analytic by Proposition 4.1. Hence, both f0 and f1 given by (4.29)-(4.30) are real
analytic in c0, c1 and can be written in power series of the type (4.34). Estimate
(4.33) implies that k + l + m + n ≥ 4, while the rotational invariance (4.31) implies
k− l+m−n = 0. The following parity argument shows why m+n hence m−n = l−k
and k + l are all even. Assume m + n is odd. Note that because of (4.29), b0klmn is
the scalar product between an even function (in x1) ψ0 and the term in the power
series of R in which ψ1 is repeated m+n times. The latter is an odd function (in x1)
because ψ1 is an odd function and it is repeated an odd number of times. The scalar
product and hence b0klmn for m + n odd will be zero. A similar argument holds for

b1klmn, m + n odd. Finally bjklmn(Ω) are real-valued when Ω is real because they are
scalar products of real-valued functions.

The form (4.35) of the power series follows directly from (4.34) by expressing c0
and c1 in their polar forms: c0 = |c0|eiθ0 and c1 = |c1|eiθ1 , Δθ = θ1 − θ0, and using
that m+ n, k + l, and m− n = −(k− l) are all even. The proof of Proposition 4.3 is
now complete.

4.1. Ground state and excited state branches, prebifurcation. In this
section we prove part (i) of Theorem 4.1 as well as a corresponding statement about
the excited state. In particular, we show that for sufficiently small amplitude, the
only nonlinear bound state families are those arising via bifurcation from the zero
state at the eigenvalues Ω0 and Ω1. This is true for general potentials with two bound
states. Here, however, we can determine threshold amplitude, Ncr, above which the
solution set changes.

A closed system of equations for c0, c1, and Ω, parametrized by N , is obtained
upon substitution of η[c0, c1,Ω] (Proposition 4.1) into (4.9)–(4.12). Furthermore,
using the structural properties (4.29)-(4.30) of Proposition 4.3, we obtain

(Ω0 − Ω) c0 + a0000|c0|2c0 + (a0110 + a0011) |c1|2c0 + a0011c
2
1c̄0 + c0f0(c0, c1,Ω) = 0,

(4.38)

(Ω1 − Ω) c1 + a1111|c1|2c1 + (a1010 + a1001) |c0|2c1 + a1010c
2
0c̄1 + c1f1(c0, c1,Ω) = 0,

(4.39)

|c0|2 + |c1|2 + O
(
|c0|2 + |c1|2

)3
= N .

(4.40)

This system of equations is valid for |c0| + |c1| < r∗, independent of L (the distance
between wells).

If we choose c1 = 0, then the second equation in the system, (4.39), is satisfied.
In this case, a nontrivial solution requires c0 �= 0. The first equation, (4.38), after
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factoring out c0 becomes

(4.41) Ω0 − Ω + a0000|c0|2 + f0(|c0|, 0,Ω) = 0,

where we used (4.31) to eliminate the phase of the complex quantity c0. Since Ω is
real, (4.41) becomes one equation with two real parameters Ω, |c0|. Since the right-
hand side of (4.41) vanishes for Ω = Ω0 and |c0| = 0 and since the partial derivative
of this function with respect to Ω, evaluated at this solution, is nonzero, we have by
the implicit function theorem that there is a unique solution

(4.42) Ω = Ωg(|c0|) = Ω0 + a0000|c0|2 + O(|c0|4).

By (4.40), for small amplitudes, the mapping from |c0|2 + |c1|2 to N is invertible. The
family of solutions

|c0| �→
(
|c0|eiθ, |c1| = 0,Ω = Ωg(|c0|)

)
, θ0 ∈ [0, 2π),

defined for |c0| sufficiently small, corresponds to a family of symmetric nonlinear
bound states, uN with ‖uN ‖2

L2 = N , bifurcating from the zero solution at the linear
eigenvalue Ω0

uN = (|c0|ψ0(x) + η[|c0|, 0,Ωg(|c0|)](x)) eiθ0 , θ0 ∈ [0, 2π);

see, for example, [21, 25, 26]. Since both ψ0 and η(|c0|, 0,Ωg) are even (in x1) we infer
that uN is symmetric (even).

Remark 4.1. A similar result holds for the case c0 = 0 leading to the antisym-
metric excited state branch.

Proposition 4.4. For |c0|+|c1| sufficiently small, these two branches of solutions
are the only nontrivial solutions of (2.7).

Proof. Indeed, suppose the contrary. By local uniqueness of these branches,
ensured by the implicit function theorem, a solution not already lying on one of these
branches must have both c0 and c1 nonzero. Now, divide the first equation by c0, the
second equation by c1, and subtract the results. Introducing polar coordinates

(4.43) c0 = ρ0e
iθ0 , c1 = ρ1e

iθ1 , Δθ = θ1 − θ0,

we obtain from (4.38)

Ω1 − Ω0 = a0000ρ
2
0 +

(
a0110 + a0011 + a0011e

i2Δθ
)
ρ2
1 + f0 (ρ0, ρ1,Δθ,Ω)

− a1111ρ
2
1 −

(
a1001 + a1010 + a1010e

−i2Δθ
)
ρ2
0 − f1 (ρ0, ρ1,Δθ,Ω) .(4.44)

The left-hand side is nonzero while the right-hand side is continuous uniformly for Ω
satisfying (4.15) and zero for ρ0 = 0 = ρ1. Equation (4.44) cannot hold for |ρ0|+|ρ1| <
ε where ε > 0 is independent of Ω. This completes the proof of Proposition 4.4.

Note, however, that nothing can preclude validity of (4.44) for larger ρ0 and ρ1,
possibly leading to a third branch of solutions of (2.7). In what follows, we show that
this is indeed the case and the third branch bifurcates from the ground state one at
a critical value of ρ0 = ρ∗0.

4.2. Symmetry-breaking bifurcation along the ground state/symmetric
branch. A consequence of the previous section is that there are no bifurcations from
the ground state branch for sufficiently small amplitude. We now seek a bifurcating
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branch of solutions to (2.16), (4.40), along which c0 · c1 �= 0. As argued just above,
along such a new branch one must have

Ω0 − Ω + a0000ρ
2
0 +

(
a0110 + a0011 + a0011e

i2Δθ
)
ρ2
1 + f0(ρ0, ρ1,Δθ,Ω) = 0,(4.45)

Ω1 − Ω + a1111ρ
2
1 +

(
a1010 + a1001 + a1010e

−i2Δθ
)
ρ2
0 + f1(ρ0, ρ1,Δθ,Ω) = 0.(4.46)

We first derive constraints on Δθ. Consider the imaginary parts of the two equa-
tions and use the expansions (4.35) and the fact that Ω is real:

a0011 sin(2Δθ)ρ2
1 +

∑
k,m≥1, p∈Z

b0kmp(Ω) sin(p2Δθ)ρ2k
0 ρ2m

1

= sin(2Δθ)ρ2
1(a0011 + O(ρ2

0 + ρ2
1)) = 0,

− a1010 sin(2Δθ)ρ2
0 +

∑
k,m≥1, p∈Z

b1kmp(Ω) sin(p2Δθ)ρ2k
0 ρ2m

1

= sin(2Δθ)ρ2
0(−a1010 + O(ρ2

0 + ρ2
1)) = 0.

Due to the nondegeneracy assumption (4.3) and a0011 = a1010, see (2.19), both equa-
tions hold if and only if sin(2Δθ) = 0 or, equivalently,

(4.47) Δθ ∈
{

0,
π

2
, π,

3π

2

}
.

Case 1. Δθ ∈ {0, π}: Here, the system (4.45)-(4.46) is equivalent to the same
system of two real equations with three real parameters ρ0 ≥ 0, ρ1 ≥ 0, and Ω:

F0(ρ0, ρ1,Ω)
def
= Ω0 − Ω + a0000ρ

2
0 + (a0110 + 2a0011) ρ

2
1 + f0(ρ0, ρ1,Ω) = 0,(4.48)

F1(ρ0, ρ1,Ω)
def
= Ω1 − Ω + a1111ρ

2
1 + (2a1010 + a1001) ρ

2
0 + f1(ρ0, ρ1,Ω) = 0.(4.49)

We begin by seeking the point along the ground state branch (ρ∗0, 0,Ωg(ρ
∗
0)) from

which a new family of solutions of (4.48)-(4.49), parametrized by ρ1 ≥ 0, bifurcates;
see (4.42).

Recall first that for any ρ0 ≥ 0 sufficiently small, F0 (ρ0, 0,Ωg(ρ0)) = 0. A
candidate for a bifurcation point is ρ∗0 > 0 for which, in addition,

(4.50) F1(ρ
∗
0, 0,Ωg(ρ

∗
0)) = 0.

Using (4.33) one can check that

(4.51) F1(ρ0, 0,Ωg(ρ0)) = Ω1 − Ω0 +
(
a1001 + 2a1010 − a0000 + O(ρ2

0)
)
ρ2
0 = 0

has a solution:

(4.52) ρ∗0 =

√
Ω1 − Ω0

|a1001 + 2a1010 − a0000|

[
1 + O

(
Ω1 − Ω0

|a1001 + 2a1010 − a0000|2

)]
.

We now show that a new family of solutions bifurcates from the symmetric state at
(ρ∗0, 0,Ωg(ρ

∗
0)). This is realized as a unique, one-parameter family of solutions

(4.53) ρ1 �→ (ρ0(ρ1), ρ1,Ωasym(ρ1))
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of the equations

(4.54) F0(ρ0, ρ1,Ω) = 0, F1(ρ0, ρ1,Ω) = 0.

To see this, note that by the preceding discussion we have Fj(ρ
∗
0, 0,Ωg(ρ

∗
0)) =

0, j = 1, 2. Moreover, the Jacobian∣∣∣∣∂(F0, F1)

∂(ρ0,Ω)
(ρ∗0, 0,Ωg(ρ

∗
0))

∣∣∣∣ = 2ρ∗0(a1001 + 2a1010 − a0000 + O(ρ∗20 ))

is nonzero because ρ∗0 > 0 and

(4.55) a1001 + 2a1010 − a0000 + O(ρ∗20 ) < 0

since ρ∗0 solves (4.51) and Ω1 − Ω0 > 0. Therefore, by the implicit function theorem,
for small ρ1 > 0, there is a unique solution of the system (4.48)-(4.49):

ρ0 = ρ0(ρ1) = ρ∗0 +
ρ2
1

2ρ∗0

(
a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)
+ O(ρ4

1),

(4.56)

Ω = Ωasym(ρ1) = Ωg(ρ
∗
0)

(4.57)

+ ρ2
1

(
a1111 + (2a1010 + a1001)

a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)
+ O(ρ4

1).

Remark 4.2. (1) Due to the equivalence of N and ρ2
0 +ρ2

1 as parameters, for small
amplitude, we have that symmetry is broken at

(4.58) Ncr ∼ Ω1 − Ω0

|a0000 − a1001 − 2a1010|
.

(2) Note also that we have the family of solutions

(4.59) eiθ (ρ0(ρ1)ψ0 ± ρ1ψ1 + η(ρ0(ρ1),±ρ1,Ωasym(ρ1))) , 0 ≤ θ < 2π, ρ1 > 0.

Here the ± is present because the phase difference Δθ between c0 and c1 can be 0 or
π; see (4.47) and immediately below it. Because ρ0 �= 0 �= ρ1 this branch is neither
symmetric nor antisymmetric. Thus, symmetry breaking has taken place. In the case
of the double well, the ± sign in (4.59) shows that the bound states on this asymmetric
branch tend to localize in one of the two wells but not symmetrically in both; see also
[3], [23], [14].

Case 2. Δθ ∈
{

π
2 ,

3π
2

}
: In both cases the system (4.45)-(4.46) is equivalent to

the system of two real equations, depending on three real parameters ρ0 ≥ 0, ρ1 ≥ 0,
and Ω:

F0(ρ0, ρ1,Ω)
def
= Ω0 − Ω + a0000ρ

2
0 + a0110ρ

2
1 + f0(ρ0, ρ1,Ω) = 0,(4.60)

F1(ρ0, ρ1,Ω)
def
= Ω1 − Ω + a1111ρ

2
1 + a1001ρ

2
0 + f1(ρ0, ρ1,Ω) = 0.(4.61)

As before, in order to have a second bifurcation of the symmetric branch it is necessary
to find a point, (ρ∗∗0 , 0,Ωg(ρ

∗∗
0 )), for which

(4.62) F1(ρ
∗∗
0 , 0,Ωg(ρ

∗∗
0 ) = Ω1 − Ω0 + (a1001 − a0000) ρ

∗∗2
0 + O(ρ∗∗40 ) = 0.
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To preclude the existence of this bifurcation, one must have that there are no real
solutions for ρ∗∗0 small. This is ensured by inequality (3.6): a1001 − a0000 > 0.

In fact (3.6) can be deduced from the following general argument and thus we
need not hypothesize it. Let L− and L+ denote the second-order, self-adjoint Schrö-
dinger operators, defined in section 5, and related to the real and imaginary parts of
the linearized NLS-GP equation about a real-valued nonlinear bound state. Consider
the full complex linearization of the nonlinear bound state equation for NLS-GP. A
nontrivial solution of the type in question would correspond to a second element of the
null space of L−. Since zero is the lowest eigenvalue of L− and the lowest eigenvalue of
an elliptic second-order operator is nondegenerate, we have a contradiction. It follows
that there is no bifurcation for small amplitude and therefore (3.6) holds.

Remark 4.3. A similar argument holds along the antisymmetric branch. We now
denote L± as linearized operators associated with the antisymmetric (odd parity with
respect to x1) branch. A bifurcation would occur along it if and only if dim kerL− ≥ 2
(the antisymmetric nonlinear bound state is always in kerL− along this branch) or
dim kerL+ ≥ 1. In the regime in which the first two eigenvalues are still separated
from the rest of the spectrum, the former means that the lowest eigenvalue of L−, i.e.,
the one bifurcating from Ω0 −Ω1, crosses zero and becomes double. This contradicts
the nondegeneracy of the ground state of the second-order elliptic operator L−. Now,
dim kerL+ ≥ 1 is also impossible. This follows from the fact that the nonlinearity is
attractive, see (H3), which easily implies that, for the nonlinear antisymmetric bound
state ΨΩ, we have (ΨΩ, L+ΨΩ) < 0. Since L+ is self-adjoint and its lowest eigenvalue
has a symmetric eigenvector orthogonal on ΨΩ, we get that the first two eigenvalues
must be strictly negative and none can become zero. A consequence of a lack of
bifurcation along the antisymmetric branch are inequalities (3.7), (3.8).

In summary, there are no other bifurcations than those stated in Theorem 4.1
for NLS-GP, where our Lyapunov–Schmidt-type reduction applies, i.e., in the regime
covered by Proposition 4.1.

5. Exchange of stability at the bifurcation point. In this section we con-
sider the dynamic stability of the symmetric and asymmetric waves, associated with
the branch bifurcating from the zero state at the ground state frequency, Ω0, of the
linear Schrödinger operator −Δ + V (x); see Figure 1.

The notion of stability with which we work is H1-orbital Lyapunov stability.
Definition 5.1. The family of nonlinear bound states {ΨΩ e−iΩt : θ ∈ [0, 2π)}

is H1-orbitally Lyapunov stable if for every ε > 0 there is a δ(ε) > 0 such that if the
initial data u0 satisfies

inf
θ∈[0,2π)

‖u0(·) − ΨΩ(·)eiθ‖H1 < δ,

then for all t �= 0, the solution u(x, t) satisfies

inf
θ∈[0,2π)

‖u(·, t) − ΨΩ(·)eiθ‖H1 < ε.

In this section we prove the following theorem.
Theorem 5.1. Consider the bifurcations elucidated in Theorem 4.1. The sym-

metric branch is H1-orbitally Lyapunov stable for 0 ≤ ρ0 < ρ∗0 or, equivalently,
0 < N < Ncr. At the bifurcation point ρ0 = ρ∗0 (N = Ncr), there is an exchange
of stability from the symmetric branch to the asymmetric branch. In particular, for
N > Ncr the asymmetric state is stable and the symmetric state is unstable.
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We summarize basic results on stability and instability. Introduce L+ and L−,
real and imaginary parts, respectively, of the linearized operators about a real-valued
state ΨΩ:

L+ = L+[ΨΩ]· = (H − Ω) · + ∂uN(u, u, u) |ΨΩ

≡ (H − Ω) · +DuN [ΨΩ](·),
L− = L−[ΨΩ]· = (H − Ω) · +N(ΨΩ,ΨΩ, ·).(5.1)

By (2.7) and (2.4), L−ΨΩ = 0.
We state a special case of known results on stability and instability, directly

applicable to the symmetric branch which bifurcates from the zero state at the ground
state frequency of −Δ + V .

Theorem 5.2 (see [32, 33, 10, 9, 15]).
(1) Stability: Suppose L+ has exactly one negative eigenvalue and L− is nonneg-

ative. Assume that

(5.2)
d

dΩ

∫
|ΨΩ(x)|2dx < 0.

Then, ΨΩ is H1-orbitally stable.
(2) Instability: Suppose L− is nonnegative. If n−(L+) ≥ 2, then the linearized

dynamics about ΨΩ has spatially localized solution which is exponentially
growing in time. Moreover, ΨΩ is not H1-orbitally stable.

First we claim that along the branch of symmetric solutions bifurcating from the
zero solution at frequency Ω0, the hypothesis on L− holds. To see that the operator
L−[ΨΩ] is always nonnegative, consider L−[ΨΩ0 ] = L−[0] = −Δ + V − Ω0. Clearly,
L−[0] is a nonnegative operator because Ω0 is the lowest eigenvalue of −Δ + V .
Since clearly we have L−ΨΩ = 0, 0 ∈ spec(L−[ΨΩ]). Since the lowest eigenvalue
is necessarily simple, by continuity there cannot be any negative eigenvalues for Ω
sufficiently close to Ω0. Finally, if for some Ω, L− has a negative eigenvalue, then by
continuity there would be an Ω∗ for which L−[ΨΩ∗ ] would have a double eigenvalue at
zero and no negative spectrum. But this contradicts that the ground state is simple.
Therefore, it is the quantity n−(L+) which controls whether or not ΨΩ is stable.

Next we discuss the slope condition (5.2). It is clear from the construction of the
branch Ω �→ ΨΩ that (5.2) holds for Ω near Ω0. Suppose now that ∂Ω

∫
|ΨΩ|2 = 0.

Then, 〈ΨΩ, ∂ΩΨΩ〉 = 0. As shown below, L+ has exactly one negative eigenvalue for
Ω sufficiently near Ω0. It follows that L+ ≥ 0 on {ΨΩ}⊥ (see [32, 33]). Therefore,

we have (L
1
2
+∂ΩΨΩ, L

1
2
+∂ΩΨΩ) = (L+∂ΩΨΩ, ∂ΩΨΩ) = (ΨΩ, ∂ΩΨΩ) = 0. Therefore,

L
1
2
+∂ΩΨΩ = 0, implying ΨΩ = L+∂ΩΨΩ = 0, which is a contradiction. It follows that

(5.2) holds so long as L+ > 0 on {ΨΩ}⊥ and when (5.2) first fails, it does so due to
a nontrivial element of the nullspace of L+.

Therefore, ΨΩ is stable so long as n−(L+) does not increase. We shall now
show that for N < Ncr, n−(L+[ΨΩ]) = 1 but that along the symmetric branch
for N > Ncr, n−(L+[ΨΩ]) = 2. Furthermore, we show that along the bifurcating
asymmetric branch, the hypotheses of Theorem 5.2 ensuring stability hold.

Remark 5.1. For simplicity we have considered the most important case where
there is a transition from dynamical stability to dynamical instability along the sym-
metric branch, bifurcating from the ground state of H. However, our analysis which
actually shows that along any symmetric branch, associated with any of the eigen-
values Ω2j , j ≥ 0, of H, there is a critical N = Ncr(j) such that as N is increased
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through Ncr(j), the number of negative eigenvalues of the linearization about the

symmetric state along the jth symmetric branch, n−(L
(j)
+ ), increases by one. By the

results in [15, 9, 19], this has implications for the number of unstable modes of higher
order (j ≥ 1) symmetric states.

Consider the spectral problem for L+ = L+[ΨΩ]:

(5.3) L+[ΨΩ]φ = μφ.

We now formulate a Lyapunov–Schmidt reduction of (5.3) and then relate it to our
formulation for nonlinear bound states. We first decompose φ relative to the states
ψ0, ψ1 and their orthogonal complement:

φ = α0ψ0 + α1ψ1 + ξ, (ψj , ξ) = 0, j = 0, 1.

Projecting (5.3) onto ψ0, ψ1 and onto the range of P̃ we obtain the system

〈ψ0, L+[ΨΩ](α0ψ0 + α1ψ1 + ξ)〉 = μα0,(5.4)

〈ψ1, L+[ΨΩ](α0ψ0 + α1ψ1 + ξ)〉 = μα1,(5.5)

(H − Ω)ξ + DuN [ΨΩ](α0ψ0 + α1ψ1 + ξ) = μξ.(5.6)

The last equation can be rewritten in the form

(5.7)[
I + (H − Ω − μ)−1P̃DuN [ΨΩ]

]
ξ = −(H − Ω − μ)−1P̃DuN [ΨΩ](α0ψ0 + α1ψ1).

The operator on the right-hand side of (5.7) is essentially the Jacobian studied in the
proof of Proposition 4.1, evaluated at Ω+μ. Hence, by the proof of Proposition 4.1, if
Ω+μ satisfies (4.15) and ‖ΨΩ‖H2 ≤ N∗, then the operator I+(H−Ω−μ)−1P̃DuN [ΨΩ]
is invertible on H2 and (5.7) has a unique solution

(5.8)

ξ
def
= ξ[μ, α0, α1,Ω]

≡ Q[μ,ΨΩ](α0ψ0 + α1ψ1)

= −(I + (H − Ω − μ)−1P̃DuN [ΨΩ])−1(H − Ω − μ)−1P̃DuN [ΨΩ](α0ψ0 + α1ψ1)

= O
[
(|ρ0| + |ρ1|)2

]
[α0ψ0 + α1ψ1] .

The last relation follows from DuN [ψ] being a quadratic form in ΨΩ = ρ0ψ0 +ρ1ψ1 +
O((|ρ0| + |ρ1|)3).

Substitution of the expression for ξ as a functional of αj into (5.4) and (5.5) we
get a closed system of two real equations:

(Ω0 − Ω)α0 + 〈ψ0, DuN [ΨΩ] (I + Q[μ,ΨΩ]) (α0ψ0 + α1ψ1)〉 = μ α0,

(Ω1 − Ω)α1 + 〈ψ1, DuN [ΨΩ] (I + Q[μ,ΨΩ]) (α0ψ0 + α1ψ1)〉 = μ α1.(5.9)

The system (5.9) is the Lyapunov–Schmidt reduction of the linear eigenvalue problem
for L+ with eigenvalue parameter μ. Our next step will be to write it in a form relating
it to the linearization of the Lyapunov–Schmidt reduction of the nonlinear problem.

Remark 5.2. For ‖ΨΩ‖H2 ≤ n∗, the above system is equivalent to the eigenvalue
problem for the operator L+[ΨΩ] with eigenvalue parameter μ as long as (4.15) holds
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with Ω replaced by Ω+μ. This restriction on the spectral parameter, μ, is in fact very
mild and has no impact on the analysis. This is because we are primarily interested
in μ near zero as we are interested in detecting the crossing of an eigenvalue of L+

from positive to negative reals as N is increased beyond some Ncr. The values of μ
for which (4.15) does not hold do not play a role in any change of index, n−(L+).

First rewrite (5.9) as

(Ω0 − Ω − μ)α0 + 〈ψ0, DuN [ΨΩ] (I + Q[0,ΨΩ]) (α0ψ0 + α1ψ1)〉(5.10)

+ 〈ψ0, DuN [ΨΩ] ΔQ[μ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0,

(Ω1 − Ω − μ)α1 + 〈ψ1, DuN [ΨΩ] (I + Q[0,ΨΩ]) (α0ψ0 + α1ψ1)〉
+ 〈ψ1, DuN [ΨΩ] ΔQ[μ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0.(5.11)

Here,

(5.12) ΔQ [μ,ΨΩ] = Q [μ,ΨΩ] − Q [0,ΨΩ] .

Note that terms involving ΔQ in (5.10), (5.11) are of size O[(ρ2
0 + ρ2

1)μαj ].
Proposition 5.1.

(5.13) Q[0,ΨΩ](α0ψ0 + α1ψ1) = ∂ρ0
η[ρ0, ρ1,Ω] α0 + ∂ρ1

η[ρ0, ρ1,Ω] α1.

Proof. Recall that η satisfies

F (ρ0, ρ1,Ω, η) ≡ η + (H − Ω)−1P̃N [ρ0ψ0 + ρ1ψ1 + η] = 0.(5.14)

Differentiation with respect to ρj , j = 0, 1, yields

(5.15)
(
I + (H − Ω)−1P̃DuN [ΨΩ]

)
∂ρjη = − (H − Ω)

−1
P̃DuN [ΨΩ]ψj ,

where

ΨΩ = ρ0ψ0 + ρ1ψ1 + η[ρ0, ρ1,Ω].

Thus,

(5.16) ∂ρj η = Q[0,ΨΩ] ψj ,

from which Proposition 5.1 follows.
We now use Proposition 5.1 to rewrite the first inner products in (5.10), (5.11).

For k = 0, 1,

〈ψk, DuN [ΨΩ] (I + Q[0,ΨΩ]) (α0ψ0 + α1ψ1)〉

=

1∑
j=0

〈ψk, DuN [ρ0ψ0 + ρ1ψ1 + η](ψj + ∂ρjη)〉αj

=

1∑
j=0

∂

∂ρj
〈ψk, N [ΨΩ]〉 αj

=

1∑
j=0

∂ρj
〈ψk, N [ρ0ψ0 + ρ1ψ1]〉 αj + ∂ρj

[ρkfk(ρ0, ρ1,Ω)] ,(5.17)
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where N [ψΩ] = N [ρ0ψ0 + ρ1ψ1] + R; see (2.16)–(2.18) and (4.29), (4.30). Therefore,
the Lyapunov–Schmidt reduction of the eigenvalue problem for L+ becomes

(Ω0 − Ω − μ)α0 +

1∑
j=0

∂ρj 〈ψ0, N [ρ0ψ0 + ρ1ψ1]〉 αj + ∂ρj [ρ0f0(ρ0, ρ1,Ω)](5.18)

+ 〈ψ0, DuN [ΨΩ] ΔQ[μ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0,

(Ω1 − Ω − μ)α1 +

1∑
j=0

∂ρj 〈ψ1, N [ρ0ψ0 + ρ1ψ1]〉 αj + ∂ρj [ρ1f1(ρ0, ρ1,Ω)](5.19)

+ 〈ψ1, DuN [ΨΩ] ΔQ[μ,ΨΩ] (α0ψ0 + α1ψ1)〉 = 0.

This can be written succinctly in a matrix form as

(5.20) [M − μ + C(μ)]

(
α0

α1

)
=

(
0
0

)
,

where

(5.21)

M =M [Ω, ρ0, ρ1]

=

⎛
⎝Ω0 − Ω+3a0000ρ

2
0 +(a0110 +2a0011)ρ2

1 + ∂ρ0
(ρ0f0) 2(a0110 +2a0011)ρ0ρ1 + ∂ρ1

(ρ0f0)

2(2a1010 +a1001)ρ0ρ1 + ∂ρ0 (ρ1f1) (Ω1 − Ω)+3a1111ρ
2
1 +(2a1010 +a1001)ρ2

0 + ∂ρ1 (ρ1f1)

⎞
⎠

and

(5.22) C(μ)lm = 〈ψl, DuN [ΨΩ]ΔQ[μ,ΨΩ]ψm〉, l,m = 0, 1.

Note that

(5.23) C(μ = 0) = 0.

Recall that μ is the spectral parameter for the eigenvalue problem L+, (5.3), and
we are interested in n−(L+[ΨΩ]), the number of negative eigenvalues along a family of
nonlinear bound states Ω �→ ΨΩ. By Theorem 5.2, n−(L+) determines the stability or
instability of a particular state. This question has now been mapped to the problem
of following the roots of

(5.24) D(μ, ρ0, ρ1) = det(μI −M − C(μ)) = 0,

where ρ0 and ρ1 are parameters along the different branches of nonlinear bounds
states. Since C(μ), defined in (5.22), is small for small amplitude nonlinear bound
states, we expect the roots, μ, to be small perturbations of the eigenvalues of the ma-
trix M . We study these roots along the symmetric (M = M(Ωg(ρ0), ρ0, 0)) and asym-
metric branch (M = M(Ωasym(ρ1), ρ0(ρ1), ρ1)) using the implicit function theorem.

Symmetric branch. Along the symmetric branch:

ρ1 = 0, ρ0 ≥ 0, Ω = Ωg = Ω0 + a0000ρ
2
0 + O(ρ4

0),

ΨΩ = ρ0ψ0 + η(ρ0, 0,Ω) = symmetric.
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Thus, D = D(μ, ρ0). Moreover, the system (5.20) is diagonal. This is because Q and
hence ΔQ preserve parity at a symmetric ΨΩ; see their definitions (5.8) and (5.12).
Therefore C01 = 0 = C10, since each is the scalar product of an even and an odd
function. Moreover, from (4.35) we get

∂fj
∂ρ1

(ρ0, 0,Ω) = 0, j = 0, 1.

Therefore, the matrix μI − M − C(μ) is diagonal and μ is an eigenvalue of
L+[ψΩg(ρ0)] if and only if μ is a root of either

(5.25) P0(μ, ρ0) ≡ μ−M00(ρ0) − C00(μ, ρ0) = 0

or

(5.26) P1(μ, ρ0) ≡ μ−M11(ρ0) − C11(μ, ρ0) = 0.

Both P0 and P1 are analytic in μ and ρ0 and it is easy to check that

P0(0, 0) = 0, ∂μP0(0, 0) = 1

and

P1(Ω1 − Ω0, 0) = 0, ∂μP1(Ω1 − Ω0, 0) = 1.

Formally differentiating (5.25) or (5.26) with respect to ρ0 gives

(5.27) ∂ρ0
μj =

∂ρ0
Mjj + ∂ρ0Cjj

1 − ∂μCjj
.

By the implicit function theorem (5.25) and (5.26) define, respectively, μ0 and μ1 as
smooth functions of ρ provided

(5.28) |∂μCjj | < 1, j = 0, 1.

A direct calculation using (5.8) and estimates (2.5), (4.20) shows that in the regime
of interest: Ω satisfying (4.15), it suffices to have

(5.29) ‖ΨΩ‖H2 ≤ n∗ (9 max(‖ψ0‖H2 , ‖ψ1‖H2))
− 1

4 ,

where n∗ is given by Proposition 4.1. The latter can be reduced to an estimate on ρ0

via the above definition of ΨΩ and (4.24) as in the end of the proof of Proposition 4.1.
Therefore, under conditions (4.15) and (5.29), we have a unique solution μ0,

respectively μ1, of (5.25), respectively (5.26). Moreover, the two solutions are analytic
in ρ0 and, for small ρ0, we have the following estimates:

μ0 = 2a0000ρ
2
0 + O(ρ4

0) < 0,(5.30)

μ1 = Ω1 − Ω0 + O(ρ2
0) > 0,(5.31)

where we used a0000 ≡ g〈ψ2
0 ,K[ψ2

0 ]〉 < 0 and μ1(ρ0 = 0) = Ω1 − Ω0 > 0.
We claim that μ1 changes sign for the first time at ρ0 = ρ∗0. Indeed, by continuity,

the sign can only change when μ1 = 0, i.e., when (5.26) has a solution of the form
(0, ρ0). Since C11(0, ρ0) = 0 (see (5.23)) (5.26) becomes

0 = M11(ρ0) = Ω1 − Ωg(ρ0) + (2a1010 + a1001)ρ
2
0 + f1(ρ0, 0,Ωg) = F1(ρ0, 0,Ωg(ρ0));

see (5.21) and note that ρ1 = 0. But this equation is the same as (4.50), which
determines the bifurcation point ρ∗0. Thus, as expected, D(μ, ρ0) = 0 has a root
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ρ1(ρ
∗
0) = 0 or, equivalently, L+ has a zero eigenvalue at the bifurcation point. Note

that the associated null eigenfunction has odd parity in one space dimension and is,
more generally, nonsymmetric and changes sign.

To see that μ1(ρ0) changes sign at ρ0 = ρ∗0 we differentiate (5.26) with respect to
ρ0 at ρ0 = ρ∗0 and obtain from (5.27) that

∂ρ0
μ1 =

∂ρ0M11 + ∂ρ0C11

1 − ∂μC11
< 0.

This follows because the denominator is positive, by (5.28), while direct calculation
gives for the numerator

∂ρ0M11(ρ
∗
0) + ∂ρ0C11(ρ

∗
0) = 2ρ∗0

(
a1001 + 2a1010 − a0000 + O(ρ∗20 )

)
< 0;

see (4.55). Therefore μ1 becomes negative for ρ0 > ρ∗0 at least when |ρ0 − ρ∗0| is small
enough.

In conclusion, L+[Ωg(ρ0)] has exactly one negative eigenvalue for 0 ≤ ρ0 < ρ∗0
and two negative eigenvalues for ρ0 > ρ∗0 and |ρ0 −ρ∗0| small. Therefore, following the
criteria of [32, 33, 10, 15, 9, 16], the symmetric branch is stable for 0 ≤ ρ0 < ρ∗0 and
becomes unstable past the bifurcation point.

Asymmetric branch: Stability for N > Ncr. Finally, we study the behavior
of the eigenvalue problem (5.20) on the asymmetric branch:

0 ≤ ρ1 � 1,(5.32)

ρ0 = ρ0(ρ1) = ρ∗0 +
ρ2
1

2ρ∗0

(
a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)
+ O(ρ4

1),

Ω = Ωasym(ρ1) = Ωg(ρ
∗
0)

+ ρ2
1

(
a1111 + (2a1010 + a1001)

a0110 + 2a0011 − a1111

a1001 + 2a1010 − a0000
+ O(ρ∗20 )

)
+ O(ρ4

1),(5.33)

ΨΩ = ρ0(ρ1)ψ0 + ρ1ψ1 + η(ρ0(ρ1), ρ1,Ωasym(ρ1)).

The eigenvalues will be given by the zeros of the real-valued function

(5.34) D(μ, ρ1) = det(μI −M(ρ1) − C(μ, ρ1)),

which is analytic in μ and ρ1 for Ω + μ satisfying (4.15) and ρ1 small. Note that at
ρ1 = 0 we are still on the symmetric branch at the bifurcation point ρ0 = ρ∗0. Hence,
the matrix is diagonal and

(5.35) D(μ, 0) = P0(μ, ρ
∗
0)P1(μ, ρ

∗
0),

where Pj , j = 0, 1, are defined in (5.25)-(5.26). In the previous subsection we showed
that each Pj(·, ρ∗0) has exactly one zero, μj , on the interval −∞ < μ < d∗−Ωg(ρ

∗
0) > 0.

The zeros were simple by our implicit function theorem application in which

(5.36) ∂μPj(μj , ρ
∗
0) = 1 − ∂μCjj > 0;

see (5.28). In addition one can easily deduce that limμ→−∞ Pj(μ, ρ
∗
0) = −∞ by using

the definitions (5.22), (5.12) and the fact that ‖(H −Ω−μ)−1‖L2→H2
μ→−∞→ 0 which

implies ‖Q[μ,ΨΩ]‖H2→H2
μ→−∞→ 0.
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Consequently, D(·, 0) has exactly two simple zeros μ0 < 0 and μ1 = 0 on the inter-
val −∞ < μ ≤ (−d∗ −Ωg(ρ

∗
0))/2 > 0, which are both simple and limμ→−∞ D(μ, 0) =

∞. It is well known, and a consequence of continuity arguments and of the implicit
function theorem, that the previous statement continues to hold for small perturba-
tions. More precisely, there exists ε > 0 such that whenever |ρ1| < ε, D(·, ρ1) has
exactly two zeros μ0(ρ1) < 0 and μ1(ρ1) on the interval −∞ < μ ≤ (−d∗−Ωg(ρ

∗
0))/2 >

0, which are both simple and analytic in ρ1.
Since we are interested in n−(L+), the number of negative eigenvalues of L+,

we still need to determine the sign of μ1(ρ1). In what follows we will show that its
derivatives satisfy

(5.37) ∂ρ1
μ1(0) = 0, ∂2

ρ1
μ1(0) > 0.

We can then conclude that for 0 < ρ1 � 1, μ1(ρ1) > 0 and L+ has exactly one
(simple) negative eigenvalue, μ0(ρ1). Therefore, the asymmetric branch is stable.

We now prove (5.37). By differentiating

(5.38) D(μ1(ρ1), ρ1) = 0

once with respect to ρ1 at ρ1 = 0 we get

∂μD(0, 0)∂ρ1μ1(0) + ∂ρ1D(0, 0) = 0.

Using (5.35) we obtain

(5.39) ∂μD(0, 0) = P0(0, ρ
∗
0)∂μP1(μ1 = 0, ρ∗0) > 0,

where we used (5.36) and P0(0, ρ
∗
0) = −M00(ρ

∗
0) > 0. Using (5.34) and (5.23) we

obtain

(5.40) ∂ρ1D(0, 0) =
∂ det(M)

∂ρ1
(ρ1 = 0) = det 10 + det 01,

where det ij is the determinant evaluated at ρ1 = 0 of the matrix obtained from M
by differentiating the first row i times, respectively the second row j times. det ij can
be evaluated using (4.34), (4.50), and (5.33).

Note that the second row of det 10 is zero and therefore det 10 = 0. Further-
more, det 01 is zero because its second column is zero. Therefore, by (5.40) we have
∂ρ1μ1(0) = 0.

We now calculate ∂2
ρ1
μ1(ρ1 = 0). Differentiate (5.38) twice with respect to ρ1 at

ρ1 = 0 and use ∂ρ1μ1(0) = 0 to obtain

∂μD(0, 0)∂2
ρ1
μ1(0) + ∂2

ρ1
D(0, 0) = 0

which implies, by (5.39),

sign(∂2
ρ1
μ1(0)) = −sign(∂2

ρ1
D(0, 0)).

But, as before, (5.34) and (5.23) imply

∂2
ρ1
D(0, 0) =

∂2 det(M)

∂ρ2
1

(0) = det 20 + 2 det 11 + det 02 < 0.



594 KIRR, KEVREKIDIS, SHLIZERMAN, AND WEINSTEIN

The last inequality is a consequence of the following argument. First, det 20 = 0, since
its second row is zero. A direct calculation using the definition of M and relations
(5.32) show

det 11 = −4(a0110 + 2a0011)(2a1010 + a1001)ρ
∗2
0 + O(ρ∗40 ),

det 02 = 8a0000a1111ρ
∗2
0 + O(ρ∗40 ).

By hypothesis (4.2) and by (3.7), shown in Remark 4.3, we have

a0000 > a1001 + 2a1010, a1111 > a0110 + 2a0011.

This implies, for ρ∗0 sufficiently small, that

2 det 11 + det 02 < 0.

Therefore, ∂2
ρ1
μ1(0) > 0 and the proof of Theorem 5.1 is now complete.

Remark 5.3. We remark that, in the special case of g < 0 a constant and V = VL

a double-well potential with well-separation parameter L, for L large all coefficients
aklmn = aklmn(L) converge to the same value gα2 < 0. This implies

2 det 11 + det 02 = (−64g2α4 + O(e−τL))ρ∗20 + O(ρ∗40 ) < 0.

6. Numerical study of symmetry breaking.

6.1. Symmetry-breaking bifurcation for fixed well-separation, L. In this
section we numerically compute the bifurcation diagram for the lowest energy nonlin-
ear bound state branch for NLS-GP equation (2.1) and compare these results to the
predictions of the finite-dimensional approximation equations (3.12), (3.13). Specif-
ically, we numerically compute the bifurcation structure of (2.1) for a double-well
potential, VL(x), of the form

V (x) = V0

[
1√

4πs2
exp

(
− (x− L/2)2

4s2

)
+

1√
4πs2

exp

(
− (x + L/2)2

4s2

)]
.(6.1)

The potential for V0 = −1, s = 1, and L = 6 has two discrete eigenvalues Ω0 =
−0.1616 and Ω1 = −0.12 and a continuous spectral part for Ω > 0. The linear
eigenstates can also be obtained and used to numerically compute the coefficients of
the finite-dimensional decomposition of (3.12), (3.13) as a0000 = −0.09397, a1111 =
−0.10375, a0011 = a1010 = a1001 = a0110 = −0.08836 (for g = −1). Then, using (3.10),
we can compute the approximate threshold in N for bifurcation of an asymmetric
branch (and the destabilization of the symmetric one):

Ncr ∼ N (0)
cr = 0.24331, Ωcr ∼ Ω(0)

cr ≡ Ω0 + a0000 N (0)
cr = −0.18447.

We expect good agreement because the values of s and L suggest the regime of large
L, where our rigorous theory holds.

Using numerical fixed-point iterations (in particular Newton’s method), we obtain
the branches of the nonlinear eigenvalue problem (2.7). To study the stability of a
solution, u0, of (2.7), consider the evolution of a small perturbation of it:

u = e−iΩt
[
u0(x) +

(
p(x)eλt + q(x)eλ̄t

)]
.(6.2)
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Fig. 3. The figure shows the typical numerical bifurcation results for the cubic case and their
comparison with the finite-dimensional analysis of section 3. Panel (a) shows the bifurcation diagram
in the top subplot and the relevant real eigenvalues in the bottom subplot. In the top, the solid (blue)
line represents the symmetric branch, the dashed-dotted (green) line represents the antisymmetric
branch, while the dashed (red) line represents the bifurcating asymmetric branch. The thin lines in-
dicate the numerical findings, while the thick ones show the corresponding finite-dimensional, weakly
nonlinear predictions. The solid vertical (black) line indicates the critical point (of Ω ≈ −0.1835) ob-
tained numerically. The dashed vertical (black) line is a guide to the eye for the case with Ω = −0.25,
whose detailed results are shown in panel (b). The bottom subplot of panel (a) shows the real eigen-
value (as a function of Ω) of the symmetric branch that becomes unstable for Ω < −0.1835. Panel
(b) shows, using the same symbolism as panel (a), the symmetric (left), antisymmetric (middle), and
asymmetric (right) branches and their linearization eigenvalues (bottom subplots) for Ω = −0.25.
The potential is shown by a dotted black line.

Keeping only linear terms in p, q, we obtain a linear evolution equation, whose normal
modes satisfy a linear eigenvalue problem with spectral parameter, which we denote
by λ and eigenvector (p(x), q̄(x))T .

Our computations for the simplest case of the cubic nonlinearity with K[ψψ̄] = ψψ̄
are shown in Figure 3 (for g(x) = −1). In particular, the top subplot of panel (a) shows
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the full numerical results by thin lines (solid for the symmetric solution, dashed for the
bifurcating asymmetric, and dashed-dotted for the antisymmetric one) and compares
them with the predictions based on the finite-dimensional truncation of (3.12)-(3.13)
shown by the corresponding thick lines. The approximate threshold values Ncr and

Ωcr are found numerically to be Ω
(0)
cr ≈ −0.1835 and N (0)

cr ≈ 0.229. This suggests
a relative error in its evaluation by the finite-dimensional reduction of less than 1%.

This critical point is indicated by a solid vertical line in panel (a). For Ω > Ω
(0)
cr ,

there exist two branches in the problem, namely the one that bifurcates from the
symmetric linear state (this branch exists for Ω < Ω0) and the one that bifurcates

from the antisymmetric linear state (and, hence, exists for Ω < Ω1). For Ω < Ω
(0)
cr ,

the symmetric branch becomes unstable due to a real eigenvalue (see bottom subplot
of panel (a)), signalling the emergence of a new branch, namely the asymmetric one.
All three branches are shown for Ω = −0.25 (indicated by dashed vertical line in panel
(a)) in panel (b) and their corresponding linearization spectrum (λr, λi) is shown for
the eigenvalues λ = λr + iλi.

6.2. Symmetry-breaking threshold Ncr(L) as L varies. We now investi-

gate the limits of validity of N (0)
cr (L) as an approximation to Ncr(L) by varying the

distance L between the potential wells (6.1). For L large, N (0)
cr , given by (3.10), is close

to the actual Ncr(L), the exact threshold. In this case the eigenvalues of −∂2
x+VL(x),

Ω0(L), and Ω1(L) are close to each other; see Example 2.1. Therefore, the bifurcation
occurs for small N and one is in the regime of validity of Theorem 4.1. In Figure 4
we display a comparison between the estimate for Ncr based on the finite-dimensional

truncation, N (0)
cr , and the actual Ncr. For large L the two values are close to each

other. As L is decreased the wells approach one another and eventually, at L = 0,
merge to form a single-well potential. As L is decreased, the eigenvalues of the linear
bound states Ω0(L) and Ω1(L) move farther apart. For some value of L, Ld, the
eigenvalue of the excited state, Ω1(L), merges at Ω = 0 into the continuous spectrum

(and becomes a complex scattering resonance). For L < Ld the estimate N (0)
cr is not

correct. In fact, N (0)
cr (L) → ∞, while the actual value of Ncr(L) appears to remain

finite. In Figure 4(a) we observe that for L < 2, N (0) and Ncr diverge from one

another and eventually the approximation N (0)
cr (L) tends to infinity, while the actual

Ncr(L) remains finite. In Figure 4(b) we show a bifurcation diagram for small L, in
which a second discrete (excited state) eigenvalue of −∂2

x + VL, Ω1, does not exist.
Yet there exists a symmetry-breaking threshold, Ncr, along the symmetric branch.

There are interesting observations to make with regard to antisymmetric solu-
tions. Although there is no linear antisymmetric state, from which to bifurcate in
the linear (zero amplitude) limit, we do observe a bifurcation of antisymmetric so-
lutions. The black square in Figure 4(b) marks a strictly positive threshold value of
the squared L2 norm, N excited

cr > 0, at which an antisymmetric nonlinear bound state
emerges from zero frequency. The linearization, L+, about this excited state branch
has two negative eigenvalues: with corresponding symmetric and antisymmetric eigen-
states. The bifurcation along this antisymmetric branch at a larger value of N to an
“asymmetric” state (see Figure 4(b)) is the result of a third eigenvalue of L+ (with
corresponding even parity eigenfunction) emerging from the continuous spectrum, as
N is increased, and hitting zero at some critical value N excited,asym

cr > N excited
cr .

Finally, note that we expect, at least in the regime of weak nonlinearity, that
branches of nonlinear bound states originating from nonground state eigenvalues to be
unstable. There can be various mechanisms: linear [10, 15, 9, 16] as well as nonlinear.
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Fig. 4. The figure demonstrates the validity of N (0)
cr (L) as an approximation to Ncr(L). Panel

(a) compares the linear finite-dimensional estimation for the bifurcation point N (0)
cr (L) and the

actual numerical bifurcation point Ncr. The computations are for the double-well potential (6.1),
V0 = −1, and s = 1/4 and cubic nonlinearity. The curve Ncr(L) is marked by a solid (black) line

and the curve N (0)
cr (L) is marked by a dotted (blue) line. Panel (b) shows a numerical bifurcation

diagram for the double-well potential (6.1), V0 = −1, s = 1/4, and L = 1.3. The bifurcation point
Ncr is marked by a (red) circle. For N < Ncr the ground state, marked by a thick (blue) solid
line, is stable. For N > Ncr the ground state is unstable and marked by a thick (blue) dashed line.
The stable asymmetric state which appears for N > Ncr is marked by a thin (red) solid line. The
antisymmetric state ΩN

1 is marked by a thin (light green) dashed line. The point N for which the
antisymmetric state appears in the discrete spectrum is marked by a (black) square. Notice that in
this bifurcation diagram there is also a bifurcation from the antisymmetric branch. The state which
bifurcates from the antisymmetric state is marked by a (dark green) thin dotted line. See the text
for remarks on the instability of these latter branches.

Concerning the latter, if 2Ω1 − Ω0 > 0, then it is known that the excited state is
unstable due to resonant coupling to the radiation modes; see, for example, [29, 30].
Linearly this is manifested by an exponential instability, computed via perturbation
theory of an embedded eigenvalue of the linearization about the excited state at the
bifurcation point (zero amplitude) [5]. If 2Ω1 − Ω0 < 0, which is the case in the
example of Figure 1, the excited state is linearly stable for small amplitude, but it is
nonlinearly unstable due to higher nonlinear order coupling to radiation modes [35].
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Fig. 5. Same as panel (a) of Figure 3 but for the quintic nonlinearity. This serves to illustrate
the analogies between the bifurcation pictures but also their differences (shifted critical point and
also partial instability of the antisymmetric branch).

6.3. More general nonlinearities. To simplify the analysis in this paper, we
assumed a cubic nonlinearity in NLS-GP; see (H3). Our approach is quite general and
more general nonlinearities can be treated. That is, a more general finite-dimensional
Galerkin approximation can be derived and its normal form/symmetry/bifurcation
theory can be developed.

In this subsection we present numerical computations for general power law non-
linearities such as K[ψψ̄] = (ψψ̄)p and discuss phenomena analogous to the cubic
case, p = 1.

Our numerical results for the case of p = 2, K[ψψ̄]ψ = |ψ|4ψ, are presented in
Figure 5. The curves are analogous to those of panel (a) of Figure 3. The bifurca-
tion diagram for this higher order nonlinearity is similar to that of the cubic case.
However, the critical point for the emergence of the asymmetric branch is now shifted
to Ωcr ≈ −0.1725, closer to the linear limit. We have also examined the case of
p = 3, K[ψψ̄]ψ = |ψ|6ψ, finding that the relevant critical point is further shifted
toward the linear limit, Ωcr = −0.168. Using our methods one could identify, in the
double-well case with large separation, Ωcr(p;L) such that for all Ω < Ωcr(p;L), the
symmetric branch is unstable. We also note in passing that bifurcation diagrams for
higher values of p may also bear additional (to the shift in Ωcr) differences from the
cubic case; one such example in Figure 5 is given by the presence of a linear instability
(due to a complex eigenvalue quartet emerging for Ω < −0.224) for the antisymmetric
branch. The latter was found to be linearly stable in the cubic case of Figure 3.

6.4. Nonlocal nonlinearities. Finally, we consider the case of nonlocal non-
linearities depending on a parameter ε, the range of the nonlocal interaction. In
particular, consider the case of a nonlocal nonlinearity of the form

K[ψψ̄] =

∫ ∞

−∞
K(x− y)ψ(y)ψ̄(y)dy,(6.3)

where

K(x− y) =
1

2πε2
e−

(x−y)2

2ε2 .(6.4)
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Here, ε > 0 is a parameter controlling the range of the nonlocal interaction. As ε tends
to 0, K(x − y) → δ(x − y) and we recover the “local” cubic limit. The form of the
finite-dimensional reduction, of (3.12), (3.13), does not change; the only modification
is that the coefficients aklmn are now functions of the range of the interaction ε. The
dependence of the coefficients aklmn on ε is displayed in panel (a) of Figure 6. The solid
(blue) line shows |a0000|, the dashed (green) one corresponds to |a1111|, the dashed-
dotted (red) one corresponds to |a1001| = |a0110| (g is constant, K even), while the
thick solid (black) one corresponds to |a0101| = |a0011| = |a1010|. Notice in the inset
how the coefficients asymptote smoothly to their “local” limit. Additionally, note
the expected asymptotic relation a1001 = a0011. Also note the significant (decaying)
dependence of the relevant coefficients on the range of the interaction. The nature of
this dependence indicates that while the character of the bifurcation may be the same
as in the case of local nonlinearities, its details (such as the location of the critical
points) depend sensitively on the range of the nonlocal interaction. This is illustrated
in panel (b) for the specific case of ε = 5. In this panel (which is analogous to panel
(a) of Figure 3, but for the nonlocal case) the critical point for emergence of the
asymmetric branch/instability of the symmetric branch is shifted to Ωcr = −0.2466
(and the corresponding Ncr = 1.4353) in comparison to the numerically obtained
value of Ωcr ≈ −0.256; the relative error in the identification of the critical point
(by the finite-dimensional reduction) is in this case of the order of 3.7%. This can
be attributed to the more nonlinear character (i.e., occurring for higher value of Ncr)
nature of the bifurcation. However, as the finite-dimensional approximation still yields
a reliable estimate for the location of the critical point, in panel (c) we use it to obtain
an approximation to the location of the critical point (Ωcr,Ncr) as a function of the
nonlocality parameter ε.

7. Concluding remarks. We have obtained rigorous results on the spontaneous
symmetry-breaking bifurcation for a large class of NLS-GP equations and studied in
detail the case of double-well potentials. Our analysis of the symmetry-breaking
bifurcation and the exchange of stability is based on an expansion which, to leading
order in amplitude, is a superposition of a symmetric-antisymmetric pair of eigenstates
of the linear Hamiltonian, H, whose energies are separated (gap condition (4.13)) from
all other spectra of H. This gap condition holds for double wells with sufficiently large
L, but breaks down as L decreases. Nevertheless, numerical studies show the existence
of a finite threshold for symmetry breaking; see the discussion above on the variation
of Ncr(L) with L. A theory encompassing this phenomenon is of interest and is
currently under investigation.

Finally, we remark that our analysis can be naturally extended to treat cases of
general multi-wells, identical or not, since the methods involve a strategy for anal-
ysis of the weakly nonlinear regime, given spectral assumptions on the linear limit.
An example is the case of a symmetric triple well, studied in [18], where the finite-
dimensional Galerkin analysis has been implemented, revealing a rich bifurcation pic-
ture, but with no symmetry-breaking bifurcation in the symmetric branch. In such
multi-well cases, naturally the dimension of the Galerkin approximation needs to be
increased accordingly (e.g., 3-dimensional for 3-wells, 4-dimensional for 4-wells, etc.)
introducing greater complexity into the global bifurcation structure. Formally, the
derivation may be systematically extended to the case of infinitely many wells, con-
stituting the so-called tight-binding approximation [2], although a rigorous derivation
of such lattice equations may pose a considerable challenge.
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Fig. 6. This figure shows the nonlocal analogue of Figure 3. Panel (a) shows the dependence
of the (absolute value of the) coefficients of the finite-dimensional approximation on the nonlocality
parameter ε (ε = 0 denotes the “local” nonlinearity limit). The solid (blue) line denotes a0000, the
dashed (green) denotes a1111, the dashed-dotted (red) denotes a0110, while the thick solid (black)
one denotes a0101. Panel (b) is analogous to panel (a) of Figure 3, but now shown for the nonlocal
case, with the nonlocality parameter ε = 5. Finally, panel (c) shows the dependence of the critical
point of the finite-dimensional bifurcation (N�,Ω�) on the nonlocality parameter ε.
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8. Appendix. Double wells. In this discussion, we are going to follow the
analysis of [12]. Consider a (single-well) real-valued potential v0(x) on R

n such that
v0(x) ∈ Lr + L∞

ε for all 1 ≤ r ≤ q where q ≥ max(n/2, 2) for n �= 4, q > 2 for n = 4.
Then, multiplication by v0 defines a compact operator from H2 to L2 and

H0 = −Δ + v0(x)

is a self-adjoint operator on L2 with domain H2.
Consider now the double-well potential

VL = TLv0T−L + RTLv0T−LR,

where TL and R are the unitary operators

TLg(x1, x2, . . . , xn) = g(x1 + L, x2, . . . , xn),

Rg(x1, x2, . . . , xn) = g(−x1, x2, . . . , xn),

and the self-adjoint operator

HL = −Δ + VL(x).

Proposition 8.1. Assume that ω < 0 is a nondegenerate eigenvalue of H0

separated from the rest of the spectrum of H0 by a distance greater than 2d∗. Denote
by ψω its corresponding eigenvector, ‖ψω‖L2 = 1. Then there exists L0 > 0 such that
for L ≥ L0 the following are true.

(i) HL has exactly two eigenvalues Ω0(L) and Ω1(L) nearer to ω than 2d∗. More-
over, limL→∞ Ωj(L) = ω, j = 0, 1.

(ii) One can choose the normalized eigenvectors ψj(L), ‖ψj(L)‖L2 = 1, corre-
sponding to the eigenvalues Ωj(L), j = 0, 1, such that they satisfy

lim
L→∞

‖ψj(L) − (TLψω + (−1)jRTLψω)/
√

2‖H2 = 0, j = 0, 1.

(iii) If PL
j are the orthogonal projections in L2 onto ψj(L), j = 0, 1, and P̃L =

Id− PL
0 − PL

1 , then there exists d > 0 independent of L such that

‖(HL − Ω)−1P̃L‖L2 �→H2 ≥ d for all L ≥ L0 and |Ω − ω‖ ≤ d∗.

Proof. For (i) we refer the reader to [12]. The L2 convergence in (ii) has also been
proved there. The H2 convergence follows from the following compactness argument.
Let

ψL
j = nLψj(L), j = 0, 1,

where nL is such that ‖ψL
j ‖H2 = 1, j = 0, 1. From the eigenvector equations: (HL −

Ω(L))ψL = 0, where we dropped the index j = 0, 1 and the convergence Ω(L) → ω,
see part (i), we get

(8.1) lim
L→∞

‖(−Δ − ω + VL)ψL‖L2 = 0.

Denote

(8.2) gL = (−Δ − ω)ψL ∈ L2.
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Since −Δ−ω : H2 �→ L2 is bounded, there exists a constant C > 0 independent of L
such that

‖gL‖L2 ≤ C.

Since ω < 0, −Δ − ω : H2 �→ L2 has a continuous inverse, then (8.1) is equivalent to

gL + VL(−Δ − ω)−1gL → 0 in L2.

By expanding VL we get

(8.3) gL + TLv0(−Δ − ω)−1T−LgL + RTLv0(−Δ − ω)−1T−LRgL → 0.

But v0(−Δ−ω)−1 : L2 �→ L2 is compact while the translation and reflection operators
are unitary. These and the uniform boundedness of gL lead to the existence of ψ ∈ L2

and ψ̃ ∈ L2 and a subsequence of gL, which we will redenote by gL, such that

(8.4)
lim

L→∞
‖v0(−Δ−ω)−1T−LgL−ψ‖L2 = 0 and lim

L→∞
‖v0(−Δ−ω)−1T−LRgL− ψ̃‖L2 = 0.

By plugging in (8.3) and multiplying to the left by T−L we get

lim
L→∞

‖T−LgL + ψ + RT2Lψ̃‖L2 = 0.

But RT2Lψ̃ converges weakly to zero, hence T−LgL converges weakly to −ψ. By
plugging now in (8.4) and using compactness we get

ψ + v0(−Δ − ω)−1ψ = 0.

The latter shows that (−Δ − ω)−1ψ is an eigenvector of −Δ + v0 corresponding to
the eigenvalue ω. By nondegeneracy of ω we get

(8.5) ψ = −n(−Δ − ω)ψω,

where n is a constant. A similar argument shows that

(8.6) ψ̃ = −ñ(−Δ − ω)ψω,

where ñ is a constant.
Combining (8.1)–(8.6) we get

(8.7) lim
L→∞

‖(−Δ − ω)(ψL − nTLψω − ñRTLψω)‖L2 = 0

which by the continuity of (−Δ − ω)−1 : L2 �→ H2 implies

lim
L→∞

‖ψL − nTLψω − ñRTLψω‖H2 = 0.

Using now that ‖ψL‖H2 = 1 and that the rescaled ψL
j , such that it has norm 1 in

L2, converges to (TLψω + (−1)jRTLψω)/
√

2, we get the conclusion of part (ii) for a
subsequence first, then, by uniqueness of the limit, for all L → ∞.

For part (iii), it suffices to show that there are no sequences (ΩL, ψ
L) ∈ [ω −

d∗, ω + d∗] ×H2 with ‖ψL‖H2 = 1 and ψL⊥ψj(L), j = 0, 1, in L2 such that

(8.8) lim
L→∞

‖(HL − ΩL)ψL‖L2 = 0.
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The spectral estimate

‖(HL − ΩL)ψL‖L2 ≥ dist(ΩL, σ(HL)\{Ω0(L),Ω1(L)})‖ψL‖L2 ≥ d∗‖ψL‖L2 ,

combined with (8.8), implies

(8.9) lim
L→∞

‖ψL‖L2 = 0.

In principle, we can now employ the compactness argument in part (ii) to get

(8.10) lim
L→∞

‖ψL‖H2 = 0

which will contradict ‖ψL‖H2 = 1. More precisely, (8.8), (8.9) imply

lim
L→∞

‖(−Δ − ω − d∗ + VL)ψL‖L2 = 0

which, by repeating the argument after (8.1) with ω replaced by ω + d∗, gives

lim
L→∞

‖ψL + TLψω+d∗ + RTLψ̃ω+d∗‖H2 = 0,

where ψω+d∗ and ψ̃ω+d∗ are eigenvectors of −Δ + v0 corresponding to eigenvalue
ω + d∗. But the latter is not actually an eigenvalue, hence ψω+d∗ = 0 and ψ̃ω+d∗ = 0.
These show (8.10) and finishes the proof of part (iii).

The proposition is now completely proven.
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Abstract. This paper deals with 2×2 conservation laws at a junction. For the Cauchy problem,
existence, uniqueness, and Lipschitz continuous dependence of the solution from the initial data as
well as from the conditions at the junction are proved. The present construction comprehends the
case of the p-system used to describe gas flow in networks and hereby unifies different approaches
present in the literature. Furthermore, different models for water networks are considered.
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1. Introduction. This paper studies the initial value problem consisting of

∂tul + ∂xl
f(ul) = 0, with l = 1, . . . , n, t ∈ [0,+∞[ , x ∈ [0,+∞[ ,(1.1)

along n pipes together with

Ψ
(
u1(t, 0+), u2(t, 0+), . . . , un(t, 0+)

)
= 0(1.2)

at a junction. In other words, we deal with n initial boundary value problems for
systems of 2×2 conservation laws, coupled through nonlinear boundary conditions. In
this general setting, extending the results in [10], we derive conditions under which the
Cauchy problem for (1.1) has a unique solution. Furthermore, the Lipschitz continuous
dependence of the solution on initial data and coupling conditions is proved.

We model a junction connecting n rectilinear pipes by n pairwise distinct vectors
ν1, . . . , νn parallel to the pipes and such that ‖νl‖ equals the cross section of the lth
pipe. Furthermore, we assign a space coordinate xl > 0 to each pipe. The transport
of a specific quantity in the lth pipe is given by (1.1), where ul is the vector of
variables along the lth duct and f is a general nonlinear flux function. Condition (1.2)
describes the interaction of the transported quantities at the intersection of the pipes;
see [2, 3, 9, 10, 11, 19]. The standard situation of the Cauchy problem on a line is
recovered in the case n = 2, ν1+ν2 = 0, and Ψ(u1, u2) = f(u1)−f(u2); see section 4.1.
To simplify the notation, below we denote by x all the coordinates xl along the various
pipes.

Applications of the theoretical results are in the field of fluid flow in networks
and in particular in high-pressure gas pipelines in open canals. In recent years, there
has been intense research in flow problems on networks; see, e.g., the book on gas
networks [23] and the publications of the Pipeline Simulation Interest Group [26].
Most of the proposed models [12, 14, 21, 23, 24, 25, 27, 22, 18] consider each pipe as a
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one-dimensional domain and use balance laws to describe the dynamics. The validity
of one-dimensional models is the subject of intense discussions; we refer the reader
to [26] for more details.

In this context, the most challenging and interesting point is the coupling condi-
tion at pipe-to-pipe intersections. In an engineering context, this coupling is typically
modeled through tables prescribing suitable relations depending on, e.g., the geometry
of the pipe, the material, and flow conditions [12, 21]. Among the first mathematical
treatments of this situation are [2, 3, 9, 10, 19]. The current presentation considers the
subsonic case as in [2, 3, 9, 10, 11, 19] and typical physical conditions [14]. Extending
the presentations in [4, 16, 20], we consider solutions possibly containing shocks.

Our purpose is to present a general framework for coupling conditions and prove
well posedness. Indeed, we unify and extend the approaches [2, 3, 9, 10, 16, 19].
First, the present framework includes the currently used one-dimensional isothermal
model for gas flow as well as the shallow-water equations for flows in open channels.
In particular, we extend the results in [10] covering not only the isentropic Euler
equations but a general 2 × 2 system. More importantly, the present result allows
us to consider any coupling conditions specified through any (possibly nonlinear)
function Ψ, the sole constraint being condition (2.2) below. Hence, the present results
also extend previous works on open channel flow with gate control or pumps (see [16]),
as well as the model for a kink in a pipe introduced in [19]. Finally, within this general
setting, we also prove the Lipschitz continuous dependence of the solutions from the
condition Ψ at the junction; see (3.2) in Theorem 3.2. As a consequence, in all the
cases mentioned above, it is possible to prove the existence of an optimal control.

Numerically, we show that different one-dimensional coupling conditions lead
to qualitatively different solutions. The comparison is in the context of the present
theory, i.e., for one-dimensional models. Two-dimensional situations are considered,
for instance, in [17, 18]. For a comparison with results of the engineering community
we refer the reader to the pressure loss tables [12, 21].

The paper is organized as follows. Section 2 is devoted to the Riemann problem
and extends [9]. In section 3, the well posedness of the Cauchy problem is stated.
Applications of this result to gas flow in pipes as well as flow in open canals are
collected in section 4. Section 5 contains the detailed constructions and proofs.

2. The Riemann problem at a junction. Throughout, we refer the reader to
[6] for the general theory of hyperbolic systems of conservation laws. Let Ω ⊆ R

2 be
a nonempty open set. Fix a flow f ∈ C4(Ω; R2) satisfying the following assumption:

(F) There exists a ū ∈ Ω such that Df(ū) admits a strictly negative eigenvalue
λ1(ū) and a strictly positive one λ2(ū), the corresponding eigenvectors are
linearly independent, and each characteristic field is either genuinely nonlinear
or linearly degenerate.

Under this condition, (1.1) generates a standard Riemann semigroup; see [6, Chap-
ter 8]. By Riemann problem at the junction we mean the problem{

∂tul + ∂xf(ul) = 0,

ul(0, x) = ūl ,

t ∈ R
+,

x ∈ R
+,

l ∈ {1, . . . , n},
ul ∈ Ω,

(2.1)

where ū1, . . . , ūn are constant states in Ω. For l = 1, . . . , n, ul has two components;
i.e., ul = (ul,1, ul,2) denotes the densities of the conserved quantities in the lth tube.
Here and in what follows, R

+ = [0,+∞[.
Definition 2.1. Fix a map Ψ ∈ C1(Ωn; Rn). A Ψ-solution to the Riemann

problem (2.1) is a function u: R+ × R
+ �→ Ωn such that the following hold:
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(L) For l = 1, . . . , n, the function (t, x) �→ ul(t, x) is self-similar and coincides

with the restriction to x ∈ R̊
+ of the Lax solution to the standard Riemann

problem ⎧⎪⎪⎨
⎪⎪⎩

∂tul + ∂xf(ul) = 0,

ul(0, x) =

{
ūl if x > 0,

ul(1, 0+) if x < 0 .

(Ψ) The trace u(t, 0+) of u at the junction satisfies (1.2) for a.e. t > 0.
Given an entropy-entropy flux pair (E,F ), the Ψ-solution is entropic at the junction
if the following holds:

(E) At the junction, entropy may not decrease; i.e., for a.e. t > 0

n∑
l=1

‖νl‖F
(
ul(t, 0+)

)
≤ 0 .

For later use, with a slight abuse of notation, we denote

‖u‖ =

n∑
l=1

‖ul‖ for u ∈ Ωn ,

‖u‖L1 =

∫
R+

∥∥u(x)
∥∥ dx for u ∈ L1

(
R

+; Ωn
)
,

TV (u) =

n∑
l=1

TV (ul) for u ∈ BV
(
R

+; Ωn
)
.

The following proposition yields the well posedness of the Riemann problem and the
continuous dependence of the solution to the Riemann problem from the initial state
and from the function Ψ. These results are used in section 3 to prove well posedness
of the Cauchy problem by the wave tracking algorithm. The proofs are deferred to
section 5.

Proposition 2.2. Let n ∈ N with n ≥ 2. Fix the pairwise distinct vectors
ν1, . . . , νn in R

3 \ {0} and an n-tuple of constant states û ∈ Ωn giving a station-
ary solution to the Riemann problem (2.1) in the sense of Definition 2.1. Assume that
for l = 1, . . . , n, (F) holds in ûl. If Ψ ∈ C1(Ωn; Rn) satisfies

det
[
D1Ψ(û)r2(û1) D2Ψ(û)r2(û2) . . . DnΨ(û)r2(ûn)

]

= 0,(2.2)

where DlΨ = Dul
Ψ, then there exist positive δ,K such that the following hold:

1. For all ū ∈ Ωn satisfying ‖ū− û‖ < δ, the Riemann problem (2.1) admits
a unique self-similar solution (t, x) �→

(
RΨ(ū)

)
(t, x) in the sense of Defini-

tion 2.1.
2. If (1.1) admits an entropy-entropy flux pair (E,F ), requiring that

n∑
l=1

‖νl‖F (ûl) < 0(2.3)

ensures that the solution (t, x) �→
(
RΨ(ū)

)
(t, x) is also entropic.



608 R. M. COLOMBO, M. HERTY, AND V. SACHERS

3. If ū, w̄ ∈ Ωn both satisfy ‖ū− û‖ < δ and ‖w̄ − û‖ < δ, then the traces at the
junction of the corresponding solutions to (2.1) satisfy∥∥∥∥((RΨ(ū)

)
(t, 0+) −

(
(RΨ(w̄)

)
(t, 0+)

∥∥∥∥ ≤ K · ‖ū− w̄‖ .(2.4)

4. For any Ψ̃ ∈ C1(Ωn; Rn) with ‖Ψ̃ − Ψ‖C1 < δ, Ψ̃ also satisfies (2.2) and for
all ū ∈ Ωn satisfying ‖ū− û‖ < δ,∥∥∥∥(RΨ̃(ū)

)
(t) −

(
RΨ(ū)

)
(t)

∥∥∥∥
L1

≤ K ·
∥∥∥Ψ̃ − Ψ

∥∥∥
C1

· t .

In the previous proposition, r2(û) is the right eigenvector of Df(û) corresponding
to the second characteristic field.

We remark that, for subsonic initial data, we obtain here a unique Ψ-solution,
without any additional condition, such as (E).

3. The Cauchy problem at an intersection. Next we consider the Cauchy
problem at a junction. First, we give a definition of a solution which naturally extends
Definition 2.1 to the Cauchy problem. Then we prove the existence of solutions for
initial data with small total variation and the continuous dependence on the coupling
condition Ψ.

Definition 3.1. Fix û ∈ Ωn and T ∈ ]0,+∞]. A weak Ψ-solution to{
∂tul + ∂xf(ul) = 0,

u(0, x) = uo(x),

t ∈ R
+,

x ∈ R
+,

l ∈ {1, . . . , n},
uo ∈ û + L1(R+; Ωn)

(3.1)

on [0, T ] is a map u ∈ C0
(
[0, T ]; û + L1(R+; Ωn)

)
such that the following hold:

(W) For all ϕ ∈ C∞
c

(
]−∞, T [ × R

+; R
)

and for l = 1, . . . , n

∫ T

0

∫
R+

(
ul ∂tϕ + f(ul) ∂xϕ

)
dx dt +

∫
R+

uo,l(x)ϕ(0, x) dx = 0 .

(Ψ) The condition at the junction is met: for a.e. t ∈ R
+, Ψ

(
u(t, 0+)

)
= 0.

If (1.1) admits an entropy-entropy flux pair (E,F ), then the weak Ψ-solution u is
entropic if for all ϕ ∈ C∞

c

(
]−∞, T [ × R

+; R+
)

n∑
l=1

(∫ T

0

∫
R+

(
E (ul) ∂tϕ + F (ul) ∂xϕ

)
dx dt +

∫
R+

E(uo)ϕ(0, x) dx

)
‖νl‖ ≥ 0.

We are now ready to state the main result of this paper, namely the well posedness
of the Cauchy problem for (3.1) at the junction.

Theorem 3.2. Let n ∈ N, n ≥ 2. Fix the pairwise distinct vectors ν1, . . . , νn
in R

3 \ {0}. Fix an n-tuple of states ū ∈ Ωn such that f satisfies (F) at ū and the
Riemann problem (2.1) with initial datum ū admits the stationary solution in the
sense of Definition 2.1. Let Ψ ∈ C1(Ωn; Rn) satisfy (2.2). Then there exist positive
δ, L and a map S: [0,+∞[ ×D → D such that

1. D ⊇
{
u ∈ ū + L1(R+; Ωn): TV (u) ≤ δ

}
;

2. for u ∈ D, S0u = u and for s, t ≥ 0, SsStu = Ss+tu;
3. for u,w ∈ D and s, t ≥ 0, ‖Stu− Ssw‖L1 ≤ L ·

(
‖u− w‖L1 + |t− s|

)
;
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4. if u ∈ D is piecewise constant, then for t > 0 sufficiently small, Stu coincides
with the juxtaposition of the solutions to Riemann problems centered at the
points of jumps or at the junction.

Moreover, for every u ∈ D, the map t �→ Stu is a Ψ-solution to the Cauchy prob-
lem (3.1) according to Definition 3.1.

For any Ψ̃ ∈ C1(Ωn; Rn) with ‖Ψ̃ − Ψ‖C1 < δ, Ψ̃ generates a semigroup of solu-
tions on D and for u ∈ D,∥∥∥SΨ̃

t ū− SΨ
t ū
∥∥∥
L1

≤ L ·
∥∥∥Ψ̃ − Ψ

∥∥∥
C1

· t .(3.2)

If (1.1) admits an entropy-entropy flux pair (E,F ) and ū is strictly entropic in the
sense of (2.3), then the Ψ-solution t �→ Stu is entropic at the junction.

The proof is deferred to section 5.

4. Gas networks and open channels. A widely used model for gas flow in
pipe networks is the system of isothermal Euler equations; see [23] and the references
therein. In this section, we discuss the coupling conditions [2, 10] in the context of
the presented theory in the case of a general p-system. By p-system we mean

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρl + ∂xql = 0,

∂tql + ∂x

(
q2
l

ρl
+ p(ρl)

)
= 0,

t ∈ R
+,

x ∈ R
+,

l ∈ {1, . . . , n},
(ρl, ql) ∈ R̊

+ × R,

(4.1)

where ρ > 0 is the mass density of a given fluid, q its linear momentum density, and
p = p(ρ) the pressure law, which we assume to satisfy the following:

(P) p ∈ C2
(
R

+; R+
)
, p(0) = 0 and for all ρ ∈ R

+, p′(ρ) > 0, p′′(ρ) ≥ 0.
In the context of gas pipelines, the pressure law typically chosen is p(ρ) = a2ρ,

where the sound speed a depends on the gas type and temperature [23].
As is well known, (4.1) is equipped with the (mathematical) entropy-entropy flux

pair

E(ρ, q) =
q2

2ρ
+ ρ

∫ ρ

ρ∗

p(r)

r2
dr (total energy),

F (ρ, q) =
q

ρ
·
(
E(ρ, q) + p(ρ)

)
(flow of the total energy)

for a ρ∗ > 0. Choosing an initial datum ū = (ρ̄, q̄) in the subsonic region

Ω =
{

(ρ, q) ∈ R̊
+ × R:λ1(ρ, q) < 0 < λ2(ρ, q)

}
ensures that (F) holds at ū. Recall the standard relations

λ1(ρ, q) = (q/ρ) −
√

p′(ρ) , λ2(ρ, q) = (q/ρ) +
√

p′(ρ),

r1(ρ, q) =

[
−1

−λ1(ρ, q)

]
, r2(ρ, q) =

[
1

λ2(ρ, q)

]
.

(4.2)

Below we consider different coupling conditions that appeared in the literature.
Remark that the geometry of the junction implicitly enters into all the relations below
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through the choice of the xl coordinates. Explicitly, only the area ‖νl‖ of the cross
section appears.

Below we consider the conditions presented in [3, 4, 10, 14, 16, 19, 23]. Any of
them prescribes the conservation of mass, so that the first component in (1.2) reads

n∑
l=1

‖νl‖ ql = 0 .(4.3)

With a slight abuse of notation, we use Ψ to denote the remaining n− 1 conditions.
(a) We prescribe the equal momentum flow for all connected pipes; see [9] and in

the case of open channels [16]:

P
(
ρi(t, 0+), qi(t, 0+)

)
= P

(
ρj(t, 0+), qj(t, 0+)

)
∀ i 
= j.

(b) We prescribe a single pressure at the pipe-to-pipe intersection; see [2, 3] and
[14] in the engineering literature. For open canals, see [15]:

p
(
ρi(t, 0+)

)
= p

(
ρj(t, 0+)

)
∀ i 
= j.

(c) In case of only two connected pipes, a further coupling condition is proposed
in [19] (see (4.7) for the definition of k(θ)):

P
(
ρ1(t, 0+), q1(t, 0+)

)
+ k(θ) = P

(
ρ2(t, 0+), q2(t, 0+)

)
.

Some remarks are in order. Most of the engineering literature uses (b) modified by so-
called minor loss factors. These factors are listed in tables and depend on additional
information; see [12, 21].

On the other hand, (a) is not so commonly used in the engineering literature but
yields the L1 continuity across stationary transonic shocks (see [10, Example 2.3]),
which does not hold when (b) or (c) is adopted. A numerical study of a two-dimensional
situation for the p-system can be found in [18] and for the Euler system in [17].

4.1. Equal linear momentum flow for the p-system. We consider the set-
ting in [10], i.e., a junction among n pipes, each modeled through the p-system (4.1)
with a general pressure law and with the corresponding function Ψ in (1.2) given
by (4.3) together with

Ψ(ρ, q) =

⎡
⎢⎢⎢⎣

P (ρ1, q1) − P (ρ2, q2)

...
...

...

P (ρn−1, qn−1) − P (ρn, qn)

⎤
⎥⎥⎥⎦ ,(4.4)

where P (ρ, q) = q2/ρ + p(ρ) is the flow of the linear momentum. The well posedness
of the Cauchy problem for (4.1) at a junction was proved in [9, Theorem 3.3].

Remark that this choice of Ψ allows us to consider the problem at the junction as
an extension of the standard Cauchy problem. Indeed, setting n = 2 and ν1 + ν2 = 0,
then (4.1)–(4.4) reduces to the usual situation.

In the general case, the total linear momentum Q varies by

Q(t2) −Q(t1) =

∫ t2

t1

n∑
l=1

P
(
ρl(t, 0+), ql(t, 0+)

)
νldt =

(∫ t2

t1

P∗(t) dt

)
n∑

l=1

νl

(see [9, section 1]), where P∗(t) is the trace of P
(
ρl(t, 0+), ql(t, 0+)

)
, which is inde-

pendent from l by (1.2)–(4.4). Note that the right-hand side in the equation above
depends explicitly on the geometry of the junction.
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4.2. Equal pressure for the p-system. In [3], the condition at the junction
amounts to mass conservation and to pressure equality. Here we extend that approach
to the case of n ducts with a general pressure law, so that (1.2) consists of (4.3) with

Ψ(ρ, q) =

⎡
⎢⎢⎢⎣

p(ρ1) − p(ρ2)

...
...

...

p(ρn−1) − p(ρn)

⎤
⎥⎥⎥⎦ .(4.5)

Using [9, Lemma 4.4], the determinant in condition (2.2) evaluates to

(−1)n+1
n∏

i=1

λ2(ρ̂i, q̂i) ·
n∑

i=1

∏
j �=i

p′(ρ̂j)

λ2(ρ̂j , q̂j)
.(4.6)

Since (ρ̂, q̂) ∈ Ωn, we have λ2(ρ̂i, q̂i) > 0, while the assumption (P) on the pressure
law implies p′(ρ̂i) > 0. Thus, Theorem 3.2 applies, yielding well posedness in the case
of n pipes with a general pressure law.

4.3. Two pipes with friction for the p-system. The case studied in [19]
corresponds to (4.1) with p(ρ) = ρ, n = 2, ν1 = [−1 0], and ν2 = [cos θ sin θ]. Here
the angular dependence is modeled explicitly and taken into account in the coupling
conditions. This situation mimics a kink forming an angle θ in a pipe. Due to the
kink, the linear momentum is assumed to vary by a factor k such that

k =
√

2(1 − cos θ)(4.7)

for θ ∈ [0, π/2]. In the case of pipes possibly with different cross sections ‖νl‖ and a
general pressure law satisfying (P), at the junction we obtain condition (4.3) with

Ψ(ρ, q) =

(
q2
1

ρ1
+ p(ρ1) + fkq1

)
−
(
q2
2

ρ2
− p(ρ2)

)
,(4.8)

which reduces to the case considered in [19] when p(ρ) = ρ and equal cross sec-
tions. The parameter f denotes a nonnegative empirical friction coefficient. The
condition (2.2) is

λ2(ρ̂2, q̂2)λ2(ρ̂1, q̂1)
(
λ2(ρ̂2, q̂2) + λ2(ρ̂1, q̂1) + fk

)

= 0 .

Hence, Theorem 3.2 applies, yielding well posedness for general pressure laws.

4.4. Equal momentum flow for open canals. The model presented in [20,
formulae (2.3)–(2.7)] for a node among n open canals reads

⎧⎪⎪⎨
⎪⎪⎩

∂tAl + ∂x(Al Vl) = 0,

∂tVl + ∂x

(
1

2
Vl

2 + g h(Al)

)
= 0,

t ∈ R
+,

x ∈ R
+,

l ∈ {1, . . . , n},
(Al, Vl) ∈ R̊

+ × R,

(4.9)

where Vl is the water speed in the lth canal, Al is the vertical cross section occupied by
the water, g is gravity, and h is the water level. Here, differently from [20], we assume
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that the canals’ beds are all at the same height above sea level, which is acceptable
in a neighborhood of the node among the pipes.

Other descriptions for the dynamics of open canals are found in the literature. In
particular, [15, section 6.1] presents a different model, based on [13], that fits into our
framework of section 4.2.

The coupling condition at the node is given by [20, formulae (2.9)–(2.16)]:

Ψ(A, V ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
l=1

Al Vl

1

2
V1

2 + g h(A1) −
1

2
V2

2 − g h(A2)

...
...

...

1

2
Vn−1

2 + g h(An−1) −
1

2
Vn

2 − g h(An)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first component in Ψ ensures the conservation of water. For a motivation for the
other components, we refer the reader to [20, formulae (2.9)–(2.16)].

This condition is analogous to the equal linear momentum flow condition (4.4)
discussed in section 4.1.

Choosing an initial datum ū = (Ā, V̄ ) such that V̄ <
√

Āgh′(Ā) ensures that (F)
is fulfilled at ū. In the present case we have

λ1(A, V ) = V −
√

Agh′(A) , λ2(ρ, q) = V +
√
Agh′(A) ,

r1(A, V ) =

[ √
A

−
√
gh′(A)

]
, r2(A, V ) =

[ √
A√

gh′(A)

]
.

The determinant in condition (2.2) evaluates therefore to

(−1)n+1

⎛
⎝ n∏

i=1

λ2(Āi, V̄i)

⎞
⎠ ·

n∑
i=1

√
Āi

∏
j �=i

√
gh′(Āj) .

Here A > 0 by assumption, as well as
√

gh′(A) > 0 by the monotonicity of h(A),
which ensures that λ2(A, V ) > 0. Thus, Theorem 3.2 can be applied, yielding the well
posedness for a junction of n open canals.

4.5. Numerical examples for the p-system. This section is devoted to com-
parisons among the different coupling conditions at the junction in the case of the
p-system (4.1). Throughout, we use the γ-law: p(ρ) = p∗ ·(ρ/ρ∗)γ with γ = 1.4, ρ∗ = 1,
and p∗ = 1, which clearly satisfies (P). In the case of the coupling conditions (4.8),
we set f ≡ 1.

In general, stationary solutions for (4.4) fail to be stationary solutions for (4.5)
or (4.8). Therefore, we perturb below static solutions, which are stationary for all
coupling conditions and allow the comparisons.

Below the initial data ul(x) = (ρl(x), ql(x)) along the lth duct attains at most
two values, say u∞

l = limx→+∞ ul(x) and u0
l = limx→0+ ul(x). When waves hit the

junction, we solve numerically condition (1.2) using Newton’s method and obtain the
traces u+

l of the solution at the junction. The solution to (2.1) is then computed
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σ−
1 σ+

1

σ+
2

Fig. 1. Kink with a small angle. Left: a shock approaches a kink with a small angle. Right: a
rarefaction is reflected and a shock is refracted.

σ−
1 σ+

1

σ+
2

Fig. 2. Kink with a large angle. Left: a shock approaches a kink. Right: according to condi-
tion (4.8), a shock is reflected and a shock is refracted.

solving a classical Riemann problem between the states u+
l (on the left) and u∞

l (on
the right). Due to the chosen directions of the space variables, waves approaching the
junction belong to the first family and those exiting it to the second.

We selected three different examples. In the case of the coupling conditions (4.4)
and (4.5), only the cross section of the connected pipes appears explicitly. In the case
of (4.8), the angular dependence is taken into account explicitly.

Remark that the numerical values provided in the tables below are expressed in
the coordinates xl adapted to the junction. In particular, the column Wave speed is
the modulus of the propagation speed of the wave; its x and y components depend
on the direction of the pipe. In case of rarefactions, the column Wave speed displays
the minimal and maximal moduli of the propagation speeds.

4.5.1. Two pipes, different cross sections, possibly different angles.
Consider a junction between n = 2 horizontal pipes having cross sections ‖ν1‖ = 1
and ‖ν2‖ = 2. The situation is depicted in Figures 1 and 2. We choose the cases
θ = 0, θ = π/4, θ = π/16, and θ = π/32. In each of these cases, a shock with right
state u0

1 = [1.1000,−0.1253] propagating along pipe 1 hits the junction. At first, we
compare conditions (4.4) and (4.5). In Table 1, the first column refers to the coupling
condition; in the case of (4.8), Table 2 displays the angle θ. The type of the resulting
wave is in the fifth column, where S and R refer to 2-(Lax-)shocks and 2-rarefaction
waves, respectively.

These numerical integrations suggest that, according to (4.8), there exists an
angle θ∗ at which no wave is reflected. Clearly, θ∗ depends on the initial states, on
the ducts’ sections, and on the empirical factor f .

4.5.2. Three pipes, different cross sections. Consider n = 3 pipes identified
by ν1 = [−1 −

√
2 0]T , ν2 = [1 1]T , and ν3 = [1 0]T and having cross sections ‖νl‖.

The situation is depicted in Figure 3. Again, we assume that the flow is initially at
rest, i.e., q̂l = 0 for l = 1, 2, 3. We consider the case of a shock approaching the
junction along pipe 1. Due to the choice of the initial data and to the geometry of the
junction, the numerical solutions to both coupling conditions (4.4) and (4.5) in fact
yield the same results. The final states and the corresponding waves are in Table 3.
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Table 1

Comparison of results obtained by condition (4.4), (4.8), θ = 0, and (4.5) for two connected
pipes with different cross sections.

Ψ l u∞
l u+

l Wave Wave speed

(4.4), (4.8), θ ≡ 0 1

[
+1.1000
−0.1253

] [
+1.0553
−0.1728

]
R

[
+1.0322
+1.0921

]

2

[
+1.0000
+0.0000

] [
+1.0701
+0.0864

]
S +1.2324

(4.5) 1

[
+1.1000
−0.1253

] [
+1.0658
−0.1618

]
R

[
+1.0466
+1.0921

]

2

[
+1.0000
+0.0000

] [
+1.0658
+0.0809

]
S +1.2294

Table 2

Comparison for the situation of a kink of angle θ. The case θ = 0 can be found in Table 1.

Ψ l u∞
l u+

l Wave Wave speed

(4.8) 1

[
+1.1000
−0.1253

] [
+1.0645
−0.1633

]
R

[
+1.0447
+1.0921

]

θ = π
32

2

[
+1.0000
+0.0000

] [
+1.0664
+0.0816

]
S +1.1298

(4.8) 1

[
+1.1000
−0.1253

] [
+1.0725
−0.1548

]
R

[
+1.0556
+1.0921

]

θ = π
16

2

[
+1.0000
+0.0000

] [
+1.0631
+0.0774

]
S +1.2275

(4.8) 1

[
+1.1000
−0.1253

] [
+1.1056
−0.1192

]
S +1.0958

θ = π
4

2

[
+1.0000
+0.0000

] [
+1.0489
+0.0596

]
S +1.2177

σ−
1 σ+

1 σ+
2

σ+
3

Fig. 3. A shock hitting a T-junction.

4.5.3. Four pipes, different cross sections. Finally, we consider a junction
with n = 4 pipes defined by ν1 = [−1 0], ν2 = [0 1], ν3 = [0 −1], and ν4 = [1 0].
The situation is depicted in Figure 4. Initially the gas flow is at rest, i.e., q̂l = 0,
and ρ̂l = 1 for l = 1, . . . , 4. We let three 1-Lax-shocks of different strengths collide
simultaneously at the junction along pipes 1, 3, and 4.

It is remarkable that the two coupling conditions yield qualitatively different
results. The wave reflected in tube 1 is a rarefaction according to (4.4) and a shock
according to (4.5). However, the propagation speeds in the two cases are close to each
other, coherently with the L1 continuous dependence.

Table 4 displays, for each duct, the type of wave arising after the interaction at the
junction, and its speed is reported below for the two different coupling conditions (4.4)
and (4.5).
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Table 3

Numerical results for section 4.5.2.

(4.4) and (4.5) l = 1 l = 2 l = 3

u∞
l

[
+1.0000
+0.0000

] [
+1.0000
+0.0000

] [
+1.0000
+0.0000

]

u0
l

[
+1.2000
−0.2642

] [
+1.0000
+0.0000

] [
+1.0000
+0.0000

]

u+
l

[
+1.2002
−0.2640

] [
+1.2002
+0.2640

] [
+1.2002
+0.2640

]
Wave type S S S
Wave speed +1.0071 +1.3206 +1.3206

σ−
1

σ−
3

σ−
4

Fig. 4. Three Lax shocks hit the junction simultaneously.

Table 4

Numerical results for section 4.5.3.

l = 1 l = 2 l = 3 l = 4

u∞
l

[
+1.0000
+0.0000

] [
+1.0000
+0.0000

] [
+1.0000
+0.0000

] [
+1.0000
+0.0000

]

u0
l

[
+1.1500
−0.1931

] [
+1.0000
+0.0000

] [
+1.1000
−0.1253

] [
+1.0500
−0.0609

]
Coupling condition (4.4)

u+
l

[
+1.1396
−0.2039

] [
+1.1441
+0.1848

] [
+1.1625
−0.0545

] [
+1.1611
+0.0736

]
Wave type R S S S

Wave speed

[
+1.0357
+1.0489

]
+1.2831 +1.1328 +1.2113

Coupling condition (4.5)

u+
l

[
+1.1520
−0.1909

] [
+1.1520
+0.1957

] [
+1.1520
−0.0667

] [
+1.1520
+0.0620

]
Wave type S S S S
Wave speed +1.0501 +1.2884 +1.1260 +1.2053
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5. Technical details. As a general reference on the theory of hyperbolic systems
of conservation laws, we refer the reader to [6]. Denote by σ �→ Li(uo,σ) the ith Lax
curve through uo for i = 1, 2. As usual, O(1) denotes a sufficiently large constant
dependent only on f restricted to a neighborhood of the initial states.

Proof of Proposition 2.2. It is sufficient to show that for all ū sufficiently near
û the nonlinear system Ψ (L2(ū1,σ1), . . . ,L2(ūn,σn)) = 0 admits a unique n-tuple
of solution σ1, . . . ,σn. Indeed, condition (2.2) allows us to use the implicit function
theorem.

The Lipschitz estimate (2.4) follows immediately from the regularity of the im-
plicit function.

To prove the latter statement, it is sufficient to consider a single pipe, say the first
one. Let u, respectively, ũ, be the solutions to (2.1) with condition Ψ, respectively, Ψ̃,
at the junction. If u and ũ contain a single shock, then

‖u− ũ‖

=

∫ min{Λ1,Λ2}t

0

‖u(x) − ũ(x)‖ dx

+

∫ max{Λ1,Λ2}t

min{Λ1,Λ2}t
‖u(x) − ũ(x)‖ dx

= O(1) · ‖u(t, 0+) − ũ(t, 0+)‖ · t + O(1) ·
∣∣∣Λ2 − Λ1

∣∣∣ · t
= O(1) ·

∥∥∥Ψ̃ − Ψ
∥∥∥
C1

· t + O(1) · ‖u(t, 0+) − ũ(t, 0+)‖ · t

= O(1) ·
∥∥∥Ψ̃ − Ψ

∥∥∥
C1

· t .

The case of one or both solutions containing a rarefaction is similar; see also the proof
of [5, Corollary 2.5].

We now pass to the proof of Theorem 3.2. To do this, we first use wave front
tracking to construct approximate solutions to the Cauchy problem (3.1) adapting
the wave front tracking technique; see [6, Chapter 7].

Let δ̂ > 0 be such that the closed sphere B(ûl, δ̂) ⊂ Ω for l = 1, . . . , n, and

introduce the compact set B =
∏n

l=1 B(ûl, δ̂). We omit the proof of the following
simple estimate.

Lemma 5.1. For all u ∈ B(û, δ̂) there exists C > 0 such that if ‖u− û‖ < δ̂ and

‖Li(u;σ) − u‖ ≤ δ̂, then

1

C
· |σ| ≤ ‖Li(u;σ) − u‖ ≤ C · |σ| .

Fix ε > 0. Approximate the initial datum uo with a sequence uo,ε of piece-
wise constant initial data each having a finite number of discontinuities so that
limε→0

∥∥uo,ε − uo

∥∥
L1 = 0. Then, at the junction and at each point of jump in the

approximate initial datum along the pipes, we solve the corresponding Riemann prob-
lem according to Definition 2.1. If the total variation of the initial datum is sufficiently
small, then Proposition 2.2 ensures the existence and uniqueness of solutions to the
Riemann problem. We approximate each rarefaction wave with a rarefaction fan,



ON 2 × 2 CONSERVATION LAWS AT A JUNCTION 617

i.e., by means of (nonentropic) shock waves traveling at the characteristic speed of
the state to the right of the shock and with size at most ε.

This construction can be extended up to the first time t̄1 at which two waves
interact in a pipe or a wave hits the junction. Clearly, at time t̄1 the functions so
constructed are piecewise constant with a finite number of discontinuities. Hence,
at any subsequent interaction or collision with the junction, we repeat the previous
construction with the following provisions:

1. no more than two waves interact at the same point or at the junction;
2. a rarefaction fan of the ith family produced by the interaction between an

ith rarefaction and any other wave is not split any further;
3. when the product of the strengths of two interacting waves falls below a

threshold ε̌, then we let the waves cross each other, their size being unaltered,
and introduce a nonphysical wave with speed λ̂, with λ̂ > supu λ2(u); see
[6, Chapter 7] and the refinement [1].

In the present case, we have to complete the above algorithm stating how the Riemann
problem at the junction is to be solved. At time t = 0 and whenever a physical wave
with size greater than ε̌ hits the junction, the accurate solver is used; i.e., the exact
solution as in Definition 2.1 is approximated by replacing rarefaction waves with
rarefaction fans. When a wave with strength smaller than ε̌ hits the junction, then
we let it be reflected into a nonphysical wave with speed λ̂, and no wave in any other
pipe is produced.

Repeating recursively this procedure, we construct a wave front tracking sequence
of approximate solutions uε in the sense of [6, Definition 7.1].

At interactions of waves in a pipe, we have the following classical result.
Lemma 5.2. There exists a constant K with the following property.
1. If there is an interaction in a pipe between two waves σ−

1 and σ−
2 , respectively,

of the first and second family, producing the waves σ+
1 and σ+

2 (see Figure 5,
left), then ∣∣∣σ+

1 − σ−
1

∣∣∣+ ∣∣∣σ+
2 − σ−

2

∣∣∣ ≤ K ·
∣∣∣σ−

1 σ−
2

∣∣∣ .(5.1)

2. If there is an interaction in a pipe between two waves σ′
i and σ′′

i of the same
ith family producing waves of total size σ+

1 and σ+
2 (see Figure 5, right, for

the case i = 2), then∣∣∣σ+
1 − (σ′′

1 + σ′
1)
∣∣∣+ ∣∣∣σ+

2

∣∣∣ ≤ K ·
∣∣σ′

1σ
′′
1

∣∣ if i = 1,

∣∣∣σ+
1

∣∣∣+ ∣∣∣σ+
2 − (σ′′

2 + σ′
2)
∣∣∣ ≤ K ·

∣∣σ′
2σ

′′
2

∣∣ if i = 2.

σ+
1

σ−
1

σ+
2

σ−
2

σ+
1

σ+
2

σ′′
2 σ′

2

Fig. 5. Notation for the standard interaction estimates in Lemma 5.2.
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3. If there is an interaction in a pipe between two physical waves σ−
1 and σ−

2

producing a nonphysical wave σ+
3 (see Figure 6, left), then∣∣∣σ+

3

∣∣∣ ≤ K ·
∣∣∣σ−

1 σ−
2

∣∣∣.
4. If there is an interaction in a pipe between a physical wave σ and a nonphys-

ical wave σ−
3 producing a physical wave σ and a nonphysical wave σ+

3 (see
Figure 6, right), then ∣∣∣σ+

3

∣∣∣− ∣∣∣σ−
3

∣∣∣ ≤ K ·
∣∣∣σσ−

3

∣∣∣.
σ+

1

σ−
1σ−

2

σ+
2

σ+
3 σ−

3 σ+
3

σ

σ

Fig. 6. Left: a nonphysical wave arises. Right: a nonphysical wave hits a physical one.

For a proof of this result see [6, Chapter 7]. By construction, nonphysical waves
cannot interact with the junction or with other nonphysical waves. In the case of the
junction, we have the following result, with notation as depicted in Figure 7.

Fig. 7. Notation for Proposition 5.3. Left: before the interaction. Right: after the interaction.

Proposition 5.3. There exist δJ > 0 and KJ ≥ 1 with the following property.
For any ū ∈ B that yields a stationary solution to the Riemann problem (2.1), and
for any 1-waves σ−

l̄
∈ ]−δJ , δJ [ hitting the junction and producing the 2-waves σ+

l ,

n∑
l=1

∣∣∣σ+
l

∣∣∣ ≤ KJ ·
∣∣∣σ−

l̄

∣∣∣ .(5.2)

The proof follows immediately from (2.4) and Lemma 5.1.
Define Ǩ = 2KKJ + 1. Fix a wave front tracking approximate solution uε. For

t > 0 and l ∈ {1, . . . , n}, we denote with {xl,α:α ∈ Jl(u)} the set of the positions
of the discontinuities of the approximate solution u in the lth pipe and with σl,1,α,
σl,2,α, σl,3,α the strengths of the waves, respectively, of the first family, of the second
family, and of the nonphysical waves at xl,α. Introduce the Glimm-type functionals

V (t) =
n∑

l=1

∑
α∈Jl

(
2KJ ·

∣∣σl,1,α

∣∣+ ∣∣σl,2,α

∣∣+ ∣∣σl,3,α

∣∣) ,(5.3)
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Q(t) =

n∑
l=1

∑{∣∣σl,i,α σl,j,β

∣∣: (σl,i,α,σl,j,β) ∈ Al

}
,

Υ(t) = V (t) + Ǩ ·Q(t) ,

where Al denotes the set of approaching waves in the lth pipe; see [6, section 7.3].
The functionals above are well defined for every t > 0 at which no interaction

takes place. Now suppose that at a time τ > 0 there is an interaction between the
wave σl̄,1 of the first family and the junction. In general, this interaction produces n

waves σ+
l,2 of the second family. Thus

ΔV (τ) ≤

⎛
⎝ n∑

l=1

∣∣∣σ+
l,2

∣∣∣
⎞
⎠− 2KJ

∣∣∣σl̄,1

∣∣∣ ≤ −KJ ·
∣∣∣σl̄,1

∣∣∣,

ΔQ(τ) ≤
n∑

l=1

⎛
⎝∣∣∣σ+

l,2

∣∣∣∑
i,α

∣∣σl,i,α

∣∣
⎞
⎠ ≤ KJ · V (τ−) ·

∣∣∣σl̄,1

∣∣∣,

ΔΥ(τ) ≤ KJ ·
(
Ǩ · V (τ−) − 1

)
·
∣∣∣σl̄,1

∣∣∣ .
Now suppose an interaction between two waves σl,i,α, σ′

l,j,β happens in a pipe at
time τ . By Lemma 5.2 we deduce that

ΔV (τ) ≤ 2 ·K ·KJ ·
∣∣∣σl,i,ασ

′
l,j,β

∣∣∣,
ΔQ(τ) ≤ K ·

∣∣∣σl,i,ασ
′
l,j,β

∣∣∣ · V (τ−) −
∣∣∣σl,i,ασ

′
l,j,β

∣∣∣,
ΔΥ(τ) ≤

∣∣∣σl,i,ασ
′
l,j,β

∣∣∣ (K · (2 ·KJ + Ǩ · V (τ−)) − Ǩ
)
.

We have thus proved the following basic result.
Proposition 5.4. Let δ̌ = min{1/(2Ǩ + 1), 1/(2KǨ + 1), δ̂, δJ}. At any inter-

action time τ > 0, if V (τ−) < δ̌, then ΔΥ(τ) < 0 with Υ defined in (5.4).
Proof of Theorem 3.2. Let δ̌ be as in Proposition 5.4, and define

D̃ =
{
u ∈ û + L1

(
R

+; (R̊+ × R)n
)

:u ∈ PC and Υ(u) ≤ δ̌
}

;

here PC denotes the set of piecewise constant functions with finitely many jumps. It
is immediate to prove that there exists a suitable C1 > 0 such that 1

C1
TV (u)(t, ·) ≤

V (t) ≤ C1 TV (u)(t, ·) for all u ∈ D̃. Any initial data in D̃ yields an approximate
solution to (1.1) attaining values in D̃ by Proposition 5.4.

We now pass to the L1-Lipschitz continuous dependence of the approximate solu-
tions from the initial datum. Consider two wave front tracking approximate solutions
u1 and u2. Define the functional

Φ (u1, u2) =

n∑
l=1

2∑
i=1

∫ +∞

0

∣∣sl,i(x)
∣∣Wl,i(x) dx ,(5.4)
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where sl,i(x) measures the strengths of the ith shock wave in the lth pipe at point x
(see [6, Chapter 8]) and the weights Wl,i are defined by

Wl,1(x) = K̂ ·
(
1 + κ1 Al,i(x) + κ1 κ2 (Υ(u1) + Υ(u2))

)
,

Wl,2(x) = 1 + κ1 Al,i(x) + κ1 κ2 (Υ(u1) + Υ(u2))

for suitable positive constants κ1, κ2 chosen as in [6, formula (8.7)] and K̂ = 1 +

(maxl Wl,2)Kj λ̂/|inf λ1|. Here Υ is the functional defined in (5.4), while the Al,i are
defined by

Al,i(x) =
∑{∣∣σl,kα,α

∣∣: xα < x, i < kα ≤ 2

xα > x, 1 ≤ kα < i

}

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑{∣∣σl,i,α

∣∣: xα < x, α ∈ Jl(u1)

xα > x, α ∈ Jl(u2)

}
if sl,i(x) < 0,

∑{∣∣σl,i,α

∣∣: xα < x, α ∈ Jl(u2)

xα > x, α ∈ Jl(u1)

}
if sl,i(x) ≥ 0;

see [6, Chapter 8]. We first fix κ1, κ2, so that δ̌ in the definition of D̃ can be chosen
to make Wl,i(x) ≥ 1 and uniformly bounded for every l ∈ {1, . . . , n}, i ∈ {1, 2}, and
x ≥ 0. Hence the functional Φ is equivalent to L1 distance:

1

C2
· ‖u1 − u2‖L1 ≤ Φ (u1, u2) ≤ C2 · ‖u1 − u2‖L1

for a positive constant C2. The same calculations as in [6, Chapter 8] show that, at
any time t > 0 when an interaction happens neither in u1 nor in u2,

d

dt
Φ (u1(t), u2(t))

≤ C3 ε +
∑
l

∑
i

∣∣sl,i(0+)
∣∣Wl,i λl,i(0+)

≤ C3 ε−

⎛
⎝∑

l

∣∣sl,1(0+)
∣∣
⎞
⎠ K̂

∣∣∣∣inf
l
λl,1

∣∣∣∣+ KJ

⎛
⎝∑

l

∣∣sl,1(0+)
∣∣
⎞
⎠max

l
Wl,2 λ̂

≤ C3 ε +
∑
l

∣∣sl,1(0+)
∣∣ (KJ max

l
Wl,2 λ̂− K̂

∣∣inf λl,1

∣∣)

≤ C3 ε ,

where C3 is a suitable positive constant depending only on a bound on the total
variation of the initial data. Above we used the analogue of Proposition 5.3 for shock
curves, i.e., if Ψ(S2(S1(u, ql,1), ql,2)) = 0, then

∑
l

∣∣ql,2∣∣ ≤ KJ

∑
l

∣∣ql,1∣∣, for a suitable
KJ .

If t > 0 is an interaction time for u1 or u2, then, by Proposition 5.4, Δ[Υ(u1(t))+
(u2(t))] < 0 and, choosing κ2 large enough, we obtain

ΔΦ (u1(t), u2(t)) < 0 .
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Thus, Φ (u1(t), u2(t)) − Φ (u1(s), u2(s)) ≤ C2 ε (t − s) for every 0 ≤ s ≤ t. The proof
is now completed using the standard arguments in [6, Chapter 8].

The proof that the semigroup trajectory does indeed yield a solution to (3.1) and,
in particular, that (Ψ) is satisfied on the traces is exactly as that of [7, Proposition 5.3].

We now pass to the stability estimate (3.2). Its proof is similar to those of [5,
Theorem 2.1] or [8, Theorem 3.1] and is based on [6, Theorem 2.9], which we recall
for convenience: for every Lipschitz map w: [0, T ] → D and every Lipschitz semigroup
S: [0,+∞[ ×D → D, the following estimate holds:

‖w(T ) − STw(0)‖L1 ≤ L ·
∫ T

0

(
lim inf
h→0+

1

h
‖w(t + h) − Shw(t)‖L1

)
dt ,

L being the Lipschitz constant of S. In the present case, we are led to

∥∥∥SΨ̃
t u− SΨ

t u
∥∥∥
L1

≤ LΨ ·
∫ t

0

(
lim inf
h→0+

1

h

∥∥∥SΨ
h SΨ

τ u− SΨ̃
h SΨ

τ u
∥∥∥) dτ .

It remains to estimate ‖SΨ
h v − SΨ̃

h v‖L1 for v = SΨ
τ u. We use the wave front tracking

approximations vΨ,ε(h, ·) = SΨ,ε
h u and vΨ̃,ε(h, ·) = SΨ̃,ε

h u. For h > 0 sufficiently small,
we can assume that there is at most a single interaction of the waves of u ∈ D with
the intersection. Then SΨ,ε

h coincides with the Riemann solver of Proposition 2.2, and
estimate (2.4) can be applied:∥∥∥SΨ

h u− SΨ̃
h u
∥∥∥ ≤ LΨ‖Ψ1 − Ψ2‖C1h .

Since the right-hand side is independent of ε and since SΨ,ε
h u converges in L1 to SΨ

h u,
we obtain∥∥∥SΨ

h u− SΨ̃
h u
∥∥∥
L1

≤
∫ t

0

(
lim inf
h→0+

1

h
·
∥∥∥Ψ − Ψ̃

∥∥∥
C1

· h
)

dτ ≤ LΨ ·
∥∥∥Ψ − Ψ̃

∥∥∥
C1

· t,

completing the proof.

Acknowledgments. We thank Graziano Guerra for helpful discussions. This
work was started while the first author was visiting TU Kaiserslautern.

REFERENCES

[1] P. Baiti and H. K. Jenssen, On the front-tracking algorithm, J. Math. Anal. Appl., 217 (1998),
pp. 395–404.

[2] M. K. Banda, M. Herty, and A. Klar, Coupling conditions for gas networks governed by
the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), pp. 275–294.

[3] M. K. Banda, M. Herty, and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media,
1 (2006), pp. 41–56.

[4] G. Bastin, B. Haut, J.-M. Coron, and B. D’andréa-Novel, Lyapunov stability analysis of
networks of scalar conservation laws, Netw. Heterog. Media, 2 (2007), pp. 751–759.

[5] S. Bianchini and R. M. Colombo, On the stability of the standard Riemann semigroup, Proc.
Amer. Math. Soc., 130 (2002), pp. 1961–1973.

[6] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Prob-
lem, Oxford Lecture Ser. Math. Appl. 20, Oxford University Press, Oxford, UK, 2000.

[7] R. M. Colombo and A. Corli, Sonic hyperbolic phase transitions and Chapman-Jouguet
detonations, J. Differential Equations, 184 (2002), pp. 321–347.

[8] R. M. Colombo and A. Corli, Stability of the Riemann semigroup with respect to the kinetic
condition, Quart. Appl. Math., 62 (2004), pp. 541–551.



622 R. M. COLOMBO, M. HERTY, AND V. SACHERS

[9] R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a
junction, Netw. Heterog. Media, 1 (2006), pp. 495–511.

[10] R. M. Colombo and M. Garavello, On the Cauchy problem for the p-system at a junction,
SIAM J. Math. Anal., 39 (2008), pp. 1456–1471.

[11] R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyper-
bolic Differ. Equ., to appear.

[12] Crane Valve Group, Flow of Fluids through Valves, Fittings and Pipes, Technical report 410,
Crane Technical paper, 1998.

[13] A. J. C. B. de Saint-Venant, Theorie du mouvement non-permanent des eaux avec applica-
tion aux crues des rivières et à l’introduction des marees dans leur lit, Comptes Rendus
Academie des Sciences, 73 (1871), pp. 148–154, 237–240.

[14] K. Ehrhardt and M. Steinbach, Nonlinear gas optimization in gas networks, in Modeling,
Simulation and Optimzation of Complex Processes, H. G. Bock, E. Kostina, H. X. Pu, and
R. Ranacher, eds., Springer, Berlin, 2005, pp. 139–148.

[15] M. Gugat, Nodal control of conservation laws on networks, in Control and Boundary Analy-
sis, Lect. Notes Pure Appl. Math. 240, Chapman and Hall/CRC, Boca Raton, FL, 2005,
pp. 201–215.

[16] M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations
between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 1–11.
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A VARIATIONAL PRINCIPLE FOR HARDENING
ELASTOPLASTICITY∗

ULISSE STEFANELLI†

Abstract. We present a variational principle governing the quasi-static evolution of a linearized
elastoplastic material. In the case of linear hardening, the novel characterization allows us to recover
and partly extend some known results and proves itself to be especially well suited for discussing
general approximation and convergence issues. In particular, the variational principle is exploited in
order to prove in a novel setting the convergence of time and space-time discretizations as well as to
provide some possible a posteriori error control.
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1. Introduction. The primal initial-boundary value problem of elastoplasticity
consists in determining the generalized deformation state of a material subject to
external mechanical actions. In particular, starting from some initial state and for
a given load and traction, one shall determine the displacement u of the body from
the reference configuration, the inelastic (plastic) part p of its strain, and, possibly, a
vector of internal hardening variables ξ. In the small deformation regime and within
the frame of associative elastoplasticity, the problem is classically formulated in a
variational form as that of finding the absolutely continuous trajectory t ∈ [0, T ] �→
y(t) ∈ Y (Y is a Banach space) such that

(1.1) ∂ψ(ẏ) + Ay � � a.e. in (0, T ), y(0) = y0,

where y = (u, p, ξ) stands for the vector of unknown fields, A : Y → Y ∗ (dual) is linear,
continuous, and symmetric, and ψ : Y → [0,∞] is the positively 1-homogeneous and
convex dissipation potential (∂ is the classical subdifferential in the sense of convex
analysis; see below). Moreover, � : [0, T ] → Y ∗ is a given and suitably smooth
generalized load (possibly including surface tractions), and y0 represents the initial
state. The reader is referred to section 2 for some brief mechanical motivation as
well as to the classical monographs by Duvaut and Lions [7], Han and Reddy [13],
Lemaitre and Chaboche [18], and Simo and Hughes [42] for a comprehensive collection
of results.

The aim of this paper is that of investigating a global-in-time variational for-
mulation of problem (1.1). In particular, we shall introduce the functional F :
W 1,1(0, T ;Y ) → [0,∞] on trajectories as

F(y) =

∫ T

0

(
ψ(ẏ) + ψ∗(�−Ay) − 〈�−Ay, ẏ〉

)
,

∗Received by the editors May 21, 2007; accepted for publication (in revised form) January 17,
2008; published electronically July 3, 2008. This research was performed during a visit to the Seminar
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where ψ∗ stands for the conjugate ψ∗(w) = supv∈Y (〈w, v〉 − ψ(v)) of ψ and 〈·, ·〉
denotes the duality pairing between Y ∗ and Y . The starting point of this analysis
relies on the fact that solutions of (1.1) and minimizers of F fulfilling the initial
condition and making F zero coincide, namely (see Theorem 3.1),

y solves (1.1) iff F(y) = minF = 0 and y(0) = y0.(1.2)

This variational characterization has a clear mechanical interpretation. Indeed,
since ψ is positively 1-homogeneous, its conjugate ψ∗ turns out to be the indicator
function of the convex set ∂ψ(0). Hence, minF is actually a constrained minimization
problem, and we have

F(y) = 0 iff

⎧⎨
⎩

�−Ay ∈ ∂ψ(0) a.e. in (0, T ),

ϕ(T, y(T )) +

∫ T

0

ψ(ẏ) = ϕ(0, y(0)) −
∫ T

0

〈�̇, y〉,(1.3)

where we have used the notation (t, y) �→ ϕ(t, y) = 1
2 〈Ay, y〉 − 〈�(t), y〉. The first

relation above expresses the so-called local stability [26] of the trajectory, whereas
the second is nothing but the energy balance at time T . More precisely, ϕ(t, y)

denotes the complementary energy at time t for the state y,
∫ T

0
ψ(ẏ) represents the

dissipation of the system on [0, T ], and −
∫ T

0
〈�̇, y〉 is related to external actions on

[0, T ]. Hence, minimizing F consists in selecting the (only) stable trajectory which
conserves the energy. In this regards, the reader is referred to the pioneering papers
by Moreau [33, 34, 35].

The interest of variational characterization (1.2) of the differential problem (1.1)
relies on the possibility of exploiting the general tools from the calculus of variations.
Some care is, however, required. Indeed, although F is convex and lower semicon-
tinuous with respect to the weak topology of W 1,1(0, T ;Y ), the functional generally
fails to be coercive. Moreover, one is not just asked to minimize F but also to prove
that the minimum is 0. These considerations suggest that the direct method is hardly
applicable in order to get solutions to (1.1) via the characterization in (1.2).

The first issue of this paper is that of exploiting the variational principle in (1.2) in
order to address general approximation procedures. Since solutions and minimizers
coincide, a natural tool in order to frame an abstract approach to limiting proce-
dures within (1.1) is that of considering the corresponding minimum problems via
Γ-convergence [11]. As the value of the functional is directly quantified to be 0 on the
minimizers, what is actually needed here for passing to limits are so-called Γ-lim inf
inequalities only, and the latter are generally easily available. We shall specifically
focus on the case of linear hardening elastoplasticity and apply the above-mentioned
perspective in order to recover in a unified and more transparent frame and partly
generalize some convergence results for conformal finite elements (Theorem 5.3), time
discretizations (Theorem 6.5), and fully discrete space-time approximations (Theo-
rem 7.1). In particular, for time discretization we develop a discrete version of the
variational principle (1.2) in the same spirit of the theory of variational integrators
[25] (see subsection 6.1). This connection entails also some generalized view at the
classical discrete time schemes (see subsection 6.5).

A second novel point of the present variational approach consists in the possibility
of exploiting F in order to estimate a posteriori some approximation error. By letting
F(y) = 0, we will check that (Corollary 4.5)

max
[0,T ]

1

2
〈A(y − v), y − v〉 ≤ F(v) ∀v ∈ W 1,1(0, T ;Y ), v(0) = y0.
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If A shows some coercivity (which is precisely the case of linearized hardening; see
subsection 2.4), and v is the outcome of some approximation procedure, the estimate
above may serve as the basis for some a posteriori estimation procedure, possibly
headed to adaptivity (see subsection 6.7). Let us stress that the latter and (1.3)
entail that the distance of a (stable) trajectory from the solution to (1.1) can be
uniformly estimated by means of its energy production along the path.

The variational characterization in (1.2) is strictly linked to the celebrated prin-
ciple by Brezis, Ekeland, and Nayroles [3, 4, 38, 39] for the gradient flow of a convex
functional j : Y → (−∞,∞] in a Hilbert space Y , namely,

(1.4) ẏ + ∂j(y) � � a.e. in (0, T ).

In particular, by using the convexity of j (see details in section 3.1), this inclusion
may be equivalently rewritten as the scalar relation

(1.5) j(y) + j∗(�− ẏ) − 〈�− ẏ, y〉 = 0 a.e. in (0, T ),

where j∗ is the conjugate of j. As the above left-hand side is a.e. nonnegative for
all trajectories y and it is 0 iff y solves (1.4), the latter is equivalent to minimize the
global functional

I(y) =

∫ T

0

(
j(y) + j∗(�− ẏ) − 〈�− ẏ, y〉

)

and check that I(y) = 0. Since its introduction, the latter principle has continuously
attracted attention. In particular, it has been exploited in the direction of proving
the existence [40, 2, 41, 10, 9] (note that the above-mentioned obstructions to the
application of the direct methods again appear) and the description of long-time
dynamics [17]. Moreover, the Brezis–Ekeland–Nayroles approach has been adapted
to the case of second order [21, 22] and doubly nonlinear equations [45] and to the
study of variable time step discretizations of (1.4) [43] as well.

The variational characterization (1.2) stems basically from the same idea as in
(1.5). Namely, the differential inclusion in (1.1) is equivalently rewritten by convexity
of ψ as

ψ(ẏ) + ψ∗(�−Ay) − 〈�−Ay, ẏ〉 = 0 a.e. in (0, T ),

and (1.2) follows by noting that the above left-hand side is a.e. nonnegative for all
trajectories y and it is 0 iff y is fulfilling the inclusion in (1.1). On the other hand, apart
from this conceptual analogy, one has indeed to mention that the characterization
(1.2) has little in common with the original Brezis–Ekeland–Nayroles principle. In
particular, the two principles turn out to be different even in the case of a quadratic
functional ψ on a Hilbert space.

One has to mention that, of course, (1.2) is not the only possible global-in-time
variational characterization of (1.1). Besides minimizing the L2 space-time norm of
the residual (which might be a little interesting since the order of the problem is
doubled), one has at least to mention Visintin [48], where generalized solutions are
obtained as minimal elements of a certain partial-order relation on the trajectories,
and the recent contribution by Mielke and Ortiz [27], where the functional

(1.6) y �→ e−T/εϕ(T, y(T )) +

∫ T

0

e−t/ε

(
ψ(ẏ) +

1

ε
ϕ(t, y)

)
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is minimized among trajectories with y(0) = y0. Under extra-smoothness conditions
on ψ (not fulfilled in the current frame), the Euler–Lagrange equations of the latter
functional are

−εD2ψ(ẏ)ÿ + Dψ(ẏ) + Ay = �,

y(0) = y0, Dψ(ẏ(T )) + Ay(T ) = �(T ).

In particular, minimizing the functional in (1.6) consists in performing a suitable
elliptic (in time) regularization of the problem. In the specific case of ψ positively 1-
homogeneous, the limit ε → 0 can be carried out, and the minimizers of the functional
in (1.6) are proved to converge to the solution of (1.1). The latter approach is quite
different from that of (1.2). On the one hand, it is much more general as it naturally
applies to the nonsmooth case as well (no derivatives of ψ and φ are involved). The
results of [27] have been recently extended in the direction of discretizations and
relaxation in [31].

2. Mechanical model. Let us provide the reader with a brief introduction to
the mechanical setting under consideration. Our aim is just that of recalling some
essential features of the models as well as their variational formulation. In particular,
we restrain from reporting here an extensive discussion on associative elastoplasticity
as the latter can be easily recovered from the many contributions on the subject. The
reader is particularly referred to the mentioned monographs for some comprehensive
presentation.

2.1. Preliminaries. We will denote by R
3×3
sym the space of symmetric 3× 3 ten-

sors endowed with the natural scalar product a : b := tr(ab) = aijbij (summation
convention). The space R

3×3
sym is orthogonally decomposed as R

3×3
sym = R

3×3
dev ⊕ R 12,

where R 12 is the subspace spanned by the identity 2-tensor 12 and R
3×3
dev is the sub-

space of deviatoric symmetric 3 × 3 tensors. In particular, for all a ∈ R
3×3
sym, we have

that a = adev + tr(a)12/3.
We shall assume the reference configuration Ω to be a nonempty, bounded, and

connected open set in R
3 with a Lipschitz continuous boundary. The space dimension

3 plays essentially no role throughout the analysis, and we would be in the position of
reformulating our results in R

d with no particular intricacy. Our unknown variables
are the displacement of the body u ∈ R

3, the plastic strain p ∈ R
3×3
dev , and a vector of

internal variables ξ ∈ R
m (m ∈ N) which will describe the hardening of the material.

We will denote by ε(u) the standard symmetric gradient.

2.2. Constitutive relation. Moving within the small-strain regime, we addi-
tively decompose the linearized deformation ε(u) into the elastic strain e and the
inelastic (or plastic) strain p as

ε(u) = e + p.

Let C be the elasticity tensor. By regarding the latter as a symmetric positive
definite linear map C : R

3×3
sym → R

3×3
sym, we shall assume that the orthogonal subspaces

R
3×3
dev and R 12 are invariant under C. This amounts to saying that indeed

Ca = Cdevadev + κ tr(a)12

for a given Cdev : R
3×3
dev → R

3×3
dev , a constant κ, and all a ∈ R

3×3
sym. The case of isotropic

materials is given by Cdev = 2G(14 − 12 ⊗ 12/3), and G and κ are, respectively, the
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shear and the bulk moduli. The latter decomposition is not exploited in our analysis,
but it is clearly suggested by the mechanical application. Moreover, we shall introduce
two linear symmetric positive semidefinite hardening moduli Hp : R

3×3
dev → R

3×3
dev and

Hξ : R
m → R

m (to be identified with a fourth order tensor and a matrix, respectively)
and define the Helmholtz free energy W : R

3×3
sym×R

3×3
dev ×R

m → [0,∞) of the material
as

W (ε(u), p, ξ) :=
1

2
(ε(u) − p) : C(ε(u) − p) +

1

2
p : Hpp +

1

2
ξT · Hξξ.

The generalized stresses (σ, η) are conjugate to the above-defined generalized
strains (e, ξ) via the energy W . In particular, the material is classically assumed
to show elastic response,

(2.1) σ =
∂W

∂e
= Ce = C(ε(u) − p),

and the thermodynamic force η driving the evolution of the internal variables ξ is
defined as

(2.2) η = −∂W

∂ξ
= −Hξξ.

Moreover, by moving within the frame of associative elastoplasticity, we assume the
existence of a function R : R

3×3
dev × R

m → [0,∞] convex, positively 1-homogeneous,
and lower semicontinuous such that

(2.3) ∂R(ṗ, ξ̇) �
(
σ − Hpp

η

)
.

In particular, R is asked to be the support function of a convex set C∗ ∈ R
3×3
dev ×R

m,
i.e., R(p) = supq∈C∗ q : p. We will indicate with R∗ its conjugate, namely, the
indicator function of C∗ given by R∗(q) = 0 if q ∈ C∗ and R∗(q) = ∞ otherwise.
Moreover, we let C be the domain of R, namely, C = D(R) = {(p, ξ) ∈ R

3×3
dev × R

m :
R(p, ξ) < ∞}.

Finally, the above material relations (2.1)–(2.3) can be condensed as the following
constitutive material law:

(2.4) ∂R(ṗ, ξ̇) +

(
(C + Hp)p

Hξξ

)
�
(

Cε(u)

0

)
,

which in turn can be rephrased in the form of (1.1) by letting

y = (p, ξ), Y = R
3×3
dev × R

m, ψ = R,

A(p, ξ) =
(
(C + Hp)p,Hξξ

)
, � = (Cε(u), 0).(2.5)

Let us close this subsection by explicitly mentioning three classical linear hardening
models [13, Ex. 4.8, p. 88]:

Linear kinematic hardening. Choose Hp = hp14, where hp > 0, and Hξ = 0. In
this case the internal variable ξ is not evolving and shall be removed from
the set of unknowns.

Linear isotropic hardening. Choose Hp = 0, m = 1, and Hξ = hξ > 0. Moreover,
let D(R) = {(p, ξ) ∈ R

3×3
dev × R : |p| ≤ ξ}.

Linear combined kinematic-isotropic hardening. Let Hp = hp14, m = 1, and Hξ =
hξ, where hp, hξ > 0. Moreover, let D(R) = {(p, ξ) ∈ R

3×3
dev × R : |p| ≤ ξ}.

It is beyond the purpose of this introduction to discuss and justify the above-mentioned
material models. The reader should check the cited references for comments on their
relevance within applications and some mechanical motivation.
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2.3. Variational formulation of the quasi-static evolution. Let us now
move to the consideration of the full equilibrium problem. To this aim, we assume
that the boundary ∂Ω is partitioned in two disjoint open sets Γtr and ΓDir, with
∂Γtr = ∂ΓDir (in ∂Ω). We ask ΓDir to be such that there exists a positive constant
cKorn depending on ΓDir and Ω such that the Korn inequality

(2.6) cKorn‖u‖2
H1(Ω;R3) ≤ ‖u‖2

L2(ΓDir;R3) + ‖ε(u)‖2
L2(Ω;R3×3

sym)

holds true for all u ∈ H1(Ω; R3). It would indeed suffice to impose ΓDir to have a
positive surface measure (see, e.g., [7, Thm. 3.1, p. 110]).

For the sake of simplicity, we will prescribe homogeneous Dirichlet boundary con-
ditions on ΓDir (our analysis extends with little notational intricacy to the case of non-
homogeneous Dirichlet boundary conditions as well). On Γtr some time-dependent
traction will be prescribed instead.

As for the full quasi-static evolution of the material, we shall couple the consti-
tutive relation (2.4) with the equilibrium equation

(2.7) divσ + f = 0 in Ω.

Here we assume to be given the body force f : [0, T ] → L2(Ω; R3) and a surface
traction g : [0, T ] → L2(Γtr; R

3).
Then one can rephrase the problem into the form of (1.1) by choosing

y = (u, p, ξ),(2.8)

Y =
{

(u, p, ξ) ∈ H1(Ω; R3) × L2(Ω; R3×3
dev ) × L2(Ω; Rm)

such that u = 0 on ΓDir

}
,(2.9)

〈A(u, p, ξ), (v, q, z)〉 =

∫
Ω

(
(ε(u) − p) : C(ε(v) − q) + p : Hpq + ξT · Hξz

)
∀(v, q, z) ∈ Y,(2.10)

ψ(u, p, ξ) =

∫
Ω

R(p, ξ)(2.11)

and defining the total load � : [0, T ] → Y ∗ as

〈�(t), (u, p, ξ)〉 =

∫
Ω

f · u +

∫
Γtr

g · u dH2 ∀u ∈ H1(Ω; R3), t ∈ [0, T ],

where H2 is the 2-dimensional Hausdorff measure.

2.4. The coercivity of A. Let us close this introductory discussion by explicitly
commenting on the coercivity of the bilinear form induced by A. We shall recall some
sufficient conditions on Hp, Hξ, and R in such a way that there exists a constant
α > 0 such that

(2.12) 〈Ay, y〉 ≥ α|y|2 ∀y ∈ D(ψ),

where | · | is the norm in Y . This issue is fairly classical [13, sec. 7.3, p. 167], and we
discuss it here for the sake of completeness only.

Of course, (2.12) holds (and even for all y ∈ Y ) whenever Hp and Hξ are positive
definite (this is the case of the above-mentioned linear combined kinematic-isotropic
hardening).
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As we have already observed, in the case Hξ = 0, the problem naturally reduces
to the pair (u, p) only. Up to this reduction, (2.12) holds (again for all y ∈ Y ) when
Hp is positive definite. This is exactly the case of linear kinematic hardening.

On the other hand, in the case Hp = 0, the plastic strain will still evolve, and one
has (2.12) if D(R) is bounded in the p-direction for all ξ, namely, if [13, eq. (7.51)]

(2.13)
D(R) ⊂ {(p, ξ) ∈ R

3×3
dev × R

m : β|p|2 ≤ ξT · Hξξ for some constant β > 0},

which is clearly the case for linear isotropic hardening.
Some generalization of the latter condition could in principle be considered for

the case when Hp and Hξ are only semidefinite. In particular, (2.12) holds if one
assumes (2.13) and

ξ �= 0 and ξT · Hξξ = 0 ⇒ R(p, ξ) = ∞ ∀p ∈ R
3×3
dev .

Let us mention that the most critical case in the class of (2.4) is Hp = 0, Hξ = 0
where actually no hardening takes place. This is the situation of perfect plasticity for
which the Sobolev space framework above is not appropriate, and one would consider
the space BD(Ω) of functions of bounded deformations instead [6]. We shall make
clear that, even if our variational characterization covers the case of perfect plasticity,
the subsequent approximation results apply to the linear hardening situation only.

3. Characterization.

3.1. General assumptions. Let us start by recalling notation and enlisting the
basic assumptions for the following. First of all, we will ask that

(3.1) Y is a separable and reflexive Banach space.

We will use the symbols | · | for the norm of Y and 〈·, ·〉 for the duality pairing between
Y ∗ (dual) and Y . The norm in Y ∗ will be denoted by | · |∗ instead.

We introduce the functional

ψ : Y → [0,∞] proper, convex, lower semicontinuous,

and positively 1-homogeneous.(3.2)

Equivalently, ψ is required to be the support function of a convex and closed set
C∗ ⊂ Y ∗ containing 0, namely,

(3.3) ψ(y) = sup{〈y∗, y〉 : y∗ ∈ C∗}.

We shall define C = D(ψ). Hence, the conjugate ψ∗ : Y ∗ → [0,∞], which is classically
defined as ψ∗(y∗) = supy∈Y (〈y∗, y〉−ψ(y)), is the indicator function of the convex set
C∗, namely, ψ∗(y∗) = 0 if y∗ ∈ C∗ and ψ∗(y∗) = ∞ otherwise. Let us remark that ψ
fulfills the triangle inequality ψ(a) ≤ ψ(b) + ψ(c) whenever a = b + c.

We shall use the symbol ∂ in order to denote the usual subdifferential in the sense
of convex analysis, namely,

y∗ ∈ ∂ψ(y) iff y ∈ D(ψ) and 〈y∗, w − y〉 ≤ ψ(w) − ψ(y) ∀w ∈ Y.

Similarly, we define

y ∈ ∂ψ∗(y∗) iff y∗ ∈ D(ψ∗) and 〈w∗ − y∗, y〉 ≤ ψ∗(w∗) − ψ∗(y∗) ∀w∗ ∈ Y ∗

iff y∗ ∈ C∗ and 〈w∗ − y∗, y〉 ≤ 0 ∀w∗ ∈ C∗.
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Finally, we recall Fenchel’s inequality

ψ(y) + ψ∗(y∗) ≥ 〈y∗, y〉 ∀y ∈ Y, y∗ ∈ Y ∗,

and remark that equality holds iff y∗ ∈ ∂ψ(y) (or, equivalently, y ∈ ∂∗ψ∗(y∗)).
As for the operator A we require that

(3.4) A : Y → Y ∗ linear, continuous, and symmetric

and define the function

y → φ(y) =
1

2
〈Ay, y〉,

so that A = Dφ. Moreover, we will ask φ to be coercive on C = D(ψ); namely, we
assume that there exists a positive constant α such that

(3.5) φ(y) ≥ α

2
|y|2 ∀y ∈ C.

As we have already commented in subsection 2.4, the latter coercivity is fulfilled in
the situation of elastoplastic evolution with linear kinematic, isotropic, or combined
kinematic-isotropic hardening and will turn out to be sufficient for both of the forth-
coming characterization results.

On the other hand, the following uniqueness-type results will be checked under
some stronger coercivity frame, and we will ask for

(3.6) φ(y) ≥ α

2
|y|2 ∀y ∈ C − C.

Clearly, condition (3.6) is fulfilled when φ happens to be coercive on the whole space
Y . The latter applies in particular to the case of linear kinematic and combined
kinematic-isotropic hardening elastoplasticity. In this case, φ defines an equivalent
(squared) norm in Y .

We shall make use of the following notation:

χ(y) = φ(y) + |y|2 ∀y ∈ Y.

Indeed the latter choice is just motivated by simplicity and could be replaced as well
by any other χ : Y → [0,∞) such that χ(y) = 0 iff y = 0 and that y �→ χ(y)− φ(y) is
lower semicontinuous.

Finally, we shall fix data such that

(3.7) � ∈ L∞(0, T ;Y ∗), y0 ∈ C.

The restriction on the choice of the initial datum in C is motivated by the coercivity
assumption on φ in (3.5). On the other hand, we shall explicitly mention that the
usual choice for y0 in elastoplasticity is y0 = 0.

In what follows, the above assumptions (3.1)–(3.5) and (3.7) will be tacitly as-
sumed (unless explicitly stated). It should be clear, however, that the above choice
is motivated by the sake of simplicity. Indeed, most of the following results still hold
under suitably weaker assumptions, as we shall comment.
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3.2. The functional. Let the Lagrangian L : (0, T )×Y ×Y → [0,∞] be defined
as

L(t, y, p) = ψ(p) + ψ∗(�(t) −Ay) − 〈�(t) −Ay, p〉
for a.e. t ∈ (0, T ), ∀y, p ∈ Y,(3.8)

and the functional F : W 1,1(0, T ;Y ) → [0,∞] as

(3.9) F (y) =

∫ T

0

L(t, y(t), ẏ(t)) dt + χ(y(0) − y0).

Now, by simply using the chain rule, we obtain

F (y) =

∫ T

0

(
ψ(ẏ) + ψ∗(�−Ay) − 〈�, ẏ〉

)
+ φ(y(T )) − φ(y(0)) + χ(y(0) − y0).

A first remark is that, by exploiting the particular form of χ,

F (y) =

∫ T

0

(
ψ(ẏ) + ψ∗(�−Ay) − 〈�, ẏ〉

)
+ φ(y(T )) + φ(y0) − 〈Ay(0), y0〉 + |y(0) − y0|2.(3.10)

In particular, F is clearly convex.

3.3. The characterization. Let us state here our variational principle.
Theorem 3.1 (variational principle). y ∈ W 1,1(0, T ;Y ) solves (1.1) iff

F (y) = 0 = minF.

Proof. Owing to Fenchel’s inequality we have

L(t, y, p) = 0 iff �(t) −Ay ∈ ∂ψ(p)

and, clearly, χ(y(0) − y0) = 0 iff y(0) = y0. Hence, all solutions y of (1.1) are such
that F (y) = 0 and vice versa.

Let us remark that the latter variational characterization result holds in much
greater generality. The proof made no use of the separability and reflexivity of Y
nor of the linearity of A (besides its being single-valued and such that t �→ Ay(t)
is measurable). Moreover, the positive 1-homogeneity of ψ is unessential [44]. In
particular, the variational approach of Theorem 3.1 can be directly extended to a
variety of different dissipative systems possibly including viscous evolution as well.
We shall address this perspective in a forthcoming contribution.

We have already observed that F is convex. Moreover, F is lower semicontinu-
ous with respect to the weak topology of W 1,1(0, T ;Y ), since all weakly convergent
sequences in W 1,1(0, T ;Y ) are pointwise weakly convergent as well. Hence, one could
be tempted to use the direct method in order to get the existence of minimizers, i.e.,
solutions to (1.1). As we commented in the introduction, this seems to be no trivial
task.

First of all, the functional F need not be coercive with respect to the weak
topology of W 1,1(0, T ;Y ). Indeed, the functional ψ may degenerate and hence not
control the norm of its argument. Moreover, even in the case when ψ is nondegener-
ate, the homogeneity assumption just entails that the sublevels of F are bounded in
W 1,1(0, T ;Y ) and no weak compactness follows.

Second, even assuming coercivity in the weak topology of W 1,1(0, T ;Y ), one would
still need to prove that the minimum 0 is attained.
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3.4. The variational principle for hardening elastoplasticity. By referring
to the notations of section 2, let us now present the actual form of the functional F for
the case of the constitutive relation for linearized elastoplastic materials with linear
hardening (see (2.5)). In this case the functional reads

F (p, ξ) =

∫ T

0

(
R(ṗ, ξ̇) + R∗(

C(ε(u) − p) − Hpp,−Hξξ
))

−
∫ T

0

((
C(ε(u) − p) − Hpp

)
: ṗ− ξT · Hξ ξ̇

)
+

1

2
(p(0) − p0) : (C + Hp)(p(0) − p0) +

1

2
(ξ(0) − ξ0)

T · Hξ(ξ(0) − ξ0)

+ |(p(0), ξ(0)) − (p0, ξ0)|2

for some given initial datum (p0, ξ0) ∈ R
3×3
dev × R

m and ε(u) ∈ L∞(0, T ; R3×3
sym).

In the situation of the quasi-static evolution, for some given initial datum
(u0, p0, ξ0) ∈ Y , a load f ∈ L∞(0, T ;L2(Ω; R3)), and a traction g ∈ L∞(0, T ;L2(Γtr;
R

3)), the functional reads (see (2.8)–(2.11))

F (u, p, ξ) =

∫ T

0

∫
Ω

(
R(ṗ, ξ̇) + R∗(

C(ε(u) − p) − Hpp,−Hξξ
))

−
∫ T

0

∫
Ω

f · u̇−
∫ T

0

∫
Γtr

g · u̇ dH2

+

∫ T

0

∫
Ω

(
(ε(u) − p) : C(ε(u̇) − ṗ) + p : Hpṗ + ξT · Hξ ξ̇

)

+
1

2

∫
Ω

(ε(u(0) − u0) − (p(0) − p0)) : C(ε(u(0) − u0) − (p(0) − p0))

+
1

2

∫
Ω

(
(p(0) − p0) : Hp(p(0) − p0) + (ξ(0) − ξ0)

T · Hξ(ξ(0) − ξ0)
)

+
1

2

∫
Ω

|(u(0), p(0), ξ(0)) − (u0, p0, ξ0)|2

for all points (u, p, ξ) ∈ Y such that

∫
Ω

(ε(u) − p) : Cε(v) =

∫
Ω

f · v −
∫

Γtr

g · v dH2

∀v ∈ H1(Ω; R3), with v = 0 on ΓDir, a.e. in (0, T ),

and F (u, p, ξ) = ∞ otherwise.

4. Properties of the minimizers. For the sake of illustrating the variational
principle of Theorem 3.1, we shall collect here some properties of the trajectories
belonging to the domain of the functional F and, in particular, of the minimizers.

4.1. Trajectories are in C.
Lemma 4.1. Let F (y) < ∞. Then y(t) ∈ C for all t ∈ [0, T ].
Proof. Since F (y) < ∞ we have ẏ ∈ C a.e. in (0, T ). Hence, for all t ∈ [0, T ], we

have
∫ t

0
ẏ ∈ C by Jensen’s inequality. On the other hand, y0 ∈ C and y(t) = y0 +

∫ t

0
ẏ.

The assertion follows by recalling that C is a cone.
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4.2. Stability at regular points of �. Assume that � : [0, T ] → Y ∗ is given,
and let the set of stable states S(t) ⊂ Y for t ∈ [0, T ] be defined as

S(t) = {y ∈ Y : φ(y) − 〈�(t), y〉 ≤ φ(w) − 〈�(t), w〉 + ψ(w − y) ∀w ∈ Y }.

In particular, one has y ∈ S(t) iff it minimizes the convex functional G : w �→
φ(w) − 〈�(t), w〉 + ψ(w − y), namely,

y ∈ S(t) iff 0 ∈ ∂G(y) = Ay − �(t) + ∂ψ(0).

Let us now check that indeed ∂ψ(0) = C∗. To this end, owing to (3.3), given y∗ ∈ C∗

one has 〈y∗, w〉 ≤ ψ(w) for all w ∈ Y . Namely, C∗ ⊂ ∂ψ(0). On the other hand,
assume that there exists ξ ∈ ∂ψ(0) \ C∗. Hence, by the Hahn–Banach theorem one
finds y ∈ Y, α ∈ R, and ε > 0 such that

ψ(y)
ξ∈∂ψ(0)

≥ 〈ξ, y〉 ≥ α + ε > α− ε ≥ 〈y∗, y〉 ∀y∗ ∈ C∗,

and, by passing to the supremum as y∗ ∈ C∗, we obtain a contradiction. We may
summarize this discussion as follows:

y ∈ S(t) iff �(t) −Ay ∈ C∗.

Lemma 4.2 (stability of the minimizers). Let � be either left- or right-weakly
continuous at some point t ∈ [0, T ] and F (y) < ∞. Then y(t) ∈ S(t).

Proof. Since F (y) < ∞, we have �(t) − Ay(t) ∈ C∗ for all t ∈ (0, T ) \ N , where
|N | = 0. Choose a sequence tk ∈ (0, T ) \N such that tk → t (from the left or from
the right) and �(tk) → �(t) weakly in Y ∗. Hence, �(tk)−Ay(tk) → �(t)−Ay(t) weakly
in Y ∗ and �(t) −Ay(t) ∈ C∗.

In particular, if � happens to be right-continuous at 0, the functional F will not
attain the minimum value 0 unless the initial datum y0 is stable, namely, y0 ∈ S(0).

4.3. Equivalent formulations. Letting now � ∈ W 1,1(0, T ;Y ∗), problem (1.1)
admits some alternative equivalent formulations [26, sec. 2.1]. We explicitly mention
that y ∈ W 1,1(0, T ;Y ) is said to be an energetic solution if it solves the energetic
formulation [32] of (1.1), namely,

y(t) ∈ S(t) ∀t ∈ [0, T ],(4.1)

φ(y(t)) − 〈�(t), y(t)〉 +

∫ t

0

ψ(ẏ) = φ(y(0)) − 〈�(0), y(0)〉 −
∫ t

0

〈�̇, y〉

∀t ∈ [0, T ],(4.2)

y(0) = y0.(4.3)

Mielke and Theil [32] proved that the latter is equivalent to (1.1) and hence,
owing to the characterization of Theorem 3.1, to F (y) = 0 = minF (note that the
analysis in [32] is much more general and is in particular allowing discontinuous in
time evolutions by introducing the above notion of energetic solutions in the frame of
functions of a bounded variation). For the aim of pointing out some features of our
variational approach, we shall present here a direct proof of this fact.

Lemma 4.3 (equivalence with the energetic formulation). Let � ∈ W 1,1(0, T ;Y ∗).
Then F (y) = 0 = minF iff y fulfills (4.1)–(4.3).

Proof. Owing to Lemma 4.2, we readily have that the stability condition (4.1)
holds iff ψ∗(�−Ay) = 0 a.e.
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Let y be such that F (y) = 0. Then (4.1) and (4.3) hold and L(t, y(t), ẏ(t)) = 0
for a.e. t ∈ (0, T ). In particular, for all t ∈ [0, T ],

0 =

∫ t

0

L(s, y(s), ẏ(s)) ds =

∫ t

0

(
ψ(ẏ) − 〈�, ẏ〉

)
+ φ(y)

∣∣∣t
0

= (φ(y) − 〈�, y〉)
∣∣∣t
0

+

∫ t

0

ψ(ẏ) +

∫ t

0

〈�̇, y〉,

so that the energy equality (4.2) holds for all t ∈ [0, T ].
On the contrary, let y ∈ W 1,1(0, T ;Y ) fulfill (4.1)–(4.3). Then χ(y(0) − y0) = 0

and ψ∗(�−Ay) = 0 a.e. (see above). Hence F (y) = 0 follows from the energy equality
(4.2) at time T and an integration by parts.

Let us mention that the last lemma proves in particular that the energy equality
(4.2) could be equivalently enforced at the final time T only. Moreover, it proves
that, as already commented in the introduction, all stable trajectories t �→ y(t) (i.e.,
trajectories such that y(t) ∈ S(t) for all t ∈ [0, T ]) are such that the following energy
inequality holds:

φ(y(t)) − 〈�(t), y(t)〉 +

∫ t

0

ψ(ẏ) ≥ φ(y(0)) − 〈�(0), y(0)〉 −
∫ t

0

〈�̇, y〉 ∀t ∈ [0, T ].

Hence, we have provided a proof to [26, Prop. 5.7] (note that the referred result
is, however, more general as it is concerned with the BV situation, the energy is
implicitly depending on time, and no linear structure on Y is required).

Before closing this subsection, let us explicitly remark that the above inferred
equivalence between formulations has been obtained for the absolutely continuous
case � ∈ W 1,1(0, T ;Y ∗) only, whereas the characterization of Theorem 3.1 holds more
generally for bounded �.

4.4. The functional controls the uniform distance: Uniqueness. So far,
we have simply reformulated known results in a variational fashion. Here we present
some novel results instead.

Lemma 4.4 (uniform distance control via F ). We have

η(1 − η) max
t∈[0,T ]

φ
(
u(t) − v(t)

)
≤ ηF (u) + (1 − η)F (v)

∀u, v ∈ W 1,1(0, T ;Y ), η ∈ [0, 1].(4.4)

Proof. The statement follows from the quadratic character of φ. Fix t ∈ [0, T ],
and define F t : W 1,1(0, t;Y ) → [0,∞] as

F t(y) =

∫ t

0

L(s, y(s), ẏ(s)) ds + χ(y(0) − y0)

=

∫ t

0

(
ψ(ẏ) + ψ∗(�−Ay) − 〈�, ẏ〉

)
+ φ(y(t)) + φ(y0) − 〈Ay(0), y0〉 + |y(0) − y0|2.

Then, clearly, y �→ Gt(y) = F t(y) − φ(y(t)) is convex. Hence, by letting w = ηu +
(1 − η)v we have

0 ≤ F t(w)

≤ η
(
Gt(u) + φ(u(t))

)
+ (1 − η)

(
Gt(v) + φ(v(t))

)
− η(1 − η)φ

(
u(t) − v(t)

)
,

whence the assertion follows.
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The latter lemma exploits the quadratic character of φ only. In particular, no
coercivity for φ is assumed. It should, however, be clear that its application (as the
title of the lemma indeed suggests) will always be referred to the situation where the
stronger (3.6) is required, namely, when the left-hand side of (4.4) controls

η(1 − η)
α

2
max
[0,T ]

|u− v|2.

We now present two immediate corollaries of Lemma 4.4.
Corollary 4.5 (uniform distance from the minimizer). Let F (y) = 0. Then

max
t∈[0,T ]

φ
(
y(t) − v(t)

)
≤ F (v).

This corollary encodes an interesting novel feature of our variational approach,
for it provides a possible a posteriori error estimator to be used within approximation
procedures. It is interesting to remark that the uniform distance of any stable tra-
jectory from the minimizer is controlled by means of its energy production along the
path only. Again, although Corollary 4.5 holds under no coercivity assumptions of φ,
let us mention that its application will be restricted to the frame of (3.6). Finally, we
have uniqueness of the minimizers of F attaining the value 0.

Corollary 4.6 (uniqueness). Assume (3.6). Then there exists at most one
trajectory y such that F (y) = 0.

4.5. Lipschitz bound. Throughout the remainder of the paper we shall tacitly
assume that

(4.5) � ∈ W 1,∞(0, T ;Y ∗), y0 ∈ S(0).

As already commented after Lemma 4.2, the above restriction on the initial datum
is mandatory whenever � admits a weak right limit in 0.

As for �, the extra Lipschitz continuity assumption is motivated by the rate in-
dependence of the problem (every absolutely continuous datum can be time-rescaled
to a Lipschitz continuous datum) and the following well known result.

Lemma 4.7 (Lipschitz bound). Assume (3.6), and let � ∈ W 1,∞(0, T ;Y ∗) and
F (y) = 0. Then

(4.6) ‖ẏ‖L∞(0,T ;Y ) ≤
1

α
‖�̇‖L∞(0,T ;Y ∗) a.e. in (0, T ).

The proof of the lemma is exactly the classical one [32, Thm. 7.5] but formulated
by means of our variational arguments. We provide it for the sake of completeness.

Proof. Let 0 ≤ s < t ≤ T be fixed. Since L(y, ẏ) = 0 a.e. we have∫ t

s

(
ψ(ẏ) + 〈�̇, y〉

)
+ (φ(y) − 〈�, y〉)

∣∣∣t
s

= 0.

On the other hand, owing to the strong monotonicity of A and the fact that y(s) ∈ S(s)
(see Lemma 4.2), one obtains

φ(y(t) − y(s)) ≤ φ(y(t)) − 〈�(s), y(t)〉 + ψ(y(t) − y(s)) − φ(y(s)) − 〈�(s), y(s)〉

= (φ(y) − 〈�, u〉)
∣∣∣t
s
+

∫ t

s

〈�̇(r), y(t)〉dr + ψ(y(t) − y(s)).
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By taking the sum of these two relations and recalling that, by Jensen,

ψ(y(t) − y(s)) = ψ

(∫ t

s

ẏ

)
≤

∫ t

s

ψ(ẏ),

we get

φ(y(t) − y(s)) ≤
∫ t

s

〈�̇(r), y(t) − y(r)〉dr.

Finally, an application of some extended Gronwall lemma (see [26, Thm. 3.4]) entails
that

α

2
|y(t) − y(s)|2 ≤ 1

2
‖�̇‖L∞(0,T ;Y ∗)|y(t) − y(s)| (t− s),

and the assertion follows.

5. Space approximation and stability under data perturbation. We now
apply the characterization results of Theorem 3.1 to the approximation of solutions of
(1.1). As already commented in the introduction, we shall proceed via Γ-convergence
[11]. The reader is referred to the monographs by Attouch [1] and Dal Maso [5]
for some comprehensive discussion on this topic. Indeed, since Theorem 3.1 directly
quantifies the value of the minimum to be 0, what is actually needed for passing to
limits are Γ-lim inf inequalities only. We shall illustrate this fact by discussing the
simple case of stability under data perturbation first.

Lemma 5.1 (stability under data perturbation). Assume (3.6), and let �h → �
strongly in L1(0, T ;Y ∗) being uniformly Lipschitz continuous and y0,h → y0. More-
over, let Fh : W 1,1(0, T ;Y ) → [0,∞] be defined as

Fh(y) =

∫ T

0

(
ψ(ẏ) + ψ∗(�h −Ay) − 〈�h −Ay, ẏ〉

)
+ χ(y(0) − y0,h),

and let Fh(yh) = 0. Then yh → y weakly star in W 1,∞(0, T ;Y ) and F (y) = 0.
Proof. Owing to Lemma 4.7, we find a (not relabeled) subsequence yh such that

yh → y weakly star in W 1,∞(0, T ;Y ). Hence, we have by lower semicontinuity

0 ≤ F (y) ≤ lim inf
h→0

(∫ T

0

(
ψ(ẏh) + ψ∗(�h −Ayh) − 〈�h, ẏh〉

)

+ φ(yh(T )) + φ(y0,n) − 〈Ayh(0), y0,h〉 + |yh(0) − y0,h|2
)

= lim inf
h→0

Fh(yh) = 0.

Hence, F (y) = 0, y is unique, and the assertion follows from the fact that the whole
sequence converges.

5.1. Preliminaries on functional convergence. In order to move to more
general approximation situations, we are forced to discuss a suitable functional con-
vergence notion. We limit ourselves in introducing the relevant definitions, referring
to the mentioned monographs for all of the necessary details.
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Recall that Y is a real reflexive Banach space. Letting fn, f : Y → (−∞,∞] be
convex, proper, and lower semicontinuous, we say that fn → f in the Mosco sense in
Y [1, 36] iff, for all y ∈ Y ,

f(y) ≤ lim inf
n→∞

fn(yn) ∀yn → y weakly in Y,

∃yn → y strongly in Y such that f(y) = lim sup
n→∞

fn(yn).

In particular, fn → f in the Mosco sense iff fn → f in the sense of Γ-convergence
with respect to both the weak and the strong topology in Y .

We will consider the situation of approximating functionals ψh. By [1, Thm. 3.18,
p. 295], we have ψh → ψ in the Mosco sense in Y iff ψ∗

h → ψ∗ in the Mosco sense
in Y ∗. By assuming the functionals ψh to be positively 1-homogeneous, it turns out
that the Mosco convergence ψh → ψ in Y is equivalent to the Mosco convergence of
sets C∗

h → C∗ in Y ∗, which reads

C∗
n � y∗n → y∗ weakly in Y ∗ ⇒ y∗ ∈ C∗,

∀y∗ ∈ C∗, ∃y∗n ∈ C∗
n : y∗n → y∗ strongly in Y ∗.

Finally, we repeatedly use a lemma from [45] which we report it here, for the sake
of completeness.

Lemma 5.2 ([45, Cor. 4.4]). Let p ∈ [1,∞] and fh, f : Y → (−∞,∞] be convex,
proper, and lower semicontinuous such that

f(y) ≤ inf

{
lim inf
h→0

fh(yh) : yh → y weakly in Y

}
∀y ∈ Y.

Moreover, let yh → y weakly in W 1,p(0, T ;Y ) (weakly star if p = ∞). Then we have

∫ T

0

f(y(t)) dt ≤ lim inf
h→0

∫ T

0

fh(yh(t)) dt.

5.2. Space approximations. We now move to the analysis of some space ap-
proximation situation, indeed specifically tailored for the case of conformal finite
elements. Let us list here our assumptions for the sake of later referencing.

We assume to be given

Yh ⊂ Y closed subspaces such that h �→ Yh increases

and ∪h>0 Yh is dense in Y,(5.1)

φh(y) = φ(y) if y ∈ Yh and φh(y) = ∞ otherwise.(5.2)

ψh : Y → (−∞,∞] convex, proper, and lower semicontinuous,(5.3)

ψh positively 1-homogeneous,(5.4)

ψh → ψ in the Mosco sense in Y ,(5.5)

φ(y) ≥ α

2
|y|2 ∀y ∈ Ch − Ch where Ch = D(ψh),(5.6)

�h → � pointwise strongly in Y ∗,(5.7)

�h uniformly Lipschitz continuous,(5.8)

y0,h ∈ Yh, y0,h → y0.(5.9)
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We shall mention that within the frame of conformal finite elements methods the
subspaces Yh are obviously taken to be finite-dimensional and that the approximating
functionals φh and ψh are usually the restrictions of the functionals φ and ψ on the
subspace Yh. This is exactly our choice here for φh. In particular, one shall observe
that φh → φ in the Mosco sense in Y , D(∂φh) = Yh, and that

(5.10) Ahy = ∂φh(y) = ∂φ(y) = Dφ(y) = Ay ∀y ∈ Yh.

As for ψh we are allowing some extra freedom (let us remark, however, that (5.6)
follows from (3.6) as soon as ψh is the restriction of ψ to Yh since, in this case,
Ch = C ∩ Yh). On the other hand, we are asking ψh to be positively 1-homogeneous;
namely, we are considering the case of some rate-independent approximation of (1.1)
only. The reader is referred instead to Efendiev and Mielke [8], Mielke, Rossi, and
Savaré [29, 28], Toader and Zanini [47], and Zanini [49] for some results in the direction
of rate-dependent approximation of rate-independent processes.

Finally, we shall (re)define the approximating functionals as Fh : W 1,1(0, T ;Y ) →
[0,∞] as

Fh(y) =

∫ T

0

(
ψh(ẏ) + ψ∗

h(�h −Ahy) − 〈�h −Ahy, ẏ〉
)

+ χh(y(0) − y0,h),

where Ah = ∂φh and χh(·) = φh(·) + | · |2. We have the following.
Theorem 5.3 (convergence of space approximations). Assume (5.1)–(5.9), and

let Fh(yh) = 0. Then yh → y weakly star in W 1,∞(0, T ;Y ) and F (y) = 0.
Proof. By Lemma 4.7, we find a (not relabeled) subsequence yn → y weakly

star in W 1,∞(0, T ;Y ) and weakly pointwise. Since Fh(yh) = 0 we readily check that
y(t) ∈ Yh for all t ∈ [0, T ]. In particular, Ahyh = Ayh for all t ∈ [0, T ] owing to (5.10).
Hence, by lower semicontinuity,

0 ≤ F (y) ≤ lim inf
h→0

(∫ T

0

(
ψh(ẏh) + ψ∗

h(�h −Ayh) − 〈�h, ẏh〉
)

+ φ(yh(T )) + φ(y0,h) − 〈Ayh(0), y0,h〉 + |yh(0) − y0,h|2
)

= lim inf
h→0

(∫ T

0

(
ψh(ẏh) + ψ∗

h(�h −Ahyh) − 〈�h, ẏh〉
)

+ φh(yh(T )) − φh(yh(0))

)

= lim inf
h→0

Fh(yh) = 0.

Note that the integral terms containing ψ and ψ∗ pass to the lim inf by means of
Lemma 5.2.

By inspecting the proof of Theorem 5.3 (which of course generalizes Lemma 5.1),
one realizes that, whenever the weak-star precompactness in W 1,∞(0, T ;Y ) of the
sequence yh is assumed, the convergence statement holds more generally in the case
Fh(yh) → 0. Namely, by directly asking for the above-mentioned compactness, one
could consider the convergence of some approximated solutions yh such that, possibly,
Fh(yh) > 0. We rephrase this fact in the following statement.
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Lemma 5.4 (Γ-lim inf inequality for Fh). Assume (5.1)–(5.3), (5.5)–(5.7), and
(5.9). Then

F (u) ≤ inf

{
lim inf
h→0

Fh(yh) : yh → y weakly star in W 1,∞(0, T ;Y )

}
.

Note that the homogeneity of ψh, the uniform convexity of φh, and the Lipschitz
continuity of �h play no role here.

Finally, again by looking carefully to the proof of Theorem 5.3, one could wonder
if the requirement on the Mosco convergence of ψh could be weakened. Indeed, what
we are actually using is only that

(5.11) ψ ≤ Γ-lim inf
h→0

ψh and ψ∗ ≤ Γ-lim inf
h→0

ψ∗
h

with respect to the weak topologies of Y and Y ∗, respectively. On the other hand, in
our specific situation, [45, Lem. 4.1] entails that (5.11) and the fact that ψh → ψ in
the Mosco sense in Y are equivalent.

This observation motivates once again the belief that Mosco convergence is the
right frame in order to pass to limits within rate-independent problems. For the sake
of completeness, let us recall that a first result in the direction of the approximation of
the play operator (Y Hilbert and A coercive on Y ) under the Hausdorff convergence
of the characteristic sets C∗

h = D(ψ∗
h) is contained in [16, Thm. 3.12, p. 34], whereas

the extension of this result to the more general situation of Mosco converging sets
as well as some application to parabolic PDEs with hysteresis is discussed in [46].
More recently, Mielke, Roub́ıček, and Stefanelli [30] addressed in full generality the
issue of Γ-convergence and relaxation for the energetic solutions of rate-independent
processes. An alternative convergence proof in the specific case of convex energies is
obtained by means of the Brezis–Ekeland–Nayroles approach in [45].

6. Time discretization. Assume now that we are given the partitions Pn =
{0 = t0n < t1n < · · · < tNn

n = T}, and denote by τ in = tin − ti−1
n the ith time step and

by τn = max1≤i≤Nn τ in the diameter of the nth partition. No constraints are imposed
on the possible choice of the time steps throughout this analysis besides τn → 0 as
n → ∞. Moreover, let the parameter θ ∈ [1/2, 1] be given.

In the following we will make extensive use of the following notation: Letting
v = (v0, . . . , vNn) be a vector, we will denote by v̂n and vn two functions of the
time interval [0, T ] which interpolate the values of the vector v piecewise linearly and
backward constantly on the partition Pn, respectively. Namely,

v̂n(0) = v0, v̂n(t) = γi
n(t)vi +

(
1 − γi

n(t)
)
vi−1,

vn(0) = v0, vn(t) = vi, for t ∈ (ti−1
n , tin], i = 1, . . . , Nn

where

γi
n(t) = (t− ti−1

n )/τ in for t ∈ (ti−1
n , tin], i = 1, . . . , Nn.

Moreover, we let δvi = (vi−vi−1)/τ in for i = 1, . . . , Nn (so that ˙̂vn = δvn) and denote
by vθ the vector with components viθ = θvi + (1 − θ)vi−1.
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Recall that � ∈ W 1,∞(0, T ;Y ∗) and y0 ∈ S(0). We shall be concerned with the
so-called θ-scheme for problem (1.1):

∂ψ

(
yin − yi−1

n

τ in

)
+ A(θyin + (1 − θ)yi−1

n ) � �(θtin + (1 − θ)ti−1
n )

for i = 1, . . . , Nn,(6.1)

y0
n = y0.(6.2)

One usually refers to the latter as the backward or implicit Euler scheme for the choice
θ = 1 and as the Crank–Nicolson scheme for θ = 1/2.

Owing to the above-introduced notation, the latter scheme can be equivalently
rewritten as

∂ψ
(
yin − yi−1

n

)
+ Ayin,θ � �(tin,θ) for i = 1, . . . , Nn, y0

n = y0.(6.3)

Clearly, the θ-scheme (6.3) is rate-independent. Namely, no time step appears in
(6.3), and the choice of the partition affects the solution via the values of the load
� only. In this concern, our focus on variable time-step partition could be simplified
by considering proper rescaled loads � instead. We shall, however, keep up with it,
especially in order to underline the possibility of adapting the partition according to
some a posteriori analysis (see subsection 6.7).

Before moving on, let us comment that, for all n, the latter scheme is a unique
solution. Indeed, given yi−1

n ∈ C, it suffices to (uniquely) solve iteratively the incre-
mental problem

(6.4) yin ∈ Arg min y∈Y

(
θφ(y) − 〈�(tin,θ) − (1 − θ)Ayi−1

n , y〉 + ψ(y − yi−1
n )

)
.

Note that, since yi−1
n ∈ C, the functional under minimization turns out to be uni-

formly convex. Hence, by (3.5), the minimum problem has a unique solution. In
particular, exactly as in Lemma 4.1 we have the following.

Lemma 6.1. yin ∈ C for all i = 0, 1, . . . , Nn.
A crucial observation is that, as in the continuous case, the discrete trajectories

show some sort of stability as well.
Lemma 6.2 (stability of the discrete trajectories). We have

yin ∈ Arg min y∈Y

(
θφ(y) − 〈�(tin,θ) − (1 − θ)Ayi−1

n , y〉 + ψ(y − yin)
)

for i = 1, . . . , Nn.(6.5)

In particular, if θ = 1, then yin ∈ S(tin).
Proof. From the incremental formulation (6.4) and the triangle inequality for ψ,

we get, for all y ∈ Y ,

θφ(yin) − 〈�(tin,θ) − (1 − θ)Ayi−1
n , yin〉 + ψ(yin − yi−1

n )

≤ θφ(y) − 〈�(tin,θ) − (1 − θ)Ayi−1
n , y〉 + ψ(y − yi−1

n )

≤ θφ(y) − 〈�(tin,θ) − (1 − θ)Ayi−1
n , y〉 + ψ(y − yin) + ψ(yin − yi−1

n ),

whence the assertion follows.
Again as in the continuous case, we readily check that

(6.6) (6.5) holds iff �(tin,θ) −Ayin,θ ∈ C∗.
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6.1. The discrete variational principle. We shall now present a discrete ver-
sion of the variational principle of Theorem 3.1.

We define Lθ,i
n (y, z) : Y × Y → [0,∞] as

Lθ,i
n (y, z) = ψ

(
y − z

τ in

)
+ ψ∗ (�(tin,θ) −A(θy + (1 − θ)z)

)
−
〈
�(tin,θ) −A(θy + (1 − θ)z),

y − z

τ in

〉

and the functionals F θ
n : Y Nn+1 → [0,∞] as

F θ
n(y0

n, . . . , y
Nn
n ) =

Nn∑
i=1

τ inL
θ,i
n (yin, y

i−1
n ) + χ(y0

n − y0).

Lemma 6.3 (discrete variational principle). (y0
n, . . . , y

Nn
n ) solves (6.3) iff F θ

n(y0
n,

. . . , yNn
n ) = 0 = minF θ

n .
Proof. Analogously to the continuous case, we have, for all i = 1, . . . , Nn,

∂ψ
(
δyin

)
+ Ayin,θ � �(tin,θ) iff Lθ,i

n (yin, y
i−1
n ) = 0,

and y0
n = y0 iff χ(y0

n − y0) = 0.
Let us observe that the functional F θ

n is convex and lower semicontinuous. More-
over, by the homogeneity of ψ (see (3.2)), F θ

n is actually independent of the time
steps. In fact, we have

F θ
n(y0

n, . . . , y
Nn
n ) =

Nn∑
i=1

(
ψ
(
yin − yi−1

n

)
+ ψ∗ (�(tin,θ) −Ayin,θ

)

−〈�(tin,θ) −Ayin,θ, y
i
n − yi−1

n 〉
)

+ χ(y0
n − y0).

The idea of dealing with time discretizations via a discrete variational principle
closely relates our analysis to the theory of so-called variational integrators. The latter
are numerical schemes stemming from the approximation of the action functional in
Lagrangian mechanics. By referring the reader to the monograph [12] and the survey
[25], we shall restrain here from giving a detailed presentation of the subject and
limit ourselves to some (necessarily sketchy) considerations. By letting (t, y, p) ∈
[0, T ] × R

m × R
m �→ L(t, y, p) denote the Lagrangian of a (finite-dimensional, for

simplicity) system, the Hamilton principle asserts that the actual trajectory t �→ y(t)
of the system minimizes the action functional

y �→
∫ T

0

L(t, y(t), ẏ(t)) dt

among all curves with prescribed end points, thus solving the Lagrange equations

(6.7) ∂yi
L − d

dt
∂pi

L = 0 for i = 1, . . . ,m.

Hence, a natural idea is that of deriving numerical schemes for Lagrangian mechanics
by applying some quadrature procedure to the action functional, i.e., discretizing
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Hamilton’s principle. The resulting discrete schemes show comparable performance
with respect to other methods but generally enjoy some interesting extra (and often
crucial) properties such as the conservation of suitable quantities [20]. Variational
integrators have been intensively applied in finite-dimensional contexts and, more
recently, to the situation of nonlinear wave equations [24] and nonequilibrium elasticity
[19].

The present analysis may bear some resemblance to the above-mentioned theory.
Indeed, the formulation of the θ-scheme in the case θ = 1/2 stems exactly from the
midpoint quadrature of the functional F as

∫ tin

ti−1
n

L(t, ŷ(t), ˙̂y(t)) dt

= τ inL(tin,1/2, ŷ(t
i
n,1/2),

˙̂y(tin,1/2))

= ψ
(
yi − yi−1

)
+ ψ∗

(
�(tin,1/2) −A

(
yi + yi−1

2

))

−
〈
�(tin,1/2) −A

(
yi + yi−1

2

)
, yin − yi−1

n

〉
,

where ŷ is taken to be piecewise affine on the partition Pn.
On the other hand, our focus here is quite different. First of all, we are not

dealing with the Hamilton principle (end points are not fixed) as we are not aimed
at solving the Euler–Lagrange equations for F (i.e., solving (6.7)). Second, we are
specifically interested at infinite-dimensional situations, namely, PDEs. Finally, the
only choice of θ which is directly related with a quadrature of F is θ = 1/2, and we
are not considering higher-order schemes.

Before closing this discussion, let us mention that some Γ-convergence techniques
have been recently exploited in the (finite-dimensional) frame of variational integrators
by Müller and Ortiz [37] (see also [23]).

6.2. Stability of the θ-scheme. It has been known since Han and Reddy
[15, 13] that the choice θ < 1/2 in (6.3) leads to an unconditionally unstable scheme
and that, on the contrary, for θ ∈ [1/2, 1] the θ-scheme is stable in H1(0, T ;Y ) when
Y is a Hilbert space and the partitions are chosen to be uniform.

Here we shall provide an alternative stability proof by taking into account the
Banach-space frame.

Lemma 6.4 (stability). Assume (3.6), and let θ ∈ [1/2, 1]. Then the solution to
the θ-scheme (6.3) fulfills

(6.8) ‖ ˙̂yn,θ‖L∞(0,T ;Y ) ≤
1

α
‖�̇‖L∞(0,T ;Y ∗) if θ = 1 or θ =

1

2
.

Moreover, for constant time steps,

(6.9) ‖ ˙̂yn,θ‖L∞(0,T ;Y ) ≤
1

α(2θ − 1)
‖�̇‖L∞(0,T ;Y ∗) if

1

2
< θ < 1.

Our argument coincides with that of [32, Thm. 4.4] in the case of the implicit
Euler scheme, i.e., θ = 1, and it is an extension of the latter for the case 1/2 < θ < 1.
Here we do not play with the variational inequality by choosing suitable tests but use
the scalar relations Lθ,i

n (yin, y
i−1
n ) = 0 instead (this, however, makes no substantial
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difference since the latter scalar relations are exactly the outcome of the test on the
variational inequality in [32, Thm. 4.4]).

The stability proof for the Crank–Nicolson scheme θ = 1/2 is quite different from
former arguments and stems as a direct outcome of our variational approach. In both
cases θ = 1 and θ = 1/2, the stability constant 1/α is sharp (see Lemma 4.7).

We complement this analysis by providing the stability for the θ-scheme for 1/2 <
θ < 1 in the case of constant time steps (likely with a nonoptimal, although explicit,
stability constant).

Note that the stability estimates (6.8)–(6.9) do not hold in the classical parabolic
situation (i.e., ψ quadratic on a Hilbert space) unless the very restrictive compatibility
assumption Ay0 = �(0) is made (and in this case, the proof below just goes through).
Evidence of this failure is available even in the simplest scalar situation (Y = R) of
problem ẏ(t) + y(t) = 0 for t > 0 and y(0) = y0. Indeed, the corresponding θ-scheme
fulfills (6.8)–(6.9) iff y0 = 0 (and hence y ≡ 0). The current rate-independent situation
turns out to be better behaved since the restriction Ay0 = �(0) of the parabolic case
is replaced by the weaker y0 ∈ S(0) (see (4.5)).

Proof. Let us prove the stability of the Crank–Nicolson scheme θ = 1/2 first. For
this aim, it suffices to recall that

0 = F 1/2
n (y0

n, . . . , y
Nn
n )

=

∫ T

0

(
ψ( ˙̂yn) + ψ∗(�̂n −Aŷn) − 〈�̂n −Aŷn, ˙̂yn〉

)
+ χ(ŷn(0) − y0).

Hence ŷn minimizes the functional F where � is replaced by �̂n. The stability estimate
follows from Lemma 4.7.

Let us now move to the case 1/2 < θ ≤ 1. Relation (6.5) applied at level i− 1 for
some i = 2, . . . , Nn along with the choice y = yin entails that

θφ(yin − yi−1
n ) + θφ(yi−1

n ) − 〈�(ti−1
n,θ ) − (1 − θ)Ayi−2

n , yi−1
n 〉

≤ θφ(yin) − 〈�(ti−1
n,θ ) − (1 − θ)Ayi−2

n , yin〉 + ψ(yin − yi−1
n ),

where the extra term θφ(yin − yi−1
n ) is obtained from the fact φ is quadratic. Hence,

we have

θφ(yin − yi−1
n ) + θφ(yi−1

n ) − θφ(yin)

≤ 〈�(ti−1
n,θ ), yi−1

n − yin〉 + (1 − θ)〈A(yi−2
n − yi−1

n ), yin − yi−1
n 〉 + ψ(yin − yi−1

n )

+(1 − θ)〈Ayi−1
n , yin − yi−1

n 〉
= 〈�(ti−1

n,θ ), yi−1
n − yin〉 + (1 − θ)〈A(yi−2

n − yi−1
n ), yin − yi−1

n 〉 + ψ(yin − yi−1
n )

−(1 − θ)
(
φ(yi−1

n ) + φ(yin − yi−1
n ) − φ(yin)

)
,

so that

φ(ein) + φ(yi−1
n ) − φ(yin) ≤ −〈�(ti−1

n,θ ), ein〉 + (θ − 1)〈Aei−1
n , ein〉 + ψ(ein),(6.10)

where we have used ein = yin − yi−1
n in order to shorten notations.

Next, from Lθ,i
n (yin, y

i−1
n ) = 0 for i = 1, . . . , Nn, we obtain

0 = ψ(ein) − 〈�(tin,θ) −Ayin,θ, e
i
n〉

= ψ(ein) − 〈�(tin,θ), ein〉 + θ
(
φ(yin) + φ(ein) − φ(yi−1

n )
)

− (1 − θ)
(
φ(yi−1

n ) + φ(ein) − φ(yin)
)
.
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In particular, we have checked that

(6.11) ψ(ein) + φ(yin) − φ(yi−1
n ) + (2θ − 1)φ(ein) = 〈�(tin,θ), ein〉.

We take the sum between the latter and (6.10) and get

2θφ(ein) ≤ 〈�(tin,θ) − �(ti−1
n,θ ), ein〉 + (θ − 1)〈Aei−1

n , ein〉

or, equivalently,

(6.12) 〈Aein,θ, e
i
n〉 ≤ 〈�(tin,θ) − �(ti−1

n,θ ), ein〉.

Now, if θ = 1, we conclude that

|ein| ≤
1

α
|�(tin,θ) − �(ti−1

n,θ )|∗,

and the assertion follows.
In case 1/2 ≤ θ < 1 and for a constant time-step partition, one proceeds from

(6.12) by computing

τn‖ ˙̂
�n‖L∞(0,T ;Y ∗)

√
2

α

√
φ(ein)

≥ 〈�(tin,θ) − �(ti−1
n,θ ), ein〉

≥ θ〈Aein, e
i
n〉 + (1 − θ)〈Aei−1

n , ein〉
= (2θ − 1)〈Aein, e

i
n〉 + (1 − θ)〈A(ein + ei−1

n ), ein〉

≥ 2(2θ − 1)φ(ein) + (1 − θ)
(
φ(ein) − φ(ei−1

n )
)
.

Note that the coefficient (2θ − 1) is strictly positive as θ > 1/2. By using the fact
that y0

n = y0 ∈ S(0) (recall (4.5)), we readily check that

(6.13) φ(e1
n) + φ(y0

n) − 〈�(0), y0
n〉 ≤ φ(y1

n) − 〈�(0), y1
n〉 + ψ(e1

n),

and, by adding the latter to (6.11) for i = 1, we have

(6.14) 2θφ(e1
n) ≤ 〈�(t1n,θ) − �(0), e1

n〉 ≤ τn‖ ˙̂
�n‖L∞(0,T ;Y ∗)

√
2

α

√
φ(e1

n).

Let us define

a2
i = φ

(
yin − yi−1

τn

)
= φ(ein)/τ2

n,

C0 =
2(2θ − 1)

1 − θ
, C1 =

1

1 − θ

√
2

α
‖ ˙̂
�n‖L∞(0,T ;Y ∗), C2 =

C1

C0
,

so that, owing to (6.13) and (6.14) and by using the fact that 2(2θ − 1) < 2θ,(
C0 + 1

)
a2
i − a2

i−1 ≤ C1ai for i = 2, . . . , Nn,

a1 ≤ 1

2θ

√
2

α
‖ ˙̂
�n‖L∞(0,T ;Y ∗) ≤

1

2(2θ − 1)

√
2

α
‖ ˙̂
�n‖L∞(0,T ;Y ∗)

=
1

1 − θ

√
2

α
‖ ˙̂
�n‖L∞(0,T ;Y ∗)

1 − θ

2(2θ − 1)

=
C1

C0
= C2.
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Now, since (C0 + 1)C2
2 −C1C2 = C2

2 , we easily prove by induction that ai ≤ C2, and
the assertion follows.

6.3. Convergence. We shall prove the weak-star W 1,∞(0, T ;Y ) convergence
for the θ-method. This result has to be compared with that of Han and Reddy [14,
Thm. 3.4], where the uniform convergence of the backward constant interpolations is
obtained. Our result is weaker than that of [14, Thm. 3.4] since we are not providing
strong convergence. On the other hand, we believe our half-page proof to be possibly
more transparent than the long argument developed in [14]. Let us moreover men-
tion that, in the Hilbertian case and for A coercive on Y , the strong convergence in
W 1,p(0, T ;Y ) for all p < ∞ of the Euler method θ = 1 has been proved in [16, Prop.
3.9, p. 33].

Theorem 6.5 (convergence for the θ-method). Assume (3.6), and let F θ
n(y0

n, . . . ,
yNn
n ) = 0. Then ŷn → y weakly star in W 1,∞(0, T ;Y ), where F (y) = 0 = minF .

Proof. Owing to Lemma 6.4, we can extract a (not relabeled) subsequence such
that ŷn → y weakly star in W 1,∞(0, T ;Y ) and hence weakly pointwise in Y . Moreover,
we clearly have that both yn and yn,θ converge at the same limit weakly star in

L∞(0, T ;Y ). Finally, we directly check that �n,θ → � strongly in L∞(0, T ;Y ∗). By
observing that, since θ ≥ 1/2,

τ in〈A(θyin + (1 − θ)yi−1
n ), δyin〉 = φ(yin) + (2θ − 1)φ(yin − yi−1

n ) − φ(yi−1
n )

≥ φ(yin) − φ(yi−1
n ),

we compute that

0 = F θ
n(y0

n, . . . , y
Nn
n )

≥
∫ T

0

(
ψ( ˙̂yn) + ψ∗(�n,θ −Ayn,θ) − 〈�n,θ, ˙̂yn〉

)
+ φ(ŷn(T )) − φ(ŷn(0)) + χ(ŷn(0) − y0)

=

∫ T

0

(
ψ( ˙̂yn) + ψ∗(�n,θ −Ayn,θ) − 〈�n,θ, ˙̂yn〉

)
+ φ(ŷn(T )) + φ(y0) − 〈Aŷn(0), y0〉 + |ŷn(0) − y0|2.

Finally, it suffices to pass to the lim inf above as n → ∞ and exploit lower semicon-
tinuity and the stated convergences in order to obtain F (y) ≤ 0. Hence, by Theorem
3.1 and Corollary 4.6, y is the only solution to (1.1), and the whole sequence ŷn
converges.

6.4. The functional controls the uniform distance. We shall reproduce at
the discrete level the results of subsection 4.6. We begin by showing how to possibly
control the uniform distance of two vectors by means of the discrete functional F θ

n .
Lemma 6.6 (uniform distance control via F θ

n). Let the vectors u = (u0, . . . , uNn)
and v = (v0, . . . , vNn) ∈ Y Nn+1 be given. Then

η(1 − η) max
1≤i≤Nn

φ(ui − vi)

≤ ηF θ
n(u0, . . . , uNn) + (1 − η)F θ

n(v0, . . . , vNn) ∀η ∈ [0, 1].
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Proof. This proof follows the same lines as that of Corollary 4.4. Let 1 ≤ i ≤ Nn

be fixed, and define F θ,i
n : Y i+1 → [0,∞] as

F θ,i
n (y0, . . . , yi)

=

i∑
j=1

τ jnL
θ,j
n (yj , yj−1) + χ(y0 − y0)

=

i∑
j=1

ψ(yj − yj−1) + ψ∗(�(tjn,θ) −Ayjθ) − 〈�(tjn,θ), yj − yj−1〉

+ φ(yi) + (2θ − 1)

i∑
j=1

φ(yj − yj−1) + φ(y0) − 〈Ay0, y0〉 + |y0 − y0|2.

Then, clearly, y = (y0, . . . , yi) �→ Gθ,i
n (y) = F θ,i

n (y) − φ(yi) is convex. Hence, by
letting w = ηu + (1 − η)v for some η ∈ [0, 1], we have

0 ≤ F θ,i
n (w)

≤ η
(
Gθ,i

n (u) + φ(ui)
)

+ (1 − η)
(
Gθ,i

n (v) + φ(vi)
)
− η(1 − η)φ(ui − vi),

whence the assertion follows.
Again, note that the latter lemma controls the uniform norm of the distance only

if the stronger (3.6) is required. The following corollary of Lemma 6.6 will be the
starting point for some possible a posteriori error control procedure (see subsection
6.6).

Corollary 6.7 (uniform distance from the minimizer). Let F θ
n(y0, . . . , yNn) = 0.

Then

max
1≤i≤Nn

φ(yi − vi) ≤ F θ
n(v0, . . . , vNn) ∀(v0, . . . , vNn) ∈ Y Nn+1.

Moreover, we reobtain a proof of the uniqueness of the solution of the θ-method.
Corollary 6.8 (uniqueness of the minimizer). Assume (3.6). Then there exists

at most one y = (y0, . . . , yNn) such that F θ
n(y) = 0.

6.5. The generalized θ-method. Although minimizers of F θ
n and solutions of

the θ-scheme (6.3) coincide, minimizing sequences of F θ
n need not solve (6.3). This

extra freedom allows the minimization formulation to capture the convergence of some
generalized θ-method, where the relations in (6.3) are not solved exactly but rather
are approximated. Namely, we shall look for vectors un = (u0

n, . . . , u
Nn
n ) such that

F θ
n(un) → 0 as n → ∞

instead of F θ
n(un) = 0 for all n ∈ N.

From the computational viewpoint, note that the θ-scheme consists in solving
Nn nonlinear equations in one unknown each, while checking for stationarity for F θ

n

implies the solution of a tridiagonal system of Nn + 1 nonlinear equations with (up
to) three unknowns each. This entails in particular that minimizing F θ

n instead of
solving (6.3) could be of a scarce interest if one is merely concerned in reproducing
the θ-scheme with no error. On the other hand, the issue of solving up to some
tolerance turns out to be particularly relevant whenever one is aimed at implementing
an optimization procedure for the solution of (6.3). Indeed, one should be prepared to
run the algorithm (some descent method, say) until some given tolerance is reached.
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Our starting point for a possible convergence analysis of the generalized θ-method
is the following classical error control result.

Theorem 6.9 (Mielke and Theil [32]). Assume (3.6). Then ŷn → y uniformly
and F (y) = 0. In particular,

(6.15) max
t∈[0,T ]

|(ŷn − y)(t)| ≤ Ce
√
τn,

where Ce depends only on data and is independent of n.
More precisely, in [32] solely the case of the Euler scheme θ = 1 is discussed.

However, an easy adaptation of the argument entails the result for θ ∈ [1/2, 1) as
well.

By explicitly comparing the minimizing sequence un = (u0
n, . . . , u

Nn
n ) with the

corresponding solution (y0
n, . . . , y

Nn
n ) of the θ-method, we have the following.

Theorem 6.10 (convergence for the generalized θ-method). Assume (3.6), and
let F θ

n(u0
n, . . . , u

Nn
n ) → 0. Then ûn → y uniformly, where F (y) = 0. In particular,

(6.16) max
t∈[0,T ]

|(ûn − y)(t)| ≤ Ce
√
τn +

(
2

α
F θ
n(u0

n, . . . , u
Nn
n )

)1/2

.

Proof. We have

max
t∈[0,T ]

|(y − ûn)(t)| ≤ max
t∈[0,T ]

|(y − ŷn)(t)| + max
t∈[0,T ]

|(ŷn − ûn)(t)|

≤ Ce
√
τn + max

1≤i≤Nn

|ui
n − yin|

≤ Ce
√
τn +

(
2

α
max

1≤i≤Nn

φ(ui
n − yin)

)1/2

,

and we conclude by applying Corollary 6.7.

6.6. A posteriori error control. Let us now exploit both Corollary 4.5 and
Theorem 6.10 in order to provide some possible a posteriori estimates of the approx-
imation error by means of solutions un of the generalized θ-method described above.

Lemma 6.11 (a posteriori error control via F θ
n). Assume (3.6), and let F θ

n(u0
n, . . . ,

uNn
n ) ∼ τ sn for some s > 0 and F (y) = 0. Then

max
t∈[0,T ]

|(ûn − y)(t)| ∼ τ rn, where 2r = max{1, s}.

Lemma 6.12 (a posteriori error control via F ). Assume (3.6), and let F (ûn) ∼ τ sn
for some s > 0 and F (y) = 0. Then maxt∈[0,T ] |(ûn − y)(t)| ∼ τ

s/2
n .

We are also in the position of proving the weak-star convergence of the time
derivatives of solutions un of the generalized θ-method by comparing them with the
corresponding derivatives of the exact solution of the θ-method.

Lemma 6.13 (improved convergence for the generalized θ-method). Assume
(3.6), and let F θ

n(u0
n, . . . , u

Nn
n ) ∼ τ2

n. Then ûn is equibounded in W 1,∞(0, T ;Y ). In
particular, ûn → y weakly star in W 1,∞(0, T ;Y ).

Proof. Let (y0
n, . . . , y

Nn
n ) be the solution of the θ-scheme. By exploiting Lemma

6.7, we check that

|ui
n − ui−1

n | ≤
∣∣ui

n − yin
∣∣ +

∣∣yin − yi−1
n

∣∣ +
∣∣yi−1

n − ui−1
n

∣∣
≤ τ in‖ ˙̂yn‖L∞(0,T ;Y ) + 2

(
2

α
F θ
n(u0

n, . . . , u
Nn
n )

)1/2

.
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The uniform bound on ‖ûn‖W 1,∞(0,T ;Y ) follows by dividing the latter by τ in, taking
the maximum as 1 ≤ i ≤ Nn, and recalling Lemma 6.4.

6.7. Adaptivity. By assuming (3.6), the above-introduced a posteriori error
estimators can be exploited in order to develop an adaptive strategy. In particular,
the error control in the uniform norm up to a given tolerance tol > 0

max
t∈[0,T ]

|(y − ŷn)(t)| ≤ tol

for some piecewise approximation ŷn, with χ(ŷn(0) − y0) ≤ α tol2/4, can be inferred,
for instance, by choosing time steps in such a way that

∫ tin

ti−1
n

L(t, ŷn(t), ˙̂yn(t)) ≤ α tol2

4Nn
,

namely, by uniformly distributing the error along the partition.
Alternatively, one could develop an adaptive strategy by considering just com-

puted quantities at the discrete level by asking for

τ inL
θ,i
n (yin, y

i−1
n ) ≤ α tol2

32Nn
for τn ≤ tol2

16C2
e

and exploiting Theorem 6.10.

7. Space-time approximations. Let us combine the results of the previous
sections (and use the corresponding notation) in order to state and prove a result on
the convergence of full space-time approximations. Our results have to be compared
with the former convergence analysis by Han and Reddy [13]. Our approach leads
to a convergence proof with respect to a weaker topology. However, it is, on the one
hand, slightly more general (some assumptions on the spaces and the functionals—see
(H1)–(H2) [13, p. 264]—are not required) and, on the other hand, has a much simpler
proof.

Theorem 7.1 (convergence of space-time approximations). Assuming (5.1)–

(5.9) and that θ ∈ [1/2, 1], define Lθ,i
n,h(y, z) : Y × Y → [0,∞] as

Lθ,i
n,h(y, z) = ψh

(
y − z

τ in

)
+ ψ∗

h

(
�h(tin,θ) −Ah(θy + (1 − θ)z)

)
−
〈
�h(tin,θ) −Ah(θy + (1 − θ)z),

y − z

τ in

〉
,

where Ah = ∂φh, and let the functionals F θ
n,h : Y Nn+1 → [0,∞] be defined as

F θ
n,h(y0, . . . , yNn) =

Nn∑
i=1

τ inL
θ,i
n,h(yi, yi−1) + χh(y0 − y0),

where χh(·) = φh(·)+|·|2 (note that D(F θ
n,h) ⊂ Y Nn+1

h ). Finally, let Fn,h(y0
h, . . . , y

Nn

h )
= 0. We have the following:

(a) ŷn,h → yh weakly star in W 1,∞(0, T ;Y ) as (n, h) → (∞, h) and Fh(yh) = 0.
(b) ŷn,h → ŷn weakly star in W 1,∞(0, T ;Y ) as (n, h) → (n, 0) and F θ

n(yn) = 0.
(c) ŷn → y weakly star in W 1,∞(0, T ;Y ) as (n, 0) → (∞, 0) and F (y) = 0.
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n

h

(∞, 0)

(a)

(b)

(c)

(d)

(e)

Fig. 1. Convergences for space-time approximations (see Theorem 7.1).

(d) yh → y weakly star W 1,∞(0, T ;Y ) as (∞, h) → (∞, 0) and F (y) = 0.
(e) ŷn,h → y weakly star in W 1,∞(0, T ;Y ) as (n, h) → (∞, 0) and F (y) = 0.
The thesis of the theorem is illustrated in Figure 1. In particular, we aim at

showing that the space (or data) and time limit can be taken in any order. Note that
limit (c) has been already checked in Theorem 6.5 and that the very same argument
yields limit (a) as well (recall that Yh is closed). Moreover, limit (d) is discussed in
Theorem 5.3. So what we are actually left to check are limits (b) and (e) only.

Proof. Limit (b). The assertion follows once we check that, for all i = 1, . . . , Nn,
if yi−1

n,h → yi−1
n weakly in Y , one has the weak convergence yin,h → yin as well. Recall

that

yin,h ∈ Arg min y∈Y

(
θφh(y) − 〈�h(tin,θ) − (1 − θ)Ahy

i−1
n,h , y〉 + ψh(y − yi−1

n,h )
)

= Arg min y∈Yh

(
θφ(y) − 〈�h(tin,θ) − (1 − θ)Ayi−1

n,h , y〉 + ψh(y − yi−1
n,h )

)
.

Hence, since we have (5.6), the sequence yin,h is weakly precompact, and, up to the

extraction of a (not relabeled) subsequence, yin,h → ỹ weakly in Y . Let us prove that
ỹ solves the incremental problem (6.4). Indeed, we have

0 ≤ Lθ,i
n (ỹ, yi−1

n )

≤ lim inf
h→0

(
ψh(yin,h − yi−1

n,h ) + ψ∗
h(�h(tin,θ) −Ayin,h,θ)

− 〈�h(tin,θ) −Ayin,h,θ, y
i
n,h − yi−1

n,h 〉
)

= lim inf
h→0

Lθ,i
n,h(yin,h, y

i−1
n,h ) = 0,

where we have used the Mosco convergence in (5.5) and the pointwise convergence
of �h (5.7). Since the only solution of (6.4) is yin, we have ỹ = yin, and the whole
sequence converges.

Let us mention that, if the functionals ψh are uniformly linearly bounded (which
is quite common in practice), one could prove the latter convergence to be actually
strong: Namely, yi−1

n,h → yi−1
n strongly in Y implies the strong convergence yin,h → yin.

Indeed, let wh and w̃h be such that wh − yin,h → 0 strongly in Y , ψh(wh − yin,h) → 0,
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w̃h ∈ Yh and w̃h − wh → 0 strongly in Y . Then

θφ(yin,h) − 〈�(tin,θ) − (1 − θ)Ahy
i−1
n,h , y

i
n,h〉 + ψh(yin,h − yi−1

n,h )

≤ θφh(w̃h) − 〈�(tin,θ) − (1 − θ)Ayi−1
n,h , w̃h〉 + ψh(w̃h − wh) + ψh(wh − yin,h).

If ψh are uniformly linearly bounded above, then ψh(w̃h − wh) → 0, with h → 0.
Then, by passing to the lim sup in the latter, we check that lim suph→0 φ(yin,h) ≤
φ(yin), which together with lower semicontinuity gives φ(yin,h) → φ(yin), and the strong
convergence follows from the reflexivity of Y .

Limit (e). Lemma 6.4, the uniform Lipschitz continuity of �h (5.8), and the
initial datum convergence (5.9) entail that ŷn,h are uniformly Lipschitz continuous
as well. Hence, by extracting a (not relabeled) subsequence, ŷn,h → y weakly star
in W 1,∞(0, T ;Y ). In order to check that y solves (1.1), let us remark that, since
�in,h,θ = �h(tin,θ),

�n,h,θ → � strongly in L1(0, T ;Y ∗)

and that, by [45, Cor. 4.4],∫ T

0

ψ(ẏ) ≤ lim inf
h→0

∫ T

0

ψh( ˙̂yn,h),

∫ T

0

ψ∗(�−Ay) ≤ lim inf
h→0

∫ T

0

ψ∗
h(�n,h,θ −Ayn,h,θ)

and compute that

0 ≤ F (y)

≤ lim inf
h→0

(∫ T

0

(
ψh( ˙̂yn,h) + ψ∗

h(�n,h,θ −Ayn,h,θ) − 〈�n,h,θ, ˙̂yn,h〉
)

+ φ(ŷn,h(T )) + φ(y0,h) − 〈Aŷn,h(0), y0,h〉 + |ŷn,h(0) − y0,h|2
)

≤ lim inf
h→0

F θ
n,h(y0

n,h, . . . , y
Nn

n,h) = 0,

and we have F (y) = 0.
We shall conclude by briefly mentioning some further results which can be ob-

tained by suitably adapting to the current fully discretized situation the arguments
developed above for time discretizations. First, in the same spirit of Lemma 6.6, one
could consider the possibility of estimating the distance of a vector from the minimizer
of F θ

n,h by means of the functional itself. Second, the use of Corollary 4.5 would entail
the possibility of an a posteriori error control, and some adaptive strategy along the
lines of subsection 6.7 could be considered. Finally, by relying on the known con-
vergence estimates for full space-time discretized problems [13], one could obtain a
convergence and an a posteriori error control result for some generalized space-time
approximated problem where F θ

n,h are not exactly minimized and one considers min-
imizing sequences instead (see subsection 6.5). We shall develop these considerations
elsewhere.
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AVERAGES OVER SPHERES FOR KINETIC TRANSPORT
EQUATIONS WITH VELOCITY DERIVATIVES IN THE
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Abstract. We prove estimates in hyperbolic Sobolev spaces Hs,δ(R1+d), d ≥ 3, for velocity

averages over spheres of solutions to the kinetic transport equation ∂tf + v · ∇xf = Ωi,j
v g, where

Ωi,j
v g are tangential velocity derivatives of g. Our results extend to all dimensions earlier results

of Bournaveas and Perthame in dimension two [J. Math. Pures Appl., 9 (2001), pp. 517–534]. We
construct counterexamples to test the optimality of our results.
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1. Introduction. Consider the kinetic transport equation

∂tf + v · ∇xf = g,

where f, g : Rt × Rd
x × Rd

v → R. It is well known that averaging with respect to the
velocity variable v has a smoothing effect which can be measured in classical Sobolev
spaces. For example, in all dimensions, the average over the unit ball

ρ
B
(t, x) =

∫
|v|≤1

f(t, x, v)dv

is smoother than f by 1/2 derivatives in L2, and we have the estimate

‖ρ
B
‖H1/2(R1+d) ≤ C

(
‖f‖L2(R1+2d) + ‖g‖L2(R1+2d)

)
.

Results of this type are known as averaging lemmas. They were first discovered in
[24, 23] and developed further by many authors [4, 5, 9, 11, 12, 13, 14, 15, 17, 19, 20,
21, 25, 26, 27, 28, 29, 33, 34, 37]. We refer the reader to [3, 35] for a review and an
extensive bibliography.

Averages over spheres

ρ
S
(t, x) =

∫
Sd−1

f(t, x, v) dσ(v)

were first studied in [7] and later in [8]. These averages appear in the equation of
radiative transfer, a phenomenon that describes the scattering of photons in a hot
medium [1, 2, 10, 22, 36]. They also appear in certain kinetic models of chemotaxis
when the velocity of the cells is normalized to |v| = 1 [16]. It turns out that in
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dimensions d ≥ 3 averages over spheres gain 1/2 derivatives in L2 [7, Theorem 1] and
we have the estimate

‖ρ
S
‖H1/2(R1+d) ≤ C

(
‖f‖L2(R×Rd×Sd−1) + ‖g‖L2(R×Rd×Sd−1)

)
.(1.1)

Thus, if d ≥ 3, ρ
S

gains the same amount of regularity as averages over balls, although
it is an average over a lower-dimensional set. Moreover, the estimate for spheres
implies the estimate for balls (see Remark 1 in [7]).

In dimension d = 2 averages over spheres gain only 1/4 derivatives, but the “miss-
ing” regularity can be recovered in the so-called hyperbolic Sobolev spaces Hs,δ(R1+d)
[6, 30, 31, 32, 38]. More precisely [7, Theorem 2],

‖ρ
S
‖H1/4,1/4(R1+2) ≤ C

(
‖f‖L2(R×R2×S1) + ‖g‖L2(R×R2×S1)

)
,

where

‖F‖Hs,δ(R1+d) =
∥∥∥w+(τ, ξ)sw−(τ, ξ)δF̂ (τ, ξ)

∥∥∥
L2(Rτ×Rd

ξ)
,(1.2)

w±(τ, ξ) = 1 + ||τ | ± |ξ||, and F̂ is the space-time Fourier transform of F .
In [8] these spaces were used to further improve estimate (1.1). We have [8,

Theorem 1], when d ≥ 3, d �= 7,

‖ρ
S
‖Hs,δ(R1+d) ≤ C ‖f‖L2(R×Rd×Sd−1) + C ‖g‖L2(R×Rd×Sd−1) ,(1.3a)

provided that

s + δ ≤ 1/2, s ≤ min

{
d− 1

4
, 1

}
.(1.3b)

This allows us to take s larger than the classical 1/2, provided that we compensate
by using a negative δ. Moreover, in regions where ||τ | − |ξ|| is small (near the cone
|τ | = |ξ|) we have ws

+w
δ
− � ws

+, and we gain s ≥ 1/2 derivatives. When d = 7 we
have the same estimate but with a logarithmic loss:

‖ρ
S
‖Hs,δ

log (R1+d) ≤ C
(
‖f‖L2(R×Rd×Sd−1) + ‖g‖L2(R×Rd×Sd−1)

)
, d = 7,

where

‖F‖Hs,δ
log (R1+d) =

∥∥∥∥∥∥∥
w+(τ, ξ)sw−(τ, ξ)δ(
1 + log w+(τ,ξ)

w−(τ,ξ)

)1/2
F̂ (τ, ξ)

∥∥∥∥∥∥∥
L2(Rτ×Rd

ξ)

.

Now we turn our attention to equations with right-hand sides containing derivatives
with respect to the velocity variable:

∂tf + v · ∇xf = ∂m
v g.

This case is of great interest in applications. For example, the Vlasov part of the
Vlasov–Maxwell system has this structure with m = 1. It is well known (see [24, 23])
that in this case averages of the form

∫
Rd f(t, x, v)φ(v)dv, where φ(v) is a smooth

cut-off function, gain 1
2(m+1) derivatives in L2. In particular, if m = 1, then the

gain is 1/4 derivatives. The proof of these results uses an integration by parts which
removes the velocity derivatives from the function g.
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Consider now the case of spheres. In order to be able to integrate by parts on
spheres we are forced to restrict ourselves to equations with tangential v-derivatives
in the right-hand side:

∂tf + v · ∇xf = Ωi,j
v g,(1.4)

where

Ωi,j
v g = vi

∂g

∂vj
− vj

∂g

∂vi
, 1 ≤ i, j ≤ d.

In this case, if d ≥ 3, the optimal gain is 1/4 derivatives (the same gain as for balls)
[7, Theorem 3]. In view of the discussion above, one would expect the gain in d = 2
dimensions to be 1/8 derivatives. However, the tangential derivatives introduce a
special structure (see, for example, (2.3) below and the discussion in [8]) reminiscent
of the Klainerman null forms structure for the wave equation [30, 31, 32], which
allows for better estimates. By using this observation the expected classical gain of
1/8 derivatives was improved in [7] to 1/7 derivatives and further improved in [8] to
1/6 derivatives, and it was also shown that this result is optimal.

If one considers the hyperbolic Sobolev spaces, it is also possible to prove estimates
with a total of s + δ = 1/4 derivatives. In this setting, the two-dimensional case
has been previously considered in [7, 8]. More precisely, in [7] it was shown that
ρ

S
∈ H1/16,3/16(R1+2). This was improved in [8] to ρ

S
∈ H1/8,1/8(R1+2), and it was

also shown that this is optimal.
In this paper we study the regularity of velocity averages over spheres for solutions

of (1.4) in hyperbolic Sobolev spaces in dimensions d ≥ 3. Recall first the following
result from [7].

Let d ≥ 3, and let f ∈ L2(Rt × Rd
x × Sd−1

v ) be a solution of (1.4) with g ∈
L2(Rt × Rd

x × Sd−1
v ). Then the velocity average over the unit sphere ρ

S
(t, x) =∫

Sd−1 f(t, x, v)dσ(v) satisfies

‖ρ
S
‖H1/4(R×Rd) ≤ C

[
‖f‖L2(R×Rd× Sd−1) + C ‖g‖L2(R×Rd× Sd−1)

]
.(1.5)

We shall improve this result by showing that ρ
S
∈ Hs,δ for certain choices of (s, δ)

depending on the dimension d. More precisely we have the following.
Theorem 1.1. Let d ≥ 3, and let f ∈ L2(Rt ×Rd

x × Sd−1
v ) be a solution of (1.4)

with g ∈ L2(Rt ×Rd
x × Sd−1

v ). Define

(s, δ) =

(
d− 1

6
,−2d− 5

12

)
if d ∈ {3, 4, 5} ,

(s, δ) =

(
4

5
,−11

20

)
if d = 6,

(s, δ) =

(
1,−3

4

)
, if d ≥ 7.(1.6)

Then the velocity average ρ
S
(t, x) =

∫
Sd−1 f(t, x, v)dσ(v) satisfies

‖ρ
S
‖Hs,δ(R1+d)≤ C ‖f‖L2(R×Rd× Sd−1) + C ‖g‖L2(R×Rd× Sd−1) , d �= 5, 7,(1.7a)

‖ρ
S
‖Hs,δ

log (R1+d)≤ C ‖f‖L2(R×Rd× Sd−1) + C ‖g‖L2(R×Rd× Sd−1) , d = 5, 7.(1.7b)

Notice that in all cases we have s+δ = 1/4, with s > 1/4 and δ < 0. By comparing
this result to the classical estimate (1.5) we see that it is possible to improve on the
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“good derivative” w+, provided that we make a sacrifice in the derivative w−. Observe
also that since δ = 1/4 − s and s > 1/4 we have

ws
+w

δ
− = w

1
4
+

(
w+

w−

)s− 1
4

≥ w
1
4
+,

and therefore estimate (1.7) implies estimate (1.5). Moreover, near the cone |τ | = |ξ|
we have ws

+w
δ
− � ws

+, because w− � 1, and therefore our estimate says that we gain
s > 1/4 derivatives in this region. Notice also that, in contrast to (1.3), we gain even
in d = 3 dimensions. This is due to the fact that we have not only the usual averaging
smoothing effect and the flexibility of the Hs,δ-spaces but also the special structure
of the tangential derivatives.

It is possible to extend the validity of estimate (1.7) to a whole region of pairs
(s, δ). We have the following.

Theorem 1.2. Let d ≥ 3, and let f ∈ L2(Rt ×Rd
x × Sd−1

v ) be a solution of (1.4)
with g ∈ L2(Rt ×Rd

x × Sd−1
v ). Let s, δ ∈ R be such that

s + δ ≤ 1

4
,(1.8a)

s ≤ d− 1

6
if d ∈ {3, 4, 5} ,(1.8b)

s ≤ 4

5
if d = 6,(1.8c)

s ≤ 1 if d ≥ 7.(1.8d)

Then estimates (1.7) are true.
In the region {|τ | > |ξ|} in phase space the symbol of the operator ∂t + v · ∇x

satisfies |τ + v · ξ| ≥ |τ | − |ξ| > 0, and therefore it is reasonable to expect better
estimates. Indeed, improved estimates in this region are contained in [7, 8]. We shall
establish the following improvements to the results of Theorem 1.1. First, estimates
(1.7) are valid in {|τ | > |ξ|} with the same s and with δ = 0 (instead of a negative δ).

Theorem 1.3. Let d ≥ 3, and let f ∈ L2(Rt ×Rd
x × Sd−1

v ) be a solution of (1.4)
with g ∈ L2(Rt ×Rd

x × Sd−1
v ). Define

s =
d− 1

6
if d ∈ {3, 4, 5} ,(1.9a)

s =
4

5
if d = 6,(1.9b)

s = 1 if d ≥ 7.(1.9c)

Then the velocity average ρ
S
(t, x) =

∫
Sd−1 f(t, x, v)dσ(v) satisfies the following esti-

mates in the classical Sobolev spaces Hs ({|τ | > |ξ|}).
If d �= 5, 7,

‖w+(τ, ξ)sρ̂
S
(τ, ξ)‖L2({|τ |>|ξ|})(1.10a)

≤ C
(
‖f‖L2(R×Rd× Sd−1) + ‖g‖L2(R×Rd× Sd−1)

)
.(1.10b)

If d = 5, 7, ∥∥∥∥∥w+(τ, ξ)s
[
1 + log

w+(τ, ξ)

w−(τ, ξ)

]−1/2

ρ̂
S
(τ, ξ)

∥∥∥∥∥
L2({|τ |>|ξ|})

(1.10c)

≤ C ‖f‖L2(R×Rd× Sd−1) + C ‖g‖L2(R×Rd× Sd−1) .(1.10d)
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Moreover, it is possible to prove Hs,δ-estimates in all dimensions d ≥ 3 with s+ δ = 1
and s, δ ≥ 0. Precisely, we have the following.

Theorem 1.4. Under the same assumptions and notation as in Theorem 1.3 and
with

(s, δ) =

(
d− 3

4
,
7 − d

4

)
if d ∈ {3, 4, 5} ,(1.11a)

(s, δ) =

(
3

4
,
1

4

)
if d = 6,(1.11b)

(s, δ) = (1, 0) if d ≥ 7,(1.11c)

we have ∥∥w+(τ, ξ)sw−(τ, ξ)δρ̂
S
(τ, ξ)

∥∥
L2({|τ |>|ξ|})(1.12a)

≤ C ‖f‖L2(R×Rd× Sd−1) + C ‖g‖L2(R×Rd× Sd−1) if d �= 5, 7;(1.12b) ∥∥∥∥∥w+(τ, ξ)sw−(τ, ξ)δ
[
1 + log

w+(τ, ξ)

w−(τ, ξ)

]−1/2

ρ̂
S
(τ, ξ)

∥∥∥∥∥
L2({|τ |>|ξ|})

(1.12c)

≤ C ‖f‖L2(R×Rd× Sd−1) + C ‖g‖L2(R×Rd× Sd−1) if d = 5, 7.(1.12d)

Remark. Regarding the optimality of the conditions on s and δ we will show in
the last section that all of the upper bounds for s and s + δ are optimal with the
possible exception of the bound s ≤ 4/5 in dimension d = 6. In some cases it is
possible to have improved estimates if we allow weights of the form ws1

+ wδ1
− +ws2

+ wδ2
− ;

see page 664 for details. The logarithmic divergence in some of the estimates is due
to the logarithmic divergence in Lemmas 3.2 and 3.3 in [8].

Notation. We define the weights w± by w±(τ, ξ) = 1 + ||τ | ± |ξ||. We denote the
classical Sobolev spaces by Hs and the hyperbolic Sobolev spaces (see (1.2)) by Hs,δ.
We use ̂ for the Fourier transform in space-time denoting the dual variables by (τ, ξ).
We will always average the solution f over the unit sphere Sd−1 in Rd and denote the
average by ρs.

2. Proofs of Theorems 1.1 and 1.2. In this section we prove Theorems 1.1
and 1.2. We need the following result from [8].

Proposition 2.1. Let m > −1, l > 1/2, and define

Jm
l (τ, ξ) =

∫ π

0

(sin θ)m

[1 + (τ + |ξ| cos θ)2]l
dθ, τ ∈ R, ξ ∈ Rd.(2.1)

Let α = min
{

m+1−4l
2 , 0

}
. Then the integrals Jm

l (τ, ξ) satisfy the following pointwise
estimates:

Jm
l (τ, ξ) ≤ C

w−(τ, ξ)2l−1+α

w+(τ, ξ)2l+α
if m + 1 �= 4l,

Jm
l (τ, ξ) ≤ C

w−(τ, ξ)2l−1

w+(τ, ξ)2l

(
1 + log

w+(τ, ξ)

w−(τ, ξ)

)
if m + 1 = 4l.

Proof of Theorem 1.1. By taking the space-time Fourier transform of (1.4) and

adding λf̂(τ, ξ, v) to both sides, where λ = λ(τ, ξ) > 0 will be determined later,
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we get

f̂(τ, ξ, v) =
Ωi,j

v ĝ(τ, ξ, v)

λ + i (τ + v · ξ) + λ
f̂(τ, ξ, v)

λ + i (τ + v · ξ) .

By averaging in v and integrating by parts we obtain

ρ̂(τ, ξ) =

∫
Sd−1

Ωi,j
v ĝ(τ, ξ, v)

λ + i (τ + v · ξ) dσ(v) + λ

∫
Sd−1

f̂(τ, ξ, v)

λ + i (τ + v · ξ) dσ(v)

= i

∫
Sd−1

viξj − vjξi

[λ + i (τ + v · ξ)]2
ĝ(τ, ξ, v)dσ(v) + λ

∫
Sd−1

f̂(τ, ξ, v)dσ(v)

λ + i (τ + v · ξ) .

By using the Cauchy–Schwarz inequality we get

|ρ̂(τ, ξ)| ≤
(∫

Sd−1

|ĝ(τ, ξ, v)|2 dσ(v)

)1/2

·K(τ, ξ)

+

(∫
Sd−1

∣∣∣f̂(τ, ξ, v)
∣∣∣2 dσ(v)

)1/2

· L(τ, ξ),(2.2)

where

K(τ, ξ) =

(∫
Sd−1

|viξj − vjξi|2

|λ + i (τ + v · ξ)|4
dσ(v)

)1/2

,(2.3)

L(τ, ξ) =

(
λ2

∫
Sd−1

dσ(v)

|λ + i (τ + v · ξ)|2

)1/2

.

We estimate K(τ, ξ) and L(τ, ξ) as follows. Set τ ′ = τ
λ , ξ

′ = ξ
λ , and let θ be the angle

between ξ and v. Then

K(τ, ξ) =

(∫
Sd−1

|viξj − vjξi|2

|λ + i (τ + v · ξ)|4
dσ(v)

)1/2

=

⎛
⎜⎝∫

Sd−1

|viξj − vjξi|2∣∣∣λ2 + (τ + v · ξ)2
∣∣∣2 dσ(v)

⎞
⎟⎠

1/2

=
|ξ|
λ2

⎛
⎜⎝∫

Sd−1

∣∣∣vi ξj|ξ| − vj
ξi
|ξ|

∣∣∣2∣∣∣1 + (τ ′ + v · ξ′)2
∣∣∣2 dσ(v)

⎞
⎟⎠

1/2

� |ξ|
λ2

⎛
⎜⎝∫ π

0

(sin θ)
2
(sin θ)

d−2∣∣∣1 + (τ ′ + |ξ′| cos θ)
2
∣∣∣2 dθ

⎞
⎟⎠

1/2

=
|ξ|
λ2

Jd
2 (τ ′, ξ′)1/2,(2.4)
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and

L(τ, ξ) =

(
λ2

∫
Sd−1

dσ(v)

λ2 + (τ + v · ξ)2

)1/2

=

(∫
Sd−1

dσ(v)

1 + (τ ′ + v · ξ′)2

)1/2

�
(∫ π

0

(sin θ)
d−2

1 + (τ ′ + |ξ′| cos θ)
2 dθ

)1/2

= Jd−2
1 (τ ′, ξ′)1/2.(2.5)

We start with the case d ∈ {3, 4, 5}. From (2.4) we have K(τ, ξ) ≤ C |ξ|
λ2 J

d
2 (τ ′, ξ′)1/2.

Proposition 2.1 with m = d, l = 2 gives

K(τ, ξ) ≤ C
|ξ|
λ2

(1 + ||τ ′| − |ξ′||)
d−1
4

(1 + |τ ′| + |ξ′|)
d+1
4

= C
|ξ|
λ

3
2

(λ + ||τ | − |ξ||)
d−1
4

(λ + |τ | + |ξ|)
d+1
4

≤ C
(λ + ||τ | − |ξ||)

d−1
4

λ
3
2 (λ + |τ | + |ξ|)

d−3
4

≤ C
(λ + w−)

d−1
4

λ
3
2 (w+)

d−3
4

,

where we have set w± = 1 + ||τ | ± |ξ|| and we have used the fact that λ > 1 (this will
be guaranteed by the choice of λ; see (2.9)).

Next we deal with L(τ, ξ). From estimate (2.5) we have L(τ, ξ) ≤ Jd−2
1 (τ ′, ξ′)1/2,

and we now apply Proposition 2.1 with m = d− 2 and l = 1. Notice that m+ 1 = 4l
when d = 5, and hence there is an extra logarithmic term in this case. For d ∈ {3, 4}
we get

L(τ, ξ) ≤ C
(1 + ||τ ′| − |ξ′||)

d−3
4

(1 + |τ ′| + |ξ′|)
d−1
4

= C
λ1/2 (λ + ||τ | − |ξ||)

d−3
4

(λ + |τ | + |ξ|)
d−1
4

≤ C
λ1/2 (λ + w−)

d−3
4

(w+)
d−1
4

,(2.6a)

and for d = 5 we get

L(τ, ξ) ≤ C
λ1/2 (λ + w−)

d−3
4

(w+)
d−1
4

(
1 + log

λ + |τ | + |ξ|
λ + ||τ | − |ξ||

)1/2

.(2.6b)

We choose λ = λ(τ, ξ) such that

(λ + w−)
d−1
4

λ
3
2 (w+)

d−3
4

=
λ1/2 (λ + w−)

d−3
4

(w+)
d−1
4

(2.7)
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or, equivalently,

λ4 − w+λ− w+w− = 0.(2.8)

We need to know that such a λ exists, and we also need an estimate of λ in terms of
the weights 1 + ||τ | ± |ξ||.

Consider the function f(λ) := λ4 − w+λ − w+w−. Clearly, f(1) < 0. On the
other hand,

f
(
2w

1/3
+ w

1/6
−

)
= 16w

4/3
+ w

2/3
− − 2w

4/3
+ w

1/6
− − w+w−

=
(
8w

4/3
+ w

2/3
− − 2w

4/3
+ w

1/6
−

)
+
(
8w

4/3
+ w

2/3
− − w+w−

)
= 2w

4/3
+ w

1/6
−

(
4w

1/2
− − 1

)
+ w+w

2/3
−

(
8w

1/3
+ − w

1/3
−

)
> 0.

It follows that there exists a λ with

1 < λ < 2w
1/3
+ w

1/6
−(2.9)

such that (2.7) and (2.8) are satisfied. From (2.8) we have λ + w− = λ4

w+
; therefore

λ + w− <

(
2w

1/3
+ w

1/6
−

)4

w+
≤ Cw

1/3
+ w

2/3
− .(2.10)

It follows that the right-hand side of (2.7) is bounded by

(
2w

1/3
+ w

1/6
−

)1/2 (
w

1/3
+ w

2/3
−

) d−3
4

(w+)
d−1
4

≤ Cw
− d−1

6
+ w

2d−5
12

− .

Moreover 1 < λ ≤ Cw+, and therefore in (2.6b)

1 + log
λ + |τ | + |ξ|
λ + ||τ | − |ξ|| ≤ C

(
1 + log

w+

w−

)
.

We conclude that K(τ, ξ) satisfies

K(τ, ξ) ≤ Cw
− d−1

6
+ w

2d−5
12

− , d ∈ {3, 4, 5} ,

while L(τ, ξ) satisfies

L(τ, ξ) ≤ Cw
− d−1

6
+ w

2d−5
12

− , d ∈ {3, 4} ,

and

L(τ, ξ) ≤ Cw
− d−1

6
+ w

2d−5
12

−

(
1 + log

w+

w−

)1/2

, d = 5.

Next we deal with all dimensions d ≥ 7. From estimate (2.4) we have K(τ, ξ) ≤
C |ξ|

λ2 J
d
2 (τ ′, ξ′)1/2. Proposition 2.1 with m = d and l = 2 now gives

α = min

{
m + 1 − 4l

2
, 0

}
= min

{
d− 7

2
, 0

}
= 0.
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Notice, however, that m + 1 = 4l when d = 7, and therefore there is a logarithmic
loss in this case. We get

K(τ, ξ) ≤ C
|ξ|
λ2

(
(1 + ||τ ′| − |ξ′||)3

(1 + |ξ′| + |τ ′|)4

)1/2

= C
|ξ|
λ2

· λ
2 (λ + ||τ | − |ξ||)3/2

λ3/2 (λ + |τ | + |ξ|)2

≤ C
(λ + ||τ | − |ξ||)3/2

λ3/2 (λ + |τ | + |ξ|) if d > 7

and

K(τ, ξ) ≤ C
(λ + ||τ | − |ξ||)3/2

λ3/2 (λ + |τ | + |ξ|)

(
1 + log

λ + |τ | + |ξ|
λ + ||τ | − |ξ||

)1/2

if d = 7.

From (2.5) we have L(τ, ξ) ≤ CJd−2
1 (τ ′, ξ′)1/2. By applying Proposition 2.1, this time

with m = d−2, l = 1, and α = min
{

m+1−4l
2 , 0

}
= 0 (notice that m+1 �= 4l, so there

is no logarithmic loss for L), we get

L(τ, ξ) ≤ C

(
1 + ||τ ′| − |ξ′||

(1 + |τ ′| + |ξ′|)2

)1/2

= C
λ1/2 (λ + ||τ | − |ξ||)1/2

(λ + |τ | + |ξ|) .

We need to choose λ such that

(λ + ||τ | − |ξ||)3/2

λ3/2 (λ + |τ | + |ξ|) =
λ1/2 (λ + ||τ | − |ξ||)1/2

(λ + |τ | + |ξ|)(2.11)

or, equivalently, λ2 − λ − ||τ | − |ξ|| = 0. We choose λ =
1+

√
1+4||τ |−|ξ||

2 . Notice that

λ ≥ 1 and that λ ≤ C(+
√
||τ | − |ξ||), and therefore

λ + ||τ | − |ξ|| ≤ C
(
1 +

√
||τ | − |ξ|| + ||τ | − |ξ||

)
� 1 + ||τ | − |ξ|| .

Therefore the right-hand side of (2.11) is bounded by(
1 +

√
||τ | − |ξ||

)1/2

(1 + ||τ | − |ξ||)1/2

1 + |τ | + |ξ| ≤ C
(1 + ||τ | − |ξ||)3/4

1 + |τ | + |ξ| .(2.12)

Moreover, since 1 < λ ≤ C (1 + |τ | + |ξ|), we have

log
λ + |τ | + |ξ|
λ + ||τ | − |ξ|| ≤ C log

1 + |τ | + |ξ|
1 + ||τ | − |ξ|| .(2.13)

By putting everything together we conclude that

K(τ, ξ) ≤ C
(1 + ||τ | − |ξ||)3/4

1 + |τ | + |ξ| if d > 7,

K(τ, ξ) ≤ C
(1 + ||τ | − |ξ||)3/4

1 + |τ | + |ξ|

(
1 + log

1 + |τ | + |ξ|
1 + ||τ | − |ξ||

)1/2

, if d = 7,
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and

L(τ, ξ) ≤ C
(1 + ||τ | − |ξ||)3/4

1 + |τ | + |ξ| , d ≥ 7.

This completes the proof in the case d ≥ 7.
It remains to deal with the intermediate case d = 6. In this case we have the

extra difficulty that K still behaves as in the lower-dimensional case but L behaves

as in the higher-dimensional case. Indeed, we have K(τ, ξ) ≤ C |ξ|
λ2 J

d
2 (τ ′, ξ′)1/2, and

Proposition 2.1 gives α = min
{

d−7
2 , 0

}
= − 1

2 ; therefore

K(τ, ξ) ≤ C
|ξ|
λ2

· (1 + ||τ ′| − |ξ′||)5/4
(1 + |τ ′| + |ξ′|)7/4

=
|ξ|
λ2

· λ
7/4(λ + ||τ | − |ξ||)5/4
λ5/4(λ + |τ | + |ξ|)7/4

≤ C
(λ + ||τ | − |ξ||)5/4

λ3/2(λ + |τ | + |ξ|)3/4 .

For L(τ, ξ) we have L(τ, ξ) ≤ CJd−2
1 (τ ′, ξ′)1/2, and Proposition 2.1 now gives α =

min
{

d−5
2 , 0

}
= 0. We get

L(τ, ξ) ≤ C
(1 + ||τ ′| − |ξ′||)1/2

1 + |τ ′| + |ξ′|

= C
λ1/2 (λ + ||τ | − |ξ||)1/2

λ + |τ | + |ξ| .

We need to choose λ so that

(λ + ||τ | − |ξ||)5/4
λ3/2(λ + |τ | + |ξ|)3/4 =

λ1/2 (λ + ||τ | − |ξ||)1/2

λ + |τ | + |ξ|(2.14)

or, equivalently,

λ8 − (λ + ||τ | − |ξ||)3 (λ + |τ | + |ξ|) = 0.(2.15)

To see that such a λ exists and to obtain estimates for it, consider the function

f : [1,∞) → R, f(λ) = λ8 − (λ + ||τ | − |ξ||)3(λ + |τ | + |ξ|).

Then, on the one hand, f(1) ≤ 0 and, on the other hand, with w± = 1 + ||τ | ± |ξ||,
we have

f
(
2w

4/5
− w

1/5
+

)
= 28w

32/5
− w

8/5
+(2.16)

−
(
2w

4/5
− w

1/5
+ + ||τ | − |ξ||

)3 (
2w

4/5
− w

1/5
+ + |τ | + |ξ|

)
.(2.17)

We have

2w
4/5
− w

1/5
+ + |ξ| − |τ | ≤ 2w

4/5
− w

1/5
+ + w− ≤ 3w

4/5
− w

1/5
+

and

2w
4/5
− w

1/5
+ + |ξ| + |τ | ≤ 3w+,
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and therefore

f
(
2w

4/5
− w

1/5
+

)
≥ 28w

32/5
− w

8/5
+ −

(
3w

4/5
− w

1/5
+

)3

· 3w+

= 28w
32/5
− w

8/5
+ − 34w

12/5
− w

8/5
+

= w
8/5
+

(
28w

32/5
− − 34w

12/5
−

)
> 0.

It follows that there exists a λ with 1 ≤ λ ≤ 2w
4/5
− w

1/5
+ such that both (2.14) and

(2.15) are satisfied. Notice that for this λ we have

λ + ||τ | − |ξ|| ≤ 2w
4/5
− w

1/5
+ + w− ≤ 3w

4/5
− w

1/5
+ .(2.18)

Moreover, from (2.15) we get

λ = (λ + ||τ | − |ξ||)3/8 (λ + |τ | + |ξ|)1/8 .(2.19)

By using first (2.19) we find that the right-hand side of (2.14) is bounded by

(
(λ + ||τ | − |ξ||)3/8(λ + |τ | + |ξ|)1/8

)1/2
(λ + ||τ | − |ξ||)1/2

λ + |τ | + |ξ|

=
(λ + ||τ | − |ξ||)11/16
(λ + |τ | + |ξ|)15/16 .

Next we use (2.18) for the numerator and λ ≥ 1 for the denominator to get

· · · ≤ C

(
w

4/5
− w

1/5
+

)11/16

w
15/16
+

= C
w

11/20
−

w
4/5
+

.

We conclude that

K(τ, ξ) ≤ C
w

11/20
−

w
4/5
+

, L(τ, ξ) ≤ C
w

11/20
−

w
4/5
+

.

This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. Let (s0, δ0) be defined by

(s0, δ0) =

(
d− 1

6
,−2d− 5

12

)
if d ∈ {3, 4, 5} ,(2.20a)

(s0, δ0) =

(
4

5
,−11

20

)
if d = 6,(2.20b)

(s0, δ0) =

(
1,−3

4

)
if d ≥ 7.(2.20c)

Notice that in all cases we have s0 + δ0 = 1
4 . Then the conditions (1.8) in Theorem

1.2 amount to s + δ ≤ 1
4 and s ≤ s0. We have

ws
+w

δ
− ≤ ws

+w
1/4−s
− = ws0

+ wδ0
−

w
1/4−δ0−s
−
ws0−s

+

= ws0
+ wδ0

−

(
w−
w+

)s0−s

≤ ws0
+ wδ0

− .
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The result then follows from Theorem 1.1.
Remark. It is possible to improve the estimates in this section if we allow weights

of the form ws1
+ wδ1

− + ws2
+ wδ2

− . Consider, for example, the case d ∈ {3, 4, 5}. In the
proof of Theorem 1.1 we bounded both K and L by

B :=
λ

1
2 (λ + w−)

d−3
4

w
d−1
4

+

,

with a logarithmic loss if d = 5. From (2.8), λ = (λ + w−)1/4w
1/4
+ , and hence

B ≤ C
(λ + w−)

2d−5
8

w
2d−3

8
+

.

By using (λ + w−)2d−5 ≤ Cλ2d−5 + w2d−5
− and λ ≤ Cw

1/6
− w

1/3
+ (see (2.9)) we get

B ≤ C
w

2d−5
48

−

w
d−1
6

+

+
w

2d−5
8

−

w
2d−3

8
+

.

Each of these fractions is smaller than

w
2d−5
12

−

w
d−1
6

+

.

3. Improved estimates in the region {|τ | > |ξ|}. In this section we prove
Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. By arguing, and using the same notation, as in
the proof of Theorem 1.1, we have (see (2.2)–(2.5))

|ρ̂(τ, ξ)| ≤
(∫

Sd−1

|ĝ(τ, ξ, v)|2 dσ(v)

)1/2

·K(τ, ξ)

+

(∫
Sd−1

∣∣∣f̂(τ, ξ, v)
∣∣∣2 dσ(v)

)1/2

· L(τ, ξ),(3.1)

where

K(τ, ξ) � |ξ|
λ2

Jd
2 (τ ′, ξ′)1/2, L(τ, ξ) � Jd−2

1 (τ ′, ξ′)1/2,

with τ ′ = τ/λ and ξ′ = ξ/λ.
In what follows we will reduce to proving pointwise estimates for K(τ, ξ) and

L(τ, ξ). As in the proof of Theorem 1.1, the estimates announced in Theorems 1.3
and 1.4 are a direct consequence of these estimates and (3.1), so we will omit the
details here.

Recall from [8] that, when |τ | > |ξ|, the integrals Jm
l (τ, ξ) defined in (2.1) satisfy

Jm
l (τ, ξ) � (1 + |τ | − |ξ|)α

(1 + |τ | + |ξ|)2l+α
if m + 1 �= 4l,

Jm
l (τ, ξ) � 1

(1 + |τ | + |ξ|)2l

(
1 + log

1 + |τ | + |ξ|
1 + |τ | − |ξ|

)
if m + 1 = 4l,
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where α = min((m + 1 − 4l)/2, 0).
We may assume that |τ | ≥ 1. First, observe that if |τ | ≥ 2|ξ|, then

Jm
l (τ, ξ) � (1 + |τ | − |ξ|)α

(1 + |τ | + |ξ|)2l+α
� 1

|τ |2l

and 1 + log 1+|τ |+|ξ|
1+|τ |−|ξ| � 1; therefore in all dimensions (use λ = 1) we have

K(τ, ξ) � |ξ|Jd
2 (τ, ξ)1/2 � |ξ|

|τ |2 ≤ C
1

|τ |

and

L(τ, ξ) � Jd−2
1 (τ, ξ)1/2 ≤ C

1

|τ |

which is stronger than all estimates in (1.10) and (1.12). Thus we may assume that
|ξ| < |τ | < 2|ξ|, in which case 1 + |τ | + |ξ| � |ξ|.

Suppose that d ∈ {3, 4, 5}. Then we have

K(τ, ξ) � |ξ|
λ2

Jd
2 (τ ′, ξ′)1/2 ≤ C

1

(λ + |τ | − |ξ|) 7−d
4 |ξ| d−3

4

.

Similarly,

L(τ, ξ) � Jd−2
1 (τ ′, ξ′)1/2 ≤ C

λ

(λ + |τ | − |ξ|) 5−d
4 |ξ| d−1

4

if d = 3, 4,

and the same estimate with a logarithmic loss if d = 5. Choose λ = 1 to get the
estimates in Theorem 1.4. On the other hand, there exists a λ such that

1

(λ + |τ | − |ξ|) 7−d
4 |ξ| d−3

4

=
λ

(λ + |τ | − |ξ|) 5−d
4 |ξ| d−1

4

.(3.2)

Indeed, this is equivalent to

λ (λ + |τ | − |ξ|)
1
2 = |ξ| 12 ,(3.3)

i.e., ϕ(λ) = 0, where ϕ(λ) = λ3 + (|τ | − |ξ|)λ2 − |ξ|. We have ϕ(0) = −|ξ| < 0 and
ϕ(|ξ|1/3) = (|τ | − |ξ|)|ξ|2/3 > 0, and therefore there exists a λ ∈ (0, |ξ|1/3) such that

(3.2) is satisfied. For this λ, (3.3) gives λ + |τ | − |ξ| = |ξ|
λ2 ≥ |ξ|1/3, and therefore the

left-hand side of (3.2) is no greater than

1

|ξ| 13 · 7−d
4 |ξ| d−3

4

=
1

|ξ| d−1
6

.

This gives the estimates in Theorem 1.3.
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Consider next d = 6. By working as above we get

K(τ, ξ) ≤ C
1

(λ + |τ | − |ξ|)1/4|ξ|3/4 and L(τ, ξ) ≤ C
λ

|ξ| .

Use λ = 1 to get the estimates of Theorem 1.4. Alternatively, find λ ∈
(
0, |ξ|1/5

)
such

that

1

(λ + |τ | − |ξ|)1/4|ξ|3/4 =
λ

|ξ| ,

and work as above to get the estimates in Theorem 1.3. In the case d ≥ 7 we are
already covered by (1.9c).

Remark. We can obtain more estimates in Hs,δ-spaces by interpolating between
(1.9) and (1.11). For example, if d ∈ {3, 4, 5}, we have that for all α ∈ [0, 1] estimates
(1.10) hold true with s = αd−1

6 + (1−α)d−3
4 and δ = (1−α) 7−d

4 , with similar results
in all other dimensions.

4. Counterexamples. In this section we discuss the optimality of our results.
We use the following notation: We fix i, j ∈ {1, . . . , d}, with i �= j. Given a vector ξ ∈
Rd, we denote by ξ′ ∈ Rd−2 the vector resulting from ξ if the ith and jth coordinates
are removed, i.e., ξ′ = (ξi, . . . , ξi−1, ξi+1, . . . , ξj−1, ξj+1, . . . , ξn). We denote by μ the
Lebesgue measure in Rd and by σ the corresponding surface measure on Sd−1.

Proposition 4.1. The condition s + δ ≤ 1/4 in Theorem 1.2 is necessary.
Proof. Fix N >> 1, and define

A =
{

(τ, ξ) : 5 ≤ τ ≤ 10, −2N1/2 ≤ ξi ≤ −N1/2, N/2 ≤ ξj ≤ N, |ξ′| ≤ 1
}
.

Let φ : Sd−1 → R be defined by φ(v) = φi(vi)φj(vj), where φi, φj : R → [0, 1] are
smooth cutoff functions such that

φi(vi) = 1 for − 9

10
≤ vi ≤ −3

5
,

φi(vi) = 0 for vi ≥ −1

2
,

φj(vj) = 1 for
1

10N1/2
≤ vj ≤

3

20N1/2
,

φj(vj) = 0 for vj ≤ 0 or vj ≥
1

4N1/2
.

In particular

suppφi ⊆ [−1,−1/2], suppφj ⊆ [0, 1/4N1/2].

For (τ, ξ) ∈ A and u ∈ suppφ we have

τ + v · ξ = τ + viξi + vjξj + v′ · ξ′ ≤ 10 +
18

10N1/2
+

3

20N1/2
N + 1 ≤ 11 + 2N1/2,

τ + v · ξ = τ + viξi + vjξj + v′ · ξ′ ≥ 5 +
3N1/2

5
+ 0 − 1 = 4 +

3N1/2

5
,

and therefore

τ + v · ξ � N1/2.(4.1)
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Also,

vjξi − viξj ≤ 0 +
9N

10
≤ N,

vjξi − viξj ≥ − 6

20
+

3N

10
=

3(N − 1)

10
,

and therefore

vjξi − viξj � N.(4.2)

On the other hand,

∣∣∣∣Ωi,j
v φ(v)

τ + v · ξ

∣∣∣∣ ≤ |vi| |φi|
∣∣∣∂φj

∂vj

∣∣∣+ |vj | |φj |
∣∣∣∂φi

∂vi

∣∣∣
|τ + v · ξ| ≤ C

N1/2 + N−1/2

N1/2
≤ C.(4.3)

We define f(t, x, v) and g(t, x, v) ∈ L2(R×Rd × Sd−1) by

f̂(τ, ξ, v) =
Ωi,j

v ĝ(τ, ξ, v)

i(τ + v · ξ) and ĝ(τ, ξ, v) = χA(τ, ξ)φ(v).

Then f and g are well defined (recall (4.1)) and ∂tf + v · ∇xf = Ωi,j
v g. The definition

of f and integration by parts yield

ρ̂
S
(τ, ξ) =

∫
Sd−1

f̂(τ, ξ, v)dσv

= −iχA(τ, ξ)

∫
Sd−1

Ωi,j
v φ(v)

τ + v · ξ dσv

= iχA(τ, ξ)

∫
Sd−1

vjξi − viξj
(τ + v · ξ)2φ(v)dσ(v).

Since φ ≥ 0 and vjξi − viξj ≥ 0 we have

|ρ̂
S
(τ, ξ)| = χA(τ, ξ)

∫
Sd−1

vjξi − viξj
(τ + v · ξ)2φ(v)dσ(v)

and, by using (4.1) and (4.2),

|ρ̂
S
(τ, ξ)| � χA(τ, ξ)

∫
Sd−1

φ(v)dσ(v) ≥ cχA(τ, ξ)
1

N1/2
.

For (τ, ξ) ∈ A we have 1 + ||τ | ± |ξ|| � N , and therefore

‖ρ
S
‖Hs,δ =

∥∥(1 + |τ | + |ξ|)s(1 + ||τ | − |ξ||)δρ̂
S
(τ, ξ)

∥∥
L2

≥ cNs+δ−1/2μ(A)1/2.(4.4)

On the other hand, by using (4.3),

‖f‖L2(R×Rd×Sd−1) =

(∫
R1+d

∫
Sd−1

∣∣∣∣χA(τ, ξ)Ωi,j
v φ(v)

i(τ + v · ξ)

∣∣∣∣
2

dσ(v)dτdξ

)1/2

≤ Cμ(A)1/2σ(suppφ)1/2

≤ Cμ(A)1/2
1

N1/4
.(4.5)
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Finally,

‖g‖L2(R×Rd×Sd−1) =

(∫
R1+d

∫
Sd−1

χA(τ, ξ)2φ(v)2dσ(v)dτdξ

)1/2

≤ Cμ(A)1/2σ(suppφ)1/2

≤ Cμ(A)1/2
1

N1/4
.(4.6)

If for some (s, δ) we have ‖ρ
S
‖Hs,δ ≤ C (‖f‖L2 + ‖g‖L2), then (4.4)–(4.6) imply that

Ns+δ−1/2 ≤ CN−1/4, and therefore s+ δ ≤ 1/4 as required. We get exactly the same

result if we have Hs,δ
log instead of Hs,δ.

Proposition 4.2. The condition s ≤ 1 in Theorem 1.2 is necessary.
Proof. Fix N >> 1. Define

A = {(τ, ξ) : N ≤ ξi ≤ 2N, −1 ≤ ξj ≤ 0, |ξ′| ≤ 1, |ξ| ≤ τ ≤ |ξ| + 1} .

Let φ : R → R be a smooth cutoff function, with 0 ≤ φ ≤ 1 and φ = 1 on [1/20, 1/10]
and φ = 0 outside [1/21, 1/9]. Define

ĝ(τ, ξ, v) = χA(τ, ξ)φ(vi)φ(vj), f̂(τ, ξ, v) =
Ωi,j

v ĝ(τ, ξ, v)

i(τ + v · ξ) .

Notice that for (τ, ξ) ∈ A and v ∈ Sd−1 such that vi, vj ∈ suppφ we have

τ + v · ξ ≤ |τ | + |ξ| ≤ CN

and, since viξi ≥ 0 and vjξj ≥ −1,

τ + v · ξ = τ + viξi + vjξj + v′ · ξ′ ≥ N + 0 − 1 − 1 ≥ cN.

Therefore τ + v · ξ > 0 and

τ + v · ξ � N.

It follows that f is well defined and, moreover,

∣∣∣f̂(τ, ξ, v)
∣∣∣ ≤ χA(τ, ξ) [ |vi|φ(vi) |φ′(vj)| + |vj | |φ′(vi)|φ(vj) ]

|τ + v · ξ|

≤ C
χA(τ, ξ)

N
;

therefore

‖f‖L2 ≤ C
μ(A)1/2

N
.

Also,

‖g‖L2 ≤ Cμ(A)1/2,

and therefore

‖f‖L2 + ‖g‖L2 ≤ Cμ(A)1/2.(4.7)
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On the other hand, by using integration by parts we find

ρ̂
S
(τ, ξ) = iχA(τ, ξ)

∫
Sd−1

vjξi − viξj
(τ + v · ξ)2φ(vi)φ(vj)dσ(v).

Since vi ≥ 0 and ξj ≤ 0 we have vjξi − viξj ≥ vjξi ≥ N
21 ≥ cN, and therefore

|ρ̂
S
(τ, ξ)| = χA(τ, ξ)

∫
Sd−1

vjξi − viξj
(τ + v · ξ)2φ(vi)φ(vj)dσ(v)

≥ cχA(τ, ξ)
N

N2

∫
Sd−1

φ(vi)φ(vj)dσ(v)

≥ c
χA(τ, ξ)

N
.

Moreover, for (τ, ξ) ∈ A, 1 + |τ | + |ξ| � N and 1 + ||τ | − |ξ|| � 1; therefore∥∥(1 + |τ | + |ξ|)s(1 + ||τ | − |ξ||)δ |ρ̂
S
(τ, ξ)|

∥∥
L2

≥ cNsμ(A)1/2

N
= Ns−1μ(A)1/2.(4.8)

If ‖ρ
S
‖Hs,δ ≤ C (‖f‖L2 + ‖g‖L2) is satisfied, then (4.7) and (4.8) imply that Ns−1 ≤

C; therefore s ≤ 1. We get exactly the same result if we have Hs,δ
log instead of

Hs,δ.
Proposition 4.3. The condition s ≤ d−1

6 in Theorem 1.2 is necessary.
Proof. For simplicity of notation we use i = 1 and j = d. Then ξ′ = (ξ2, . . . , ξd−1).

Fix N >> 1, and define

A = {(τ, ξ) : 1 ≤ τ − |ξ| ≤ 2, 0 ≤ ξ1 ≤ 1, −2N ≤ ξd ≤ −N, |ξ′| ≤ 1} .(4.9)

Notice that if (τ, ξ) ∈ A, then

1 + ||τ | − |ξ|| � 1,(4.10)

1 + |τ | + |ξ| � N,(4.11)

1

2
≤ −ξd

|ξ| ≤ 1.

Let φ : R → [0, 1] be a smooth cutoff function, with suppφ ⊆ [N− 1
3 , 2N− 1

3 ] and

φ ≡ 1 on [54N
− 1

3 , 3
2N

− 1
3 ]. Let ψ : R → [0, 1] be a smooth cutoff function, with

suppψ ⊆ [1 − 4N− 2
3 , 1 −N− 2

3 ] and ψ ≡ 1 on [1 − 3N− 2
3 , 1 − 2N− 2

3 ]. Define

B =
{
v ∈ Sd−1 : v1 ∈ suppφ, vd ∈ suppψ

}
.(4.12)

For (τ, ξ) ∈ A and v ∈ B we then have vd, ξ1 ≥ 0 and ξd ≤ 0; therefore

vdξ1 − v1ξd ≥ 0 + v1 |ξd| ≥ N
2
3 .(4.13)

Also

τ + v · ξ = τ − |ξ| + |ξ|
(

1 + vd
ξd
|ξ|

)
+

d−1∑
i=1

viξi.(4.14)
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We have τ − |ξ| � 1 and |
∑d−1

i=1 viξi| ≤ C1. Moreover,

1 + vd
ξd
|ξ| =

(
1 +

ξd
|ξ|

)
+ (1 − vd)

−ξd
|ξ| ≥ 0 + N− 2

3 · 1

2
≥ cN− 2

3 ,

and therefore

|ξ|
(

1 + vd
ξd
|ξ|

)
≥ cN

1
3 .

As a consequence,

τ + v · ξ ≥ cN
1
3 .

Notice also that

|ξ|
(

1 + vd
ξd
|ξ|

)
= (|ξ| + ξd) + (1 − vd) · (−ξd),

with

(1 − vd) · (−ξd) ≤ 4N− 2
3 · 2N ≤ CN

1
3

and

|ξ| + ξd =
|ξ|2 − ξ2

d

|ξ| − ξd
=

∑d−1
k=1 ξ

2
k

|ξ| + |ξd|
≤ C

1

N
≤ C.

Thus

|ξ|
(

1 + vd
ξd
|ξ|

)
≤ CN

1
3 .

By using this in (4.14) we get

τ + v · ξ ≤ CN
1
3 .

We have shown that, for (τ, ξ) ∈ A and v ∈ B,

τ + v · ξ � N
1
3 .(4.15)

Next define f and g ∈ L2(Rt ×Rd
x × Sd−1

v ) by

f̂(τ, ξ, v) =
Ω1,d

v ĝ(τ, ξ, v)

i(τ + v · ξ) and ĝ(τ, ξ, v) = χA(τ, ξ)φ(v1)ψ(vd).

We have

‖g‖L2(Rt×Rd
x×Sd−1

v ) ≤ μ(A)1/2σ(B)1/2.(4.16)

Also ∣∣∣f̂(τ, ξ, v)
∣∣∣ ≤ χA(τ, ξ)

|τ + v · ξ| [v1φ(v1) |ψ′(vd)| + vd |φ′(v1)|ψ(vd)]

≤ C
χA(τ, ξ)χB(v)

N
1
3

[
N− 1

3 · 1 ·N 2
3 + 1 ·N 1

3 · 1
]

≤ CχA(τ, ξ)χB(v),
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so that

‖f‖L2(Rt×Rd
x×Sd−1

v ) ≤ Cμ(A)1/2σ(B)1/2.(4.17)

Now observe that B is contained in the set {v ∈ Sd−1 : 1 − 4N− 2
3 ≤ vd ≤ 1}, which

is a “cap” centered at the North pole of the sphere. It is easy to check that its area is

≤ CN− d−1
3 , and therefore σ(B) ≤ CN− d−1

3 . Then, from (4.16), (4.17), and previous
observation, we get

‖f‖L2(Rt×Rd
x×Sd−1

v ) + ‖g‖L2(Rt×Rd
x×Sd−1

v ) ≤ Cμ(A)1/2N−(d−1)/6.(4.18)

For ρ
S

we integrate by parts to get

ρ̂
S
(τ, ξ) =

∫
Sd−1

Ω1,d
v ĝ(τ, ξ, v)

i(τ + v · ξ) dσ(v)

= iχA(τ, ξ)

∫
Sd−1

vdξ1 − v1ξd
(τ + v · ξ)2 φ(v1)ψ(vd) dσ(v).

Since φ, ψ ≥ 0 and vdξ1 − v1ξd ≥ 0 we have

|ρ̂
S
(τ, ξ)| = χA(τ, ξ)

∫
Sd−1

vdξ1 − v1ξd
(τ + v · ξ)2 φ(v1)ψ(vd) dσ(v),

and therefore, by using (4.13) and (4.15),

|ρ̂
S
(τ, ξ)| ≥ cχA(τ, ξ)

∫
Sd−1

φ(v1)ψ(vd) dσ(v),(4.19)

we claim that ∫
Sd−1

φ(v1)ψ(vd)dσ(v) ≥ cN−(d−1)/3.(4.20)

We have (recall that v′ denotes the vector (v2, . . . , vd−1) ∈ Rd−2)∫
Sd−1

φ(v1)ψ(vd)dσ(v)

= c

∫
v2
1+|v′|2≤1

φ(v1)ψ

(√
1 − v2

1 − |v′|2
)
dv1dv

′

≥ c

∫
X

φ(v1)ψ

(√
1 − v2

1 − |v′|2
)
dv1dv

′,(4.21)

where X = { 5
4N

−1/3 ≤ v1 ≤ 3
2N

−1/3,
√

39
4 N−1/3 ≤ |v′| ≤ 3

2N
−1/3}. Clearly, in

the domain of integration in (4.21) we have φ(v1) = 1. We claim that we also have
ψ(
√

1 − v2
1 − |v′|2) = 1. Indeed,

1 −
√

1 − v2
1 − |v′|2 =

v2
1 + |v′|2

1 +
√

1 − v2
1 − |v′|2

≤
9
4N

−2/3 + 9
4N

−2/3

3
2

= 3N−2/3,

and therefore

1 − 3N−2/3 ≤
√

1 − v2
1 − |v′|2.
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Moreover,

1 −
√

1 − v2
1 − |v′|2 =

v2
1 + |v′|2

1 +
√

1 − v2
1 − |v′|2

≥
25
16N

−2/3 + 39
16N

−2/3

2
= 2N−2/3,

and therefore √
1 − v2

1 − |v′|2 ≤ 1 − 2N−2/3.

It follows that ∫
Sd−1

φ(v1)ψ(vd)dσ(v) ≥ c

∫
X

1 dv1dv
′ ≥ cN−(d−1)/3.

This proves (4.20). By using (4.20) in (4.19) we get

|ρ̂
S
(τ, ξ)| ≥ cχA(τ, ξ)N− d−1

3 ,

and therefore, by using (4.10) and (4.11),

∥∥w+(τ, ξ)sw−(τ, ξ)δρ̂
S
(τ, ξ)

∥∥
L2(R×Rd)

≥ μ(A)1/2Ns− d−1
3 .(4.22)

If the estimate ∥∥w+(τ, ξ)sw−(τ, ξ)δρ̂
S
(τ, ξ)

∥∥
L2(R×Rd)

≤ C
(
‖f‖L2(Rt×Rd

x×Sd−1
v ) + ‖g‖L2(Rt×Rd

x×Sd−1
v )

)
is valid, then it follows from (4.22) and (4.18) that

Ns−(d−1)/3 ≤ CN−(d−1)/6

for N � 1 which gives

s ≤ d− 1

6
.

We have exactly the same bound for s if Hs,δ is replaced by Hs,δ
log .
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STABILITY OF EQUILIBRIA FOR THE STEFAN PROBLEM WITH
SURFACE TENSION∗
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Abstract. We characterize the equilibrium states for the two-phase Stefan problem with sur-
face tension and with or without kinetic undercooling, and we analyze their stability in terms of
dependence on physical and geometric quantities.

Key words. free boundary problem, phase transitions, surface tension, kinetic undercooling,
stability, bifurcation

AMS subject classifications. 35R55, 35B55, 35K55, 80A22

DOI. 10.1137/070700632

1. Introduction. The Stefan problem is a model for phase transitions in solid-
liquid systems. In this paper, we consider the two-phase Stefan problem with the
modified Gibbs–Thomson law

(1.1) u = σH + δV on Γ(t), σ > 0, δ ≥ 0,

and the kinetic condition

(1.2) [d∂νu] = (�− [κ]u)V on Γ(t).

Here Γ(t) denotes the unknown moving hypersurface that separates the liquid from
the solid phase, u is the temperature, H the mean curvature of Γ(t), σ the surface
tension coefficient, δ the coefficient of kinetic undercooling, V the normal velocity of
Γ(t), � the latent heat, [κ] the jump of the heat capacities across Γ(t), and [d∂νu] the
jump of the heat fluxes across Γ(t). Note that in case σ = δ = 0, i.e., for the classical
Stefan problem, we have u = 0 at the interface, and then the kinetic condition becomes
the classical Stefan condition.

Under appropriate boundary conditions we will show that spheres (together with
constant temperature distributions) are the only equilibrium states for this system,
and we will characterize the stability of these equilibria in terms of dependence on
physical and geometric quantities.

In order to formulate the Stefan problem we introduce the following notation. Let
Ω be a smooth bounded domain in R

n whose boundary ∂Ω consists of two disjoint
components, an “interior” part J1 and an “exterior” part J2. We think of Ω as a
homogeneous medium which is occupied by a liquid and a solid phase, say water and
ice, that initially occupy the regions Ω1

0 and Ω2
0, and that are separated by a sharp

interface Γ0. More precisely, we assume that Γ0 ⊂ Ω is a compact closed hypersurface,
and that Ω1

0 and Ω2
0 are disjoint open sets such that Ω = Ω1

0 ∪ Ω2
0, and such that

∂Ωi
0 = Ji ∪Γ0 for i = 1, 2. For the sake of definiteness we consider the open set Ω1

0 as

∗Received by the editors August 20, 2007; accepted for publication (in revised form) March 11,
2008; published electronically July 3, 2008.

http://www.siam.org/journals/sima/40-2/70063.html
†Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-60120 Halle, Germany

(jan.pruess@mathematik.uni-halle.de).
‡Department of Mathematics, Vanderbilt University, Nashville, TN 37240 (simonett@math.

vanderbilt.edu). The research of this author was partially supported by NSF grant DMS-0600870.

675
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the region occupied by the liquid phase. Consequently, the component J1 is in contact
with the liquid phase, and J2 is in contact with the solid phase. The boundaries J1

and J2, corresponding for instance to the walls of a container, are fixed, whereas Γ0

will change as time evolves, due to solidification or liquidation of the two different
phases.

Given t ≥ 0, let Γ(t) be the position of Γ0 at time t, and let V (·, t) and H(·, t)
be the normal velocity and the mean curvature of Γ(t). Moreover, let Ω1(t) and Ω2(t)
be the two regions in Ω separated by Γ(t). According to our assumption, Ω1(t) is the
region occupied by the liquid phase, and Γ(t) is a sharp interface which separates the
liquid from the solid phase. Let ν(·, t) be the outer unit normal field on Γ(t) with
respect to Ω1(t). We shall use the convention that the normal velocity is positive
if Ω1(t) is expanding, and that the mean curvature is positive if the intersection of
Ω1(t) with a small ball centered at Γ(t) is convex. Consequently, the normal velocity is
positive if the liquid region is growing, ν points into the solid phase, and H is positive
for a water ball surrounded by ice, and negative for an ice ball surrounded by water.

Here we concentrate on the case J1 = ∅. Let Γ0 and ui
0 : Ωi

0 → R be given, where
u1

0 and u2
0 denote the initial temperatures of the liquid and solid phase, respectively.

The strong formulation of the two-phase Stefan problem with surface tension and
kinetic undercooling consists of finding a family Γ := {Γ(t) ; t ≥ 0} of hypersurfaces
and functions ui : ∪t≥0 (Ωi(t) × {t}) → R, satisfying

(1.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

κi∂tui − diΔui = 0 in Ωi(t),

∂νu2 = 0 on J2,

ui = σHΓ + δV on Γ(t),

[d∂νu] = (�− [κ]u)V on Γ(t),

ui(0) = ui
0 in Ωi

0,

Γ(0) = Γ0 ,

where κi ≥ 0 is the heat capacity of phase i, di is its thermal conductivity coefficient,
� > 0 is the latent heat per unit mass absorbed or released for melting or solidifying,
σ > 0 is the surface tension, and δ ≥ 0 is the speed of kinetic undercooling. Moreover,

[κ] : = κ2 − κ1,

[d∂νu] : = d2∂νu2 − d1∂νu1

denote the jump of the heat capacities and the heat fluxes, respectively, across the
interface Γ(t). Note that [κ] = κ2 − κ1 < 0 is physically reasonable since in the liquid
phase there are more degrees of freedom than in the solid phase; hence, the liquid
phase can absorb more energy per unit mass. However, we do not assume [κ] < 0
in what follows. The condition ui = σHΓ on the free interface is usually called the
Gibbs–Thomson law, and ui = σHΓ + δV the modified Gibbs–Thomson law, or the
Gibbs–Thomson law with kinetic undercooling; see [2, 3, 16, 17, 19, 21, 24, 25, 32] for
more information.

We refer to [12, 13, 14, 22, 23, 28, 29] for existence and regularity results for
the Stefan problem with the Gibbs–Thomson law ui = σHΓ in case κ1 = κ2. The
Stefan problem with surface tension and kinetic undercooling in case κ1 = κ2 has
been studied in [5, 28, 29, 31]; see also [20] for the one-phase case.

It will be shown in [26] that the Stefan problem (1.3) has a unique local solution
which is analytic in space and time, provided that the well-posedness condition

(1.4) �− σ[κ]HΓ0 > 0 in case δ = 0
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is satisfied. On the other hand, if δ = 0 and κ1 > κ2, problem (1.3) is not well-posed if
HΓ0

is too negative, that is, in case the solid region sharply protrudes into the liquid.
Associated to the Stefan problem (1.3) is the energy functional

(1.5) E(u(t),Γ(t)) :=

∫
Ω

κu dx + � |Ω1(t)| =

∫
Ω1(t)

κ1u1 dx +

∫
Ω2(t)

κ1u2 dx + � |Ω1(t)|,

where |Ω1(t)| is the volume of the region Ω1(t). If (u,Γ) is a sufficiently smooth
solution of (1.3), then we obtain

d

dt
E(u(t),Γ(t)) =

∫
Ω1(t)

κ1∂tu1 dx +

∫
Ω2(t)

κ1∂tu2 dx− [κ]

∫
Γ(t)

uV ds + �

∫
Γ(t)

V ds

=

∫
Γ(t)

(
− [d∂νu] − [κ]uV + �V

)
ds = 0,

(1.6)

thus showing that energy is conserved.
If κ1 = κ2 = 0 and δ = 0, then the resulting problem is the quasi-stationary Stefan

problem with surface tension, which has also been termed the Mullins–Sekerka model
(or the Hele–Shaw model with surface tension). Existence, uniqueness, regularity,
and global existence of solutions for the quasi-stationary approximation have been
investigated in [1, 4, 6, 8, 9, 10, 11, 15]. Existence and global existence of classical
solutions for the quasi-stationary approximation with σ > 0 and δ > 0 have been
studied in [33, 20].

A major difficulty in the mathematical treatment of the Stefan problem (1.3)
is due to fact that the boundary Γ(t), and thus the geometry, is unknown and ever
changing. A widely used method to overcome this inherent difficulty is to choose a
fixed reference surface Σ and then represent the moving surface Γ(t) as the graph of
a function (which we will denote by ρ = ρ(s, t)) in normal direction of Σ. In this way,
one obtains a time-dependent (unknown) diffeomorphism from Σ onto Γ(t), and in
the next step this diffeomorphism is extended to a diffeomorphism of fixed reference
regions Di onto the unknown domains Ωi(t). The treatment of the moving boundary
problem (1.3) then proceeds by transforming the equations into a new system of
equations defined on the fixed domain D1 ∪ D2 from which both the solution and
the parameterizing function ρ have to be determined. In the context of the Stefan
problem this approach has first been used by Hanzawa [18].

The same approach has also been used in [10, 11] for the quasi-stationary ap-
proximation of the Stefan problem with surface tension, and in [26] for the Stefan
problem with surface tension. Once the transformed system has been obtained, one
can study the mapping properties of the nonlinearities involved, and in particular,
one can determine their linearizations; see [26] for more details.

In this paper, we assume that Γ(t) does not touch the fixed boundary J2 = ∂Ω.
Under this assumption, we will characterize all of the equilibrium states (u1, u2,Σ) of
(1.3). In fact, it is easy to see that the equilibria are precisely given by

Σ =
m⋃
j=1

SR(xj), u1 = u2 = σ/R,

where SR(xj) denotes disjoint spheres of the same radius R and centers xj . This can be
seen by the following arguments: the equilibria (u1, u2,Σ) of the Stefan problem (1.3)
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are given by the system of equations

(1.7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−diΔui = 0 in Ωi,

∂νu2 = 0 on ∂Ω,

ui = σHΣ on Σ,

[d∂νu] = 0 on Σ.

Taking the inner product of (1.7)1 with ui, the divergence theorem and condition
(1.7)4 yield

∫
Ωi

|∇ui|2 dx = 0;

hence ui is constant on Ωi. Equation (1.7)3, in turn, shows that u1 = u2 and also
that H = u/σ is constant on Σ. But then, since Ω is bounded, Σ must be a sphere
SR(x0) centered at some point x0 ∈ Ω with radius R > 0, if the phases are connected.
Otherwise, again due to the boundedness of Ω, Σ is the union of finitely many spheres
of the same radius R > 0. Here we concentrate on the case of connected phases.
Thus there is an (n + 1)-parameter family of equilibria, the parameters being the n
coordinates of the center x0 and the radius R.

We want to discuss the stability of those equilibria. The linearized problem (as-
sociated to the transformed equations) at such an equilibrium state is given by

(1.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ∂tv − dΔv = f in (Ω \ Σ) × R+,

∂νv = 0 on ∂Ω × R+,

v = σAΣρ + δ∂tρ + g on Σ × R+,

l∂tρ− [d∂νv] = h on Σ × R+,

v(0) = v0 in Ω \ Σ,

ρ(0) = ρ0 on Σ;

see [26]. Here, l = �− [κ]σ/R, and the operator AΣ is given by

AΣ = − 1

n− 1

(
n− 1

R2
+ ΔΣ

)
,

where ΔΣ denotes the Laplace–Beltrami operator on Σ. This is the linearization of
the mean curvature H ′(0) at the sphere Σ; cf., e.g., Escher and Simonett [11]. Here
we use the notation v = v1χΩ1 + v2χΩ2 , where χG denotes the characteristic function
of a set G, and similarly κ = κ1χΩ1 + κ2χΩ2 and d = d1χΩ1 + d2χΩ2 . Associated to
the linearization (1.8) is the following eigenvalue problem:

(1.9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λκv − dΔv = 0 in Ω \ Σ,

∂νv = 0 on ∂Ω,

v = σAΣρ + λδρ on Σ,

λlρ− [d∂νv] = 0 on Σ,

where as before l = �− [κ]σ/R. We will now state the main results of this paper. We
will formulate our results for a domain in R

n for n ∈ N, n > 1, although the physically
relevant dimensions, naturally, are n = 2, 3.
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Theorem 1.1. Suppose that the phases in the Stefan problem are connected. Then
the following assertions hold:

(a) The equilibrium states (without boundary contact) for problem (1.3) are given
by

(u,Σ), where Σ = SR(x0) and u = σ/R,

with SR(x0) ⊂ Ω being the sphere with radius R and center x0.
(b) For l > 0, the eigenvalue problem (1.9) has countably many real eigenvalues

of finite algebraic multiplicity.
(c) 0 is an eigenvalue of (1.9) with geometric multiplicity (n+1). The (geometric)

eigenspace is spanned by

(−1, Y0), (0, Y1), . . . , (0, Yn),

where Y0 = R2/σ, and where Yj, 1 ≤ j ≤ n, are the spherical harmonics of
degree 1 (normalized by the orthogonality condition (Yi|Yj)Σ = δij).

(d) If σ(κ|1)Ω ≤ l|Σ|R2, then (1.9) has no positive eigenvalues.
(e) If σ(κ|1)Ω > l|Σ|R2 > 0, then (1.9) has exactly one positive, algebraically

simple eigenvalue.
(f) If l < 0 and δ > 0, then (1.9) has at least one positive eigenvalue.
(g) If l < 0 and δ = 0, then the linearized problem (1.8) is not well-posed.
Proof. The assertion in (a) has been proved above. We refer to Theorem 2.1 for

a proof of assertions (b)–(e), and for additional information about the eigenvalue
problem (1.9), for the case l > 0. The proof of (f) is given at the end of section 5, and
(g) follows from [7].

Remark 1.2. (a) If l < 0, then all equilibrium states are linearly unstable (and the
linearized problem (1.8) is not even well-posed in case δ = 0). Therefore we mainly
concentrate on the case l > 0. Define then

ζ :=
σ(κ|1)Ω
l|Σ|R2

, where l = �− σ[κ]

R
, (κ|1)Ω :=

∫
Ω

κ dx.

According to Theorem 1.1.(d)–(e), we know that all eigenvalues of (1.9) are non-
positive if ζ ≤ 1, and that there exists exactly one positive simple eigenvalue if ζ > 1.
We will refer to the case ζ ≤ 1 as a stability condition.

Observe that neither the thermal conductivity coefficients di nor the kinetic co-
efficient δ enters this stability condition, as it depends only on the heat capacities κi,
the latent heat �, the surface tension σ, and on the geometry. In particular, decreasing
the size of a ball decreases its stability, as does increasing surface tension; see also
Remark 1.5(a). We also mention that the stability condition ζ ≤ 1 is always valid in
the quasi-stationary case κi = 0, i.e., for the Mullins–Sekerka problem.

(b) It will be shown in the forthcoming paper [27] that solutions for the Stefan
problem (1.3) that start out close to an equilibrium (u,Σ) exist globally and converge
towards an equilibrium state (u′,Σ′) as time goes to infinity, provided that l > 0 and
ζ < 1. This gives justice to the wording stability condition for the case ζ < 1. We note
again that ζ = 0 if the heat capacities κi are zero, that is, in the quasi-stationary
case. In this case, global existence and convergence to equilibria were obtained in
[11, 20] by using a center-manifold analysis; see also [15] for a different approach in
the one-phase case.

(c) If the Gibbs–Thomson condition on the free interface Γ(t) is replaced by
ui = 0, then (1.3) is called the (classical) Stefan model. It should be observed that,
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in contrast to the problem with surface tension, the classical Stefan problem does not
admit nontrivial equilibrium states.

For l > 0, the results in Theorem 1.1 suggest that one eigenvalue, λ∗, crosses the
imaginary axis at 0 as the quantity ζ increases and exceeds 1. According to part (c)
of Theorem 1.1, 0 is always an eigenvalue with geometric multiplicity (n + 1). This
suggests that as the eigenvalue λ∗ crosses through 0, the algebraic multiplicity of 0
raises by one, and then drops again as soon as the eigenvalue has crossed. This is
exactly what happens, as will be proved in Theorem 2.1.

Another way to view and understand this situation can be gained from considering
the following parameter-dependent eigenvalue problem:

(1.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ∗sκv − dΔv = 0 in Ω \ Σ,

∂νv = 0 on ∂Ω,

v = σAΣρ + λ∗δρ on Σ,

λ∗lρ− [d∂νv] = 0 on Σ.

The following result will be proved in section 6.

Theorem 1.3. Let l > 0 and set s0 := l|Σ|R2/σ(κ|1)Ω. Then the following hold:

(a) The eigenvalue problem (1.10) has an analytic curve of solutions

[s 
→ (λ∗(s), v(s), ρ(s))], s ∈ (s0 − ε0,∞),

such that λ∗(s) > 0 iff s > s0, where ε0 is an appropriate positive number.
(b) λ∗(s) crosses the imaginary axis with positive speed at s = s0.
(c) [s 
→ λ∗(s)] is strictly increasing.
(d) If δ > 0, then λ∗(s) is bounded above by σ/δR2.
(e) If δ = 0, then λ∗(s) → ∞ as s → ∞.

Clearly, the eigenvalues of the modified problem (1.10) coincide with the eigen-
values of (1.9) if s = 1. In case ζ > 1 we have s0 < 1 and see that λ = λ∗(1) is a (the
only) positive eigenvalue of (1.9).

According to (1.5) an equilibrium state (σ/R, SR(x0)) for the Stefan problem
(1.3) has energy

φ(R) : = E
( σ

R
, SR(x0)

)
=

σ

R
(κ|1)Ω + � |Ω1|

=
σ

R

(
κ1|Ω1| + κ2|Ω2|

)
+ � |Ω1|,

(1.11)

where |Ω1| = Rn|B| and |Ω2| = |Ω| − Rn|B|, with |B| the volume of the unit ball. A
straightforward computation shows that the function φ has a unique minimum. It is
attained at the point R∗, where R∗ is the unique solution of

(1.12)
σ(κ|1)Ω

R2
=

(
�− σ[κ]

R

)
|SR|,

with |SR| = |SR(x0)| being the area of the sphere SR(x0).

In the following, we denote by R∗ the point where φ attains its (unique) minimum
and by R∗ the largest number R such that BR(x0) ⊂ Ω, and we suppose that R∗ < R∗.
Then we have the following result; see also the stability diagram in Figure 1.
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R_0 R_� R^�
R

c_�

c^�

Φ

Fig. 1. Stability diagram for κ1 < κ2 and δ = 0; circled: ill-posed, dotted: unstable.

Corollary 1.4. Let c∗ = φ(R∗) be the minimum value of φ, and let c∗ = φ(R∗).
Moreover, let c0 = E(u0,Γ0) = φ(R) be a given energy level.

(a) If c0 < c∗, then problem (1.3) does not admit equilibrium states.
(b) If c∗ < c0 < c∗, then (1.3) admits two branches of equilibrium states. The

branch of equilibria (σ/R, SR(x0)) with 0 < R < R∗ is linearly unstable,
whereas the branch with R∗ < R < R∗ is linearly stable.

(d) In case c0 = c∗ or c0 > c∗, the Stefan problem (1.3) admits one family of
equilibrium states. All equilibria (σ/R, SR(x0)) with φ(R) > c∗ are linearly
unstable.

(e) If R0 := [κ]σ/� > 0 and δ = 0, then the linearized problem is ill-posed for
R < R0.

Proof. This follows from Remark 1.2(a), (1.12), and the fact that φ′(R) is negative
for R < R∗ and positive for R∗ < R < R∗.

Remark 1.5. (a) We can show that R∗ is increasing with respect to σ (and, for
that matter, also with respect to [κ]). In order to see this, let R∗(σ) denote the unique
solution of (1.12). Then we have R′

∗(σ) > 0. For this we note that (1.12) can be written
as

(1.13) n�|B|Rn+1
∗ (σ) − σ

(
κ2|Ω| + (n− 1)[κ]|B|Rn

∗ (σ)
)

= 0.

Taking the derivative of this equation with respect to σ yields

n(n + 1)�|B|Rn−1
∗

(
R∗ −

(n− 1)

(n + 1)

σ[κ]

�

)
R′

∗(σ)

= κ2|Ω| + (n− 1)[κ]|B|Rn
∗ = (�/σ)n|B|Rn+1

∗ (σ) > 0.

Note that we have used (1.13) for the last equality. It remains to be observed that
the parenthetical expression in front of R′

∗(σ) is always positive. This is clear in case
[κ] ≤ 0 and follows from the fact that R∗ is always greater than R0 = σ[κ]/l in case
[κ] > 0. We therefore see that increasing σ increases R∗(σ), showing that spheres with
a fixed radius R can lose stability as σ increases.

(b) If one considers the case where the domain Ω1 is occupied by the solid phase,
and Ω2 by the fluid phase, then the third and fourth lines in (1.3) must be replaced
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by

(1.14)
ui = −σHΓ − δV on Γ(t),

−[d∂νu] = (� + [κ]u)V on Γ(t),

and the energy functional by

E(u(t),Γ(t)) :=

∫
Ω

κu dx + � |Ω2(t)| =

∫
Ω1(t)

κ1u1 dx +

∫
Ω2(t)

κ1u2 dx + � |Ω2(t)|,

while all other conventions are left unchanged. Thus, one formally has to switch signs
in the normal ν and in � and [κ]. Then all of the results and assertions stated in this
paper remain valid for the equilibrium states (−σ/R, SR(x0)).

The plan of this paper is the following. In section 2 we will state a more general
and concise version of Theorem 1.1; its proof will be given in sections 3–5. Finally, in
section 6 we will prove Theorem 1.3.

2. Main theorem. In this section we will introduce an appropriate functional
analytic setting to study the eigenvalue problem (1.9). We always assume l > 0 except
when proving (f) of Theorem 1.1.

For the case δ = 0 we define the operator L0 on E0 := Lp(Ω) × W
2−2/p
p (Σ) by

means of

D(L0) :=
{
(v, ρ) ∈ W 2

p (Ω \ Σ) ×W 4−1/p
p (Σ) : [d∂νv] ∈ W 2−2/p

p (Σ),

∂νv = 0 on ∂Ω, [v] = 0 on Σ, v = σAΣρ on Σ
}
,

L0(v, ρ) :=
(
(d/κ)Δv, [(d/l)∂νv]

)
, (v, ρ) ∈ D(L0).

In case δ > 0, we instead set Eδ := Lp(Ω) ×W
1−1/p
p (Σ), and we define Lδ by

D(Lδ) :=
{
(v, ρ) ∈ W 2

p (Ω \ Σ) ×W 3−1/p
p (Σ) :

∂νv = 0 on ∂Ω, [v] = 0 on Σ, v − (δ/l)[d∂νv] = σAΣρ on Σ
}
,

Lδ(v, ρ) :=
(
(d/κ)Δv, [(d/l)∂νv]

)
, (v, ρ) ∈ D(Lδ).

We remark that L0 and Lδ differ only by their respective domains of definition. It
will be shown in [7] that the operators Lδ generate an analytic semigroup on Eδ.
This property, in conjunction with the spectral information contained in the next
theorem, will be crucial in proving global existence and convergence of solutions for
problem (1.3) that start out close to an equilibrium, which will be provided in [27];
see also Remark 1.2(c).

Theorem 2.1. Suppose 1 < p < ∞, and let l > 0. For δ ≥ 0 let Lδ be defined as
above.

(a) The spectrum of Lδ consists of countably many real eigenvalues of finite al-
gebraic multiplicity and is independent of p.

(b) 0 is an eigenvalue of Lδ with geometric multiplicity (n + 1). The null space
of Lδ is spanned by

(2.1) (−1, Y0), (0, Y1), . . . , (0, Yn),

where Y0 = R2/σ, and where Yj, 1 ≤ j ≤ n, are the spherical harmonics of
degree 1 (normalized by the orthogonality condition (Yi|Yj)Σ = δij).
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(c) Suppose that the degeneracy condition

(2.2) (κ|1)Ω := κ1|Ω1| + κ2|Ω2| = l|Σ|R2/σ

holds. Then the eigenvalue 0 has algebraic multiplicity (n + 2).
(d) If the degeneracy condition (2.2) does not hold, then 0 is semi-simple; that

is, N(L2
δ) = N(Lδ).

(e) If σ(κ|1)Ω ≤ l|Σ|R2, then Lδ has no positive eigenvalues.
(f) If σ(κ|1)Ω > l|Σ|R2, then Lδ has exactly one positive simple eigenvalue.
Proof. (a) By the compact embeddings D(Lδ) ↪→ Eδ, the spectrum of Lδ consists

of eigenvalues of finite algebraic multiplicity. The assertion that all eigenvalues are
real will be proved in section 4.

Let 1 < p < ∞ be fixed, and suppose that λ is an eigenvalue of Lδ with a
corresponding eigenfunction (v, ρ). Then v ∈ W 2

p (Ω \ Σ), and v solves the elliptic
transmission problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

κλv − dΔv = 0 in Ω \ Σ,

∂νv = 0 on ∂Ω,

[v] = 0 on Σ,

−[d∂νv] = −λlρ on Σ,

with ρ ∈ W
4−sign(δ)−1/p
p (Σ), where sign(δ) = 1 if δ > 0, and sign(δ) = 0 if δ = 0. Due

to Sobolev’s imbedding theorem we have that ρ ∈ W
1−1/p1
p1 (Σ), where p1 ∈ (p,∞) is

appropriately chosen. Proposition 5.1 then yields v ∈ W 2
p1

(Ω\Σ). Next, we recall that
ρ satisfies

σAΣρ = v − (δ/l)[d∂νv] =: h on Σ.

Since v ∈ W 2
p1

(Ω \ Σ) we see that h ∈ W
2−sign(δ)−1/p1
p1 (Σ), and we obtain from the

properties of the elliptic differential operator AΣ that ρ ∈ W
4−sign(δ)−1/p1
p1 (Σ). The

arguments given above can now be iterated a finite number of times to show that

(v, ρ) ∈ W 2
q (Ω \ Σ) ×W 4−sign(δ)−1/q

q (Σ)

for any fixed q > p. Clearly, this is also true for any q < p. We have, thus, shown that
the spectrum of Lδ is independent of p. The properties listed in (b)–(d) are proved
in section 3, and assertion (e) is shown in section 4 while (f) is established in section
5.

Proposition 2.2. Let 1 < p < ∞. Suppose that (λ, v, ρ) ∈ R×W 2
p (Ω\Σ)×W 2

p (Σ)
solves the eigenvalue problem (1.9). Then the functions (v, ρ) are smooth; that is,

v|Ωi ∈ C∞(Ω̄i), ρ ∈ C∞(Σ).

Proof. This follows from a similar bootstrapping argument as in the proof of The-
orem 2.1(a), based on regularity properties of the elliptic transmission problems (3.4)
and (5.2), and regularity properties of the differential operator AΣ.

Due to Theorem 2.1 and Proposition 2.2 we may restrict our attention to the
eigenvalue problem (1.9) in the Hilbert space setting of L2(Ω)×L2(Σ). In the following,
we use the notation (·|·)Ω and || · ||Ω for the inner product and the norm in L2(Ω),
respectively, and similarly for L2(Σ).
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3. The trivial eigenvalue. Let us first look at the eigenvalue problem (1.9)
with λ = 0. Obviously, here l ∈ R can be arbitrary, and also δ ∈ R. For this purpose
we recall some properties of the operator AΣ.

Proposition 3.1. Let Σ = SR(x0) ⊂ R
n be a sphere of radius R and center x0,

and let

AΣ = − 1

n− 1

(
n− 1

R2
+ ΔΣ

)

be defined on L2(Σ) with domain W 2
2 (Σ). Then the following assertions hold:

(a) AΣ is self-adjoint. Its spectrum consists of countably many eigenvalues λk =
1

(n−1)R2

(
k(k + n− 2) − (n− 1)

)
with k ≥ 0. The eigenfunctions are given by

the spherical harmonics of degree k.
(b) The kernel of AΣ is given by N(AΣ) = span{Y1, . . . , Yn}, where Yj denotes

the spherical harmonics of degree 1 on Σ, normalized by (Yi|Yj)Σ = δij.
(c) The range of AΣ, R(AΣ) is closed, and we have L2(Σ) = N(AΣ) ⊕R(AΣ).
(d) There is precisely one negative eigenvalue, namely −1/R2, with eigenfunction

1, which is simple.
(e) AΣ is positive semi-definite on L2,0(Σ) = {ρ ∈ L2(Σ) : (ρ|1)Σ = 0} and posi-

tive definite on

L2,0(Σ) ∩R(AΣ) = {ρ ∈ L2(Σ) : (ρ|1)Σ = (ρ|Yj)Σ = 0, j = 1, . . . , n}.

Proof. We can assume, without loss of generality, that Σ = SR(0) = R S
n−1,

where S
n−1 denotes the standard unit sphere in R

n. Let Φ : Σ → S
n−1 be defined

by p 
→ (1/R)p. Then Φ is a smooth diffeomorphism of Σ into S
n−1, and one readily

verifies that

(3.1) (g|h)L2(Σ) = Rn−1(Φ∗g|Φ∗h)L2(Sn−1), ΔΣ = (1/R2) Φ∗ΔSn−1 Φ∗,

where Φ∗ and Φ∗ are the pull-back and push-forward operators, respectively. We then
have

(3.2) (λ−AΣ)ρ = 0 ⇐⇒
(
λ +

1

(n− 1)R2

(
(n− 1) + ΔSn−1

))
Φ∗ρ = 0,

which shows that λ is an eigenvalue of AΣ iff

(3.3) λ =
1

(n− 1)R2

(
μ− (n− 1)

)
with μ an eigenvalue of −ΔSn−1 . The assertions in (a)–(b) and (d)–(e) follow now from
(3.1)–(3.3) and well-known results for the Laplace–Beltrami operator on S

n−1; see,
for instance, [30, section 31]. Since AΣ has compact resolvent we conclude that R(AΣ)
is closed, and the fact that AΣ is self-adjoint then implies the remaining assertion in
(c).

Before we proceed we need the following result on the elliptic transmission
problem:

(3.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−dΔv = f in Ω \ Σ,

∂νv = 0 on ∂Ω,

[v] = 0 on Σ,

−[d∂νv] = g on Σ.
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Proposition 3.2. Let 1 < p < ∞. Then the following hold:
(a) The transmission problem (3.4) has a solution v ∈ W 2

p (Ω \ Σ) if and only if

(f, g) ∈ Lp(Ω) ×W
1−1/p
p (Σ) and the compatibility condition

(f |1)Ω + (g|1)Σ = 0

is satisfied. The solution is unique with the normalization (κ|v)Ω = 0.
(b) Let v = T0g be the unique solution of (3.4) with f = 0, (g|1)Σ = 0, and

(κ|v)Ω = 0. Then T0 is self-adjoint and positive definite on L2(Σ); that is,
there exists a positive constant c = c(di,Ωi) such that

(T0g|g)L2(Σ) ≥ c ||g||2L2(Σ), g ∈ W
1/2
2 (Σ).

Proof. (a) This proof follows from known results in elliptic theory since the
Lopatinskii–Shapiro conditions are satisfied.

(b) Let g, h ∈ W
1/2
2 (Σ) be given. Then we have

(T0g|h)Σ = (T0g|[−d∂νT0h])Σ = (d∇T0g|∇T0h)Ω

= (−[d∂νT0g]|T0h)Σ = (g|T0h)Σ,

thus showing that T0 is symmetric. For v := T0g the computation above yields

(T0g|g)Σ = (d∇v|∇v)Ω.

On the other hand, setting vi = v|Ωi
we obtain

||g||L2(Σ) = ||d1∂νv1 − d2∂νv2||L2(Σ) ≤ c
(
||v1||W 2

2 (Ω1) + ||v2||W 2
2 (Ω2)

)
≤ c

(
||v1||L2(Ω1) + ||Δv1||L2(Ω1) + ||v2||L2(Ω2) + ||Δv2||L2(Ω2)

)
= c||v||L2(Ω) ≤ c||v||W 1

2 (Ω) ≤ c||∇v||L2(Ω) ≤ c(T0g|g)1/2Σ .

Here we used the fact that

v = T0g ∈ W 1
2 (Ω) ∩W 2

2 (Ω \ Σ).

Moreover, we used that
(
|| · ||L2(Ωi) + ||Δ · ||L2(Ωi)

)
defines an equivalent norm on

W 2
2 (Ωi), and also that ||∇u||L2(Ω) defines an equivalent norm on W 1

2 (Ω) for all functions
u ∈ W 1

2 (Ω) with (κ|u)Ω = 0. This completes the proof of Proposition 3.2.
We are now ready to establish the assertions (b)–(d) of Theorem 2.1.
(b) Suppose that (v, ρ) is a solution of (1.9) with λ = 0. Then, taking the inner

product of (1.9)1 with v, the divergence theorem and (1.9)2,4 show that v is constant
on Ω \ Σ; hence, v is constant on Ω and v = σAΣρ due to (1.9)3. A special solution
of this problem is ρ0 = −R2v/σ, and the solutions of the corresponding homogeneous
equation are the spherical harmonics Yj on Σ for j = 1, . . . , n. Thus we obtain an
(n + 1)-dimensional null space spanned by(2.1), which proves Theorem 2.1(b).

This null space is tangent to the (n+1)-dimensional manifold of equilibria, where
(0, Yj) corresponds to the center x0, and (−1, Y0) corresponds to the radius R. Note
that the null spaces of L0 and Lδ, δ > 0, coincide.

(c) Suppose that (2.2) holds. Then there exists a pair (v∗, ρ∗) ∈ N(L2
δ) \N(Lδ).

Indeed, this can be seen as follows: we first solve (3.4) with (f, g) = (−κ, lR2/σ).
According to Proposition 3.2, this problem has a unique solution v0 with (κ|v0)Ω = 0
since the necessary compatibility condition is precisely (2.2).
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Set v∗ = v0 + l
∑n

j=1 αjT0Yj . Then v∗ satisfies

(3.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(d/κ)Δv∗ = −1 in Ω \ Σ,

∂νv
∗ = 0 on ∂Ω,

[v∗] = 0 on Σ,

−[(d/l)∂νv
∗] = R2/σ + Σn

j=1αjYj on Σ.

We now want to solve v∗ = σAΣρ + (δ/l)[d∂νv
∗] in terms of ρ; that is, we consider

the problem

σAΣρ = v∗ − (δ/l)[d∂νv
∗] =: h.

According to Proposition 3.1(b)–(c) this problem has a solution ρ∗ iff (h|Yi)Σ = 0
for i = 1, . . . , n. The conditions (h|Yi)Σ = 0 will then be employed to determine the
coefficients αj . A short computation yields

(h|Yi)Σ = 0 ⇔ δαi +

n∑
j=1

l(T0Yj |Yi)Σ αj = −(v0|Yi)Σ, i = 1, . . . , n.

Since T0 is self-adjoint and positive definite on L2(Σ), there exists a unique solu-
tion of this system, as we shall see in (6.7). Due to σAΣ(R2/σ +

∑n
j=1 αjYj) = −1

(see Proposition 3.1), we conclude that (v∗, ρ∗) ∈ D(L2
δ). It is then easy to see that

Lδ(v
∗, ρ∗) �= (0, 0) and L2

δ(v
∗, ρ∗) = (0, 0). These facts in combination with part (b)

show that

(3.6) N(L2
δ) = N(Lδ) ⊕ span{(v∗, ρ∗)},

in the degenerate case where (2.2) holds.
Next we show, still in the degenerate case (2.2), that N(L3

δ) = N(L2
δ). In fact, if

(v, ρ) ∈ N(L3
δ), then Lδ(v, ρ) = (vN , ρN ) + β(v∗, ρ∗) for some (vN , ρN ) ∈ N(Lδ) and

some scalar β. For solvability of this equation, the compatibility condition(
κ(vN + βv∗)|1

)
Ω

+ l
(
ρN + βρ∗|1

)
Σ

= 0

must be valid. Due to the degeneracy condition we have (κvN |1)Ω + l(ρN |1)Σ = 0,
and the compatibility condition is reduced to β

{
(κv∗)|1)Ω + l(ρ∗|1)Σ

}
= 0. Using the

property that −(d/κ)Δv∗ = −1 (see (3.5)), we obtain

−
{
(κv∗|1)Ω + l(ρ∗|1)Σ

}
= −(dΔv∗|v∗)Ω − l(ρ∗|1)Σ

= ||
√
d∇v∗||2Ω + ([d∂νv

∗]|v∗)Σ − l(ρ∗|1)Σ

= ||
√
d∇v∗||2Ω − l

⎛
⎝R2/σ +

n∑
j=1

αjYj |σAΣρ
∗

⎞
⎠

Σ

+ (δ/l)||[d∂νv∗]||2Σ − l(ρ∗|1)Σ

= ||
√
d∇v∗||2Ω + (δ/l)||[d∂νv∗]||2Σ

since AΣ is self-adjoint on L2(Σ) and σAΣ(R2/σ +
∑n

j=1 αjYj) = −1; see Proposi-

tion 3.1. This implies β = 0, i.e., (v, ρ) ∈ N(L2
δ), thus establishing Theorem 2.1(c).

(d) Let us examine when the eigenvalue λ0 = 0 of Lδ is semi-simple. Assume that
(v, ρ) ∈ D(L2

δ) is such that L2
δ(v, ρ) = 0. Then

Lδ(v, ρ) = α0(−1, Y0) +

n∑
j=1

αj(0, Yj).
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This implies that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(d/κ)Δv = α0 in Ω \ Σ,

∂νv = 0 on ∂Ω,

[v] = 0 on Σ,

−[(d/l)∂νv] = −
n∑

j=0

αjYj on Σ,

v = σAΣρ + (δ/l)[d∂νv] on Σ.

According to Proposition 3.2 we necessarily have

α0(κ1|Ω1| + κ2|Ω2|) = l

n∑
j=0

αj(Yj |1)Σ = lα0|Σ|R2/σ,

since the mean value of Yj over Σ is zero for j ≥ 1. Assuming the nondegeneracy
condition

(3.7) (κ|1)Ω := κ1|Ω1| + κ2|Ω2| �= l|Σ|R2/σ,

we conclude that α0 = 0. But then

0 = −
∫

Ω

dΔvv dx =

∫
Ω

d|∇v|2 dx +

∫
Σ

[d∂νv]v ds,

which further yields

0 = ||
√
d∇v||2Ω+lσ

n∑
j=1

αj(Yj |AΣρ)Σ + (δ/l)||[d∂νv]||2Σ = ||
√
d∇v||2Ω + (δ/l)||[d∂νv]||2Σ

since AΣ is self-adjoint on L2(Σ) and AΣYj = 0 for j ≥ 1. We conclude that v is
constant in Ω and that 0 = [d∂νv] = l

∑n
j=1 αjYj ; hence, αj = 0 for all j. This shows

that λ0 = 0 is a semi-simple eigenvalue of Lδ, that is, N(L2
δ) = N(Lδ) for δ ≥ 0,

provided the nondegeneracy condition (3.7) is valid, and this proves the assertion of
Theorem 2.1(d).

4. Nontrivial eigenvalues. Now we consider the eigenvalue problem (1.9) for
λ ∈ C, λ �= 0, in case l > 0. Suppose that λ �= 0 is an eigenvalue with nontrivial
eigenfunction (v, ρ). Taking the inner product in L2(Ω) of the first equation in (1.9)
with v and using the divergence theorem, we get

λ||
√
κv||2Ω = (dΔv|v)Ω = −||

√
d∇v||2Ω − ([d∂νv]|v)Σ

= −||
√
d∇v||2Ω − (δ/l)||[d∂νv]||2Σ − λlσ(ρ|AΣρ)Σ;

hence, we obtain the identity

(4.1) λ
(
||
√
κv||2Ω + lσ(ρ|AΣρ)Σ

)
+ ||

√
d∇v||2Ω + (δ/l)||[d∂νv]||2Σ = 0.

If Imλ �= 0, then ||
√
κv||2Ω + lσ(ρ|AΣρ)Σ = 0; hence, ||

√
d∇v||2Ω + (δ/l)||[d∂ν ]||2Σ = 0.

We conclude that v is constant and (1.9)1,4 now implies that (v, ρ) = (0, 0) since
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λ �= 0. Therefore the eigenvalues and eigenfunctions are real, thus establishing Theo-
rem 2.1(a).

Using λlρ = [d∂νv] and the fact that λ is real, we may rewrite (4.1) as

(4.2) λ
(
||
√
κv||2Ω + lσ(ρ|AΣρ)Σ + λlδ||ρ||2Σ

)
+ ||

√
d∇v ||2Ω = 0.

Integrating the eigenvalue equation (1.9) we obtain

λ(v|κ)Ω = (dΔv|1)Ω = −([d∂νv]|1)Σ = −λl(ρ|1)Σ;

hence, dividing by λ,

(4.3) (v|κ)Ω + l(ρ|1)Σ = 0.

Splitting ρ = ρ0 + ρ̄ and v = v0 + v̄, where (ρ0|1)Σ = (v0|κ)Ω = 0, from (4.2) and
(4.3) we derive an identity equivalent to (4.2), namely,

λ
(
||
√
κv0||2Ω + lσ(ρ0|AΣρ0)Σ+λlδ||ρ0||2Σ

)
+ ||

√
d∇v||2Ω

+λ
(
λδ +

l|Σ|
(κ|1)Ω

− σ

R2

)
l|Σ|ρ̄2 = 0.

(4.4)

Since AΣ is positive semi-definite on L2,0(Σ), the L2-functions with mean zero, we
see that in case λ > 0, (4.4) implies v = constant, and hence (v, ρ) = (0, 0), provided
that

(4.5) (κ|1)Ω ≤ l|Σ|R2/σ.

Consequently, (1.9) cannot have positive eigenvalues if the stability condition (4.5) is
satisfied, thus proving the assertion of Theorem 2.1(e).

5. The unstable eigenvalue. As far as we know, for l > 0 and

(5.1) ζ :=
σ(κ|1)Ω
l|Σ|R2

≤ 1

there are no positive eigenvalues; however, the algebraic eigenspace of Lδ rises in
dimension by one when ζ becomes 1. This indicates that for ζ > 1 there is exactly
one algebraically simple eigenvalue λ∗ > 0. We want to prove that this is indeed the
case. In order to do so, we consider the following transmission problem:

(5.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λκv − dΔv = f in Ω \ Σ,

∂νv = 0 on ∂Ω,

[v] = 0 on Σ,

−[d∂νv] = g on Σ.

Then the following result holds.
Proposition 5.1. Let 1 < p < ∞ and Reλ > 0. Then the following hold:
(a) Problem (5.2) has precisely one solution v ∈ W 1

p (Ω) ∩W 2
p (Ω \ Σ) iff (f, g) ∈

Lp(Ω) ×W
1−1/p
p (Σ).

(b) Let Tλ be the solution operator for (5.2) with f = 0. Given any number
θ ∈ (0, π), there exist positive numbers λ0 = λ0(θ, di, κi,Ωi) and M0 =
M0(θ, di, κi,Ωi) such that

||Tλg||Lp(Σ) ≤ M0|λ|−1/2||g||Lp(Σ)

for g ∈ W
1−1/p
p (Σ), whenever |λ| ≥ λ0 and | arg λ| ≤ θ.
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(c) For λ > 0, Tλ is positive definite on L2(Σ); that is, there exists a positive
constant β = β(di, κi,Ωi) such that

(Tλg|g)L2(Σ) ≥ β

√
λ

1 + λ
||g||2L2(Σ), g ∈ W

1/2
2 (Σ).

Proof. (a) This proof follows from known results in elliptic theory.
(b) Suppose that Ω1 = R

n
− and Ω2 = R

n
+, with R

n
± = {(x′, xn) ∈ R

n : ±xn < 0}.
Then one readily obtains that

Tλg|Rn−1×{0} = F−1 (mλFg) ,

where F denotes the Fourier transform in the tangential variables, and where

mλ(ξ) =
1

√
d1

√
κ1λ + d1|ξ|2 +

√
d2

√
κ2λ + d2|ξ|2

.

The assertion then follows from Mikhlin’s multiplier theorem. The general case can
be obtained by the usual procedure of localization.

(c) Let g, h ∈ W
1/2
2 (Σ) be given. Then we have

(Tλg|h)Σ = (Tλg|[−d∂νTλ̄h])Σ = λ(κTλg|Tλ̄h)Ω + (d∇Tλg|∇Tλ̄h)Ω

= (−[d∂νTλg]|Tλ̄h)Σ = (g|Tλ̄h)Σ,

showing that T ∗
λ = Tλ̄, in particular, that Tλ is symmetric for λ > 0. For v := Tλg,

λ > 0, the computation above yields

(5.3) (Tλg|g)Σ = λ(κv|v)Ω + (d∇v|∇v)Ω.

Setting vi = v|Ωi we conclude similarly as in the proof of Proposition 3.2 that

||g||L2(Σ) = ||d1∂νv1 − d2∂νv2||L2(Σ) ≤ c
(
||d1v1||W 2

2 (Ω1) + ||d2v2||W 2
2 (Ω2)

)
≤ c

(
||d1v1||L2(Ω1) + ||d1Δv1||L2(Ω1) + ||d2v2||L2(Ω2) + ||d2Δv2||L2(Ω2)

)
= c

(
||d1v1||L2(Ω1) + λ||κ1v1||L2(Ω1) + ||d2v2||L2(Ω2) + λ||κ2v2||L2(Ω2)

)
≤ cλ

√
λ||v||L2(Ω) ≤ cλ

(√
λ||v||L2(Ω) + ||∇v||L2(Ω)

)
≤ cλ (Tλg|g)1/2Σ ,

where cλ = c(di, κi,Ωi)(1 + λ)/
√
λ. In the estimates above we have used that v =

Tλg ∈ W 1
2 (Ω)∩W 2

2 (Ω\Σ), and that
(
||·||L2(Ωi)+||Δ·||L2(Ωi)

)
defines an equivalent norm

on W 2
2 (Ωi) and, lastly, we employed (5.3). This completes the proof of Proposition

5.1.
We assume now that λ > 0 is a fixed number. For given ρ ∈ W

1/2
2 (Σ), let v be

the solution of the transmission problem

(5.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λκv − dΔv = 0 in Ω \ Σ,

∂νv = 0 on ∂Ω,

[v] = 0 on Σ,

−[d∂νv] = −λlρ on Σ.

Then v = Tλ(−λlρ) = −λlTλρ with Tλ being the solution operator introduced above.
By inserting this representation of v into the equation v = σAΣρ+λδρ, we obtain the
problem

(5.5) λδρ + λlTλρ + σAΣρ = 0,
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which is equivalent to the eigenvalue problem.
Setting Bλ(s) := λδI + λlTλ + sσAΣ for s > 0 and employing Proposition 5.1(c), we
obtain the estimate

(Bλ(s)ρ|ρ)Σ ≥ λ(δ + γl)||ρ||2Σ + sσ(AΣρ|ρ)Σ
= λ(δ + γl)||ρ0||2Σ + sσ(AΣρ0|ρ0)Σ +

{
λ(δ + γl) − sσ/R2

}
|Σ|ρ̄2,

where γ = β
√
λ/(1+λ) and ρ = ρ0 + ρ̄ with (ρ0|1)Σ = 0. Since (AΣρ0|ρ0)Σ ≥ 0 we see

that all of the terms in the previous line are nonnegative, provided λ(δ+γl) ≥ sσ/R2,
i.e., for small s. Hence, for small s > 0, the operator Bλ(s) is positive definite, which
means that λ cannot be an eigenvalue of (1.9), where in the third line of (1.9) σ is
replaced by sσ. On the other hand, choosing ρ = 1 we have

(Bλ(s)1|1)Σ = λδ|Σ| + λl(Tλ1|1)Σ − sσ|Σ|/R2 < 0

if s becomes large. Now we set

s∗ := s∗(λ) := sup{s > 0 : Bλ(s) is positive definite}.

Then Bλ(s∗) is still semi-definite, but not definite, and hence, by compactness of the
resolvent, has a nontrivial kernel. Therefore, for a given λ > 0 there is an s∗ = s∗(λ)
such that λ is an eigenvalue of (1.9), where σAΣ is replaced by s∗σAΣ in the third
line.

Next, we show that positive eigenvalues are simple. Rewrite (5.5) as

λδρ0 + λlTλρ0 + σAΣρ0 = −
{
λδ + λlTλ1 − σ/R2

}
ρ̄.

Since Bλ is positive definite on L2,0(Σ), this equation has precisely one solution for
given ρ̄, which shows that the eigenspace N(λ − Lδ) is at most one-dimensional for
any given λ > 0.

To show that nontrivial eigenvalues are semi-simple, suppose that

(λ− Lδ)(v, ρ) = (v1, ρ1), (λ− Lδ)(v1, ρ1) = 0.

Then by Green’s formula

||
√
κv1||2Ω = (λκv − dΔv|v1)Ω

= (v|λκv1 − dΔv1)Ω + ([d∂νv]|v1)Σ − (v|[d∂νv1])Σ

= (δ/l)([d∂νv]|[d∂νv1])Σ + lσ(λρ− ρ1|AΣρ1)Σ

− (δ/l)([d∂νv]|[d∂νv1])Σ − λlσ(AΣρ|ρ1)Σ

= −lσ(ρ1|AΣρ1),

which yields

||
√
κv1||2Ω + lσ(ρ1|AΣρ1).

It follows now from (4.1) that v1 is constant on Ω \ Σ. Since λ �= 0, we then obtain
from (1.9) that (v1, ρ1) = (0, 0). Thus any nontrivial eigenvalue is semi-simple, and,
in particular, positive eigenvalues are algebraically simple.

We want to show that for ζ > 1 there is precisely one positive eigenvalue λ∗ > 0.
For this purpose we fix the parameters d, l, σ, δ as well as R, but replace κ by sκ
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in the first line of (1.9). Fixing μ = λs and scaling ρ 
→ ρ/s, we obtain the scaling
σ 
→ sσ. The argument given previously then shows that there is s∗ > 0 such that
μ is a simple eigenvalue of the scaled problem; hence, λ∗ = μ/s∗ > 0 is a simple
positive eigenvalue for (1.9) with κ replaced by s∗κ in the first line. Since λ∗ = λ∗(s∗)
is simple, the eigenvalue problem

(5.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ∗sκv − dΔv = 0 in Ω \ Σ,

∂νv = 0 on ∂Ω,

v = σAΣρ + λ∗δρ on Σ,

λ∗lρ− [d∂νv] = 0 on Σ

has a smooth (analytic) family [s 
→ (λ∗(s), v(s), ρ(s))] of solutions, which exists as
long as λ∗(s) remains a simple eigenvalue. As ζ(s) := sσ(κ|1)Ω/l|Σ|R2 approaches the
value ζ = 1 from above, we must have λ∗(s) → 0 from the right. This means that at
the value

(5.7) s = s0 :=
l|Σ|R2

σ(κ|1)Ω

the eigenvalue λ∗(s) passes through the origin, in accordance with the jump of the
algebraic multiplicity by 1 of the eigenvalue 0 for Lδ at ζ = 1 = ζ(s0). This shows
that there can be only one positive eigenvalue for (5.6), independently of the values
of the parameters, and there is precisely one iff ζ > 1.

If ζ = σ(κ|1)Ω/l|Σ|R2 > 1, then we have that s0 < 1. The argument given above
shows that the modified eigenvalue problem (5.6) has for each s > s0 exactly one sim-
ple eigenvalue. This is, in particular, true for s = 1, thus establishing Theorem 2.1(f).

Now we turn our attention to the case l < 0. As before, we conclude that the
operator Lδ has countably many eigenvalues. We note that the argument given in
section 4 also applies to the case l < 0 and δ = 0, showing that all eigenvalues of (1.9)
are real in this case.

In the following, we assume that l < 0 and δ > 0. In order to show Theorem 1.1(f),
we consider the operators Bλ := λδI + λlTλ + σAΣ for λ > 0. By Proposition 5.1 we
have

(Bλρ|ρ)Σ ≥
(
δλ− |l|M0λ

1/2 − σ/R2
)
‖ρ‖2

Σ ≥ ‖ρ‖2
Σ

provided that λ ≥ μ0, for some μ0 ≥ λ0. Hence, Bλ is positive definite for large λ > 0.
On the other hand we have

(Bλ1|1)Σ = λδ|Σ| − λ|l|(Tλ1|1)Σ − σ|Σ|/R2 ≤ λδ|Σ| − σ|Σ|/R2.

Thus for λ small we see that Bλ is not positive. Let

λ∗ := inf{λ > 0 : Bμ is positive definite for all μ ≥ λ}.

Then Bλ∗ is still semi-definite, but not definite, and hence, by compactness of the
resolvent, has a nontrivial kernel. This shows that λ∗ is an eigenvalue of (1.9), proving
Theorem 1.1(f).

Remark 5.2. Suppose l < 0 and δ > 0.
(a) While it is still true that all nontrivial eigenvalues of (1.9) are semi-simple,

we cannot conclude that positive eigenvalues are simple.
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(b) We do not know whether all eigenvalues of (1.9) are real if l < 0 and δ > 0.
We can, however, prove that every sector [| arg λ| ≤ θ] can only contain finitely many
eigenvalues for a fixed θ ∈ (0, π). This can be shown as follows. Let θ ∈ (π/2, π) be
fixed, and suppose that | arg λ| ≤ θ. Moreover, let α ∈ (0, π/2) be an arbitrary fixed
number. Then one verifies that

|λ + μ| ≥ min{sinα, sin(π − θ)}|λ|, whenever μ ∈ R, α ≤ | arg λ| ≤ θ,

and this shows that there exists a constant c > 0 such that

(5.8) |λδ + σ(AΣρ|ρ)Σ| ≥ c|λ|, α ≤ | arg λ| ≤ θ.

Using that σ(AΣρ|ρ) ≥ −σ/R2‖ρ‖2
Σ, we see that

(5.9) |λδ + σ(AΣρ|ρ)Σ| ≥ (δ/2)|λ|, ‖ρ‖Σ = 1, Reλ ≥ 2σ/δR2.

Combining (5.8)–(5.9) yields

(5.10) |λδ(ρ|ρ)Σ + σ(AΣρ|ρ)Σ| ≥ k|λ|, ‖ρ‖Σ = 1, | arg λ| ≤ θ, |λ| ≥ η,

where k = min{c, δ/2} and η = (2σ/δR2)(1/ cosα). Let λ0 and M0 be as in Propo-
sition 5.1. Suppose that λ ∈ C \ {0} with | arg λ| ≤ θ is an eigenvalue of (1.9) with
eigenfunction (v, ρ). Then we have

(5.11) λδρ + σAΣρ = λ|l|Tλρ

and we can assume, without loss of generality, that ‖ρ‖Σ = 1. If |λ| ≥ max{λ0, η},
then we conclude from (5.10)–(5.11) and Proposition 5.1 that

k|λ| ≤ M0|l||λ|1/2

and so |λ| is bounded by (M0l/k)2. Clearly, if |λ| ≤ max{λ0, η}, we have a trivial
bound. This shows that all possible eigenvalues in the sector [| arg λ| ≤ θ] are bounded.
Since eigenvalues cannot accumulate in a bounded set, we see that (1.9) can only have
finitely many eigenvalues in the sector [| arg λ| ≤ θ].

6. Analysis of the unstable eigenvalue. In this section we analyze the prop-
erties of the unstable eigenvalue λ∗ of problem (5.6) in case l > 0 in more detail. In
particular, we study the behavior of λ∗(s) and the corresponding eigenfunctions near
the critical value 1 of ζ(s), i.e., for s near s0; see (5.7).

Proof Theorem 1.3. (a) We will first analyze the behavior of (λ∗(s), v(s), ρ(s)) for
s near s0. In order to do so we use the following ansatz:

(6.1)

λ∗(s) = (s− s0)λ1(s),

v(s) = −1 + (s− s0)λ1(s)v1(s),

ρ(s) = ρ0 + (s− s0)η + (s− s0)λ1(s)
(
ρ1(s) + �β(s) · �y

)
,

(v1(s)|κ)Ω = 0, (ρ1(s)|1)Σ = (ρ1(s)|Yj) = 0, 1 ≤ j ≤ n,

with

(6.2) ρ0 := R2/σ + �α · �y , η := (κ|1)Ω/lΣ ,
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where �α, �β(s) ∈ R
n and �y = (Y1, . . . , Yn). Setting r = s−s0 and inserting this ansatz

into the eigenvalue problem (5.6), we obtain the following system of equations:

(6.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−dΔv1 = s0κ + rκ(1 − sλ1v1) in Ω \ Σ,

∂νv1 = 0 on ∂Ω,

[v1] = 0 on Σ,

−[d∂νv1] = −lρ0 − rlη − rλ1l(ρ1 + �β · �y ) on Σ,

σAΣρ1 =
ση

R2λ1
− δρ0 + v1 − rδη − rλ1δ(ρ1 + �β · �y ) on Σ.

We first observe that due to (5.7), (6.1)4, (6.2), and the fact that (Yi|1)Σ = 0, the
compatibility condition

(6.4)
(
1|s0κ + rκ(1 − sλ1v1)

)
Ω
− l

(
1|ρ0 + rη + rλ1(ρ1 + �β · �y )

)
Σ

= 0

holds. It is our intention to apply the implicit function theorem to find a smooth
(analytic) curve of solutions

[s 
→ (λ1(s), v1(s), ρ1(s), �β(s))]

of (6.3) for s near s0. The idea is to use the (n + 1) orthogonality conditions

(AΣρ1|1) = (AΣρ1|Yj) = 0, 1 ≤ j ≤ n,

to determine the (n + 1) scalar functions λ1 and βj . In order to do so, we will first

derive an expression for �α and �β. Taking the inner product of (6.3)5 with Yj yields

(6.5) 0 = −δ�α + (v1|�y )Σ − rδλ1
�β,

where (v1|�y )Σ denotes the vector in R
n with components (v1|Yj)Σ, 1 ≤ j ≤ n. Due

to Proposition 3.2 we have

(v1|Yj)Σ = (v1| − [d∂νT0Yj ])Σ =

∫
Ω

d div(v1T0Yj) dx

= (d∇v1|∇T0Yj)Ω = (−dΔv1|T0Yj)Ω + (−[d∂νv1]|T0Yj)Σ

= (s0κ + rκ(1 − sλ1v1)|T0Yj)Ω − l(ρ0 + rη + rλ1(ρ1 + �β · �y )|T0Yj)Σ.

= −rsλ1(κv1|T0Yj)Ω − l(ρ0 + rη + rλ1(ρ1 + �β · �y )|T0Yj)Σ

for j = 1, . . . , n. Setting first r = 0 yields an equation for �α, namely,

0 = −δ�α− (lR2/σ)(1|T0 �y )Σ − l(T0 �y |�y )Σ�α,

i.e.,

(6.6) �α = −
(
δI + l(T0 �y |�y )Σ

)−1
(lR2/σ)(1|T0 �y )Σ,

where (T0 �y |�y )Σ denotes the symmetric matrix with entries [(T0Yi|Yj)Σ]1≤i,j≤n. Here
we remind the reader that

(6.7) 〈(T0 �y |�y )Σξ|ξ〉 =

n∑
i,j=1

ξiξj(T0Yi|Yj)Σ = (T0(ξ · �y )|(ξ · �y ))Σ ≥ c||ξ||2
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for ξ ∈ R
n, where 〈·|·〉 denotes the Euclidean inner product on R

n. This shows that
the matrix (T0 �y |�y )Σ is positive definite, and hence δI + l(T0 �y |�y )Σ is invertible for

any δ ≥ 0. Next, we obtain for �β that

(6.8) �β = −
(
δI + l(T0 �y |�y )Σ

)−1{
s
(
κv1|T0 �y

)
Ω

+ l
(
η/λ1 + ρ1|T0 �y

)
Σ

}
.

Thus we have a function �β = �β(λ1, v1, ρ1, s). Finally, we obtain an equation for λ1

by taking the inner product of (6.3)5 with 1:

(6.9) 0 = ση|Σ|/R2λ1 − δR2|Σ|/σ + (v1|1)Σ − rδ|Σ|η.

Employing the relation (κ|v1)Ω = 0 and (6.3)1,4 as well as (6.5) yields

−rsλ1(κv1|v1)Ω = (s0κ + rκ(1 − sλ1v1)|v1)Ω

= (−dΔv1|v1)Ω = ||
√
d∇v1||2Ω + ([d∂νv1]|v1)Σ

= ||
√
d∇v1||2Ω + (lρ0 + rlη + rλ1l(ρ1 + �β · �y )|v1)Σ

= ||
√
d∇v1||2Ω +

{
lR2/σ + rlη

}
(v1|1)Σ + lδ

∣∣�α + rλ1
�β
∣∣2 + rλ1l(ρ1|v1)Σ.

This leads to

0 = ||
√
d∇v1||2Ω −

{
lR2/σ + rlη

}{
(σ|Σ|η/R2λ1) − δR2|Σ|/σ − rδ|Σ|η}

+ lδ
∣∣�α + rλ1

�β
∣∣2 + rλ1

{
l(ρ1|v1)Σ + s(κv1|v1)Ω

}
,

(6.10)

where we used (6.9).
Suppose now that v1 solves the first four equations of (6.3). Then one easily

verifies that (6.5) is equivalent to (6.6) and (6.8). Moreover, assuming once again that

v1 satisfies the first four equations of (6.3), and that �α and �β satisfy (6.6) and (6.8),
one verifies that

(6.11) (6.9) ⇐⇒ (6.10).

For r = 0, that is, for s = s0, we obtain from (6.10)

(6.12) λ1(s0) = lΣη
/{

||
√
d∇v1(s0)||2Ω + lδ

(
|�α|2 + R4|Σ|/σ2

)}
,

where v1(s0) is the unique solution of problem (3.4) with (f, g) = (s0κ,−lρ0) and
(κ|v1(s0))Ω = 0; see Proposition 3.2. This shows that λ1(s0) is uniquely defined and
strictly positive. Moreover, we also know from (6.11) that

0 = (ση|Σ|/R2λ1(s0)) − δR2|Σ|/σ + (v1(s0)|1)Σ − rδ|Σ|η.

We obtain ρ1(s0) by solving

σAΣρ1 = ση/R2λ1(s0) − δρ0 + v1(s0)

for ρ1, which is possible since we chose λ1(s0) and �α in such a way that the necessary
orthogonality conditions of Proposition 3.1(d) hold. Equation (6.8) shows that the
mapping

I ×
{
v ∈ W 2

2 (Ω \ Σ) : [v] = 0 on Σ
}
×W 2

2 (Σ) × R → R
n,

[(λ1, v1, ρ1, s) 
→ �β(λ1, v1, ρ1, s)]
(6.13)
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is analytic where I ⊂ R is an open interval that contains λ1(s0) but does not contain 0.
We are now in a position to apply the implicit function theorem at the point

(v1(s0), ρ1(s0), s0) to solve the first four equations in (6.3) and (6.9) for (λ1, v1) in
terms of (ρ1, s). We choose the functional analytic setting

X1 :=
{
v ∈ W 2

2 (Ω \ Σ) : ∂νv = 0 on ∂Ω, [v] = 0 on Σ, (κ|v)Ω = 0
}
,

X2 :=
{
ρ ∈ W 2

2 (Σ) : (ρ|1)Σ = (ρ|Yj)Σ = 0, 1 ≤ j ≤ n
}
,

X := R ×X1 ×X2 × R,

Y := R ×
{
(f, g) ∈ L2(Ω) ×W

1/2
2 (Σ) : (f |1)Ω + (g|1)Σ = 0

}
and we define F : V ⊂ X → Y by means of

F (λ1, v1, ρ1, s) :=

⎛
⎜⎝

ση|Σ|/R2λ1 − δR2|Σ|/σ + (v1|1)Σ − rδ|Σ|η
− dΔv1 − s0κ− rκ(1 − sλ1v1)

− [d∂νv1] + l(ρ0 + rη + rλ1(ρ1 + �β · �y ))

⎞
⎟⎠ ,

where V := I ×X1 ×X2 × R.
Equation (6.4) implies that F maps V into Y , and (6.13) and the definition of F

show that

[(λ1, v1, ρ1, s) 
→ F (λ1, v1, ρ1, s)] ∈ Cω(V, Y ).

Clearly, the first four equations of (6.3) together with (6.9) are equivalent to
F (λ1, v1, ρ1, s) = (0, 0, 0). Since we already know that

F (λ1(s0), v1(s0), ρ1(s0), s0) = (0, 0, 0),

we are left with verifying that the derivative of F at the point (v1(s0), ρ1(s0), s0) w.r.t.
(ρ1, v1) is an isomorphism, i.e.,

D1F (λ1(s0), v1(s0), ρ1(s0), s0) ∈ Isom(R ×X1, Y ).

It follows from Proposition 3.2(a) that the problem

D1F (λ1(s0), v1(s0), ρ1(s0), s0)(λ,w) = (μ, f, g)

has for each (μ, f, g) ∈ Y a unique solution (λ,w) ∈ R ×X1, namely,

w = R0(f, g), λ =
R2λ2

1(s0)

ση|Σ|
(
(R0(f, g)|1)Σ − μ

)
,

where w = R0(f, g) is the unique solution of (3.4) with (κ|w)Ω = 0.
The implicit function theorem then yields a neighborhood U of (ρ1(s0), s0) in

X2 × R such that

[(ρ1, s) 
→ (λ1(ρ1, s), v1(ρ1, s))] ∈ Cω(U,R ×X1)

F (λ1(ρ1, s)v1(ρ1, s), ρ1, s) = (0, 0, 0), (ρ1, s) ∈ U.
(6.14)

Combining all of the above results, we conclude that

(6.15) [(ρ1, s) 
→ (λ1(ρ1, s), v1(ρ1, s), �β(ρ1, s))] ∈ Cω(U,R ×X1 × R
n)
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and that the functions (λ1(ρ1, s), v1(ρ1, s), �α, �β(ρ1, s)) satisfy the first four equations
of (6.3) as well as (6.5) and (6.9). We now insert these functions into the equation for
ρ1 which gives an equation of the form

G(ρ1, s) := σAΣρ1 − ση/R2λ1(s0) + δρ0 − v1(s0) − (s− s0)R(ρ1, s) = 0,

where [(ρ1, s) 
→ R(ρ1, s)] ∈ Cω(U,L2(Σ)). By (6.5) and (6.9) we know that

G : X2 × R → Z :=
{
g ∈ L2(Σ) : (g|1)Σ = (g|Yj) = 0, 1 ≤ j ≤ n

}
.

Moreover, we also know that G(ρ1(s0), s0) = 0. The derivative of G with respect to
ρ1 at (ρ1(s0), s0) is σAΣ, and Proposition 3.1(d) and the implicit function theorem
then yield an analytic curve

[s 
→ ρ1(s)] ∈ Cω((s0 − ε0, s0 + ε0), X2)

such that G(ρ1(s), s) = 0.
Combining all of the results, we obtain an analytic curve of solutions

[s 
→ (λ∗(s), v(s), ρ(s))]

of (5.6) for s ∈ (s0 − ε0, s0 + ε0). If s > s0, then the statement in (a) follows from the
considerations in section 5.

(b) The proof of part (a) shows that the eigenvalue curve [s 
→ λ∗(s)] is analytic
near the critical value s = s0 and crosses the imaginary axis at s = s0 with positive
speed λ1(s0); see (6.12).

(c) We show that λ∗(s) is strictly increasing. To see this, we differentiate (5.6)
w.r.t. s and form the inner product of the resulting equation in Ω with v = v(s). This
yields with Green’s formula

−(sλ∗(s))
′||
√
κv||2Ω = sλ∗(κv

′|v)Ω − (dΔv′|v)Ω
= (v′|sλ∗κv − dΔv)Ω + ([d∂νv

′]|v)Σ − (v′|[d∂νv])Σ
= (δ/l)([d∂νv

′]|[d∂νv])Σ + (λ∗lρ
′ + λ′

∗lρ|σAΣρ)Σ

− (δ/l)([d∂νv]|[d∂νv′])Σ − (λ∗lρ|σAΣρ
′)Σ

= λ′
∗lσ(AΣρ|ρ)Σ;

hence

λ∗||
√
κv||2Ω + λ′

∗
{
||
√
sκ v||2Ω + lσ(AΣρ|ρ)Σ

}
= 0.

Employing (4.1) once more (with κ replaced by sκ), we obtain

λ′
∗(s) = λ2

∗(s)||
√
κv||2Ω

/{
||
√
d∇v||2Ω + (δ/l)||[d∂νv]||2Σ

}
,

which yields λ′
∗(s) > 0 for s �= s0. If s = s0, then we have already established in (b)

that λ′
∗(s0) > 0, and this shows the assertion of Theorem 1.3(c).

(d) If the stability condition (5.1) is violated, then we can conclude from the
identity (4.4), where κ is now replaced with sκ and λ is replaced with λ∗, that

(
λ∗(s)lδ|Σ| + l2|Σ|2

s(κ|1)Ω
− lσ|Σ|

R2

)
≤ 0,
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which shows that λ∗(s) ≤ σ
δR2

(
1 − 1/ζ(s)

)
provided that δ > 0, i.e., if kinetic under-

cooling is present.
(e) To show that λ∗(s) → ∞ as s → ∞ in case δ = 0, we employ the estimate in

Proposition 5.1(b). We first observe that due to the fact that λ∗(s) is increasing in s,
there exists a number s1 > s0 such that sλ∗(s) ≥ λ0 for s ≥ s1, where λ0 is the number
occurring in Proposition 5.1(b). It then follows from the relation λ∗Tsλ∗ρ+σAΣρ = 0
that

σ2||AΣρ||2Σ = σ2||AΣρ0||2Σ + (σ2|Σ|/R2)ρ̄2 = λ2
∗||Tsλ∗ρ||2Σ

≤ M1||ρ||2Σ λ∗(s)/s, s ≥ s1,
(6.16)

where we write ρ = ρ0 + ρ̄ with (ρ0|1)Σ = 0. Multiplying the eigenvalue problem (5.6)
with (sλ∗v − (d/κ)Δv) and using the divergence theorem and (6.16), we get

(sλ∗)
2 ||

√
κv||2Ω + 2sλ∗ ||

√
d∇v||2Ω + ||(d/

√
κ)Δv||2Ω + 2sλ2

∗lσ(ρ0|AΣρ0)Σ

=
(
2sλ2

∗lσ|Σ|/R2
)
ρ̄2 ≤ M2||ρ||2Σ λ3

∗, s ≥ s1.

The relation λ∗lρ = [d∂νv] and the inequality above yield

λ2
∗||ρ||2Σ = (1/l)2||[d∂νv]||2Σ ≤ C||v||2

W
3/2+ε
2 (Ω\Σ)

≤ C||v||(1/2−ε)
Ω ||v||3/2+ε

W 2
2 (Ω\Σ)

≤ C
{
||v||2Ω + ||v||(1/2−ε)

Ω ||Δv||3/2+ε
Ω

}
≤ C||ρ||2Σ λ3

∗

{
1

(sλ∗)2
+

1

(sλ∗)1/2−ε

}

≤ C||ρ||2Σ λ3
∗/(sλ∗)

1/2−ε = C||ρ||2Σ λ
5/2+ε
∗ /s1/2−ε

for s ≥ s1, where C is a generic constant that may change from line to line. Dividing
by λ2

∗ and by ||ρ||2Σ implies

λ∗(s) ≥ cs(1−2ε)/(1+2ε), s ≥ s1.

Thus we can conclude that lim infs→∞ λ∗(s)/s
θ = ∞ for each θ < 1.
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335.

[19] P. Hartman, Crystal Growth: An Introduction, North-Holland, Amsterdam, 1973.
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NONLINEAR ACOUSTICS IN HETEROGENEOUS MEDIA∗
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Abstract. The Khokhlov–Zabolotskaya–Kuznetsov model is a PDE describing the wave profile
of an acoustic beam in a nonlinear medium. The paper treats the existence and uniqueness questions
for this equation in the case of nonconstant coefficients. For the case of rapidly oscillating coefficients
the asymptotic behavior of the solution is studied.
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1. Introduction. The so-called Khokhlov–Zabolotskaya–Kuznetsov (KZK)
equation [8, 13] belongs to the set of nonlinear acoustics models, such as the well-
known Riemann wave equation (or the nonlinear transfer equation), the Burgers equa-
tion, the Korteweg–de Vries equation, the Khokhlov–Zabolotskaya equation (see [2, 8,
10, 11, 14]), the Zakharov–Kuznetsov equation [5, 6], and the Rudenko–Sukhorukov
equation [7, 9, 12]. These models are derived from the linear or nonlinear wave equa-
tion for the acoustic pressure, usually under the hypothesis of small variations of this
pressure. More precisely the KZK equation has the form

αuzτ = (f(uτ ))τ + βuτττ + γuτ + Δxu,(1.1)

where uτ = uτ (z, x, τ) is the acoustic pressure, (z, x) ∈ R × R
d, d = 1, 2, are space

variables, and τ is the retarded time.
The nonlinear function f in the KZK equation is quadratic, i.e., f(s) = θs2,

although for the description of space-limited beams subject to the diffraction and
self-action effects it can be taken as cubic: f(s) = θs3 (see [13]).

In the real physical setting, f may have a more complicated shape. On the other
hand, all of these models are derived under the assumption of small oscillations of
the pressure, and so one can always consider f as quadratic for |s| ≤ s∗ and anything
different for |s| > s∗ with some finite s∗. If |uτ | is smaller than s∗, then the two
models (with f(s) = θs2 ∀s and f(s) = θs2 for |s| ≤ s∗) coincide. The advantage
of this modified shape of f is that (as it will be proved below) we can get the global
existence theorem as soon as f has a bounded derivative.

These arguments motivate us to consider the “KZK-type equation,” that is, (1.1)
with a nonlinearity f admitting a bounded derivative. Let us emphasize that this
shape gives a more convenient physical description than the classical quadratic shape.

Another particularity of the model we consider in the present paper is that the
coefficients are rapidly oscillating functions of z. This corresponds to the heteroge-
neous (stratified in the direction of the axis z) acoustic media. In this case (1.1) takes
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net, 23 rue P. Michelon, 42023 Saint-Etienne, France (kostin@free.fr, grigory.panasenko@univ-st-
etienne.fr).

699



700 I. KOSTIN AND G. PANASENKO

the form

uzt = r(z, z/ε)(φ(uτ ))τ + b(z, z/ε)uτττ + g(z, z/ε)uτ + Δxu,

where ε is a small parameter representing the ratio between the microscale and the
macroscale, while the coefficients r, b, g are oscillating with respect to the second vari-
able. In particular, they may be 1-periodic functions of this variable. This feature
complicates the problem, although it allows us to apply the homogenization method
(see [1]) to obtain the homogenized model. Its solution is close to the one of the initial
problem.

It seems that so far there was not any publication on the existence and uniqueness
of the solution for the KZK (or KZK-type) equation, although the authors discovered
that independently and simultaneously these questions (as well as the derivation of
the KZK equation form the Navier–Stokes model) in the case of constant coefficients
were studied by Bardos and Rozanova [3, 4]. They consider the KZK equation in the
whole space (x ∈ R

d) in the case of constant coefficients. In the present study we
shall consider the varying (and even rapidly oscillating) coefficients of the KZK-type
equation set for x ∈ ω, where ω ⊂ R

d is a bounded domain. The boundedness of f ′

will ensure the global existence, while in [3, 4] it is proved for small initial data only.
In the case of stratified media we homogenize the KZK-type equation and prove the
closeness of the solutions of the homogenized and initial models.

The main results of the present paper were announced by the authors in [15].

2. Problem setting. Let ω be a bounded open domain in R
d with a smooth

boundary ∂ω. For a real function u = u(z, x, τ) of the variables z ∈ [0, Z], τ ∈ R, and
x ∈ ω, consider the following PDE:

αuzτ = (f(uτ ))τ + βuτττ + γuτ + Δu,(2.1)

where the Laplace operator Δ (as well as ∇ below) derives with respect to the variable
x ∈ ω. The positive coefficients α, β, and γ are functions of z and x. The nonlinearity
f may depend on z and x as well, but neither depends on τ .

In the mathematical setting, the variable z is considered as the evolutionary
variable, while x and τ shall be called space variables. Let us impose the following
boundary conditions on u:

u is 2π-periodic with respect to τ ,(2.2)

ν · ∇u = 0 on ∂ω,(2.3)

where ν denotes the unit normal vector of ω. It is clear that these conditions are not
sufficient to ensure the uniqueness. Indeed, if the coefficients are constant, then any
function u depending only on z solves (2.1)–(2.3). This liberty is eliminated by the
additional orthogonality condition∫ 2π

0

u(z, x, τ) dτ = 0 ∀x,∀z.(2.4)

Finally, the evolutionary problem (2.1)–(2.4) requires an initial condition

u(0, x, τ) = u0(x, τ).(2.5)

To avoid heavy notation, in the estimates below we shall denote by M any large
positive constant depending only on ω, f , α, β, γ, and Z. By “large” we mean that
the estimate stays true with M replaced by any larger value.
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Here is the list of assumptions under which the existence and uniqueness result
for problem (2.1)–(2.5) will be established.

(ω) ω ⊂ R
d is an open bounded set. Its boundary ∂ω is twice continuously

differentiable.
(f1) f(s) = f(s, z, x) is continuously differentiable with respect to s, and its partial

derivative f ′ ≡ fs(s, z, x) is uniformly bounded on R × R+ × ω.
(f2) f(0, z, x) = 0 for all z ∈ R+ and x ∈ ω. As is easy to see, this is not a con-

straint (otherwise, one can always replace f(s, z, x) by f(s, z, x) − f(0, z, x),
leaving the equation intact). Together with the previous assumption this one
implies that |f(s, z, x)| ≤ M |s|. Moreover, we assume that f is continuously
differentiable with respect to z and its derivative fz satisfies |fz(s, z, x)| ≤
M |s|.

(f3) Denote by F the primitive of f with respect to the first argument such that
F (0, z, x) = 0. Clearly, |F (s, z, x)| ≤ M |s|2. We shall assume that F is
differentiable with respect to z and |Fz(v, z, x)| ≤ M |v|2.

(αβγ) α = α(z, x), β = β(z, x), γ = γ(z, x) are bounded functions defined on R+×ω.
The functions α and β are positive and uniformly bounded away from zero.
The derivatives αz, αx, βz, and βx are assumed to be bounded functions.

These conditions are assumed to hold throughout sections 2–5.
The above list has to be completed by an assumption concerning the regularity

of u0. It will be given along with the definition of a solution.

3. Notation and preliminaries. Let us introduce some functional spaces.
First consider the spaces of functions of the variables x and τ . Set Ω = ω × (0, 2π).
The scalar product and the norm in L2(Ω) are denoted by 〈· , ·〉 and ‖ · ‖, respectively.

Let DΩ be the set of infinitely smooth real functions v = v(x, τ) defined on Ω̄ and
satisfying ∫ 2π

0

v(x, τ) dτ = 0 ∀x ∈ ω̄ (orthogonality),(3.1)

∂k

∂τk
v(x, 0) =

∂k

∂τk
v(x, 2π) ∀x ∈ ω̄, ∀k = 0, 1, . . . (periodicity),(3.2)

ν(x) · ∇v(x, τ) = 0 ∀x ∈ ∂ω, ∀τ ∈ [0, 2π] (Neumann condition).(3.3)

Denote by X0 the closure of DΩ in the L2(Ω)-norm. Given a function v ∈ X0, we
shall denote by ṽ its (unique in X0) primitive with respect to τ , that is,

ṽτ = v and

∫ 2π

0

ṽ dτ = 0.

The Poincaré inequality yields

‖ṽ‖ ≤ ‖v‖ ≤ ‖vτ‖ ≤ ‖vττ‖

for all v ∈ DΩ. Note also that the mappings v �→ vτ and v �→ ṽ are both antisymmet-
ric, that is,

〈v, vτ 〉 = 0 and 〈v, ṽ〉 = 0

for all v in X0 for which these expressions make sense.
The closures of DΩ with respect to the norms

‖v‖2
1 = ‖vτ‖2 + ‖∇v‖2,

‖v‖2
2 = ‖vττ‖2 + ‖Δṽ‖2



702 I. KOSTIN AND G. PANASENKO

are denoted by X1 and X2, respectively. Recall that, as well as the Laplace opera-
tor, the gradient is assumed to derive only with respect to x ∈ ω. The continuous
embeddings X2 ⊂ X1 ⊂ X0 take place, the first one following from the estimate

2‖∇v‖2 = 2〈vτ ,Δṽ〉 ≤ ‖vτ‖2 + ‖Δṽ‖2 ≤ ‖v‖2
2,

while the second is the classical Poincaré inequality. Moreover, by the Rellich theorem,
the embedding X1 ⊂ X0 is compact, and therefore the embedding X2 ⊂ X0 is also
compact.

Now let us consider spaces of functions of three variables. For a given positive Z,
set Q = (0, Z) × ω × (0, 2π). We shall use the triple bars to denote the L2(Q)-norm:

|||u|||2 =

∫ Z

0

‖u(z, · , · )‖2 dz.

Let DQ be the set of infinitely smooth real functions u = u(z, x, τ) defined on Q̄ such
that u(z, · , · ) ∈ DΩ for all z ∈ [0, Z]. The closure of DQ in L2(Q) is denoted U0.

We shall seek for weak solutions of problem (2.1)–(2.5) in the space U1, which is
defined as the closure of DQ in the norm

|||u|||21 = |||uττ |||2 + |||∇uτ |||2,

while U2 stands for the space of strong solutions and is defined as the closure of DQ

with respect to the norm

|||u|||22 = |||uzτ |||2 + |||uτττ |||2 + |||Δu|||2.

The continuous embedding U2 ⊂ U1 is proved similarly to the case of X2 ⊂ X1 and
implies the inequality

|||uzτ |||2 + |||uττ |||2 + |||∇uτ |||2 ≤ 2|||u|||22,(3.4)

which we shall need in what follows.

4. Strong solutions: Definition and existence. If u ∈ U2, then (2.1) writes
down for u as an equality of functions in U0. Note also that the functions of U2 belong
to C([0, Z], X0), so that the initial condition u(0, · , · ) = u0 can be understood as an
identity in X0. These two observations justify the following definition.

Definition 4.1. For given u0 ∈ X2 and Z > 0, a function u ∈ U2 is called a
strong solution to problem (2.1)–(2.5) on [0, Z] if (2.1) holds almost everywhere in Q
and u(0, · , · ) = u0 almost everywhere in Ω.

From now on we shall consider the real functions of (z, x, τ) ∈ Q as X0-valued
functions of the variable z and write u(z) instead of u(z, x, τ).

Proposition 4.2. For any u0 ∈ X2 and any Z > 0, problem (2.1)–(2.5) admits
a strong solution u satisfying

sup
z

[
‖uττ‖2 + ‖uz‖2

]
+ |||uτττ |||2 + |||uzτ |||2 + |||Δu|||2 ≤ M‖u0ττ‖2 + M‖Δũ0‖2.

Proof. Denote by ψk the eigenfunctions of the following spectral problem:

−ψττ − Δψ = λψ, ψ ∈ X2.
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The functions ψk form an orthogonal basis in X0 as well as in X1 and X2. Let Pm

stand for the orthogonal projection onto the subspace of X0 spanned by ψ1, . . . , ψm.
The above spectral problem can be solved by the separation of variables, so that Pm

commutes not only with −∂2/∂τ2−Δ but also with −∂2/∂τ2 and −Δ. The Galerkin
approximations for problem (2.1)–(2.5) are defined as continuously differentiable func-
tions um : [0, Z] → PmX0 satisfying

Pmαum
zτ = Pm(f(um

τ ))τ + Pmβum
τττ + Pmγum

τ + Δum,(4.1)

um(0) = Pmu0,(4.2)

which is equivalent to a Cauchy problem for a system of m ODEs.
First let us prove that the sequence um is bounded in U2. Multiply (4.1) by um

τττ ,
and observe that 〈Δum, um

τττ 〉 = 〈∇um
τ ,∇um

ττ 〉 = 0 to obtain

−〈αum
zττ , u

m
ττ 〉 = 〈f ′(um

τ )um
ττ , u

m
τττ 〉 + 〈βum

τττ , u
m
τττ 〉 − 〈γum

ττ , u
m
ττ 〉.

After some obvious transformations using assumptions (f1), (f2), and (αβγ) as well
as the Cauchy–Young inequality, the latter relation becomes

d

dz
〈αum

ττ , u
m
ττ 〉 + M−1‖um

τττ‖2 ≤ M‖um
ττ‖2,

and therefore the Gronwall lemma along with the equivalence of the norms 〈αum
ττ , u

m
ττ 〉

and ‖um
ττ‖2 implies that

sup
z

‖um
ττ‖2 + |||um

τττ |||
2 ≤ M‖um

ττ (0)‖2 ≤ M‖u0ττ‖2.(4.3)

In particular, estimate (4.3) guarantees the existence of the functions um satisfying
(4.1)–(4.2).

In order to obtain a bound on |||um
zτ |||, take the primitive of (4.1) with respect to

τ , and then derive the result in z. This yields the relation

Pmαzu
m
z + Pmαum

zz

= Pm(f(um
τ ))z + Pmβzu

m
ττ + Pmβum

zττ + Pmγzu
m + Pmγum

z + Δũm
z + c,

(4.4)

where the integration constant c may depend on z and x but not on τ . Let us see
now what happens when this identity is multiplied by um

z . The last two terms on the
right will disappear. On the left, keep the second term and half of the first one:

1

2
〈αzu

m
z , um

z 〉 + 〈αum
zz, u

m
z 〉 =

1

2

d

dz
〈αum

z , um
z 〉.

The other half of 〈αzu
m
z , um

z 〉 goes to the right and is estimated by ‖um
z ‖2. The third

term on the right goes to the left and, after the integration by parts, admits the
following lower bound:

−〈βum
zττ , u

m
z 〉 = 〈βum

zτ , u
m
zτ 〉 ≥ M−1‖um

zτ‖2.

As for the first term on the right of (4.4), use the Cauchy–Young inequality and
assumption (f2) to obtain the estimate

〈(f(um
τ ))z, u

m
z 〉 = 〈f ′(um

τ )um
zτ , u

m
z 〉 + 〈fz(um

τ ), um
z 〉

≤ δ‖um
zτ‖2 +

M

δ
‖um

z ‖2 + ‖um
z ‖2 + M‖um

τ ‖2,
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which is valid for any positive δ. Quite similarly, for the second term on the right, we
have

〈βzu
m
ττ , u

m
z 〉 = −〈βzu

m
τ , um

zτ 〉 ≤ δ‖um
zτ‖2 +

M

δ
‖um

τ ‖2.

The treatment of the remaining terms of (4.4) is evident. By putting the pieces
together and choosing δ sufficiently small, we finally arrive at

d

dz
〈αum

z , um
z 〉 + M−1‖um

zτ‖2 ≤ M‖um
z ‖2 + M‖um

τ ‖2.

As in the case of estimate (4.3), apply the Gronwall lemma to obtain

sup
z

‖um
z ‖2 + |||um

zτ |||
2 ≤ M‖um

z (0)‖2 + M |||um
τ |||2.(4.5)

On the other hand, the multiplication of (4.1) by −ũm
z , after the appropriate integra-

tion by parts, yields

〈αum
z , um

z 〉 = 〈f(um
τ ), um

z 〉 + 〈βum
ττ , u

m
z 〉 + 〈γum, um

z 〉 + 〈Δũm, um
z 〉.

By applying the Cauchy–Young inequality in each of the terms on the right, we have

‖um
z ‖2 ≤ M‖um

ττ‖2 + M‖Δũm‖2,

which allows us to eliminate ‖um
z (0)‖2 from the right-hand side of (4.5). By taking

(4.3) into account, we can rewrite estimate (4.5) as

sup
z

‖um
z ‖2 + |||um

zτ |||
2 ≤ M‖u0ττ‖2 + M‖Δũ0‖2.(4.6)

The missing bound on |||Δum||| can be obtained directly from (4.1) with the help
of estimates (4.3) and (4.6):

|||Δum|||2 ≤ M |||um
zτ |||

2
+ M |||um

τττ |||
2

+ M |||um
ττ |||

2
+ M |||um

τ |||2

≤ M‖u0ττ‖2 + M‖Δũ0‖2.
(4.7)

Note that, according to the convention of section 3, we use the symbol M to denote
any constant, although it is clear that the values of M in the first and in the second
line of (4.7) cannot be the same.

By putting together the estimates (4.3), (4.6), and (4.7) we obtain

supz

[
‖um

ττ‖2 + ‖um
z ‖2

]
+ |||um

τττ |||
2

+ |||um
zτ |||

2
+ |||Δum|||2

≤ M‖u0ττ‖2 + M‖Δũ0‖2.
(4.8)

Thus the sequence um is bounded in U2 and therefore contains a subsequence umj

such that

umj
τττ

U0−⇁uτττ , umj
τ

U0−⇁uτ , umj
zτ

U0−⇁uzτ , Δumj
U0−⇁Δu,

where u ∈ U2. In order to show the convergence in the nonlinear term, notice that
by (3.4) the sequence um

τ is bounded in H1(Q), and hence u
mj
τ → uτ strongly in U0.
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By the Lipschitzness of f we also have that f(u
mj
τ ) → f(uτ ) in L2(Q). Moreover, the

sequence (f(u
mj
τ ))τ = f ′(u

mj
τ )u

mj
ττ is bounded in U0, and therefore

(f(umj
τ ))τ

U0−⇁ (f(uτ ))τ .

Thus we can pass to the U0-weak limit in (4.1) and obtain

αuzτ = (f(uτ ))τ + βuτττ + γuτ + Δu

as an identity in U0. The compact embedding U2 ⊂ C([0, Z], X0) implies the conver-
gence umj (z) → u(z) in X0 for each z. In particular, u(0) = u0. Finally, pass to the
limit as m → ∞ in estimate (4.8) to complete the proof.

5. Strong solutions: Further properties. The next two statements establish
further properties of strong solutions and prepare the proof of the existence result for
the weak solutions.

Proposition 5.1. Each strong solution u of problem (2.1)–(2.5) satisfies

sup
z

[
‖uτ‖2 + ‖∇u‖2

]
+ |||uττ |||2 + |||∇uτ |||2 ≤ M

[
‖u0τ‖2 + ‖∇u0‖2

]
.(5.1)

Proof. Multiply the equation

αuzτ = (f(uτ ))τ + βuτττ + γuτ + Δu

by uτ , and integrate the result over Ω. The first and the last terms on the right will
disappear. After obvious transformations in the remaining terms we obtain for almost
all z ∈ (0, Z) the inequality

d

dz
〈αuτ , uτ 〉 + M−1‖uττ‖2 ≤ M‖uτ‖2.(5.2)

The multiplication of the equation by −uz suppresses the left-hand side and thus
yields

0 = 〈f(uτ ), uzτ 〉 + 〈βuττ , uzτ 〉 − 〈γuτ , uz〉 +
1

2

d

dz
‖∇u‖2.(5.3)

The first term on the right of (5.3) can be transformed as follows:

〈f(uτ ), uzτ 〉 =
d

dz
〈F (uτ ), 1〉 − 〈Fz(uτ ), 1〉 ≥

d

dz
〈F (uτ ), 1〉 −M‖uτ‖2(5.4)

(here we have used assumption (f3)). In order to eliminate the term 〈βuττ , uzτ 〉 from
relation (5.3), multiply the equation by α−1βuττ . This time the second and the third
terms on the right vanish, and thus we have

〈βuττ , uzτ 〉 = 〈α−1βf ′(uτ )uττ , uττ 〉 + 〈∇(α−1βuτ ),∇uτ 〉
≥ −M‖uττ‖2 + M−1‖∇uτ‖2 −M‖∇uτ‖‖uτ‖(5.5)

≥ −M‖uττ‖2 + M−1‖∇uτ‖2.

Recall that, according to the convention about the use of M , its value may change
from line to line.
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Similarly, to get rid of 〈γuτ , uz〉 in (5.3), the proper multiplier is α−1γu. It follows
that

−〈γuτ , uz〉 = −〈α−1γf(uτ ), uτ 〉 − 〈∇(α−1γu),∇u〉
≥ −M‖uτ‖2 −M‖∇u‖2.

(5.6)

By summing up relations (5.3)–(5.6), we arrive at

d

dz

[
‖∇u‖2 + 2〈F (uτ ), 1〉

]
+ M−1‖∇uτ‖2 ≤ M‖uττ‖2 + M‖∇u‖2.(5.7)

Choose a positive μ sufficiently large so that (5.2) and (5.7) imply that

d

dz

[
μ〈αuτ , uτ 〉 + ‖∇u‖2 + 2〈F (uτ ), 1〉

]
+ M−1‖uττ‖2 + M−1‖∇uτ‖2

≤ M‖uτ‖2 + M‖∇u‖2.
(5.8)

Make μ even larger, if necessary, to ensure that

μ〈αuτ , uτ 〉 + 2〈F (uτ ), 1〉 ≥ ‖uτ‖2.

Now the Gronwall lemma applied to (5.8) yields the desired estimate (5.1).
Proposition 5.2. Let u1 and u2 be two strong solutions of problem (2.1)–(2.5)

corresponding to the initial conditions u1(0) = u1
0 and u2(0) = u2

0, respectively. Then

sup
z

‖u1
τ − u2

τ‖2 + |||u1
ττ − u2

ττ |||
2 ≤ M‖u1

0τ − u2
0τ‖2.(5.9)

In particular, this estimate proves the uniqueness of the strong solution.
Proof. The difference w = u1 − u2 satisfies the equation

αwzτ = (f̄wτ )τ + βwτττ + γwτ + Δw,(5.10)

where f̄ = (f(u1
τ ) − f(u2

τ ))/(u
1
τ − u2

τ ) is a bounded function. Multiply it by wτ , and
integrate the result over Ω. The last term on the right of (5.10) disappears, and we
obtain

1

2

d

dz
〈αwτ , wτ 〉 + 〈βwττ , wττ 〉 =

1

2
〈αzwτ , wτ 〉 − 〈f̄wτ , wττ 〉 + 〈γwτ , wτ 〉

≤ M‖wτ‖‖wττ‖ + M‖wτ‖2

≤ 1

2
〈βwττ , wττ 〉 + M‖wτ‖2.

Apply the Gronwall lemma to complete the proof.
Remark. Inequality (5.9) is obtained from (5.10) with the help of an argument

similar to the one used in the first step of the proof of Proposition 5.1 (estimate (5.2)).
However, the equivalent of (5.1) does not appear to be possible for (5.10) because of
the special treatment required for the nonlinear term (see (5.4)).

6. Weak solutions. We have already qualified U1 as the space of weak solutions.
In order to introduce the weak solutions we also need the space of test functions. Let
Ŷ be the closure of DQ with respect to the H1(Q)-norm. Denote by Y the set of all

functions η ∈ Ŷ such that η(Z) = 0. The latter condition makes sense because of the
continuous (and even compact) embedding Ŷ ⊂ C([0, Z], X0).
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Definition 6.1. For a given u0 ∈ X1, a function u ∈ U1 is called a weak solution
of problem (2.1)–(2.5) if the identity

−〈α(0)u0τ , η(0)〉 −
∫ Z

0

〈uτ , (αη)z〉 dz

=

∫ Z

0

[
− 〈f(uτ ), ητ 〉 − 〈βuττ , ητ 〉 + 〈γuτ , η〉 − 〈∇u,∇η〉

]
dz

(6.1)

holds for any η ∈ Y .
By multiplying (2.1) by η and integrating by parts where necessary, one easily

shows that each strong solution is also a weak one.
Proposition 6.2. For any u0 ∈ X1 problem (2.1)–(2.5) admits a weak solution

u satisfying

sup
z

[
‖uτ‖2 + ‖∇u‖2

]
+ |||uττ |||2 + |||∇uτ |||2 ≤ M

[
‖u0τ‖2 + ‖∇u0‖2

]
.(6.2)

Proof. Let um
0 , m = 1, 2, . . . , be a sequence in X2 such that um

0 → u0 in X1 as
m → ∞. For each m denote by um the strong solution corresponding to the initial
condition um(0) = um

0 . It is also a weak solution, that is,

−〈α(0)um
0τ , η(0)〉 −

∫ Z

0

〈um
τ , (αη)z〉 dz

=

∫ Z

0

[
− 〈f(um

τ ), ητ 〉 − 〈βum
ττ , ητ 〉 + 〈γum

τ , η〉 − 〈∇um,∇η〉
]
dz

(6.3)

for any η ∈ Y . By Proposition 5.2,

|||um
ττ − un

ττ |||
2 ≤ M‖um

0τ − un
0τ‖2 −→

m,n → ∞
0,

so that there exists an element u ∈ U0 such that uττ ∈ U0 and um
ττ → uττ in U0 as

m → ∞. This also implies that um
τ → uτ in U0 and therefore f(um

τ ) → f(uτ ) in
L2(Q) as well. Finally notice that, by Proposition 5.1,

sup
z

[
‖um

τ ‖2 + ‖∇um‖2
]

+ |||um
ττ |||

2
+ |||∇um

τ |||2 ≤ M
[
‖um

0τ‖2 + ‖∇um
0 ‖2

]
,(6.4)

so that the sequence ∇um is bounded in U0, and therefore ∇um converges to ∇u
weakly in U0. Thus we can pass to the limit in (6.3) to obtain (6.1).

In order to establish estimate (6.2), first observe that the sequence ∇um
τ is

bounded in U0 and therefore contains a subsequence weakly convergent to ∇uτ in
U0. Similarly, the sequences um

τ and ∇um contain subsequences ∗-weakly convergent,
respectively, to uτ and ∇u in L∞([0, Z], X0). One can therefore justify the limit as
m → ∞ in (6.4) and thus obtain (6.2).

Proposition 6.3. The weak solution is unique.
Proof. Let u1 and u2 be two weak solutions corresponding to the same initial

condition u1(0) = u2(0) = u0 ∈ X1. Their difference w = u1−u2 satisfies the identity

−
∫ Z

0

〈wτ , (αη)z〉 dz

=

∫ Z

0

[
− 〈f̄wτ , ητ 〉 − 〈βwττ , ητ 〉 + 〈γwτ , η〉 − 〈∇w,∇η〉

]
dz

(6.5)
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for any η ∈ Y . As well as in the proof of Proposition 5.2, here f̄ stands for the
bounded function (f(u1

τ ) − f(u2
τ ))/(u

1
τ − u2

τ ).
Formally, the estimate we are going to obtain for w is quite simple and resembles

much the one of Proposition 5.2. However, the direct approach of the proof of Propo-
sition 5.2 is not valid any more since it requires the manipulation of objects which no
longer exist in the case of the weak solutions. In particular, the weak solutions have
no derivatives with respect to z.

Let the functions ψk and the projections Pm be those defined in the proof of
Proposition 4.2. Given a function φ ∈ C∞

0 ([0, Z]), set η = α−1φψ̃k in (6.5). After
some obvious transformations this yields∣∣∣∣∣

∫ Z

0

φz〈w,ψk〉 dz
∣∣∣∣∣ ≤ C

∫ Z

0

|φ| dz ∀φ ∈ C∞
0 ([0, Z]),

with some positive C depending on w and k but independent of φ. By the Riesz
theorem, this proves the existence of a function θ ∈ L∞([0, Z]) such that

∫ Z

0

φz〈w,ψk〉 dz = −
∫ Z

0

φθ dz ∀φ ∈ C∞
0 ([0, Z]),

and thus the function 〈w,ψk〉 admits a derivative 〈w,ψk〉z ∈ L∞([0, Z]) understood in
the sense of distributions. Therefore, for any m, the function wm ≡ Pmw also admits
a bounded derivative with respect to z.

Fix positive numbers s < Z, δ < s, and set

σ(z) =

⎧⎨
⎩

1 if z ≤ s− δ,
(s− z)/δ if s− δ < z ≤ s,
0 if z > s.

By taking into account the existence of a bounded derivative wm
z , it is easy to see

that the function σα−1Pm(αwm
τ ) belongs to the class Y . Inject it in (6.5) instead of

η. The integrand at the left becomes

−〈wτ , (αη)z〉 = −〈wτ , Pm(σαwm
τ )z〉 = −〈wm

τ , (σαwm
τ )z〉

= −1

2
σz〈αwm

τ , wm
τ 〉 − σ

2
〈αzw

m
τ , wm

τ 〉 − 1

2

d

dz

[
σ〈αwm

τ , wm
τ 〉

]
.

By integrating over [0, Z] and recalling the definition of σ, one obtains for the left-hand
side of (6.5) the following lower bound:

−
∫ Z

0

〈wτ , (αη)z〉 dz

≥ 1

2δ

∫ s

s−δ

〈αwm
τ , wm

τ 〉 dz −M

∫ s

0

‖wm
τ ‖2 dz +

1

2
〈α(0)wm

τ (0), wm
τ (0)〉

≥ 1

2δ

∫ s

s−δ

〈αwm
τ , wm

τ 〉 dz −M

∫ s

0

‖wm
τ ‖2 dz.

As for the right-hand side of (6.5), the first and the third terms of the integrand admit
the estimate

−〈f̄wτ , ητ 〉 + 〈γwτ , η〉 ≤ σM‖wτ‖‖wm
ττ‖,
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while the other two terms will be kept intact for the moment. By summing up and
passing to the limit as δ → ∞, we have

1

2
〈α(s)wm

τ (s), wm
τ (s)〉

≤
∫ s

0

[
M‖wτ‖‖wm

ττ‖ − 〈βwττ , α
−1Pm(αwm

ττ )〉 − 〈∇w,∇α−1Pm(αwm
τ )〉

]
dz.

The left-hand side of this relation admits no limit as m → ∞, so first let us integrate
it once more with respect to s:

1

2

∫ ξ

0

〈α(s)wm
τ (s), wm

τ (s)〉 ds

≤
∫ ξ

0

∫ s

0

[
M‖wτ‖‖wm

ττ‖ − 〈βwττ , α
−1Pm(αwm

ττ )〉 − 〈∇w,∇α−1Pm(αwm
τ )〉

]
dz ds.

Recall that w ∈ U1 and therefore wm → w in U1. Thus one can pass to the limit as
m → ∞ in all terms to obtain

1

2

∫ ξ

0

〈α(s)wτ (s), wτ (s)〉 ds ≤
∫ ξ

0

∫ s

0

[
M‖wτ‖‖wττ‖ − 〈βwττ , wττ 〉

]
dz ds.

With the help of the Cauchy–Young inequality this can be rewritten as

∫ ξ

0

〈αwτ , wτ 〉 dz ≤ M

∫ ξ

0

∫ s

0

〈αwτ , wτ 〉 dz ds.

It remains to apply the Gronwall lemma to obtain w = 0.

7. Stratified media. The present section is devoted to the study of the asymp-
totic behavior of the solutions to problem (2.1)–(2.5) as its coefficients rapidly oscil-
late. This study will be undertaken under the following additional assumptions:

(βγ) The coefficients α, β, and γ depend only on z. It is clear that in this case the
replacement of z by the new variable z̃ =

∫ z

0
α(s) ds will bring the equation

to the form with α = 1. Thus we assume that α = 1 throughout the section.
The regularity of β and γ is the same as above; that is, β, βz, and γ are
bounded, while β is also positive and bounded away from zero.

(f4) The nonlinear function f is of the form f(s, z, x) = ρ(z)φ(s), where ρ is
bounded with a bounded derivative, while φ satisfies the same assumptions
as f in (f1)–(f3), that is, φ admits a bounded continuous derivative and
φ(0) = 0. We shall denote by Φ the primitive of φ satisfying Φ(0) = 0.

Thus the equation we study takes the form

uzτ = ρ(φ(uτ ))τ + βuτττ + γuτ + Δu.(7.1)

The existence and uniqueness results of sections 4–6 remain valid.
In order to introduce the oscillating character of the coefficients, let us assume

that they are of the form

ρ(z) = r(z, z/ε), β(z) = b(z, z/ε), γ(z) = g(z, z/ε),

where ε < 1 is a small parameter. The last assumption we introduce is the following.
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(ρβγ) The functions r(z, ζ), b(z, ζ), and g(z, ζ) are bounded as well as the derivatives
rz, rζ , bz, and bζ . The function b is positive and bounded away from zero.
Finally, the functions r(z, z/ε), b(z, z/ε), and g(z, z/ε) admit limits as ε → 0
in the following weak sense: There exists q > 1/2 such that for any Z > 0 we
have ∫ Z

0

(r(z, z/ε) − ρ̄(z)) dz = O(εq),∫ Z

0

(b(z, z/ε) − β̄(z)) dz = O(εq),∫ Z

0

(g(z, z/ε) − γ̄(z)) dz = O(εq),

where the functions ρ̄(z), β̄(z), and γ̄(z) as well as the derivatives ρ̄z(z), and
β̄z(z) are bounded, while ρ̄(z) are β̄(z) are also positive and bounded away
from zero.
Note that if r, b, and g are Lipschitzian with respect to the first argument
and periodic with respect to the second one, then the above convergence
conditions hold with q = 1 (see [1, 7, 9]).

The asymptotic study of the solutions to (7.1) as ε → 0 require a few estimates.
The convention concerning the use of the symbol M introduced in section 2 is still
valid with the following remark: the constants M are independent of ε.

The first estimate we need is similar to the one of Proposition 5.1.
Proposition 7.1. Let u be the strong solution of (7.1) corresponding to the

initial condition u(0) = u0 ∈ X2. Then

sup
z

‖∇u‖2 +
1

ε
sup
z

‖uτ‖2 + M−1

∫ Z

0

‖uττ‖2dz + M−1

∫ Z

0

‖∇uτ‖2dz

≤ M‖∇u0‖2 +
M

ε
‖u0τ‖2.

Proof. Multiply (7.1) by uτ to obtain

1

2

d

dz
‖uτ‖2 = −〈βuττ , uττ 〉 + 〈γuτ , uτ 〉 ≤ −M−1‖uττ‖2 + M‖uτ‖2.(7.2)

The multiplication of (7.1) by uz yields

1

2

d

dz
‖∇u‖2 +

d

dz
〈ρΦ(uτ ), 1〉 = −〈βuττ , uτz〉 + 〈ρzΦ(uτ ), 1〉 + 〈γuτ , uz〉

≤ −〈βuττ , uτz〉 + Mε−1‖uτ‖2 + 〈γuτ , uz〉.
(7.3)

In order to eliminate the first term on the right-hand side of (7.3), multiply (7.1) by
βuττ :

〈βuττ , uτz〉 = 〈ρβφ′(uτ )uττ , uττ 〉 + 〈β∇uτ ,∇uτ 〉
≥ −M‖uττ‖2 + M−1‖∇uτ‖2.

(7.4)

Similarly, after the multiplication of (7.1) by γu, we have

〈γuτ , uz〉 ≤ M‖uτ‖2 + M‖∇u‖2.(7.5)
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By combining (7.3)–(7.5), we have

1

2

d

dz
‖∇u‖2 +

d

dz
〈ρΦ(uτ ), 1〉 + M−1‖∇uτ‖2

≤ M‖uττ‖2 + M‖∇u‖2 + Mε−1‖uτ‖2.

(7.6)

For a given positive μ, set

E =
1

2
‖∇u‖2 + 〈ρΦ(uτ ), 1〉 +

μ

ε
‖uτ‖2.

If the parameter μ is sufficiently large, then

E ≥ 1

2
‖∇u‖2 +

μ

2ε
‖uτ‖2.

Fix μ even larger, if necessary, so that the inequalities (7.2) and (7.6) imply that

dE

dz
+ M−1‖uττ‖2 + M−1‖∇uτ‖2 ≤ ME.

It remains to apply the Gronwall lemma to obtain the claimed estimate.
The next estimate requires some new notation. The operator I − Δ : L2(ω) →

L2(ω) defined on H2(ω) with the Neumann boundary conditions is self-adjoint and
positive definite. Denote it by A2. Thus A is its square root, which is also positive
definite. Clearly, we have M−1‖A−1u‖ ≤ ‖u‖ ≤ M‖Au‖. Note also that

‖Au‖2 = 〈A2u, u〉 = 〈u− Δu, u〉 = ‖u‖2 + ‖∇u‖2.

On X1, the norm ‖Au‖ is equivalent to ‖∇u‖.
Proposition 7.2. Let u be the strong solution of (7.1) corresponding to the

initial condition u(0) = u0 ∈ X2. Then

sup
z

‖A−1uττ‖2 +

∫ Z

0

‖A−1uzτ‖2 dz ≤ M‖∇u0‖2 +
M

ε
‖u0τ‖2 + ‖A−1u0ττ‖2.(7.7)

Proof. The multiplication of (7.1) by A−2uzτ yields

‖A−1uzτ‖2 + β
d

dz
‖A−1uττ‖2

≤ M‖uττ‖‖A−2uzτ‖ + M‖uτ‖‖A−2uzτ‖ + M‖A−1Δu‖‖A−1uzτ‖
≤ M‖uττ‖‖A−1uzτ‖ + M‖∇u‖‖A−1uzτ‖,

which implies, after the division by β, that

β−1‖A−1uzτ‖2 +
d

dz
‖A−1uττ‖2 ≤ M‖uττ‖2 + M‖∇u‖2.

Integrate with respect to z to obtain

sup
z

‖A−1uττ‖2 +

∫ Z

0

‖A−1uzτ‖2 dz ≤ M

∫ Z

0

[
‖uττ‖2 + ‖∇u‖2

]
dz + ‖A−1u0ττ‖2.

Finally, make use of Proposition 7.1 to complete the proof.
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We can now state and prove the main result of this section.
Theorem 7.3. Let u be the strong solution of (7.1) corresponding to the initial

condition u(0) = u0 ∈ X2. Denote by v the strong solution of the equation

vzτ = ρ̄(φ(vτ ))τ + β̄vτττ + γ̄vτ + Δv(7.8)

satisfying the same initial condition as u. Then

sup
z

‖u− v‖2 ≤ Mεq−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
.

Proof. It is clear that v is subject to the same type of estimates as u but with the
coefficients independent of ε. In particular,

sup
z

‖∇v‖2 + sup
z

‖vτ‖2 + M−1

∫ Z

0

‖vττ‖2dz + M−1

∫ Z

0

‖∇vτ‖2dz

≤ M‖∇u0‖2 + M‖u0τ‖2.

(7.9)

The difference w = u− v satisfies the relation

wzτ = ρ[φ(uτ ) − φ(vτ )]τ + βwτττ + γwτ + Δw

− (ρ̄− ρ)(φ(vτ ))τ + (β̄ − β)vτττ + (γ̄ − γ)vτ .
(7.10)

Multiply it by −w̃ to obtain

1

2

d

dz
‖w‖2 = 〈ρ[φ(uτ ) − φ(vτ )], w〉 − 〈βwτ , wτ 〉 + 〈γw,w〉

+ (ρ̄− ρ)P + (β̄ − β)Q + (γ̄ − γ)R

≤ M‖w‖2 + (ρ̄− ρ)P + (β̄ − β)Q + (γ̄ − γ)R,

(7.11)

where P , Q, and R stand for the residual terms:

P = 〈φ(vτ ), u− v〉, Q = 〈vττ , u− v〉, R = 〈v, u− v〉.

The integration of (7.11) over z ∈ [0, s] yields

1

2
‖w(s)‖2 ≤ M

∫ s

0

‖w‖2 dz +

∫ s

0

[
(ᾱ− α)P + (β̄ − β)Q + (γ̄ − γ)R

]
dz.

By integrating by parts in the second term on the right and making use of assumption
(ρβγ), we arrive at

1

2
‖w(s)‖2 ≤ M

∫ s

0

‖w‖2 dz + Mεq
∫ s

0

(|Pz| + |Qz| + |Rz|) dz.(7.12)

The expressions Pz, Qz, and Rz need to be estimated separately. The most difficult
estimate is required by the term |〈vττ , uz〉| appearing in |Qz|. We have

|〈vττ , uz〉| = |〈(I − Δ)vτ , A
−2uzτ 〉|

≤ |〈vτ , A−2uzτ 〉| + |〈∇vτ ,∇A−2uzτ 〉|
≤ ‖A−1vτ‖‖A−1uzτ‖ + ‖∇vτ‖‖∇A−2uzτ‖.

(7.13)

On the other hand,

‖∇A−2uzτ‖2 = −〈ΔA−2uzτ , A
−2uzτ 〉 = 〈(A2 − I)A−2uzτ , A

−2uzτ 〉
= 〈A−1uzτ , A

−1uzτ 〉 − 〈A−2uzτ , A
−2uzτ 〉 ≤ ‖A−1uzτ‖2.
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Thus (7.13) becomes

|〈vττ , uz〉| ≤ (‖vτ‖ + ‖∇vτ‖)‖A−1uzτ‖.

Now with the help of (7.7) and (7.9) we obtain

∫ s

0

|〈vττ , uz〉| dz ≤ M

[∫ s

0

(‖vτ‖2 + ‖∇vτ‖2) dz

]1/2 [∫ s

0

‖A−1uzτ‖2 dz

]1/2

≤ M
[
‖∇u0‖2 + ‖u0τ‖2

]1/2
[
‖∇u0‖2 +

1

ε
‖u0τ‖2 + ‖A−1u0ττ‖2

]1/2

≤ Mε−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
.

(7.14)

The latter inequality follows from the boundedness of the operator A−1 and the fact
that ‖∇u0‖2 = 〈∇u0,∇u0〉 = −〈∇ũ0,∇u0τ 〉 = 〈Δũ0, u0τ 〉 ≤ 1

2 (‖Δũ0‖2 + ‖u0τ‖2).
Quite similarly to (7.14) one establishes the same upper bound on the term |〈vττ , vz〉|,
and therefore ∫ s

0

|〈vττ , uz − vz〉| dz ≤ Mε−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
.

Now let us note that ∫ s

0

|Qz| dz ≤
∫ s

0

|〈vττ , u− v〉z| dz

≤
∫ s

0

|〈vττ , uz − vz〉| dz +

∫ s

0

|〈vz, uττ 〉| dz +

∫ s

0

|〈vz, vττ 〉| dz.
(7.15)

The term involving uz having already been estimated, let us treat the second term on
the right of (7.15). Recall that v is a strong solution to (7.8) whose coefficients are
independent of ε. Therefore, by Proposition 4.2,

sup
z

[
‖vττ‖2 + ‖vz‖2

]
+ |||vτττ |||2 + |||vzτ |||2 + |||Δv|||2 ≤ M‖u0ττ‖2 +M‖Δũ0‖2.(7.16)

Along with Proposition 7.1 the latter inequality implies that

∫ s

0

|〈vz, uττ 〉| dz ≤
[∫ s

0

‖vz‖2dz

]1/2[∫ s

0

‖uττ‖2dz

]1/2

≤ M
[
‖u0ττ‖2 + ‖Δũ0‖2

]1/2 × ε−1/2
[
‖∇u0‖2 + ‖u0τ‖2

]1/2
.

As has been mentioned above, ‖∇u0‖2 ≤ 1
2 (‖Δũ0‖2 + ‖u0τ‖2) and ‖u0τ‖2 ≤ ‖u0ττ‖2.

So we obtain ∫ s

0

|〈vz, uττ 〉| dz ≤ Mε−1/2(‖u0ττ‖2 + ‖Δũ0‖2).

The last term on the right of (7.15) admits the same estimate, and we finally obtain∫ s

0

|Qz| dz ≤ Mε−1/2(‖u0ττ‖2 + ‖Δũ0‖2).
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The estimate on |Pz| is simpler. We have

Pz = 〈φ′(vτ )vzτ , u− v〉 + 〈φ(vτ ), uz − vz〉.

Estimate (7.16) together with Proposition 7.1 yields

∫ s

0

|Pz| dz ≤ Mε−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
+

∫ s

0

|〈φ(vτ ), uz〉| dz.(7.17)

The last term on the right should be treated with the help of Proposition 7.2. First
note that

|〈φ(vτ ), uz〉| = |〈Aφ(vτ ), A
−1uz〉| ≤ ‖Aφ(vτ )‖‖A−1uz‖

≤ M‖∇φ(vτ )‖‖A−1uz‖ = M‖φ′(vτ )∇vτ‖‖A−1uz‖

≤ M‖∇vτ‖‖A−1uz‖ ≤ M
[
‖Δv‖2 + ‖vττ‖2

]1/2

‖A−1uz‖.

Now the integration over z ∈ [0, s] and the use of Proposition 7.2 along with estimate
(7.16) yield

∫ s

0

|〈φ(vτ ), uz〉| dz ≤ Mε−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
.

We omit the details concerning the treatment of the term involving Rz in the
second integral on the right of (7.12). It is quite similar to the case of Qz since
v = ˜̃vττ . Thus we finally obtain

1

2
‖w(s)‖2 ≤ M

∫ s

0

‖w‖2 dz + Mεq−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
.(7.18)

By the Gronwall lemma we have

∫ s

0

‖w‖2 dz ≤ Mεq−1/2
[
‖u0ττ‖2 + ‖Δũ0‖2

]
.

Reinject the latter inequality into (7.18) to complete the proof.

8. Concluding remarks. The obtained global existence and uniqueness results
for (2.1) for the case of nonlinearity f with bounded derivative show that this formu-
lation may have some mathematical advantages in comparison with the classical KZK
equation (see [3, 4]), although for small variations of the acoustic pressure (which is
one of the assumptions of the physical model used to derive the equation) these two
models coincide.

The introduction of the varying coefficients allows us to model the acoustic beam
propagation in a stratified heterogeneous media (for example, in the atmosphere),
while the asymptotic analysis by means of the homogenization techniques simplifies
reducing it to the case of constant coefficients, when in some situations an analytical
solution is possible.
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EXISTENCE OF WEAK SOLUTIONS FOR THE UNSTEADY
INTERACTION OF A VISCOUS FLUID WITH AN ELASTIC PLATE∗

CÉLINE GRANDMONT†

Abstract. We consider a three-dimensional viscous incompressible fluid governed by the Navier–
Stokes equations, interacting with an elastic plate located on one part of the fluid boundary. We
do not neglect the deformation of the fluid domain which consequently depends on the displacement
of the structure. The purpose of this work is to study the solutions of this unsteady fluid-structure
interaction problem, as the coefficient modeling the viscoelasticity (resp., the rotatory inertia) of the
plate tends to zero. As a consequence, we obtain the existence of at least one weak solution for the
limit problem (Navier–Stokes equation coupled with a plate in flexion) as long as the structure does
not touch the bottom of the fluid cavity.

Key words. fluid-structure interaction, weak solutions, plate equations

AMS subject classifications. 74F10, 35Q30, 73K70, 76D03, 35Q35, 35D05

DOI. 10.1137/070699196

1. Introduction. Many physical phenomena deal with a fluid interacting with a
moving or deformable structure. These kinds of problems have a lot of important ap-
plications, for instance, in areolasticity, biomechanics, hydroelasticity, sedimentation,
etc. From the mathematical point of view they have been studied extensivelly over
the past few years. Here we consider a viscous incompressible three-dimensional (3D)
fluid described by the Navier–Stokes equations interacting with a two-dimensional
elastic plate in flexion.

One already knows that if a viscous term or the rotatory inertia are taken into
account in the plate equations, there exists at least one weak solution to this problem
(see [4]). From the mechanical point of view, adding a viscous term is a way to
introduce dissipation in the plate model, and, from the mathematical point of view,
this is a way to regularize the structure velocity. Here the dissipation coming from
the fluid enables us to control the space high frequencies of the structure velocity and
to pass to the limit in the coupled system as the additional viscous plate coefficient
tends to zero and, thus, obtain the existence of weak solutions of the limit problem.
This limit system can also be obtained as the limit of the plate-Navier–Stokes system
(with a regularized initial plate velocity) as the coefficient of the rotatory inertia tends
to zero. In most of the previous studies the structure velocity is quite regular because
of the model or because of the presence of a regularization operator in the equations.
The existing results are concerned mainly with rigid body motions [5], [10], [11],
[13], [16], [17], [18], [21], [22], [24], [25] or with the motion of a structure described
by a finite number of modal functions [12] or a structure with additional “viscous”
terms [2], [4], [8]. Recently, a significant breakthrough has been made by Coutand
and Shkoller. In [6], [7] they prove the existence, locally in time, of a unique regular
solution (assuming that the data are smooth enough and satisfy suitable compatibility
conditions) for the Navier–Stokes equations coupled with linearized elasticity or quasi-
linear elasticity. These are the only existence results where the full 3D elasticity is

∗Received by the editors August 3, 2007; accepted for publication (in revised form) March 26,
2008; published electronically July 18, 2008.

http://www.siam.org/journals/sima/40-2/69919.html
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considered and that don’t require additional viscous terms. Nevertheless, despite
these new important results, the case of fluid-plate or fluid-shell interaction problems
is not, as far as we know, solved. Here, by assuming that the in-plane motions can
be neglected and taking advantage of the transverse-only motions of the plate and of
the fact that the plate equations enable some regularity of the boundary of the fluid
domain, we prove the existence of weak solutions for a fluid-plate interaction problem.
Note that the same proof does not apply for general plate or shell models. Yet, even
if we consider here a rather simple structure model, this is, to our knowledge, the
first existence result of weak solutions in this direction. Note, moreover, that no
compatibility assumptions are required and the existence result holds as long as the
plate does not touch the bottom of the fluid cavity. Finally, the same results hold for
a 2D viscous flow interacting with a one-dimensional membrane.

In the first section we give the equations of the fluid-structure problem for which
we derive a priori energy estimates. Next, definitions and properties of the energy
spaces are detailed, and the weak formulation of the problem is given. In particular,
we build suitable extensions of the fluid test functions and liftings of the structure
test functions. In the second section, we state our main results, the third section
being devoted to the derivation of compactness properties that enable us to pass to
the limit in the equations as the “viscous” plate coefficient tends to zero (section 4).

1.1. Presentation of the problem. We assume that the fluid fills a three-
dimensional cavity and interacts with a thin elastic structure, located on a part of
the boundary of the fluid, the other part being rigid. For the sake of simplicity, we
assume that, in the reference state, the elastic part of the fluid boundary is ω × {1},
where ω denotes a Lipschitz domain in R

2. In the initial state the fluid occupies the
domain ΩηI

:

ΩηI
=

{
(x, y, z) ∈ R

3, (x, y) ∈ ω, 0 < z < 1 + ηI(x, y)
}
,

where ηI is a given initial displacement of the elastic part. The rigid part of ∂ΩηI
is

denoted by Γ0. Note that we could also have considered the case of a fluid between
two elastic plates or the case where ω × {1} is a part of a smooth fluid domain
boundary and obtained the same kind of results. We model the deformable part of
the boundary by the classical linear plate theory for tranverse motions. We take its
edge to be clamped. Note that the equations describing the tranverse motion and the
in-plane motions of a plate are decoupled. Here we ignore in-plane motions. From
a mechanical point of view, this assumption is justified (at least for small enough
deformations) since the membrane stiffness of a plate is much larger than its flexion
stiffness. We denote by ηε(t, x, y) the vertical displacement with respect to the rest
configuration. The subscript ε underlines the dependence of the solution with respect
to the parameter ε ≥ 0, which measures the “viscosity” of the plate (or the rotatory
inertia). Then the equations describing the evolution of the transversal displacement
ηε (ηε = ηε(t, x, y) ∈ R) are

(1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ttηε + Δ2ηε + εΔ2∂tηε = g + (T ε
f )3 in ω,

ηε =
∂ηε
∂n

= 0 on ∂ω,

ηε(0) = ηI , ∂tηε(0) = η̇I ,

where g denotes the given body force on the plate and T ε
f the surface force exerted by

the fluid on the structure. The definition of T ε
f will be made precise later on. Instead
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of the additional viscosity term, we could have added −εΔ∂ttηε, which models the
inertia of rotation. The domain occupied by the fluid at time t is denoted by Ωηε

(t):

(2) Ωηε(t) =
{
(x, y, z) ∈ R

3 , (x, y) ∈ ω, 0 < z < 1 + ηε(t, x, y)
}
.

The classical forms of the governing equations for the fluid are

(3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tuε + (uε · ∇)uε − νΔuε + ∇pε = f in Ωηε
(t),

divuε = 0 in Ωηε(t),

uε(t, ·) = 0 on Γ0,

uε(0, ·) = uI in ΩηI
,

where uε denotes the fluid velocity and pε the pressure field. The body force f and
the initial velocity uI are given.

Since the fluid is viscous, it adheres to the plate, and thus the velocities coincide
(in a sense to be defined) at the interface. This is written, since we assume that the
plate motion is vertical:

(4) uε(t, x, y, 1 + ηε(t, x, y)) = (0, 0, ∂tηε(t, x, y))
T
, (x, y) ∈ ω.

This condition, together with the incompressibility of the fluid, leads to

(5)

∫
ω

∂tηε = 0.

Condition (5) states that the global volume of the cavity is preserved. The surface
force Tf exerted by the fluid on the plate can be defined by

(6)

∫
ω

T ε
f · v̄ =

∫
∂Ωηε (t)\Γ0

(−2νD(uε) · nε
t + pεn

ε
t ) · v ∀v,

where D(uε) = (∇uε + (∇uε)
T )/2 is the strain tensor, nε

t denotes the outer unit
normal at ∂Ωηε

(t) \ Γ0 (nε
t = 1√

1+(∂xηε)2+(∂yηε)2
(−∂xηε,−∂yηε, 1)T ), and v̄(t, x, y) =

v(t, x, y, 1 + ηε(t, x, y)) ∀(x, y) ∈ ω. Note here that the pressure pε is not defined up
to a constant but is uniquely defined. Its average value ensures the global volume
conservation of the fluid cavity. This average is in fact the Lagrange multiplier associ-
ated with the compatibility condition (5). Note that if Neumann boundary conditions
had been imposed on Γ0, then the plate displacement should not verify an additional
“volume-preserving” constraint. As noted in [4], the third component of T ε

f can be
rewritten thanks to

2(D(uε) · nε
t )3 = (∇uε · nε

t )3.

This simplification comes from the fact that the displacement at the fluid-structure
interface is only transverse and from the incompressibility of the fluid.

Thus ∀v, such that vi(t, x, 1 + ηε(t, x, y)) = 0, i = 1, 2, (t, x, y) ∈ (0, T ) × ω, we
have

(7)

∫
ω

T ε
f · v̂ =

∫
Γηε (t)

(−ν∇uε · nε
t + pεn

ε
t )3 v3.

Note moreover that the two first components of T ε
f correspond to the Lagrange mul-

tiplier associated to the vertical velocity constrain that the fluid has to verify at the
interface.
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1.2. A priori estimates. In this subsection we recall the a priori estimates
satisfied by any solution, assuming that it is smooth enough. We multiply the Navier–
Stokes equations by uε and integrate over Ωηε

(t), and we multiply the plate equations
by ∂tηε, integrate over ω, and add these two contributions. After integrations by parts
and taking into account the coupling conditions (equality of the velocities (4) and the
definition of T ε

f (7)), we obtain the following energy equality:

(8)

1

2

d

dt

∫
Ωηε (t)

|uε|2 + 2ν

∫
Ωηε (t)

|∇(uε)|2

+
1

2

d

dt

∫
ω

(∂tηε)
2 +

1

2

d

dt

∫
ω

(Δηε)
2 + ε

∫
ω

(Δ∂tηε)
2

=

∫
Ωηε (t)

f · uε +

∫
ω

g ∂tηε.

Hence, using Cauchy–Schwarz and Young’s inequalities and Gronwall’s lemma:

(9)

1

2
‖uε(t, ·)‖2

L2(Ωηε (t)) + 2ν

∫ t

0

‖∇(uε)(s, ·)‖2
L2(Ωηε (s))ds

+
1

2
‖∂tηε(t, ·)‖2

L2(ω) +
1

2
‖Δηε(t, ·)‖2

L2(ω) + ε

∫ t

0

‖Δ∂tηε(s, ·)‖2
L2(ω)ds

≤ et
(

1

2
‖uI‖2

L2(ΩηI
) +

1

2
‖η̇I‖2

L2(ω) +
1

2
‖ΔηI‖2

L2(ω)

)

+
1

2

∫ t

0

exp(t− s)
(
‖f(s, ·)‖2

L2(Ωηε (s)) + ‖g(s, ·)‖2
L2(ω)

)
ds.

Thus, assuming that f ∈ L2(0, T ;L2(R3)), g ∈ L2(0, T ;L2(ω)), uI ∈ L2(ΩηI
),

ηI ∈ H2
0 (ω), and η̇I ∈ L2(ω),

(10) uε is bounded, uniformly in ε, in L∞(0, T ;L2(Ωηε(t))),

(11) ∇uε is bounded, uniformly in ε, in L2(0, T ;L2(Ωηε
(t))),

and

(12) ηε is bounded, uniformly in ε, in W 1,∞(0, T ;L2(ω)) ∩ L∞(0, T ;H2
0 .(ω)).

Moreover, if ε > 0,

∂tηε ∈ L2(0, T ;H2
0 (ω)).

Consequently the spaces Lp(0, T ;L2(Ωγ(t))), L2(0, T ;H1(Ωγ(t))) need to be de-
fined for γ belonging to W 1,∞(0, T ;L2(ω))∩L∞(0, T ;H2

0 (ω)). Note that the following
continuous injection holds:

W 1,∞(0, T ;L2(ω)) ∩ L∞(0, T ;H2(ω)) ↪→ C0,1−θ([0, T ];H2θ(ω))

for all 0 < θ < 1. In particular,

(13) W 1,∞(0, T ;L2(ω)) ∩ L∞(0, T ;H2(ω)) ↪→ C0,μ([0, T ];C0,1/2−μ(ω))
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for all 0 < μ < 1/2. The proof of the first injection relies on standard Hilbertian
interpolation inequalities (see [20]). The other is deduced from the first one and
from Sobolev injections in dimension two (see [3]). Consequently, this displacement
regularity does not imply that the fluid domain boundary is Lipschitz, and we have
to pay a special attention to the definitions of the functional spaces. We have also to
give a sense to the equality of the velocities. Thus we are going to give some technical
lemmas, definitions, and properties, most of which can be found in [4].

1.3. Preliminary definitions and properties. We now turn to the definition
of some functional spaces. These definitions can be found in [4], but for the sake of
completness we recall them here. Let T > 0 and δ belong to C0([0, T ]×ω) such that,
for some positive M and α, M ≥ 1+ δ(t, x, y) ≥ α > 0 for all (t, x, y) ∈ [0, T ]×ω and
such that δ = 0 on ∂ω. The set Ωδ(t) defined by

Ωδ(t) =
{
(x, y, z) ∈ R

3, (x, y) ∈ ω, 0 < z < 1 + δ(t, x, y)
}

is an open subset of R
3 for every t ∈ [0, T ] which is included in CM = ω× (0,M). Let

Ω̂δ be the open domain of R
4 defined by

Ω̂δ =
⋃

t∈(0,T )

{t} × Ωδ(t).

We set ĈM = (0, T ) × CM . One can define in a standard way the spaces Lp(Ωδ(t)),

H1(Ωδ(t)), H
1
0 (Ωδ(t)), for every t, and Lp(Ω̂δ), H

1(Ω̂δ), L
p(ĈM ), and H1(ĈM ). The

space H1
0,Γ0

(Ωδ(t)) will denote the subspace of H1
0,Γ0

(Ωδ(t)) of functions of zero trace
on Γ0 = ω × {0} ∪ ∂ω × (0, 1). We then define:

L2(0, T ;H1(Ωδ(t))) =
{
v ∈ L2(Ω̂δ), ∇v ∈ L2(Ω̂δ)

}
,

L2(0, T ;H1
0 (Ωδ(t))) = D(Ω̂δ)

L2(0,T ;H1(Ωδ(t)))

,

Vδ =
{
v ∈ C1

(
Ω̂δ

)
, divv = 0, v = 0 on (0, T ) × Γ0

}
,

Vδ = Vδ
L2(0,T ;H1(Ωδ(t)))

,

and

L∞(0, T ;L2(Ωδ(t))) =
{
v ∈ L2(Ω̂δ), sup esst∈(0,T )‖v‖L2(Ωδ(t)) < +∞

}
.

Moreover we define

V =
{
v ∈ L2(0, T ;H1(CM )), divv = 0, v = 0 on (0, T ) × (Γ0 ∪ Γ1)

}
,

where Γ1 = ∂ω × (1,M).
The space Vδ can be characterized as follows:

Vδ =
{
v ∈ L2(0, T ;H1(Ωδ(t))), divv = 0, v = 0 on (0, T ) × Γ0

}
.

In the case of a Lipschitz or a star-shaped domain independent of time, this follows
from standard arguments (see [26] or [15]). In our case it can be proved by using the
fact that the domain Ωδ(t) is locally a subgraph. This property will be extensively
used in all that follows.
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Next we recall various lemmas that explain how the trace on ∂Ωδ(t) \ Γ0 makes
sense, define extension and lifting operators, and explore some properties of the spaces
defined above. We omit the proofs whenever they can be found in [4]. Note that these
results take advantage of the fact that the fluid domain is a subgraph because the
displacement of the interface is only transverse. Let us consider the linear mapping
γδ(t): v 
→ v(x, y, 1 + δ(t, x, y)) defined for v ∈ C0(Ωδ(t)).

Lemma 1. For every t ∈ [0, T ], the mapping γδ(t) from C1(CM ) (resp., C1(Ωδ(t)))
in C0(ω) can be extended by continuity to a linear mapping from H1(CM ) (resp.,
H1(Ωδ(t))) into L2(ω).

Corollary 1. If v ∈ L2(0, T ;H1(Ωδ(t))), then γδ(t)(v) ∈ L2(0, T ;L2(ω)).
Thus, the trace of v(x, y, 1 + δ(t, x, y)) on ω makes sense at least in L2(ω). The

following lemma makes precise the regularity of γδ(t)(v) when assuming moreover that
δ belongs to L∞(0, T ;H2

0 (ω)). This additional regularity will play a crucial role in
our asymptotic study and will enable us to control the space high frequencies of the
structure velocity.

Lemma 2. Assuming that δ ∈ C0([0, T ];C0(ω)) ∩ L∞(0, T ;H2
0 (ω)), then, for

any v ∈ H1(Ωδ(t)), γδ(t)(v) ∈ W 1−1/p,p(ω), ∀1 < p < 2 and for 3
2 ≤ p < 2,

γδ(t)(v) ∈ H
3p−2

p (ω), for a.e. t. Moreover, if v ∈ L2(0, T ;H1(Ωδ(t))), then γδ(t)(v) ∈
L2(0, T ;W 1−1/p,p(ω)) ∀1 < p < 2 and γδ(t)(v) ∈ L2(0, T ;H

3p−2
p (ω)) ∀ 3

2 ≤ p < 2.
Proof. Let us define an auxilary function by

w(t, x, y, s) = v(x, y, 1 + δ(t, x, y) − s), 0 ≤ s ≤ α.

It is clear that w belongs to L2(Cα) ∀t. Moreover

∇w(t, x, y, s)

=

⎛
⎝ ∂xv(x, y, 1 + δ(t, x, y) − s) + ∂xδ(t, x, y)∂zv(x, y, 1 + δ(t, x, y) − s)

∂yv(x, y, 1 + δ(t, x, y) − s) + ∂yδ(x, y)∂zv(x, y, 1 + δ(t, x, y) − s)
−∂zv(x, y, 1 + δ(t, x, y) − s)

⎞
⎠ .

Since H1(ω) is continuously imbedded in Lq(ω) ∀q < ∞ and ∂iv(x, y, 1+δ(t, x, y)− s)
∈ L2(Cα) ∀t, we deduce that ∇w ∈ Lp(Cα) for all 1 < p < 2, for a.e. t. Thus
w ∈ W 1,p(Cα), and γδ(t)(v) = w|s=0 ∈ W 1−1/p,p(ω) ∀1 < p < 2 for a.e. t. Moreover,
for a.e. t,

‖γδ(t)(v)‖W 1−1/p,p(ω) ≤ C(‖δ‖C0([0,T ];C0(ω))∩L∞(0,T ;H2
0 (ω)), ‖v‖H1(Ωδ(t))).

Furthermore, from Sobolev injections (see [1, Thm. 7.58, p. 218]), we deduce that, for

2 > p ≥ 3
2 , γδ(t)(v) ∈ H

3p−2
p (ω) and

(14) ‖γδ(t)(v)‖
H

3p−2
p (ω)

≤ C(‖δ‖C0([0,T ];C0(ω))∩L∞(0,T ;H2
0 (ω)), ‖v‖H1(Ωδ(t))).

Now we are going to give a characterization of H1
0 (Ωδ(t)) with the help of the

mapping γδ(t). An additional assumption on the boundary displacement δ is needed:
δ is assumed to belong to C0([0, T ];H1(ω)) (this is not an optimal assumption).

Lemma 3. Assuming that δ ∈ C0([0, T ];C0(ω) ∩H1(ω)), then

H1
0 (Ωδ(t)) =

{
v ∈ H1

0,Γ0
(Ωδ(t)), γδ(t)(v) = 0

}
.

Corollary 2. If v ∈ L2(0, T ;H1
0,Γ0

(Ωδ(t))) and γδ(t)(v) = 0, for a.e. t, then

v ∈ L2(0, T ;H1
0 (Ωδ(t))), and the converse is also true.
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We now state a lemma that enables us to extend a function v ∈ Vδ such that
γδ(t)(v) = (0, 0, b)T , b ∈ L2(0, T ;H1(ω)), the extension belonging to V .

Lemma 4. We assume that δ ∈ C0([0, T ];C0(ω)∩H1
0 (ω)). Let v ∈ Vδ such that,

for a.e. t, γδ(t)(v) = (0, 0, b)T , b ∈ L2(0, T ;H1
0 (ω)). The function defined by

(15) v =

∣∣∣∣∣ v in Ω̂δ

(0, 0, b)T in ĈM \ Ω̂δ

belongs to V , and

‖v‖V ≤ C(‖v‖Vδ
+ ‖b‖L2(0,T ;H1(ω))),

where C depends only on M .
Remark 1. If v ∈ L∞(0, T ;L2(Ωδ(t))) and b ∈ L∞(0, T ;L2(ω)), then v ∈

L∞(0, T ;L2(CM )).
Next we build different lifting operators.
Lemma 5. For every φ ∈ H1

0 (ω) there exists w ∈ H1
0,Γ0

(Ωδ(t)) such that

γδ(t)(w) = φ and ‖w‖H1(Ωδ(t)) ≤ Cα‖φ‖H1(ω).

For every b ∈ H1
0 (ω) such that

∫
ω
b = 0 there exists v such that γδ(t)(v) = (0, 0, b)T ,

div(v) = 0, and

‖v‖H1
0,Γ0

(Ωδ(t)) ≤ Cα‖b‖H1
0 (ω).

Proof. Indeed

w =

∣∣∣∣ φ in Ωδ(t) \ Cα,
R( z

αφ) in Cα ,

where R is a continuous lifting operator from H1/2(∂Cα) into H1(Cα) and Cα =
ω × (0, α) verifies the desired properties. Moreover, if we consider b ∈ H1

0 (ω) such
that

∫
ω
b = 0, then R̃ is a continuous lifting operator from H1/2(∂Cα) into H1(Cα)

such that div (R̃v) = 0,

(16) v =

∣∣∣∣ (0, 0, b)T in Ωδ(t) \ Cα,
R̃(0, 0, z

αb)
T in Cα ,

is divergence-free and belongs to H1
0,Γ0

(Ωδ(t)). Furthermore, we have for a.e. t

‖v‖H1
0,Γ0

(Ωδ(t)) ≤ Cα‖b‖H1
0 (ω).

Consequently (16) defines a continuous linear lifting from {b ∈ H1
0 (ω), such that (s.t.)∫

ω
b = 0} into {v ∈ H1

0,Γ0
(Ωδ(t)), s.t. div (R̃v) = 0}.

Remark 2. Thanks to the previous lemma the space{
v ∈ Vδ, γδ(t)(v) = (0, 0, b)T for a.e. t, b ∈ L2(0, T ;H1

0 (ω))
}

is equal to the sum of the two following spaces:

{
v ∈ D(Ω̂δ), divv = 0

}L2(0,T ;H1(Ωδ(t))
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and{
v, v =

∣∣∣∣ (0, 0, b)T in Ωδ(t) \ Cα
R̃(0, 0, z

αb)
T in Cα

for a.e. t, b ∈ L2(0, T ;H1
0 (ω)),

∫
ω

b = 0

}
.

We also need to build a “lifting” operator of (0, 0, b)T for any b that belongs only
to Hs(ω), 0 ≤ s < 1

2 since the structure velocity ∂tηε will be bounded, uniformly in
ε, only in L2(0, T ;Hs(ω)) ∀0 ≤ s < 1

2 and not in L2(0, T ;H1
0 (ω)) (see Lemma 2).

Lemma 6. For all b ∈ L2(0, T ;Hs(ω)), 0 ≤ s < 1
2 such that

∫
ω
b = 0, there exists

a lifting operator Rα satisfying γδ(t)(Rα(b)) = (0, 0, b)T and div (Rα(b)) = 0 and for
a.e. t

(17) ‖Rα(b)‖Hs(CM ) ≤ C‖b‖Hs(ω) ∀0 ≤ s <
1

2
.

Proof. A rather naive construction will satisfy the desired properties. Let us
define Rα by

(18) Rα(b) =

∣∣∣∣ (0, 0, b)T for z ≥ α
(0, 0, z

αb)
T + wα in Cα

for a.e. t,

where wα is such that div (wα) = b and wα ∈ H1
0 (Cα), ‖wα‖H1

0 (Cα) ≤ C‖b‖L2(ω), for
a.e. t. Such a function exists (see, for instance, [14]). It is easy to see that Rα(b)
is divergence-free. Moreover, Rα is linear continuous from L2(0, T, L2(ω)) (resp.,
L2(0, T,H1

0 (ω))) into L2(0, T, L2(CM )) (resp., L2(0, T,H1
0,Γ0

(CM ))), and thus, by in-

terpolation (see [19]), Rα is linear continuous from L2(0, T,Hs(ω))) into L2(0, T,Hs

(CM )) ∀0 ≤ s < 1
2 . Consequently, (17) holds true.

Remark 3. The trace γδ(t)(Rα(b)) makes sense for any b ∈ L2(ω) since Rα(b) is
regular enough with respect to z.

We end this section by mentioning that Korn’s and Poincaré’s inequalities hold
in the considered spaces.

Lemma 7. For all u and v in{
v ∈ Vδ, ∃ b ∈ L2(0, T ;H1

0 (ω)), γδ(t)(v) = (0, 0, b)T for a.e. t
}
,

we have

(19) 2

∫
Ωδ(t)

D(u) : D(v) =

∫
Ωδ(t)

∇u : ∇v for a.e. t,

and consequently the following Korn’s “equality” holds:

(20)
√

2‖D(u)‖L2(Ωδ(t)) = ‖∇u‖L2(Ωδ(t)) for a.e. t.

Lemma 8. Let v ∈ H1
0,Γ0

(Ωδ(t)), and then

‖v‖L2(Ωδ(t)) ≤ M‖∇v‖L2(Ωδ(t)).

1.4. Weak formulation. Let ηI ∈ H2
0 (ω), (uI , η̇I) ∈ L2(ΩηI

) × L2(ω), such
that

(21)

min
ω

(1 + ηI) > 0,

div uI = 0 in ΩηI
,

uI · n = 0 on Γ0,

uI(x, y, 1 + ηI(x, y)) · n0 = (0, 0, η̇I(x, y))
T · n0 on ω,∫

ω

η̇I(x, y) = 0,
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where n0 denotes the unit normal to the initial position of the plate. We refer to [4],
where one proves that the normal trace uI(x, y, 1+ηI(x, y))·n0, (x, y) ∈ ω makes sense
for uI ∈ L2(ΩηI

), with ηI ∈ H2
0 (ω). We shall say that (uε, ηε) is a weak solution of

the considered model on (0, T ) if it satisfies the following problem that will be denoted
(Pε):

– uε ∈ Vηε
∩ L∞(0, T ;L2(Ωηε

(t))), ηε ∈ W 1,∞(0, T ;L2(ω)) ∩ L∞(0, T ;H2
0 (ω)),

– for ε > 0, ∂tηε ∈ L2(0, T ;H2
0 (ω)),

– uε(t, x, y, 1 + ηε(t, x, y)) = (0, 0, ∂tηε(t, x, y))
T for a.e. (t, x, y) ∈ (0, T ) × ω,

– for all (φ, b) ∈ (Vηε
∩ H1(Ω̂ηε

)) × (L2(0, T ;H2
0 (ω)) × H1(0, T ;L2(ω))) such

that φ(t, x, y, 1 + ηε(t, x, y)) = (0, 0, b(t, x, y))T , for a.e. (t, x, y) ∈ (0, T ) × ω,
we have for a.e. t

(22)

∫
Ωηε (t)

uε(t) · φ(t) −
∫ t

0

∫
Ωηε (s)

uε · ∂tφ + ν

∫ t

0

∫
Ωηε (s)

∇uε : ∇φ

+

∫ t

0

∫
Ωηε (s)

(uε · ∇)uε · φ −
∫ t

0

∫
ω

(∂tηε)
2b +

∫
ω

∂tηε(t) b(t)

−
∫ t

0

∫
ω

∂tηε ∂tb +

∫ t

0

∫
ω

Δηε Δb + ε

∫ t

0

∫
ω

Δ∂tηε Δb

=

∫ t

0

∫
Ωηε (t)

f · φ +

∫ t

0

∫
ω

g b +

∫
ΩηI

uI · φ(0) +

∫
ω

η̇Ib(0).

In what follows, a solution of (P0) will be denoted by (u, η) (instead of (u0, η0)).
Remark 4. The test functions depends on the solution and thus, for ε > 0, on ε.
Remark 5. The trace at time t = 0 of φ ∈ H1(Ω̂ηε

) such that φ(t, x, y, 1 +
ηε(t, x, y)) = (0, 0, b(t, x, y))T for a.e. (t, x, y) ∈ (0, T ) × ω, with b ∈ H1((0, T ) × ω),
is well-defined and makes sense at least in L2(ΩηI

). Indeed we can prove by density

arguments (C1(Ω̂ηε
) is dense in H1(Ω̂ηε

) since the domain is a continuous subgraph;
see, for instance, [1, Thm. 2, p. 54]) that

−
∫

Ωηε(0)

|φ(0)|2 = 2

∫ T

0

∫
Ωηε (t)

ψφ∂tφ +

∫ T

0

∫
Ωηε (t)

|φ|2∂tψ +

∫ T

0

∫
ω

|b|2ψ∂tηε,

where ψ belongs to D([0, T )) and satisfies ψ(0) = 1. The right-hand side of this

equality makes sense for any φ ∈ H1(Ω̂ηε) such that φ(t, x, y, 1 + ηε(t, x, y)) =
(0, 0, b(t, x, y))T for a.e. (t, x, y) ∈ (0, T ) × ω, with b ∈ H1((0, T ) × ω), since ∂tηε ∈
L∞(0, T ;L2(ω)) and b ∈ L4((0, T ) × ω).

2. Main result. We make the following hypotheses on the data (bulk forces and
initial data):

(23)
f ∈ L2

loc((0,+∞) × R
2), g ∈ L2

loc((0,+∞) × ω),
uI ∈ L2(ΩηI

), η̇I ∈ L2(ω), ηI ∈ H2
0 (ω),

and we assume moreover that conditions (21) are satisfied.
First we recall that, for ε > 0, there exists at least one weak solution provided

that the plate does not touch the bottom of the fluid cavity, in other words, as long as
min(x,y)∈ω(1+ηε(t, x, y)) > 0. The proof of the following theorem can be found in [4].

Theorem 1. Let ε be strictly positive. Under assumptions (21) and (23) and if
min(x,y)∈ω 1 + ηI(x, y) > 0, there exist T ∗

ε ∈ (0,+∞] and a weak solution (uε, ηε) of
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(Pε) on [0, T ], T < T ∗
ε . This solution satisfies an energy estimate for all T < T ∗

ε :

‖uε‖L∞(0,T ;L2(Ωηε (t))) + ‖∇uε‖L2(0,T ;L2(Ωηε (t)))

+ ‖∂tηε‖L∞(0,T ;L2(ω)) + ‖Δηε‖L∞(0,T ;L2(ω)) +
√
ε‖Δ∂tηε‖L2(0,T ;L2(ω))

≤ C(T, ‖uI‖L2(ΩηI
), ‖f‖L2((0,T )×R2), ‖g‖L2((0,T )×ω), ‖ηI‖H2

0 (ω), ‖η̇I‖L2(ω)),

where C > 0 is nondecreasing with respect to its arguments. Moreover, we have the
following alternative:

- either T ∗
ε = +∞

- or limt→T∗
ε

minω(1 + ηε) = 0.
Since uε is bounded in L2(0, T ;H1(Ωηε(t))) uniformly in ε and thanks to the

regularity of the moving elastic boundary, the trace γηε(t)(uε) is bounded in L2(0, T ;

W 1−1/p,p(ω)) ∀1 < p < 2 and in L2(0, T ;Hs(ω)) ∀0 ≤ s < 1
2 uniformly in ε (see

Lemma 2 and (14)). Thus, thanks to the equality of the velocities (4),

(24) ∂tηε is bounded, uniformly in ε, in L2(0, T ;W 1−1/p,p(ω)) ∀1 < p < 2,

and

(25) ∂tηε is bounded, uniformly in ε, in L2(0, T ;Hs(ω)) ∀0 ≤ s <
1

2
.

This will be one of the key arguments for the derivation of the compactness
properties of the sequence (uε, ηε). In particular thanks to (25) we can control,
uniformly in ε, the space high frequencies of ∂tηε in L2(0, T ;L2(ω)).

In all that follows, the characteristic function of Ω̂ηε
will be denoted by ρε, and

ρεv will denote the function equal to v in Ω̂ηε and zero elsewhere. Moreover, we choose
M large enough such that, for all ε > 0, 1 + ηε(t, x, y) ≤ M ∀(t, x, y) ∈ [0, T ] × ω,
which is made possible by (12) and (13). We set

uε =

∣∣∣∣∣ uε in Ω̂ηε
,

(0, 0, ∂tηε)
T in ĈM \ Ω̂ηε .

In all that follows, for any v in L2(0, T ;H1
0,Γ0

(Ωηε
(t))) such that γδ(t)(v) = (0, 0, b)T , b

∈ L2(0, T ;H1
0 (ω)), v is defined by (15).

The main results of the present paper are the following.
Proposition 1. The sequence (T ∗

ε )ε>0 is bounded from below away from zero,
and the following convergences (up to the extractions of subsequences) hold as ε goes
to zero:

(26)

ηε → η strongly in C0([0, T ];C0(ω)),
ηε ⇀ η weakly in L2(0, T ;H2

0 (ω)),
∂tηε → ∂tη strongly in L2(0, T ;L2(ω)),
ρεuε → ρu strongly in L2(0, T ;L2(CM )),
uε → u strongly in L2(0, T ;L2(CM )),
ρε∇uε ⇀ ρ∇u weakly in L2(0, T ;L2(CM )),

where T > 0 is a lower bound of T ∗
ε independent of ε. Moreover

γη(t)(u) = (0, 0, ∂tη)
T .
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This enables us to pass to the limit in (22) as ε tends to zero and thus obtain the
following theorem.

Theorem 2. Under assumptions (21) and (23) and if min(x,y)∈ω 1+ηI(x, y) > 0,
there exist T ∗ ∈ (0,+∞] and a weak solution (u, η) of (P0) on [0, T ], T < T ∗. This
solution satisfies energy estimates for all T < T ∗:

(27) ‖u‖L∞(0,T ;L2(Ωη(t))) + ‖∇u‖L2(0,T ;L2(Ωη(t)))

+ ‖∂tη‖L∞(0,T ;L2(ω)) + ‖η‖L∞(0,T ;H2
0ω)

≤ C(T, ‖uI‖L2(ΩηI
), ‖f‖L2((0,T )×R2), ‖g‖L2((0,T )×ω), ‖ηI‖H2

0 (ω), ‖η̇I‖L2(ω)),

where C > 0 is nondecreasing with respect to its arguments. The following alternatives
are satisfied:

- either T ∗ = +∞
- or limt→T∗ minω(1 + η) = 0.

3. Proof of Proposition 1. First we prove that Proposition 1 holds true. We
have to verify that T ∗

ε is bounded from below independently of ε and obtain compact-
ness properties on (uε, ∂tηε) in order to prove the desired strong convergences that
will enable us to pass to the limit in (Pε) as ε goes to zero.

Lower bound of T ∗
ε . For ε > 0 the solution ηε is bounded uniformly in ε in

L∞(0, T ;H2
0 (ω)) ∩W 1,∞(0, T ;L2(ω)) for all T < T ∗

ε . Thus from (13), ηε is bounded
uniformly in ε in C0,μ([0, T ];C0(ω)), 0 < μ < 1

2 . Consequently

1 + ηε(t, x, y) ≥ (1 + ηI(x, y)) − Ctμ ∀(t, x, y) ∈ [0, T ∗
ε ) × ω,

where C depends only on the data of the problem. Thus T ∗
ε is bounded from below

by a time independent of ε. Let T be such that

∀ε > 0, min
(t,x,y)∈[0,T ]×ω

(1 + ηε(t, x, y)) ≥ α > 0,

where α is chosen such that min(x,y)∈ω(1 + ηI(x, y)) ≥ 2α > 0.
Convergences of the sequence (uε, ηε). From (12) and the compact injection (13)

we deduce easily the first two convergences announced in Proposition 1. Next we
prove strong convergence properties for the fluid and the structure velocities. The
solution (uε, ηε)ε>0 we build verifies estimate (9) and (25). Furthermore, since uε is
bounded uniformly in ε in L2(0, T ;H1(Ωηε(t))), it is easy to verify that wε, de-
fined by wε(t, x, y, z) = uε(t, x, y, z(1 + ηε(t, x, y)), is bounded uniformly in ε in
L2(0, T ;W 1,p(C1)) ∀1 < p < 2. This implies, thanks to Sobolev injections (see [1,
Thm. 7.58, p. 218]) that wε is uniformly bounded in L2(0, T ;Hθ(C1)) for any θ < 1.
Moreover ∂tηε is uniformly bounded in L2(0, T ;Hs(ω)) ∀0 ≤ s < 1

2 . Consequently,
wε − Rα(∂tηε) is uniformly bounded in L2(0, T ;Hs(C1)) for any 0 ≤ s < 1

2 and
its extension by zero for z ≥ 1 is uniformly bounded in L2(0, T ;Hs(CL)) for any
s < 1

2 , L ≥ 1 (see [19]). Thus if we extend wε by (0, 0, ∂tηε)
T for z ≥ 1, this

extension is uniformly bounded in L2(0, T ;Hs(CL)) ∀0 ≤ s < 1
2 , L ≥ 1. Conse-

quently, since the change of variables φε(t, x, y, z) = (x, y, z(1 + ηε(t, x, y))
T

is in
L∞(0, T ;C0,β(CL)) ∀β < 1 as well as its inverse, it is easy to verify that

(28) uε is bounded, uniformly in ε, in L2(0, T ;Hs′(CM )) ∀0 ≤ s′ < s,∀s < 1

2
.

Moreover thanks to the Sobolev injections, wε is bounded uniformly in ε in L2(0, T ;
Lq(C1)) ∀q < 6 and ∂tηε is uniformly bounded in L2(0, T ;Lr(ω)) ∀r < 4; thus

(29) uε is bounded, uniformly in ε, in L2(0, T ;Lr(CM )) ∀r < 4.
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Nevertheless, these bounds are not sufficient to obtain the desired strong conver-
gences. We are going to use the following lemma that characterizes the compact sets
of Lp(0, T ;X), where X is a Banach space (see [23]).

Lemma 9. Let X be a Banach space and F ↪→ Lq(0, T ;X), with 1 ≤ q < ∞.
Then F is a relatively compact set of Lq(0, T ;X) if and only if

(i) {
∫ t2
t1

f(t)dt, f ∈ F} is relatively compact in X ∀ < t1 < t2 < T ;

(ii) ‖f(t + h) − f(t)‖Lq(0,T ;X) −→ 0 as h goes to zero, uniformly with respect to
f in F .

We are going to apply Lemma 9 to F = (uε, ∂tηε)ε>0, q = 2, and X = L2(CM )×
L2(ω). The first point (i) is clearly satisfied thanks to (25) and (28), and we have to
verify the second point. Given any h > 0, we denote that g−(t, ·) = g(t − h, ·) and
g+(t, ·) = g(t + h, ·). The assertion (ii) is a consequence of the following lemma.

Lemma 10. Let T > 0 such that min[0,T ]×ω(1 + ηε) ≥ α > 0. We have ∀β >
0, ∃h0 > 0, s.t. ∀ε > 0, ∀h ≤ h0

(30)

∫ T

0

∫
CM

ρε|uε − u−
ε |2 +

∫ T

0

∫
ω

(∂tηε − ∂tη
−
ε )2 ≤ β

and

(31)

∫ T

0

∫
CM

|ρεuε − ρ−ε u−
ε |2 ≤ β,

with ηε extended by ηI for t < 0 and uε and ∂tηε extended by 0 for t < 0 and where
ρε denotes the characteristic function of Ω̂ηε

.
Proof. We first show that (30) implies (31). Indeed:

|ρεuε − ρ−ε u−
ε |2 ≤ C

(
ρε|uε − u−

ε |2 + |ρε − ρ−ε ||u−
ε |2

)
.

The estimate of the first contribution comes from (30). For the second contribution
we use the fact that uε is bounded uniformly in ε in L2(0, T ;L3(CM )) (see (29)):∣∣∣∣∣
∫ T

0

∫
CM

|ρε − ρ−ε ||uε|2
∣∣∣∣∣ ≤

∫ T

0

‖ρε − ρ−ε ‖L3(CM )‖uε‖2
L3(CM ) ≤ C

∫ T

0

‖ρε − ρ−ε ‖L3(CM ).

Remember now that ∂tηε is bounded in L∞(0, T ;L2(ω)) uniformly in ε, and thus∫
CM

|ρε − ρ−ε |3 =

∫
ω

|ηε − (ηε)
−|

=

∫
ω

∣∣∣∣
∫ t

t−h

∂tηε(s)ds

∣∣∣∣
≤

∫
ω

∫ t

t−h

|∂tηε(s)|ds

≤ Ch.

It leads to

(32)

∣∣∣∣∣
∫ T

0

∫
CM

(ρε − ρ−ε )|uε|2
∣∣∣∣∣ ≤ Ch

1
3 .

This shows that (30) implies (31).
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To prove (30) we are going to make a suitable choice for the test functions in the
weak formulation satisfied by uε and ηε:

(33)

∫
Ωηε (T )

uε(T ) · φ(T ) −
∫ T

0

∫
Ωηε (t)

uε · ∂tφ + ν

∫ T

0

∫
Ωηε (t)

∇uε : ∇φ

+

∫ T

0

∫
Ωηε (t)

(uε · ∇)uε · φ −
∫ T

0

∫
ω

(∂tηε)
2b +

∫
ω

∂tηε(T ) b(T )

−
∫ T

0

∫
ω

∂tηε ∂tb +

∫ T

0

∫
ω

Δηε Δb + ε

∫ T

0

∫
ω

Δ∂tηε Δb

=

∫ T

0

∫
Ωηε (t)

f · φ +

∫ T

0

∫
ω

g b +

∫
ΩηI

uI · φ(0) +

∫
ω

η̇Ib(0),

for all (φ, b) ∈ (Vηε
∩H1(Ω̂ηε

)) × (L2(0, T ;H2
0 (ω)) ∩H1(0, T ;L2(ω)),

s.t. φ(t, x, y, 1 + ηε(t, x, y)) = (0, 0, b(t, x, y))T for a.e. (t, x, y) ∈ (0, T ) × ω.

We are going to study separately the low frequencies and the high frequencies of ∂tηε
and take advantage of the fact that ∂tηε is bounded in L2(0, T ;Hs(ω)) ∀ 0 ≤ s < 1

2
uniformly in ε (see (25)). This implies that we can control, uniformly in ε, the space
high frequencies of ∂tηε in L2(0, T ;L2(ω)).

Definition of admissible test functions. First we introduce a basis of H2
0 (ω)∩L2

0(ω)
by taking eigenfunctions (ξi)i∈N defined by:⎧⎪⎨

⎪⎩
∫
ω

ΔξiΔb = λi

∫
ω

ξib ∀b ∈ H2
0 (ω) s.t.

∫
ω

b = 0,

ξi ∈ H2
0 (ω),

∫
ω

ξi = 0,

with (λi)i∈N the sequence of increasing eigenvalues: λi > 0, λi → +∞. We choose
(ξi)i∈N orthonormal in L2(ω). We denote by dN0 the L2-projection on the finite-
dimensional space span(ξi)0≤i≤N0 of any function d and by dhf,N0 the difference d−
dN0 . Thanks to the choice of the ξi, the L2-projection on the finite-dimensional space
span(ξi)0≤i≤N0

is stable in the L2-norm as well as in the H2
0 -norm. In what follows,

we will use the fact that the following property, obtained by Hilbertian interpolation,
holds true:

(34) ∀d ∈ Hs(ω), 0 ≤ s <
1

2
, ‖dhf,N0‖L2(ω) ≤ λ

− s
2

N0
‖d‖Hs(ω).

Next, for σ > 1 we define vσ by

vσ(x, y, z) = (σv1(x, y, σz), σv2(x, y, σz), v3(x, y, σz)).

If v is divergence-free, vσ is also divergence-free.
We want now to define admissible test functions. We set

bε =

∫ t

t−h

∂tη
N0
ε (s)ds

and

φε =

∫ t

t−h

(
(uε −Rα(∂tηε))

λ
)
σ

(s)ds +

∫ t

t−h

Rα(∂tη
N0
ε )(s)ds,
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where the extension v 
→ v is defined by (15) and where Rα is the lifting operator de-
fined at Lemma 6. Moreover a space regularization of vε = uε−Rα(∂tηε), denoted by
vλ
ε , has been introduced in order to have φε uniformly bounded in H1(0, T ;H1(CM )).

It verifies div (vλ
ε ) = 0, vλ

ε ∈ L2(0, T ;H1
0 (Ωηε(t))), and

(35)
‖vε − vλ

ε ‖L2(0,T ;L2(Ωηε (t))) −→ 0, uniformly in ε, as λ goes to zero,
‖vλ

ε ‖L2(0,T ;H1(Ωηε (t))) ≤ Cλ.

Note that the construction of vλ
ε relies on the fact that ηε converges uniformly to

η and that the plate does not touch the bottom of the fluid cavity. Moreover, the
uniform convergence of (vλ

ε )λ as λ −→ 0 in L2(0, T ;L2(Ωηε(t))) is made possible since

vε is uniformly bounded in L2(0, T ;Hs′(CM )), 0 < s′ < 1/2 thanks to (17), (25), and
(28). Note that, with this choice,

‖∂tηN0
ε ‖L∞(0,T ;L2(ω)) ≤ C, ‖∂tηN0

ε ‖L2(0,T ;Hs(ω)) ≤ C,

‖bε‖W 1,∞(0,T ;L2(ω)) ≤ C, ‖bε‖H1(0,T ;Hs(ω)) ≤ C,

‖vλ
ε ‖L∞(0,T ;L2(CM )) ≤ C, ‖vλ

ε ‖L2(0,T ;Hs′ ((CM )) ≤ C ∀s′ < s < 1/2,

and

‖∂tηN0
ε ‖L∞(0,T ;H2(ω)) ≤ CN0 , ‖bε‖W 1,∞(0,T ;H2(ω)) ≤ CN0

, ‖vλ
ε ‖L2(0,T ;H1(CM )) ≤ Cλ,

where C denotes and will denote in all that follows a strictly positive constant that
depends only on the data and not on ε and N0, and CN0 (resp., Cλ) denotes and
will denote a strictly positive constant that depends on the data and not on ε but
may depend on N0 (resp., λ). The integer N0 (resp., the real λ) will be fixed later
on and will be large enough (resp., small enough). Then for well chosen σ, (φε, bε)
are admissible tests functions. Indeed, φε is divergence-free thanks to the definitions
of the lifting operator Rα, the extension operator v 
→ v, the operator v 
→ vσ, and
the regularization v 
→ vλ . Moreover φε belongs to H1(0, T ;H1(CM )). The function
bε belongs to H1(0, T ;H2

0 (ω)). Both of them are bounded in the previous spaces
independently of ε but not of N0 and λ. Moreover since

‖ηε‖L∞(0,T ;H2
0 (ω))∩W 1,∞(0,T ;L2(ω)) ≤ C,

and remembering the imbedding (13), we have

‖ηε − η−ε ‖C0([0,T ]×ω) ≤ Chμ, 0 < μ <
1

2
.

Thus if σ is such that σ ≥ 1 + 2C
α hμ, we have

φε(t, x, y, 1 + ηε(t, x, y)) =

(
0,

∫ t

t−h

∂tη
N0
ε (s, x, y)ds

)T

on ω.

In what follows we choose σ = 1 + 2C
α hμ, 0 < μ < 1

2 . Hence, with the choice of test
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functions that we made, (33) is written:

(36) −
∫ T

0

∫
Ωηε (t)

uε · ((vλ
ε )σ − (vλ

ε )−σ )

∫ T

0

∫
Ωηε (t)

uε · (Rα(∂tη
N0
ε ) −Rα(∂tη

N0
ε )−)

+

∫ T

0

∫
Ωηε (t)

(uε · ∇)uε · φε + ν

∫ T

0

∫
Ωηε (t)

∇uε :∇φε

+

∫
Ωηε (T )

uε(T ) · φε(T ) −
∫ T

0

∫
ω

∂tηε∂t(η
N0
ε − (ηN0

ε )−)

−
∫ T

0

∫
ω

(∂tηε)
2(ηN0

ε − (ηN0
ε )−) +

∫ T

0

∫
ω

ΔηεΔ(ηN0
ε − (ηN0

ε )−)

+ ε

∫ T

0

∫
ω

Δ∂tηεΔ(ηN0
ε − (ηN0

ε )−) +

∫
ω

∂tηε(T )(ηN0
ε (T ) − ηN0

ε (T − h))

=

∫ T

0

∫
Ωηε (t)

f · φε +

∫ T

0

∫
ω

g(ηN0
ε − (ηN0

ε )−).

The two first terms can be written:

(37)

−
∫ T

0

∫
Ωηε (t)

uε · ((vλ
ε )σ − (vλ

ε )−σ ) −
∫ T

0

∫
Ωηε (t)

uε ·
(
(Rα(∂tη

N0
ε ) −Rα(∂tη

N0
ε )−

)

= −
∫ T

0

∫
Ωηε (t)

uε · (uε − u−
ε ) −

∫ T

0

∫
Ωηε (t)

uε · (Rα(∂tη
hf,N0
ε ) −Rα(∂tη

hf,N0
ε )

−
)

−
∫ T

0

∫
Ωηε (t)

uε · (((vλ
ε )σ − vλ

ε ) − ((vλ
ε )−σ − (vλ

ε )−))

−
∫ T

0

∫
Ωηε (t)

uε · (((vλ
ε ) − vε) − ((vλ

ε )− − (vε)
−)).

We set I1 =
∫ T

0

∫
Ωηε (t)

uε · (uε − u−
ε ).

I1 = −1

2

∫ T

0

∫
Ωηε (t)

|uε|2 +
1

2

∫ T

0

∫
Ωηε (t)

|u−
ε |2 −

1

2

∫ T

0

∫
Ωηε (t)

|uε − u−
ε |2

= −1

2

∫ T

0

∫
Ωηε (t)

|uε|2 +
1

2

∫ T−h

0

∫
Ωηε (t+h)

|uε|2 −
1

2

∫ T

0

∫
Ωηε (t)

|uε − u−
ε |2

=
1

2

∫ T−h

0

∫
CM

(ρ+
ε −ρε)|uε|2 −

1

2

∫ T

T−h

∫
Ωηε (t)

|uε|2 −
1

2

∫ T

0

∫
Ωηε (t)

|uε−u−
ε |2.

The same argument we use to prove (32) leads to∫ T

0

∫
CM

|ρ+
ε − ρε||uε|2 ≤ Ch

1
3 .

This yields

(38) I1 ≤ Ch
1
3 − 1

2

∫ T

0

∫
Ωηε (t)

|uε − u−
ε |2.
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For the second term of (37)
∫ T

0

∫
Ωηε (t)

uε · (Rα(∂tη
hf,N0
ε ) − Rα(∂tη

hf,N0
ε )

−
) we

have, by taking into account the energy estimate (9),

∣∣∣∣∣
∫ T

0

∫
Ωηε (t)

uε · (Rα(∂tη
hf,N0
ε ) −Rα(∂tη

hf,N0
ε )

−
)

∣∣∣∣∣
≤ C‖uε‖L2(0,T ;L2(Ωηε (t)))‖Rα(∂tη

hf,N0
ε )‖L2(0,T ;L2(CM ))

≤ C(‖Rα(∂tη
hf,N0
ε )‖L2(0,T ;L2(Cα)) + ‖∂tηhf,N0

ε ‖L2(0,T ;L2(ω))).

Thanks to the properties satisfied by Rα and in particular (17) for s = 0 we have

(39) ‖Rα(∂tη
hf,N0
ε )‖L2(0,T ;L2(Cα)) ≤ C‖∂tηhf,N0

ε ‖L2(0,T ;L2(ω)),

and thus we obtain∣∣∣∣∣
∫ T

0

∫
Ωηε (t)

uε · (Rα(∂tη
hf,N0
ε ) −Rα(∂tη

hf,N0
ε )

−
)

∣∣∣∣∣ ≤ C‖∂tηhf,N0
ε ‖L2(0,T ;L2(ω)).

The definition of ∂tη
hf,N0
ε and the fact that ∂tηε is bounded in L2(0, T ;Hs(ω)), s < 1/2

independently of ε, imply, remembering (34), that

(40)∣∣∣∣∣
∫ T

0

∫
Ωηε (t)

uε · (Rα(∂tη
hf,N0
ε ) −Rα(∂tη

hf,N0
ε )

−
)

∣∣∣∣∣ ≤ C‖∂tηhf,N0
ε ‖L2(0,T ;L2(ω)) ≤ Cλ

− s
2

N0
.

We have also for the third term of (37):

(41)

∣∣∣∣∣
∫ T

0

∫
Ωηε (t)

uε · (((vλ
ε )σ − vλ

ε ) − ((vλ
ε )−σ − (vλ

ε )−)

∣∣∣∣∣
≤ 2‖uε‖L2(0,T ;L2(Ωηε (t)))‖(vλ

ε )σ − vλ
ε )‖L2(0,T ;L2(Ωηε (t)))

≤ (σ − 1)‖vλ
ε ‖L2(0,T ;H1(Ωηε (t)))

≤ Cλ(σ − 1) ≤ Cλh
μ, 0 < μ <

1

2
.

Finally, due to the properties of the space regularization v 
→ vλ, the last term of the
right-hand side of (37) goes to zero, uniformly in ε, as λ goes to zero. That is written:
∀β > 0 there exists λ0 > 0 such that ∀λ < λ0

(42)

∣∣∣∣∣
∫ T

0

∫
Ωηε (t)

uε · (((vλ
ε ) − vε) − ((vλ

ε )− − (vε)
−))

∣∣∣∣∣ ≤ Cβ ∀ε.

Now we take care of the convective term

I2 =

∫ T

0

∫
Ωηε (t)

(uε · ∇)uε ·
(∫ t

t−h

ψε

)
,
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with ψε = (vλ
ε )σ + Rα(∂tη

N0
ε ). We have

(43)

|I2| ≤
1

2

∫ T

0

‖uε‖L4(Ωηε (t))‖∇uε‖L2(Ωηε (t))

∫ t

t−h

‖ψε‖L4(Ωηε (t))

≤
√
h

2

∫ T

0

‖uε‖L4(Ωηε (t))‖∇uε‖L2(Ωηε (t))

(∫ t

t−h

‖ψε‖2
L4(Ωηε (t))

) 1
2

≤ CN0,λ

√
h.

The next term to consider is I3 = ν
∫ T

0

∫
Ωηε (t)

∇uε : ∇(
∫ t

t−h
ψε).

(44)

|I3| ≤ ν

∫ T

0

‖∇uε‖L2(Ωηε (t))

∫ t

t−h

‖∇ψε‖L2(Ωηε (t))

≤ ν
√
h

∫ T

0

‖∇uε‖L2(Ωηε (t))

(∫ t

t−h

‖∇ψε‖2
L2(Ωηε (t))

) 1
2

≤ CN0,λ

√
h.

The term I4 =
∫
Ωηε (T )

uε(T ) · (
∫ T

T−h
ψε) can be estimated as follows:

(45)

|I4| ≤ ‖uε(T )‖L2(Ωηε (T ))

∫ T

T−h

‖ψε‖L2(Ωηε (T ))

≤
√
h‖uε(T )‖L2(Ωηε (T ))

(∫ T

T−h

‖ψε‖2
L2(Ωηε (T ))

) 1
2

≤ C
√
h.

We set I5 = −
∫ T

0

∫
ω
∂tηε∂t(η

N0
ε − (ηN0

ε )−).
We have thanks to the definition of ηN0

ε

(46)

I5 = −1

2

∫ T

0

∫
ω

(∂tη
N0
ε )2 +

1

2

∫ T

0

∫
ω

((∂tη
N0
ε )−)2 − 1

2

∫ T

0

∫
ω

(∂tη
N0
ε − (∂tη

N0
ε )−)2

= −1

2

∫ T

T−h

∫
ω

(∂tη
N0
ε )2 − 1

2

∫ T

0

∫
ω

(∂tη
N0
ε − (∂tη

N0
ε )−)2

≤ −1

2

∫ T

0

∫
ω

(∂tη
N0
ε − (∂tη

N0
ε )−)2.

For the next term we have

|I6| =

∣∣∣∣∣12
∫ T

0

∫
ω

(∂tη
N0
ε )2(ηN0

ε − (ηN0
ε )−)

∣∣∣∣∣
≤ 1

2

∫ T

0

‖∂tηN0
ε ‖2

L3(ω)‖ηN0
ε − (ηN0

ε )−‖L3(ω),

but, taking into account the continuous imbedding of Hs(ω), 0 ≤ s < 1/2, in L3(ω)
and the fact that ∂tη

N0
ε is bounded uniformly in ε in L2(0, T,Hs(ω)) ∀0 ≤ s < 1/2,

‖ηN0
ε − (ηN0

ε )−‖L3(ω) ≤
∫ t

t−h

‖∂tηN0
ε ‖L3(ω) ≤ C

√
h.
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Consequently

(47) |I6| ≤ C
√
h.

The next term to consider is I7 =
∫ T

0

∫
ω

ΔηN0
ε Δ(ηN0

ε − (ηN0
ε )−). It can be esti-

mated as follows:

(48)

|I7| ≤
∫ T

0

‖ΔηN0
ε ‖L2(ω)

∫ t

t−h

‖Δ∂tη
N0
ε ‖L2(ω)

≤
√
h

∫ T

0

‖ΔηN0
ε ‖L2(ω)

(∫ t

t−h

‖Δ∂tη
N0
ε ‖2

L2(ω)

) 1
2

≤ CN0

√
h.

The additional viscous term gives for ε ≤ 1:

(49)

|I8| = ε

∣∣∣∣∣
∫ T

0

∫
ω

Δ∂tη
N0
ε Δ(ηN0

ε − (ηN0
ε )−)

∣∣∣∣∣
≤

∫ T

0

‖Δ∂tη
N0
ε ‖L2(ω)

∫ t

t−h

‖Δ∂tη
N0
ε ‖L2(ω)

≤
√
h

∫ T

0

‖Δ∂tη
N0
ε ‖L2(ω)

(∫ t

t−h

‖Δ∂tη
N0
ε ‖2

L2(ω)

) 1
2

≤ CN0

√
h.

We set I9 =
∫
ω
∂tη

N0
ε (T )(ηε(T ) − ηN0

ε (T − h)).

(50)
|I9| = ‖∂tηε(T )‖L2(ω)

∫ T

T−h

‖∂tηN0
ε ‖L2(ω)

≤ Ch.

Next I10 =
∫ T

0

∫
Ωηε (t)

f · (
∫ t

t−h
ψε) and I11 =

∫ T

0

∫
ω
g(ηN0

ε − (ηN0
ε )−) can be estimated

respectively by C
√
h and Ch.

These last two estimates and estimates (38)–(50) yield, for all β > 0, for λ small
enough

∫ T

0

∫
Ωηε (t)

|uε−u−
ε |2 +

∫ T

0

∫
ω

(∂tη
N0
ε − (∂tη

N0
ε )−)2 ≤ CN0,λh

1
3 +Cλ

− s
2

N0
+Cβ ∀ε < ε0,

with s < 1
2 . Moreover,

∫ T

0

∫
ω

(∂tη
hf,N0
ε − (∂tη

hf,N0
ε )−)2 ≤ Cλ

− s
2

N0
.

Then for all β > 0, if λ is chosen small enough, we have

∫ T

0

∫
Ωηε (t)

|uε − u−
ε |2 +

∫ T

0

∫
ω

(∂tηε − (∂tηε)
−)2 ≤ CN0,λh

1
3 +Cλ

− s
2

N0
+Cβ ∀ε < ε0.
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Thus, by choosing N0 large enough and λ small enough, we obtain that ∃h0 > 0 such
that ∀h ≤ h0

∫ T

0

∫
Ωηε (t)

|uε − u−
ε |2 +

∫ T

0

∫
ω

(∂tηε − (∂tηε)
−)2 ≤ Cβ ∀ε < ε0.

This proves Lemma 10.
Thanks to Lemma 9, we obtain that ∂tηε is compact in L2(0, T ;L2(ω)) and that

uε is compact in L2(0, T ;L2(CM )).
We now want to verify the convergences announced in Proposition 1 and to verify

that the equality between the structure velocity and the fluid velocity at the interface
holds in the limit.

Let T > 0 such that infε min[0,T ]×ω(1 + ηε) ≥ α > 0. We will denote any subse-
quence of (ηε,uε) by (ηε,uε). Thanks to the energy estimate and to the compactness
properties that have just been derived, we have, denoting by (η,u) the limit of a
subsequence of (ηε,uε), the following convergences as ε goes to zero:

ηε → η uniformly in C0([0, T ];C0(ω)),
ηε ⇀ η weakly in L2(0, T ;H2

0 (ω)),
∂tηε → ∂tη strongly in L2(0, T ;L2(ω)),
∂tηε → ∂tη weakly in L2(0, T ;W 1−1/p,p(ω)) ∀ 1 < p < 2,
∂tηε → ∂tη weakly in L2(0, T ;Hs(ω)) ∀ 0 ≤ s < 1/2,
uε → u strongly in L2(0, T ;L2(CM )),
ρεuε → ρu strongly in L2(0, T ;L2(CM )).

Moreover ρε∇uε tends to some z weakly in L2(0, T ;L2(CM )) as ε goes to zero. It is

easy to verify, since ηε → η in C0([0, T ]×ω), that z = 0 in ĈM\Ω̂η and z|Ω̂η
= ∇(u|Ω̂η

).

Thus

(51) ρε∇uε ⇀ ρ∇(u|Ω̂η
) in L2(0, T ;L2(CM )).

Note also that u = (0, 0, ∂tη)
T in ĈM \ Ω̂η, and thus u = u by setting u = u|Ω̂η

.

Next we take care of the equality

uε(t, x, y, 1 + ηε(t, x, y)) = (0, 0, ∂tηε(t, x, y))
T

on (0, T )×ω. The right-hand side converges to (0, 0, ∂tη)
T strongly in L2(0, T ;L2(ω)).

The left-hand side is the trace of the function wε(t, x, y, z) = uε(t, x, , y, z(1+ηε(t, x, y))
on z= 1, and wε converges strongly in L2(0, T ;L2(C1)) and weakly in L2(0, T ;W 1,p(C1))
∀ 1 < p < 2 to u(t, x, , y, z(1+η(t, x, y)). Hence by the continuity of the trace mapping
on z = 1, we have, for a.e. t,

u(t, x, y, 1 + η(t, x, y)) = (0, 0, ∂tη(t, x, y))
T on ω.

This ends the proof of Proposition 1.
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4. Passage to the limit—Proof of Theorem 2. Next we pass to the limit in
the weak formulation:∫

Ωηε (t)

uε(t) · φε(t) −
∫ t

0

∫
Ωηε (s)

uε · ∂tφε + ν

∫ t

0

∫
Ωηε (s)

∇uε : ∇φε

+

∫ t

0

∫
Ωηε (s)

(uε · ∇)uε · φε −
∫ t

0

∫
ω

(∂tηε)
2b +

∫
ω

∂tηε(t) b(t)

−
∫ t

0

∫
ω

∂tηε ∂tb + ε

∫ t

0

∫
ω

Δ∂tηε Δb +

∫ t

0

∫
ω

Δηε Δb

=

∫ t

0

∫
Ωηε (t)

f · φε +

∫ t

0

∫
ω

g b +

∫
Ω(0)

uI · φε(0) +

∫
ω

η̇Ib(0)

for a.e. t and for all (φε, b) ∈ (Vηε ∩H1(Ω̂ηε)) × (L2(0, T ;H2
0 (ω)) ×H1(0, T ;L2(ω)))

such that φε(t, x, y, 1 + ηε(t, x, y)) = (0, 0, b(t, x, y))T , (t, x, y) ∈ [0, T ] × ω.
The fluid test functions should depend on ε. However, it is sufficient to consider

a dense family of test functions, and it can be chosen independent of ε and admissible
for any ε small enough.

First we consider test functions of the form (φ0, 0) such that φ0 belongs to
D(∪t∈[0,T ]{t} × Ωη(t)) and div φ0 = 0. These test functions satisfy the property

that φ0(t, ·) ∈ D(Ωη(t)) ∀t. For ε small enough, since ηε converges uniformly to η,
φ0 ∈ D(∪t∈[0,T ]{t} × Ωηε

(t)).

The second pair of test functions we consider is (φ1, b), where b belongs to
L2(0, T ;H2

0 (ω)) ∩H1(0, T ;L2(ω)), with
∫
ω
b = 0 and for a.e. t

φ1 =

∣∣∣∣∣ (0, 0, b)T in ĈM \ Ĉα,

R(0, 0, z
αb)

T in Ĉα,

where Ĉα = (0, T ) × Cα and R is a linear lifting operator from {w ∈ H
1
2 (∂Cα);

∫
∂Cα

w · n = 0} onto {v ∈ H1(Cα); div (v) = 0}. We have easily that φ1 belongs
to L2(0, T ;H1(CM )) and div (φ1) = 0. Moreover since min[0,T ]×ω(1 + ηε) ≥ α,

φ1(t, x, y, 1 + ηε(t, x, y)) = (0, 0, b(t, x, y))T on (0, T ) × (ω) ∀ε. Furthermore we can
choose the linear operator R such that

(52)

∥∥∥∥∥R
(

0, 0,
zb

α

)T
∥∥∥∥∥
L2(ω×(0,α))

≤ C‖b‖L2(ω).

It can be done by solving a Stokes problem in ω×(0, α). Indeed this type of inequality
can be obtained thanks to a transposition argument and relies on a H2×H1 regularity
result for the Stokes problem, which is true here since ω × (0, α) is a convex set (see
[9] for the regularity result for the Stokes problem). Thus if R is chosen such that
(52) holds, we deduce that, for a.e. t ∈ I ⊂⊂ (0, T ), and for h small enough∥∥∥∥∥R

(
0, 0,

zb

α

)T

(t) −R
(

0, 0,
zb

α

)T

(t + h)

∥∥∥∥∥
L2(ω×(0,α))

≤ C‖b(t) − b(t + h)‖L2(ω).

Since ∂tb ∈ L2(0, T ;L2(ω)) this implies that ∂tR(0, 0, zb
α )T ∈ L2(0, T ;L2(Cα)) and

that ∂tφ
1 ∈ L2(0, T ;L2(CM )). Consequently (φ1, b) is a pair of admissible test func-

tions for all ε.
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With both types of test functions, it is easy to pass to the limit in the weak
formulation as ε goes to zero. Since the considered family of test functions is dense
in the set of functions (φ, b) ∈ (Vη ∩H1(Ω̂η)) × (L2(0, T ;H2

0 (ω)) ×H1(0, T ;L2(ω)))
such that φ(t, x, y, 1 + η(t, x, y)) = (0, 0, b(t, x, y))T , (t, x, y) ∈ [0, T ] × ω, we obtain
the existence of one weak solution on (0, T ) of (22) that moreover satisfies the energy
estimate (27) by passing to the limit as ε tends to zero in (9).

Eventually, we show that we can extend the solution, as long as we have min[0,T ]×ω

(1 + η) > 0. We do exactly as in [4], but for the sake of completness we reproduce
the proof here. We build an increasing sequence of times (Tk)k≥1 as follows. First
we choose a time T1 > 0 such that there exists a weak solution up to T1, with
m1 = min[0,T1]×ω(1+ η) > 0. Possibly changing slightly T1, we may moreover assume
that η(T1) ∈ H2

0 (ω), ∂tη(T1) ∈ L2(ω), and u(T1) ∈ L2(Ωη(T1)) (since this is true for
almost each time).

Now let k ≥ 1, and assume that we have built a solution up to some time Tk, with
mk = min[0,Tk]×ω(1 + η) > 0. Our construction allows us to build an extension of our
solution on some time interval starting from Tk. Thanks to the energy estimate (27)
(see also (9)), we have for s ≥ Tk for any 0 < λ < 3

4

(53) 1 + η(s) ≥ 1 + η(Tk) − (s− Tk)
λC(Tk, s) ≥ mk − (s− Tk)

λC(Tk, s) ,

with

C(Tk, s) = C̃
(
‖u(Tk)‖L2(ΩηI

), ‖η(Tk)‖H2
0 (ω), ‖∂tη(Tk)‖L2

0(ω),∫ s

Tk

exp(s− u)(‖f‖L2(Ωη(u))(u) + ‖g‖L2(ω)(u))du
)
,

where C̃ is positive and nondecreasing with respect to its arguments, and C(Tk, s) ≤
C(0, s). This a priori estimate shows that if we let

τk = min{1, (mk/2C(Tk, Tk + 1))
1
λ },

we can build a solution starting from u(Tk) and η(Tk), ∂tη(Tk) up to the time Tk + τk
(this corresponds to choosing α = mk/2 in the construction of the solution). The
time Tk+1 is chosen close to Tk + τk (in [Tk + τk/2, Tk + τk]), in order to have also
η(Tk) ∈ H2

0 (ω), ∂tη(Tk+1) ∈ L2(ω), and u(Tk+1) ∈ L2(Ωη(Tk+1)).
If the sequence (Tk)k≥1 is infinite, we let T ∗ = supk Tk. If T < +∞, it must

be that m = min[0,T∗]×ω(1 + η) = 0. Otherwise, we have mk ≥ m for all k, and

hence τk ≥ min{1, (m/2C(0, T ∗))
1
λ } > 0. But Tk+1 − Tk ≥ τk/2 and goes to zero, a

contradiction. This achieves the proof of the theorem.

5. Conclusion. We have proved the existence of at least one weak solution for
a three-dimensional fluid-plate interaction problem without any (artificial) viscosity
of the structure.
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Abstract. The scattering of a time-harmonic plane wave in an inhomogeneous medium is
modeled by the scattering problem for the Helmholtz equation. A transmission eigenvalue is a
wavenumber at which the scattering operator has a nontrivial kernel or cokernel. Because many
sampling methods for locating scatterers succeed only at wavenumbers that are not transmission
eigenvalues, they have been studied for some time. Nevertheless, the existence of transmission
eigenvalues has previously been proved only for radial scatterers. In this paper, we prove existence
for scatterers without radial symmetry.
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1. Introduction. The scattering of a time-harmonic plane wave in an inhomo-
geneous medium is modeled by the scattering problem for the Helmholtz equation.
The total wave u satisfies the perturbed Helmholtz equation

(1.1)
(
Δ + k2(1 + m)

)
u = 0 in R

n.

The function m(x) denotes the perturbation of the index of refraction from the con-
stant background medium; i.e., n2(x) = 1 + m(x). We insist that −1 < m(x) be
compactly supported and bounded. The relative (far field) scattering operator, s+,
compares the asymptotics of solutions of the free Helmholtz equation to those of (1.1).
Both the linear sampling method and the factorization method use the range of this
operator to find the support of the scatterer m. These methods are known to succeed
at wavenumbers k for which the range of that operator is dense among all far field
patterns (i.e., dense in L2(Sn−1)). If there exists a bounded domain D that con-
tains the support of m(x), and the wavenumber k is not a transmission eigenvalue as
defined below, then the range of the scattering operator is dense [5].

Definition 1. A wavenumber k is called a transmission eigenvalue if there exists
a nontrivial pair (v, w) solving

Δw + k2n2(x)w = 0 in D,(1.2)

Δv + k2v = 0 in D,(1.3)

w = v,
∂w

∂ν
=

∂v

∂ν
on ∂D.(1.4)

If D is not smooth enough, we replace (1.4) with the condition that u−v ∈ H2
0 (D).

Under the conditions that m > 0 or m < 0 on its support, it has been shown that
the set of transmission eigenvalues is at most discrete [4], [12], but existence has

∗Received by the editors July 17, 2007; accepted for publication (in revised form) April 4, 2008;
published electronically July 18, 2008.

http://www.siam.org/journals/sima/40-2/69752.html
†Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland (ljp@rni.

helsinki.fi). This author’s research was supported by a grant from the Academy of Finland.
‡Department of Mathematics, University of Washington, Seattle, WA 98195 (sylvest@u.

washington.edu). This author’s research was supported by ONR grant N00014-05-1-0716 and NSF
grant DMS-0355455.

738



TRANSMISSION EIGENVALUES 739

been established only for m, which depends only on the radius [6]. Under certain
conditions, knowledge of the transmission eigenvalues uniquely determines a radial
scatterer [9], [10]. For nonradial scatterers, transmission eigenvalues have also been
used to infer simple properties of the scatterer [3].

Under the hypothesis that the infimum of |m| is large enough, we prove existence
of transmission eigenvalues, as well as upper and lower bounds on the first transmission
eigenvalue. The existence and upper bounds are new; the lower bounds are results
from [7] and [3].

In [7], we showed that the following three conditions were equivalent. Notice
that (1.5) differs from (1.3) in that the condition below requires that v solve the
free Helmholtz equation in all or R

n rather than just in D. Such v which can be
represented as superpositions of plane waves with L2 densities are called Herglotz
wave-functions.

1. There exists a nontrivial pair (v, w) solving

Δw + k2n2(x)w = 0 in D,

Δv + k2v = 0 in R
n,(1.5)

w = v,
∂w

∂ν
=

∂v

∂ν
on ∂D.

2. There exists a nontrivial μ0 ∈ ker s+.
3. There exists a nontrivial μ0 ∈ coker s+.

In the case that v is a Herglotz wave-function, its asymptotic expansion (its far
field) belongs to both the kernel and the cokernel of the far field scattering operator.
We will show below that, for scatterers supported in a compact set D, the far field
scattering operator has a natural extension, and that transmission eigenvalues are
exactly the wavenumbers for which this natural extension has a kernel or cokernel.

2. The Helmholtz equation and the scattering operator. The scattering
operator relates the solutions of (1.1) to solutions of the free Helmholtz equation in
all of R

n:

(2.1)
(
Δ + k2

)
u0 = 0 in R

n.

We refer to solutions of (2.1) with finite B∗-norm, defined by

||u0||B∗ = sup
R>0

1√
R
||u0||L2(BR),

as incident waves or free waves. An outgoing wave is a solution to the Helmholtz
equation with a compactly supported source f

(2.2)
(
Δ + k2

)
v+ = f in R

n

that satisfies the Sommerfeld radiation condition

(2.3) lim
r→∞

r
n−1

2

(
∂v+

∂r
− ikv+

)
= 0

or, equivalently (for k > 0), a limiting absorption principle

(2.4) v+ = lim
ε↓0

v+
ε ,
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where v+
ε is the unique solution to (2.2) with k2 ∈ R replaced by k2 + iε (see, e.g.,

section 4 of [1]). We could also define an outgoing wave as a solution to

(2.5)
(
Δ + k2(1 + m)

)
w+ = g

with a compactly supported g, and satisfying (2.3) or (2.4). Because m is compactly
supported, the definition based on (2.5) and that based on (2.2) coincide. That is, an
outgoing solution v+ to (2.2) is also an outgoing solution w+ to (2.5) with g = f−mv+.

Existence and uniqueness of outgoing solutions to (2.5) were proved by Agmon in
weighted L2 spaces1 [1]. Theorem 2 below is a special case of results in [2], and parts
of Theorems 3 and 4 are special cases of results in [2] and section 14 of [8].

Define B to be the completion of C∞
0 (Rn) in the B-norm

||f ||B = ||f ||L2(|x|∈[0,1]) +

∞∑
j=1

1√
2j

||f ||L2(|x|∈[2j ,2j+1]).

Theorem 2. For every compactly supported g, there exists a unique outgoing
solution to (2.5), with

||w+||B∗ ≤ C||g||B ,

where the constant C depends on m and k.
Because compactly supported functions are dense in B, the correspondence in

Theorem 2 defines a bounded map

G+
m : B −→ B∗

mapping g ∈ B to w+. In the rest of the paper, whenever we refer to waves, we mean
subspaces of B∗:

1. B0 is the subspace of incident waves, i.e., solutions to (2.1).
2. Bm is the subspace of total waves, i.e., solutions to (1.1).
3. B+ is the subspace of outgoing waves, the range of G+

0 .2

Both B0 and Bm are closed in the B∗ topology. One way to see this is to note
that B∗ convergence implies convergence in the sense of tempered distributions so
that any u in the closure of B0 or Bm must satisfy (2.1) or (1.1), respectively, in the
sense of distributions. As Schwartz class functions are dense in B, the equations are
satisfied in the B∗ sense as well. The plane waves, eikΘ·x, are not in B0. We shall
note in Theorem 4 below that B0 consists of the Herglotz wave-functions, solutions
to (2.1) which have square integrable far fields. The far fields of the plane waves
are Dirac deltas. The subspace B+ is not closed in the B∗ topology. In particular,
every function in B+ is in H2

loc(R
n) and satisfies the radiation condition (2.3), and

every compactly supported function in H2
loc(R

n) belongs to B+. Because we have
defined B+ as the range of G+

0 , which is injective, B+ is a Banach space with norm
||G+

0 f ||B+ := ||f ||B .
A straightforward consequence of Theorem 2 is the correspondence between inci-

dent and total waves.

1||f ||L2
δ

= ||(1 + |x|2)
δ
2 f ||L2 .

2This is also the range of G+
m for any bounded compactly supported m.
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Theorem 3. Every total wave has a unique decomposition into an incident wave
plus a scattered wave, and every incident wave has a unique decomposition as a total
wave minus a scattered wave:

vm = v0 + v+,(2.6)

u0 = um − u+.(2.7)

Moreover, the scattering map S, defined as u0 �→ um, is an isomorphism from B0

onto Bm.
Proof. We prove the second assertion first. Any u0 that solves (2.1) also solves

(
Δ + k2(1 + m)

)
u0 = k2mu0.

Let u+ be the unique outgoing solution to (2.5) with g = −k2mu0. Note that

||u+||B∗ ≤ C1||g||B ≤ k2C1||mu0||B ≤ k2C2||u0||B∗ ,

where both constants depend on an upper bound for m and the size of its support.
Defining um = u0 +u+ and noting that it satisfies (1.1) gives decomposition (2.7)

and the estimate

(2.8) ||um||B∗ ≤ C3||u0||B∗ .

If u0 = wm−w+ is another such decomposition, then w+ must also satisfy (2.5) with
g = −k2mu0, but (2.5) has a unique outgoing solution, so w+ = u+ and wm = um.

Similarly, any vm solving (1.1) is a solution to

(
Δ + k2

)
vm = −k2mvm.

Let v+ be the unique outgoing solution to (2.2) with f = −k2mum, and set v0 =
vm − v+. Uniqueness follows as in the paragraph above, as does the estimate

(2.9) ||u0||B∗ ≤ C3||um||B∗ .

The existence and uniqueness of the two decompositions (2.6) and (2.7) along with the
estimates (2.8) and (2.9) justify the last statement in the theorem—that the scattering
map is an isomorphism.

In order to see the relationship between the scattering operator we have defined
above and the scattering operator defined on far fields, we need to discuss asymptotics.

Theorem 4. Let u0 ∈ B0, u+ ∈ B+, and um ∈ Bm; then, in spherical coordi-
nates x = rΘ for large r,

u0 ∼ μ0(Θ)
eikr

(ikr)
n−1

2

+ μ0(−Θ)
e−ikr

(−ikr)
n−1

2

,(2.10)

u+ ∼ μ+(Θ)
eikr

(ikr)
n−1

2

,(2.11)

um ∼ (μm(Θ) + γ(Θ))
eikr

(ikr)
n−1

2

+ μm(−Θ)
e−ikr

(−ikr)
n−1

2

.(2.12)
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Moreover, the mappings

b0 : B0 −→ L2(Sn−1),

bm : Bm −→ L2(Sn−1)

defined by u0 �→ μ0 and by um �→ μm are isomorphisms. The mapping

b+ : B+ −→ L2(Sn−1)

defined by u+ �→ μ+ is surjective.3 Every compactly supported function in H2(Rn)
belongs to its kernel and any function in its kernel is compactly supported (Rellich’s
lemma).

Sketch of proof. The operator (b0)−1is known as the Herglotz operator. We can
start with any μ0 ∈ L2(Sn−1) and define

u0 = Hμ0 =

∫
Sn−1

eikΘ·xμ0(Θ)dSΘ.

Noting that any u0 ∈ B0 is the inverse Fourier transform of a distribution supported
on the sphere |ξ|2 − k2 = 0 shows that u0 must have this form, but it requires an
estimate [2] to see that μ0 ∈ L2. A stationary phase calculation shows that Hμ0 has
the asymptotics (2.10) when μ0 is smooth. Again we refer the reader to [2] for the
estimate that ||u||B∗ ≤ C||μ0||L2(Sn−1).

A similar Fourier transform calculation combined with the limiting absorption
principle, or a calculation of the asymptotics of the outgoing Green’s function, gives
(2.11). Alternatively, we may note that u+(x, k)−u+(x,−k) belongs to B0 and deduce
(2.11) from (2.10).4 The surjectivity of b+ then follows from the surjectivity of b0.

Because of the decomposition um = u0 + u+ in Theorem 3, (2.12) follows from
(2.10) and (2.11). Rellich’s lemma and unique continuation imply that b0 and bm are
injective, as well as the final statement in the theorem.

We refer to the large r asymptotics as the far fields of the corresponding waves;
e.g., the far field of u0 is μ0, the far field of u+ is μ+, and the far field of um is μm.
We use (2.12) to define the far field (relative scattering) operator

s+ : L2(Sn−1) −→ L2(Sn−1)

by

μm �→ γ.(2.13)

The wave scattering operator S and the far field operator s+ are closely related.
Lemma 5. Let u0 and w0 belong to B0, with far fields μ0 and ω0, respectively.

Then ∫
Rn

u0mSw0 =
−2i

kn

∫
Sn−1

μ0s+ω0.

3The surjectivity of b+, b0, and bm is perhaps the main reason for replacing the L2
δ spaces in [1]

with the Besov spaces, B and B∗, of [2].
4Changing the sign of k reverses the sign of ε in the limiting absorption principle and changes the

sign of the second term in the Sommerfeld radiation condition, thus specifying the unique incoming,
rather than the outgoing, solution.
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Proof.

∫
Rn

u0k2mSw0 =

∫
Rn

u0k2mwm,

where wm = w0 + w+, as in (2.6),

= −
∫

Rn

u0
(
Δ + k2

)
wm(2.14)

= −
∫

Rn

u0
(
Δ + k2

)
w+

= − lim
R→∞

∫
|x|<R

u0
(
Δ + k2

)
w+

= lim
R→∞

∫
|x|=R

∂u0

∂ν
w+ − u0

∂w+

∂ν
.

Making use of the asymptotics in (2.11) and (2.12) gives

=
−2i

kn−2

∫
Sn−1

μ0ω+,(2.15)

where ω+ denotes the far field of w+,

=
−2i

kn−2

∫
Sn−1

μ0s+ω0.

A consequence of Lemma 5 is a natural definition of the relative scattering oper-
ator, which does not explicitly use asymptotics.

Theorem 6. If we define

S+ : B0 −→ B0∗

by

w0 S+

�−→ −kn

2i

〈
mSw0, ·

〉
,(2.16)

then

s+ = H∗S+H.(2.17)

Proof.

〈H∗S+Hω0, μ0〉
= 〈S+Hω0,Hμ0〉

=
−kn

2i

∫
Rn

Hμ0mSHω0

=
−kn

2i

∫
Rn

u0mSw0

=

∫
Sn−1

μ0s+ω0

= 〈s+ω0, μ0〉.
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Remark 7. Because B0 ⊂ L2
−δ for any δ > 1

2 , any l ∈ B0∗ has a (nonunique)

extension to an element of L2
δ = L2

−δ
∗
, so elements of B0∗ can be represented as

functions (and called sources).

3. A generalized scattering operator. We describe an incident wave Hα as
illuminating the scatterer m. If we use the far field operator s+, the illumination
must always come from the sphere at infinity. Many useful sources of illumination
are generated by sources outside the scatterer. The waves generated by such sources
are never incident waves, although they can be approximated by incident waves on
certain compact sets. Solutions to the transmission eigenvalue problem (1.2)–(1.4)
are not incident waves, so they do not have a direct interpretation in terms of the far
field scattering operator. They do, however, span exactly the kernel of the scattering
operator we will define below.

If m ∈ L∞ is supported in a bounded domain D, Theorem 2 tells us that we can
find a unique u+ ∈ B+ solving(

Δ + k2(1 + m)
)
u+ = k2mu0

for any u0 ∈ L2(D). It follows that um = u0 + u+ ∈ L2(D). Thus the scattering
operator S has a natural extension,

SD : B0
D −→ Bm

D ,

where we use the definitions

B0
D =

{
w ∈ L2(D)

∣∣ (Δ + k2
)
w = 0 in D

}
,

Bm
D =

{
w ∈ L2(D)

∣∣ (Δ + k2(1 + m)
)
w = 0 in D

}
.

The relative scattering operator S+ has a similar extension:

S+
D : B0

D −→ B0
D

∗
,

w0 S+
D�−→ kn

2i

〈
mSDw0, ·

〉
.

The scattering and relative scattering operators SD and S+
D are extensions of S

and S+ in the sense that, for u0, w0 ∈ B0, then SDu0 is the restriction of Su0 to D
and 〈S+

Du0, w0〉 = 〈S+u0, w0〉.
4. The interior transmission problem. Let D be a bounded domain and

suppm ⊂ D. We will use the notation

P 0 =
(
Δ + k2

)
,

Pm =
(
Δ + k2(1 + m)

)
,

Hk(D) =
{
u ∈ L2(D)

∣∣ Dαu ∈ L2(D) ∀ |α| ≤ k
}
,

Hk
0 (D) = the completion of C∞

0 (D) in Hk(D).

Definition 8. We say that a wavenumber k is a D-transmission eigenvalue of
m ∈ L∞(D) if any of the equivalent conditions in Theorem 9 below are satisfied.

Theorem 9. The following are equivalent:
1. There exist nontrivial u0 ∈ B0

D and um ∈ Bm
D with u0 − um ∈ H2

0 (D).5

5This is a restatement of (1.2)–(1.4). The condition that u0 ∈ B0
D is (1.3), um ∈ Bm

D is (1.2),
and u0 − um ∈ H2

0 (D) is (1.4).
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2. There exists nontrivial um ∈ Bm
D such that the unique outgoing solution u+

to

(4.1) P 0u+ = −k2mum

belongs to H2
0 (D).

3. There exist nontrivial um ∈ Bm
D and some v ∈ H2

0 (D) satisfying (4.1).
4. There exists nontrivial u0 ∈ B0

D such that the unique outgoing solution u+ to

(4.2) Pmu+ = −k2mu0

belongs to H2
0 (D).

5. There exist nontrivial u0 ∈ B0
D and some v ∈ H2

0 (D) satisfying (4.2).
6. There exists nontrivial u0 ∈ kerS+

D.
7. There exists nontrivial u0 ∈ coker S+

D.
Proof. We first show that items 1–5 are equivalent.
Condition 2 obviously implies 3, but any H2

0 (D) solution, v, to (4.1) extended to
be zero in R

n \D is outgoing. Since the outgoing solution to (4.1) is unique, v = u+,
so 3 implies 2.

Similarly, 4 obviously implies 5, but uniqueness of the outgoing solution to (4.2)
implies that any H2

0 (D) solution to (4.2), extended to be zero outside D, must be u+,
so 5 implies 4.

Because Theorem 3 gives a unique decomposition,

(4.3) um = u0 + u+,

the unique outgoing solution to (4.1) is also the unique outgoing solution to (4.2).
Thus 4 and 2 are equivalent.

The same decomposition shows that u+ = um − u0, so the left-hand side is in
H2

0 (D) if and only if the right-hand side is; hence 1 is equivalent to 2.
The equivalence of items 6 and 2 is based on a calculation. Let u0 and w0 belong

to B0
D,

〈w0,S+
Du0〉 = −kn

2i

〈
w0,mSDu0

〉
= −kn

2i

∫
D

w0mum,(4.4)

where um in the line above and u+ in the line below are those uniquely related to u0

by (4.3) and Theorem 3,

= −kn−2

2i

∫
D

w0P 0u+(4.5)

=
kn−2

2i

∫
∂D

∂w0

∂ν
u+ − w0

∂u+

∂ν
.(4.6)

The right-hand side of (4.6) is clearly zero for every w0 if u+ ∈ H2
0 (D), so 2 implies

6. To see the converse, choose w0 = Hω0 (i.e., w0 ∈ B0 with asymptotics as in
(2.10)). Every u+ ∈ B+ has asymptotics as in (2.11), so we may continue the previous
calculation,

〈w0,S+
Du0〉 =

kn−2

2i
lim

R→∞

∫
BR

∂w0

∂ν
u+ − w0

∂u+

∂ν

=

∫
Sn−1

ω0μ+.
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We conclude that, if the left-hand side vanishes for every w0, so does the right-hand
side for every ω0, so μ+ ≡ 0. Now Rellich’s lemma and unique continuation tell us
that u+ ∈ H2

0 (D), so 6 implies 2.
Verifying the equivalence of items 7 and 2 requires a similar computation,

2i

kn−2
〈u0,S+

Dw0〉 = −
∫
D

u0k2mwm

=

∫
D

u0P 0wm

=

∫
∂D

∂u0

∂ν
wm − u0 ∂w

m

∂ν

=

∫
∂D

∂u0

∂ν
wm − u0 ∂w

m

∂ν
−
∫
∂D

∂um

∂ν
wm − um ∂wm

∂ν
,

because the second integral on the right is always zero. Combining the two terms
gives

2i

kn−2
〈u0,S+

Dw0〉 = −
∫
∂D

∂u+

∂ν
wm − u+ ∂wm

∂ν
.(4.7)

Now 2 implies that the right-hand side of (4.7) is zero, so the left-hand side is zero
for every w0, which implies 7. If we choose w0 ∈ B0 and continue the calculation,

=

∫
Sn−1

μ+ωm.(4.8)

Item 7 implies that the integral in (4.8) vanishes for every ωm, so μ+ ≡ 0. Rellich’s
lemma and unique continuation then guarantee that u+ ∈ H2

0 (D), which implies item
2.

Note that if suppm ⊂ D̃ ⊂ D, then SD̃ is an extension of SD. The smaller we
make D, the larger we make B0

D, the domain of the operator SD. Therefore, if k is a
D-transmission eigenvalue of m, then k is also a D̃-transmission eigenvalue.

5. Existence of transmission eigenvalues. In this section we restrict our
attention to the case that D = suppm. We assume further that m is bounded away
from zero in D. The theorem below was first proved in [12].

Theorem 10. If |m| > δ > 0 in D, then k is a D-transmission eigenvalue if and
only if there exists u+ ∈ H2

0 (D) satisfying

(5.1) Pm 1

m
P 0u+ = 0.

Proof. We show that (5.1) is equivalent to item 2 in Theorem 9. If u+ ∈
H2

0 (D) satisfies

P 0u+ = −k2mum,(5.2)

then

1

m
P 0u+ = −k2um,(5.3)

and

Pm 1

m
P 0u+ = 0.
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To see the reverse implication, suppose that u+ ∈ H2
0 (D) satisfies (5.1) (recall that

any u+ ∈ H2
0 (D) is outgoing), and define um so that (5.3) holds. It is a consequence

of (5.1) that um ∈ Bm
D so that (5.2) implies (4.1).

Theorem 10 tells us that k is a D-transmission eigenvalue whenever the operator
Pm 1

mP 0 has a kernel in H2
0 (D). We will investigate the existence of this kernel (5.1)

by examining the spectrum of the operator as k2 changes. We will make use of several
equivalent formulas for Pm 1

mP 0 which we list below. We will let τ = k2.

Pm 1

m
P 0 = P 0 1

m
Pm

= Δ
1

m
Δ + τ

(
Δ

1

m
+

(
1 +

1

m

)
Δ

)
+ τ2

(
1 +

1

m

)

= (Δ + τ)
1

m
(Δ + τ) + τ (Δ + τ)

= (Δ + τ(1 + m))
1

m
(Δ + τ(1 + m)) − τ (Δ + τ(1 + m)) .(5.4)

The following lemma asserts that Pm 1
mP 0, with the appropriate domain, defines

a semibounded self-adjoint operator on L2(D).
Lemma 11. For τ ≥ 0, tτ , defined by

tτ (u) =

∫
D

1

m
| (Δ + τ)u|2 − τ

∫
D

| gradu|2 + τ2

∫
D

|u|2(5.5)

with form domain H2
0 (D), is a densely defined, closed, semibounded quadratic form

on L2(D). Tτ , The unique densely defined self-adjoint operator associated to tτ , Tτ ,
is equal to Pm 1

mP 0 on its domain

(5.6) D(Tτ ) =

{
u ∈ H2

0 (D)

∣∣∣∣ 1

m
(Δ + τ) ∈ H2(D)

}
.

Proof. We state without proof that H2
0 (D) is dense in L2(D). To see that tτ is

semibounded, we write

tτ (u) =

∫
D

1

m
| (Δ + τ)u|2 + τ

∫
D

u((Δ + τ)u)

≥ 1

sup(m)
|| (Δ + τ)u||2 − τ || (Δ + τ)u||||u||

≥
(

1

sup(m)
− τε

)
|| (Δ + τ)u||2 − τ

ε
||u||2

≥ 1

2 sup(m)
|| (Δ + τ)u||2 − 2 sup(m)τ2||u||2(5.7)

after choosing ε = 1
2τ sup(m) . We record for later use the consequence of (5.7) that

(5.8) || (Δ + τ)u||2 ≤ 2 sup(m)tτ (u) + (2 sup(m)τ)2||u||2.

Every densely defined semibounded quadratic form defines a unique self-adjoint
operator [11, page 278], Tτ , with domain the set of u ∈ H2

0 (D) such that there is an
f ∈ L2(D) with

t(v, u) = (v, f)
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for all v ∈ H2
0 (D), where t(v, u) is the bilinear form

t(v, u) =

∫
D

((Δ + τ) v
1

m
(Δ + τ)u + τv(Δ + τ)u

=

∫
D

v

(
(Δ + τ)

1

m
(Δ + τ)

)
u + τ

∫
D

v (Δ + τ)u

= (v, Tτu) ,

where the second and third equalities hold for all u ∈ D(Tτ ) and illustrate that
Tτ = Pm 1

mP 0 with D(Tτ ), as asserted in (5.6).
Lemma 12. Tτ has discrete spectrum which depends continuously on τ .
Proof. Because Tτ is semibounded and H2

0 (D) is compactly embedded in L2(D),
Tτ has a compact resolvent and therefore discrete spectrum. For m’s that are not
smooth, the domains of Tτ may depend on τ . We give a direct proof of the continuity
of the eigenvalues. We shall show below that, for all positive real σ and τ ,

(5.9) tσ(u) ≤ (1 + M |σ − τ |) tτ (u) + M(τ2 + σ + 1)|σ − τ | ||u||2,

where the constant M depends only on m. We recall the min-max characterization
of the eigenvalues of a self-adjoint operator defined by a quadratic form [13, p. 71]

(5.10) λn = max
W∈Wn

min
u∈W
||u||=1

q(u),

where Wn denotes the codimension n subspaces of the form domain of q. An immedi-
ate consequence of (5.10) is that inequalities between quadratic forms imply the same
inequalities for their ordered eigenvalues so that (5.9) implies

λn
σ ≤ (1 + M |σ − τ |)λn

τ + M(τ2 + σ + 1)|σ − τ |

and, consequently,

λn
σ − λn

τ ≤ |σ − τ |M
(
λn
τ + (τ2 + σ + 1)

)
.(5.11)

Because we may interchange σ and τ ,

|λn
σ − λn

τ | ≤ |σ − τ |M
(
max(λn

τ , λ
n
σ) + 2(τ2 + σ2 + 1)

)
.(5.12)

First fix σ in (5.11), and set τ = 0 to conclude that each λn
σ varies only over a compact

set when σ varies over a compact set. Thus the maximum, max(λn
τ , λ

n
σ), is bounded

for σ and τ on compact sets, and therefore (5.12) proves continuity of the eigenvalues.
It remains only to prove (5.9). We begin by writing

tσ(u) − tτ (u) = (σ − τ)

∫ (
u

1

m
(Δ + τ)u + (Δ + τ)u

1

m
u + τ2|u|2

)

+ (σ − τ)2
∫ (

u (Δ + τ)u +
1

m
|u|2

)
≤ |σ − τ |(1 + |σ − τ |)M

(
||u|| || (Δ + τ)u|| + τ2||u||2

)
,

where M depends only on 1
m . For any ε > 0

≤ |σ − τ |(1 + |σ − τ |)M
(
ε|| (Δ + τ)u||2 +

(
τ2 +

1

ε

)
||u||2

)
.
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We make use of (5.8) to obtain with a different M

≤ |σ − τ |(1 + |σ − τ |)M
(
εtτ (u) +

(
(ε + 1)τ2 +

1

ε

)
||u||2

)
≤ |σ − τ |M

(
tτ (u) + (τ2 + σ + 1)||u||2

)
after choosing 1

ε = 1 + |σ − τ |.
Lemma 13. If

(5.13) sign(m) inf
u∈H2

0 (D)

tτ (u)

||u||2 > 0,

then τ is not a transmission eigenvalue. If there exists u ∈ H2
0 (D) such that

(5.14) sign(m)
tτ (u)

||u||2 ≤ 0,

then there is a transmission eigenvalue τ∗ ∈ [0, τ ].
Proof. The hypothesis (5.13) implies that the spectrum of Tτ is strictly positive

or strictly negative; hence it has no kernel.
The hypothesis (5.14) implies that sign(m)Tτ has at least one nonpositive

eigenvalue. But sign(m)T0 is easily seen to be positive definite, so the lowest
eigenvalue, which is a continuous function of τ , must have passed through zero for
some τ∗ ∈ [0, τ ].

We will use a simple modification of Lemma 13 to show the existence of more than
one transmission eigenvalue. We define the multiplicity of a transmission eigenvalue
τ∗ to be the multiplicity of 0 as an eigenvalue of Tτ∗ .

Lemma 14. If there exists a τ > 0 and a p-dimensional subspace V p ∈ H2
0 (D) such

that

sign(m)
tτ (u)

||u||2 ≤ 0

for all u ∈ V p, then there are p-transmission eigenvalues, counting multiplicity, in
[0, τ ].

Proof. The hypothesis guarantees that tτ has p negative eigenvalues, counting
multiplicity. The continuity of the spectrum implies that each of those eigenvalues
must pass through zero as τ∗ decreases from τ to 0. Each time an eigenvalue passes
through 0, the dimension of the negative definite subspace, V p, decreases by the
multiplicity of the zero eigenvalue, so the sum of the multiplicities of the transmission
eigenvalues between 0 and τ must be at least p.

We will need a few simple inequalities to prove the theorems to follow. We collect
them in the lemma below.

Lemma 15.

λ0(D) = inf
u∈H1

0 (D)

∫
D
| gradu|2∫
D
|u|2 = inf

u∈H2
0 (D)

∫
D
| gradu|2∫
D
|u|2 > 0,(5.15)

μ0(D) = inf
u∈H2

0 (D)

∫
D
|Δu|2∫

D
|u|2 ≥ inf

u∈H1
0∩H2

∫
D
|Δu|2∫

D
|u|2 = λ0(D)2.(5.16)

If u ∈ H2
0 (D),

λ0(D) ≤
∫
D
| gradu|2∫
D
|u|2 ≤

(∫
D
|Δu|2

) 1
2(∫

D
|u|2

) 1
2

.(5.17)
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Proof. The first equality in (5.15) is the Rayleigh–Ritz characterization of the
first Dirichlet eigenvalue. The second follows because H2

0 (D) is dense in H1
0 (D). The

first equality in (5.16) is the Rayleigh–Ritz characterization of the lowest eigenvalue
of the biharmonic operator with Dirichlet boundary conditions, the lowest eigenvalue
of the clamped plate. The inequality holds because H2

0 (D)⊂H1
0 (D)

⋂
H2(D), so

the first infimum must be larger. The second infimum is exactly the Rayleigh–Ritz
characterization for the lowest eigenvalue of the Dirichlet Laplacian squared,6 which
is the square of the first Dirichlet eigenvalue, which proves the final equality in (5.16).
The first inequality in (5.17) follows from the meaning of infimum and the second
from integration by parts and the Cauchy–Schwarz inequality.

Theorem 16. Suppose that m > −1 is a constant. If

(5.18) τ ≤ min

(
1,

1

m + 1

)
λ0(D),

then τ is not a transmission eigenvalue. If

(5.19)
(1 + m

2 )2

1 + m
≥ μp

λ2
0

≥ 1,

where μp(D) is the (p+1)st clamped plate eigenvalue, then there are p+1 transmission
eigenvalues τ with

(5.20) τ ≤
(
m + 2

m + 1

)
λ0(D)

2
.

Proof. It follows from (5.4) that

mtτ (u) = || (Δ + τ(1 + m))u||2 −mτ

∫
D

u (Δ + τ(1 + m))u

> mτ
[
|| gradu||2 − (1 + m)τ ||u||2

]
≥ mτ [λ0(D) − (1 + m)τ ] ||u||2,

which shows that, for 0 < m and τ ≤ λ0(D)
1+m , tτ is positive definite and therefore that

τ is not a transmission eigenvalue. If m < 0, we express tτ as in (5.5),

mtτ (u) = || (Δ + τ)u||2 −mτ || gradu||2 + mτ2||u||2

≥ (−m)τ ||u||2(λ0(D) − τ),

which shows that tτ is positive definite as long as τ < λ0(D) and finishes the proof of
the assertion that τ satisfying (5.18) is not a transmission eigenvalue.

6Functions in the domain of the square of the Dirichlet Laplacian must satisfy a second boundary
condition, Δu

∣∣
∂D

= 0. Analogous to the case of the Neumann Laplacian, this is a free boundary
condition which does not appear explicitly in the definition of the form domain and therefore does
not appear explicitly in (5.16).
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To prove the existence of transmission eigenvalues, we will use Lemma 14. Re-
stricting our attention to the sphere, ||u||2 = 1, we may write

mtτ (u) = (m + 1)τ2 − 2

(
1 +

m

2

)
|| gradu||2τ + ||Δu||2

≤ (m + 1)τ2 − 2
(
1 +

m

2

)
λ0τ + ||Δu||2.

We choose τ =
1+m

2

1+m λ0 to obtain

≤ −
(
1 + m

2

)2
1 + m

λ2
0 + ||Δu||2

and restrict u to the eigenspace associated with the lowest p+ 1 clamped plate eigen-
values so that

mtτ (u) ≤ −
(
1 + m

2

)2
1 + m

λ2
0 + μp.

Our hypothesis (5.19) is that this quantity is negative, so the conclusion (5.20) follows
from Lemma 14.

Theorem 17. Suppose that m ∈ L∞(D). If

τ ≤ min

(
1,

1

sup(m) + 1

)
λ0(D),

then τ is not a transmission eigenvalue. If m > 0 and

(5.21) inf(m) ≥ 4
μ

1
2
p

λ0
+

μp

λ2
0

,

then there are p + 1 transmission eigenvalues τ with

τ ≤ λ0(D)

2

⎛
⎜⎝ inf(m) − 2μ

1
2
p

λ0

inf(m) + 1

⎞
⎟⎠ .

Proof. For m > 0,

tτ (u) =

∫
1

m
| (Δ + τ(1 + m))u|2 − τ

∫
u (Δ + τ(1 + m))u

≥ τ || gradu||2 − τ2

∫
(1 + m)|u|2

≥ τ ||u||2 (λ0 − τ(1 + supm)) ,

which shows that tτ is positive definite if τ < λ0

1+inf m and therefore that τ is not a
transmission eigenvalue. For m < 0

−tτ (u) =

∫
1

|m| | (Δ + τ)u|2 − τ

∫
u (Δ + τ)u

> τ || gradu||2 − τ2||u||2

≥ τ ||u||2 (λ0 − τ)

so that −tτ is positive definite if τ < λ0, completing the proof of the first assertion.
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To prove existence, we write

tτ (u) = τ2

∫ (
1 +

1

m

)
|u|2 − τ

(
|| gradu||2 +

∫
1

m
(uΔu + uΔu)

)
+

∫
1

m
|Δu|2.

We restrict our attention to functions u with ||u||2 = 1 and write S = sup( 1
m ) to see

that

tτ (u) ≤ τ2(1 + S) − τ
(
|| gradu||2 − 2S||Δu||

)
+ S||Δu||2.

Restricting to V p gives

tτ (u) ≤ τ2(1 + S) − τ
(
λ0 − 2Sμ

1
2
p

)
+ Sμp.

We minimize the sum of the first two terms by choosing τ = λ0−2Sμ
1
2
p

2(1+S) to obtain

≤ −

(
λ0 − 2Sμ

1
2
p

)2

4(1 + S)
+ Sμp.

If we set A = λ0

μ
1
2
p

, tτ restricted to V p is nonpositive if

(A− 2S)2 − 4S(1 + S) ≥ 0,

A2 − 4(A + 1)S ≥ 0,

A2

4(A + 1)
≥ S,

which is equivalent to (5.21).

6. Conclusions. Under the hypothesis that the perturbation of the index of re-
fraction is large enough, we have shown the existence of D-transmission eigenvalues,
given upper and lower bounds for their locations, and identified the corresponding so-
lutions to the transmission eigenvalue problem with the kernel of a scattering operator.

The upper and lower bounds for the transmission eigenvalues depend on the lowest
eigenvalues of the Dirichlet Laplacian and the Dirichlet bi-Laplacian (the clamped plate
operator). These bounds show that the lowest transmission eigenvalue increases as
the L∞-norm of m, or the size of its support, decreases. All of our bounds depend on
D only through these eigenvalues and on m only through its infimum or supremum.
Thus our estimates for the transmission eigenvalues, k2, scale with dilations just like
the Dirichlet eigenvalues, as the reciprocal of the area of D.

In the Born or weak scattering approximation, there are no transmission eigen-
values [7] when m is strictly positive or strictly negative. Our results are consistent
with this, but we do not know if there is a threshold below which there are no trans-
mission eigenvalues, or if the lowest transmission eigenvalue simply goes to infinity as
m decreases to zero.7

In the radial case, there are infinitely many transmission eigenvalues, so it is
reasonable to expect the same result here, but we have no results in this direction.

In summary, there are many questions remaining, some of which may be accessible
by a further analysis of the quadratic forms of the operators introduced here. Because

7See [3] for an inequality relating the lowest transmission eigenvalue (if it exists) to the supremum
of m and the diameter of D.
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array imaging techniques are making the scattering operator, and hence its kernel,
possible to measure, these questions are becoming increasingly relevant.
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PRESSURELESS EULER/EULER–POISSON SYSTEMS VIA
ADHESION DYNAMICS AND SCALAR CONSERVATION LAWS∗

TRUYEN NGUYEN† AND ADRIAN TUDORASCU‡

Abstract. The “sticky particles” model at the discrete level is employed to obtain global
solutions for a class of systems of conservation laws among which lie the pressureless Euler and the
pressureless attractive/repulsive Euler–Poisson system with zero background charge. We consider
the case of finite, nonnegative initial Borel measures with finite second-order moment, along with
continuous initial velocities of at most quadratic growth and finite energy. We prove the time
regularity of the solution for the pressureless Euler system and obtain that the velocity satisfies the
Oleinik entropy condition, which leads to a partial result on uniqueness. Our approach is motivated
by earlier work of Brenier and Grenier, who showed that one-dimensional conservation laws with
special initial conditions and fluxes are appropriate for studying the pressureless Euler system.

Key words. pressureless Euler, Euler–Poisson system, sticky particles, scalar conservation laws,
Wasserstein distance, adhesion dynamics

AMS subject classifications. 35L65, 35L67, 82C40
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1. Introduction. Let α, β ∈ R and consider the system⎧⎪⎨
⎪⎩

∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv2) = ρ(α∂xΦ + β) in R × (0, T ),

∂2
xxΦ = ρ.

(1)

If α = β = 0, then (1) describes the pressureless Euler system in spatial dimension
one. The most commonly known form of the pressureless, attractive/repulsive Euler–
Poisson system with zero background charge is also obtained from (1) by taking α =
±1 and β = 0. In this paper, we are concerned with global existence of solutions for the
initial value problem. Unlike the Euler with pressure case, the natural environment
for the evolution is the space of nonnegative Borel measures on the real line. We
consider the case of finite total mass, which we normalize to unity. The pressureless
Euler (α = β = 0) problem was studied using different techniques in [5], [6], [7], [9],
[23], [15], [16], [17], [18], [20]. We point out that in these papers, generally, the velocity
is taken to be at least bounded on the support of the initial measure. It appears that
[23] and [20] are the only references (to our knowledge) which allow for unbounded
velocities. Also, [23] is remarkable for dealing with the gravitational term as well
(α = −1, β = 0). In spite of that, the serious limitation of [23] is the assumptions
that the initial velocity be sublinear growth and the initial mass distribution ρ0 be
either discrete or absolutely continuous with respect to the Lebesgue measure. Our
main contribution is proving existence of global solutions for (1) if ρ0 is just in P2(R)
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and v0 is continuous of at most quadratic growth and finite energy. As a consequence
of an important result from [13], we also manage to show that the solution we obtain
for Euler pressureless satisfies the Oleinik entropy condition which was conjectured
in [7] and [23]. Note that similar constraints to ours on ρ0 and v0 were anticipated
by Shnirelman [20] for the pressureless Euler system. However, our approach is more
general than that of Shnirelman which cannot easily accommodate the α and β terms
on the right-hand side of the momentum equation. The solutions constructed by
Shnirelman were expressed in the form of a variational problem, which was shown in
[3] to be equivalent to the variational principle considered in [23].

During the last decade, significant progress has been achieved in the study of
partial differential equations in the context of optimal mass transportation. Much
of the work on parabolic, dissipative equations was synthesized and placed in a very
general setting in [2]. Much more recent and much less explored is the study of
Hamiltonian systems in this context [1], [14]. The connection with the pressureless
Euler system in arbitrary dimension was discovered by Benamou and Brenier [4], who
showed that this system describes the geodesics in the Wasserstein space P2(R). By
definition, Pp(R) is the set of all Borel probabilities on R with finite p-order moment.
The set P2(R) is endowed with the quadratic Wasserstein metric defined by

W 2
2 (μ, ν) := min

γ

∫
R2

|x− y|2dγ(x, y),

where the infimum is taken among all probabilities γ on the product space R
2 with

marginals μ, ν. The theory of absolutely continuous curves in P2(R) [2] asserts the
existence of velocities satisfying the conservation of mass equation in (1), regarded
as a continuity equation. The left-hand side of the momentum equation can also be
interpreted as the acceleration along the curve. We shall discuss these interesting
connections at the end of this paper. A different version of the pressureless Euler–
Poisson system was analyzed in [13] in the context of optimal mass transportation.
The focus was on the two-point boundary problem, and existence and uniqueness for
solutions as action-minimizing paths in P2(R) were obtained.

We shall need the following assumptions:
(H1) The initial distribution of mass ρ0 ∈ P2(R).
(H2) There exists 0 ≤ Λ < +∞ such that

v0 ∈ C(R) ∩ L2(ρ0) and |v0(x)| ≤ Λ(1 + x2) for all x ∈ R.

The main objective is the following result.
Theorem 1.1. The initial-value problem for (1) admits a global weak solution in

the sense of distributions if (H1) and (H2) hold.
Two independent papers that appeared in 1996 and 1998 used adhesion dynamics

to obtain global solutions for (1) in the α = β = 0 case [7], [23] and in the α = −1,
β = 0 case [23]. Not only are we able to deal with the more general (1), but we
also establish our results under less restrictive conditions on the initial mass distri-
bution and velocity. In [7] the initial ρ0 is compactly supported, while the initial
velocity v0 is continuous and bounded. These assumptions are relaxed in [23], e.g.,
sup|x|≤R |v0(x)|/R → 0 as R → +∞, while spt(ρ0) may be unbounded, in which case∫ x

0
ydρ0(y) → +∞ as |x| → +∞. As opposed to [7], however, [23] makes the extra

assumptions that ρ0 be either discrete or absolutely continuous with respect to the
Lebesgue measure, in which case ρ0 > 0 on spt(ρ0).
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More recent work [16] treats the case α = β = 0 for nonnegative Radon measures
ρ0 (not necessarily of finite total mass) and velocities v0 ∈ L∞(ρ0). This paper is
also remarkable in that it gives a necessary and sufficient condition for uniqueness
of the Oleinik entropy solution—the initial weak continuity of the energy. As the
example showing the necessity of this condition involves infinite mass initial measures,
it remains unclear whether that is really needed in the finite mass case. Another paper
that deals with possibly discontinuous (but bounded) initial velocities is [9], where
the solution is produced constructively.

In [5] we find the concept of duality solutions, which is based on earlier work
by the same authors. Existence and uniqueness are obtained under the assumption
of atom-free initial density and bounded and continuous initial velocity. Boudin [6]
obtains global existence of smooth solutions when the initial data has some higher
regularity and is bounded away from zero and infinity (and thus of infinite total mass).
Interestingly, the initial velocity does not have to be nondecreasing in order to rule
out formation of singularities in finite time. We will consider this issue in section 4.3.

Whereas [7] and [23] use different approaches, they are still closely connected in
principle. The fundamental underlying assumption for the discrete dynamics is the
“sticky particle” hypothesis. The idea goes back to Zeldovich [24] and can be briefly
described as follows. If mi, i = 1, n is a discrete system of masses initially located
at −∞ < x1 < · · · < xn < +∞ and moving with initial velocities vi, i = 1, n,
then one makes the assumption that the velocities remain constant while there is
no collision. At the collision of a group of particles, the particles stick together
and the initial velocity of the newly formed particle is given by the conservation of
momentum. In [23] the authors successfully implemented a version adapted to the case
α = −1, β = 0. Instead of the constant speed intercollisional motion, we now assume
uniformly accelerated motion between collisions. The acceleration is of gravitational
nature and is proportional to the difference between the total mass to the left and the
total mass to the right. Thus, in both cases, the trajectory of the ith particle before
collision is given by

xi(t) = xi + tvi +
t2

2
ain,

where

ain =

{
0 if α = β = 0,

1
2

(∑
j<i mj −

∑
j>i mj

)
if α = −1, β = 0.

(Here we convene that m0 = mn+1 = 0.) If the masses mj , i ≤ j ≤ k, collide at time
t0 > 0, then conservation of momentum yields

vi(t0+) =

∑k
j=i mjvj(t0−)∑k

j=i mj

.

Of course, only finitely many collisions can occur; therefore, the evolution of the
system is completely determined by the above assumptions.

Next we briefly describe the technique employed in [23], whose approach does not
distinguish between the discrete and absolutely continuous cases. Here the problem is
attacked from a “continuation of characteristics” point of view. When shocks occur,
i.e., when the map φt(y) := y+ tv0(y)+ t2a0(y)/2 is no longer invertible, one needs to
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redefine φt(y) in such a way that it remains nondecreasing and φt#ρ0 =: ρt satisfies the
equation in a weak sense. This redefinition uses the so-called generalized variational
principle which comes from the intuition provided by the discrete case (see [23] for
details).

A more elegant approach [7], in our opinion, makes use of standard results on
approximations for scalar conservation laws. It is applied to the Euler pressureless
system (α = β = 0) and relies on the fact that the distribution function M of ρ
satisfies an autonomous scalar conservation law. Another advantage lies in the fact
that the solution for the continuous problem is obtained from the discrete ones via
approximation theory for scalar conservation laws. We shall adopt this point of view
and prove the more general Theorem 1.1 by an appropriate adaptation of Brenier and
Grenier’s method.

The plan is as follows: we use (H1) to produce a sequence of discrete probabilities

ρn0 :=

n∑
i=1

m
(n)
i δ

x
(n)
i

→ ρ0 as n → ∞

in the 2-Wasserstein distance. We shall, in fact, prove that this sequence may be taken
such that

∫
R
ζdρn0 is uniformly bounded for some superquadratic growth function

ζ : [0,∞) → [0,∞). Denote by Mn
0 the right continuous distribution function of ρn0

and let

an(m) := α

( i∑
j=1

mj −
1

2
mi

)
+ β(2)

whenever Mn
0

(
x

(n)
i −

)
≤ m < Mn

0

(
x

(n)
i

)
. We then define flux functions F̃n : [0, T ] ×

[0, 1] → R as

F̃n(t,m) :=

∫ m

0

fn(ω)dω + t

∫ m

0

an(ω)dω,(3)

where Nn
0 #χ(0,1) = ρn0 optimally and fn := v0 ◦Nn

0 (the map Nn
0 is taken to be right

continuous). By adhesion dynamics we construct the unique entropy solution Mn for
the first-order problem

∂tM + ∂x
[
F̃n(t,M)

]
= 0, M(0, ·) = Mn

0 .(4)

We then use (H2) to show that, for an appropriate choice of approximating initial
data, the sequence Mn will converge in some sense to the unique entropy solution for

∂tM + ∂x
[
F̃ (t,M)

]
= 0, M(0, ·) = M0,(5)

where F̃ : [0, T ] × [0, 1] → R is given by

F̃ (t,m) :=

∫ m

0

f(ω)dω + t

∫ m

0

a(ω)dω =

∫ m

0

f(ω)dω + t(αm2/2 + βm)(6)

for f := v0 ◦ N0 and a(m) := αm + β for m ∈ [0, 1]. Here N0 := M−1
0 (generalized

inverse) [12] is the right continuous optimal map pushing χ(0,1) forward to ρ0. The

solution M of (5) will produce the solution ρ := ∂xM and vρ := ∂x[F̃ (t,M)] for (1)
via a generalization of a result due to Volpert [22] on BV calculus. The last section is
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dedicated to the α = 0 = β case. We give an explicit formula for v in terms of M , and,
more importantly, we prove that our solution satisfies the Oleinik entropy condition.
Some qualitative properties of the solution are discussed, e.g., time regularity and the
impact of the initial velocity on the occurrence of spatial singularities. We finish with
a partial result on uniqueness; i.e., we show that the energy of our solution for the
pressureless Euler system is weakly continuous initially, which, along with the Oleinik
entropy condition, leads to uniqueness in the case of bounded initial velocities [16].

2. Elements of one-dimensional BV calculus.

2.1. A BV chain rule in dimension one. To prove a chain rule for BV
functions, we need the following lemma.

Lemma 2.1. Let μ be a Borel probability measure on R and M be its right
continuous distribution function. Write

μ =
∑
j∈J

miδxj + ρ,

where {xj}j∈J is the set (at most countable) of discontinuities of M and mj :=
μ({xj}). If ρ is nonzero, then we have

M#ρ = χUc for U :=
⋃
j∈J

(
M(xj−),M(xj)

)
.(7)

Proof. We first observe that the balance of mass is satisfied. Since M is monotone
nondecreasing, (7) is equivalent to the fact that M is the optimal map pushing ρ
forward to χUc . That is what we prove next. It is well known [12] that, since both
measures are atom-free, the optimal map is given by G−1 ◦ F , where F, G are the
right continuous distribution functions of ρ and χUc , respectively, and G−1 is the
generalized inverse of G, given by G−1(y) = inf{m ∈ [0, 1] : G(m) > y}. We shall
show that M(x) = G−1 ◦F (x) for ρ-a.e. x ∈ spt(ρ), i.e., G−1(F (x)) = inf{m ∈ [0, 1] :
G(m) > F (x)} = M(x). Note that

F (x) = M(x) −
∑
xj≤x

mj and G(m) = m−
∑

M(xj)≤m

mj if m ∈ U c.

Thus, if m ∈ U c,

G(m) − F (x) =

⎧⎪⎨
⎪⎩

m−M(x) −
∑

M(x)<M(xj)≤m mj if m > M(x),

0 if m = M(x),

m−M(x) +
∑

m<M(xj)≤M(x) mj if m < M(x).

Since G(M(x))−F (x) = 0 and G is a right continuous, nondecreasing function, all we
need to prove is that there does not exist a nondegenerate interval [M(x),M(x) + ε]
such that G(m) = F (x) for all m ∈ [M(x),M(x)+ε]. Suppose such an interval exists.
We know M is right continuous at x; therefore, if x < z < x + δ(ε), we have that
M(x) ≤ M(z) ≤ M(x) + ε. Thus, as M(z) ∈ U c, we infer that M(z) − M(x) −∑

x<xj≤z mj = 0, i.e., ρ([x, z]) = 0. This means x ∈ ∂spt(ρ), and, by taking [x, zx],

the maximal interval for which ρ([x, z]) = 0, we see that (x, zx) ∩ (y, zy) = ∅ for any
x 	= y in ∂spt(ρ) for which these nondegenerate intervals exist. This means that there
are at most countably many such points, and, since ρ is atom-free, it follows that the
ρ-measure of this set of points is zero. The lemma is thus proved.
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The following theorem is fundamental. The first part of (i) can be trivially ob-
tained from [22]; see, e.g., [5] for the exact formula on the derivative. The novelty of
our result appears in (ii) as we go from the Lipschitz to the W 1,p case. However, for
the reader’s convenience we sketch an elementary proof for (i) as well.

Theorem 2.2. Let μ be a Borel probability measure on R and let M be its right
continuous distribution function.

(i) Assume f ∈ W 1,∞(0, 1). Then, f ◦M ∈ BV (R) with distributional derivative
gμ, where

g(x) =

⎧⎪⎨
⎪⎩

f ′ ◦M(x) if μ({x}) = 0,

f ◦M(x) − f ◦M(x−)

μ({x}) if μ({x}) 	= 0,
(8)

μ-a.e. for some function f ′ ◦M ∈ L∞(R). Furthermore, suppose f ′ is defined unam-
biguously on (0, 1), and there exists a bounded C1[0, 1] sequence fn such that fn → f
uniformly and f ′

n → f ′ everywhere on (0, 1). Then f ′ ◦M ≡ f ′ ◦ M in the μ-a.e.
sense, or, equivalently,

g(x) =

∫ 1

0

f ′((1 − s)M(x−) + sM(x)
)
ds for μ-a.e. x ∈ R.(9)

(ii) Let 1 ≤ p < +∞ and assume f ∈ W 1,p(0, 1) ∩ C1(0, 1) and g is given by (8),
with f ′ ◦M ≡ f ′ ◦M in the μ-a.e. sense. Then g ∈ Lp(μ) with ‖g‖Lp(μ) ≤ ‖f ′‖Lp(0,1)

and f ◦M ∈ BV (R) with distributional derivative gμ.
Now take f ∈ W 1,p(0, 1). Suppose f ′ is defined unambiguously on (0, 1), and there
exists a W 1,p(0, 1) ∩ C1(0, 1) sequence fn such that fn → f in W 1,p and f ′

n → f ′

everywhere on (0, 1). Then we still have the same result with f ′ ◦M ≡ f ′ ◦M in the
μ-a.e. sense.

Proof. W.l.o.g. we may assume that μ is supported in some bounded interval I.
Also, we shall first assume f ∈ C1[0, 1] to show that (8) is valid with f ′ ◦M ≡ f ′ ◦M .
Now consider ϕ ∈ C∞

c (I). We need to show that

−
∫
I

ϕ′(x)f ◦M(x)dx =

∫
I

ϕ(x)g(x)dμ(x).(10)

If μ has finitely many atoms, then the validity of (10) can be checked by direct com-
putation. Indeed, since M is piecewise continuous and bounded, we may approximate
it uniformly by nondecreasing piecewise W 1,1 functions Mε (may take Mε piecewise
linear and continuous on each continuity interval for M , such that M and Mε agree
at the endpoints). Thus, με := M ′

ε ⇀ M ′ = μ weakly as nonnegative, bounded
measures. The chain rule for Sobolev functions [8] applies piecewise and yields (10)
for με. Then we pass to the limit to obtain the result for μ. Thus, let us assume
D := {x1, x2, . . . , xn, . . .} is the infinite set of all atoms of μ and write

μ =
∞∑
i=1

miδxi + ρ, where mi > 0, i = 1, 2, . . . ,

and ρ is an atom-free nonnegative Borel measure of total mass 1 −
∑∞

i=1 mi ≥ 0.
We shall call the atomic measure the singular part while ρ shall be called the regular
part (although it may not be absolutely continuous with respect to the Lebesgue
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measure). Consider now the sequence of measures μn given by μn =
∑n

i=1 miδxi
+ ρ.

Of course, μn ⇀ μ weakly � as measures. Since Mn, the right continuous distribution
function of μn, has only finitely many discontinuities, (8) holds for μn, as proved
above. It is easy to see that Mn → M Lebesgue a.e.; thus, the continuity of f along
with its boundedness gives the convergence of the left-hand side of (10) by dominated
convergence. Therefore, f ◦Mn ∈ BV (R) with distributional derivative gnμn, where

gn(x) :=

⎧⎪⎨
⎪⎩

f ′ ◦Mn(x) if μn({x}) = 0,

f ◦Mn(x) − f ◦Mn(x−)

μn({x}) if μn({x}) 	= 0.

Now we write∫
R

ϕ(x)gn(x)dμn(x) =

n∑
i=1

ϕ(xi)[f(Mn(xi))−f(Mn(xi−))]+

∫
R

ϕ(x)f ′ ◦Mn(x)dρ(x).

By the continuity of f ′ we obtain the convergence of the second term on the right-hand
side. Thus, it remains to prove that

n∑
i=1

ϕ(xi)[f(Mn(xi)) − f(Mn(xi−))] →
∞∑
i=1

ϕ(xi)[f(M(xi)) − f(M(xi−))],

which can be obtained after some calculations as a consequence of the convergence of
the series

∑
mi if f ∈ C2[0, 1], and then for C1[0, 1] functions by approximation. If

f is W 1,∞(0, 1), then we conclude by taking a sequence of functions in C1[0, 1] such
that fn → f uniformly and f ′

n are uniformly bounded. Indeed, one has

−
∫

R

ϕ′fn ◦Mdx =

∫
R

ϕf ′
n ◦Mdρ +

∫
R

ϕ(x)
fn(M(x)) − fn(M(x−))

M(x) −M(x−)
dμs(x),

where μs =
∑

mjδxj
is the singular part of μ. Note that the ratio in the second term

of the right-hand side converges uniformly to [f(M(x))−f(M(x−))]/[M(x)−M(x−)]
on the support of μs; thus the uniform bound on f ′

n ensures the convergence of the
integral by dominated convergence. Since the left-hand side is trivially convergent, it
follows that ∫

R

ϕ(x)f ′
n ◦M(x)dρ(x) converges as n → ∞,

which, along with the uniform bound on f ′
n, yields the convergence of f ′

n ◦M in the
L∞ weak � topology. We also deduce that the limit, denoted by f ′ ◦M , is μ-a.e.
independent of the chosen sequence fn. The second statement from (i) easily follows
(by dominated convergence) from the fact that gn → g everywhere as an L∞ bounded
sequence.

To prove the first part of (ii) we truncate f ′ by

f ′
n(x) :=

⎧⎪⎨
⎪⎩

−n if f ′(x) < −n,

f ′(x) if |f ′(x)| ≤ n,

n if f ′(x) > n

(11)

and let fn be the antiderivative of f ′
n vanishing at zero. Note that |f ′

n| ≤ |f ′| on
(0, 1), which implies that fn is uniformly bounded with respect to n in Lp(0, 1). First,
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since fn ∈ C1[0, 1], we infer, according to (i), that fn ◦M is BV with distributional
derivative gnμ, where

gn(x) :=

⎧⎪⎨
⎪⎩

f ′
n ◦M(x) if μ({x}) = 0,

fn ◦M(x) − fn ◦M(x−)

μ({x}) if μ({x}) 	= 0.
(12)

This (see (9) for the equivalent integral expression) together with the fact that |f ′
n| ≤

|f ′| implies

|gn(x)| ≤
∫ 1

0

∣∣f ′((1 − s)M(x−) + sM(x)
)∣∣ds =: h(x) for x ∈ I.

Since f ′
n → f ′, we infer that gn → g pointwise. Assume that h ∈ Lp(μ). Then, we

may pass to the limit in the right-hand side of

−
∫
I

ϕ′(x)fn ◦M(x)dx =

∫
I

ϕ(x)gn(x)dμ(x).

The left-hand side converges to the appropriate quantity because fn → f uniformly
and fn are uniformly bounded.

Thus, we are done if we can prove that h ∈ Lp(μ). For this let {xj}j∈J be the set
of discontinuities of M and mj := μ({xj}). Now consider, for s ∈ [0, 1], the sum

n∑
i=1

mi

∣∣f ′((1 − s)M(xi−) + sM(xi)
)∣∣p =

n∑
i=1

mi

∣∣f ′(M(xi−) + smi

)∣∣p.
By monotone convergence

n∑
i=1

∫ 1

0

mi

∣∣f ′(M(xi−) + smi

)∣∣pds → ∫ 1

0

∞∑
i=1

mi

∣∣f ′(M(xi−) + smi

)∣∣pds,
which, after obvious linear changes of variables, is equivalent to∫

∪n
i=1[M(xi−),M(xi)]

|f ′(m)|pdm →
∫ 1

0

∞∑
i=1

mi

∣∣f ′(M(xi−) + smi

)∣∣pds.
Again, by monotone convergence the left-hand side converges to

∫
U
|f ′(m)|pdm, where

U :=
⋃

j∈J

(
M(xj−),M(xj)

)
. Thus, since f ′ ∈ Lp(0, 1) and U ⊂ [0, 1], it follows that

∫ 1

0

∞∑
i=1

mi

∣∣f ′(M(xi−) + smi

)∣∣pds =

∫
U

|f ′(m)|pdm ≤ ‖f ′‖pLp(0,1),

so we can apply Fubini’s theorem to obtain∫
I

∫ 1

0

∣∣f ′((1 − s)M(x−) + sM(x)
)∣∣pdsdμs(x) =

∫
U

|f ′(m)|pdm < +∞,(13)

where μs denotes, as before, the singular part of μ (unrelated to the integration
variable s). If μ = μs, then we are done. Else, by using Lemma 2.1, we obtain∫

I

|f ′ ◦M(x)|pdρ(x) =

∫
Uc

|f ′(m)|pdm,
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which, combined with (13), yields

∫
I

∫ 1

0

|f ′((1 − s)M(x−) + sM(x)
)∣∣pdsdμ(x) = ‖f ′‖pLp(0,1).(14)

Therefore, h ∈ Lp(μ) with ‖h‖Lp(μ) ≤ ‖f ′‖Lp(0,1) (with equality if p = 1). Since
|g| ≤ h pointwise, the proof of the first part of (ii) is concluded.

Consequently,

−
∫

R

ϕ′fn ◦Mdx =

∫
R

ϕgndμ for all positive integers n,(15)

where gn is defined by (12) for the approximating sequence fn considered in the second
part of (ii). We have, just as in deducing (14), that

∫
I

|gn(x) − gm(x)|pdμ(x) ≤
∫
I

∫ 1

0

|(f ′
n − f ′

m)
(
(1 − s)M(x−) + sM(x)

)
|pdsdμ(x)

=‖f ′
n − f ′

m‖pLp(0,1)

for all natural m, n ≥ 1. Thus, {gn} is convergent in Lp(μ), and, due to the hypothesis
of everywhere convergence of f ′

n to f ′, we obtain gn → g in Lp(μ), where

g(x) :=

∫ 1

0

f ′((1 − s)M(x−) + sM(x)
)
ds.

Passing to the limit in (15) concludes our proof.
The following corollary holds for any 1 ≤ p ≤ +∞.
Corollary 2.3. Let f ∈ Lp(0, 1) be right continuous (thus unambiguously de-

fined everywhere in (0, 1)), and take F to be its antiderivative vanishing at zero. If
M is the cumulative distribution function of some Borel probability measure μ on R,
then F ◦M ∈ BV (R) with distributional derivative gμ, where

g(x) :=

⎧⎪⎨
⎪⎩

f ◦M(x) if μ({x}) = 0,

F ◦M(x) − F ◦M(x−)

μ({x}) if μ({x}) 	= 0,
(16)

in the μ-a.e. sense. Furthermore, g ∈ Lp(μ) and ‖g‖Lp(μ) ≤ ‖f‖Lp(0,1).
The proof is an immediate consequence of Theorem 2.2. Indeed, we take (upon

extending f by zero outside (0, 1)) the function fn := ηn∗f , where ηn is obtained from
the standard mollifier supported in [−1/n, 1/n] by shifting it to the left by 1/n. The
classic properties of mollification still hold, e.g., fn → f in Lp(0, 1) (if p 	= +∞) and
fn ∈ C∞[0, 1]. However, the interesting feature of these “shifted mollifiers” is that
the right continuity of f on (0, 1) is enough to easily prove that fn → f everywhere
in (0, 1). Thus, if we take Fn(m) :=

∫m

0
fn(ω)dω, we are within the hypotheses of

Theorem 2.2.
Remark 2.4. To understand the relevance of this result, observe that the functions

fn, f defined in the introduction are right continuous on (0, 1). Indeed, that comes
as a consequence of the continuity of v0 on R and the right continuity of Nn

0 , N0 on
(0, 1) (as generalized inverses of nondecreasing, right continuous functions [21]).
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2.2. A two-dimensional extension. Now let us assume M : [0, T ]×R → [0, 1]
for some 0 < T < +∞, such that M ∈ BV ([0, T ]×R) and M(t, ·) is a right continuous
probability distribution function for Lebesgue a.e. t ∈ (0, T ). The following lemma is
easy to check as a consequence of Fubini’s theorem.

Lemma 2.5. Let ∇M be the vector-valued measure given by the BV gradient ∇ =
(∂t, ∂x) of M . Then, its x-component d∂xM admits the decomposition d∂xM(t, ·)dt.

We shall use this to prove the main result of this section, which we state below.
We denote by Cr the space of right continuous functions.

Theorem 2.6. Consider M : [0, T ] × R → [0, 1] as above, and let f ∈ L2(0, 1) ∩
Cr(0, 1) and F be its antiderivative vanishing at zero. Assume further that

∂tM + ∂x[F ◦M ] = 0 in D′([0, T ] × R).(17)

Then F ◦M ∈ BV ([0, T ] × R) and ∇[F ◦M ] = g∇M for some g ∈ L1(|∇M |
)
.

Proof. We may consider w.l.o.g. the case f ∈ C(0, 1). Else, we simply use
Corollary 2.3 instead of Theorem 2.2. Let us start by taking the truncations fn for f
as in (11). The corresponding Fn’s are in C1[0, 1], Fn → F uniformly and fn → f in
L2(0, 1). According to [22], Fn ◦M ∈ BV ([0, T ] × R) and there exist f̄n ∈ L∞ such
that ∇[Fn ◦M ] = f̄n∇M as vector-valued measures. This means that

−
∫ T

0

∫
R

Fn(M)∇ · φdxdt =

∫ T

0

∫
R

f̄nφ1d∂tM +

∫ T

0

∫
R

f̄nφ2d∂xM(18)

for all φ := (φ1, φ2) ∈ C∞
c ((0, T ) × R; R2). We now use Lemma 2.5 and (17) to infer

−
∫ T

0

∫
R

Fn(M)∇ · φdxdt =

∫ T

0

∫
R

(
− gφ1 + φ2

)
f̄nd∂xM(t, ·)dt,(19)

where, according to Theorem 2.2 (ii),

g(t, ·) :=

∫ 1

0

f
(
(1 − s)M(t, ·−) + sM(t, ·)

)
ds ∈ L2(∂xM(t, ·))

for Lebesgue a.e. t ∈ (0, T ). Also, Theorem 2.2 (ii) ensures that

‖g(t, ·)‖L2(∂xM(t,·)) ≤ ‖f‖L2(0,1) uniformly with respect to t.

Note that (19) implies

−
∫ T

0

∫
R

Fn(M)∂xφ1dxdt =

∫ T

0

∫
R

f̄nφ1d∂xM(t, ·)dt(20)

for all φ1 ∈ C∞
c ((0, T ) × R). For Lebesgue a.e. t ∈ (0, T ) one has (Theorem 2.2 (i))

∂x[Fn◦M(t, ·)] = gn(t, ·)∂xM(t, ·) for gn(t, x) :=

∫ 1

0

fn
(
(1−s)M(t, x−)+sM(t, x)

)
ds

and

‖gn(t, ·)‖L2(∂xM(t,·)) ≤ ‖f‖L2(0,1) uniformly in t and n.

Along with (20), this implies f̄n ≡ gn in the d∂xM(t, ·)dt-a.e. sense. Therefore, (19)
is equivalent to

−
∫ T

0

∫
R

Fn(M)∇ · φdxdt =

∫ T

0

∫
R

(
− gφ1 + φ2

)
gnd∂xM(t, ·)dt.(21)
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Furthermore, due to the pointwise convergence and the uniform (in n and t) L2(∂xM)-
bounds we obtain gn → g in L2(d∂xM(t, ·)dt). By the uniform (and bounded) con-
vergence of Fn to F we can also pass to the limit in the left-hand side. Thus,

−
∫ T

0

∫
R

F (M)∇ · φdxdt =

∫ T

0

∫
R

(
− g2φ1 + gφ2

)
d∂xM(t, ·)dt,

which, after using Lemma 2.5 and (17) once more, leads to

−
∫ T

0

∫
R

F (M)∇ · φdxdt =

∫ T

0

∫
R

gφ1d∂tM +

∫ T

0

∫
R

gφ2d∂xM.

Since g ∈ L2(∂xM) ⊂ L1(∂xM) and g ∈ L1(|∂tM |), we obtain the result.
We are going to need a slightly different result which we now state as a conse-

quence. It may be proved by retracing the proof of Theorem 2.6.
Corollary 2.7. Assume now that

∂tM + ∂x[F̃ (t,M)] = 0 in D′([0, T ] × R)

for some time-linear perturbation F̃ (t, ·) := F + tΨ, Ψ ∈ C1[0, 1]. Then F ◦ M ∈
BV ([0, T ] × R) and

∇[F̃ (t,M)] = (g + tψ)∇M + V

for g from Theorem 2.6, and the vector field V :=
(
Ψ ◦M, 0

)
. Here,

ψ(t, x) :=

∫ 1

0

Ψ′((1 − s)M(t, x−) + sM(t, x)
)
ds.

3. Pressureless Euler/Euler–Poisson systems via scalar conservation
laws.

3.1. Convergence of measures and their distribution functions. Let 1 ≤
p < ∞, μ ∈ Pp(R), and v ∈ Lp(μ) ∩ C(R). Then by the de la Vallée-Poussin lemma
which can be found in [10], there exists a nonnegative, convex, increasing function

ζ ∈ C1([0,+∞)) satisfying ζ(0) = 0 and ζ(t)
t ↑ +∞ as t → +∞ such that∫

R

ζ(|x|p + |v(x)|p)dμ(x) < +∞.

It is also well known that (see [11], for example) there exist a probability space
(Ω,Σ, P ) and a sequence of independent random variables ξi : Ω → R such that

ξi#P = μ.

Now for each positive integer n and each ω ∈ Ω, define

μn,ω :=
1

n

n∑
i=1

δξi(ω).

Then by the strong law of large numbers and the separability of Cc(R) we have for
P -a.e. ω ∈ Ω∫

R

f(x)dμn,ω(x) =
1

n

n∑
i=1

f(ξi(ω)) → E(f ◦ ξ1) =

∫
R

f(x)dμ(x)
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for all functions f ∈ Cc(R). Consequently, μn,ω converges narrowly to μ. Thus, by
using the strong law of large numbers again, we also have that for P -a.e. ω ∈ Ω∫

R

ζ(|x|p)dμn,ω(x) →
∫

R

ζ(|x|p)dμ(x),

∫
R

ζ(|v|p)dμn,ω(x) →
∫

R

ζ(|v|p)dμ(x).

The last fact together with the properties of ζ yields for k > 0 large enough

ζ(kp)

kp

∫
{x:|x|≥k}

|x|pdμn,ω ≤
∫
{x:|x|≥k}

ζ(|x|p)
|x|p |x|pdμn,ω ≤

∫
R

ζ(|x|p)dμn,ω ≤ C(ω).

Therefore, {μn,ω} has uniformly integrable p-moments. Consequently, by Proposi-
tion 7.1.5 in [2] we obtain that for P -a.e. ω ∈ Ω, μn,ω → μ in Wp and∫

R

ζ(|x|p)dμn,ω(x) →
∫

R

ζ(|x|p)dμ(x),

∫
R

ζ(|v|p)dμn,ω(x) →
∫

R

ζ(|v|p)dμ(x).

Lemma 3.1. Suppose 1 ≤ p < ∞ and {μn} is a sequence of measures in Pp(R)
converging to μ ∈ Pp(R) in Wp. When p > 1 we assume further that

∫
R
ζ(|x|p)dμn(x)

is uniformly bounded in n for some nonnegative, convex, increasing function ζ ∈
C1([0,+∞)) satisfying ζ(0) = 0 and ζ(t)

t ↑ +∞ as t → +∞. Then we have the
following:

(i) The L1 norm of Mn −M on R goes to zero, where

M(x) := μ((−∞, x]).

(ii) For any nondecreasing C1 function B on [0, 1] such that B(0) = 0, B(1) = 1,

∂x(B(Mn)) → ∂x(B(M)) in Wp.

Proof. From Theorem 6.0.2 in [2], we obtain

W1(μn, μ) =

∫ 1

0

|M−1
n (s) −M−1(s)|ds,

where the generalized inverse M−1 of M is defined by

M−1(s) := inf {x ∈ R : M(x) > s}, s ∈ [0, 1].

Then by using Fubini’s theorem we get W1(μn, μ) = ‖Mn −M‖L1(R). This together
with the fact that W1(μn, μ) ≤ Wp(μn, μ) gives (i). By (i) and the Lipschitz condition
on B we clearly have ‖B(Mn) −B(M)‖L1(R) → 0. But as

W1(∂x(B(Mn)), ∂x(B(M))) = ‖B(Mn) −B(M)‖L1(R),

we infer in particular that ∂x(B(Mn)) → ∂x(B(M)) narrowly.
We have from Theorem 2.2∫

R

ζ(|x|p)d∂x(B(Mn)) =

∫
R

ζ(|x|p)gn(x)dμn(x),

where gn(x) =
∫ 1

0
B′(sMn(x) + (1 − s)Mn(x−))ds. Therefore,∫

R

ζ(|x|p)d∂x(B(Mn)) ≤ ‖B′‖∞
∫

R

ζ(|x|p)dμn(x) ≤ C‖B′‖∞.
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It follows from this and the properties of the function ζ that for any k > 0 large
enough, ∫

{x:|x|≥k}
|x|pd∂x(B(Mn)) ≤ kp

ζ(kp)
C‖B′‖∞.

That is, the sequence of probability measures ∂x(B(Mn)) has uniformly integrable
p-moments. Consequently, we can conclude from Proposition 7.1.5 in [2] that

∂x(B(Mn)) → ∂x(B(M))

in Wp, as desired.

3.2. Convergence of the discrete problem. Following [7], we take a discrete
probability measure

ρn0 :=

n∑
j=1

mjδxj , x1 < x2 < · · · < xn,

and define

ρn(t, x) :=

n∑
j=1

mjδxj(t),(22)

where the characteristics are given by

xj(t) = xj + tvj +
t2

2
an

(
Mn(t, xj(t)−)

)
.(23)

Here, as in the introduction, we have

an
(
Mn(t, xj(t)−)

)
=

[
α

( j∑
i=1

mi −
1

2
mj

)
+ β

]
.

We impose the adhesion dynamics at collision (see the introduction) and consider

Mn(t, x) :=

n∑
j=1

mjH
(
x− xj(t)

)
,(24)

where H is the right continuous Heaviside function. Since Mn is piecewise constant, we
need only show that Mn solves (4) by checking the Rankine–Hugoniot jump conditions
across the shocks x = xj(t), i.e.,

ẋj(t) =
F̃n(t,Mn(t, xj(t))) − F̃n(t,Mn(t, xj(t)−))

Mn(t, xj(t)) −Mn(t, xj(t)−)
, j = 1, . . . , n.(25)

Assume the masses mi for j0 ≤ i ≤ j1, including mj , are all amassed at time t. Then,
exactly as in [7], we have

vj(t) =
Fn(Mn(t, xj(t))) − Fn(Mn(t, xj(t)−))

Mn(t, xj(t)) −Mn(t, xj(t)−)
, j = 1, . . . , n,
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where Fn is defined by

Fn(m) :=

∫ m

0

fn(ω)dω for m ∈ [0, 1].

Observe that F̃n(t,m) = Fn(m)+t
∫m

0
an(ω)dω by the definition of F̃n in the introduc-

tion. The integrand below is constantly ajn on each interval of the form [Mn(t, xj(t)−),
Mn(t, xj(t))); thus,

an
(
Mn(t, xj(t)−)

) j1∑
i=j0

mi =

∫ Mn(t,xj(t))

Mn(t,xj(t)−)

an(ω)dω

implies (25). To prove that Mn is an entropy solution for (4), we check the entropy
inequality

ẋj(t) ≤
F̃n(t,X) − F̃n(t,Mn(t, xj(t)−))

X −Mn(t, xj(t)−)
,(26)

where X =
∑

i≤k mi, for some j0 ≤ k ≤ j1. The inequality

vj(t) ≤
Fn(X) − Fn(Mn(t, xj(t)−))

X −Mn(t, xj(t)−)

is justified in [7] as a consequence of the barycentric lemma (which simply formulates
the fact that if two groups of particles collide, then the averaged velocity of the group
to the left decreases). Then we see that

an
(
Mn(t, xj(t)−)

) k∑
i=j0

mi =

∫ X

Mn(t,xj(t)−)

an(ω)dω,

which, together with the previous inequality, yields (26). We have just sketched the
proof of the following proposition.

Proposition 3.2. The function Mn given by (24) is the entropy solution of the
problem (4).

Next we want to show that Mn converges in some sense to an entropy solution
of (5). The following proposition applies if the initial approximating measures are of
the form

ρn0 :=
1

n

n∑
i=1

δ
x
(n)
i

.

Note that section 3.1 shows that we may consider such approximations.
Proposition 3.3. Let ρ0 ∈ P2(R) and consider a sequence of discrete probabili-

ties ρn0 as above such that W2

(
ρ0, ρ

n
0

)
→ 0 and∫

R

ζ(v2
0)dρn0 →

∫
R

ζ(v2
0)dρ0 < +∞,

∫
R

ζ(x2)dρn0 →
∫

R

ζ(x2)dρ0 < +∞(27)

for some nonnegative, convex, increasing function ζ ∈ C1([0,+∞)) satisfying ζ(0) = 0

and ζ(t)
t ↑ +∞ as t → +∞. Let Mn

0 and M0 be the right continuous cumulative
distribution functions of ρn0 and ρ0, respectively. Consider, as above, the entropy
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solutions Mn of (4) for all n. Then there exists a Borel function M : [0,∞)×R → [0, 1]
such that, for any given T > 0,

max
0≤t≤T

W2 (∂xMn(t, ·), ∂xM(t, ·)) → 0 and max
0≤t≤T

‖Mn(t, ·)−M(t, ·)‖L1(R) → 0.(28)

Moreover, M is the entropy solution of the problem (5).
Proof. First recall that

ρn(t, x) :=
1

n

n∑
j=1

δ
x
(n)
j (t)

,

where

x
(n)
j (t) = x

(n)
j + tv

(n)
j +

t2

2

(
α

2j − 1

2n
+ β

)
.

Let ζt(x) := ζ( 1
κx), where κ is some positive constant depending only on t which will

be determined later. Then, by the properties of ζ, we have∫
R

ζt(|x|2)dρn(t, x)

=
1

n

n∑
j=1

ζ

(
1

κ
|x(n)

j (t)|2
)

≤ 1

n

n∑
j=1

ζ

(
3

κ

[
|x(n)

j |2 + t2|v(n)
j |2 +

(|α| + |β|)2t4
4

])

≤ 1

3
ζ

(
9(|α| + |β|)2t4

4κ

)
+

1

3n

n∑
j=1

ζ

(
9

κ
|x(n)

j |2
)

+
1

3n

n∑
j=1

ζ

(
9t2

κ
|v(n)

j |2
)
.

Hence, by choosing κ = max {9, 9t2} and using again the fact that ζ is increasing, we
obtain∫

R

ζt(|x|2)dρn(t, x) ≤ Ct +
1

3

∫
R

ζ(|x|2)dρn0 (t, x) +
1

3

∫
R

ζ(|v0|2)dρn0 (t, x) ≤ Ct

uniformly in n (the last inequality is due to (27)). Since ζt has superlinear growth
(it is just an argument-rescaled version of ζ), there exists ρ(t, ·) ∈ P2(R) such that,
up to a subsequence that may depend on t, W2(ρ

n(t, ·), ρ(t, ·)) → 0 as n → ∞. By a
standard diagonal argument we can choose a subsequence independent of t satisfying
W2(ρ

n(t, ·), ρ(t, ·)) → 0 for all t ∈ [0,∞)∩Q. In order to see that this conclusion also
holds for all t in [0,∞), we are going to show that the paths ρn(t, ·) are uniformly
locally Lipschitz in t. Indeed, let T > 0 and t, s ∈ [0, T ] be arbitrary. Then, since

|x(n)
j (t) − x

(n)
j (s)|2 ≤ C|t− s|2

(
|v(n)

j |2 + T 2
)
,

we have

W 2
2 (ρn(t, ·), ρn(s, ·)) ≤ 1

n

n∑
j=1

|x(n)
j (t) − x

(n)
j (s)|2 ≤ C|t− s|2

⎛
⎝ 1

n

n∑
j=1

|v(n)
j |2 + T 2

⎞
⎠

= C|t− s|2
(∫

R

|v0(x)|2dρn0 + T 2

)
≤ C|t− s|2 uniformly in n.
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Using this uniformly Lipschitz property, we can conclude that, in fact,

W2(ρ
n(t, ·), ρ(t, ·)) → 0 as n → ∞, uniformly in t ∈ [0, T ],(29)

which yields (28) with M(t, x) := ρ(t, (−∞, x]).
Next we show that M is a solution of (5). By the assumptions and Lemma 3.1,

we have ∫
R

|Mn
0 −M0|dx → 0

and

∂x(B(Mn
0 )) → ∂x(B(M0)) in W2

for any nondecreasing C1 function B on [0, 1] satisfying B(0) = 0 and B(1) = 1. But
as v0 satisfies the assumption (H2), we obtain∫

R

v0(x)d∂x(B(Mn
0 )) →

∫
R

v0(x)d∂x(B(M0)).

By the definitions of fn and f , this means that∫ 1

0

fn(m)B′(m)dm →
∫ 1

0

f(m)B′(m)dm

for all nondecreasing C1 functions B on [0, 1] satisfying B(0) = 0 and B(1) = 1.
Indeed,∫

R

v0(x)d∂x(B(Mn
0 ))(x)=

n∑
i=1

v0(x
(n)
i )

[
B(Mn

0 (x
(n)
i )) −B(Mn

0 (x
(n)
i −))

]

=

n∑
i=1

∫ Mn
0 (x

(n)
i )

Mn
0 (x

(n)
i −)

v0 ◦Nn
0 (m)B′(m)dm =

∫ 1

0

fn(m)B′(m)dm.

For the continuous version we use (7) to conclude in a similar way. It then follows
that ∫ 1

0

fn(m)g(m)dm →
∫ 1

0

f(m)g(m)dm for all functions g ∈ C([0, 1]).

This together with the fact∫ 1

0

|fn(m)|dm =

∫
R

|v0(x)|dρn0 ≤ C uniformly in n

yields fn → f weakly in L1. By using the uniform convergence of F̃n to F̃ as con-
tinuous and bounded functions, we deduce that M is a solution of the problem (5).
Now, for a fixed t ≥ 0, let U be any C1 function on [0, 1]. Define

F̃n,U (t,m) :=

∫ m

0

[fn(ω) + tan(ω)]U ′(ω)dω,

F̃U (t,m) :=

∫ m

0

[f(ω) + ta(ω)]U ′(ω)dω.
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Then we use the uniform convergence of an to αid + β and the facts that fn → f
weakly in L1, and ∫ 1

0

ζ(|fn|)dm =

∫
R

ζ(|v0|)dρn0 ≤ C(30)

to deduce that F̃n,U converges to F̃U uniformly in (t,m) ∈ [0, T ] × [0, 1]. (Notice
that we have used the assumption (H2) to derive (30), the equi-integrability of the
sequence {fn} in L1([0, 1]).) Therefore, as in [7], we conclude that M is, in fact, an
entropy solution for (5).

3.3. The existence result. We finally have all the necessary tools to prove
Theorem 1.1. Note, however, that we leave out the proof of the fact that the initial
conditions are satisfied. We will show that in Proposition 4.9.

Proof of Theorem 1.1. Since M is a solution of the problem (5) by Propo-
sition 3.3, we can use Corollary 2.7 to conclude that ∂tM + v∂xM = 0, where
v(t, ·) := g(t, ·) + tψ(t, ·) is well defined ∂xM(t, ·) =: ρ(t, ·)-a.e. By differentiation
in the sense of distributions, we obtain the first equation in (1). Then, Corollary 2.7
also gives

∂t(ρv)=∂t
[
∂x[F̃ (t,M)]

]
=∂x

[
∂t[F̃ (t,M)]

]
=∂x[v∂tM + Ψ(M)]=∂x(−v2ρ) + ψρ.

Note that, in our case, Ψ(m) = αm2/2 + βm. Thus,

ψ(t, x) = β + α

∫ 1

0

[(1 − s)M(t, x−) + sM(t, x)]ds = β + α

[
M(t, x) − 1

2
ρ(t, {x})

]
.

Since ∂xM(t, ·) = ρ(t, ·) and ρ(t, ·) has at most countably many atoms, we may take
Φ(t, x) =

∫ x

−∞ M(t, y)dy to conclude.

Remark 3.4. Note that the term M(t, x)− 1
2ρ(t, {x}) is precisely the barycentric

projection [2] onto ρ(t, ·) of the optimal coupling between χ(0,1) and ρ(t, ·). It differs
from the projection considered in [13] by an additive factor of 0.5 due to the fact that,
instead of χ(0,1), the reference measure in [13] was χ(−0.5,0.5).

4. Time regularity, entropy condition, and shocks. In this section we dis-
cuss some qualitative properties of the “sticky particle” solution. The family of ab-
solutely continuous curves in P2(R) is central to our approach. Thus, recall that
(P2(R),W2) is a Polish space on which we define absolutely continuous curves by say-
ing that [0, T ] � t → μt ∈ P2(R) lies in AC2(0, T ;P2(R)) provided that there exists

f ∈ L2(0, T ) such that W2(μt, μt+h) ≤
∫ t+h

t
f(s)ds for all 0 < t < t + h < T .

4.1. The solution path is locally Lipschitz. First we show that our solution
path is locally Lipschitz.

Proposition 4.1. The solution path t → ρ(t, ·) satisfies the following:
(i) For any 0 < T < +∞, we have

W2(ρ(t, ·), ρ(s, ·)) ≤ CT |t− s| for all t, s ∈ [0, T ].

(ii) The energy is nonincreasing, i.e.,∫
R

|v(t, x)|2dρ(t, x) ≤
∫

R

|v0(x)|2dρ0(x) for all t ≥ 0.
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Proof. Recall that ρn(t, ·) are uniformly Lipschitz in n and t. Thus, by the triangle
inequality,

W2(ρ(t, ·), ρ(s, ·)) ≤ W2(ρ(t, ·), ρn(t, ·)) + C|t− s| + W2(ρ
n(s, ·), ρ(s, ·)).

Therefore, by letting n go to infinity and using Proposition 3.3, we obtain (i). Also
as vn(t, ·)ρn(t, ·) → v(t, ·)ρ(t, ·) weakly for each t, we deduce that∫

R

|v(t, x)|2dρ(t, x) ≤ lim inf
n→∞

∫
R

|vn(t, x)|2dρn(t, x) ≤ lim inf
n→∞

∫
R

|v0(x)|2dρn0 (x)

=

∫
R

|v0(x)|2dρ0(x).

Remark 4.2. As a consequence of Proposition 4.1, we have ρ ∈ AC2(0, T ;P2(R)).
We now recall a result, slightly modified, proved in [13].
Proposition 4.3. Suppose σ ∈ AC2(0, T ;P2(R)). Let v be the velocity of mini-

mal norm associated to σ and N(t, ·) : (0, 1) → R be the monotone nondecreasing map
such that N(t, ·)#χ(0,1) = σ(t, ·). For each t, modifying N(t, ·) on a countable subset
of (0, 1) if necessary, we may assume w.l.o.g. that N(t, ·) is right continuous. Then,
N ∈ H1(0, T ;L2(0, 1)) and

Ṅ(t, x) = v(t,N(t, x))(31)

for L2-a.e. (t, x) ∈ (0, T ) × (0, 1).
Note that the minimal norm assumption is, in fact, redundant. Indeed, we prove

the following lemma.
Lemma 4.4. Consider the path t → μ ∈ AC2(0, T ;P2(R)) for some 0 < T < +∞.

Then the velocity defined in [2] (called “of minimal norm”) is the unique velocity along
the curve μ in the following sense: if

∂tμ + ∂x(μvi) = 0 in D′([0, T ] × R), i = 1, 2,

for some vi Borel measurable in (t, x) such that vi(t, ·) ∈ L2(μ(t, ·)) for Lebesgue a.e.
t ∈ (0, T ), then for Lebesgue a.e. t ∈ (0, T ) we have v1(t, ·) ≡ v2(t, ·) in the μ(t, ·)-a.e.
sense.

Proof. By subtraction and by taking test functions ϕ(t, x) = ξ(t)ζ(x), the equa-
tions above readily yield∫

R

u(t, x)ζ ′(x)dμ(t, x) = 0 for a.e. t ∈ (0, T ) and any ζ ∈ C1
c (R),

where u := v1 − v2. Fix ε > 0 and φ ∈ Cc(R). If φ = 0 on [R,+∞), consider, for each
natural number n > R, the function

Φn(x) :=

⎧⎪⎨
⎪⎩

∫ x

−∞ φ(y)dy if x < n,

ω(x− n) if n ≤ x ≤ n + 1,

0 if x > n + 1,

(32)

where ω ∈ C1[0, 1] such that ω(0) =
∫ R

−∞ φ(y)dy, ω(1) = 0, and ω′(0) = 0 = ω′(1).

Clearly, Φn ∈ C1
c (R). Thus,∫

R

u(t, x)φ(x)dμ(t, x) +

∫ n+1

n

u(x, t)ω′(x− n)dμ(t, x) = 0 for a.e. t ∈ (0, T ).
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We have |ω′(x − n)| ≤ ‖ω′‖L∞(0,1) =: C for all n > R and all x ∈ (n, n + 1). Since
μ(t, ·) is a Borel probability for Lebesgue a.e. t ∈ (0, T ), we conclude that for such t
we have ∣∣∣∣

∫
R

u(t, x)φ(x)dμ(t, x)

∣∣∣∣ ≤ C‖u(t, ·)‖L2(μ(t,·))μ(t, [n, n + 1])1/2 ≤ ε

if n is sufficiently large. Due to the arbitrariness of ε and φ, the proof is concluded.
Remark 4.5. Note that, in fact, we have just proved that {ϕ′ : ϕ ∈ C∞

c (R)} is
dense in L2(μ), even though μ may not necessarily have finite p-order moment (for
any p > 0). Also, as a consequence, the tangent space TμP2(R) [2] is the whole L2(μ).
This property was brought to our attention by W. Gangbo.

4.2. Recovery of the entropy condition. We shall now prove that the solu-
tion we obtained for (1) in the α = 0 = β case satisfies the Oleinik entropy condition.

Theorem 4.6. For Lebesgue a.e. t ∈ (0, T ) we have

v(t, x2) − v(t, x1) ≤
1

t
(x2 − x1) for ρ(t, ·)-a.e. x1 ≤ x2.(33)

Proof. Let us look back at the discrete problem. Note that

Nn(t, ω) := xj(t) whenever Mn(t, xj(t)−) ≤ ω < Mn(t, xj(t))

is the optimal map such that Nn(t, ·)#χ(0,1) = ρn(t, ·). It is known [7], [15] that the
discrete problem satisfies the Oleinik entropy condition, i.e.,

t
[
vn(t, xi2(t)) − vn(t, xi1(t))

]
≤ xi2(t) − xi1(t) whenever i1 ≤ i2.

Since vn(t, xj(t)) = ẋj(t) away from collision times, we infer that the map t →[
xi2(t) − xi1(t)

]
/t is piecewise nonincreasing. But this map is continuous, so it is

globally nonincreasing, and, due to the definition of Nn, it follows that

t → 1

t

[
Nn(t, ω2) −Nn(t, ω1)

]
(34)

is nonincreasing in (0, T ) for all ω1 ≤ ω2 ∈ (0, 1). Now let Δ := {ω = (ω1, ω2) ∈
[0, 1]2 : ω1 ≤ ω2} and Sn(t, ω) = Nn(t, ω2) −Nn(t, ω1) be defined on [0, T ] × Δ. It is
easy to see that Sn ∈ H1(0, T ;L2(Δ)) and that (34) implies

∫ T

0

∫
Δ

Sn(t, ω)

t
∂tϕ(t, ω)dωdt ≥ 0 for all nonnegative ϕ ∈ C∞

c ((0, T ) × Δ).(35)

On the other hand, due to (28), we infer that

‖Nn −N‖L1((0,T )×(0,1)) =

∫ T

0

W1(ρ
n(t, ·), ρ(t, ·))dt → 0,

where N(t, ·) is the optimal map such that N(t, ·)#χ(0,1) = ρ(t, ·). In particular,
(Sn/t) → (S/t) in D′((0, T )×Δ), where S(t, ω) = N(t, ω2)−N(t, ω1) if ω ∈ Δ. Thus,
(35) implies

∫ T

0

∫
Δ

S(t, ω)

t
∂tϕ(t, ω)dωdt ≥ 0 for all nonnegative ϕ ∈ C∞

c ((0, T ) × Δ).
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Therefore, ∂t[S/t] ≤ 0 in the distributional sense, which implies tṠ − S ≤ 0 in the
L3-a.e. sense, i.e.,

Ṅ(t, ω2) − Ṅ(t, ω1) ≤
1

t

[
N(t, ω2) −N(t, ω1)

]
for Lebesgue a.e. (t, ω) ∈ (0, T ) × Δ.

Consequently, (31) yields

v(t,N(t, ω2))− v(t,N(t, ω1)) ≤
1

t

[
N(t, ω2)−N(t, ω1)

]
for L3-a.e. (t, ω) ∈ (0, T )×Δ,

which, due to N(t, ·)#χ(0,1) = ρ(t, ·), implies (33).

4.3. Formation of shocks. Now let us assume that ρ0 is atom-free and take
N0 to be the optimal map pushing χ(0,1) forward to ρ0.

Proposition 4.7. Let T := sup{t ∈ [0,∞) : id+tv0 is nondecreasing on spt(ρ0)}.
If T = 0, then the solution develops atomic singularities instantaneously. If 0 < T <
+∞, then the solution remains nonatomic before T and develops atomic singularities
instantaneously after T . If T = +∞, then the solution is atom-free at all times.

Proof. Let us treat the case 0 < T < +∞. Indeed, it will become clear that the
other two cases can be handled almost identically. Note that, due to the definition
of T and the fact that ρ0 is nonatomic, id + tv0 is (strictly) increasing on spt(ρ0) for
t ∈ [0, T ). Thus, N0 + tv0 ◦N0 is increasing on (0, 1) for t ∈ [0, T ). It follows that

M̄(t, ·) := (N0 + tv0 ◦N0)
−1 = M0 ◦ (id + tv0)

−1

is the entropy solution (given by characteristics) of

∂tM̄ + ∂x[F (M̄)] = 0, M̄(0, ·) = M0,

where F ′ = v0 ◦ N0, F (0) = 0. Due to uniqueness of the entropy solution, we get
M̄ ≡ M . Thus, ρ(t, ·) = (id + tv0)#ρ0 for t ∈ [0, T ] (this is precisely the geodesic
connecting ρ0 and ρT in P2(R)). Again, since id+tv0 is (strictly) increasing on spt(ρ0)
for t ∈ [0, T ), we deduce that ρ(t, ·) has no atoms if t ∈ [0, T ). To conclude, we argue
by contradiction and suppose that ρ(t, ·) is atom-free on [0, T + ε] for some ε > 0.
Thus, M(t, ·) is continuous, and so v(t, ·) = v0 ◦N0 ◦M(t, ·) for all t ∈ [0, T + ε]. Since
M(t, ·) is now the optimal map pushing ρ(t, ·) forward to χ(0,1), we infer that

v(t,N(t,m)) = v0 ◦N0 ◦M(t,N(t,m)) = v0 ◦N0(m) a.e. m ∈ (0, 1),

which, in light of (31), yields Ṅ(t,m) = v0 ◦N0(m) for a.e. (t,m) ∈ (0, T + ε)× (0, 1).
Thus, as an H1(0, T+ε;L2(0, 1)) map, N(t, ·) = N0+tv0◦N0. In particular, we obtain
that id+tv0 is nondecreasing on the support of ρ0 for all t ∈ [0, T+ε], which contradicts
the definition of T . Therefore, the solution becomes atomic instantaneously after
T .

Remark 4.8. What happens at t = T depends on whether or not id + Tv0 has
“flat spots” on spt(ρ0). It is easy to construct examples illustrating that each of these
situations may occur.

4.4. Continuity of the energy and a remark on uniqueness.
Proposition 4.9. Suppose (ρ0, v0) satisfies the conditions (H1) and (H2). Let

(ρ, v) be the weak solution to the system (1) given in the proof of Theorem 1.1 in
subsection 3.3. Then (ρ, v) has the following property:

lim
t→0+

∫
R

v(t, x)ϕ(x)dρ(t, x) =

∫
R

v0(x)ϕ(x)dρ0(x) for all ϕ ∈ Cb(R),(36)
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which shows that the initial condition for the velocity is satisfied. Moreover, we have

lim
t→0+

∫
R

v2(t, x)ϕ(x)dρ(t, x) =

∫
R

v2
0(x)ϕ(x)dρ0(x) for all ϕ ∈ Cb(R).(37)

Proof. Due to ‖M(t, ·)−M0‖L1(R) = W1(ρ(t, ·), ρ0) → 0 and the BV calculus, we
have for any function ϕ ∈ C∞

c (R)

lim
t→0+

∫
R

v(t, x)ϕ(x)dρ(t, x) = − lim
t→0+

∫
R

ϕ′(x)F (M(t, x))dx(38)

= −
∫

R

ϕ′(x)F (M0(x))dx =

∫
R

ϕ(x)g(x)dρ0(x),

where g(x) is given by

g(x) =

∫ 1

0

v0 ◦N0 ((1 − s)M0(x−) + sM0(x)) ds, x ∈ R.

We claim that N0 ((1 − s)M0(x−) + sM0(x)) = x for ρ0-a.e. x ∈ R. Indeed, if a point
x satisfies ρ0({x}) 	= 0, then M0 has a jump at x. Therefore, it is clear in this case
that

N0 ((1 − s)M0(x−) + sM0(x)) = inf {z : M0(z) > (1 − s)M0(x−) + sM0(x)} = x.

As M0 has at most countably many “flat spots,” the claim shall be proved if we can
show that g(x) = v0(x) whenever x satisfies x ∈ spt(ρ0), ρ0({x}) = 0 and x is not
one of the endpoints of some flat spot of M0. To see this is true, let x be a point
with such properties. Then there exists ε > 0 such that the function M0 is strictly
increasing on (x− ε, x + ε). It follows that

N0 ((1 − s)M0(x−) + sM0(x)) = N0 (M0(x)) = x.

Thus, we obtain the claim, which in turn yields g(x) = v0(x) for ρ0-a.e. x ∈ R. Hence,
by combining this with (38), we get

lim
t→0+

∫
R

v(t, x)ϕ(x)dρ(t, x) =

∫
R

v0(x)ϕ(x)dρ0(x) for all ϕ ∈ C∞
c (R).

By a simple approximation and the fact that ‖v0‖L2(ρ0) is finite, this gives (36). As a
consequence of (36) and the fact that the energy is nonincreasing which was proved
in Proposition 4.1, we obtain (see, e.g., Theorem 5.4.4 in [2])

lim
t→0+

∫
R

v2(t, x)dρ(t, x) =

∫
R

v2
0(x)dρ0(x).

In addition, we have W2(ρ(t, ·), ρ0) ≤ Ct from Proposition 4.1. Therefore, by using
Proposition 7.1.5 and Theorem 5.4.4 in [2] we can conclude that (37) holds.

We end the paper by the following remark on the uniqueness of the solution.
Remark 4.10. If we assume, in addition, that v0 is bounded, then the weak

solution (ρ, v) constructed above is the unique weak solution satisfying the entropy
condition in Theorem 4.6 and the weak convergence of v2 (t, ·) ρ(t, ·) to v2

0ρ0 (such
a weak solution is called an entropy solution for pressureless gases [16]). This fact
follows directly from Theorem 4.6, Proposition 4.9, and the uniqueness result in [16].
Thus, if v0 ∈ Cb(R), we have proved that any entropy solution to the pressureless
gases system can be obtained as a weak limit of sticky particles. We note that a
similar result was obtained by Bouchut and James in [5] for duality solutions.
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SPREADING SPEEDS AND TRAVELING WAVES FOR
NONMONOTONE INTEGRODIFFERENCE EQUATIONS∗
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Abstract. The spreading speeds and traveling waves are established for a class of nonmonotone
discrete-time integrodifference equation models. It is shown that the spreading speed is linearly
determinate and coincides with the minimal wave speed of traveling waves.
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1. Introduction. The invasion speed is a fundamental characteristic of bio-
logical invasions, since it describes the speed at which the geographic range of the
population expands; see, e.g., [6, 8, 9, 15] and references therein. Aronson and Wein-
berger [1, 2] first introduced the concept of the asymptotic speed of spread (in short,
spreading speed) for reaction-diffusion equations and showed that it coincides with the
minimal wave speed for traveling waves under appropriate assumptions. Weinberger
[20] and Lui [13] established the theory of spreading speeds and monostable traveling
waves for monotone (order-preserving) operators. This theory has been greatly de-
veloped recently in [21, 10, 11, 12] to monotone semiflows so that it can be applied to
various discrete- and continuous-time evolution equations admitting the comparison
principle.

It is known that many discrete- and continuous-time population models with
spatial structure are not monotone. For example, scalar discrete-time integrodiffer-
ence equations with nonmonotone growth functions, and predator-prey type reaction-
diffusion systems are among such models. The spreading speeds were obtained for
some nonmonotone continuous-time integral equations and time-delayed reaction-
diffusion models in [17, 19], and a general result on the nonexistence of traveling waves
was also given in [19, Theorem 3.5]. The existence of monostable traveling waves was
established for several classes of nonmonotone time-delayed reaction-diffusion equa-
tions in [22, 4, 16, 14]. For certain types of nonmonotone discrete-time integrodiffer-
ence equation models, nonmonotone traveling waves and even traveling cycles were
observed in [7] by numerical simulations. In [7, 9, 15, 8], the monotone linear sys-
tems, resulting from the linearization of the nonmonotone discrete-time models at
zero, were used to estimate spreading speeds. It is worthy to find sufficient condi-
tions under which the spreading speed is linearly determinate for these nonmonotone
systems.
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The purpose of our current paper is to study the spreading speeds and traveling
waves for nonmonotone discrete-time systems. As a starting point, we consider scalar
integrodifference equations with nonmonotone growth functions. The key techniques
are to sandwich the given growth function in between two appropriate nondecreasing
functions (for spreading speeds) and to construct a closed and convex subset in an
appropriate Banach space (for traveling waves). Consequently, we obtain a set of
sufficient conditions for the existence of the spreading speed, and the existence and
nonexistence of traveling waves. It turns out that the spreading speed is linearly
determinate and coincides with the minimal wave speed of traveling waves for this
class of nonmonotone discrete-time integrodifference equation population models.

The rest of this paper is organized as follows. In section 2, we first present a gen-
eral result for monotone integrodifference equations, then we establish the spreading
speed c∗ by the comparison method and a fluctuation type argument. In section 3,
we use the Schauder fixed point theorem to obtain the existence of traveling waves
with the wave speed c > c∗. The property of the spreading speed is employed to prove
the asymptotic property of the wave profile at +∞ and the nonexistence of traveling
waves with c < c∗. A limiting argument gives the existence of the traveling wave with
the wave speed c∗. Section 4 is aimed at the applications of the main results to three
types of growth functions arising from population biology.

2. Spreading speeds. Let C be the space of all bounded and continuous func-
tions from R to R equipped with the compact open topology. For a given number
r > 0, let Cr := {φ ∈ C : 0 ≤ φ(x) ≤ r, ∀x ∈ R}.

Let k(x) be a nonnegative Lebesgue measurable function on R. Throughout this
paper, we assume that the kernel k(x) has the following property:

(K)
∫

R
k(y)dy = 1, k(−y) = k(y), ∀y ∈ R, and

∫
R
e−αyk(y)dy < ∞, ∀α ∈ [0,Δ),

where Δ > 0 is the abscissa of convergence and it may be infinity.
We consider a discrete-time integrodifference equation

(2.1) un+1(x) =

∫
R

h(un(y))k(x− y)dy, x ∈ R, n ≥ 0

with u0 ∈ C. Assume that there exists β > 0 such that
(H1) h ∈ C([0, β], [0, β]), h(0) = 0, h′(0) > 1, h(β) = β, and there is L0 > 0 such

that |h(u1) − h(u2)| ≤ L0|u1 − u2|, ∀u1, u2 ∈ [0, β].
(H2) u < h(u) ≤ h′(0)u, ∀u ∈ (0, β), and h(u) is nondecreasing in u ∈ [0, β].

Let U(x) be a continuous function on R. We say U(x + cn) is a traveling wave
solution of (2.1) with the wave speed c if un(x) = U(x + cn), ∀n ≥ 0, satisfies (2.1),
and U(x + cn) connects 0 to β if U(−∞) = 0 and U(+∞) = β. It is easy to see that
U(x + cn) is a traveling wave solution of (2.1) if and only if

U(ξ) =

∫
R

h(U(ξ − c− y))k(y)dy, ∀ξ ∈ R.

Define

(2.2) c∗h = inf
μ∈(0,Δ)

ln
(
h′(0)

∫
R
e−μyk(y)dy

)
μ

.

The following result is essentially due to Weinberger [20], and shows that c∗h is not only
the spreading speed but also the minimal wave speed of monotone traveling waves for
system (2.1).



778 SZE-BI HSU AND XIAO-QIANG ZHAO

Theorem 2.1. Let (H1) and (H2) hold. Then the following statements are valid:
(i) For any u0 ∈ Cβ with compact support, the solution of (2.1) satisfies

lim
n→∞,|x|≥cn

un(x) = 0, ∀c > c∗h.

(ii) For any u0 ∈ Cβ \ {0}, the solution of (2.1) satisfies

lim
n→∞,|x|≤cn

un(x) = β, ∀c ∈ (0, c∗h).

(iii) For any c ≥ c∗h, (2.1) has a traveling wave U(x + cn) connecting 0 to β such
that U(x) is nondecreasing in x, and for any c ∈ (0, c∗h), (2.1) has no traveling
wave U(x + cn) connecting 0 to β.

Proof. The existence of the spreading speed, together with the formula (2.2),
and traveling waves is a straightforward consequence of [20, Theorems 6.1–6.6] in
the case where Δ = +∞, and [11, Theorem 2.11 and Theorem 2.15] with τ = 0
in the case where Δ < +∞. Indeed, the proof of [11, Theorem 3.10] implies that
[11, Theorem 3.10] with infμ>0 Φ(μ) replaced by inf0<μ<Δ Φ(μ) is still valid, provided
that (C5) holds for all μ1, μ2 ∈ (−Δ,Δ) and Φ(μ) assumes its minimum value at
μ∗ ∈ (0,Δ). Thus, the formula (2.2) also holds in the case where Δ < +∞. By [11,
Theorem 3.5], it follows that the number r = rσ in [11, Theorem 2.15] can be chosen
to be independent of σ > 0. For any u0 ∈ Cβ \ {0}, it is easy to show that there exists
an integer n0 ≥ 1 such that un0(x) > 0 for x in an interval of length greater 2r. Taking
un0(x) as a new initial data, we see that conclusion (ii) holds. The nonexistence of
traveling waves is implied by conclusion (ii) (see also [11, Theorem 4.1]).

Next we consider the discrete-time integrodifference equation

(2.3) un+1(x) =

∫
R

f(un(y))k(x− y)dy, x ∈ R, n ≥ 0

with u0 ∈ C. Assume that there exists b > 0 such that
(F1) f ∈ C([0, b], [0, b]), f(0) = 0, f ′(0) > 1, and there is L > 0 such that |f(u1)−

f(u2)| ≤ L|u1 − u2|, ∀u1, u2 ∈ [0, b].
(F2) f(u) ≤ f ′(0)u, ∀u ∈ [0, b], and there is u∗ ∈ (0, b] such that f(u∗) = u∗,

f(u) > u, ∀u ∈ (0, u∗), and 0 < f(u) < u, ∀u ∈ (u∗, b].
Define

f+(u) = max
0≤v≤u

f(v), f−(u) = min
u≤v≤b

f(v), ∀u ∈ [0, b].

It then follows that

f−(u) ≤ f(u) ≤ f+(u), ∀u ∈ [0, b],

that both f+ and f− are nondecreasing and Lipschitz continuous, with the Lipschitz
constant L, on [0, b], and that there exists δ0 ∈ (0, b] such that f±(u) = f(u), ∀u ∈
[0, δ0]. Let u∗

± be such that f±(u∗
±) = u∗

±. Then 0 < u∗
− ≤ u∗ ≤ u∗

+ ≤ b.
To obtain the upward convergence as stated in Theorem 2.1 (ii), we need to

impose one of the following two additional conditions on f .
(C1) u∗ = b and f(u) is nondecreasing in u ∈ [b− ε0, b] for some ε0 ∈ (0, b).

(C2) f(u)
u is strictly decreasing for u ∈ (0, b], and f(u) has the property (P) that

for any v, w ∈ (0, b] satisfying v ≤ u∗ ≤ w, v ≥ f(w) and w ≤ f(v), we have
v = w.
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Motivated by the proofs of [17, Theorems 2.9 and 2.12], we have the following
observation.

Lemma 2.1. Either of the following two conditions is sufficient for the property
(P) in condition (C2) to hold:

(P1) uf(u) is strictly increasing for u ∈ (0, b].

(P2) f(u) is nonincreasing for u ∈ [u∗, b], and f2(u)
u is strictly decreasing for u ∈

(0, u∗].
Proof. Let v, w ∈ (0, b] be given such that v ≤ u∗ ≤ w, v ≥ f(w), and w ≤ f(v).

In the case where (P1) holds, since vf(v) ≥ f(w)f(v) ≥ wf(w), it follows that v ≥ w,
and hence v = w. In the case where (P2) holds, we have v ≥ f(w) ≥ f(f(v)) = f2(v),

and hence, f2(v)
v ≤ 1 = f2(u∗)

u∗ . It then follows that v ≥ u∗, and hence, v = u∗. Since
u∗ ≤ w ≤ f(v) = f(u∗) = u∗, we further have w = u∗ = v.

Now we are in a position to prove the main result of this section.
Theorem 2.2. Let (F1) and (F2) hold and c∗f be defined as in (2.2) with h = f .

Then the following statements are valid:
(1) For any u0 ∈ Cu∗

+
with compact support, the solution of (2.3) satisfies

lim
n→∞,|x|≥cn

un(x) = 0, ∀c > c∗f .

(2) For any u0 ∈ Cu∗
+
\ {0}, the solution of (2.3) satisfies

u∗
− ≤ lim inf

n→∞,|x|≤cn
un(x) ≤ lim sup

n→∞,|x|≤cn

un(x) ≤ u∗
+, ∀c ∈ (0, c∗f ).

(3) If, in addition, either (C1) or (C2) holds, then for any u0 ∈ Cu∗
+
\ {0}, the

solution of (2.3) satisfies

lim
n→∞,|x|≤cn

un(x) = u∗, ∀c ∈ (0, c∗f ).

Proof. For convenience, let c∗ = c∗f . Define

Q(φ)(x) =

∫
R

f(φ(x− y))k(y)dy, Q±(φ)(x) =

∫
R

f±(φ(x− y))k(y)dy.

Clearly, Q± is monotone (order preserving) on Cb and

Q−(φ) ≤ Q(φ) ≤ Q+(φ), ∀φ ∈ Cb.

By Theorem 2.1, it follows that c∗ is the spreading speed for the discrete-time system
un+1 = Q±(un) on Cu∗

± .

Case 1. For a given φ ∈ Cu∗
+

with compact support, let un = Qn(φ), u+
n =

(Q+)n(φ), ∀n ≥ 0. By the comparison principle (see, e.g., [20, Proposition 4.1]), we
have

0 ≤ un(x) ≤ u+
n (x), ∀x ∈ R, n ≥ 0.

For any c > c∗, Theorem 2.1 (i) implies that limn→∞,|x|≥cn u
+
n (x) = 0, and hence

limn→∞,|x|≥cn un(x) = 0.
Case 2. For a given φ ∈ Cu∗

+
\ {0}, define ψ(x) = min(φ(x), u∗

−). Then ψ ∈
Cu∗

− \ {0}. Let u−
n = (Q−)n(ψ), ∀n ≥ 0. Since ψ ≤ φ, it follows from the comparison

principle that

0 ≤ u−
n (x) ≤ un(x) ≤ u+

n (x), ∀x ∈ R, n ≥ 0.
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For any c ∈ (0, c∗), Theorem 2.1 (ii) implies that lim
n→∞,|x|≤cn

u±
n (x) = u∗

±. Thus, we

have

u∗
− ≤ lim inf

n→∞,|x|≤cn
un(x) ≤ lim sup

n→∞,|x|≤cn

un(x) ≤ u∗
+.

Case 3. In the case where (C1) holds, we see that u∗ ≤ u∗
+ ≤ b = u∗. Further,

it follows from the definition of f− that f−(u) = f(u),∀u ∈ [b − ε0, b], and hence,
u∗
− = u∗. Since u∗

− = u∗
+ = u∗, the upward convergence in case (3) follows from the

conclusion in case (2).
In the case where (C2) holds, we use similar arguments as in the proof of [17,

Lemma 3.10] (see also the proof of [19, Theorem 2.5]). For any (v, w) ∈ [0, b]2, let

(2.4) g(v, w) =

{
min{f(u) : v ≤ u ≤ w}, if v ≤ w,

max{f(u) : w ≤ u ≤ v}, if w ≤ v.

Then g(v, w) is nondecreasing in v ∈ [0, b] and nonincreasing in w ∈ [0, b]. Moreover,
f(u) = g(u, u), and g(v, w) is continuous in (v, w) ∈ [0, b]2 (see [18, section 2]). For a
given u0 ∈ Cu∗

+
\ {0}, let un = Qn(u0), ∀n ≥ 0. Then we have

un+1(x) =

∫
R

g(un(x− y), un(x− y))k(y)dy, n ≥ 0.

For any β ∈ (0, c∗), we define

U∗(β) := lim inf
n→∞,|x|≤βn

un(x), U∗(β) := lim sup
n→∞,|x|≤βn

un(x).

Let c ∈ (0, c∗) be given. We fix a number γ ∈ (c, c∗) and define

V∗(c, γ) = inf
c<β<γ

U∗(β), V ∗(c, γ) = sup
c<β<γ

U∗(β).

It then follows that

V∗(c, γ) ≤ U∗(β) ≤ U∗(β) ≤ V ∗(c, γ), ∀β ∈ [c, γ].

By the conclusion in case 2, we have

0 < u∗
− ≤ U∗(β) ≤ U∗(β) ≤ u∗

+, ∀β ∈ (0, c∗),

and hence,

0 < u∗
− ≤ V∗(c, γ) ≤ V ∗(c, γ) ≤ u∗

+ ≤ b.

For any β ∈ (c, γ), we choose two sequences nj → ∞ and xj ∈ R with |xj | ≤ βnj

such that limj→∞ unj (xj) = U∗(β). It is easy to see that

U∗(γ) ≤ lim inf
j→∞

unj−1(xj − y) ≤ lim sup
j→∞

unj−1(xj − y) ≤ U∗(γ), ∀y ∈ R.

Since unj (xj) =
∫

R
g(unj−1(xj − y), unj−1(xj − y))k(y)dy, it follows from Fatou’s

lemma that

U∗(β) ≥
∫

R

lim inf
j→∞

g(unj−1(xj − y), unj−1(xj − y))k(y)dy,
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and hence

U∗(β) ≥
∫

R

g(U∗(γ), U∗(γ))k(y)dy

= g(U∗(γ), U∗(γ)) ≥ g(V∗(c, γ), V ∗(c, γ)).

Similarly, we have

U∗(β) ≤ g(U∗(γ), U∗(γ)) ≤ g(V ∗(c, γ), V∗(c, γ)).

Thus,

(2.5) V∗(c, γ) ≥ g(V∗(c, γ), V ∗(c, γ)), V ∗(c, γ) ≤ g(V ∗(c, γ), V∗(c, γ)).

By the definition of function g, we can find v, w ∈ [V∗(c, γ), V ∗(c, γ)] ⊂ (0, b] such
that

g(V ∗(c, γ), V∗(c, γ)) = f(v) and g(V∗(c, γ), V ∗(c, γ)) = f(w).

It then follows from (2.5) that

(2.6) f(w) ≤ V∗(c, γ) ≤ v, w ≤ V ∗(c, γ) ≤ f(v),

and hence,

f(w)

w
≤ 1 =

f(u∗)

u∗ ≤ f(v)

v
.

This, together with the strict monotonicity of f(u)
u on (0, b], implies that v ≤ u∗ ≤ w.

By (2.6) and the property (P), we obtain v = w. It then follows from (2.6) that
V∗(c, γ) ≥ f(w) = f(v) ≥ V ∗(c, γ), and hence, 0 < V∗(c, γ) = V ∗(c, γ) ≤ b. From
(2.5), we have

V∗(c, γ) ≥ g(V∗(c, γ), V∗(c, γ)) ≥ V ∗(c, γ),

and hence, 0 < V∗(c, γ) = f(V∗(c, γ)). By the uniqueness of the positive fixed point
of f in [0, b], it follows that V∗(c, γ) = u∗. Consequently,

u∗ = V∗(c, γ) ≤ U∗(c) ≤ U∗(c) ≤ V ∗(c, γ) = u∗,

which implies that limn→∞,|x|≤cn un(x) = u∗ for any c ∈ (0, c∗).
Remark 2.1. Under the assumption that

∫
Rm k(y)dy = 1, k(x) = k(y), ∀x, y ∈ R

m

with |x| = |y|, Theorem 2.2 is still valid if we replace
∫

R
with

∫
Rm .

3. Traveling waves. In this section, we establish the existence and nonexistence
of traveling waves for systems (2.3) by appealing to the Schauder fixed point theorem
and the property of the spreading speed.

For a given λ > 0, let

Xλ := {φ ∈ C(R,R) : sup
ξ∈R

|φ(ξ)|e−λξ < +∞}

and ‖φ‖λ = supξ∈R |φ(ξ)|e−λξ. It then follows that (Xλ, ‖ · ‖λ) is a Banach space.
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Define

Φ(λ) =
ln
(
f ′(0)

∫
R
e−λyk(y)dy

)
λ

, ∀λ ∈ (0,Δ),

and

K(c, λ) = f ′(0)e−cλ

∫
R

e−λyk(y)dy, ∀c ∈ R+, λ ∈ (0,Δ).

By [11, Lemma 3.8], it follows that for any c > c∗f , there exist 0 < λ1 = λ1(c) < λ2 =
λ2(c) < Δ such that Φ(λ1) = c and Φ(λ) < c, ∀λ ∈ (λ1, λ2). Thus, we have

K(c, λ1) = 1, K(c, λ) < 1, ∀λ ∈ (λ1, λ2).

Note that if f ′′(0) exists, then f(u) ≥ f ′(0)u − au2, ∀u ∈ [0, δ], for appropriate
a > 0 and δ > 0. To obtain the existence of traveling waves, we impose the following
weaker condition on f (cf. [3]).

(F3) There exist real numbers δ∗ ∈ (0,min(δ0, u
∗
+)], σ > 1 and a > 0 such that

f(u) ≥ f ′(0)u− auσ, ∀u ∈ [0, δ∗].
Theorem 3.1. Let (F1)–(F3) hold. Then the following statements are valid:
(1) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x+ cn) with U ∈ Cu∗

+
\ {0}

and U(−∞) = 0.
(2) For any c > c∗f , (2.3) has a traveling wave U(x+ cn) such that U ∈ Cu∗

+
\{0},

U(−∞) = 0, and

u∗
− ≤ lim inf

ξ→+∞
U(ξ) ≤ lim sup

ξ→+∞
U(ξ) ≤ u∗

+.

If, in addition, either (C1) or (C2) holds, then U(+∞) = u∗.
Proof. Case 1. Assume, by contradiction, that for some c0 ∈ (0, c∗f ), (2.3) has

a traveling wave un(x) := U(x + c0n) with U ∈ Cu∗
+
\ {0} and U(−∞) = 0. By

Theorem 2.2 (2), there holds

lim inf
n→∞,|x|≤cn

un(x) ≥ u∗
− > 0, ∀c ∈ (0, c∗f ).

Choose c̃ ∈ (c0, c
∗
f ) and let x = −c̃n. Then lim infn→∞ un(−c̃n) = lim infn→∞ U((c0−

c̃)n) > 0, but limn→∞ U((c0 − c̃)n) = U(−∞) = 0, a contradiction.
Case 2. Let c > c∗f be given. Define a mapping T : Cb → Cb by

(3.1) T (φ)(ξ) =

∫
R

f(φ(ξ − c− y))k(y)dy, ∀ξ ∈ R, φ ∈ Cb.

Let T± be defined as in (3.1) with f replaced by f±. It then follows that T± is
nondecreasing with respect to the pointwise ordering on Cb, and that

T−(φ) ≤ T (φ) ≤ T+(φ), ∀φ ∈ Cb.

Following [3], we define

φ+(ξ) := min{u∗
+e

λ1ξ, u∗
+}, ∀ξ ∈ R.

Since f+(u) is nondecreasing in u and φ+(ξ) ≤ u∗
+, ∀ξ ∈ R, we obtain

(3.2) T+(φ+)(ξ) ≤
∫

R

f+(u∗
+)k(y)dy = f+(u∗

+) = u∗
+, ∀ξ ∈ R.
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Note that f+(u) ≤ f ′(0)u, ∀u ∈ [0, b], and φ+(ξ) ≤ u∗
+e

λ1ξ, ∀ξ ∈ R. Thus, we further
have

T+(φ+)(ξ) ≤
∫

R

f ′(0)φ+(ξ − c− y)k(y)dy

≤ f ′(0)

∫
R

u∗
+e

λ1(ξ−c−y)k(y)dy

= u∗
+e

λ1ξK(c, λ1) = u∗
+e

λ1ξ, ∀ξ ∈ R.(3.3)

By (3.2), (3.3), and the definition of φ+, it then follows that T+(φ+) ≤ φ+. We
first fix a sufficiently small ε∗ ∈ (0, λ1(σ − 1)] such that λ1 + ε∗ < λ2, and hence
K(c, λ1 + ε∗) < 1. We then choose a sufficiently large number M ≥ 1 such that

(3.4)

(
1 +

a(u∗
+)σ

f ′(0)δ∗M

)
K(c, λ1 + ε∗) < 1.

Following [19], we define

φ−(ξ) := max{0, δ∗(1 −Meε
∗ξ)eλ1ξ}, ∀ξ ∈ R.

Let ξ0 := − lnM
ε∗ . Then we have

φ−(ξ) = 0, ∀ξ ≥ ξ0, φ−(ξ) = δ∗eλ1ξ − δ∗Me(λ1+ε∗)ξ, ∀ξ ≤ ξ0.

Since δ∗ ≤ u∗
+, ξ0 ≤ 0, and 0 < ε∗ ≤ λ1(σ − 1), it is easy to see that

0 ≤ φ−(ξ) ≤ φ+(ξ), (φ−(ξ))σ ≤ (u∗
+)σe(λ1+ε∗)ξ, ∀ξ ∈ R.

Clearly, we have

(3.5) T−(φ−)(ξ) ≥ 0, ∀ξ ∈ R.

Since φ−(ξ) ≥ δ∗eλ1ξ − δ∗Me(λ1+ε∗)ξ, ∀ξ ∈ R, it follows from (3.4) that

f ′(0)φ−(ξ) − a(φ−(ξ))σ ≥ f ′(0)δ∗eλ1ξ − f ′(0)δ∗Me(λ1+ε∗)ξ − a(u∗
+)σe(λ1+ε∗)ξ

= f ′(0)δ∗eλ1ξ − f ′(0)δ∗Me(λ1+ε∗)ξ

(
1 +

a(u∗
+)σ

f ′(0)δ∗M

)

≥ f ′(0)δ∗eλ1ξ − f ′(0)δ∗M

K(c, λ1 + ε∗)
e(λ1+ε∗)ξ, ∀ξ ∈ R.

In view of (F3) and the fact that f−(u) = f(u), ∀u ∈ [0, δ0], we then have

T−(φ−)(ξ) ≥
∫

R

(
f ′(0)φ−(ξ − c− y) − a(φ−(ξ − c− y))σ

)
k(y)dy

≥
∫

R

(
f ′(0)δ∗eλ1(ξ−c−y) − f ′(0)δ∗M

K(c, λ1 + ε∗)
e(λ1+ε∗)(ξ−c−y)

)
k(y)dy

= δ∗eλ1ξK(c, λ1) −
δ∗M

K(c, λ1 + ε∗)
e(λ1+ε∗)ξK(c, λ1 + ε∗)

= δ∗eλ1ξ − δ∗Me(λ1+ε∗)ξ, ∀ξ ∈ R.(3.6)

By (3.5), (3.6), and the definition of φ−, it follows that T−(φ−) ≥ φ−.
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Now we fix a number λ ∈ (0, λ1). It is easy to see that both φ− and φ+ are
elements in Xλ. Thus, the set

Y := {φ ∈ Xλ : φ−(ξ) ≤ φ(ξ) ≤ φ+(ξ), ∀ξ ∈ R}

is a nonempty, closed, and convex subset of Xλ. For any φ ∈ Y , we have

φ− ≤ T−(φ−) ≤ T−(φ) ≤ T (φ) ≤ T+(φ) ≤ T+(φ+) ≤ φ+,

and hence T (Y ) ⊂ Y . For any φ, ψ ∈ Y , there holds

‖T (φ) − T (ψ)‖λ = sup
ξ∈R

|T (φ)(ξ) − T (ψ)(ξ)|e−λξ

≤ L · sup
ξ∈R

∫
R

|φ(ξ − c− y) − ψ(ξ − c− y)|e−λξk(y)dy

≤ L‖φ− ψ‖λ
∫

R

e−λ(c+y)k(y)dy

=

(
Le−λc

∫
R

e−λyk(y)dy

)
‖φ− ψ‖λ.

This implies that T : Y → Y is continuous. We further show that T (Y ) is precompact
in Xλ. For any φ ∈ Y , ξ1, ξ2 ∈ R, we have

|T (φ)(ξ1) − T (φ)(ξ2)| =

∣∣∣∣
∫

R

f(φ(z)) (k(ξ1 − c− z) − k(ξ2 − c− z)) dz

∣∣∣∣
≤ b

∫
R

|k(ξ1 − c− z) − k(ξ2 − c− z)|dz

= b

∫
R

|k(ξ1 − ξ2 + y) − k(y)|dy

= b · g(ξ1 − ξ2),

where g(ξ) =
∫

R
|k(ξ + y) − k(y)|dy, ∀ξ ∈ R. Since limξ→0 g(ξ) = 0, it follows that

the family of functions {T (φ)(ξ) : φ ∈ Y } is uniformly bounded and equicontinuous
in ξ ∈ R. Thus, for any given sequence {ψn}n≥1 in T (Y ), there exist nk → ∞ and
ψ ∈ C(R,R) such that limk→∞ ψnk

(ξ) = ψ(ξ) uniformly for ξ in any compact subset
of R. Since φ−(ξ) ≤ ψnk

(ξ) ≤ φ+(ξ), ∀ξ ∈ R, we have φ−(ξ) ≤ ψ(ξ) ≤ φ+(ξ), ∀ξ ∈ R,
and hence, ψ ∈ Y . Note that

lim
ξ→+∞

(φ+(ξ) − φ−(ξ))e−λξ = 0

and

lim
ξ→−∞

(φ+(ξ) − φ−(ξ))e−λξ = 0.

Therefore, for any ε > 0, there exists B > 0 such that

0 ≤ (φ+(ξ) − φ−(ξ))e−λξ < ε, ∀|ξ| ≥ B.

Since limk→∞(ψnk
(ξ) − ψ(ξ))e−λξ = 0 uniformly for ξ ∈ [−B,B], there exists an

integer N > 0 such that

|ψnk
(ξ) − ψ(ξ)|e−λξ < ε, ∀ξ ∈ [−B,B], k ≥ N.
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It then follows that

‖ψnk
− ψ‖λ = sup

ξ∈R

|ψnk
(ξ) − ψ(ξ)|e−λξ ≤ ε, ∀k ≥ N.

This implies that limk→∞ ψnk
= ψ in Xλ. By the Schauder fixed point theorem, there

exists U ∈ Y such that U = T (U), and hence, U(x + cn) is a traveling wave of (2.3).
Since φ−(ξ) ≤ U(ξ) ≤ φ+(ξ), ∀ξ ∈ R, we have U(−∞) = 0 and U ∈ Cu∗

+
\ {0}.

Let un(x) := U(x + cn), ∀n ≥ 0, and fix a number c̄ ∈ (0, c∗f ). By Theorem 2.2
(2), it follows that

0 < u∗
− ≤ lim inf

n→∞,|x|≤c̄n
un(x) ≤ lim sup

n→∞,|x|≤c̄n

un(x) ≤ u∗
+,

and hence,

u∗
− ≤ lim inf

n→∞
un(−γn) ≤ lim sup

n→∞
un(−γn) ≤ u∗

+

uniformly for γ ∈ [0, c̄]. This implies that

u∗
− ≤ lim inf

n→∞
U(sn) ≤ lim sup

n→∞
U(sn) ≤ u∗

+

uniformly for s ∈ [c− c̄, c]. Let

an = n(c− c̄), bn = nc, ∀n ≥ 1.

Thus, there exists N0 > 0 such that an+1 − bn < 0, ∀n ≥ N0, and hence,

∪n≥m[an, bn] = [am,+∞), ∀m ≥ N0.

It then follows that

u∗
− ≤ lim inf

ξ→+∞
U(ξ) ≤ lim sup

ξ→+∞
U(ξ) ≤ u∗

+.

If, in addition, either (C1) or (C2) holds, then Theorem 2.2 (3) implies that

lim
n→∞,|x|≤c̄n

un(x) = u∗, ∀c̄ ∈ (0, c∗f ).

By the same arguments as above, we further have U(+∞) = u∗.
Theorem 3.2. Let (F1)–(F3) hold. Then (2.3) has a traveling wave U(x + c∗fn)

such that U ∈ Cu∗
+
\ {0, u∗} and

u∗
− ≤ lim inf

ξ→+∞
U(ξ) ≤ lim sup

ξ→+∞
U(ξ) ≤ u∗

+.

If, in addition, either (C1) or (C2) holds, then U(+∞) = u∗.
Proof. Choose a sequence {cj}j≥1 ⊂ (c∗f ,+∞) such that limj→∞ cj = c∗f . By

Theorem 3.1 (2), it follows that (2.3) has a traveling wave Uj(x + cjn) such that
Uj ∈ Cu∗

+
\ {0}, Uj(−∞) = 0, and

u∗
− ≤ lim inf

ξ→+∞
Uj(ξ) ≤ lim sup

ξ→+∞
Uj(ξ) ≤ u∗

+.
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Without loss of generality, we assume that Uj(0) = 1
2u

∗
− > 0, ∀j ≥ 1. Note that

(3.7) Uj(ξ) =

∫
R

f(Uj(ξ − cj − y))k(y)dy, ∀ξ ∈ R, j ≥ 1.

It follows that

|Uj(ξ1) − Uj(ξ2)| ≤ b · g(ξ1 − ξ2), ∀ξ1, ξ2 ∈ R, j ≥ 1,

where g(ξ) is defined as in the proof of Theorem 3.1. Then the family of functions
{Uj(ξ) : j ≥ 1} is uniformly bounded and equicontinuous in ξ ∈ R. Thus, there exist
jk → +∞ and U ∈ C(R,R) such that limk→∞ Ujk(ξ) = U(ξ) uniformly for ξ in any
compact subset of R. Clearly, U ∈ Cu∗

+
and U(0) = 1

2u
∗
−. Letting j = jk → +∞ in

(3.7) and using the dominated convergence theorem, we obtain

U(ξ) =

∫
R

f(U(ξ − c∗f − y))k(y)dy, ∀ξ ∈ R,

and hence, un(x) := U(x + c∗fn) is a traveling wave of (2.3). As in the proof of
Theorem 3.1 (2), we see that Theorem 2.2 (2) and (3) imply the asymptotic behavior
of U(ξ) as ξ → +∞.

Compared with Theorem 3.1 (2), we expect that U(−∞) = 0 in Theorem 3.2.
However, we are not able to prove it at this moment since the limiting function U(ξ)
may not be nondecreasing on R.

4. Examples. In this section, we present illustrative examples by choosing three
types of growth functions from population biology.

First, we consider the logistic type function f(u) = ru(1 − u
K ), r > 0, K > 0.

Clearly, f ′(0) = r, maxu∈[0,K] f(u) = f(K/2) = rK
4 , f(u)

u = r(1 − u
K ) is strictly

decreasing on (0,K], and u∗ := K(1 − 1
r ) is the unique positive fixed point of f on

[0,K]. Assume that 1 < r < 4 so that we have f ′(0) > 1 and f((0,K]) ⊂ (0,K]. It is
easy to verify that f(u) is strictly increasing on [0, u∗] if r ∈ (0, 2]. In the case where
r ∈ (1, 2], we choose b =: u∗, and hence, u∗

− = u∗
+ = u∗. In the case r ∈ (2, 4), we

choose b := rK
4 , and hence, u∗

+ = b, u∗
− = f(b) = r2K(4−r)

16 . Note that

f2(u)

u
=

r2

K3

(
K2(K − u) − ru(K − u)2

)
.

It then follows that f(u) satisfies the property (P2) if r ∈ (2, 3]. By Theorems 2.1
and 2.2 and Theorems 3.1 and 3.2, we have the following result.

Example 4.1. Let f(u) = ru(1 − u
K ) with K > 0 and r ∈ (1, 4), b, u∗

+ and u∗
−

be defined as above, and c∗f be defined as in (2.2) with h = f . Then the following
statements are valid:

(i) c∗f is the spreading speed of (2.3) in the sense that both conclusions (1) and
(2) in Theorem 2.2 hold. Further, the conclusion (3) in Theorem 2.2 holds in
the case where r ∈ (1, 3].

(ii) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x + cn) with U ∈ Cb \ {0}
and U(−∞) = 0, and for any c ≥ c∗f , (2.3) has a traveling wave U(x + cn)
with U ∈ Cu∗

+
\ {0, u∗} and

u∗
− ≤ lim inf

ξ→+∞
U(ξ) ≤ lim sup

ξ→+∞
U(ξ) ≤ u∗

+.
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Further, U(+∞) = u∗ in the case where r ∈ (1, 3]. If r ∈ (1, 2], then
U(−∞) = 0 and U(ξ) is nondecreasing in ξ for all c ≥ c∗f . If r ∈ (2, 3],
then U(−∞) = 0 for all c > c∗f .

In Example 4.1, we can also verify that for any r > 0, uf(u) is strictly increasing
on [0, 2K/3] and strictly decreasing on [2K/3,+∞). It then follows that f(u) satisfies
the property (P1) if r ∈ (2, 8/3], but does not satisfy the property (P1) if r ∈ (8/3, 4).
So we chose to use the property (P2) to obtain the upward convergence as stated in
Theorem 2.2 (3) for r in a larger interval (1, 3]. By taking u0 as a constant function
in integrodifference equation (2.3), we see that the upward convergence implies that
u∗ is a globally attractive fixed point for the map f on (0, u∗

+]. Note that |f ′(u∗)| =
|2 − r| > 1, ∀r ∈ (3, 4). By [5, Theorem 3.8], it then follows that for any r ∈ (3, 4),
u∗ is a unstable fixed point of f . This implies that the upward convergence does not
hold for any r ∈ (3, 4). Thus, the interval (1, 3] for parameter r is optimal for the
upward convergence.

Among other things, Kot [7] observed numerically four types of discrete-time
traveling waves for the integrodifference equation (2.3) with f(u) = (1 + r0)u− r0u

2

and k(x) = 3e−6|x|: a simple monotone traveling for r0 = 0.9 ([7, Figure 7]); a
traveling wave with damped spatial oscillations for r0 = 1.9 ([7, Figure 8]); a traveling
two-cycle for r0 = 2.2 ([7, Figures 9a,b]; and a traveling four-cycle for r0 = 2.5 ([7,
Figures 10a–d]. Clearly, this system is a special case of Example 4.1 with r = 1 + r0
and K = (1 + r0)/r0. It is easy to see that our analytic results in Example 4.1 are
consistent with these numerical simulations. Note that there is an increasing sequence
of parameter values r1 = 3 < r2 ≈ 3.449 < r3 ≈ 3.544 < r4 ≈ 3.564 < . . . at which
the logistic map f(u) = ru(1− u

K ) repeatedly undergoes a period-doubling bifurcation
(see, e.g., [5, section 3.5]). Further, when r ≈ 3.839, f has a unique asymptotically
stable periodic orbit of minimal period 3. It is a challenging problem to prove the
existence of a traveling three-cycle for the integrodifference equation (2.3) associated
with the logistic map when r ≈ 3.839.

Next, we consider the Ricker type function f(u) = que−pu, q > 1, p > 0. Clearly,

f ′(0) = q and f(u)
u = qe−pu is strictly decreasing on (0,+∞). It is easy to see that

u∗ := ln q
p is the unique positive fixed point of f on [0,+∞), that maxu∈[0,+∞) f(u) =

f(1/p) = q
pe , and that f(u) is strictly increasing on [0, u∗] if q ∈ (1, e]. In the case

where q ∈ (1, e], we choose b := u∗, and hence, u∗
− = u∗

+ = u∗. In the case where

q > e, we choose b := q
pe , and hence, u∗

+ = b, u∗
− = f(b) = q2

pee
−q/e. Note that

f2(u)

u
= q2e−p(u+que−pu).

An elementary analysis shows that f(u) satisfies the property (P2) if q ∈ (e, e2]. By
Theorems 2.1 and 2.2 and Theorems 3.1 and 3.2, we have the following result.

Example 4.2. Let f(u) = que−pu with q > 1 and p > 0, b, u∗
+ and u∗

− be defined
as above, and c∗f be defined as in (2.2) with h = f . Then the following statements are
valid:

(i) c∗f is the spreading speed of (2.3) in the sense that both conclusions (1) and
(2) in Theorem 2.2 hold. Further, conclusion (3) in Theorem 2.2 holds in the
case where q ∈ (1, e2].

(ii) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x + cn) with U ∈ Cb \ {0}
and U(−∞) = 0, and for any c ≥ c∗f , (2.3) has a traveling wave U(x + cn)



788 SZE-BI HSU AND XIAO-QIANG ZHAO

with U ∈ Cu∗
+
\ {0, u∗} and

u∗
− ≤ lim inf

ξ→+∞
U(ξ) ≤ lim sup

ξ→+∞
U(ξ) ≤ u∗

+.

Further, U(+∞) = u∗ in the case where q ∈ (1, e2]. If q ∈ (1, e], then
U(−∞) = 0 and U(ξ) is nondecreasing in ξ for all c ≥ c∗f . If q ∈ (e, e2], then
U(−∞) = 0 for all c > c∗f .

In Example 4.2, for any q > e2, we have |f ′(u∗)| = |1− ln q| > 1, and hence, u∗ is
an unstable fixed point of f . As discussed in Example 4.1, it follows that the interval
(1, e2] for parameter q is optimal for the upward convergence.

Finally, we consider the generalized Beverton–Holt-type function f(u) = pu
q+um ,

m > 0, and p > q > 0. Clearly, f ′(0) = p/q and f(u)
u = p

q+um is strictly decreasing on
(0,+∞). It is easy to see that u∗ := (p−q)

1
m is the unique positive fixed point of f on

[0,+∞), and that f(u) is strictly increasing on [0,+∞) in the case where m ∈ (0, 1].
In the case where m > 1, we have

max
u∈[0,+∞)

f(u) = f(ū) =
p(m− 1)ū

qm
, ū :=

(
q

m− 1

) 1
m

.

By elementary analysis, it follows that f(u) is strictly increasing on [0, u∗] if m ∈
(1, p/(p−q)], that uf(u) is strictly increasing on [0,+∞) if m ∈ (0, 2], and that uf(u)

is strictly increasing on [0, (2q/(m−2))
1
m ] if m > 2. Define b := u∗ if m ∈ (0, p/(p−q)]

and b := f(ū) if m > p/(p− q). It then follows that u∗
− = u∗

+ = u∗ in the case where
m ∈ (1, p/(p− q)], and

u∗
+ = b, u∗

− = f(b) =
p2(m− 1)ū

q2m + pm(m−1)m−1q
(qm)m−1

,

in the case where m > p/(p− q). Note that f(u) satisfies the property (P1) if either

m ∈ (0, 2], or m > max(2, p/(p − q)) and f(ū) ≤ (2q/(m − 2))
1
m . By Theorems 2.1

and 2.2 and Theorems 3.1 and 3.2, we have the following result.
Example 4.3. Let f(u) = pu

q+um with m > 0 and p > q > 0, b, u∗
+ and u∗

−
be defined as above, and c∗f be defined as in (2.2) with h = f . Then the following
statements are valid:

(i) c∗f is the spreading speed of (2.3) in the sense that both conclusions (1) and
(2) in Theorem 2.2 hold. Further, conclusion (3) in Theorem 2.2 holds in the
case where either m ∈ (0,max(2, p/(p − q))], or m > max(2, p/(p − q)) and

f(ū) ≤ (2q/(m− 2))
1
m .

(ii) For any c ∈ (0, c∗f ), (2.3) has no traveling wave U(x + cn) with U ∈ Cb \ {0}
and U(−∞) = 0, and for any c ≥ c∗f , (2.3) has a traveling wave U(x + cn)
with U ∈ Cu∗

+
\ {0, u∗} and

u∗
− ≤ lim inf

ξ→+∞
U(ξ) ≤ lim sup

ξ→+∞
U(ξ) ≤ u∗

+.

Further, U(+∞) = u∗ in the case where either m ∈ (0,max(2, p/(p − q))],

or m > max(2, p/(p − q)) and f(ū) ≤ (2q/(m − 2))
1
m . If m ∈ (0, p/(p − q)],

then U(−∞) = 0 and U(ξ) is nondecreasing in ξ for all c ≥ c∗f . If either
p/(p − q) < m ≤ 2, or m > max(2, p/(p − q)) and f(ū) ≤ (2q/(m − 2))

1
m ,

then U(−∞) = 0 for all c > c∗f .
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ESTIMATES ON THE HAUSDORFF DIMENSION OF THE
RUPTURE SET OF A THIN FILM∗
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Abstract. Upper bounds on the Hausdorff dimensions of the rupture set of a weak solution of
the thin film equation in space-time and in space slices are derived. Finite time rupture is shown to
occur for a class of thin films obeying the power law with power in (0, 1/2) under periodic boundary
conditions.
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1. Introduction. In recent years the thin film type equations

(1.1) ht + (hnhxxx)x = 0, n > 0, h ≥ 0,

and

(1.2) ht + (hn(hxx + f(h))x)x = 0, n > 0, h ≥ 0,

have attracted much attention. These equations, where h describes the height of an
axisymmetric thin film in motion, arise from the lubrication approximation of the
Navier–Stokes equations when n is equal to 3 under no-slip boundary conditions at
the lower boundary. It also describes the motion of fluid in a Hele–Shaw cell when
n is equal to 1. The f -term in the second equation describes the presence of other
physical effects such as gravity, the van der Waals forces, and thermocapillary effect.
It is called a power law if

(1.3) f(z) =

⎧⎨
⎩B

zq

q
, q �= 0,

B log z, q = 0,

for some positive B. One may consult the surveys Myers [M] and Oron, Davis, and
Bankoff [ODB] for background on these equations and various models. Here we are
concerned with the analytic aspects of these equations. To study them one needs to
impose initial and boundary conditions so that they become well-posed at least for a
short time. In the literature several boundary conditions such as Neumann-type con-
ditions, pressure boundary conditions, and periodic boundary conditions have been
used. Throughout this paper we shall employ the periodic boundary conditions. Thus
given a nonnegative, periodic function h0, we would like to consider the solution to
(1.1) starting at h0, which is of the same period as h0. Observing that the equation
is a parabolic equation of fourth order when h is positive, it follows from parabolic
theory that, for any positive, sufficiently regular initial datum, the equation admits
a classical solution for small time, and it continues to exist as long as the solution
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is bounded away from zero. However, unlike second order parabolic equations where
positivity is ensured by the maximum principle in an a prior way, it is not clear
at all whether the film will remain positive for all time, or it will touch down at
0 at some finite time. The film is said to rupture when the latter occurs, and the
equation loses its parabolicity. The mathematical foundation of (1.1) was laid down
in Bernis-Friedman [BF] where they discovered the following remarkable fact: When
n ≥ 4 equation (1.1) preserves positivity. (Later the requirement n ≥ 4 was relaxed
to n ≥ 3.5 in Bertozzi et al. [BBDK].) Using this fact, Bernis and Friedman was able
to construct a nonnegative, global weak solution of (1.1) for some n less than 4 for
nonnegative, H1-data. After the works of Beretta, Bertsch, and Dal Passo [BBDP],
Bertozzi-Pugh [BP1] and [BP2], nowadays it is known that nonnegative, global weak
solutions exist for (1.1) and (1.2) for any positive n when f is in C1([0,∞)) and grows
slower less than a cubic power in h at ∞.

A natural question is, For n in (0, 3.5), will rupture occur in finite time for some
positive initial data? Observing that, when n is equal to 0, finite time rupture occurs
for easily constructed initial data, it would not be surprising that finite time rupture
occurs for positive, small n. In fact, under the boundary conditions h = hxx = 1 at
endpoints, such property is established for (1.1) when n is less than 1/2 in [BBDP].
However, for the periodic conditions this remains open. Numerical studies show that
there is a critical number n∗ ∈ (1, 2) so that finite time rupture occurs for n < n∗,
and positivity is preserved for n > n∗. Likewise, as for (1.2) under the power law
q < 3 there should be a critical number nc(q), independent of B and the period, which
separates finite time rupture and the preservation of positivity. Numerical results in
Goldstein, Pesci, and Shelly [GPS] show that 1 ≤ nc(1) ≤ 3, and those in Laugesen-
Pugh [LP2] show that 1.8 < nc(0.5) < 1.85 and 1.65 < nc(2.5) < 1.6625. Theoretical
upper and lower bounds on nc(q) can be found in Chou-Kwong [CK] for negative q. In
this paper we shall show that finite time rupture occurs for (1.2), where f is a power
law (1.3) (q ∈ (1, 3)) under the periodic boundary conditions when n is less than 1/2;
see Corollary 3.1 for a precise statement. We shall not consider (1.2) when f grows
faster than a cubic power. In addition to the possibility of rupture, it is believed
that, in this case the solution may also blow up in finite time. We refer to [BP1] for a
conjecture in this direction, and [BP3] and Slepčev-Pugh [SP] for more recent progress.

In this paper we approach the problem of finite time rupture via estimating the
possible size of the rupture set. When rupture really occurs, surely our results yield
information on the size of the rupture set. On the other hand, even if rupture does not
occur, one may still build on these results further criteria for the absence of rupture.
A similar situation can be found in the study of the regularity of the weak solution of
the three-dimensional Navier–Stokes equations. One may consult Escauriaza, Seregin,
and Šverák [ESS] for how the partial regularity estimates in Caffarelli, Kohn, and
Nirenberg [CKN] are used in establishing regularity criteria.

Let us review how one excludes finite time rupture for thin films when n ≥ 3.5.
Recall that the weak solution constructed in [BF], [BBDP], [BP1], and [BP2] has
many regularity properties including the following two: For any positive initial data,
the weak solution of (1.1) or (1.2) (1 < q < 3) satisfies, for any 0 < t < T,

(1.4)

∫
h2
x(t) +

∫ T

0

∫
hn [(hxx + f(h))x]

2 ≤ C1,

and

(1.5)

∫
h(t)3/2−n ≤ C2
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for some constants C1 and C2 depending on the initial data. It follows from the
conservation of area ∫

h(t) =

∫
h(0), all t > 0,

and (1.4) that the solution h has a uniformly bounded C1/2−norm. At a rupture
point (x0, t) the solution is dominated by a constant multiple of |x− x0|1/2. Putting
this estimate into (1.5) yields a contradiction when n ≥ 3.5, so no finite rupture can
occur when n ≥ 3.5. Even when n is less than 3.5, (1.5) tells us that the rupture
set has null measure at every time as long as n > 1.5. Our first result gives a more
precise estimate.

Theorem 1.1. Let h be a suitable weak solution of (1.1) or (1.2), where n ∈
(1.5, 3.5) and f is a power law with q > 1 − n/2. Then for any t > 0, the (7 −
2n)/(2n + 1)-Hausdorff measure of the set {x : h(x, t) = 0} is finite, so its Hausdorff
dimension cannot exceed (7 − 2n)/(2n + 1).

Since weak solutions to (1.1) or (1.2) may not be unique, we use the terminology
“a suitable weak solution” to refer to a certain weak solution constructed by the
methods in [BF], [BBDP], and [BP1] and [BP2]. We shall review its definition in the
next section and sketch a construction of these solutions in Appendix A. The proof
of our results including Theorem 1.1 and those stated below involves the use of (1.5)
in an essential way, so it does not work when n goes below 1.5. We point out that
our bound on the Hausdorff dimension (7 − 2n)/(2n + 1) is always less than 1 and is
sharp in the sense that it tends to 0 and 1 as n tends to 3.5 and 1.5, respectively.

The proof of Theorem 1.1 follows rather easily from a covering argument coupling
with properties (1.4) and (1.5). However, for the proof of the following size estimate in
space-time, our main result, we need to make use of the further regularity properties
of the suitable weak solution.

Theorem 1.2. Let h be a suitable weak solution of (1.1) or (1.2), where n ∈
(1.5, 3.5) and f is a power law with q > 1 − n/2. The parabolic Hausdorff dimension
of the rupture set {(x, t) : h(x, t) = 0} cannot exceed 2n/(2n− 3) for n ∈ [2, 3.5) and
6/n + 1 for n ∈ (1.5, 2).

The parabolic Hausdorff measure, to be discussed in Appendix B, is defined
through covering a set by cylinders with different weights in space and time. Here
we take the parabolic fourth order weights, so the parabolic Hausdorff dimension is
equal to 5 for every open set in space-time. Again we observe that our estimate on
the dimension of the rupture set lies between 1.75 and 5 and tends to 1.75 and 5 as
n tends to 3.5 and 1.5, respectively.

Finally, we give an estimate on the rupture times.
Theorem 1.3. Let h be a suitable weak solution of (1.1) or (1.2), where n ∈

(2, 3.5) and f is a power law with q > 1 − n/2. The Hausdorff dimension of the set
{t > 0 : h(x, t) = 0 for some x} cannot exceed 1 − 2(n− 2)2/(8 − n).

Again this estimate becomes sharp as n tends to 3.5.
Theorems 1.1–1.3 are contained in the results in sections 2 and 3, where we also

consider more general f . In section 4 we establish the result on finite time rupture
mentioned above.

The problem of rupture for thin films is closely related to the formation of singu-
larities for solutions of (1.1) or (1.2). Indeed, let us assume that the solution remains
to be C2 at the rupture point (x0, t). Then it is bounded by a constant multiple
of |x − x0|2 near x0. Putting this into (1.5) yields a contradiction unless n ≤ 2. It
demonstrates that the second derivatives of the solution blow up at any rupture point
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when n > 2, so the rupture set coincides with the singular set of any weak solution
of (1.1) or (1.2) in which (1.4) and (1.5) hold. Our proofs of Theorems 1.1, 1.2, and
1.3 make use of some ideas in known works in the partial regularity of solutions for
evolution equations. There are quite a number of works on this topic in recent years.
We wish to mention the works of Caffarelli–Kohn–Nirenberg [CKN] (later simplified
substantially by Lin [L]) on the three-dimensional Navier–Stokes equations, Struwe
[S], and Chen–Struwe [CS] on the harmonic heat flows, Lin–Liu [LL] on the motion
of liquid crystals, and Chou–Du–Zheng [CDZ] on the semilinear heat equation with
supercritical growth.

In Jiang-Lin [JL] estimates for the Hausdorff dimension of the rupture set of a
steady state of a multidimensional thin film type equation are present.

Although we are mainly concerned with thin films whose initial data are not too
degenerate in the sense that they have finite entropy (1.5), there are significant results
for weak solutions starting from nonnegative initial data that could vanish in an open
set. Our results do not apply to these solutions. By restricting to the literature on the
one-dimensional case (axisymmetric films) only, we point out Bernis [B1], [B2], and
Hulshof-Shishkov [HS], where results on the finite speed of the propagation of zero
are established for (1.1). That such property continues to hold for (1.2) is explained
in [BP2]. Moreover, a waiting time phenomenon which asserts that the support of a
thin film does not increase in a small period of time is established for (1.1) (n ∈ (0, 3))
in Dal Passo-Giacomelli-Grun [DPGG]. For n > 4, it is known in [BBDP] that the
support remains the same all the time.

2. A size estimate on the rupture set in space-time. First we give the
definition of a suitable weak solution of the thin film type equation under the periodic
boundary conditions. Consider the problem

(2.1)

{
ht +

[
hn
(
hxx + f(h)

)
x

]
x

= 0, (x, t) ∈ (−L/2, L/2) × (0,∞),

h is of period L for each t > 0,

where n is positive and f is a measurable function in [0,∞) which belongs to C2,α
(
0,

∞
)
, α ∈ (0, 1). Let SL denote the circle obtained by identifying the endpoints of

(−L/2, L/2). A nonnegative function h in

C
1
2 ,

1
8

x,t

(
SL × (0,∞)

)
∩ L∞(

0,∞;H1(SL)
)
∩ L2

loc

(
0,∞;H2(SL)

)
is called a suitable weak solution of (2.1) if it fulfills the following requirements. For
every T > 0,

(H1) h
n
2

(
hxx + f(h)

)
x
∈ L2(QT ), QT = SL × (0, T ), and∫∫

QT

hΦt = −
∫∫

QT

hn
(
hxx + f(h)

)
x
Φx

for all Φ ∈ H1(QT ) which are compactly supported in QT .
(H2) The following quantities

K1 = sup
[0,T ]

∫
h2
x,

K2 =

∫∫
QT

(
hn
∣∣(hxx + f(h))x

∣∣2 + hnh2
xxx

)
,

K3 = sup
[0,T ]

∫
h

3
2−n,
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and

K4 =

∫∫
QT

(
h− 1

2+δh2
xx + h− 5

2+δh4
x

)
∀δ ∈

(
0,min{1.5, n− 1.5}

)
are finite, where K1–K4 depend on T , and K4 also depends on δ.

(H3) There exists Γ ⊆ [0, T ] of full measure such that, for every t0 ∈ Γ, the
following local energy inequality and local entropy inequality hold: For ∀t >
t0,∀φ ∈ C2(SL),

1

2

∫
h2
x(t)φ4 −

∫
F (h(t))φ4 +

∫ t

t0

∫
hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2φ4

≤ −
∫ t

t0

∫
hn
(
hxx + f(h)

)
x

(
hxx + f(h)

)
(φ4)x

−
∫ t

t0

∫
hn
(
hxx + f(h)

)
x

[
hxx(φ4)x + hx(φ4)xx

]

+
1

2

∫
h2
x(t0)φ

4 −
∫

F (h(t0))φ
4,(2.2)

and∫
h

3
2−n+δ(t)φ4 + σ

∫ t

t0

∫ (
h− 1

2+δh2
xxφ

4 + h− 5
2+δh4

xφ
4
)

≤ C

∫ t

t0

∫ [
h

3
2+δ

(
φ4
x + φ2φ2

xx

)
+ f2(h)h− 1

2+δφ4
]

+ C

∫
h(t0)φ

4 +

∫
h

3
2−n+δ(t0)φ

4, δ ∈
(
0,min{1.5, n− 1.5}

)
,(2.3)

where F is a primitive of f and σ and C are positive constants depending on
δ.

From the expression for K4 we see that it is implicitly assumed n > 1.5 in the
definition of a suitable weak solution. On the other hand, when n ≥ 3.5, K1 and K3

together imply that a suitable weak solution is always positive; hence by parabolic
regularity, it is a classical solution. Consequently we will focus on the range (1.5, 3.5).
To state our existence result for these solutions we impose the following assumptions
on f : For some constants C1 − C3,

(2.4) |f(z)| ≤ C1(1 + zp), z ≥ 1 for some 0 ≤ p < 3,

(2.5) |f ′(z)| ≤ C2, z ∈ (0, 1],

or,

(2.6) |f(z)| + z|f ′(z)| ≤ C3z
q, z ∈ (0, 1] for some q > 1 − n

2
.

Equation (2.4) restricts the growth of f at infinity. When f(z) grows faster than z3, it
is conjectured that some solutions of (2.1) blow up in finite time. So growth restriction
like (2.4) is needed to ensure the existence of a global, weak solution. According to
the behavior of f at 0 we impose (2.5) and (2.6), respectively. For power laws the
former applies when q ≥ 1, and the latter applies when q ∈ (1 − n/2, 1).
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Theorem 2.1. Consider problem (2.1), where n ∈ (1.5, 3.5), (2.4) and (2.5)

or (2.6) hold. Then for any nonnegative h0 ∈ H1(SL) with finite ||h3/2−n
0 ||L1 , (2.1)

admits a suitable weak solution h satisfying ||h(t) − h0||L2 tends to 0 as t ↓ 0.
An outline of the proof of this theorem can be found in Appendix A. We remark

that this theorem is still valid for p = 3 in (2.4) provided that ||h0||L1 is sufficiently
small.

Weak solutions for (1.1) have been constructed in [BF], [BBDP], and [BP1] and
for (1.2) in [BP2]. In particular, in Theorem 3.3 of [BP2] the existence of a weak
solution essentially satisfying (H1) and (H2) is proved. A slight difference is that our
Theorem 2.1 applies to the condition q > 1 − n/2, which could be negative when
n > 2, while q is considered to be positive in the previous works. In (H3) we also need
the local energy and entropy inequalities. The inequalities of this type were derived in
[B1], [B2], and [BP2] to study the finite speed of the propagation of the weak solution.
Unlike previous works where the initial time is always taken to be zero, here we need
these inequalities to be valid starting at initial times which form a subset of the time
axis of full measure.

We begin with an estimate on the size of the rupture set in a spatial slice.
Theorem 2.2. Let h be a nonnegative function in L∞(0, T ;H1(SL)) satisfying,

for some n ∈ (1.5, 3.5),

sup
0<t<T

∫
h2
x < ∞,

and

sup
0<t<T

∫
h3/2−n < ∞.

Then for each T > 0, the ((7 − 2n)/(2n + 1))−Hausdorff measure of the set RT =
{x : h(x, T ) = 0} is finite.

Proof. Let h be a function satisfying the conditions in the theorem. We claim
that ∫

BR

h2
x(T ) ≤ Rγ0 , γ0 =

7 − 2n

2n + 1

and ∫
BR

h
3
2−n(T ) ≤ δ0R

γ0 , δ0 =
2

(1 + γ0)(
3
2 − n) + 2

hold for all small BR centered at x0, then h(x0, T ) > 0. Assuming on the contrary
that (x0, T ) is a rupture point, we would have

h(x, T ) = h(x, T ) − h(x0, T )

≤
∣∣∣∣
∫ x

x0

1

∣∣∣∣
1/2 (∫ x

x0

h2
x

)1/2

≤ |x− x0|
1
2 (1+γ0)

for all x sufficiently close to x0, but then

δ0R
γ0 ≥

∫
BR

h
3
2−n(T )

≥ 2R
1
2 (1+γ0)(

3
2−n)+1

1
2 (1 + γ0)(

3
2 − n) + 1

.

As γ0 = 1
2 (1 + γ0)(

3
2 − n) + 1, contradiction holds.
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Henceforth, at a rupture point (x0, T ) there exists {Rj} (depending on x0) ↓ 0
such that ∫

BRj

(
h2
x + h

3
2−n

)
(T ) > δ0R

γ0

j .

For each δ > 0, the collection Cδ of all of these balls BRj , with radii less than δ forms
a covering of the rupture set RT . By a version of the Vitali covering theorem (see
Appendix B) we can select from Cδ a mutually disjoint, countable subcollection C′

δ

such that

RT ⊆
⋃{

B5Rj (xj) : BRj (xj) ∈ C′
δ

}
.

Therefore, according to the definition of the Hausdorff measure Federer [Fe]

Hγ0

δ (RT ) ≤ α(γ0)
∑

(5Rj)
γ0

≤ 5γ0α(γ0)

δ0

∑∫
BRj

(xj)

(
h2
x + h

3
2−n

)
(T )

≤ 5γ0α(γ0)

δ0

∫ (
h2
x + h

3
2−n

)
(T ), α(s) =

πs/2

Γ(s/2 + 1)
,

which leads to the desired conclusion after taking δ → 0.
Clearly Theorem 1.1 is a special case of Theorem 2.2. Here we have used little

beyond the finiteness of K1 and K3. Although the proof of Theorem 2.2 is quite
simple, as one will see, the same idea works in the size estimate of the rupture set in
space-time. In order to obtain such estimates, we need to make use of the finiteness of
the integrals in space-time such as the quantities K2 and K4. We have the following.

Theorem 2.3. Consider any suitable weak solution of (2.1), where n ∈ (2, 3.5)
and either (2.5) or (2.6) hold. The parabolic Hausdorff dimension of the rupture set
of this solution cannot exceed 2n/(2n− 3).

The proof of this theorem depends on Lemmas 2.1–2.4 below. For the ease of
presentation we shall prove the theorem first.

Proof. Let (x0, T ) be a rupture point of the solution h. We claim that, for every
γ0 ∈

(
7+2δ

4 , 4 + 2δ
)
, there exists a sequence {Rj}, Rj ↓ 0, such that∫∫

QRj

hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2 > Rγ0

j ,

or ∫∫
QRj

h− 5
2+δh4

x > Rγ0

j

holds. For, were this not true, it means that (2.7) and (2.14) hold for all sufficiently
small R. By Lemma 2.4, there exists some t1 ∈ Γ ∩ [T −R4, T ] such that∫

BR/2

h2
x(t1) ≤ CRγ ∀γ ∈

(
0,

4γ0 − 7 − 2δ

3 + 2δ

)
.

Then by Lemma 2.3, ∫
BR/4

h2
x ≤ CRγ ∀t ∈ [t1, T ].
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Lemma 2.2 further gives

sup
BR/4×[t1,T ]

h ≤ CR
1+γ
2 ,

which means that

h(x, T ) ≤ C|x− x0|
1+γ
2

for all x sufficiently close to x0. However, on the other hand,

∞ >

∫
h

3
2−n(T )

≥ C

∫
|x− x0|

1+γ
2 ( 3

2−n) = ∞,

if (1+γ
2 )( 3

2 − n) ≤ −1, i.e., γ ≥ (7 − 2n)/(2n − 3). A contradiction will be drawn if
we can verify that

7 − 2n

2n− 3
<

4γ0 − 7 − 2δ

3 + 2δ
, i.e., γ0 >

2n + 2δ

2n− 3
.

A direct computation shows that this is true if n > 2.
Thus, at a rupture point (x0, T ), there exists a sequence of cylinders {QRj

}, Rj ↓
0, satisfying ∫∫

QRj

[
hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2 + h− 5
2+δh4

x

]
> Rγ0

j .

The collection of all of these cylinders forms a covering of the rupture set in space-
time, and we can replace the arguments in the second half of the proof of Theorem 2.2
involving the Hausdorff measure by the parabolic Hausdorff measure (see Appendix
B) to show that the γ0-parabolic Hausdorff measure of the rupture set is finite for all
γ0 > (2n + 2δ)/(2n − 3). By letting δ → 0 we conclude that its parabolic Hausdorff
dimension cannot exceed 2n/(2n− 3). The proof of Theorem 2.3 is completed.

Lemma 2.1. Let χ be a strictly increasing, continuous function in [0,∞), with
χ(0) > 0. Define a sequence {αn} by αn+1 = χ(αn), α1 = 0. Then {αn} is increasing
and

(a) it diverges to ∞ if y = χ(x) has no intersection with y = x, or
(b) it converges to some α∗ which is the x−coordinate of the first intersection

between y = χ(x) and y = x.
Consequently, for any α (less than α∗ if α∗ exists), there exists some N such that
αN ≥ α.

The proof of this lemma is elementary and is omitted.
Lemma 2.2. Let h be a suitable weak solution of (2.1), and (x0, T ) a rupture

point of h. Suppose that

(2.7)

∫∫
QR

hn
∣∣∣(hxx + f(h))x

∣∣∣2 ≤ Rγ0 , QR = (x0 −R, x0 + R) × (T −R4, T ),

and

(2.8)

∫
BR

h2
x ≤ C4R

γ ∀t ∈ [t1, T ], BR = (x0 −R, x0 + R),
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hold for some R, γ0, γ, t1, and C4, where t1 ∈ [T −R4, T ], R4 < T , and γ satisfies

(2.9) γ <
2γ0 + n

2 − n
for n ∈ (1.5, 2), and < ∞ for n ∈ [2, 3.5).

Then for every τ0 ∈ (0, 1), there exists a constant C depending on n, γ0, γ, C4, and τ0
such that

sup
Bτ0R×[t1,T ]

h ≤ CR
1+γ
2 .

Proof. By (H1) in the definition of a suitable weak solution,∫∫
hΦt = −

∫∫
hn
(
hxx + f(h)

)
x
Φx ∀Φ test function.

We choose Φ = ξ(x)θδ(t), where ξ is compactly supported in BR, and θδ(t) = ∫ t0 η(t)dt,
with η given by

η =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

2δ
, t ∈ [s− δ, s + δ],

1

2δ
, t ∈ [T − δ, T + δ],

0, otherwise,

and s is a fixed number in [t1, T ]. Letting δ ↓ 0, as θδ ≤ 1, we obtain

(2.10)

∣∣∣∣
∫
BR

(
h(x, T ) − h(x, t)

)
ξ(x)

∣∣∣∣ ≤
∫ T

t

∫
BR

hn
∣∣∣(hxx + f(h)

)
x
ξx

∣∣∣,
where we have changed notation from s to t. Letting τ ∈ (τ0, 1) to be chosen later,
we pick ξ so that ξ = 1 in BτR and |ξx| ≤ 1/R(1 − τ) in BR. Using (2.7),

∫ T

t

∫
BR

hn
∣∣∣(hxx + f(h)

)
x
ξx

∣∣∣ ≤
√∫ T

t

∫
BR

hn
(
hxx + f(h)

)2
x

√∫ T

t

∫
BR

hnξ2
x

≤ 1

(1 − τ)
R

γ0+3
2 sup

QR

h
n
2 .

It follows from (2.10) that∣∣∣∣∣
 
BR

(
h(x, T ) − h(x, t)

)
ξ(x)

∣∣∣∣∣ ≤ 1

2τ(1 − τ)
R

γ0+1
2 sup

QR

h
n
2 ,

where we have set
   
BR

F ≡ ∫BR
F

∫BR
ξ . By (2.8) and (2.10),

h(x, t) ≤
∣∣∣∣
 
BR

(
h(x, t) − h(y, t))ξ(y)dy

∣∣∣∣+
∣∣∣∣
 
BR

(
h(y, t) − h(y, T )

)
ξ(y)dy

∣∣∣∣
+

∣∣∣∣
 
BR

(
h(y, T ) − h(x0, T )

)
ξ(y)dy

∣∣∣∣
≤ 2

√
C4R

1+γ
2 +

1

2τ(1 − τ)
R

1+γ0
2 sup

QR

hn/2 ∀x ∈ BτR.(2.11)
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Hence in the case

(2.12) sup
QR

h ≤ CRα for some α <
1 + γ

2
,

(2.11) implies that

sup
Q′

R

h ≤ C
(
R

1+γ
2 + R

1+γ0+nα
2

)
≤ CRχ(α), Q′

R = BτR × [t1, T ],(2.13)

provided that χ(α) ≡ (1 + γ0 + nα)/2 < (1 + γ)/2. Starting at α = 0, we bootstrap
between (2.12) and (2.13) to obtain

sup
B

τkR
×[t1,T ]

h ≤ CkR
χ(αk)

after k times of iterations as long as χ(αk) < (1 + γ)/2. When n ≥ 2, y = χ(x) does
not intersect y = x, so there exists an N such that χ(αN ) ≥ (1 + γ)/2. Then the
lemma follows by applying the Holder continuity of h in space. When n ∈ (1.5, 2),
the same conclusion holds if (γ + 1)/2 < α∗, the intersection of y = χ(x), and y = x.

As α∗ is given by (1+γ0)/2
1−n/2 = 1+γ0

2−n , (γ + 1)/2 < α∗ is equivalent to (2.9).

Lemma 2.3. Let h be a suitable weak solution of (2.1), where n ∈ (1.5, 3.5) and
(2.5) holds, and let (x0, T ) be a rupture point of h. Suppose that (2.7),

(2.14)

∫∫
QR

h− 5
2+δh4

x ≤ Rγ0

and

(2.15)

∫
BR

h2
x(t1) ≤ C5R

γ

hold for some R, γ0, γ, t1 ∈ Γ ∩ [T −R4, T ], C5, where γ and γ0 also satisfy (2.9),

(2.16) γ0 >
7 − 2n + 2δ

4
, δ ∈ (0, n− 1.5),

and

(2.17) 0 ≤ γ < 3.

Then for every τ0 ∈ (0, 1), there exists a constant C depending on n, γ0, γ, δ, C5, and
τ0 such that ∫

Bτ0R

h2
x ≤ CRγ ∀t ∈ [t1, T ].

When (2.6) instead of (2.5) holds in the above assumptions, the same conclusion holds
when (2.17) is replaced by

(2.17)
′

γ <
8 − n

n
.
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Proof. Let φ be a cut-off function supported in BR, φ = 1 in BτR, where τ ∈ (τ0, 1)
is to be chosen later. We plug φ into the local energy inequality (2.2) and use the
Cauchy–Schwarz inequality to get

∣∣∣∣
∫∫

hn(hxx + f(h))x(hxx + f(h))(4φ3φx)

∣∣∣∣
≤ 1

4

∫∫
hn
∣∣∣(hxx + f(h))x

∣∣∣2φ4 + C

∫∫
hn(hxx + f(h))2φ2φ2

x

and

∣∣∣∣
∫∫

hn(hxx + f(h))x
[
4hxxφ

3φx + hx(4φ3φxx + 12φ2φ2
x)
]∣∣∣∣

≤ 1

4

∫∫
hn
∣∣∣(hxx + f(h))x

∣∣∣2φ4 + C

∫∫ [
hn(h2

xxφ
2φ2

x + h2
x(φ4

x + φ2φ2
xx)

]
.

It follows that

1

2

∫
BR

h2
xφ

4 ≤
∫
BR

F (h)φ4 +
1

2

∫
BR

h2
x(t1)φ

4 −
∫
BR

F (h(t1))φ
4

− 1

2

∫ t

t1

∫
BR

hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2φ4 + C

[∫ t

t1

∫
BR

hn
(
hxx + f(h)

)2
φ2φ2

x

+

∫ t

t1

∫
BR

hn
(
h2
xxφ

2φ2
x + h2

x(φ4
x + φ2φ2

xx)
)]

≤
∫
BR

F (h)φ4 +
1

2

∫
BR

h2
x(t1)φ

4

−
∫
BR

F (h(t1))φ
4 − 1

4

∫ t

t1

∫
BR

hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2φ4

+ C

[∫ t

t1

∫
BR

hnf ′2(h)h2
xφ

4 +

∫ t

t1

∫
BR

hnf2(h)φ2φ2
x

+

∫ t

t1

∫
BR

hnh2
x(φ4

x + φ2φ2
xx) +

∫ t

t1

∫
BR

hnh2
xxφ

2φ2
x

]

≤
∫
BR

F (h)φ4 +
1

2

∫
BR

h2
x(t1)φ

4

−
∫
BR

F (h(t1))φ
4 − 1

4

∫ t

t1

∫
BR

hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2φ4

+ C

[∫ t

t1

∫
BR

hnf ′2(h)h2
xφ

4 +

∫ t

t1

∫
BR

hnf2(h)φ2φ2
x

+

∫ t

t1

∫
BR

hnh2
x(φ4

x + φ2φ2
xx) +

∫ t

t1

∫
BR

hn−2h4
xφ

2φ2
x

]
.(2.18)
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Notice that in the last inequality we have used∫ t

t1

∫
BR

hnh2
xxφ

2φ2
x = −

∫ t

t1

∫
BR

hnhxhxxxφ
2φ2

x − n

∫ t

t1

∫
BR

hn−1h2
xhxxφ

2φ2
x

−
∫ t

t1

∫
BR

hnhxhxx(2φφ3
x + 2φ2φxφxx)

≤ ε

∫ t

t1

∫
BR

hnh2
xxxφ

4 + ε

∫ t

t1

∫
BR

hnh2
xxφ

2φ2
x

+ Cε

[∫ t

t1

∫
BR

hnh2
x(φ4

x + φ2φ2
xx) +

∫ t

t1

∫
BR

hn−2h4
xφ

2φ2
x

]
.

Therefore, under (2.5), when f ∈ C1[0,∞), we have

1

2

∫
BR

h2
xφ

4 ≤
∫
BR

F (h)φ4 +
1

2

∫
BR

h2
x(t1)φ

4 −
∫
BR

F (h(t1))φ
4

+ C

[∫ t

t1

∫
BR

hnh2
x(φ4 + φ4

x + φ2φ2
xx) +

∫ t

t1

∫
BR

hn−2h4
xφ

2φ2
x

+

∫ t

t1

∫
BR

hnφ2φ2
x

]
,(2.19)

since a suitable weak solution is bounded. Here the constant C depends on f . Suppose
that

(2.20)

∫
BR

h2
x ≤ CRα ∀t ∈ [t1, T ] for some α < γ.

We claim that

(2.21)

∫
BτR

h2
x ≤ C ′Rχ(α) ∀t ∈ [t1, T ],

where

χ(α) = min

{
3

2
+

α

2
,
n

2
+
(
1 +

n

2

)
α, γ0 +

n− 7
2 − δ

2
+

n + 1
2 − δ

2
α

}
as long as α < γ. For, by Lemma 2.2 and (2.20), we have

sup
BτR×[t1,T ]

h ≤ CR
1+α

2 .

Using this estimate we control the integrals on the right of (2.19) as follows.∫
BR

F (h(t))φ4 ≤ CR
3
2+α

2 ,∫
BR

h2
x(t1)φ

4 ≤ C5R
γ , (from (2.15))

∫ t

t1

∫
BR

hnh2
x

(
φ4 + φ4

x + φ2φ2
xx

)
≤ CRα+n

2 (1+α),

∫ t

t1

∫
BR

hn−2h4
xφ

2φ2
x ≤ CR−2 sup

QR

hn+ 1
2−δ

∫ t

t1

∫
BR

h− 5
2+δh4

x

≤ CRγ0+
n− 7

2
−δ

2 +
n+ 1

2
−δ

2 α,∫ t

t1

∫
BR

hnφ2φ2
x ≤ CR3+n

2 (1+α) ≤ CRα+n
2 (1+α),
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so (2.21) follows after putting these estimates back to (2.19). As (2.20) holds for
α = 0, we can bootstrap between (2.20) and (2.21) to increases the power in R in
(1.20). Observe that the function χ is piecewise linear with slopes equal to 1/2, 1+n/2,
or (2n + 1 − 2δ)/4. As (2n + 1 − 2δ)/4 > 1 for δ < n− 3/2, χ can possibly intersect
y = x at α∗ = 3. The lemma now follows from Lemma 2.1 after taking τN = τ0.

In case f satisfies (2.6), the local energy inequality reads as

1

2

∫
BR

h2
xφ

4 ≤ B

q(q + 1)

∫
BR

hq+1φ4 +
1

2

∫
BR

h2
x(t1)φ

4 − B

q(q + 1)

∫
BR

hq+1(t1)φ
4

+ C

(∫ t

t1

∫
BR

hnh2
x

(
φ4
x + φ2φ2

xx

)
+

∫ t

t1

∫
BR

hn−2h4
xφ

2φ2
x

+

∫ t

t1

∫
BR

hn+2qφ2φ2
x +

∫ t

t1

∫
BR

hn+2q−2h2
xφ

4

)
.

Under (2.20), the integral terms involving q can be estimated as follows:∫
BR

hq+1φ4 ≤ CR sup
BR

hq+1

≤ CR
q+3
2 + 4−n

4 α

≤ CR
8−n

4 + 4−n
4 α, (∵ q > 1 − n/2)∫ t

t1

∫
BR

hn+2qφ2φ2
x ≤ CR3 sup

QR

hn+2q

≤ CR4+α

and ∫ t

t1

∫
BR

hn+2q−2h2
xφ

4 ≤ CR4

(
sup
[t1,t]

∫
BR

h2
x

)
sup
QR

hn+2q−2

≤ CR4+α, (∵ q > 1 − n/2).

So (2.21) holds after χ is replaced by the function χ′:

χ′(α) = min

{
8 − n

4
+

4 − n

4
α, 4 + α,

n

2
+
(
1 +

n

2

)
α,

γ0 +
n− 7

2 − δ

2
+

n + 1
2 − δ

2
α

}
.

Arguing as before, we can show that Lemma 2.3 holds when q > 1 − n/2 and (2.17)
is replaced by (2.17)′.

Lemma 2.4. Let h be a suitable weak solution of (2.1), where n ∈ (1.5, 3.5) and
(2.5) holds, and let (x0, T ) be a rupture point of h. Suppose (2.7), (2.14), (2.16), and
(2.17) hold. Then there exists t1 ∈ Γ ∩ [T −R4, T ] such that∫

BR/2

h2
x(t1) ≤ CRγ ∀γ ∈

(
0,

4γ0 − 7 − 2δ

3 + 2δ

)
,

if

(2.22)
7 + 2δ

4
< γ0 ≤ 4 + 2δ.
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When (2.5) is replaced by (2.6) and (2.17) by (2.17)′, respectively, the same conclusion
holds when (2.22) is replaced by

(2.22)
′ 7 + 2δ

4
< γ0 < 1 +

6 + 4δ

n
.

Proof. We only prove this lemma when f satisfies (2.5), for the other case can be
proved in a similar way. From (2.14) there exists t1 ∈ Γ such that

∫
BR

h− 5
2+δh4

x(t1) ≤ Rγ0−4.

Thus

∫
BR

h2
x(t1) ≤

√∫
BR

h− 5
2+δ(t1)h4

x(t1)

√∫
BR

h
5
2−δ(t1)

≤ R
γ0−3

2 sup
BR

h
5−2δ

4 (t1).(2.23)

Suppose that

(2.24)

∫
BR

h2
x(t1) ≤ CRα

for some α satisfying α < γ. We claim that, for any fixed τ0 ∈ (0, 1),

(2.25)

∫
Bτ0R

h2
x(t1) ≤ C ′Rχ(α),

where χ(α) = γ0−3
2 + 5−2δ

8 (1 + α) as long as χ(α) < γ. For, using (2.24) and the fact
that α < γ, we can apply Lemma 2.3 to infer that∫

B 1+τ0
2

R

h2
x ≤ C ′Rα ∀t ∈ [t1, T ].

By Lemma 2.2,

sup
Bτ0R×[t1,T ]

h ≤ CR
1+α

2 .

Plugging this estimate into (2.23) yields (2.25). Now, using the fact that (2.24) holds
for α = 0, bootstrapping between (2.24) and (2.25) increases the power in R. Noting
that the intersection of χ and y = x is at α∗ = (4γ0 − 7 − 2δ)/(3 + 2δ), we conclude
that the lemma holds if γ < (4γ0 − 7− 2δ)/(3 + 2δ). Note that in (2.17) it is required
that γ < 3, and this holds if (4γ0 − 7 − 2δ)/(3 + 2δ) < 3, that is, γ0 ≤ 4 + 2δ.

An estimate on the Hausdorff dimension of the rupture set is also available in the
range (1.5, 2]. We need to work a bit harder for it though.

Theorem 2.4. Let h be a suitable weak solution of (2.1), where n ∈ (1.5, 2]
and f satisfies either (2.5) or (2.6). The Hausdorff dimension of the rupture set of h
cannot exceed 1 + 6/n.
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Proof. Let us consider the case where f satisfies (2.6) only. We claim that at a
rupture point (x0, T ) there exists {Rj} ↓ 0 such that∫∫

QRj

hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2 > Rγ0

j ,

∫∫
QRj

h− 5
2+δh4

x > Rγ0

j ,

or ∫∫
QRj

h
3
2−n+δ > Rγ0+λ

j

hold when γ0 and δ satisfy (2.22)′ and λ is a fixed positive number. For, were this
not true, that means (2.7), (2.14), and

(2.26)

∫∫
QR

h
3
2−n+δ ≤ Rγ0+λ

hold for all sufficiently small R. By Lemma 2.4,∫
BR/2

h2
x(t1) ≤ CRγ for γ < min

{
4γ0 − 7 − 2δ

3 + 2δ
,
8 − n

n

}
=

4γ0 − 7 − 2δ

3 + 2δ
.

By Lemma 2.3 we further infer that∫
BR/4

h2
x(t) ≤ C ′Rγ ∀t ∈ [t1, T ].

Consequently,

h(x, T ) ≤ C|x− x0|
1+γ
2 ∀x sufficiently close to x0.

On the other hand, (2.26) implies that there exists some t2 ∈ Γ such that∫
BR

h
3
2−n+δ(t2) ≤ CRγ0−4+λ.

By Lemma 2.5, ∫
BR/2

h
3
2−n+δ(t) ≤ C ′Rγ0−4+λ ∀t ∈ [t2, T ].

So

4Rγ0−4+λ ≥
∫
BR/2

h
3
2−n+δ

≥ C

∫
BR/2

|x− x0|
1+γ
2 ( 3

2−n+δ)

≥ CR
1+γ
2 ( 3

2−n+δ)+1
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if (
1 + γ

2

)(
3

2
− n + δ

)
+ 1 > 0.

To derive a contradiction we choose

γ0 = 1 +
6

n

and

γ =
4γ0 − 7

3
− σ,

where σ is chosen to be small as δ is small and such that

γ <
4γ0 − 7 − 2δ

3 + 2δ

and

1 + γ

2

(
3

2
− n + δ

)
+ 1 > 0.

As δ, σ → 0, and γ tends to (4γ0 − 7)/3 and

γ0 − 4 + λ > γ0 − 4 =
1 + γ

2

(
3

2
− n

)
+ 1,

the contradiction holds.
Now a covering argument as in the proof of Theorem 2.3 finishes the job.
Lemma 2.5. Let h be a suitable weak solution (2.1), where n ∈ (1.5, 2] and either

(2.5) or (2.6) hold. There exists a small R0 > 0 such that if∫
BR

h
3
2−n+δ(t1) ≤ C6R

γ , 0 < δ < n− 3

2
small,

for some γ ∈ [0, 1], R < R0 and t1 ∈ Γ ∩ [T −R4, T ], then for every τ0 ∈ (0, 1),∫
Bτ0R

h
3
2−n+δ(t) ≤ CRγ ∀t ∈ [t1, T ],

where C depends on n, q, δ, C6, and τ0.
Proof. We focus on the case where (2.6) holds, since the other case can be handled

similarly. By the local entropy inequality (2.3) ∀t ≥ t1,∫
BR

h
3
2−n+δφ4 ≤ − σ

[∫ t

t1

∫
BR

h− 1
2+δh2

xxφ
4 +

∫ t

t1

∫
BR

h− 5
2+δh4

xφ
4

]

+ C

[∫ t

t1

∫
BR

h
3
2+δ(φ4

x + φ2φ2
xx) +

∫ t

t1

∫
BR

h2q− 1
2+δφ4

]

+

∫
BR

h
3
2−n+δ(t1),
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where φ is supported in BR. Using q ≥ 1 − n/2, we have∫ t

t1

∫
BR

h
3
2+δ

(
φ4
x + φ2φ2

xx

)
≤ CR,

∫ t

t1

∫
BR

h2q− 1
2+δφ4 ≤ C(t− t1) sup

[t1,t]

∫
BR

h
3
2−n+δφ4.

Therefore,

sup
[t1,t]

∫
BR

h
3
2−n+δφ4 ≤ C

[
(t− t1) sup

[t1,t]

∫
BR

h
3
2−n+δ + Rγ

]
.

By taking t2 so that C(t2 − t1) = 1/2, and φ ≡ 1 on BτR, we get

sup
[t1,t2]

∫
BτR

h
3
2−n+δ ≤ CRγ .

Now we may use t2 as the initial time to extend the estimate beyond t2. After finitely
many times extensions the lemma follows.

3. An estimate on rupture times. In this section we establish an estimate
on the Hausdorff dimension of the rupture times. An instant t is a rupture time for a
suitable weak solution u of (2.1) if u(x, t) = 0 for some x. As our derivation does not
involve the use of the local energy or entropy inequalities, the condition (H3) in the
definition of a suitable weak solution is not needed. In other words, the main result,
Theorem 3.1, holds for any weak solution of (2.1) satisfying (H1) and (H2) only.

We start with the following interpolating inequalities controlling supu−1 in terms
of integrals involving the derivatives of the function u and the integrals of its negative
powers.

Lemma 3.1. Let u be a nonnegative H1-function of period L. Then for any
p > 2, there exists a constant C depending on p and L such that

supu−1 ≤ C

[(∫
u−p

) 1
p

+

(∫
u−p

) 1
p−2

(∫
u2
x

) 1
p−2

]
.

Proof. We have, for α > 0,

u−α(x) ≤ u−α(y) + α

∣∣∣∣
∫

u−α−1ux

∣∣∣∣
≤ u−α(y) + α

(∫
u−2α−2

) 1
2
(∫

u2
x

) 1
2

.

Integrating in y yields

u−α(x) ≤ 1

L

∫
u−α + α

(∫
u−2α−2

) 1
2
(∫

u2
x

) 1
2

.

Letting 2α = p− 2, we get

u−1(x) ≤ C

[(∫
u

−p+2
2

) 2
p−2

+

(∫
u−p

) 1
p−2

(∫
u2
x

) 1
p−2

]

≤ C

[(∫
u−p

) 1
p

+

(∫
u−p

) 1
p−2

(∫
u2
x

) 1
p−2

]
.
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Lemma 3.2. Let u be a nonnegative H2-function of period L. Then for p > 2/3,
there exists a constant C depending on p and L such that

supu−1 ≤ C

[(∫
u−p

) 3
3p−2

(∫
u2
xx + β

) 1
3p−2

+

(∫
u2
xx + β

)− 1
2

]
∀β ≥ 0.

Proof. It suffices to establish this inequality by taking u to be positive and C2.
The general case follows from approximation. We assume u(0) = inf u and set

E =

∫
u−p and F =

∫
u2
xx + β.

Then by using Taylor’s formula

u(x) = u(0) + ux(0)x +

∫ x

0

uxx(t)(x− t)dt,

we have, for all x,

u(x) ≤ u(0) +
2

3
F

1
2x

3
2 ∀x ∈ [0, L].

So ∫ L

0

dx(
u(0) + 2

3F
1
2x

3
2

)p ≤
∫

u−p ≤ E,

which implies that

∫ L

0

dx(
x + 2u(0)

2
3F− 1

3

) 3p
2

≤ CEF
p
2 .

After an integration over (0, L/2), we have

(
2u(0)

2
3F− 1

3

)1− 3p
2 ≤ C

(
EF

p
2 + 1

)
,

i.e.,

inf u−1 ≤ C
(
E

3
3p−2F

1
3p−2 + F− 1

2

)
.

To apply this lemma to our weak solution, we take advantage of the finite quan-

tities K4 and K3. A direct calculation shows that u = h
3+2δ

4 satisfies∫
u2
xx ≤ Cδ

(∫
h− 1

2+δh2
xx +

∫
h− 5

2+δh4
x

)
.

Now, using Lemma 3.2 (β = 1) we have, for any p′ > 2/3,

(3.1)

suph− 3+2δ
4 ≤ C

[(∫
h−p′ 3+2δ

4

)3/(3p′−2) (∫
h− 1

2+δh2
xx +

∫
h− 5

2+δh4
x

)1/(3p′−2)

+ 1

]
.
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Corollary 3.1. Let h be a suitable weak solution of (2.1) for n ∈ (2, 3.5). Then

K5 ≡
∫ T

0

(∫
h−p

) 3(n−2)−δ

p+ 3
2
−n

< ∞ ∀p > n− 3/2, δ ∈ (0, 3(n− 2)).

Proof. When δ ∈ (0, 3(n− 2)), we can take p′ = (4n− 6)/(3 + 2δ) > 2/3 so that
p′(3 + 2δ)/4 = n− 3/2 in (3.1) to get, for p > n− 3/2,∫

h−p ≤ sup(h−1)p+
3
2−n

∫
h

3
2−n

≤ CK3

[
K

1

n−2− δ
3

3

(∫
h− 1

2+δh2
xx +

∫
h− 5

2+δh4
x + 1

) 1
3(n−2)−δ

+ 1

]p+ 3
2−n

.

Raise both sides to the power [3(n− 2)− δ]/(p+ 3
2 −n) and then integrate over time.

The corollary follows from the boundedness of K3 and K4.
Now, we have the following result which contains Theorem 1.3.
Theorem 3.1. Let h be a suitable weak solution of (2.1), where n ∈ (2, 3.5)

and either (2.5) or (2.6) holds. The Hausdorff dimension of the set of rupture times
cannot exceed 1 − 2(n− 2)2/(8 − n).

Once again we point out that the theorem holds for any weak solution of (2.1)
satisfying (H1) and (H2) only.

Proof. Let n be given as above and p, δ satisfy

p ∈ (2, n], p +
3

2
> n, δ ∈ (0, 3(n− 2)).

We claim that there exists a small ε0 depending on n, p, δ such that whenever

∫ T

T−R

(∫
h−p

)β

≤ ε0R
γ ∀ small R,

where

β =
3(n− 2) − δ

p + 3
2 − n

, γ = 1 − β
( p− 2

8 − n

)
,

then h(x0, T ) > 0. To prove this claim we first observe that by the mean-value
theorem there is some t1 ∈ [T −R, T ] such that∫

h−p(·, t1) ≤ 2ε
1
β

0 R
γ−1
β .

By Lemma 3.1 and K1 < ∞, h is positive at t1. By continuity h is positive for all t
close to t1, in particular, it is a classical solution near t1. Let

t∗ = sup
{
t2 ∈ (t1, T ] : h is positive in [t1, t2]

}
.

We shall show that t∗ = T . As for t ∈ (t1, t
∗),

d

dt

∫
h−p = −p(p + 1)

∫
hn−p−2h2

xx − p(p + 1)(n− p− 2)

∫
hn−p−3h2

xhxx

+ p(p + 1)

∫
hn−p−2f ′(h)h2

x.(3.2)
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We estimate the integrals on the right as follows: For p ∈ (2, n),∣∣∣∣
∫

hn−p−3h2
xhxx

∣∣∣∣ =

∣∣∣∣n− p− 3

3

∫
hn−p−4h4

x

∣∣∣∣
≤ C

∫
hp−n

∣∣∣(hn−p
2

)
x

∣∣∣4
≤ C sup(h−1)n−p

∫ ∣∣∣(hn−p
2

)
x

∣∣∣4

≤ C sup(h−1)n−p

(∫ (
h

n−p
2

)2

x

)3/2 (∫ (
h

n−p
2

)2

xx

)1/2

≤ ε

∫ (
h

n−p
2

)2
xx

+ C sup(h−1)2(n−p)

(∫ (
h

n−p
2

)2

x

)3

≤ Cε

(∫
hn−p−2h2

xx +

∫
hn−p−4h4

x

)
+ C sup(h−1)6+p−n

(∫
h2
x

)3

,

which means, for small ε,∫
hn−p−4h4

x ≤ C

[
ε

∫
hn−p−2h2

xx + sup(h−1)6+p−n

]
.

By Lemma 3.1 we further have

(3.3)

∫
hn−p−4h4

x ≤ C

[
ε

∫
hn−p−2h2

xx + C

(
1 +

∫
h−p

) 6+p−n
p−2

]
.

By modifying the above arguments slightly we see that (3.3) also holds when p = n.
For the third term on the right-hand side of (3.2) we have∫

hn−p−2f ′(h)h2
x ≤ C

(∫
hn−p−2h2

x +

∫
hn−p+q−3h2

x

)

≤ C

(∫
hn−p−4h4

x +

∫
hn−p +

∫
hn−p+2q−2

)

≤ C

[∫
hn−p−4h4

x +

(∫
h−p

)n−p+2q−2
−p

]
.(3.4)

Putting (3.3) and (3.4) back to (3.2) yields, after taking ε small,

d

dt

∫
h−p ≤ C

(
1 +

∫
h−p

)μ

,

where μ = max{ 6+p−n
p−2 , p−n−2q+2

p } = 6+p−n
p−2 (because n ≤ 8). By comparing ∫ h−p

with the solution Y of

dY

dt
= C(1 + Y )μ, Y (t1) = 2ε

1
β

0 R
γ−1
β ,

we see that Y exists in [t1, T ], when ε
1/β
0 is sufficiently small and ∫ h−p ≤ Y (t) as

long as both functions exist. So ∫ h−p is finite in [t1, T ]. It follows from Lemma 3.1
that h is positive up to T , that is, t∗ = T .
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We fix an ε0 satisfying the property in the above claim. It follows that T is a
rupture time if and only if there exists Rj ↓ 0 such that

∫ T

T−Rj

(∫
h−p

)β

> ε0R
γ
j

for each p, n, δ in the range. Applying a covering argument to the time interval (0,∞)
one can show that, using the finiteness of K5, the γ−Hausdorff measure of the set of
rupture times is finite for for all γ = 1 − β(p − 2)/(8 − n). Letting δ → 0 and then
taking p = n, we conclude the proof of this theorem.

4. A result on finite time rupture. For any positive, smooth, periodic func-
tion h0, it is known that

(4.1)

{
ht +

[
hn
(
hxx + f(h)

)
x

]
x

= 0,

h(0) = h0

admits a unique, classical solution in [0, ω), which is of the same period in x and is
maximal in the sense that whenever ω is finite,

inf
t↑ω

h(t) = 0 or sup
t↑ω

h(t) = ∞.

A proof of this fact, which can be found in [BF], is based on parabolic regularity theory
(Eidelman [Ei] or Friedman [F1]) when there is no f -term in (4.1). Nevertheless, an
examination of their arguments shows that it still works with the presence of the
f -term as long as f is in C2,α((0,∞)) for some α ∈ (0, 1). In the following we denote
by X(L, c0) the subset of H1(SL) consisting of all of the positive functions with area
c0. As the area is conserved by the equation in (4.1), the classical solution of (4.1)
forms a flow in X(L, c0). For our result the following condition on f will be imposed:

(4.2) f(0) = 0, |f ′(z)| ≤ C1z
q−1, z ∈ (0, 1] for some q ≥ 1 − n

2
.

Theorem 4.1. Let n ∈ (0, 1/2) be in (4.1), and f ∈ C([0,∞)) ∩ C2,α((0,∞))
satisfy (4.2). Suppose that there exists a bounded open set U in X(L, c0) satisfying
the following properties:

(P1) The closure of U does not contain any positive steady state, fully supported
droplet with zero contact angle, or an array of identical droplets with zero contact
angle of (4.1); and

(P2) Any maximal solution h starting at some positive smooth h0 in U stays inside
U .

Then ω is finite, that is, h ruptures in finite time.
From this theorem we deduce the following result on finite time rupture.
Corollary 4.1. Consider (4.1), where n ∈ (0, 1/2) and f is a power law, with q

satisfying (1−n)/2 ≤ q < 3. Then for any positive c0, there exists some L0 depending
on q and c0 such that, for any L ≥ L0, there are solutions of (4.1) in X(L, c0) which
rupture in finite time.

Steady states arise in the study of long-time behavior of the solutions of (4.1),
and the definition of a steady state is motivated from the energy dissipation relation.
Indeed, a nonnegative function h in the closure of X(L, c0) is called a steady state of
(4.1) if, on each component of the positivity set of h, hxx + f(h) = c holds for some
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constant c (which could be different on components). Besides the constant states
c0/L that always exist in any X(L, c0), there could be other steady states in the
same X(L, c0). Among others, a droplet is a steady state that is positive in some
(−a, a), a ≤ L/2 and equal to 0 in [−L/2, L/2] \ (−a, a) after a suitable translation.
It is of full support if a is equal to L/2. The droplet has zero contact angle if its
derivatives vanish at ±a. A configuration of droplets is a steady state, where the
positivity set {x ∈ (−L/2, L/2) : h(x) > 0} is a union of at least two disjoint,
open subintervals of (−L/2, L/2). An array of identical droplets is a configuration
of droplets in which, after a suitable translation, there is a partition of (−L/2, L/2)
into subintervals with equal length so that the restrictions of the steady state to these
subintervals are congruent droplets with full support.

Criteria for the existence and multiplicity of positive steady states and droplets
in a given X(L, c0) for general f and for power laws can be found in [LP1], and
the stability of positive steady states, especially those for power laws, is studied
systematically in [LP2], [LP3], and [LP4].

Proof of Theorem 4.1. We let h(t) be a solution of (4.1) starting inside U . Under
(P2), h cannot blow up in any time, so either it ruptures in finite time or it is a positive
global solution. Assuming that the latter holds we will derive a contradiction.

As h stays inside U , it is uniformly bounded in H1-norm. From the energy
dissipation relation

E(h) +

∫ T

0

∫
hn
∣∣∣(hxx + f(h)

)
x

∣∣∣2 = E(h0),

where the energy is given by

E(h) =
1

2

∫
h2
x −

∫
F (h), F ′(z) = f(z), F (0) = 0,

we know that

(4.3)

∫ ∞

0

∫ ∣∣∣(hxx + f(h)
)
x

∣∣∣2 < ∞.

On the other hand, the entropy dissipation relation is given by

d

dt

∫
h2−n = −(2 − n)(1 − n)

∫ (
h2
xx − f(h)hxx

)
.

As h is uniformly bounded for all time and n < 1, we can find a constant C2 so that

(4.4)

∫ T+1

T

∫ (
h2
xx − f(h)hxx

)
≤ C2

holds for all T > 0. From (4.3) and (4.4) it is easy to find {tj} → ∞ and a constant
C3 such that, for hj = h(tj),

(4.5)

∫
hn
j

(
hjxx + f(hj)

)2

x
→ 0

and

(4.6)

∫
h2
jxx ≤ C3.
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By passing to a subsequence if necessary, we may further assume that

hj → ĥ in C1, 12 (SL),

hj ⇀ ĥ in H2(SL),

hj → ĥ in C
2, 12
loc

(
{ĥ > 0}

)
,

where ĥ is a steady state of (4.1). By (P1) ĥ cannot be positive, so after a suitable
translation, we may assume that there is a component (a, b) of the positivity set of h
in (−L/2, L/2) on which

ĥ′′ + f(ĥ) = c.

(4.6) implies that ĥ′(a) = ĥ′(b) = 0. By integrating this equation we obtain

ĥ2
x

2
+ F (ĥ) = cĥ.

As f(0) = 0, the constant c must be positive unless the derivatives of ĥ vanish at

the endpoints. But the derivative cannot be equal to 0, for the vanishing of both ĥ
and ĥx at the endpoints would force ĥ to vanish identically by the uniqueness of the
solution to the ordinary differential equation satisfied by ĥ. Therefore c is positive.
By (P1) there are two possibilities: First, there exists some δ0 > 0 such that ĥ = 0
in [a − δ0, a] or [b, b + δ0]. Second, there exist two subintervals (a, b) and (b, b1) in

(−L/2, L/2) such that ĥxx + f(ĥ) = c1, x ∈ (a, b) and ĥxx + f(ĥ) = c2, x ∈ (b, b1),

where c1 and c2 are different positive constants. Moreover, ĥ−
x (b) = ĥ+

x (b) = 0 holds.

Let us treat the first case first. For simplicity we take b to be 0 and so ĥ = 0 in
[0, δ0]. For each 0 < δ ≤ δ0, we rescale hj and ĥ by

hj(x) = δ2Hj

(x
δ

)
, ĥ(x) = δ2Ĥ

(x
δ

)
.

Then, for each fixed δ,

Hj → Ĥ in C1, 12 ([−1, 1]) ∩ C
2, 12
loc ((−1, 1)),

Ĥ(y), Ĥy(y) → 0 as y ↑ 0,

Ĥyy(y) → c as y ↑ 0.

We claim that there exists a constant C∗ independent of δ such that

(4.7)

∫ 1

−1

Hn
j H

2
jyyy ≥ C∗ > 0 ∀j large.

To prove (4.7) we first fix σ0 ∈ (−1, 0) such that

0 > Hjy(σ0) ≥ − c

32

and

Hjyy(σ0) ≥
c

2
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hold (σ0 may depend on j). Next we claim that, for each large j, there exists some
ξ ∈ [σ0, 1] such that

Hjyy(ξ) =
c

4
.

For, if not, then Hjyy > c/4 in [σ0, 1]. By Taylor expansion at σ0, there exists some
z ∈ (σ0, 1) such that

Hj(1) = Hj(σ0) + Hjy(σ0)(1 − σ0) +
Hjyy(z)

2
(1 − σ0)

2

≥ − c

32
(1 − σ0) +

c

8
(1 − σ0)

2

≥ c

16
,

contradicting the fact that Hj(1) tends to 0 as j → ∞. Thus Hjyy = c/4 somewhere
in (σ0, 1). Let

σ1 = inf
{
σ > σ0 : Hjyy(σ) = c/4

}
< 1.

We consider two subcases separately:
(a) Hjy does not change sign in (σ0, σ1), and
(b) Hjy = 0 somewhere in (σ0, σ1).
In subcase (a), Hjy < 0 in (σ0, σ1) because Hjy(σ0) < 0. By Taylor expansion at

σ1, for y ∈ (σ0, σ1),

Hj(y) = Hj(σ1) + Hjy(σ1)(y − σ1) +
Hjyy(z)

2
(y − σ1)

2

≥ Hj(σ1) +
c

8
(y − σ1)

2

≥ c

8
(y − σ1)

2 ∀j large.(4.8)

On the other hand, ∫ σ1

σ0

∣∣∣Hjyyy

∣∣∣ ≥ ∣∣∣Hjyy(σ1) −Hjyy(σ0)
∣∣∣

≥ c

4
.

So, ∫ σ1

σ0

Hn
j

∣∣∣Hjyyy

∣∣∣2 ∫ σ1

σ0

H−n
j ≥

(∫ σ1

σ0

∣∣∣Hjyyy

∣∣∣
)2

≥ c2

16
.

By (4.8), ∫ σ1

σ0

H−n
j ≤

(
8

c

)n ∫ σ1

σ0

1

(y − σ1)2n
=

(
8

c

)n
2

1 − 2n
.

It follows that ∫ 1

−1

Hn
j

∣∣∣Hjyyy

∣∣∣2 ≥ C∗ ≡ cn+2(1 − 2n)

23n+5
,

that is, (4.7) holds.
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In subcase (b), let σ2 ∈ (σ0, σ1) be a point at which Hjy(σ2) = 0. By Taylor
expansion at σ2, for y ∈ (σ0, σ1),

Hj(y) = Hj(σ2) +
Hjyy(z)

2
(y − σ2)

2

≥ c

8
(y − σ2)

2,

and the above argument still works to show that (4.7) holds for the same C∗.
Now, we scale (4.7) back to get

∫ δ

−δ

hn
j h

2
jxxx = δ2n−1

∫ 1

−1

Hn
j H

2
jyyy(4.9)

≥ C∗δ
2n−1.

However, on the other hand, for small δ,

∫ δ

−δ

hn
j h

2
jxxx ≤

∫ δ

−δ

hn
j

(
hjxxx + f ′(hj)hjx

)2

+ 4

∫ δ

−δ

f ′(hj)
2h2

jx

≤
∫ 1

−1

hn
j

(
hjxxx + f ′(hj)hjx

)2

+ C

∫ δ

−δ

(
1 + hn+2q−2

j

)
h2
jx.

As ∫
hn+2q−2
j h2

jx =
−1

n + 2q − 1

∫
hn+2q−1
j hjxx

≤ C

(∫
h

2(n+2q−1)
j

)1/2 (∫
h2
jxx

)1/2

,

by (4.2), (4.5), and (4.6) we conclude that

∫ δ

−δ

hn
j h

2
jxxx

is bounded uniformly in j, but this is in conflict with (4.9) as n < 1/2 and δ could be
arbitrarily small, so the classical solution cannot be a global one, contradiction holds.

The proof for the second case is similar. Without loss of generality let us assume
that c1 > c2. Again we take b = 0 and fix some small δ0 so that ĥ is decreasing in
(−δ0, 0) and increasing in (0, δ0). For each δ < δ0 we use the same rescalings as before
to define Hj and Ĥ and claim that (4.7) holds. For, we pick σ0 in (−1, 0) such that
Hjyy(σ0) = c1 − ε0, where ε0 is a fixed number less than (c1 − c2)/2. As before one
can show that there is some ξ ∈ (σ0, 1) such that Hjyy(ξ) = (c1 + c2)/2. So we can
define

σ1 = inf{σ > σ0 : Hjyy(σ) = (c1 + c2)/2} < 1.

We consider the two subcases as before. We have in subcase (a) Hjyy ≥ c1+c2
4 (y−σ1)

2

and in subcase (b) Hjyy ≥ c1+c2
4 (y − σ2)

2 for y ∈ (σ0, σ1). In both cases

∫ σ1

σ0

|Hjyyy| ≥
∣∣∣∣c1 − c2

2
− ε0

∣∣∣∣ > 0.
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Now the same arguments as before would show that (4.7) holds, so the same contra-
diction can be drawn.

Proof of Corollary 4.1. First of all, from the interpolation inequality [F2] for
functions in H1(SL):

∫
u4 ≤ C

(∫
|u|
)2 (∫

u2
x +

∫
u2

)
,

it is easy to see that, for q ∈ (−1, 3), the energy E(h) satisfies

∫
h2
x ≤ CE(h)

for some positive constant C. By a standard argument based on the direct method,
the minimization problem

m = inf{E(h) : h ∈ X(L, c0)}

admits a minimizer in the closure of X(L, c0), which is a steady state of (4.1).
Let us examine the candidates for the minimizer. First, according to Theorem

10 in [LP3], the constant state c0/L becomes energy unstable whenever L satisfies
L > L1, where L1 satisfies L3−q

1 cq−1
0 = 4π2, and hence it cannot be a minimizer.

Next, the classification results in [LP1] shows that, for any pair (L, c0), there are, up
to translations, at most finitely many positive steady states with period L/j, j ≥ 2
in X(L, c0), but they cannot be minimizers as they are also energy unstable due to
Theorem 1 of [LP2]. Furthermore, the classification in section 5 of [LP1] asserts that
positive steady states with minimal period and fully supported droplets with zero
contact angle do not exist if L > L2 for some L2, depending on c0 and q. From the
same source we know that there are, up to translations, at most finitely many arrays
of identical droplets with zero angle in X(L, c0). We claim that they too cannot be
minimizers. For, consider an array of identical droplets h, which vanishes at −L/2
and L/2. Define h∗ to be the function equal to h on (−L/2, L/2) and zero outside
this interval. Then the rearrangement of h∗ gives a function which is positive inside
and zero outside (−L/2, L/2). Extending the restriction of h∗ on (−L/2, L/2) as an
L-periodic function h∗∗. From the properties of rearrangement h∗∗ belongs to the
closure of X(L, c0), with energy strictly lower than that of h; see, for instance, [LiL].
Therefore h cannot be a minimizer. Since the energy is invariant under translation,
we conclude that no array of identical droplets can be a minimizer of the energy.

As a result, for any L greater than L1 and L2, if we denote by μ the minimum
of the energies of all of the possible positive steady states, fully supported droplets
with zero contact angle and arrays of identical droplets with zero contact angle in
X(L, c0), then m < μ. Now the corollary follows from Theorem 4.1 by taking

U = {h ∈ X(L, c0) : E(h) < (m + μ)/2}.

Remark 4.1. A sharp version of the interpolation inequality used in the above
proof is the Nagy’s inequality [SP]:

∫
u4 ≤ 9

4π2

(∫
|u|
)2 (∫

u2
x

)
,
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which is valid for all u ∈ H1(R). By modifying this inequality one can show that the
following inequality holds for all u ∈ H1(SL):

∫
u4 ≤ C

(∫
|u|
)2 (∫

u2
x +

∫
u2

)

for any constant C > 9/4π2. Using this result, one can show that Corollary 4.1
continues to hold when q = 3 provided c0 satisfies

3Bc20 < 8π2.

Appendix A. Suitable weak solutions. Here we give a sketch of the proof of
Theorem 2.1. We shall treat problem (2.1), where n ∈ (1.5, 3.5) in (2.1) and f satisfies
(2.4) and (2.6). The proof when f satisfies (2.5) instead of (2.6) can be handled in a
similar and simpler way.

Step 1. (2.1) admits a positive, classical solution for all time if n ≥ 4 and f ∈
C2,α([0,∞)).

This is achieved by considering the approximation problem (ε > 0){
ht +

[(
|h|n + ε

)(
hxx + f(h)

)
x

]
x

= 0,

h(0) = h0 > 0 in C∞(SL).

One first shows that this problem admits a global classical solution hε. In fact, using
the interpolation inequality on H1(SL) [F2],

∫
h4 ≤ C

(∫
h

)2 (∫
h2
x +

∫
h2

)

for some positive constant C in the energy dissipation relation

1

2

∫
h2
εx −

∫
F (hε) +

∫ t

0

∫
(|h|n + ε)

∣∣∣(hεxx + f(hε)
)
x

∣∣∣2
=

1

2

∫
h2

0x −
∫

F (h0),

where F is a primitive of f , with the help of the conservation of area∫
h = c0 ≡

∫
h0,

and the growth condition p < 3 in (1.4) or p = 3 when c0 is small one obtains a uniform
H1-bound on hε. Using the entropy inequality one further shows that, although hε

may change sign, its limit of as ε ↓ 0 through a subsequence is a positive function h
which solves (2.1). We refer to [BF] and [BP2] for details.

Step 2. (2.1) admits a positive, classical solution for all time if n ≥ 4 and f ∈
C2,α((0,∞)) satisfies (2.4) (p < 3) and (2.6) (q > 1 − n/2).

Consider the approximation problem (δ > 0){
ht +

[
hn
(
hxx + fδ(h)

)
x

]
x

= 0, fδ(z) = f(z + δ),

h(0) = h0 > 0 in C∞(SL).
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By Step 1, this problem admits a positive, classical solution hδ, which is uniformly
bounded in H1-norm again by (2.4) (p < 3). Further we compute the change rate of
the entropy ∫ h2−n

δ as follows:

d

dt

∫
h2−n
δ = (2 − n)(1 − n)

∫
hδx

(
hδxx + fδ(hδ)

)
x

≤ −1

2
(2 − n)(1 − n)

∫
h2
δxx + C

∫
f2
δ (hδ)

≤ −1

2
(2 − n)(1 − n)

∫
h2
δxx + C

(∫
h2q
δ + 1

)

≤ C

(∫
h2−n
δ + 1

)

as q ≥ 1−n/2. It follows that ||h2−n
δ ||L1 is uniformly bounded on every interval [0, T ].

By passing to limit and using n ≥ 4, hδ subconverges to a positive, classical solution
of (2.1), with initial datum h0.

We remark that the assertions in Steps 1 and 2 hold when the coefficient hn is
replaced by some positive, smooth a(h), which behaves like hn near 0.

Step 3. Equation (2.1) admits a suitable weak solution if n ∈ (1.5, 4), (2.4) and
(2.6) hold for 0 ≤ p < 3 and q > 1 − n/2.

Consider the approximation problem (ε > 0)⎧⎨
⎩ht +

[
aε(h)

(
hxx + f(h)

)
x

]
x

= 0, aε(z) =
z4

z4−n + ε
,

h(0) = h0 > 0 in C∞(SL).

As the coefficients behave like h4 near 0, Step 2 guarantees that this problem admits
a positive, classical solution hε for all ε ≤ 1. Moreover, these solutions satisfy

(A.1) sup
[0,T ]

∫
h2
εx ≤ C1

and

(A.2)

∫∫
QT

aε(hε)
∣∣∣(hεxx + f(hε)

)
x

∣∣∣2 ≤ C2.

It follows that

(A.3) ||hε||
C

1
2
, 1
8

x,t (QT )
≤ C3

(we refer to [BF] for the deduction of (A.3) from (A.1) and (A.2)), and, by (A.1),
(A.2), and (2.6) (q > 1 − n/2),

(A.4)

∫∫
QT

aε(hε)h
2
εxxx ≤ 2

∫∫
QT

aε(hε) |(hεxx + f(hε))x|
2

+ 2

∫∫
QT

aε(hε)f
′2(hε)h

2
εx

≤ C

(
1 +

∫∫
QT

hn+2q−2
ε h2

εx

)

≤ C

(
1 +

∫∫
QT

h2
εx

)
≤ C4.
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Define

Gs,ε(z) =

∫ M

z

∫ M

y

τ s

aε(τ)
dτdy,

where M is a fixed number greater than sup[0,T ] hε for all ε ≤ 1. Then we have

d

dt

∫
Gs,ε(hε) = −

∫ (
hs
εh

2
εxx + s

∫
hs−2
ε h2

εxhεxx

)

−
∫

f(hε)
(
hs
εhεxx + shs−1

ε h2
εx

)
.(A.5)

We estimate the terms on the left of (A.5) as follows: For s ∈ (−1/2, 1), there exists
a positive number σ depending on s such that

∫
hs
εh

2
εxx + s

∫
hs−1
ε h2

εxhεxx ≥ σs

(∫
hs
εh

2
εxx +

∫
hs−2
ε h4

εx

)
,

and, for s = −1/2,

∫
hs
εh

2
εxx + s

∫
hs−1
ε h2

εxhεxx ≥ 0.

Therefore, as q ≥ 1 − n/2,

∣∣∣∣
∫

f(hε)
(
hs
εhεxx + shs−1

ε h2
εx

)∣∣∣∣
≤ δ

(∫
hs
εh

2
εxx +

∫
hs−2
ε h4

εx

)
+ Cδ

∫
hs
εf

2(hε)

≤ δ

(∫
hs
εh

2
εxx +

∫
hs−2
ε h4

εx

)
+ Cδ

(∫
hs−n+2
ε + 1

)

≤ δ

(∫
hs
εh

2
εxx +

∫
hs−2
ε h4

εx

)
+ Cδ

(
1 +

∫
hε +

∫
Gs,ε(hε)

)
.

In the last step we have used the relation

Gs,ε(z) =

∫ M

z

∫ M

y

τ s−ndτdy + ε

∫ M

z

∫ M

y

τ s−4dτdy

=
1

(s− n + 1)(s− n + 2)
zs−n+2 − Ms−n+1

s− n + 1
z +

Ms−n+2

s− n + 2

+ ε

[
1

(s− 3)(s− 2)
zs−2 − Ms−3

s− 3
z +

Ms−2

s− 2

]
.(A.6)
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Putting this identity back to (A.5) yields, for s ∈ (−1/2,min{1, n− 2}),

(A.7) sup
[0,T ]

[∫
hs−n+2
ε + ε

∫
hs−2
ε

]
+ σ

∫∫
QT

(
hs
εh

2
εxx + hs−2

ε h4
εx

)
≤ C5.

Next, we fix s′ > −1/2 such that − 1
2 − s′ + 2q > −n + 2 still holds. By (A.5) and

(A.7),

d

dt

∫
G− 1

2 ,ε

(
hε

)
≤ C

∫ (
hq
ε + 1

)(
h−1/2
ε hεxx + sh−3/2

ε h2
εx

)
≤ C

∫ (
hs′

ε h
2
εxx + hs′−2

ε h4
εx

)
+ C

(∫
h−1−s′+2q
ε + 1

)

≤ C

∫ (
hs′

ε h
2
εxx + hs′−2

ε h4
εx

)
+ C

(∫
G− 1

2 ,ε
(hε) +

∫
hε + 1

)
,

so

(A.8) sup
[0,T ]

[∫
h

3
2−n
ε + ε

∫
h
− 5

2
ε

]
≤ C6.

To let ε go to 0, first observe that, by (A.2) and (A.4),

(A.9)
√
aε(hε)hεxxx ⇀ h

n
2 hxxx in L2(QT ),

and

(A.10)
√
aε(hε)

(
hεxx + f(hε)

)
x
⇀ h

n
2

(
hxx + f(h)

)
x

in L2(QT ).

By parabolic regularity, for all s > −1/2 (since hε are uniformly bounded in ε, (A.7)
holds for all s > −1/2),

h
s
2
ε hεxx → h

s
2hxx,

h
s−2
4

ε hεx → h
s−2
4 hx, uniformly in any compact subset of {h > 0}.

Taking s′ ∈ (−1/2, s) and using (A.7), we have

∫∫
QT

∣∣h s
2
ε hεxx − h

s
2hxx

∣∣2 =

( ∫∫
{h≥δ}

+

∫∫
{h<δ}

)∣∣h s
2
ε hεxx − h

s
2hxx

∣∣2
≤ o(ε) + Cδs−s′ → 0, as ε → 0 and δ → 0,

so

(A.11) h
s
2
ε hεxx → h

s
2hxx in L2(QT ).

Similarly, we have

(A.12) h
s−2
4

ε hεx → h
s−2
4 hx in L4(QT ).

Now, using (A.9)–(A.12) to pass to limit we obtain a subsequence of hε converging
uniformly to some h in QT . From (A.1)–(A.4), (A.7), and (A.8) we see that (H1) and
(H2) hold. It remains to establish (H3).
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Lemma A.1. There exists a set Γ of full measure in [0, T ] such that, for a sequence
εj → 0,

hεj (x, t) → h(x, t) in H1(SL) ∀t ∈ Γ,

and∫
Gs,εj (hεj )(t)φ

4 →
∫

Gs(h)(t)φ4 ∀t ∈ [0, T ] ∀φ ∈ C∞(SL), s ∈ (−1/2, n− 2).

Proof. It follows from (A.12) (taking s = 2) that∫∫
QT

|hεx − hx|2 → 0 as ε → 0.

Therefore, there exists a subset Γ ⊂ [0, T ] with full measure such that, for a subse-
quence ε = εj , ∫

|hεx − hx|2(t) → 0 ∀t ∈ Γ.

To prove the second statement, observe that each t ∈ [0, T ], K3 implies that h(x, t) > 0
a.e. in SL. So it follows (A.6), (A.7), the pointwise convergence

Gs,ε(hε)(t) → Gs(h)(t) a.e. in SL,

and the dominated convergence theorem.
Now we can prove (H3). First, by a direct computation we have

1

2

∫
h2
εxφ

4 −
∫

F (hε)φ
4 +

∫ t

t0

∫
aε(hε)

∣∣∣(hεxx + f(hε)
)
x

∣∣∣2φ4

= −
∫ t

t0

∫
aε(hε)

(
hεxx + f(hε)

)
x

(
hεxx + f(hε)

)
(φ4)x

−
∫ t

t0

∫
aε(hε)

(
hεxx + f(hε)

)
x

[
hεxx(φ4)x + hεx(φ4)xx

]

+
1

2

∫
h2
εx(t0)φ

4 −
∫

F (hε(t0))φ
4,(A.13)

and, for s = − 1
2 + δ ∈ (− 1

2 ,min{1, n− 2}),
d

dt

∫
Gs,ε(hε)φ

4 =

∫
G′

s,ε(hε)hεtφ
4

= −
[∫

hs
εh

2
εxxφ

4 + s

∫
hs−1
ε h2

εxhεxxφ
4

]
−
∫

hs
εhεxhεxx(φ4)x

−
∫

f(hε)
[
hs
εhεxxφ

4 + shs−1
ε h2

εxφ
4 + hs

εhεx(φ4)x
]

−
∫ [

a′ε(hε)G
′
s,ε(hε) + aε(hε)G

′′
s,ε(hε)

]
hεx

[
hεxx + f(hε)

]
(φ4)x

−
∫

aε(hε)G
′
s,ε(hε)

[
hεxx + f(hε)

]
(φ4)xx

≤ −σ

[∫
hs
εh

2
εxxφ

4 +

∫
hs−2
ε h4

εxφ
4

]

+ C

[∫
hs+2
ε

(
φ4
x + φ2φ2

xx

)
+

∫
hs
εf

2(hε)φ
4

]
,(A.14)
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where the constants σ and C are positive constants. Note that, in the last inequality
of (A.14), we have used

aε(z)Gs,ε(z) = zs,

|a′ε(z)G′
s,ε(z)| ≤ C7z

s,

|aε(z)G′
s,ε(z)| ≤ C8z

s+1,

and, for −1/2 < s < 1,

∫
hs
εh

2
εxxφ

4 + s

∫
hs−1
ε h2

εxhεxxφ
4

≥ σ1

[∫
hs
εh

2
εxxφ

4 +

∫
hs−2
ε h4

εxφ
4

]
− C1

∣∣∣∣
∫

hs−1
ε h3

εx(φ4)x

∣∣∣∣
≥ σ2

[∫
hs
εh

2
εxxφ

4 +

∫
hs−2
ε h4

εxφ
4

]
− C2

∫
hs+2
ε φ4

x.

Using (A.9)–(A.12) we can pass limit in (A.13) to obtain the local energy inequality.
Similarly, by passing limit in the integral form of (A.14) using also Lemma A.1, we
see that the local entropy inequality also holds.

Finally, by an approximation argument the initial data can be taken to be non-

negative H1-functions, with finite ||h3/2−n
0 ||L1 . One may consult [BF] for the proof

of limt→0 h(t) = h0 in H1. We have finished our outline of the proof of Theorem 2.1.

Appendix B. The parabolic Hausdorff dimension. Same as the Hausdorff
measures, fourth order parabolic Hausdorff measures can be defined by a general
construction due to Carathéordory; see [Fe]. Here we state their definitions and list
some of their basic properties.

Let s be nonnegative, and δ > 0. For any set X in R2, we let C be a collection
of cylinders Qα of the form {(x, t) : |x− x0| < ρα, and |t− t0| < ρ4

α} (ρα > 0) whose
union contains X. Then let

Ps
δ (X) ≡ inf

{∑
ρsα : All collections C that cover X with ρα < δ

}
,

and define the s-parabolic Hausdorff measure to be

Ps(X) = sup
δ→0

Ps
δ (X).

Then Ps
δ and Ps are outer measures for which all Borel subsets are measurable. We

define the s-parabolic Hausdorff dimension to be the infimum of {s : Ps(X) = 0.}. It
is clear that Pt(X) = 0 if Ps(X) < ∞ whenever t > s, and P5(X) is positive for any
bounded, open X.

We state the following version of the Vitali covering theorem; see section 6 in
[CKN] for a proof.

Theorem B.1. Let C be a collection of parabolic cylinders described as above.
Assuming that there is a uniform bound on the diameters of these cylinders, we can
find a countable subcollection consisting of mutually disjoint cylinders Qj = {(x, t) :
|x− x0| < ρj , |t− t0| < ρ4

j} so that the union of the enlarged cylinders Q′
j = {(x, t) :

|x− x0| < 5ρj , |t− t0| < 625ρ4
j} covers C.
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THE STABILITY OF THE NORMAL STATE OF
SUPERCONDUCTORS IN THE PRESENCE OF

ELECTRIC CURRENTS∗

Y. ALMOG†

Abstract. The stability of the normal state of superconductors in the presence of electric
currents is studied in the large domain limit. The model being used is the time-dependent Ginzburg–
Landau model, in the absence of an applied magnetic field, and with the effect of the induced magnetic
field being neglected. We find that if the current is nowhere perpendicular to the boundary, or if
the minimal current on the boundary, at points where it is perpendicular to it, is greater than the
critical current in the one-dimensional case, then the normal state is stable. We also prove some
short-time instability when the current is both perpendicular to the boundary and smaller than the
one-dimensional critical current.
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1. Introduction. It is well known that when a superconductor is placed at a
temperature lower than the critical one, it loses its electrical resistivity. This means
that current can flow through a superconducting sample with a vanishingly small
voltage drop. If one raises the current above a certain critical level, superconductivity
will be destroyed and the material would revert to the normal state, even if the
temperature is kept fixed below the critical one.

The reverse experiment can also be considered. One can flow a strong current
through the sample which would set it in the normal state. Then, if we lower the
current, there is a critical current where the sample would abruptly become purely
superconducting. Though the two experiments substantially differ from each other
from a theoretical point of view, hysteresis was not experimentally observed in the
current-voltage characteristics of the sample [8, 14, 15].

We consider here the second experiment. To this end we must analyze the stability
of the normal state. The model we use in this work is the time-dependent Ginzburg–
Landau model [7, 4], presented here in a dimensionless form as follows:

∂ψ

∂t
+ iφψ = (∇− iA)

2
ψ + ψ

(
1 − |ψ|2

)
in Ω,(1.1a)

−κ2∇× (∇×A) − σ

(
∂A

∂t
+ ∇φ

)
=

i

2
(ψ̄∇ψ − ψ∇ψ̄) + |ψ|2A in Ω,(1.1b)

ψ = 0 on ∂Ωc,(1.1c)

(i∇ + A)ψ · ν = 0 on ∂Ωi .(1.1d)
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∂Ωc

∂Ωc

∂Ωi
∂Ωi

Jin

Jout

Fig. 1. Typical superconducting sample. The arrows denote the direction of the current flow
(Jin for the inlet and Jout for the outlet).

In (1.1) ψ is the superconducting order parameter, so that |ψ| represents the number
density of superconducting electrons. Superconductors for which |ψ| = 1 are said to
be wholly superconducting, and those for which ψ = 0 are said to be at the normal
state. A is the magnetic vector potential and φ is the electric scalar potential. The
constant σ is a measure of the normal conductivity of the superconducting material so
that −σ∇φ is the normal current, and κ is the Ginzburg–Landau parameter. Length
has been scaled with the coherence length ξ, which is the natural length-scale for
variations in ψ. The domain Ω ⊂⊂ R

n (n = 1, 2, 3), where the superconducting
sample resides, is smooth and has an interface, denoted by ∂Ωc, with a conducting
metal which is at the normal state. The rest of the boundary, denoted by ∂Ωi, is
adjacent to an insulator. We allow nonsmoothness of ∂Ω in the sense that ∂Ωc and
∂Ωi are required to be perpendicular to each other in order to include cylindrical-like
domains. Figure 1 presents a typical two-dimensional sample, where the current flows
into the sample from one part of ∂Ωc and exits from another part, disconnected from
the first one. Most wires would fall into the above class of domains.

Equations (1.1) are gauge invariant in the sense that they are invariant under
transformations of the form

A → A + ∇ω , φ → φ− ∂ω

∂t
, ψ → ψeiκω .

Note that none of the important physical properties, i.e., |ψ|, the magnetic field
H = ∇ × A, and the electric field E = −∂A/∂t − ∇φ, are altered by the above
transformation.

To obtain a well-posed problem one must add to (1.1) initial conditions, and the
equations satisfied by A and φ outside Ω, that is, the Maxwell equations. Continuity
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of the tangential components of A and ∇ × A through ∂Ω and some conditions on
∇× A at infinity should be required as well. Since these details are irrelevant in the
context of the present contribution, we omit them. Interested readers may be able to
find them in [4, 6].

We consider here the stability of the normal state. If ψ ≡ 0, we obtain that the
steady state solution must satisfy

∇×H = − σ

κ2
∇φ ,

and hence φ is harmonic in Ω. To obtain φ we thus need to solve the following
problem:

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

Δφ = 0 in Ω,

φ = φ0(x) on ∂Ωc,

∂φ
∂ν = 0 on ∂Ωi.

We note that instead of prescribing the potential on ∂Ωc we can prescribe the current
in the normal direction to the boundary Jn(x) = −σ∂φ/∂ν. For simplicity we assume
that ∇φ �= 0 everywhere in Ω. This can easily be achieved; for instance, for the
samples described in Figure 1, if inf φ on one connected component of ∂Ωc is greater
than the supφ on the other connected component, then ∇φ never vanishes.

Once (1.2) is solved, one can solve for the magnetic field. Here we need to solve
a problem in R

n,

(1.3)

⎧⎪⎪⎨
⎪⎪⎩
∇×H = − σ

κ2∇φ = 1
κ2 J in Ω,

∇×H = 0 in R
n \ Ω,

H → hex as |x| → ∞,

with H continuous across ∂Ω. We assume zero applied magnetic field (hex = 0). To
simplify our problem further we shall assume A = H = 0. This assumption can be
justified in the case where κ � 1 in view of (1.3). However, since we intend to consider
large domains, one must assume that κ � diam Ω. In real-world coordinates this
means that our domain size must be much larger than the coherence length ξ but also
much smaller than the penetration depth λ, which is the length-scale characterizing
variations in H (κ = λ/ξ). While this assumption significantly limits the validity
of our results, it has been made very often by physicists [15, 8] and is reasonable to
adopt as a starting point.

Once the above assumption is adopted one obtains⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ψ
∂t − Δψ + iφψ − ψ(1 − |ψ|2) = 0 in Ω,

ψ = 0 on ∂Ωc,

∂ψ
∂ν = 0 on ∂Ωi,

ψ(x, 0) = ψ0(x) in Ω.

It should be noted that in [6] Du and Gray prove, within the framework of a more
general case, convergence in the limit κ → ∞ of (1.1) to a different limit problem where
the magnetic field is not negligible. The domain size considered there is, however,
much larger than in our case, as it is comparable with the penetration depth.
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Linearizing the above near the normal state, we obtain

(1.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ψ
∂t − Δψ + iφψ − ψ = 0 in Ω,

ψ = 0 on ∂Ωc,

∂ψ
∂ν = 0 on ∂Ωi,

ψ(x, 0) = ψ0(x) in Ω.

The above problem has been analyzed by physicists in one-dimensional settings. Ivlev
and Kopnin review these results in [8]. In these settings we have φ = Jx+μ, where J
(denoting the current) and μ are constants. Previous results include the closed form
solution of (1.4) in R for any initial condition. In R+, the first critical current Jc for
which a steady state solution (∂|ψ|/∂t = 0) exists is found. Then weakly nonlinear
analysis is performed, where it is shown that [9] the bifurcation taking place near
J = Jc is subcritical (i.e., unstable).

We consider (1.4) in three-dimensional settings. While all the results are stated
for three-dimensional objects, they are equally valid for two-dimensional objects as
well. We deal with (1.4) in the large domain limit; i.e., we consider a domain ΩR

which is obtained from Ω via the transformation

(1.5) x → Rx .

The portions of the boundaries ∂Ωc
R and ∂Ωi

R are similarly obtained from ∂Ωc and
∂Ωi, respectively. To keep ∇φ unaltered we consider also potentials of the form

φR = Rφ(x/R) .

Thus, we consider the following problem:

(1.6)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ψR

∂t − ΔψR + iφRψR − ψR = 0 in ΩR,

ψR = 0 on ∂Ωc
R,

∂ψR

∂ν = 0 on ∂Ωi
R,

ψR(x, 0) = ψ0(x) in ΩR.

Our main result is the following.

Theorem 1.1. Let φ satisfy (1.2). Let ∂Ωn
c denote the portion of ∂Ωc on which

∇φ is perpendicular to the boundary. Let further

Jm = min
x∈∂Ωn

c

∣∣∣∣∂φ∂ν
∣∣∣∣ ,

and let Jc denote the critical current for the problem in R+ (which is precisely defined
in (2.19)). Suppose further that |J | > 0 everywhere on ∂Ωc. Then, if Jm > Jc , or if
∂Ωn

c is empty, there exists R0 > 0 such that ψR ≡ 0 is a stable solution of (1.6) in
the sense of L2(ΩR) for all R > R0.

Furthermore, if Jm < Jc, there exists ψ0 ∈ L2(ΩR) and TR > 0 such that

lim inf
R→∞

TR

lnR
> 0 ,
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and such that the solution ψR of (1.6) has the following property:

(1.7) t < TR ⇒ ‖ψR‖L2(ΩR) >
1

2
‖ψ0‖L2(ΩR)e

βt ,

where

β = 1 − (J/Jc)
2/3 .

In the next section we review and enhance the results in [8] in the one-dimensional
case. In section 3 we extend some of the results in section 2 to unbounded three-
dimensional domains. In section 4 we provide the proof of the theorem. Finally,
in the last section we highlight some possible directions for future research. The
appendix provides a technical result needed in section 2.

2. One-dimensional problems. In this section we consider (1.4) in two differ-
ent one-dimensional settings: on R and on R+. The solution of these simple problems
would provide us with some important intuition on the solution of (1.6) in three-
dimensional bounded domains in the large domain limit. In both cases we shall
assume φ = Jx, i.e., that the current is uniform and equals J throughout the sample.

2.1. Infinite one-dimensional domain. Here we consider the problem

(2.1)
∂ψ

∂t
− ψ′′ − ψ + iJxψ = 0 .

We consider here only the case J > 0. Otherwise, if J < 0, we can consider the
complex conjugate of (2.1). Applying the coordinate transformation

(2.2) x → J1/3x; t → J2/3t,

we obtain the problem

∂ψ

∂t
+ Lψ = λJψ ,

where

(2.3) Lψ = −ψ′′ + ixψ ,

and λJ = J−2/3.
We first focus our interest on the spectrum of the operator L : DR(L) → L2(R,C),

where DR(L) is the dense subset of L2(R,C) defined as

DR(L) = {u ∈ L2(R,C) | − u′′ + ixu ∈ L2(R,C)} .

Lemma 2.1. The operator L − λI is invertible for all λ ∈ C. (Thus σ(L) = φ.)
Proof. It is sufficient to consider here λ ∈ R. Otherwise, if λ = λr + iλi, we apply

the transformation x → x− λi.
Though it is not necessary, we first prove injectivity of L − λI. We shall later

make use of a similar argument in three dimensions. To the problem

Lu = λu

we apply the Fourier transform

(2.4) û(ω) = F(u) =
1√
2π

∫
R

e−iωxu(x)dx
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to obtain

ω2û− ∂û

∂ω
= λû .

Since the above equation doesn’t possess any nontrivial solutions with bounded L2(R)
norm, L − λI must be injective.

To find the spectrum of L we construct the Green’s function of L − λI. Let

(2.5)

{
w1(x, λ) = Ai

(
eiπ/6x + λei2π/3

)
,

w2(x, λ) = Ai

(
− e−iπ/6x + λe−i2π/3

)
,

where Ai denotes Airy’s function [1] (cf. (A.2) in Appendix A for the asymptotic
behavior of Ai). It is easy to show that u1, u2 constitute a fundamental set of solutions
to (L − λI)u = 0 [13]. We can now write the Green’s function in the form

G(x, ξ, λ) =

⎧⎨
⎩

w2(ξ,λ)
W (w1,w2)

w1(x, λ), x > ξ,

w1(ξ,λ)
W (w1,w2)

w2(x, λ), x < ξ,

where W (w1, w2) denote the Wronskian (which is a constant that clearly doesn’t
vanish since w1 and w2 are linearly independent).

Using the asymptotic behavior of Airy’s functions [1], we can show, using the same
procedure applied in Appendix A to the semi-infinite case, that G(·, λ) ∈ L2(R2,C)
for all λ ∈ R. The lemma is proved.

The spectrum of the operator L : DR(L) → L2(R,C) can therefore teach us very
little on the stability of the normal state in this case. The following lemma proves its
stability in a direct manner.

Lemma 2.2. The trivial solution of (2.1), ψ ≡ 0, is globally stable in L2; i.e.,
if f(x) ∈ L2(R,C), then the solution of (2.1), ψ(x, t), satisfying the initial condition
ψ(x, 0) = f(x) satisfies ψ(x, t) −−−→

t→∞
0 in L2(R,C).

Proof. As long as ψ(x, t) ∈ L2(R,C), we can apply to (2.1) the Fourier transform
(2.4). We obtain

∂ψ̂

∂t
+ ω2ψ̂ − ∂ψ̂

∂ω
− λJ ψ̂ = 0 .

The unique solution to the above problem is given by

(2.6) ψ̂(ω, t) = f̂(ω) exp

{
−ω2t− ωt2 − 1

3
t3 + λJ t

}
,

in which f̂(ω) denotes the Fourier transform of f . Integrating the modulus square of
the above over R with respect to ω, we obtain

‖ψ(., t)‖2 ≤ C‖f‖2 exp

{
− 1

12
t3 + λJ t

}
,

where ‖ · ‖2 denotes the L2(R,C) norm.
The above superlinear convergence is in accordance with the result proved in the

previous lemma by which the spectrum of L is empty. We note that in [8] the inverse
transform of (2.6) is obtained, but no decay proof is given.
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2.2. Semi-infinite one-dimensional domain. We now consider (2.1) on R+.
We concentrate here on the Dirichlet boundary condition ψ(0) = 0; however, the same
analysis applies to Neumann and mixed boundary conditions as well.

We start by proving the following result on the spectrum of the operator
L : DR+(L) → L2(R,C), where

DR+(L) = {u ∈ L2(R+,C) | − u′′ + ixu ∈ L2(R+,C), u ∈ H1
0 (R+,C)} .

Lemma 2.3.

1. There exists a sequence of eigenvalues {λn}∞n=1 and eigenfunctions of L, with
unity norm, {un}∞n=1 ⊂ DR+

(L), i.e.,

Lun = λnun .

2. We have

(2.7) m = max
n∈N

�λn > 0.

3. span{un}∞n=1 = L2(R+,C).
4. Suppose that u, v ∈ L2(R+,C) can be represented in the form

v =

∞∑
n=1

αnun; w =

∞∑
n=1

βnun,

where the convergence is in the L2 sense. Let then

(2.8) 〈v, w〉U =

∞∑
n=1

αnβ̄n .

Then,

(2.9) inf
v∈DR+

(L)
� 〈v,Lv〉U ≥ m‖v‖2

U ,

where ‖ · ‖U denotes the norm induced by (2.8).
Proof. Let

z = −ix + λ.

Let u(x, λ) ∈ DR+(L) denote an eigenfunction of L, i.e., Lu = λu. Let v(z, λ) =
u(x, λ). We have

(2.10)

{
∂2v
∂z2 − zv = 0, z ∈ C,

v(λ, λ) = 0.

Since u ∈ L2(R+,C), v must be subdominant (i.e., it decays exponentially fast [13])
in the sector

S1 : −π < arg z < −π

3
.

The decaying solution of (2.10) in S1 is given by (cf. [13])

v = Ai

(
e2πi/3z

)
.
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Since the zeros of Airy’s functions are eigenvalues of the self-adjoint operator
d2/dx2 − x in DR+

(L), they must all be real. Let {μn}∞n=1 ⊂ R denote the zeroes of
Airy’s function on the real axis. By the maximum principle they must all be strictly
negative. We arrange them so that μn ↓ −∞. As every eigenvalue of L must satisfy
v(λ, λ) = 0, the set {λn}∞n=1, where

(2.11) λn = e−i2π/3μn,

contains all the eigenvalues of L. Since μ1 < 0 we have that

m = �λ1 = −μ1

2
> 0 .

The set {ũn}∞n=1 of eigenfunctions of L in DR+
(L) is given by

(2.12) ũn = Ai

(
ei2π/3(−ix + λn)

)
= Ai

(
eiπ/6x + μn

)
∀n ∈ N .

We then set

(2.13) un =
ũn

‖ũn‖L2(R+)
.

To prove that {un}∞n=1 is complete in L2(R,C) we consider the resolvent L−1
λ =

(L − λI)−1 (which is also the modified resolvent of L−1). We have

(2.14a) L−1
λ f =

∫ ∞

0

G̃(x, ξ, λ)f(ξ)dξ ,

in which

(2.14b) G̃(x, ξ, λ) =

⎧⎨
⎩

w̃2(ξ,λ)
W (w1,w̃2)

w1(x, λ), x > ξ,

w1(ξ,λ)
W (w1,w̃2)

w̃2(x, λ), x < ξ,

where

(2.15) w̃2(x, λ) =
w1(0, λ)

w2(0, λ)
w1(x, λ) − w2(x, λ) ,

and w1 and w2 are given in (2.5). In Appendix A, we prove that G̃ ∈ L2(R+ × R+),
and that

(2.16) ‖G̃(., ., λ)‖L2(R+×R+) ≤ eM |λ|3/2

,

as long as λ �∈ {λn}∞n=1.
Let u ∈ DR+(L). We now multiply Lu by eiθū and integrate over R+ to obtain

� < eiθLu, u >=

∫ ∞

0

(cos θ|u′|2 − sin θx|u|2)dx .

By Theorem 12.8 in [2] we have that every direction ei arg λ with

π/2 < arg λ < 3π/2
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is a direction of minimal growth of the resolvent of eiθL for every −π/2 < θ < 0.
Consequently, every direction ei arg λ with

π/2 < arg λ < 2π

is a direction of minimal growth of L−1
λ , i.e. (cf. [2]),

(2.17) ‖L−1
λ ‖ ∼ O(|λ|−1) π/2 < arg λ < 2π .

We now apply the same argument used in the proof of Theorem 16.4 in [2]. Let
f ∈ L2(R+), and let g ∈ V ⊥, where V = span{Ai(e

iπ/6x + μn)}∞n=1 = sp′(L−1).
Then,

F (λ) = 〈L−1
λ f, g〉

is an entire function (cf. [2]) of λ satisfying, by (2.16) and (2.17),{
|F (λ)| ≤ C

|λ| , π/2 < arg λ < 2π,

|F (λ)| ≤ CeM |λ|3/2

, λ ∈ C.

By Theorem 16.1 in [2] (or the Phragmen–Leindelöf theorem) and Liouville’s theorem,
we must have F (λ) ≡ 0. Hence, V = range(L−1) = DR+(L).

It remains still necessary to prove (2.9). Let w ∈ DR+
(L). Then,

w =

∞∑
n=1

αnun

and

Lw =
∞∑

n=1

αnλnun .

Hence

� 〈w,Lw〉U =

∞∑
n=1

�λn|αn|2 ≥ m‖w‖2
U .

Similar techniques were used in [12, 10] to prove completeness of the system of
eigenfunctions of some nonlinear eigenvalue problems in R. We note that the set
{un}∞n=1 is not a basis in the usual sense in Banach spaces. In fact, it has been
demonstrated in [5] that the system {ũn, ũn}∞n=1, which is a biorthogonal system
after we appropriately normalize it, is wild. This means that ‖ũn‖2 grows faster than
any algebraic rate as n → ∞.

We now prove the existence of a critical current Jc obtained in [8, 9].
Lemma 2.4. Let ψ(x, t) ∈ H2

0 (R+ × R+,C) denote a solution of the equation

(2.18)
∂ψ

∂t
− ∂2ψ

∂x2
− ψ + iJxψ = 0 in R+ × R+ .

If

(2.19) J > Jc =
(
−μ1

2

)−3/2

,
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in which μ1 is the rightmost zero of Airy’s function, then ‖ψ(·, t)‖U −−−→
t→∞

0. Other-

wise, if J < Jc, then ψ ≡ 0 is an unstable solution of (2.18).
Proof. We first apply (2.2) to obtain⎧⎪⎪⎨

⎪⎪⎩
∂ψ
∂t + Lψ − λJψ = 0,

ψ(0, t) = 0,

ψ(x, 0) = ψ0(x),

where ‖ψ0‖U < ∞. Taking the inner product (2.8) of the above equation with ψ, we
obtain

1

2

d

dt
‖ψ‖2

U ≤
(
λJ +

μ1

2

)
‖u‖2

U .

Hence, if (2.19) is satisfied, we have λJ + μ1/2 < 0, and hence ψ tends to 0 exponen-
tially fast as t → ∞, in the ‖ · ‖U sense.

If J < Jc, let ψ(x, 0) = u1(x), where u1 is given in (2.13). Then

ψ(x, t) = u1(x)e(λJ+μ1/2)t .

Returning to the original variables by applying the inverse of (2.2), we obtain

ψ(x, t) = u1(J
1/3x)e[1−(J/Jc)

2/3]t ,

and hence ψ ≡ 0 is unstable.

3. Unbounded domains in R
3. In this section we consider several different

problems: in R
3, in R

3
+, and in a quarter-space. In contrast with the previous section,

we consider these problems only to the extent needed in the next section, that is, we
analyze the existence of eigenvalues with nonpositive real part of the elliptic operator
in the right-hand side of (1.4).

3.1. Eigenfunctions in R
3. We consider here (1.4) with φ = Jx1. This choice

summarizes all possible electric potentials with constant gradients, as the problem is
invariant to translations and rotations. Thus, we have for every eigenfunction u,

(3.1) −Δu− u + iJx1u = −λu .

We shall assume here that λ ∈ R; otherwise we can apply the transformation x1 →
x1 −�λ/J .

It is easy to find all L2 solutions of (3.1) in R
3 as follows: apply the Fourier

transform (2.4) in the x2 and x3 directions (using the respective Fourier coordinates
ω2 and ω3) to obtain

(3.2) Lû =
(
(1 − λ)J−2/3 − ω2

2 − ω2
3

)
û,

where assuming J > 0 we have applied the transformation

x → J1/3x .

(We confine the discussion in what follows to the case J > 0. If J < 0, we can consider
the complex conjugate of (3.2) to obtain a new problem with J > 0.)



834 Y. ALMOG

By Lemma 2.1 we have that û ≡ 0 is the unique L2 solution of (3.2). However,
for the blow-up arguments employed in the next section we need to obtain the above
result for any uniformly bounded solution of (3.1) in R

3. This is exactly what the
next lemma states.

Lemma 3.1. Let u denote a uniformly bounded solution of (3.1) in R
3. Then,

u ≡ 0.
Proof. We first show that u(., x2, x3) ∈ L2(R,C). Let χr ∈ C∞(R+, [0, 1]) satisfy

(3.3) χr(x) =

{
1 x < r/2,

0 x > r,
|χ′| ≤ C

r
.

Multiplying (3.1) by χ2
r(|x− x0|)ū we obtain, taking the real part of identity, that

(3.4)

∫
B(x0,r)

|∇(χru)|2 ≤
∫
B(x0,r)

[
χ2 + |∇χ|2

]
|u|2 .

Consequently, since u is bounded in L∞(R3), we have

(3.5)

∫
B(x0,r/2)

|∇u|2 ≤ C ∀x0 ∈ R
3 .

From the imaginary part of the identity, we obtain that∫
B(x0,r)

(
∇(χ2

r) · �
(
ū∇u

)
+ Jx1χr|u|2

)
= 0 .

Let x0 = (x1
0, x

2
0, x

3
0). Then,∫
B(x0,r/2)

|x1||u|2dx1 ≤ C

∫
B(x0,r)

[
|u|2 + |∇u|2

]
.

Consequently, for |x1
0| > r, since u is bounded and in view of (3.5), we have∫

B(x0,r/2)

|u|2 ≤ C

|x1
0| − r

2

≤ C

|x1
0|

.

Repeating the above steps (from (3.4) to the above inequality) k times we obtain that∫
B(x0,r/2k)

|u|2 ≤ Ck

|x1
0|k

.

Hence, ∫
B(x0,r/2k)

|x1|2|u|2 ≤ Ck

|x1
0|k−2

,

which allows us to apply standard elliptic estimates [3] to obtain that

|u| ≤ Ck

(|x1| + 1)k
∀k ∈ N .

In view of the above we have that xk
1u(x1, x

′) ∈ L2(R,C) for all fixed x′ ∈ R
2.

Thus, one can apply to (3.1) the Fourier transform (2.4) to obtain

(3.6) −Δ⊥û + (ω2 − 1 + λ)û− J
∂û

∂ω
= 0 ,
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where

−Δ⊥ =
∂2

∂x2
2

+
∂2

∂x2
3

.

Let

(3.7) x̃r(x) =

{
1, |x| < r,

e−
1
r (|x|−r), |x| > r.

Multiplying (3.6) by χ̃2
r(|x′ − x0|)û and integrating over R

2, we obtain

−J
dUr

dω
+ (ω2 − 1 + λ)Ur =

∫
R2

(
−|∇(χ̃rû)|2 + |∇χ̃r|2|û|2

)
dx′,

where

Ur(ω) =

∫
R2

χ̃2
r|û|2dx′ .

For the last term, we have ∫
R2

|∇χ̃r|2|û|2 ≤ 1

r2
Ur .

Consequently,

−J
dUr

dω
+ (ω2 − 1 + λ− r−2)Ur ≤ 0 ,

and therefore, for every ω0 ∈ R and ω > ω0, we have

Ur(ω) ≥ Ur(ω0) exp

{
1

3
(ω3 − ω3

0) − (1 + λ + r−2)(ω − ω0)

}
.

Thus, since Ur is positive, it must diverge exponentially fast, unless

Ur ≡ 0,

from which the lemma easily follows.

3.1.1. Eigenfunctions in R
3
+: Perpendicular current. Let

R
3
+ = {(x1, x2, x3) |x1 > 0} .

We consider here solutions of (3.1) in R
3
+ satisfying a Dirichlet boundary condition

on ∂R
3
+. Instead of considering complex eigenvalues, we consider only real ones and

treat their imaginary part as part of the electric potential.
Lemma 3.2. Let u ∈ H2(R3

+) denote a uniformly bounded solution of

(3.8)

{
−Δu− u + iJ(x1 − μ)u = −λu in R

3
+,

u = 0 on ∂R
3
+ ,

with λ ∈ R+. Then, if J > Jc, where Jc is defined as in (2.19), u must vanish
identically.
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Proof. Let un(x1) be defined as in (2.12). Let further

an(x2, x3) =

∫ ∞

0

un(x1)u(x1, x2, x3)dx1 = 〈un, ū〉 ,

where the inner product is in the regular L2 sense. Clearly, an is uniformly bounded
in R

2 as u ∈ L∞(R3,C) and un ∈ L1(R,C).
Applying the transformation

(3.9) x → J1/3x ,

multiplying (3.8) by un, and integrating over R+ with respect to x1 we obtain, in
view of the boundedness of u and the exponential rate of decay of un as x1 → ∞,
that

(3.10) −Δ⊥an + (λn − λ̃J − iμ)an = 0 ,

where λ̃J = (1−λ)J−2/3 and the definition of λn is given as in Lemma 2.3. Multiplying
(3.10) by χ̃r(|x′|), we obtain for the real part(
|μn|
2

− λ̃J

)∫
R2

|χ̃r|2|an|2 = −
∫

R2

|∇(χ̃ran)|2 +

∫
R2

|∇χ̃r|2|an|2 ≤ C

r2

∫
R2

|χ̃r|2|an|2 .

Since λ̃J < |μ1|/2 ≤ |μn|/2 by our assumption we obtain that for sufficiently large r
we must have ∫

R2

|χ̃r|2|an|2 = 0 .

Hence, an ≡ 0 in R
2. Since by Lemma 2.3 {un}∞n=1 is a basis for L2(R+,C), we must

have u ≡ 0.

3.1.2. Steady solutions in R
3
+: Nonperpendicular current. This problem

is very similar to the problem in R
3. Consider the equation

(3.11)

{
−Δu− u + i(J1x1 + J2x2 − μ)u = −λu in R

3
+,

u = 0 on ∂R
3
+,

with J2 �= 0 and λ ∈ R+. Like the problem in R
3, there is no need to consider μ �= 0

here since the transformation

x2 → x2 +
μ

J2

sets μ = 0 in the transformed problem. Furthermore, we also obtain the following
result, which is exactly the same as the result obtained in R

3.
Lemma 3.3. Let u denote a bounded solution of (3.11) with J2 �= 0. Then u ≡ 0.
Proof. Consider first the case where J1 �= 0. We first apply the transformation

(3.9) with J = J1 to obtain

(3.12) −Δ⊥u + Lu− λ̃J1u + iγx2u = 0 ,

where λ̃J1 = (1 − λ)J
−2/3
1 and γ = J2/J1. Multiplying (3.12) by un and integrating

over R+ with respect to x1, we obtain

−Δ⊥an + (λn − λ̃J1)an + iγx2an = 0 in R
2 ,
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where an = 〈un, ū〉. The above equation cannot have any nontrivial bounded solution
in R

2; otherwise it would also be a bounded solution in R
3, which by Lemma 3.1 must

identically vanish. Consequently, since an must be bounded, we must have an ≡ 0 for
all n, from which the lemma easily follows in this case.

Consider now the case where J1 = 0. Here we define

ũ(x1, x2, x3) =

{
u(x1, x2, x3), x1 > 0,

−u(−x1, x2, , x3), x1 < 0.

Clearly, ũ is a bounded weak solution of (3.1) in R
3 and hence, by Lemma 3.1,

ũ ≡ 0.
For later reference we shall also need the following lemma.
Lemma 3.4. Let u denote a bounded solution of{

−Δu− u + iJ2x2u = −λu in R
3
+,

∂u
∂x1

= 0 on ∂R
3
+,

with λ ∈ R+. Then u ≡ 0.
Proof. Once again we define, this time an even function,

ũ(x1, x2, x3) =

{
u(x1, x2, x3), x1 > 0,

u(−x1, x2, , x3), x1 < 0.

Clearly, ũ is a bounded weak solution of (3.1) in R
3 and hence, by Lemma 3.1,

ũ ≡ 0.
The last result in this section is needed in the next section in order to deal with

the interface between ∂Ωi and ∂Ωn (that are perpendicular by assumption).
Lemma 3.5. Let

Q = {(x1, x2, x3) ∈ R
3
+ |x2 > 0} .

Let u denote a bounded solution of⎧⎪⎪⎨
⎪⎪⎩
−Δu− u + i(J2x2 + J3x3)u = −λu in Q,

∂u
∂x1

(0, x2, x3) = 0, x2 > 0, x3 ∈ R,

u(x1, 0, x3) = 0, x1 > 0, x3 ∈ R,

with λ ∈ R+. Then u ≡ 0.
Proof. Once again we define an even extension of u,

ũ(x1, x2, x3) =

{
u(x1, x2, x3), x1 > 0,

u(−x1, x2, , x3), x1 < 0.

By Lemma 3.3, ũ = 0.

4. Large bounded domains in R
3. We consider here (1.6) in the limit R → ∞

which is the large domain limit. We first show that any eigenfunctions of the elliptic
operator in (1.6) must decay exponentially fast, as R → ∞ away from the boundary.
As in the previous section we insert the imaginary part of λ into the electric potential
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(and consequently consider a family of potentials) and then confine the discussion to
real values of λ.

Before getting into the main discussion we repeat here the definition of φR from
section 1 and list some of its properties. Recall that φ is the unique solution of (1.2),
and that

φR(x) = Rφ(x/R) .

The following proposition lists some of the properties of φ and φR.
Proposition 4.1. Let φ denote a solution of (1.2) and φR(x) = Rφ(x/R). Let

μ ∈ R and μR = Rμ. Let further xj ∈ ΩRj
where Rj ↑ ∞, and {μj}∞j=1 ⊂ R. Then

(i) we have either |φRj
(xj) − μj | is unbounded, or else we must have, up to a

subsequence,

∃(b, J) ∈ R × R
3 : ‖φRj − μj − J · x− b‖L∞(Dr(xj) → 0 ∀r > 0 ,

where Dr(xj) = ΩR ∩B(xj , r).
(ii) we let Γμ denote the level set φ = μ. Let M = maxx∈∂Ωc

φ(x) and m =
minx∈∂Ωc

φ(x). If μ �∈ [m,M ], then Γμ is empty.
(iii) assume that ∂Ωc is composed of exactly two connected sets as in Figure 1,

and that Ω is diffeomorphic to a cylinder. If μ ∈ [m,M ], but μ �∈ φ(∂Ωc) ,
then Γμ∩∂Ωi is a simple closed contour, separating ∂Ω into two subsets, such
that none of them is a subset of ∂Ωi. Furthermore, ∇φ �= 0 on Γμ.

Proof. Let bj = φRj
(xj) − μj and Jj = ∇φRj

(xj). To prove (i) we first choose
a subsequence such that (bj , Jj) → (b, J). The claim then follows from the Taylor
expansion of φRj near xj .

The proof of (ii) follows immediately from the maximum principle.
To prove (iii) we notice first that since φ is real analytic, Γμ must either be closed

or intersect ∂Ω. If it is closed, then φ ≡ μ inside Γμ, and hence also outside Γμ (in
view of its analyticity), which is clearly a contradiction. Thus Γμ must intersect the
boundary on ∂Ωi.

Since φ is continuous and since on one of the connected sets we must have φ < μ
and on the other one φ > μ, the intersection of ∂Ωi with Γμ must contain at least
one closed contour. This contour separates ∂Ω into two disjoints subsets ∂Ω+ and
∂Ω−, the first of them contains the connected subset of ∂Ωc; over which φ > μ, and
contains a portion of ∂Ωi. Moreover, this contour is the boundary of a continuous
subset of Γμ which we denote by A.

To see this, define cylindrical coordinates (r, θ, z) in Ω, where θ ∈ [−π, π) and
0 ≤ r < R(θ, z). Then, for each (r, θ) there exists a finite (as φ is real analytic)
set {zj} such that (r, θ, zj) ∈ Γμ. Denote the minimum in this set by zm. Clearly,
z = zm(r, θ) is continuous, and thus we can define

A = {(r, θ, z) | z = zm(r, θ)} .

We now consider the problem for φ in a subdomain of Ω whose boundary consists
of A and ∂Ω+. By the maximum principle and Hopf’s lemma we have φ > μ on ∂Ω+

and in the interior. In a similar manner we show that φ < μ both on ∂Ω− and in the
interior of the subdomain surrounded by A and ∂Ω−. This shows that A = Γμ. From
Hopf’s lemma it follows that ∇φ �= 0 on Γμ.

Remark 4.1. While property (i) will be used extensively throughout this section,
properties (ii) and (iii) are brought here to provide the reader with some intuition of
the behavior of φ in the “wire-like” domain presented in Figure 1.
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Since (1.6) contains the term i(φR−μR)ψR which might be unbounded as R → ∞,
we must provide here the following elliptic estimate.

Lemma 4.1. Let uR denote a solution of

(4.1)

⎧⎪⎪⎨
⎪⎪⎩
−ΔuR − uR + i(φR − μR)uR = −λuR in ΩR,

∂ψR

∂ν = 0, on ∂Ωi
R,

ψR = 0, on ∂Ωc
R,

in which λ ∈ R+. Let Dr(x0) = ΩR ∩ Br(x0), where x0 ∈ ΩR is chosen such that
either

(i) Dr(x0) = Br(x0), or
(ii) x0 ∈ ∂ΩR and either (∂Dr(x0) ∩ ∂ΩR) ⊂ ∂Ωc

R or (∂Dr(x0) ∩ ∂ΩR) ⊂ ∂Ωi
R .

Then,

(4.2) ∃r̃ > 0 : ‖uR‖L∞(Dr(x0)) ≤ Cr‖uR‖L2(D2r(x0)) ∀x0 ∈ ΩR, r < r̃ ,

where Cr is independent of R and x0.
Proof. Let ρR = |uR|. By (4.1) we have that

−ΔρR − ρR ≤ 0

in ΩR. Let x0 ∈ ΩR. We set Ur to be the solution (we discuss its existence below) of

(4.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ΔUr − Ur = 0 in Dr(x0),

Ur = 0 on ∂Dc
r(x0),

∂Ur

∂ν = 0 on ∂Di
r(x0),

Ur = ρR on ∂Ds
r(x0),

where ∂Dc
r(x0) = ∂Dr(x0) ∩ ∂Ωc

R, ∂Di
r(x0) = ∂Dr(x0) ∩ ∂Ωi

R, and ∂Ds
r(x0) =

∂Dr(x0) \ (∂Dr(x0) ∩ ∂ΩR). Note that either ∂Dc
r(x0) = φ or ∂Di

r(x0) = φ. Clearly,
there exists r̃, independent of x0 and R, such that for every r < r̃, we have

(4.4) inf
u∈D

intDr(x0)|∇u|2

intDr(x0)|u|2
> 1 ,

where

D = {u ∈ H1(Dr) |u = 0 on ∂Dr(x0) \ ∂Di
r(x0)} .

For r < r̃ the elliptic operator in (4.3) is invertible, and hence a unique Ur exists.
Let then V = ρR − Ur. Clearly,

(4.5)

⎧⎪⎪⎨
⎪⎪⎩
−ΔV − V ≤ 0 in Dr(x0),

∂V
∂ν = 0 on ∂Di

r(x0),

V = 0 on ∂Dr(x0) \ ∂Di
r(x0).

Let further

V+ =

{
V, V ≥ 0,

0, V < 0.
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Multiplying (4.5) by V+ and integrating over Dr(x0), we obtain that∫
Dr

|∇V+|2 − |V+|2 ≤ 0 ,

and since V ∈ D, we obtain by (4.4) that V+ = 0. Consequently we have

(4.6) ρR ≤ Ur in Dr(x0).

To complete the proof of (4.2) it is thus necessary to obtain an estimate of
‖Ur‖L∞(Dr) in terms of ‖ρR‖L2(Dr). In case (i) above, since Ur is unique, we can
use Theorem 10.5 in [3], together with Sobolev embeddings, to obtain

(4.7) ‖Ur‖L∞(Dr(x0)) ≤ Cr‖ρR‖H1/2(∂Ds
r) ,

where Cr is independent of x0 and R.
In case (ii) Dr(x0) is diffeomorphic to a hemisphere with radius r. Denote the

diffeomorphism by TR,x0
. Note that TR,x0 → I as R → ∞ uniformly in x0 (as long as

the assumption in (ii) holds) in view of the transformation (1.5). Let B+ = TR,x0(Dr).
On the flat surface of B+ we have either ∂Ur/∂ν = 0 or Ur = 0. In the first case
one can extend Ur evenly to a sphere B, whereas in the second case we use an odd
extension for that matter. In both cases Ur satisfies

A : ∇(At∇Ur) + Ur = 0 in B ,

where A = DTR,x0 is smooth in B and satisfies A → I uniformly in B as R → ∞.
On ∂B, Ur is equal to either the even extension or the odd extension of ρR. Hence,
for sufficiently large R, Ur must satisfy (4.7) in case (ii) as well.

Clearly,

(4.8) ‖ρR‖H1/2(∂Ds
r) ≤ ‖ρR‖H1(Dr(x0)) .

Multiplying (4.1) by χ2
2r(|x−x0|)ūR and integrating over ΩR, we obtain from the real

part of the identity∫
D2r(x0)

|∇(χ2ruR)|2 −
(
|∇χ2r|2 + (1 − λ)χ2

2r

)
|uR|2 = 0 .

Hence,

(4.9)

∫
Dr(x0)

|∇ρR|2 ≤ Cr

∫
D2r(x0)

|ρR|2 .

Combining the above with (4.6)–(4.8) yields (4.2).
As an immediate conclusion of Lemma 4.1 we prove the following lemma
Lemma 4.2. Let uR denote a solution of (4.1) with λ ∈ R+. Let XR denote a

maximum point of |uR| in ΩR. Then, |φR(xR) − μR| is bounded as R → ∞.
Proof. We first normalize uR by |uR(xR)| so that ‖uR‖∞ = 1. Let Dr(xR) =

B(xR, r) ∩ ΩR. Multiplying (4.1) by χ2
r(|x − xR|)ūR and integrating over ΩR, we

obtain from the imaginary part of the identity∫
Dr

∇(χ2
r) ·

1

2i
(ūRj∇uR −∇ūR) +

∫
Dr

χ2
r(φR − μR)|uR|2 = 0 .
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Let bR = φR(xR) − μR. Since ∇φR is bounded in ΩR, and since r is fixed, we have

inf
x∈Dr

|φR − μR| ≥
1

2
bR .

Thus,

bR

∫
Dr/2

|uR|2 ≤ Cr

∫
Dr

|uR|2 + |∇uR|2 .

Using (4.9) and the fact that |uR| ≤ 1, we obtain that∫
Dr/2

|uR|2 ≤ C

bR
.

By Lemma 4.1 we then have that

1 = |uR(xR)| ≤ Cr

bR
,

from which the lemma immediately follows.
Remark 4.2. Note that if φR �= μR for all x ∈ ΩR, then uR ≡ 0 must be the

unique solution of (4.1). To see this multiply (4.1) by ūR and integrate over ΩR to
obtain from the imaginary part,∫

ΩR

(φR − μR)|uR|2 = 0 .

Since φR − μR is either positive or negative throughout ΩR, uR must vanish every-
where.

Denote the curve in Ω along which we have φ = μ by Γμ. Denote its image under
the mapping (1.5) by ΓR. By the previous lemma we have that d(xR,ΓR) is bounded
as R → ∞. We now prove that uR must decay exponentially fast away from ΓR.

Lemma 4.3. Let uR denote a solution of (4.1) with λ ∈ R+. Then, there exists
α > 0 such that

(4.10)

∫
ΩR

|uR|2e2αs ≤ C ,

where s = d(x,ΓR) and C is independent of R.
Recall that by Proposition 4.1, for domains that are diffeomorphic to a cylinder,

when φ �= μ for every x ∈ ∂Ωc, Γμ must be a surface whose boundary is a closed
simple contour on ∂Ωi. We also have ∇φ �= 0 on Γμ. Note also that by the above
remark, if ΓR is empty, then uR ≡ 0.

Proof. It is convenient to consider here uR for which ‖uR‖L2(ΩR) = 1. Let Ω+
β

and Ω−
β be, respectively, defined by

Ω+
β = {x ∈ ΩR |φR − μR > β},

Ω−
β = {x ∈ ΩR |φR − μR < −β}

for some β > 0 which is independent of R.



842 Y. ALMOG

Let η+
β ∈ C∞(ΩR, [0, 1]) and η−β , respectively, be defined by

η+
β =

{
1, x ∈ Ω+

β ,

0, x ∈ Ω−
0 ,

and

η−β =

{
1, x ∈ Ω−

β ,

0, x ∈ Ω+
0 .

Let C±
β denote the portion of ∂Ω±

β which is not on ∂ΩR. As ∇φR(x) = ∇φ(x/R) and
since ∇φ is bounded in Ω, we have that

d(C±
β ,Γμ) ≥ β

‖∇φ‖L∞(Ω)
.

Hence, we can choose η±β such that |∇η±β | < C. Let

D+
β = {x ∈ ΩR | 0 < η+

β < 1} .

We choose η±β such that

sup
x∈D+

β

s ≤ 1 .

Multiplying (4.1) by (η+
β )2e2αsūR and integrating over ΩR we obtain, for the

imaginary part and the real part, respectively,

(4.11a)∫
ΩR

∇((η+
β )2e2αs) · 1

2i
(ūR∇uR − uR∇ūR) +

∫
ΩR

(φR − μR)(η+
β )2|uR|2e2αs = 0 ,

(4.11b)∫
ΩR

(η+
β )2|∇uR|2e2αs = (1 − λ)

∫
ΩR

(η+
β )2|uR|2e2αs − 1

2

∫
ΩR

∇((η+
β )2e2αs) · ∇|uR|2 .

From the real part, (4.11b), we obtain that for every ε > 0 we have

(4.12)

(1 − 2αε)

∫
ΩR

(η+
β )2e2αs|∇uR|2 ≤

(
1 +

α

2ε

)∫
ΩR

(η+
β )2e2αs|uR|2 + C

∫
D+

β

e2αs|∇uR|2 .

From (4.11a), or the imaginary part, we obtain

β

∫
Ω+

β

|uR|2e2αs ≤ α

∫
ΩR

(η+
β )2e2αs[|uR|2 + |∇uR|2] + C

∫
D+

β

e2αs[|uR|2 + |∇uR|2].

Combining the above with (4.12) for ε = 4α−1, we obtain

(4.13) (β − 2α− 4α3)

∫
Ω+

β

|uR|2e2αs ≤ C

∫
D+

β

e2αs[|uR|2 + |∇uR|2] .
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Multiplying (4.1) by ūR and integrating over ΩR, we obtain (for the real part)∫
ΩR

|∇uR|2 = (1 − λ)

∫
ΩR

|uR|2 = 1 − λ .

Consequently, we obtain from (4.13) that for any given α we may choose β to be
sufficiently large (but still independent of R) so that β > 2α + 4α3, and hence∫

Ω+
β

|uR|2e2αs ≤ Ce2α

∫
D+

β

[|uR|2 + |∇uR|2] ≤ 2Ce2α .

Remark 4.3. By Lemma 4.1 it follows that |uR| decays exponentially fast away
from ΓR also in a pointwise sense.

We now prove that any eigenfunction corresponding to a nonpositive eigenvalue
must decay exponentially fast away from the boundary.

Lemma 4.4. Let uR denote a solution of (4.1). Then

(4.14) ∃α > 0 : |uR| ≤ Ce−αd(x,∂Ω) ∀μR ∈ R ,

where α is independent of R, μR, and λ. Furthermore, denote by xR the maximum
point of |uR|. Then d(xR, ∂ΩR) is bounded as R → ∞.

Proof. We apply standard blow-up arguments to prove the lemma. Let

Ω(R, k, s) = {x ∈ ΩR| d(x, ∂ΩR) ≥ ks} .

We prove the exponential rate of decay by showing first that

(4.15)

∃R0, s0 : ‖uR‖
L∞

(
Ω(R,k+1,s)

) ≤ 1

2
‖uR‖

L∞
(
Ω(R,k,s)

) ∀s > s0, R > R0, k ∈ N.

Suppose, for contradiction, that (4.15) does not hold. Then, there exist sequences
{Rj}∞j=1, {sj}

∞
j=1, and {kj}∞j=1 satisfying Rj ↑ ∞, sj ↑ ∞, kj ∈ N, and

(4.16)
∥∥uRj

∥∥
L∞

(
Ω(Rj ,kj+1,sj)

) ≥ 1

2

∥∥uRj

∥∥
L∞

(
Ω(Rj ,kj ,sj)

) def
=

1

2
mj .

Let

ũRj =
uRj

mj
.

By (4.15) there exists xj ∈ Ω(Rj , kj + 1, sj) such that

(4.17) |ũRj (xj)| ≥
1

2
.

For notational convenience we also let fj(x) = ũRj (xj + x).
We now distinguish between two different cases.
Case 1.

bj = inf
x∈B(xj ,sj)

|φRj − μRj | → ∞

up to a subsequence.
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Let χr ∈ C∞(R+, [0, 1]) be defined by (3.3). Since fj satisfies (4.1) we multiply
it by χ2

r(0)f j and integrate over B(0, r) to obtain, for the imaginary part,

∫
B(0,r)

∇(χ2
r) ·

1

2i
(f̄j∇fj − fj∇f̄j) +

∫
B(0,r)

χ2
r(φRj − μRj )|fj |2 = 0,

yielding

(4.18) bj

∫
B(0,r/2)

|fj |2 ≤ Cr

∫
B(0,r)

|fj |2 + |∇fj |2

for all r < sj . For the real part we obtain that∫
B(0,r)

|∇(χrfj)|2 −
(
|∇χr|2 + (1 − λ)χ2

r

)
|fj |2 = 0 ,

and hence

(4.19)

∫
B(0,r/2)

|∇fj |2 ≤ C

∫
B(0,r)

|fj |2 .

Combining (4.18) with (4.19), we obtain∫
B(0,r/2)

|fj |2 ≤ Cr

bj

∫
B(0,2r)

|fj |2 .

As |fj | ≤ 1 we obtain that ∫
B(0,r/2)

|fj |2 → 0

as j → ∞, and by Lemma 4.1 also that fj(0) → 0, a contradiction.
Case 2. lim supj→∞ bj < ∞.
Let J = |∇φ|. We choose a coordinate system, where ∇φ(xj) is parallel to the

x1 axis. Then, by Lemma 4.2 we have a subsequence for which

φRj − μRj → Jx1 + b

uniformly in B(0, r) for all r > 0, where b is a constant. Thus, by standard elliptic
estimates and Sobolev embeddings, there exists a subsequence {fjk}∞k=1 such that
fjk → f∞ uniformly on every compact set in R

3 and such that f∞ is a bounded
solution of

−Δf∞ − f∞ + i(Jx1 + b)f∞ = −λf∞ in R
3 .

By Lemma 3.1 we must have f∞ ≡ 0, a contradiction.
Thus, we have proved (4.15), and hence also (4.14). The boundedness of

d(xR, ∂ΩR) follows from (4.14) as well.
The following lemma provides the basis for our main stability result.
Lemma 4.5. Let ∂Ωn denote the subset of ∂Ωc, where ∇φ is perpendicular to

∂Ω. Suppose that either |∇φ| > Jc for all x ∈ ∂Ωn or that ∂Ωn is empty. Then, for
sufficiently large R, uR ≡ 0 is the unique solution of (4.1) for all μR ∈ R.
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Proof. Let xR be the point where uR obtains its maximum in ΩR. Let xR
0

denote its projection on ∂ΩR. Recall that by Lemma 4.4 |xR − xR
0 | is bounded as

R → ∞. Note that by Lemma 4.2 φR converges uniformly to a linear function in
Dr(x

R
0 ) for all fixed r > 0 as R → ∞. Suppose first that xR

0 ∈ ∂ΩR
i . Following

[11], let (t1, t2, t3) denote a local curvilinear coordinate system, whose origin lies at
xR

0 , such that t3 = d(x, ∂ΩR) when x ∈ ΩR and such that the t1 and t2 curves on
∂Ω are the lines of curvature. Let further κR

1 and κR
2 denote the respective principal

curvatures on ∂ΩR. Clearly, κR
i = κi/R (i = 1, 2), where κi is the corresponding

principal curvature on ∂Ω, at x0 = xR
0 /R.

Since ∂Ω is smooth near xR
0 , this curvilinear coordinate system is properly defined

in some neighborhood of xR
0 . Let

B+(0, r) = {(t1, t2, t3) ∈ B(0, r) | t3 > 0} .

Then, the above coordinate system is well defined in B+(0, δR) for some δ > 0. We
can now present any x in this neighborhood by

x = r(t1, t2) − t3ν ,

where ν is the outward normal at (t1, t2, 0). Let

gij(t1, t2) =
∂r

∂ti
· ∂r

∂tj
, i, j = 1, 2,

and

Gij = [1 − κit3/R]gij , i, j = 1, 2 .

Since our coordinate system is orthogonal, we have

g12 = 0 .

Furthermore, we can scale t1 and t2 so that

g11 = g22 = 1 + O(1/R) as R → ∞

uniformly in B+(0, r) for every fixed r > 0. Finally, we define⎧⎪⎪⎨
⎪⎪⎩
G =

√
G11G22,

αj = G
Gjj

, j = 1, 2.

α3 = G,

Let wR(x) = uR(x)/|uR(xR)|. In the new coordinates, (4.1) takes the form

−
3∑

j=1

1

G

∂

∂tj

(
αj

∂wR

∂tj

)
− wR + i(φR − μR)wR = −λwR

in B+(0, δR). Standard elliptic estimates then prove the existence of a sequence
{wRj}∞j=1 such that wRj → w∞ uniformly on every compact set in R

3
+, where here

R
3
+ = {(t1, t2, t3) | t3 > 0} .
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By standard elliptic estimates again we have that w∞ satisfies the following problem:

{
−Δw∞ − w∞ + i(J1t1 + J2t2 + b)w∞ = −λw∞ in R

3
+,

∂w∞
∂ν = 0 on ∂R

3
+.

By Lemma 3.4 we have w∞ ≡ 0 in R
3
+, a contradiction since |wR(xR)| = 1 and

|xR − xR
0 | is bounded.

Consider now the case where xR
0 ∈ ∂ΩR

c . Following the same procedure as before
we obtain that wR → w∞ uniformly on every compact set in R

3
+, where w∞ must

satisfy

{
−Δw∞ − w∞ + i(J1t1 + J2t2 + J3t3 + b)w∞ = −λw∞ in R

3
+,

w∞ = 0 on ∂R
3
+.

If ∂Ωn is empty, we have J2
1 + J2

2 > 0. By Lemma 3.3 we then have w∞ ≡ 0.
Otherwise, if x0 ∈ ∂Ωn, we must have w∞ ≡ 0 by Lemma 3.2 since J3 > Jc.

Finally, if x0 lies on the interface between ∂Ωi and ∂Ωc, we obtain that w∞
must satisfy, since the two surfaces are perpendicular to each other at the interface,
a problem in Q, where

Q = {(t1, t2, t3) | t3 > 0, t1 > 0} .

We have ⎧⎪⎪⎨
⎪⎪⎩
−Δw∞ − w∞ + i(J1t1 + J2t2 + b)w∞ = 0 in Q,

∂w∞
∂ν = 0, x ∈ ∂Q t3 = 0,

w∞ = 0, x ∈ ∂Q : t1 = 0.

By Lemma 3.5 we have w∞ ≡ 0. (Note that some modification of the local coordinate
system is necessary in this case.)

Proof of Theorem 1.1. Since the principal part of the differential operator on the
left-hand side of (4.1) is the Laplacian, it can be regarded as a perturbation of a
self-adjoint operator. Thus, it follows from the discussion below Theorem 15.2 in [2]
regarding such perturbations that it has exactly one direction which is not a direction
of minimal growth, that is, arg λ = 0. Hence, it follows from Theorem 15.1 in [2] that
the spectrum of this differential operator must be discrete and that all its eigenvalues
must have finite multiplicity. Furthermore, by Theorem 16.5 in [2], the eigenfunctions
span L2(ΩR,C). Hence, for J > Jc, since all the eigenvalues of the above operator
must have positive real part, the normal state must be stable.

Consider now the case when a point x ∈ ∂Ωc exists, where∣∣∣∣∂φ∂ν
∣∣∣∣ = |∇φ| = J < Jc .

To prove the short-time instability we look at the solution of (1.6), after applying to
it the transformation (2.2), with the initial condition

ψ(x, 0) = u1(t3)χR1/2(t1, t2)ηR(t3) ,
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where (t1, t2, t3) are the above-defined system of local curvilinear coordinates, χr is
defined in (3.3), and

ηR(x) =

{
1, x < 1

2δR,

0, x > δR,

is a smooth cutoff function.
Let β̃ = λJ − λJc . We write

(4.20) ψR = v + ψ0(x)eβ̃t

to obtain

(4.21)
∂v

∂t
− Δv − λJv = f .

The precise form of f need not concern us except for the fact that

(4.22) ‖f‖2 ≤ Cα

Rα
‖ψ0‖2e

β̃t ∀α < 1 .

Multiplying (4.21) by v̄ and integrating by parts, we obtain for the real part{
∂‖v‖2

∂t − λJ‖v‖2 = ‖f‖2,

‖v‖2(0) = 0.

Consequently,

‖v‖2(t) ≤
∫ t

0

eλ(t−τ)‖f‖2(τ)dτ ,

and hence,

‖v‖2 ≤ Cα

Rα
‖ψ0‖2e

(λJ+β̃)t .

Clearly, there exist TR ∼ O(lnR), as R → ∞, such that

t < TR ⇒ Cα

Rα
eλJ t <

1

2
,

and thus

t < TR ⇒ ‖ψ‖2 ≥ 1

2
‖ψ0‖2e

β̃t .

Applying the inverse of (2.2), we obtain (1.7).
The above instability result is valid, of course, only for T < TR. Proving long-time

instability appears to be a much more difficult problem. The stability proof presented
above relies on the convergence of any solution of (4.1) to a solution of (3.8) uniformly
on every compact set near the point on the boundary where J is perpendicular to
it. This, however, does not prove convergence of the spectrum or even of its bottom.
What has been demonstrated is only the upper semicontinuity of the spectrum of
the differential operator on the left-hand side of (4.1). Lower semicontinuity of the
spectrum appears to be much harder to prove, especially since the operator is not
self-adjoint. Nevertheless, it does seem reasonable to conjecture that the solution
would continue to grow exponentially fast as t → ∞, in view of the above short-time
instability result. Further research is necessary in order to establish that result.
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5. Concluding remarks. In the previous section we proved that the normal
state remains stable in the large domain limit, as long as the current on the boundary,
at points where it is perpendicular to it, is greater than Jc. If the current is nowhere
perpendicular to the boundary, then as long as it doesn’t vanish there, the normal
state must be stable. We also demonstrate short-time instability when Jm < Jc.

In the following we provide a short list of interesting problems that are waiting
to be resolved:

1. Proving long-time instability when J > Jc. We have elaborated on this
matter at the end of the preceding section.

2. Adding the effect of magnetic fields. This magnetic field can be either induced
by the electric current (via (1.3)) or else be applied externally (or both). It
has been verified experimentally that an induced magnetic field can generate
vortices [14] if the current is sufficiently large and the material is close to the
wholly superconducting state. However, its effect on the critical current Jc
has not been investigated. It is reasonable to believe that Jc would become
smaller if we add the effect of the magnetic field.

3. Adding the effect of temperature, since electric currents have the tendency
to heat the sample, thereby creating vortices [14]. Incorporating this effect
requires modification of (1.1), and the use of different nondimensionalization;
otherwise the domain would become temperature-dependent.

4. Proving that the bifurcating branch (at J = Jc) is unstable.

Appendix A. The Hilbert–Schmidt norm of L−1
λ .

Lemma A.1. Let G̃ be as given by (2.14b). Then, for any λ ∈ C \ {λn}∞n=1,
where {λn}∞n=1 are given as in (2.11),

(A.1) ∃C,M > 0 : ‖G̃‖ ≤ CeMλ3/2

.

Proof. We first note that

W (w1, w̃2)(x, λ) = w′
2(x, λ)w1(x, λ) − w′

1(x, λ)w2(x, λ)

is independent of x by Abel’s formula. Furthermore, for y = x + iλ we have

W (w1, w̃2)(x, λ) = W (w1, w̃2)(y, 0) = W (w1, w̃2)(0, 0) .

Therefore, W is independent of both x and λ.
Since W is constant, it follows that G̃ is symmetric, i.e.,

G̃(x, ξ, λ) = G̃(ξ, x, λ) .

Consequently, it suffices to prove that∫ ∞

0

dξ

∫ ∞

ξ

dx|G̃(x, ξ)|2 = C1

∫ ∞

0

dξ|w̃2(ξ)|2
∫ ∞

ξ

dx|w̃1(x)|2 ≤ CeMλ3/2

,

where C, C1, and M are all independent of λ.
To obtain the above estimate we use asymptotic properties of Airy’s functions

[1, 13], from which it follows that

(A.2) |Ai(z)| ≤
C

|z|1/4
∣∣∣e− 2

3 z
3/2

∣∣∣ .
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Consider then first the domain ξ > M0λ for sufficiently large M0 > 0. We have∫ ∞

ξ

|w1(x)|2dx ≤
∫ ∞

ξ

dx

|x + iλ|1/2 e
−β(x)|x+iλ|3/2

,

where

β(x) =
4

3
cos

(
3

2
arg(x + iλ) +

π

4

)
.

It is easy to show that

(A.3)

⎧⎨
⎩
|β′(x)| ≤ C |λ|

|x+iλ|2 ,

|β′(x)| ≤ C |λ|
|x+iλ|3 .

Let then

γ(x) = β(x)|x + iλ|3/2 .

By (A.3) we have

(A.4)

⎧⎨
⎩
|γ′(x)| ≥ 3

2β(x)|x + iλ|1/2
[
1 − C |λ|

|x+iλ|

]
,

|γ′′(x)| ≤ 3
4β(x)|x + iλ|−1/2

[
1 + C |λ|

|x+iλ|

]
.

Using (A.4) and integration by parts, we obtain

∫ ∞

ξ

e−γ(x)dx ≤ 1

|γ′(ξ)|e
−γ(ξ) +

∫ ∞

ξ

|γ′′(x)|
|γ′(x)| e

−γ(x)dx

≤ C

|ξ + iλ|1/2 e
−γ(ξ) +

C

|ξ + iλ|3/2
∫ ∞

ξ

e−γ(x)dx .

Hence, ∫ ∞

ξ

e−γ(x)dx ≤ C

|ξ + iλ|1/2 e
−γ(ξ) ,

from which we easily obtain that

(A.5)

∫ ∞

ξ

|w1(x)|2dx ≤ C

|ξ + iλ|e
−γ(ξ) .

From the asymptotic behavior of Airy’s function (A.2), we obtain again

|w̃2(ξ)|2 ≤ C

|ξ + iλ|1/2 e
γ(ξ) .

Thus, ∫ ∞

M0λ

dξ|w̃2(ξ)|2
∫ ∞

ξ

dx|w̃1(x)|2 ≤ C

λ1/2
.
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To complete the proof we need to bound the norm for 0 < ξ < M0λ. By (A.2)
and (2.14b) we have

|G̃(x, ξ, λ)| ≤ C exp

{
2

3
(M0 + 1)3/2|λ|3/2

}
.

Consequently, from the above and (A.5) we obtain

∫ M0λ

0

dξ|w̃2(ξ)|2
∫ ∞

ξ

dx|w̃1(x)|2 =

∫ M0λ

0

dξ|w̃2(ξ)|2
∫ M0λ

ξ

dx|w̃1(x)|2

+

∫ M0λ

0

dξ|w̃2(ξ)|2
∫ ∞

M0λ

dx|w̃1(x)|2 ≤ CM2
0λ

2 exp

{
2

3
(M0 + 1)3/2|λ|3/2

}
,

from which (A.1) easily follows.
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Abstract. Based on a fundamental identity for stochastic hyperbolic-like operators, we derive in
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1. Introduction. Let T > 0, G ⊂ R
n (n ∈ N) be a given bounded domain with

a C2 boundary Γ, with Γ0 a given nonempty open subset of Γ. Put Q
�
= (0, T ) ×G,

Σ
�
= (0, T )×Γ, and Σ0

�
= (0, T )×Γ0. Throughout this paper, we will use C to denote

a generic positive constant depending only on T , G, and Γ0, which may change from
line to line.

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space on which a one
dimensional standard Brownian motion {B(t)}t≥0 is defined. Let H be a Banach
space. We denote by L2

F (0, T ;H) the Banach space consisting of all H-valued {Ft}t≥0-
adapted processes X(·) such that E(|X(·)|2L2(0,T ;H)) < ∞, with the canonical norm;

byL∞
F (0, T ;H) the Banach space consisting of all H-valued {Ft}t≥0-adapted bounded

processes; and by L2
F (Ω;C([0, T ];H)) the Banach space consisting of all H-valued

{Ft}t≥0-adapted continuous processes X(·) such that E(|X(·)|2C([0,T ];H)) < ∞, with

the canonical norm (similarly, one can define L2
F (Ω;Ck([0, T ];H)) for any positive

integer k).
Let us consider the following stochastic wave equation:

(1.1)

⎧⎪⎨
⎪⎩

dyt − Δydt = (a1yt + a2 · ∇y + a3y + f)dt + (a4y + g)dB(t) in Q,

y = 0 on Σ,

y(0) = y0, yt(0) = y1 in G,

with initial data (y0, y1) ∈ L2(Ω,F0, P ;H1
0 (G) × L2(G)), suitable coefficients ai (i =

1, 2, 3, 4), and source terms f and g. Here, yt = dy
dt .
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Put

(1.2) HT
�
= L2

F (Ω;C([0, T ];H1
0 (G)))

⋂
L2
F (Ω;C1([0, T ];L2(G))).

Clearly, HT is a Banach space with the canonical norm. We begin with the following
notion.

Definition 1.1. We call y ∈ HT a solution of (1.1) if the following hold:
(i) y(0) = y0 in G, P -a.s.
(ii) For any t ∈ [0, T ] and any η ∈ H1

0 (G), it holds that

(1.3)

∫
G

yt(t, x)η(x)dx−
∫
G

yt(0, x)η(x)dx

=

∫ t

0

∫
G

{
−∇y(s, x) · ∇η(x) +

[
a1(s, x)yt(s, x) + a2(s, x) · ∇y(s, x)

+ a3(s, x)y(s, x) + f(s, x)
]
η(x)
}
dxds

+

∫ t

0

∫
G

[
a4(s, x)y(s, x) + g(s, x)

]
η(x)dxdB(s), P -a.s.

Under some assumptions, for any initial data (y0, y1) ∈ L2(Ω,F0, P ; H1
0 (G) ×

L2(G)), one can show that system (1.1) admits one and only one solution y ∈ HT

(see Proposition 3.1 in section 3).
The main purpose of this paper is to derive a (partial) boundary observability

estimate for system (1.1), i.e., find (if possible) a constant C(a1, a2, a3, a4) > 0 such
that solutions of system (1.1) satisfy

(1.4)

|(y(T ), yt(T ))|L2(Ω,FT ,P ;H1
0 (G)×L2(G))

≤ C(a1, a2, a3, a4)

[∣∣∣∣∂y∂ν
∣∣∣∣
L2

F (0,T ;L2(Γ0))

+ |f |L2
F (0,T ;L2(G)) + |g|L2

F (0,T ;L2(G))

]

∀ (y0, y1) ∈ L2(Ω,F0, P ;H1
0 (G) × L2(G)).

As we shall see in the last section of this paper, inequality (1.4) is strongly related to
the state observation problem of semilinear stochastic wave equations.

It is well known that the observability estimate is an important tool for the
study of stabilization and controllability problems for deterministic PDEs. We refer
the reader to [16] for a recent survey in this respect. Although there are numerous
references addressing the observability problems for deterministic PDEs, very little
is known for the stochastic counterpart, and it remains to be further understood.
Indeed, to the best of our knowledge, [1] is the only publication in this direction,
which is devoted to the controllability/observability for the stochastic heat equation.
As far as we know, nothing is known for the observability estimate on the stochastic
wave equation.

Similar to the deterministic setting, we shall use a stochastic version of the global
Carleman estimate to establish inequality (1.4). The difficulty in doing this is the
very fact that, unlike the deterministic situation, system (1.1), a stochastic wave
equation, is time-irreversible. Therefore, one cannot simply mimic the usual Carleman
inequality for the deterministic wave equations (see [3, 4, 5, 8, 9, 13] and the references
cited therein). Rather, in order to overcome this difficulty, instead of the usual smooth
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weight function, we need to introduce another singular weight function in this paper to
derive the desired Carleman estimate for system (1.1) (see (2.13) in the next section).

On the other hand, the Carleman estimate is itself a fundamental tool for the
study of control and inverse problems for deterministic PDEs (see [7, 16] and the
references cited therein). Similar to the situation for the observability estimate, al-
though there are numerous references addressing the Carleman estimate for deter-
ministic PDEs, to the best of our knowledge, [1, 12] are the only references for the
stochastic counterpart, which are devoted to the stochastic heat equation. It would
be quite interesting to extend the deterministic Carleman estimate for other PDEs to
the stochastic ones, but there are many things to be done, and some of them seem to
be challenging. In this paper, in order to present the key idea in the simplest way, we
do not pursue the full technical generality.

The rest of this paper is organized as follows. The main results of this paper are
stated in section 2. In section 3, we show some preliminary results. In section 4, we
present a crucial identity for a stochastic hyperbolic-like operator. Then, in section 5,
we derive pointwise Carleman-type estimates for the stochastic wave operator. Sec-
tion 6 is devoted to the proof of Theorems 2.1–2.2. Finally, section 7 addresses giving
an application of our observability result.

2. Statement of the main results. Fix any x0 ∈ R
d \G. It is clear that

(2.1) 0 < R0
�
= min

x∈G
|x− x0| < R1

�
= max

x∈G
|x− x0|.

Put

(2.2) Γ0
�
=
{
x ∈ Γ
∣∣ (x− x0) · ν(x) > 0

}
,

where ν(x) is the unit outward normal vector of G at x ∈ Γ.
Assume that

(2.3)
a1 ∈ L∞

F (0, T ;L∞(G)), a2 ∈ L∞
F (0, T ;L∞(G; Rn)),

a3 ∈ L∞
F (0, T ;Ln(G)), a4 ∈ L∞

F (0, T ;L∞(G))

and that

(2.4) f ∈ L2
F (0, T ;L2(G)), g ∈ L2

F (0, T ;L2(G)).

In what follows, we use the following notation:

A(a1, a2, a3, a4)
�
= |(a1, a4)|2L∞

F (0,T ;(L∞(G))2) + |a2|2L∞
F (0,T ;L∞(G;Rn))(2.5)

+ |a3|2L∞
F (0,T ;Ln(G)).

We choose a sufficiently small constant c ∈ (0, 1) so that (recall (2.1) for R0 and
R1)

(2.6)
(4 + 5c)R2

0

9c
> R2

1.

In what follows, we take T (> 2R1) sufficiently large such that

(2.7)
4(4 + 5c)R2

0

9c
> c2T 2 > 4R2

1.
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Our observability estimate for system (1.1) is stated as follows.
Theorem 2.1. Let (2.3)–(2.4) hold, Γ0 be given by (2.2), and T satisfy (2.7).

Then solutions of system (1.1) satisfy (1.4) with

(2.8) C(a1, a2, a3, a4) = CeCA(a1,a2,a3,a4).

Remark 2.1. From the proof of Theorem 2.1, it is easy to see that the conclusion
can be slightly strengthened as follows: for any t ∈ (0, T ], solutions of system (1.1)
satisfy

(2.9)

|(y(t), yt(t))|L2(Ω,Ft,P ;H1
0 (G)×L2(G))

≤ eCt−1C(a1, a2, a3, a4)

[∣∣∣∣∂y∂ν
∣∣∣∣
L2

F (0,T ;L2(Γ0))

+ |f |L2
F (0,T ;L2(G)) + |g|L2

F (0,T ;L2(G))

]

∀ (y0, y1) ∈ L2(Ω,F0, P ;H1
0 (G) × L2(G)),

where C(a1, a2, a3, a4) is given by (2.8).
Remark 2.2. A deterministic version of (1.1) reads

(2.10)

⎧⎪⎨
⎪⎩

wtt − Δw = b1wt + b2 · ∇w + b3w + h in Q,

w = 0 on Σ,

w(0) = w0, wt(0) = w1 in G,

where b1 ∈ L∞(Q), b2 ∈ L∞(Q; R
n), b3 ∈ L∞(0, T ; Lp(G)) with p ∈ [n,∞], and

h ∈ L2(Q). As a special case of [3, Theorems 2.2 and 2.3] and noting the time
reversibility of system (2.10), the following counterpart of Theorem 2.1 holds: If
T > 2R1, then solutions of (2.10) satisfy

(2.11)

|(w(T ), wt(T ))|H1
0 (G)×L2(G)

≤ Ce
C

[
|b1|2L∞(Q)+|b2|2L∞(Q; Rn)+|b3|

1
3/2−n/p
L∞(0,T ; Lp(G))

] [∣∣∣∣∂w∂ν
∣∣∣∣
L2(Σ0)

+ |h|L2(Q)

]

∀ (w0, w1) ∈ H1
0 (G) × L2(G).

There are three main differences between Theorem 2.1 and this result. The first is that
one can replace the left-hand side of (2.11) by |(w0, w1)|H1

0 (G)×L2(G). However, due
to the time irreversibility of system (1.1), one cannot do the same in the stochastic
setting, i.e., replacing the left-hand side of (1.4) by |(y0, y1)|L2(Ω,F0,P ;H1

0 (G)×L2(G)).
The second is that we assume that T in Theorem 2.1 satisfies (2.7), which is usually
much more restrictive than that T > 2R1 for the deterministic setting (see Remark 2.4
below for more explanation about this). The third is that the observability constant
C(a1, a2, a3, a4) in Theorem 2.1 is not as sharp as that in (2.11). Indeed, it is clear
that (recall (2.5) for A(·, ·, ·, ·))

|b1|2L∞(Q) + |b2|2L∞(Q; Rn) + |b3|
1

3/2−n/p

L∞(0,T ;Lp(G)) ≤ A(b1, b2, b3, 0) + C ∀ p ∈ [n,∞].

Remark 2.3. It is well known that a sharp condition guaranteeing observability
inequality (2.11) (at least when b1, b2, and b3 are time-invariant) is that the triple
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(G,Γ0, T ) satisfies the geometric optic condition introduced in [2]. It would be quite
interesting to extend this result to the stochastic setting, but this is an open problem.

As mentioned in section 1, in order to prove Theorem 2.1, we need to derive a
Carleman estimate (with singular weight function) for system (1.1). For this purpose,
for any (large) λ > 0 and c ∈ (0, 1) given in (2.6), set

(2.12) � = �(t, x)
�
= λ

[
|x− x0|2 − c

(
t− T

2

)2
]
, θ

�
= e�.

Also, for any β > 0, set

(2.13) Θ = Θ(t)
�
= exp

{
− β

t(T − t)

}
, 0 < t < T.

It is easy to see that Θ(t) decays rapidly to 0 as t → 0 or t → T . Our Carleman
estimate for system (1.1) is stated as follows.

Theorem 2.2. Let (2.3)–(2.4) hold, Γ0 be given by (2.2), and c and T satisfy,
respectively, (2.6) and (2.7). Then there exist a constant β > 0 (which is very small)
and a constant

λ∗ = C
[
1 + A(a1, a2, a3, a4)

]
such that solutions of system (1.1) satisfy

(2.14)

λE

∫
Q

Θθ2(y2
t + |∇y|2 + λ2y2)dxdt

≤ CE

{
λ

∫
Σ0

Θθ2

∣∣∣∣∂y∂ν
∣∣∣∣
2

dΣ0 +

∫
Q

Θθ2(f2 + λg2)dxdt

}

∀ (y0, y1) ∈ L2(Ω,F0, P ;H1
0 (G) × L2(G)), ∀ λ ≥ λ∗.

Remark 2.4. The restriction on T in (2.7) is a technical condition, which does
not seem to be natural. However, this condition plays a key role in Step 3 in the
proof of Theorem 5.1, a crucial preliminary for the proof of Theorem 2.2. As in the
deterministic setting (recall Remark 2.2), it is reasonable to expect that it should be
improved to be T > 2R1. But this is an open problem.

Remark 2.5. We now recall the Carleman estimate for the deterministic wave
equation, i.e., system (2.10). Fix a constant c ∈ (0, 1) so that

(
2R1

T

)2
< c < 2R1

T (which
is possible since T > 2R1 for the deterministic situation). By [5, equation (11.12) in
the proof of Theorem 5.1] and similar to [3, Theorem 2.3], we conclude that there
exists a constant

λ∗ = C
[
1 + |b1|2L∞(Q) + |b2|2L∞(Q; Rn) + |b3|

1
3/2−n/p

L∞(0,T ;Lp(G))

]
such that solutions of system (2.10) satisfy

(2.15)

λ

∫
Q

θ2(λ2w2 + w2
t + |∇w|2)dxdt ≤ C

[
λ

∫
Σ0

θ2
∣∣∣∂w
∂ν

∣∣∣2dΣ0 +

∫
Q

θ2|h|2dxdt
]

∀ (w0, w1) ∈ H1
0 (G) × L2(G), ∀ λ ≥ λ∗.
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The main difference between Theorem 2.2 and this result is, as mentioned before, one
has to introduce a singular weight Θ in (2.14).

Remark 2.6. We consider here the simplest case of one dimensional standard
Brownian motion. It would be interesting to extend the results in this paper to the
case of colored (infinite dimensional) noise, or even with both state- and control-
dependent noise. But these remain to be done.

Remark 2.7. It would be quite interesting to study Carleman and observability
estimates for backward stochastic wave equations. To the best of our knowledge, this
is a challenging problem, and nothing is known in this respect.

3. Preliminaries. In this section, we show some preliminary results that will
subsequently be used.

In what follows, for simplicity, we denote
∑n

i,j=1 and
∑n

i=1 simply by
∑

i,j and∑
i , respectively. Also, we will use the notation ui = uxi , where xi is the ith coor-

dinate of a generic point x = (x1, . . . , xn) in R
n. In a similar manner, we use the

notation �i, vi, etc., for the partial derivatives of � and v with respect to xi.
First of all, we have the following well-posedness result for system (1.1).
Proposition 3.1. Under assumptions (2.3)–(2.4), for any (y0, y1) ∈ L2(Ω,F0,

P ;H1
0 (G)×L2(G)), system (1.1) admits one and only one solution y ∈ HT . Moreover

(recall (2.8) for C(a1, a2, a3, a4)),

(3.1)
|y|HT

≤ C(a1, a2, a3, a4)
[
|(y0, y1)|L2(Ω,F0,P ;H1

0 (G)×L2(G)) + |f |L2
F (0,T ;L2(G))

+ |g|L2
F (0,T ;L2(G))

]
.

Proof. The detailed proof is lengthy but almost standard. Therefore, we give
below only a sketch.

Step 1. First of all, following the parabolic regularization approach in the proof of
[6, Theorem 4.1, p. 159] (for this, one needs to make numerous but small changes), one

can show that, for any (w0, w1) ∈ L2(Ω,F0, P ;H1
0 (G)×L2(G)), f̂ ∈ L2

F (0, T ;L2(G)),
and ĝ ∈ L2

F (0, T ;L2(G)), the system

(3.2)

⎧⎪⎨
⎪⎩

dwt − Δwdt = f̂dt + ĝdB(t) in Q,

w = 0 on Σ,

w(0) = w0, wt(0) = w1 in G

admits a unique solution w ∈ HT . Furthermore, there is a constant C = C(T ) > 0
such that, for any τ ∈ [0, T ], it holds that

(3.3) |w|Hτ ≤ C
[
|(w0, w1)|L2(Ω,F0,P ;H1

0 (G)×L2(G))+|f̂ |L2
F (0,τ ;L2(G))+|ĝ|L2

F (0,τ ;L2(G))

]
,

where Hτ is defined similarly to (1.2).
Step 2. Next, we show that system (1.1) admits a local (in time) solution y ∈ Hτ

for small τ ∈ (0, T ]. For this purpose, fixing any y ∈ Hτ , we solve the following
system:

(3.4)

⎧⎪⎨
⎪⎩

dzt − Δzdt = (a1yt + a2 · ∇y + a3y + f)dt + (a4y + g)dB(t) in Q,

z = 0 on Σ,

z(0) = y0, zt(0) = y1 in G.
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By Step 1, system (3.4) (by viewing, respectively, a1yt +a2 ·∇y+a3y+f and a4y+ g

as nonhomogeneous terms f̂ and ĝ) admits a unique solution z ∈ Hτ . We define a
map F from Hτ into itself by

F(y) = z.

For any y1, y2 ∈ Hτ , by means of (3.3), it is easy to verify that

|F(y1) −F(y2)|Hτ ≤ Cτ |y1 − y2|Hτ .

This shows that the map F is contractive when τ is small enough. Therefore, F
admits a fixed point y ∈ Hτ . Hence, system (1.1) admits a local (in time) solution
y ∈ Hτ .

Step 3. To conclude the proof of Proposition 3.1, it suffices to show that estimate
(3.1) holds.

For any τ ∈ [0, T ], applying estimate (3.3) to system (1.1) (by viewing, respec-

tively, a1yt + a2 · ∇y + a3y + f and a4y + g as nonhomogeneous terms f̂ and ĝ), we
obtain (recall (2.5) for A(a1, a2, a3, a4))

(3.5)

|y|2Hτ
≤ C
[
|(y0, y1)|2L2(Ω,F0,P ;H1

0 (G)×L2(G))

+ |a1yt + a2 · ∇y + a3y + f |2L2
F (0,τ ;L2(G)) + |a4y + g|2L2

F (0,τ ;L2(G))

]

≤ C

[
|(y0, y1)|2L2(Ω,F0,P ;H1

0 (G)×L2(G)) + |f |2L2
F (0,τ ;L2(G)) + |g|2L2

F (0,τ ;L2(G))

+A(a1, a2, a3, a4)

∫ τ

0

|y|2Hs
ds

]
.

Now the desired result (3.1) follows from (3.5) and Gronwall’s inequality.

Next, we show the following identity.

Proposition 3.2. Let μ = μ(x)
�
= (μ1, . . . , μn) : R

n → R
n be a vector field

of class C1 and w an H2
loc(R

n)-valued {Ft}t≥0-adapted process such that wt is an
L2
loc(R

n)-valued semimartingale. Then, for a.e. x ∈ R
n and P -a.s. ω ∈ Ω, it holds

that

(3.6)

−∇ ·
[
2(μ · ∇w)∇w + μ

(
w2

t − |∇w|2
)]

dt

= 2

⎡
⎣μ · ∇w(dwt − Δwdt) − d(wtμ · ∇w) −

∑
i,j

wiwj
∂μj

∂xi
dt

⎤
⎦

+ (|∇w|2 − w2
t )∇ · μdt.
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Proof. Noting that μ is time-independent, it follows that

2 [μ · ∇wΔwdt + d(wtμ · ∇w)] = 2

⎡
⎣∑

i,j

μjwjwiidt + μ · ∇wdwt + wtμ · ∇wtdt

⎤
⎦

= 2
∑
i,j

[(
wiμ

jwj

)
i
− wiwj

∂μj

∂xi

]
dt− μ · ∇|∇w|2dt + 2μ · ∇wdwt + μ · ∇w2

t dt

= ∇ ·
[
2(μ · ∇w)∇w + μ

(
w2

t − |∇w|2
)]

dt + 2

⎡
⎣μ · ∇wdwt −

∑
i,j

wiwj
∂μj

∂xi
dt

⎤
⎦

+ (|∇w|2 − w2
t )∇ · μdt.

This gives (3.6).

Finally, we show the following hidden regularity for the solution of system (1.1)
(here, by hidden regularity we mean that it follows from the equation rather than
from the usual trace theorem in the theory of Sobolev spaces).

Proposition 3.3. Under assumptions (2.3)–(2.4), for any (y0, y1) ∈ L2(Ω,F0, P ;
H1

0 (G)×L2(G)), the solution of system (1.1) satisfies ∂y
∂ν ∈ L2

F (0, T ;L2(Γ)). Moreover,

(3.7)

∣∣∣∣∂y∂ν
∣∣∣∣
L2

F (0,T ;L2(Γ))

≤ C
[
|(y0, y1)|L2(Ω,F0,P ;H1

0 (G)×L2(G)) + |f |L2
F (0,T ;L2(G)) + |g|L2

F (0,T ;L2(G))

]

× exp
{
C
[
|(a1, a4)|2L∞

F (0,T ;(L∞(G))2) + |a2|2L∞
F (0,T ;L∞(G;Rn)) + |a3|2L∞

F (0,T ;Ln(G))

]}
.

Proof. Since Γ ∈ C2, one can find a vector field μ0 = (μ1
0, . . . , μ

n
0 ) ∈ C1(Ω; Rn)

such that μ0 = ν on Γ (see [10]). Applying Proposition 3.2 with μ = μ0 and w =
y, by means of Proposition 3.1, following [10, 13], it is not difficult to show ∂y

∂ν ∈
L2
F (0, T ;L2(Γ)) and the desired estimate (3.7) (hence we omit the details).

4. Identity for a stochastic hyperbolic-like operator. In this section, we
show the following fundamental identity for a stochastic hyperbolic-like operator.

Theorem 4.1. Let bij ∈ C1((0, T ) × R
n) satisfy

(4.1) bij = bji, i, j = 1, 2, . . . , n,

�, Ψ ∈ C2((0, T ) × R
n). Assume u is an H2

loc(R
n)-valued {Ft}t≥0-adapted process

such that ut is an L2
loc(R

n)-valued semimartingale. Set θ = e� and v = θu. Then, for
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a.e. x ∈ R
n and P -a.s. ω ∈ Ω,

(4.2)

θ

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠
⎡
⎣dut −

∑
i,j

(bijui)jdt

⎤
⎦

+
∑
i,j

[∑
i′,j′

(
2bijbi

′j′�i′vivj′ − bijbi
′j′�ivi′vj′

)
− 2bij�tvivt + bij�iv

2
t

+ Ψbijviv −
(
A�i +

Ψi

2

)
bijv2

]
j

dt

+ d

⎡
⎣∑

i,j

bij�tvivj − 2
∑
i,j

bij�ivjvt + �tv
2
t − Ψvtv +

(
A�t +

Ψt

2

)
v2

⎤
⎦

=

⎧⎨
⎩
⎡
⎣�tt +

∑
i,j

(bij�i)j − Ψ

⎤
⎦ v2

t − 2
∑
i,j

[
(bij�j)t + bij�tj

]
vivt

+
∑
i,j

⎡
⎣(bij�t)t +

∑
i′,j′

(
2bij

′
(bi

′j�i′)j′ − (bijbi
′j′�i′)j′

)
+ Ψbij

⎤
⎦ vivj

+Bv2 +

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠

2
⎫⎪⎬
⎪⎭ dt + θ2�t(dut)

2,

where (dut)
2 denotes the quadratic variation process of ut,

(4.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A
�
= (�2t − �tt) −

∑
i,j

(bij�i�j − bijj �i − bij�ij) − Ψ,

B
�
= AΨ + (A�t)t −

∑
i,j

(Abij�i)j +
1

2

⎡
⎣Ψtt −

∑
i,j

(bijΨi)j

⎤
⎦ .

Proof. By v(t, x) = θ(t, x)u(t, x), we have ut = θ−1(vt−�tv) and uj = θ−1(vj−�jv)
for j = 1, 2, . . . , n. Hence,

(4.4) dut = θ−1[dvt − 2�tvtdt + (�2t − �tt)vdt].

Similarly, by symmetry condition (4.1), one may check that

(4.5)
∑
i,j

(bijui)j = θ−1
∑
i,j

[
(bijvi)j − 2bij�ivj + (bij�i�j − bijj �i − bij�ij)v

]
.
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Therefore, by (4.4)–(4.5) and recalling the definition of A in (4.3), we get

(4.6)

θ

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠
⎡
⎣dut −

∑
i,j

(bijui)jdt

⎤
⎦

=

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠
⎧⎨
⎩dvt −

⎡
⎣∑

i,j

(bijvi)j −Av

+ 2�tvt − 2
∑
i,j

bij�ivj − Ψv

⎤
⎦ dt
⎫⎬
⎭

=

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠ dvt

+

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠
⎡
⎣−∑

i,j

(bijvi)j + Av

⎤
⎦ dt

+

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠

2

dt.

We now analyze the first two terms in the right-hand side of (4.6).

First, using Itô’s formula, we have

(4.7)

⎛
⎝−2�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠ dvt

= d

⎡
⎣
⎛
⎝−�tvt + 2

∑
i,j

bij�ivj + Ψv

⎞
⎠ vt

⎤
⎦

−

⎡
⎣−�ttv

2
t + 2
∑
i,j

(bij�i)tvjvt + 2
∑
i,j

bij�ivtjvt + Ψv2
t + Ψtvvt

⎤
⎦ dt + �t(dvt)

2

= d

⎛
⎝−�tv

2
t + 2
∑
i,j

bij�ivjvt + Ψvvt −
Ψt

2
v2

⎞
⎠

+

⎧⎨
⎩−
∑
i,j

(bij�iv
2
t )j +

⎡
⎣�tt +

∑
i,j

(bij�i)j − Ψ

⎤
⎦ v2

t − 2
∑
i,j

(bij�j)tvivt +
Ψtt

2
v2

⎫⎬
⎭ dt

+ θ2�t(dut)
2.
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Next,

(4.8)

−2�tvt

⎡
⎣−∑

i,j

(bijvi)j + Av

⎤
⎦

= 2

⎡
⎣∑

i,j

(bij�tvivt)j −
∑
i,j

bij�tjvivt

⎤
⎦−∑

i,j

bij�t(vivj)t −A�t(v
2)t

= 2

⎡
⎣∑

i,j

(bij�tvivt)j −
∑
i,j

bij�tjvivt

⎤
⎦+
∑
i,j

(bij�t)tvivj

−

⎛
⎝∑

i,j

bij�tvivj + A�tv
2

⎞
⎠

t

+ (A�t)tv
2.

Further, by means of a direct computation, one may check that

(4.9)

2
∑
i,j

bij�ivj

⎡
⎣−∑

i,j

(bijvi)j + Av

⎤
⎦

= −
∑
i,j

⎡
⎣∑
i′,j′

(
2bijbi

′j′�i′vivj′ − bijbi
′j′�ivi′vj′

)
−Abij�iv

2

⎤
⎦
j

+
∑

i,j,i′,j′

[
2bij

′
(bi

′j�i′)j′ − (bijbi
′j′�i′)j′

]
vivj −

∑
i,j

(Abij�i)jv
2

and

(4.10)

Ψv

⎡
⎣−∑

i,j

(bijvi)j + Av

⎤
⎦= −
∑
i,j

(
Ψbijviv −

Ψi

2
bijv2

)
j

+ Ψ
∑
i,j

bijvivj

+

⎡
⎣−1

2

∑
i,j

(bijΨi)j + AΨ

⎤
⎦ v2.

Finally, combining (4.6)–(4.10), we arrive at the desired equality (4.2).

5. Pointwise Carleman-type estimates for the stochastic wave operator.
In this section, we show a pointwise Carleman-type estimate (with singular weight)
for the stochastic wave operator “dut − Δudt.”

To begin with, by taking (bij)n×n = I, the identity matrix, and θ = e� (with �
given in (2.12)) in Theorem 4.1, one obtains the following pointwise Carleman-type
estimate for the stochastic wave operator.

Lemma 5.1. Let �, Ψ ∈ C2((0, T ) × R
n) and k ∈ R. Assume u is an H2

loc(R
n)-

valued {Ft}t≥0-adapted process such that ut is an L2
loc(R

n)-valued semimartingale.



862 XU ZHANG

Set v = θu. Then, for a.e. x ∈ R
n and P -a.s. ω ∈ Ω, it holds that

(5.1)

θ(−2�tvt + 2∇� · ∇v + ψv)(dut − Δudt)

+ d
[
�t(v

2
t + |∇v|2) − 2(∇�) · (∇v)vt − Ψvvt + A�tv

2
]

+
∑
i

{
2vi(∇�) · (∇v) − �i|∇v|2 − 2�tvtvi + �iv

2
t + Ψvvi −A�iv

2
}
i
dt

≥
[
(1 − k)λv2

t + (k + 3 − 4c)λ|∇v|2 + Bv2

+
(
− 2�tvt + 2∇� · ∇v + ψv

)2]
dt + θ2�t(dut)

2,

where

(5.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ
�
= (2n− 2c− 1 + k)λ,

A = 4

[
c2
(
t− T

2

)2

− |x− x0|2
]
λ2 + λ(4c + 1 − k),

B = 4

[
(4c + 5 − k)|x− x0|2 − (8c + 1 − k)c2

(
t− T

2

)2
]
λ3 + O(λ2).

The desired pointwise Carleman-type estimate (with singular weight function Θ)
for the stochastic wave operator reads as follows.

Theorem 5.1. Assume u is an H2(G)-valued {Ft}t≥0-adapted process such that
ut is an L2(G)-valued semimartingale. Let v = θu and T satisfy (2.7). Then there
exist three constants λ0 > 0, β0 > 0, and c0 > 0, independent of u, such that, for all
β ∈ (0, β0) and λ ≥ λ0 and a.e. x ∈ G and P -a.s. ω ∈ Ω, it holds that

(5.3)

Θθ(−2�tvt + 2∇� · ∇v + ψv)(dut − Δudt)

+ d
{

Θ
[
�t(v

2
t + |∇v|2) − 2(∇�) · (∇v)vt − Ψvvt + A�tv

2
]}

+
∑
i

{
Θ
[
2vi(∇�) · (∇v) − �i|∇v|2 − 2�tvtvi + �iv

2
t + Ψvvi −A�iv

2
]}

i
dt

≥
[
c0λΘθ2(u2

t + |∇u|2 + λ2u2) + Θ
(
− 2�tvt + 2∇� · ∇v + ψv

)2]
dt + Θθ2�t(dut)

2,

with A and Ψ given by (5.2).

Remark 5.1. The main difference between the pointwise estimates (5.1) and (5.3)
is that we introduce a singular “pointwise” weight in (5.3). Another difference between
(5.1) and (5.3) is that T is arbitrary in the former estimate, while for the latter one
needs to take T to be large enough.

Proof of Theorem 5.1. We borrow some idea from the proof of [15, Theorem 1].
The proof is divided into several steps.
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Step 1. We multiply both sides of inequality (5.1) by Θ. Obviously, we have
(recall (5.2) for A and Ψ)

(5.4)

Θd
[
�t(v

2
t + |∇v|2) − 2(∇�) · (∇v)vt − Ψvvt + A�tv

2
]

= d
{

Θ
[
�t(v

2
t + |∇v|2) − 2(∇�) · (∇v)vt − Ψvvt + A�tv

2
]}

− β(T − 2t)

t2(T − t)2
Θ
[
�t(v

2
t + |∇v|2) − 2(∇�) · (∇v)vt − Ψvvt + A�tv

2
]
dt.

Note that

(5.5)

∣∣∣∣− β(T − 2t)

t2(T − t)2
Θ [−2(∇�) · (∇v)vt − Ψvvt]

∣∣∣∣
≤ β|T − 2t|

t2(T − t)2
Θ [2|(∇�) · (∇v)vt| + |Ψvtv|]

≤ β|T − 2t|
t2(T − t)2

Θ

[
(|∇�| + 1)v2

t + |∇�||∇v|2 +
1

4
Ψ2v2

]
.

Thus, by (5.1) and using (5.4)–(5.5), we get

(5.6)

Θθ(−2�tvt + 2∇� · ∇v + ψv)(dut − Δudt)

+ d
{

Θ
[
�t(v

2
t + |∇v|2) − 2(∇�) · (∇v)vt − Ψvvt + A�tv

2
]}

+
∑
i

{
Θ
[
2vi(∇�) · (∇v) − �i|∇v|2 − 2�tvtvi + �iv

2
t + Ψvvi −A�iv

2
]}

i
dt

≥
{

Θ(1 − k)λv2
t + Θ(k + 3 − 4c)λ|∇v|2 +

β(T − 2t)

t2(T − t)2
�tΘ(v2

t + |∇v|2)

− β|T − 2t|
t2(T − t)2

Θ
[
(|∇�| + 1)v2

t + |∇�||∇v|2
]

+

[
B +

β(T − 2t)

t2(T − t)2
�tA− β|T − 2t|

4t2(T − t)2
Ψ2

]
Θv2

+ Θ
(
− 2�tvt + 2∇� · ∇v + ψv

)2}
dt + Θθ2�t(dut)

2,

where B is given by (5.2).
Step 2. Recalling that � and Ψ are given, respectively, by (2.12) and (5.2), we get

(5.7)

right-hand side of (5.6) =
[
λΘ(F1v

2
t + F2|∇v|2) + λ3ΘGv2

+ Θ
(
− 2�tvt + 2∇� · ∇v + ψv

)2]
dt + Θθ2�t(dut)

2,

where

F1
�
= 1 − k +

cβ(T − 2t)2

t2(T − t)2
− β|T − 2t|

t2(T − t)2
(2|x− x0| + λ−1),(5.8)

F2
�
= k + 3 − 4c +

cβ(T − 2t)2

t2(T − t)2
− 2β|T − 2t||x− x0|

t2(T − t)2
,(5.9)
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and

(5.10)

G
�
= 4

[
(4c + 5 − k)|x− x0|2 − (8c + 1 − k)c2

(
t− T

2

)2
]

+ O(λ−1)

+
β|T − 2t|
t2(T − t)2

{
4c|T − 2t|

[
c2(t− T/2)2 − |x− x0|2

]
+ O(λ−1)

}
.

Step 3. Let us show that F1, F2, and G are positive when λ is large enough and
β is sufficiently small. For this, put

F 0
1

�
= 1 − k, F 0

2
�
= k + 3 − 4c,

G0 �
= 4

[
(4c + 5 − k)|x− x0|2 − (8c + 1 − k)c2

(
t− T

2

)2
]

+ O(λ−1),

which are, respectively, the nonsingular part of F1, F2, and G. Similarly, put

F 1
1

�
=

cβ(T − 2t)2

t2(T − t)2
− β|T − 2t|

t2(T − t)2
(2|x− x0| + λ−1),

F 1
2

�
=

cβ(T − 2t)2

t2(T − t)2
− 2β|T − 2t||x− x0|

t2(T − t)2
,

G1 �
=

β|T − 2t|
t2(T − t)2

{
4c|T − 2t|

[
c2(t− T/2)2 − |x− x0|2

]
+ O(λ−1)

}
,

which are, respectively, the singular part of F1, F2, and G.
Further, we choose k = 1 − c. It is easy to see that both F 0

1 and F 0
1 are positive,

and

G0 ≥ 4(4 + 5c)R2
0 − 9c3T 2 + O(λ−1),

which, via the first inequality in (2.7), is positive, provided that λ is sufficiently large.

When t is close to 0 or T , i.e., t ∈ I0
�
= (0, δ0) ∪ (T − δ0, T ) for some sufficiently

small δ0 ∈ (0, T/2), the dominant terms in Fi (i = 1, 2) and G are the singular ones.
For t ∈ I0,

F 1
1 ≥ β|T − 2t|

t2(T − t)2
[c(T − 2δ0) − 2R1 − λ−1)] =

β|T − 2t|
t2(T − t)2

(cT − 2R1 − 2cδ0 − λ−1),

which, via the second inequality in (2.7), is positive, provided that both δ0 and λ−1 are
sufficiently small. Similarly, for t ∈ I0, F

0
2 is positive, provided that δ0 is sufficiently

small. Further, for t ∈ I0,

G1 ≥ β|T − 2t|
t2(T − t)2

{
4c|T − 2δ0|

[
c2(δ0 − T/2)2 −R2

1

]
+ O(λ−1)

}

≥ β|T − 2t|
t2(T − t)2

{
4c|T − 2δ0|

[
c2T 2/4 −R2

1 + c2δ0(δ0 − T )
]

+ O(λ−1)
}
,

which, via the second inequality in (2.7), is positive, provided that both δ0 and λ−1

are sufficiently small.
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By (5.8)–(5.10), we see that F1 = F 0
1 + F 1

1 , F2 = F 0
2 + F 1

2 , and G = G0 + G1.
Noting the positivity of F 0

1 , F 0
2 , and G0, by the above argument, we see that F1, F2,

and G are positive for t ∈ I0. For t ∈ (0, T ) \ I0, noting again the positivity of F 0
1 ,

F 0
2 , and G0, one can choose β > 0 small enough such that F 1

1 , F 1
2 , and G1 are very

small so that F1, F2, and G are positive. Hence (5.6)–(5.7) yield the desired (5.3).
This completes the proof of Theorem 5.1.

6. Proof of Theorems 2.1–2.2. We are now in a position to prove Theo-
rems 2.1–2.2.

Proof of Theorem 2.2. The key idea is to apply Theorem 5.1. Integrating both
sides of (5.3) (with u replaced by y, and v = θy), using integration by parts, and
recalling that Θ(t) decays exponentially to 0 as t → 0 or t → T , noting that v|Σ = 0
(and hence ∇v = ∂v

∂ν ν on Σ), we arrive at

(6.1)

E

∫
Q

[
c0λΘθ2(y2

t + |∇y|2 + λ2y2) + Θ
(
− 2�tvt + 2∇� · ∇v + ψv

)2]
dxdt

≤ E

∫
Q

Θθ
[
(−2�tvt + 2∇� · ∇v + ψv)(dyt − Δydt) − θ�t(dyt)

2
]
dx

+ E

∫
Σ

Θ
∂�

∂ν

∣∣∣∣∂v∂ν
∣∣∣∣
2

dΓdt.

By the first equation of system (1.1), we get

(6.2)

E

∫
Q

Θθ
[
(−2�tvt + 2∇� · ∇v + ψv)(dyt − Δydt) − θ�t(dyt)

2
]
dx

= E

∫
Q

Θθ
[
(−2�tvt + 2∇� · ∇v + ψv)(a1yt + a2 · ∇y + a3y + f)

− θ�t(a4y + g)2
]
dxdt

≤ E

∫
Q

Θ
(
− 2�tvt + 2∇� · ∇v + ψv

)2
dxdt

+C

{
E

∫
Q

Θθ2
(
a1yt + a2 · ∇y + a3y + f

)2
dxdt + λE

∫
Q

Θθ2(a4y + g)2dxdt

}

≤ E

∫
Q

Θ
(
− 2�tvt + 2∇� · ∇v + ψv

)2
dxdt

+C

{
E

∫
Q

Θθ2(f2 + λg2)dxdt + |a1|2L∞
F (0,T ;(L∞(G))E

∫
Q

Θθ2y2
t dxdt

+λ
[
λ|a3|2L∞

F (0,T ;Ln(G)) + |a4|2L∞
F (0,T ;(L∞(G))

]
E

∫
Q

Θθ2y2dxdt

+
[
|a2|2L∞

F (0,T ;L∞(G;Rn)) + |a3|2L∞
F (0,T ;Ln(G))

]
E

∫
Q

Θθ2|∇y|2dxdt
}
.
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On the other hand, recalling (2.2), we have

(6.3)

E

∫
Σ

Θ
∂�

∂ν

∣∣∣∣∂v∂ν
∣∣∣∣
2

dΓdt = 2λE

∫
Σ

Θθ2(x− x0) · ν(x)

∣∣∣∣∂y∂ν
∣∣∣∣
2

dΓdt

≤ 2λE

∫
Σ0

Θθ2(x− x0) · ν(x)

∣∣∣∣∂y∂ν
∣∣∣∣
2

dΓ0dt ≤ CλE

∫
Σ0

Θθ2

∣∣∣∣∂y∂ν
∣∣∣∣
2

dΓ0dt.

Finally, combining (6.1), (6.2), and (6.3), we arrive at the desired estimate (2.14).
This completes the proof of Theorem 2.2.

Proof of Theorem 2.1. The proof follows easily from Theorem 2.2 and the energy
estimate in Proposition 3.1. We omit the details.

7. Application to state observation problem of semilinear stochastic
wave equations. This section is devoted to giving an application of the observability
inequality in section 2. Fixing two known nonlinear functions F (η, v, ζ) : R

1 × R
1 ×

R
n → R

1 and G(η) : R
1 → R

1, and unknown initial data (w0, w1) ∈ L2(Ω,F0, P ;
H1

0 (G) × L2(G)), for the semilinear stochastic wave equation

(7.1)

⎧⎪⎨
⎪⎩

dwt − Δwdt = F (w,wt,∇w)dt + G(w)dB(t) in Q,

w = 0 on Σ,

w(0) = w0, wt(0) = w1 in G,

we consider the following.
State observation problem: Let T > 0 be given. Determine the state (w(t), wt(t)) ∈

L2(Ω,Ft, P ;H1
0 (G)×L2(G)) of (7.1) (for t ∈ (0, T ]) from the observed boundary data

∂w

∂ν
(t, x), (t, x) ∈ Σ0, P -a.s.

We refer the reader to [11, 14] for some studies on the state observation problems
for (deterministic) semilinear wave equations. To the best of our knowledge, nothing
is published for the stochastic setting. We need the following assumption:

(H) The nonlinear functions F (·) and G(·) satisfy the following:
(1)

|F (η1, v, ζ) − F (η2, v, ζ)| + |G(η1) −G(η2)| ≤ L(1 + |η1|p−1 + |η2|p−1)|η1 − η2|

∀ η1, η2, v ∈ R
1, ζ ∈ R

n

with 1 ≤ p ≤ n
n−2 if n ≥ 3; 1 ≤ p < ∞ if n = 1, 2;

(2)

|F (η, v1, ζ1) − F (η, v2, ζ2)| ≤ L(|v1 − v2| + |ζ1 − ζ2|)

∀ (η, vi, ζi) ∈ R
1 × R

1 × R
n, i = 1, 2,

|F (0, v, ζ)| ≤ L(|v| + |ζ|) ∀ (v, ζ) ∈ R
1 × R

n

for some constant L > 0;
(3) for any given initial data (w0, w1) ∈ L2(Ω,F0, P ;H1

0 (G)×L2(G)), (7.1) admits
a unique solution w = w(· ;w0, w1) ∈ HT (the solution of (7.1) is defined similarly to
Definition 1.1).
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Since we do not introduce any sign condition on the nonlinearities F (·) and G(·),
the global existence of a solution of (7.1) is not guaranteed. This is why we need
to impose the third assumption in (H). The (global) well-posedness of (7.1) is an
interesting but difficult problem, which is beyond the scope of this paper.

It is easy to see that, by the Sobolev embedding theorem, assumption (H) implies
that

F (z, zt,∇z) ∈ L2
F (0, T ;L2(G)), G(z) ∈ L2

F (0, T ;L2(G))

for any z ∈ HT . Thus, thanks to Proposition 3.3, we can define a nonlinear map
γ : L2(Ω,F0, P ;H1

0 (G) × L2(G)) → L2
F (0, T ;L2(Γ0)) by

γ(w0, w1) =
∂w

∂ν

∣∣∣∣
Σ0×Ω

,

where w is the solution of (7.1). Now we have the following result.
Theorem 7.1. Let (H) hold, Γ0 be given by (2.2), and T satisfy (2.7). Then, for

any (w0, w1), (ŵ0, ŵ1) ∈ L2(Ω,F0, P ;H1
0 (G)× L2(G)) and any t ∈ (0, T ], there exists

a constant C̃ = C̃(F,G,w0, ŵ0, w1, ŵ1) > 0 such that

|(w(t) − ŵ(t), wt(t) − ŵt(t))|L2(Ω,Ft,P ;H1
0 (G)×L2(G))

≤ eCt−1

C̃|γ(w0, w1) − γ(ŵ0, ŵ1)|L2
F (0,T ;L2(Γ0)),

where ŵ = ŵ(· ; ŵ0, ŵ1) ∈ HT is the solution of (7.1) with (w0, w1) replaced by
(ŵ0, ŵ1).

Remark 7.1. Theorem 7.1 indicates that the state (w(t), wt(t)) ∈ L2(Ω,Ft, P ;
H1

0 (G)×L2(G)) of (7.1) (for t ∈ (0, T ]) can be uniquely determined from the observed
boundary data ∂w

∂ν (t, x)
∣∣
Σ0

, P -a.s., and continuously depend on it.
Proof of Theorem 7.1. Set

y = ŵ − w.

It is easy to see that y is a solution of (1.1) with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 =

∫ 1

0

∂ηF (w + s(ŵ − w), wt,∇w)ds, a2 =

∫ 1

0

∂v(ŵ, wt + s(ŵt − wt),∇w)ds,

a3 =

∫ 1

0

∂ζF (ŵ, ŵt,∇w + s(∇ŵ −∇w))ds, a4 =

∫ 1

0

∂ηG(w + s(ŵ − w))ds.

The desired result follows immediately from Remark 2.1.
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Abstract. In this paper, we study a free boundary problem for compressible spherically symmet-
ric Navier–Stokes equations with a gravitational force and degenerate viscosity coefficients. Under
certain assumptions that are imposed on the initial data, we obtain the global existence and unique-
ness of the weak solution and give some uniform bounds (with respect to time) of the solution.
Moreover, we obtain some stabilization rate estimates in L∞-norm and weighted H1-norm of the
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1. Introduction. We consider the compressible Navier–Stokes equations with
density-dependent viscosity in R

n(n ≥ 2), which can be written in Eulerian coordi-
nates as

(1.1)

{
∂τρ + ∇ · (ρ�u) = 0,

∂τ (ρ�u) + ∇ · (ρ�u⊗ �u) + ∇P = div(μ(∇�u + ∇�u�)) + ∇(λdiv�u) − ρ�f,

in a domain {(�ξ, τ)
∣∣�ξ ∈ Ωτ ⊂ R

n, τ > 0}, the initial conditions and boundary condi-
tions are

(1.2) (ρ, �u)(�ξ, 0) = (ρ0, u0)(�ξ), �ξ ∈ Ω0 = {�ξ ∈ R
n
∣∣a < |�ξ| < b},

(1.3) �u||�ξ|=a = 0, ρ|�ξ∈∂Ωτ\{|�ξ|=a} = 0,

where 0 < a < b < ∞, Ωτ = ψ(Ω0, τ) and ψ is the flow of �u:

(1.4)

{
∂τψ(�ξ, τ) = �u(ψ(�ξ, τ), τ), �ξ ∈ R

n,

ψ(�ξ, 0) = �ξ.

Here ρ, P , �u = (u1, . . . ,un), and �f are the density, pressure, velocity, and external
force, respectively; λ = λ(ρ) and μ = μ(ρ) are the viscosity coefficients.
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For the initial-boundary value problem (1.1)–(1.3) with the spherically symmetric
initial data and external force

(ρ, �u)(�ξ, 0) =

(
ρ0(r), u0(r)

�ξ

r

)
, �ξ ∈ Ω0,

�f = f(m, r, τ)
�ξ

r
, m(ρ, r) =

∫ r

a

ρ(s, τ)sn−1ds, �ξ ∈ Ωτ ,

where r = |�ξ| =
√

ξ2
1 + · · · + ξ2

n, we are looking for spherically symmetric solutions
(ρ, �u):

ρ(�ξ, τ) = ρ(r, τ), �u(�ξ, τ) = u(r, τ)
�ξ

r
, �ξ ∈ Ωτ ,

where Ωτ = {�ξ ∈ R
n

∣∣ a < |�ξ| < b(τ), b(0) = b, b′(τ) = u(b(τ), τ)}. Then (ρ, u)(r, τ) is
determined by

(1.5)

{
∂tρ + ∂r(ρu) + n−1

r ρu = 0,
ρ(∂tu + u∂ru) + ∂rP = ∂r[(λ + 2μ)(∂ru + n−1

r u)] − 2(n− 1)ur ∂rμ− ρf,

where (r, τ) ∈ (a, b(τ)) × (0,∞), with the initial data

(1.6) (ρ, u)|τ=0 = (ρ0, u0)(r), a ≤ r ≤ b,

the boundary conditions

(1.7) u|r=a = 0, ρ|r=b(τ) = 0,

where b(0) = b, b′(τ) = u(b(τ), τ), τ > 0.
To simplify the presentation, we consider only the famous polytropic model, i.e.,

P (ρ) = Aργ , with γ > 1 and A > 0 being constants. And we assume that the viscosity
coefficients μ and λ are proportional to ρθ, i.e., μ(ρ) = c1ρ

θ and λ(ρ) = c2ρ
θ, where

c1, c2, and θ are three constants.
Additionally, we assume that the external force f(m, r, τ) satisfies

(1.8) f(m, r, τ) = f∞(m, r) + Δf(m, r, τ),

for all m ≥ 0, r ≥ a, and τ ≥ 0, with

(1.9) f∞(m, r) = G
M0 + m

rn−1
, Δf(m, r, τ) ∈ C1(R+ × R+ × R+)

(1.10) ‖Δf(·, ·, τ)‖L∞(R+×R+) ≤ f1(τ), ‖(∂rΔf, ∂τΔf)(·, ·, τ)‖L∞(R+×R+) ≤ f2(τ),

(1.11) f1 ∈ L∞ ∩ L2(R+), f2 ∈ L2(R+),

where R+ = [0,∞), G > 0 is a constant, M0 ≥ 0 is the total mass of the solid core
surrounded by the gas, and the perturbation Δf tends to 0 as τ → ∞ in some weak
sense. If M0 = 0, we ignore the gravitational effect of the solid core. Δf expresses the
influence of the outside gravitational force, f∞ is the precise expression for its own
gravitational force and the gravitational force of the solid core, in the astrophysical
case (with spherical symmetry).
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It is very interesting to study the stabilization problem for the model of the
atmosphere of a planet, whose evolution is influenced by the gravitational force. In
[22], we considered a simple model that is one-dimensional Navier–Stokes equations.
In this paper, we study the stabilization problem of the spherically symmetric model
(1.5). We should consider the essential multidimensional model in the future.

Now, we consider the stationary problem, namely

(1.12) (P (ρ∞))r = −ρ∞f∞(m(ρ∞, r), r)

in an interval r ∈ (a, l∞), with the end l∞ satisfying

(1.13) ρ∞(l∞) = 0,

∫ l∞

a

ρ∞rn−1dr = M :=

∫ b

a

ρ0r
n−1dr.

The unknown quantities are the stationary density ρ∞ ≥ 0 and free boundary l∞ > 0.
If γ > 2n−2

n , from Proposition 2.5, we know that there exists a unique solution

(ρ∞, l∞) to the stationary system (1.12)–(1.13), satisfying ρ∞(r) ∼ (ln∞ − rn)
1

γ−1 ,
(ρ∞)r(r) < 0, a < r < l∞, with l∞ < +∞.

To handle the free boundary problem (1.5)–(1.7), it is convenient to reduce the
problem in Eulerian coordinates (r, τ) to the problem in Lagrangian coordinates (x, t)
moving with the fluids, via the transformation:

(1.14) x =

∫ r

a

yn−1ρ(y, τ)dy, t = τ.

Then the fixed boundary r = a and the free boundary r = b(τ) become

x = 0 and x =

∫ b(τ)

a

yn−1ρ(y, τ)dy =

∫ b

a

yn−1ρ0(y)dy = M,

where M is the total mass initially so that the region {(r, τ)|a ≤ r ≤ b(τ), τ ≥ 0}
under consideration is transformed into the region {(x, t)|0 ≤ x ≤ M, t ≥ 0}, and
the function m(ρ, r) becomes x. Under the coordinate transformation (1.14), the
equations (1.5)–(1.7) are transformed into

(1.15)⎧⎪⎨
⎪⎩

∂tρ(x, t) = −ρ2∂x(rn−1u),

∂tu(x, t) = rn−1
{
∂x[ρ(λ + 2μ)∂x(rn−1u) − P ] − 2(n− 1)ur ∂xμ

}
− f(x, r, t),

rn(x, t) = an + n
∫ x

0
ρ−1(y, t)dy,

where (x, t) ∈ (0,M) × (0,∞), with the initial data

(1.16) (ρ, u)|t=0 = (ρ0, u0)(x), r|t=0 = r0(x) =

(
an + n

∫ x

0

ρ−1
0 (y)dy

) 1
n

,

and the boundary conditions

(1.17) u|x=0 = 0, ρ|x=M = 0, t > 0.

It is standard that if we can solve the problem (1.15)–(1.17), then the free bound-
ary problem (1.1)–(1.3) has a solution.
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From (1.12)–(1.13), it is easy to see that ρ∞(x) is the solution to the stationary
system

(1.18) Arn−1
∞ (ργ∞)x = −f∞(x, r∞), rn∞(x) = an + n

∫ x

0

ρ−1
∞ (y)dy, x ∈ (0,M),

(1.19) ρ∞(M) = 0.

The results in [8, 20] show that the compressible Navier–Stokes system with the
constant viscosity coefficient has the singularity at the vacuum. Considering the mod-
ified Navier–Stokes system in which the viscosity coefficient depends on the density,
Liu, Xin, and Yang [11] proved that such system is local well posed. It is motivated by
the physical consideration that, in the derivation of the Navier–Stokes equations from
the Boltzmann equation through the Chapman–Enskog expansion to the second or-
der, cf. [6], viscosity is a function of temperature. If we consider the case of isentropic
fluids, this dependence is reduced to the dependence on the density function.

Since n ≥ 2 and the viscosity coefficient μ depends on ρ, the nonlinear term
2(n − 1) 1

ru∂xμ in (1.15)2 makes the analysis significantly different from the one-
dimensional case [11, 15, 19, 21, 22]. When μ ≥ μ > 0 and ρ0 ≥ ρ > 0, authors
in [4, 24] obtained the existence, uniqueness, and global behavior of the solution for
compressible spherically symmetric Navier–Stokes equations with an external pressure
and without the nonlinear term 2(n − 1) 1

ru∂xμ. Following the ideas in [24], we can
obtain the existence and uniqueness results for the stationary problem in section 2. In
this paper, since viscosity coefficients and density will degenerate at the free boundary,
we need to use the weighted function (M−x) to control the lower bound of the density
in section 3.

Considering the system (1.15)–(1.17) with a general external force, Chen-Zhang
obtained the local existence and uniqueness of the solution in [3]. In this paper,
when the initial data (ρ0, u0, r0) are close to the stationary state (ρ∞, 0, r∞), we will
obtain some appropriate a priori estimates and prove that the maximum existence
time T ∗ = ∞. The difficulty of this problem is to obtain the lower bound of the
density ρ. The key ideas are using the classical continuation method and the result
of Claim 1. In Claim 1, we want to prove that there is a small positive constant ε1,
such that, for any T > 0, if

(1.20) I(t) = ‖g(·, t) − g∞‖L∞ ≤ 2ε1 ∀ t ∈ [0, T ],

where g(x, t) = (M − x)−
1
γ ρ(x, t) and g∞(x) = (M − x)−

1
γ ρ∞(x), then

(1.21) I(t) ≤ ε1 ∀ t ∈ [0, T ].

Using the energy method and induction method, we can estimate the weighted L2−
norm of g − g∞ in Lemma 3.7. In such a process (see Lemmas 3.5–3.6), we use the
weight function (1 + t)α (with α = − 5

8 ) to remedy the disadvantage of the nonlinear
term 2(n − 1) 1

ru∂xμ, and we use the induction method to increase α to −ε2. Then,
by the reduction to absurdity, we can finish the proof of Claim 1 in Lemma 3.8.

Our results show that such a system is stable under small perturbations, it does
not develop vacuum states or concentration states for all time, and the interface ∂Ωτ

propagates with finite speed.
The assumptions on c1, c2, θ, γ, and initial data can be stated as follows:

(A1) γ > 2n−2
n , θ ∈ (0, γ−1)∩(0, γ

2 ], c1 and c2 satisfy that c1 > 0 and 2c1 +nc2 > 0;
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(A2) N1(M−x)1/γ ≤ ρ0 ≤ N2(M−x)1/γ , with some positive constants 0 < N1 < N2,

and (M − x)1−
θ
γ (ρθ0)

2
x ∈ L1([0,M ]), (ργ0)x ∈ L2([0,M ]);

(A3) u0 ∈ L2([0,M ]), ρ
θ+1
2

0 (u0)x ∈ L2([0,M ]), u0(0) = 0,

(1.22)
(
(2c1 + c2)ρ

θ+1
0 (rn−1

0 u0)x
)
x
− 2c1(n− 1)

u0

r0
(ρθ0)x ∈ L2([0,M ]).

Under the above assumptions (A1)–(A3), we will prove the existence of the global
weak solution to the initial-boundary value problem (1.15)–(1.17) in the sense of the
following definition.

Definition 1.1. A pair of functions (ρ, u, r)(x, t) is called a global weak solution
to the initial-boundary value problem (1.15)–(1.17) if, for any T > 0,

ρ, u ∈ L∞([0,M ] × [0, T ]) ∩ C1([0, T ];L2([0,M ])),

r ∈ C1([0, T ];L∞([0,M ])),

ρ−1, (rn−2u)x, (rn−1)x ∈ L∞([0, T ];L1([0,M ])),

and

ρ1+θ(rn−1u)x ∈ L∞([0,M ] × [0, T ]) ∩ C
1
2 ([0, T ];L2([0,M ])).

Furthermore, the following equations hold:

ρt + ρ2(rn−1u)x = 0, ρ(x, 0) = ρ0(x), a.e.

rt = u, r(x, 0) = r0(x), rn(x, t) = an + n

∫ x

0

ρ−1(y, t)dy, a.e.∫ ∞

0

∫ M

0

[uψt + (P − ρ(λ + 2μ)(rn−1u)x)(rn−1ψ)x

+ 2(n− 1)μ(rn−2uψ)x − f(x, r, t)ψ]dxdt +

∫ M

0

u0(x)ψ(x, 0)dx = 0

for any test function ψ(x, t) ∈ C∞
0 (Ω), with Ω = {(x, t)

∣∣ 0 < x ≤ M, t ≥ 0} and

lim
ε→0

1

ε

∫ ε

0

udx = lim
ε→0

1

ε

∫ 1

1−ε

ρdx = 0.

In what follows, we always use C(Ci) to denote a generic positive constant de-
pending only on γ, θ, f1, f2, and the initial data, independent of the given time
T.

We now state the main theorems in this paper.
Theorem 1.1. Under the conditions (1.8)–(1.11) and (A1)–(A3), there exists a

constant ε0 > 0 such that if

(1.23) ‖f1‖2
L∞ +

∫ ∞

0

(1 + t)f2
1 (t)dt ≤ ε20

and

(1.24) ‖u0‖L2 + ‖(M − x)−
1
γ (ρ0 − ρ∞)‖L∞ ≤ ε0,
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then the system (1.15)–(1.17) has a unique global weak solution (ρ, u, r) satisfying

(1.25) C−1(M − x)
1
γ ≤ ρ(x, t) ≤ C(M − x)

1
γ ,

(1.26) r(x, t) ∈ [a,C],

(1.27)

∫ M

0

(M − x)1−
θ
γ (ρθ − ρθ∞)2xdx ≤ C

and

(1.28) ‖u(·, t)‖L∞ + ‖[ρ(rn−1u)x](·, t)‖L∞ ≤ C

for all t ≥ 0 and x ∈ [0,M ]. Furthermore, if (1 + t)
2(γ+θ)
γ+θ+1 f2

1 (t) ∈ L1(R+), for any
η > 0, we have

(1.29)

∫ M

0

{
u2 + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx ≤ Cη(1 + t)−

2(γ+θ)
γ+θ+1 +η,

(1.30)

∫ M

0

(
ρθ−1u2 + ρθ+1u2

x

)
dx ≤ Cη(1 + t)−

2(γ+θ)
γ+θ+1 +η,

(1.31)

∫ M

0

(M − x)2−
2θ
γ (ρθ − ρθ∞)2xdx ≤ Cη(1 + t)−

γ+θ−1
γ+θ+1 +η,

(1.32) ‖ργ(·, t) − ργ∞(·)‖L∞ ≤ Cη(1 + t)−
3γ+3θ−1
4(γ+θ+1)+

η
2 ,

and

(1.33) ‖ρ
γ+θ
2 (·, t) − ρ

γ+θ
2∞ (·)‖2

L∞ + ‖u(·, t)‖L∞ ≤ Cη(1 + t)−
γ+θ

γ+θ+1+ η
2 ,

for all t ≥ 0, where Cη is a positive constant depending on η.
Remark 1.1. The constant ε0 = ε0(G,A,M0,M, a, n, γ, θ, c1, c2) is defined in

(3.55). There are no smallness assumptions on ‖(M − x)1−
θ
γ (ρθ0)

2
x‖L1 and ‖ρ

1+θ
2

0

(u0)x‖L2 .
Remark 1.2. The uniqueness of the solution in Theorems 1.1 or 3.1 means that

if (ρ1, u1, r1) and (ρ2, u2, r2) are two solutions to the system (1.15)–(1.17) with the
same initial data (ρ0, u0, r0) and satisfy regularity conditions in the theorem, then we
have that (ρ1, u1, r1) = (ρ2, u2, r2).

Remark 1.3. In particular, the viscosity of the gas is proportional to the square
root of the temperature for the hard sphere model (as pointed out in [15, 21]), and
the relation between θ and γ is

θ =
γ − 1

2
.

Our condition (A1) covers it. Since the Navier–Stokes system with constant viscosity
coefficients has the singularity at the vacuum [8, 20], we assume that θ > 0 in (A1).

Remark 1.4. Considering the no-vacuum system in an exterior domain in R
3,

Kobayashi and Shibata [9] obtained ‖(ρ−ρ∞, u)(·, t)‖L2 � (1+ t)−
3
4 and ‖(ρ−ρ∞, u)

(·, t)‖L∞ � (1 + t)−
3
2 when ρ∞ is a positive constant. Considering the no-vacuum

system in R
n (n ≥ 3), Ukai, Yang, and Zhao [18] obtained ‖(ρ− ρ∞, u)(·, t)‖L2∩L∞ ≤

C(1+t)−
n
4 +ε when ρ∞ is close to a positive constant. Considering the one-dimensional

system with a degenerate viscosity coefficient, we [22] obtained ‖(ργ−ργ∞, u)(·, t)‖L∞ ≤
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C(1+ t)−
1
2 when the external force f∞ is close to a positive constant N0 and the sta-

tionary density ρ∞ is close to (N0(M−x)
A )

1
γ . Since γ+θ

γ+θ+1 > 1
2 and 3γ+3θ−1

4(γ+θ+1) > 1
2 (if

γ + θ > 3), it is easy to see that our results in Theorem 1.1 are better than that
in [22]. Using similar arguments as that in Theorem 1.1, we can also obtain similar
results in the one-dimensional case, which are better than that in [22]. For example,

the stabilization rate estimate ‖(ργ − ργ∞, u)(·, t)‖L∞ ≤ C(1 + t)−
1
2 in [22] can be

replaced by ‖(ργ − ργ∞, u)(·, t)‖L∞ ≤ Cη(1 + t)−
γ+θ

γ+θ+1+ η
2 , ‖ρ γ+θ

2 (·, t) − ρ
γ+θ
2∞ (·)‖L∞ ≤

Cη(1 + t)−
γ+θ

2(γ+θ+1)+
η
4 , t ≥ 0 for any η > 0.

Remark 1.5. Since the information of the dimension n mainly appear in the index
of the radii r, and we consider only the system with a solid core r ≥ a > 0 in this
paper; our results cannot show the effect of the dimension. In [23], we studied the
global behavior of the solution to a similar problem with a positive external pressure
and without a solid core, and we obtained the stabilization rate estimates for the
solution of exponential type. The admissible range of the parameter λ

μ depends on

the dimension n in [23]. We will study the system without a solid core r ≥ 0 and with
degenerate viscosity coefficients in the future, and we will guess that stabilization rate
estimates of the solution cannot be better than that in Theorem 1.1.

Theorem 1.2 (continuous dependence). For each i = 1, 2, let (ρi, ui, ri) be the
solution to the system (1.15)–(1.17) with the initial data (ρ0i, u0i, r0i), which satisfies
regularity conditions in Theorem 1.1. Then, we have∫ M

0

(
(u1 − u2)

2 + ρ1−θ
1 ρ2θ−4

2 (ρ1 − ρ2)
2 + ρθ1ρ

−1
2 (r1 − r2)

2
)
dx

≤ CeCt

∫ M

0

(
(u01 − u02)

2 + ρ1−θ
01 ρ2θ−4

02 (ρ01 − ρ02)
2 + ρθ01ρ

−1
02 (r01 − r02)

2
)
dx

for all t ≥ 0.
Remark 1.6. Using similar arguments as that in [3], we can easily obtain such

continuous dependence of the solution on the initial data and omit the details.
Remark 1.7. If we ignore the influence of self-gravitation, i.e., f∞(m, r) = G M0

rn−1 ,
with M0 > 0, then we can also obtain the same results in Theorems 1.1–1.2.

We now briefly review the previous works in this direction. For the related free
boundary problem of one-dimensional isentropic fluids with density-dependent vis-
cosity (like μ(ρ) = cρθ), see [11, 15, 19, 21, 22] and the references therein. For the
related stabilization rate estimates of the one-dimensional free boundary problem,
see [5, 12, 16, 22], etc. For the spherically symmetric solutions of the Navier–Stokes
equations with a free boundary, see [2, 4, 13, 14, 23, 24], etc. Also see Bresch and Des-
jardins [1], Lions [10], and Vaigant and Kazhikhov [17] for multidimensional isentropic
fluids.

The rest of this paper is organized as follows. First, we obtain the existence
and the uniqueness of the solution to the stationary problem in section 2. In section
3, we will prove some a priori estimates and extend the local solution in [3] to the
global solution in time. In section 4, we obtain the stabilization rate estimates of the
solution.

2. The stationary problem. Zlotnik and Ducomet [24] obtained the existence
of the positive solution to the stationary problem with a positive external pressure.
Using similar arguments as that in [24], we can obtain the following results for the sta-
tionary problem without an external pressure. We start with a proof of the existence
of a nonnegative solution to the Lagrangian stationary problem.
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Proposition 2.1. If

(2.1) γ >
2n− 2

n

or

(2.2) γ =
2n− 2

n
and

(
nγ

(γ − 1)
M

γ−1
γ

) 2n−2
n

<
G

A

(
M

2
+ M0

)
,

or

(2.3)

n > 2, 1 < γ <
2n− 2

n
and δγ6

(
an +

nγ

δ6(γ − 1)
M

γ−1
γ

) 2n−2
n

≤ G

A

(
M

2
+ M0

)
,

where δ6 = a−n(1− γn
2n−2 ) 2n−2

γ−1 M
γ−1
γ , then the Lagrangian stationary problem (1.18)–

(1.19) has a nonnegative solution ρ∞ ∈ W 1,β([0,M ]) satisfying C−1(M − x)
1
γ ≤

ρ∞(x) ≤ C(M − x)
1
γ , where β ∈ [1, γ

γ−1 ) is a constant.
Proof. We introduce the nonlinear operator

I : K → W 1,β([0,M ]),

where K = {f ∈ C([0,M ])|f ≥ 0, ‖ (M−x)
1
γ

f(x) ‖L∞ < ∞, ‖ f(x)

(M−x)
1
γ
‖L∞ < ∞, }, by

setting

I(f)(x) =

⎛
⎝

∫ M

x
G M0+y

r2n−2
f (y)

dy

A

⎞
⎠

1
γ

,with rnf (x) = an + n

∫ x

0

f−1(y)dy, x ∈ [0,M ].

We can restate the problem (1.18)–(1.19) as the fixed-point problem

(2.4) ρ∞ = I(ρ∞).

For all f ∈ Kδ1,δ2 = {f ∈ K|δ1(M − x)
1
γ ≤ f(x) ≤ δ2(M − x)

1
γ }, with 0 < δ1 ≤

δ2 < ∞, we have

an ≤ rnf (x) ≤ an +
nγ

δ1(γ − 1)
M

γ−1
γ := Bn

and

(
G(M2 + M0)

AB2n−2

) 1
γ

(M − x)
1
γ ≤ I(f)(x) ≤

(
G(M + M0)

Aa2n−2

) 1
γ

(M − x)
1
γ , x ∈ [0,M ].

If γ > 2n−2
n , then I(Kδ3,δ4) ⊂ Kδ3,δ4 , where δ4 = (G(M+M0)

Aa2n−2 )
1
γ and δ3 is a

positive constant satisfying δγ3 (an + nγ
δ3(γ−1)M

γ−1
γ )

2n−2
n ≤ G

A (M2 + M0). And one

can immediately verify that I is a compact operator on Kδ3,δ4 . Since Kδ3,δ4 is a
convex closed bounded nonempty subset of C([0,M ]), the problem (2.4) has a solution
ρ ∈ Kδ3,δ4 by Schauder’s fixed-point theorem.
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Similarly, if γ = 2n−2
n and ( nγ

(γ−1)M
γ−1
γ )

2n−2
n < G

A (M2 + M0), then I(Kδ5,δ4) ⊂
Kδ5,δ4 , where δ5 = a−n[(GA (M2 + M0))

n
2n−2 − nγ

(γ−1)M
γ−1
γ ], and problem (2.4) has a

solution ρ ∈ Kδ5,δ4 .

Similarly, if n > 2, 1 < γ < 2n−2
n and δγ6 (an + nγ

δ6(γ−1)M
γ−1
γ )

2n−2
n ≤ G

A (M2 +M0),

then I(Kδ6,δ4) ⊂ Kδ6,δ4 , and problem (2.4) has a solution ρ ∈ Kδ6,δ4 .
Similar to [24], we say a stationary solution (ρ∞, rn∞) is statically stable if

J [W ] :=

∫ M

0

(
γAρ1+γ

∞ W 2
x − (2n− 2)G(M0 + x)r2−3n

∞ W 2
)
dx

≥ δ7

∫ M

0

(
(M − x)

1+γ
γ W 2

x + W 2
)
dx(2.5)

for some δ7 > 0 and all W ∈ K1,

K1 =

{
f ∈ C([0,M ])

∣∣f(0) = 0, ‖(M − x)
1
γ f ′(x)‖L∞ <∞,

∥∥∥∥∥ 1

(M − x)
1
γ f ′(x)

∥∥∥∥∥
L∞

<∞
}
.

Now, the static potential energy takes the following form:

(2.6) S[V ] =

∫ M

0

(
A

γ − 1
(Vx)1−γ +

∫ V

an

n

G(M0 + x)(nh)
2−2n

n dh

)
dx.

We call

V ∈ K2 =

{
f ∈ C([0,M ])

∣∣f(0) =
an

n
, ‖(M − x)

1
γ f ′(x)‖L∞ < ∞,

∥∥∥∥∥ 1

(M − x)
1
γ f ′(x)

∥∥∥∥∥
L∞

< ∞
}

is a point of local quadratic minimum of S if

(2.7) S[V + W ] − S[V ] ≥ δ8

∫ M

0

(
(M − x)

1+γ
γ W 2

x + W 2
)
dx,

for all W ∈ K1 and ‖(M − x)
1
γ Wx‖L∞([0,M ]) + ‖W‖L∞ ≤ δ9, for some δ8 > 0 and

δ9 > 0.
Proposition 2.2. If γ > 2n−2

n and ρ∞ is a solution of the problem (1.18)–(1.19)

satisfying ρ∞ ∈ W 1,β([0,M ]) and C−1(M − x)
1
γ ≤ ρ∞(x) ≤ C(M − x)

1
γ , then we

have that (2.5) and (2.7) hold, with V = V∞ =
rn∞
n .

Proof. From r∞ ≥ a, (Aργ∞)x = −GM0+x

r2n−2
∞

and (rn∞)x = nρ−1
∞ , using integration

by parts, we have

J [W ] =

∫ M

0

(
γAρ1+γ

∞ W 2
x + (2n− 2)A(ργ∞)xr

−n
∞ W 2

)
dx

=

∫ M

0

(
γAρ1+γ

∞ W 2
x − 2(2n− 2)Aργ∞r−n

∞ WWx

+ n(2n− 2)Aργ−1
∞ r−2n

∞ W 2
)
dx for all W ∈ K1.
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If γ > 2n−2
n , we have

J [W ] ≥ C−1

∫ M

0

(
(M − x)

1+γ
γ W 2

x + (M − x)
γ−1
γ W 2

)
dx.

From r∞ ≥ a and (Aργ∞)x = −GM0+x

r2n−2
∞

, using integrating by parts and the Cauchy–

Schwarz inequality, we have

∫ M

0

W 2dx ≤ C

∫ M
2

0

(M − x)1−
1
γ W 2dx + C

∫ M

0

G
M0 + x

r2n−2
∞

W 2dx

= C

∫ M
2

0

(M − x)1−
1
γ W 2dx− C

∫ M

0

A(ργ∞)xW
2dx

≤ C

∫ M

0

(
(M − x)

1+γ
γ W 2

x + (M − x)
γ−1
γ W 2

)
dx,(2.8)

then we can immediately obtain (2.5), with some δ7 = δ7(G,A,M0,M, a, n, γ).
Similarly, we obtain

S[V∞ + W ] − S[V∞]

=
1

2

∫ M

0

{
A[γ + O(|(M − x)

1
γ Wx|)]ρ1+γ

∞ W 2
x

− [2n− 2 + O(|W |)]G(M0 + x)r2−3n
∞ W 2

}
dx

≥ δ7
2

∫ M

0

(
(M − x)

1+γ
γ W 2

x + W 2
)
dx

+

∫ M

0

{
O(|(M − x)

1
γ Wx|)ρ1+γ

∞ W 2
x + O(|W |)G(M0 + x)r2−3n

∞ W 2
}
dx

for all W ∈ K1. Here, O(d) means O(d) → 0 as d → 0. If γ > 2n−2
n , choosing δ9 small

enough, we can immediately obtain (2.7), with some (δ8, δ9)(G,A,M0,M, a, n, γ).
Using a similar argument as that in Proposition 2.2, we could obtain the following

uniqueness result.
Proposition 2.3. Let ρ∞ be a solution obtained in Proposition 2.1, and ρ2

be another solution of the problem (1.18)–(1.19) satisfying ρ2 ∈ W 1,β([0,M ]) and

C−1(M−x)
1
γ ≤ ρ2(x) ≤ C(M−x)

1
γ . If γ > 2n−2

n and ‖(M−x)−
1
γ (ρ∞−ρ2)(x)‖L∞ ≤

δ10 with a small enough positive constant δ10, then we have that ρ∞(x) = ρ2(x), a.e.
x ∈ [0,M ].

Proof. From (1.18)–(1.19), we have

Aργ∞(x) =

∫ M

x

G
M0 + y

r2n−2
∞

dy, rn∞(x) = an + n

∫ x

0

ρ−1
∞ (y)dy,

Aργ2(x) =

∫ M

x

G
M0 + y

r2n−2
2

dy, rn2 (x) = an + n

∫ x

0

ρ−1
2 (y)dy,

and

A(ργ∞ − ργ2) =

∫ M

x

G(M0 + y)
(
r2−2n
∞ − r2−2n

2

)
dy.
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Multiplying the above equality by (ρ−1
∞ − ρ−1

2 ), integrating over [0,M ], and using the

fact that
∫ M

0
n(ρ−1

∞ − ρ−1
2 )(x)

∫ M

x
g(y)dydx =

∫ M

0
g(rn∞ − rn2 )dx, we obtain

0 =

∫ M

0

{
A(ργ∞ − ργ2)(ρ−1

∞ − ρ−1
2 ) −G

(M0 + x)

n
(r2−2n

∞ − r2−2n
2 )(rn∞ − rn2 )

}
dx

=

∫ M

0

{
−A[γ + O(|(M − x)−

1
γ (ρ∞ − ρ2)|)]ρ1+γ

∞ (ρ−1
∞ − ρ−1

2 )2

− A

n2
[2n− 2 + O(|rn∞ − rn2 |)](ργ∞)xr

−n
∞ (rn∞ − rn2 )2

}
dx

≤ −C−1

∫ M

0

(
(M − x)

1+γ
γ (ρ−1

∞ − ρ−1
2 )2 + (rn∞ − rn2 )2

)
dx,

when γ > 2n−2
n and δ10 is small enough. Thus, we can immediately obtain that

ρ∞ = ρ2.
Now, we shall use the shooting method to prove the uniqueness of the solution

ρ∞ ∈ K.
Proposition 2.4. Under the assumption (2.1), the Lagrangian stationary prob-

lem (1.18)–(1.19) has a unique solution ρ∞ ∈ K.
Proof. We consider the Cauchy problem

(2.9) (Aργ)x = −G(M0 + x)(nV )
2−2n

n , (V )x = ρ−1, x ∈ (0,M),

(2.10) ρ
∣∣
x=0

= σ, V
∣∣
x=0

=
an

n

for the unknown functions ρ(σ, x) and V (σ, x), where σ > 0 is the shooting parameter.
Thus, for each σ > 0, using the classical ODE theory, there exists a unique solution to
the problem (2.9)–(2.10) satisfying ρ(σ, x) > 0 for x ∈ [0,Mσ), where either ρ

∣∣
x=Mσ

=

0 and Mσ ∈ (0,M) or Mσ = M .
Clearly, if ρ∞ ∈ K is a solution to the problem (1.18)–(1.19), then ρ∞ satisfies

(2.9)–(2.10) for some σ0 > 0, and Mσ0 = M . We will show that it is possible only
for one value of σ. Using similar arguments as that in [7, section V.3], we obtain that
(∂σρ

γ , ∂σV ) is well defined and satisfies the linear Cauchy problem

(2.11)

A(∂σρ
γ)x = (2n− 2)G(M0 +x)(nV )

2−3n
n ∂σV, (∂σV )x = − 1

γ
ρ−γ−1∂σρ

γ , x ∈ [0,Mσ),

(2.12) ∂σρ
γ
∣∣
x=0

= 1, ∂σV
∣∣
x=0

= 0.

It is easy to see that

∂σρ
γ > 0, (∂σV )x < 0, and ∂σV < 0

hold on (0,M4), where either ∂σρ
γ
∣∣
x=M4

= 0 and M4 ∈ (0,Mσ) or M4 = Mσ. We
claim that only M4 = Mσ can occur.

Assume that M4 ∈ (0,Mσ). Letting φ = Aργ(∂σV )x + n
2n−2A∂σρ

γ(V )x, from
(2.9) and (2.11), we have

∫ M4

0

φdx =

{
Aργ∂σV +

n

2n− 2
A∂σρ

γV

}∣∣∣∣
M4

0

.
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By the estimates ρ(σ,M4) > 0, ∂σρ
γ
∣∣
x=M4

= 0, ∂σV
∣∣
x=M4

< 0 and the initial condi-

tions (2.10) and (2.12), we get

∫ M4

0

φdx < 0.

On the other hand, from (2.9) and (2.11), we have

φ = Aρ−1∂σρ
γ

(
n

2n− 2
− 1

γ

)
> 0, x ∈ (0,M4).

It is a contradiction.
Thus, we obtain

ρ(σ, x) > 0, ∂σρ(σ, x) > 0, x ∈ (0,Mσ),

and Mσ is nondecreasing on σ ∈ (0,∞). Therefore, for each fixed point x ∈ [0,Mb),
the function ρ(σ, x) is strictly increasing on σ ≥ b.

If there exists σ1 �= σ0 such that Mσ1
= Mσ0

= M and ρ(σ1, x) ∈ K, then

there exists min{σ0, σ1} < σ2 < max{σ0, σ1} such that 0 < ‖(M − x)−
1
γ (ρ(σ2, x) −

ρ(σ0, x))‖L∞ ≤ δ10. From Proposition 2.3, we have that ρ(σ2, x) = ρ(σ0, x) = ρ∞(x),
which is a contradiction. Thus, we finish the proof of Proposition 2.4.

Using the properties of the transformation (1.14) and Propositions 2.1–2.4, we
can immediately obtain the following proposition.

Proposition 2.5. Under the assumption (2.1), the Eulerian stationary problem

(1.12)–(1.13) has a unique solution (ρ∞, l∞) satisfying ρ∞(r) ∼ (ln∞−rn)
1

γ−1 , (ρ∞)r <
0, a < r < l∞, with l∞ < +∞.

Remark 2.1. The uniqueness of the solution in Proposition 2.5 means that if
(ρ∞1, l∞1) and (ρ∞2, l∞2) are two solutions to the Eulerian stationary problem (1.12)–

(1.13) with the same total mass M , and satisfy ρ∞i(r) ∼ (ln∞i− rn)
1

γ−1 , i = 1, 2, then
we have that (ρ∞1, l∞1) = (ρ∞2, l∞2).

3. Global existence. Using similar arguments as that in [3], we obtain the
following local existence and uniqueness result and omit the proof.

Theorem 3.1 (local result). Under the assumptions in Theorem 1.1, there is a
positive constant T1 > 0 such that the free boundary problem (1.15)–(1.17) admits a
unique weak solution (ρ, u, r)(x, t) on [0,M ] × [0, T1] in the sense that

ρ(x, t), u(x, t), r(x, t) ∈ L∞([0,M ] × [0, T1]) ∩ C1([0, T1];L
2([0,M ])),

ρθ+1∂x(rn−1u) ∈ L∞([0,M ] × [0, T1]) ∩ C
1
2 ([0, T1];L

2([0,M ])),

∂xr
n−1, ∂x(rn−2u) ∈ L∞([0, T1], L

1([0,M ])),

and the following equations hold:

∂tρ = −ρ2∂x(rn−1u), ρ(x, 0) = ρ0,

(3.1) ∂tr(x, t) = u(x, t), rn(x, t) = an + n

∫ x

0

ρ−1(y, t)dy,

(3.2) (rβ(ρθ)x)t = −θr1+β−n

2c1 + c2
ut −

θ

2c1 + c2

(
Arβ(ργ)x + r1+β−nf

)
,
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(2c1 + c2)ρ
1+θ(rn−1u)x

= Aργ + 2c1(n− 1)ρθ
u

r
+

∫ M

x

{
− ut

rn−1
+ 2c1(n− 1)ρθ

(u
r

)
x
− f

rn−1

}
dy,(3.3)

for almost all x ∈ [0,M ], any t ∈ [0, T1], where β = 2(n−1)c1θ
2c1+c2

,∫ ∞

0

∫ M

0

[uψt + (P − ρ(λ + 2μ)(rn−1u)x)(rn−1ψ)x

+ 2(n− 1)μ(rn−2uψ)x − f(x, r, t)ψ]dxdt +

∫ M

0

u0(x)ψ(x, 0)dx = 0(3.4)

for any test function ψ(x, t) ∈ C∞
0 ((0,M ] × [0, T1)). Furthermore, we have

(3.5)
N1

3
(1 − x)

1
γ ≤ ρ(x, t) ≤ 3N2(1 − x)

1
γ , (x, t) ∈ [0,M ] × [0, T1],

(3.6) (M − x)−
1
γ ρ(x, t) ∈ C([0, T1];L

∞([0,M ])),

(M − x)
γ−θ
2γ (ρθ)x, ρt, ut ∈ L∞([0, T1];L

2([0,M ])),

and

ρ
θ+1
2 uxt ∈ L2([0,M ] × [0, T1]), ρ∂xu ∈ L∞([0,M ] × [0, T1]).

Remark 3.1. From (1.15)1, (3.5), and ρ∂xu ∈ L∞
t,x, we have that (M −x)−

1
γ ∂tρ ∈

L∞
tx . Thus, (3.6) holds.

Assume the maximum existence time of the weak solution in Theorem 3.1 is
T ∗. In this section, under the small assumptions on the initial data, we will obtain
the following a priori estimates and prove that T ∗ = ∞. In the following, we may
assume that (ρ, u, r)(x, t) is suitably smooth since the following estimates are valid for
the solutions with the regularities indicated in Theorem 3.1 by using the Friedrichs
mollifier.

From (1.9), (1.18), and Proposition 2.1, we could easily obtain the following
lemma.

Lemma 3.1. Under the assumptions of Theorem 1.1, we have

(3.7) Aργ∞(x) =

∫ M

x

G
M0 + y

r2n−2
∞

dy,

(3.8) C−1(M − x)
1
γ ≤ ρ∞ ≤ C(M − x)

1
γ , r∞(x) ∈ [a,C],

and

(3.9)
d

dx
(Aργ∞(x)) = −G

M0 + x

r2n−2
∞

, C−1 ≤ (M − x)1−
1
γ
d

dx
ρ∞(x) ≤ C

for all x ∈ [0,M ].
Lemma 3.2. Under the assumptions of Theorem 1.1, we have

(3.10)

d

dt

∫ M

0

(
1

2
u2 +

Aργ−1

γ − 1
+

∫ r

a

G
M0 + x

sn−1
ds

)
dx

+

∫ M

0

{(
2

n
c1 + c2

)
ρ1+θ[∂x(rn−1u)]2 +

2(n− 1)

n
c1ρ

1+θ

(
rn−1ux − u

rρ

)2
}
dx

= −
∫ M

0

Δfudx, t ∈ [0, T ∗).
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Proof. Multiplying (1.15)2 by u, integrating the resulting equation over [0,M ],
and using integration by parts and the boundary conditions (1.17), we obtain

(3.11)

d

dt

∫ M

0

1

2
u2dx +

∫ M

0

{
(2c1 + c2)ρ

1+θ[∂x(rn−1u)]2 − 2c1(n− 1)ρθ∂x(rn−2u2)
}
dx

=

∫ M

0

Aργ∂x(rn−1u)dx−
∫ M

0

fudx.

From (1.15), we have

(3.12)

∫ M

0

Aργ∂x(rn−1u)dx = − d

dt

∫ M

0

A

γ − 1
ργ−1dx,

(3.13) −
∫ M

0

fudx = − d

dt

∫ M

0

∫ r

a

G
M0 + x

sn−1
dsdx−

∫ M

0

Δfudx,

and

(2c1 + c2)ρ
1+θ[∂x(rn−1u)]2 − 2c1(n− 1)ρθ∂x(rn−2u2)

=

(
2

n
c1 + c2

)
ρ1+θ[∂x(rn−1u)]2 +

2(n− 1)

n
c1ρ

1+θ

(
rn−1ux − u

rρ

)2

.(3.14)

From (3.11)–(3.14), we can immediately obtain (3.10).
Now, using the classical continuation method, we will obtain the estimate of

‖(M − x)−
1
γ (ρ− ρ∞)‖L∞ .

Claim 1. Under the assumptions of Theorem 1.1, for any T ∈ (0, T ∗), if

(3.15) I(t) = ‖g(·, t) − g∞‖L∞ ≤ 2ε1 ∀ t ∈ [0, T ],

where g(x, t) = (M − x)−
1
γ ρ(x, t) and g∞(x) = (M − x)−

1
γ ρ∞(x), then

(3.16) I(t) ≤ ε1 ∀ t ∈ [0, T ],

where

ε1 = ε0 + C10ε
θ
γ 2−N4−1

0 ,

and positive constants N4 and C10 are defined in Lemmas 3.6 and 3.8, respectively.
Using the results in Lemmas 3.3–3.8, we can finish the proof of Claim 1.
Lemma 3.3. Under the assumptions of Theorem 1.1 and (3.15), if ε1 is small

enough, then there exists a positive constant C1 = C1(G,A,M0,M, a, n, γ) such that

(3.17) C−1
1 (M − x)

1
γ ≤ ρ(x, t) ≤ C1(M − x)

1
γ ,

(3.18) r(x, t) ∈ [a,C1]

for all t ∈ [0, T ] and x ∈ [0,M ].
Proof. From (1.15)3, (3.15), and Lemma 3.1, we can easily obtain the estimate

(3.17) and (3.18), when 4ε1 < minx∈[0,M ] g∞.
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Lemma 3.4. Under the assumptions of Lemma 3.3, if ε1 is small enough, then
there exists a positive constant C2 = C2(G,A,M0,M, a, n, γ, θ, c1, c2) such that

(3.19)

∫ M

0

{
u2 + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx ≤ C2ε

2
0,

and

(3.20)

∫ t

0

‖u(·, s)‖2
L∞ds +

∫ t

0

∫ M

0

(
ρθ+1u2

x + ρθ−1u2
)
(x, s)dxds ≤ C2ε

2
0

for all t ∈ [0, T ].
Proof. From (2.6), (3.7), and (3.10), we have

(3.21)

d

dt

(∫ M

0

1

2
u2dx + S[V ] − S[V∞]

)

+

∫ M

0

{(
2

n
c1 + c2

)
ρ1+θ[∂x(rn−1u)]2 +

2(n− 1)

n
c1ρ

1+θ

(
rn−1ux − u

rρ

)2
}
dx

= −
∫ M

0

Δfudx,

where V∞ =
rn∞
n and V = rn

n . From (2.7), (3.17)–(3.18), and Proposition 2.2, we have

C−1

∫ M

0

(M − x)
γ−1
γ (g − g∞)2 + (r − r∞)2dx

≤ S[V ] − S[V∞] ≤ C

∫ M

0

(M − x)
γ−1
γ (g − g∞)2 + (r − r∞)2dx,(3.22)

when ‖(M − x)
1
γ (ρ−1 − ρ−1

∞ )‖L∞
x

+ ‖ 1
n (rn − rn∞)‖L∞

x
≤ C3ε1 ≤ δ9. From (1.24),

(3.17)–(3.18), and (3.21)–(3.22), we obtain∫ M

0

{
u2 + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx

+

∫ t

0

∫ M

0

{
ρθ+1u2

x + ρθ−1u2
}
dxds

≤ Cε20 + C

∫ t

0

f1(s)‖u(·, s)‖L∞ds.(3.23)

Since θ ∈ (0, γ − 1), we obtain

|u(x, t)| =

∣∣∣∣
∫ x

0

uxdy

∣∣∣∣ ≤ C

(∫ x

0

ρθ+1u2
xdy

) 1
2
(∫ x

0

ρ−θ−1dy

) 1
2

≤ C

(∫ x

0

ρθ+1u2
xdy

) 1
2
(∫ x

0

(M − y)−
θ+1
γ dy

) 1
2

≤ C

(∫ x

0

ρθ+1u2
xdy

) 1
2

(3.24)

and

(3.25) C

∫ t

0

f1(s)‖u(·, s)‖L∞ds ≤ 1

2

∫ t

0

∫ M

0

ρθ+1u2
xdyds + C2

∫ t

0

f2
1 dt.

From (1.23) and (3.23)–(3.25), we can immediately obtain (3.19)–(3.20).
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Lemma 3.5. Under the assumptions of Lemma 3.3, if ε1 is small enough, then
there exists a positive constant C4 = C4(G,A,M0,M, a, n, γ, θ, c1, c2) such that

(1 + t)α
∫ M

0

ρθ−1
∞ (g − g∞)2dx

+

∫ t

0

∫ M

0

(1 + s)α
[
ργ−1
∞ (g − g∞)2 + (r − r∞)2

]
dxds ≤ C4ε0(3.26)

for all t ∈ [0, T ], where α = − 5
8 .

Proof. Multiplying (1.15)2 by (1+ t)αr1−n( r
n

n − rn∞
n ), and integrating over [0,M ],

using integration by parts and the boundary conditions (1.17), we obtain

(3.27)

(1 + t)α
∫ M

0

[
A(ργ∞ − ργ)(ρ−1 − ρ−1

∞ ) + G(M0 + x)(r2−2n − r2−2n
∞ )

(
rn

n
− rn∞

n

)]
dx

= − (1 + t)α
∫ M

0

ut

rn−1

(
rn

n
− rn∞

n

)
dx− (1 + t)α

∫ M

0

Δfr1−n

(
rn

n
− rn∞

n

)
dx

+ (1 + t)α
∫ M

0

(2c1 + c2)ρ
1+θ∂x(rn−1u)(ρ−1

∞ − ρ−1)dx

+ (1 + t)α
∫ M

0

2c1(n− 1)ρθ
(
u

r

(
rn

n
− rn∞

n

))
x

dx :=

4∑
i=1

Bi.

We can rewrite the left-hand side (L.H.S.) of (3.27) as follows:

L.H.S. of (3.27) = (1 + t)α
∫ M

0

[
A(γ + O(ε1))ρ

γ+1
∞ (ρ−1 − ρ−1

∞ )2

−(2n− 2 + O(ε1))G(M0 + x)r2−3n
∞

(
rn

n
− rn∞

n

)2
]
dx.

Similar to (2.5), we have

(3.28) L.H.S. of (3.27) ≥ C5(1 + t)α
∫ M

0

[
ργ−1
∞ (g − g∞)2 + (r − r∞)

2
]
dx,

when ε1 ≤ δ10 is small enough.
Using (3.17)–(3.19), integration by parts, and Hölder’s inequality, we can estimate

Bi as follows:

(3.29)

B1 = − d

dt

∫ M

0

(1 + t)α
u

rn−1

(
rn

n
− rn∞

n

)
dx + α(1 + t)α−1

∫ M

0

u

rn−1

(
rn

n
− rn∞

n

)
dx

+ (1 + t)α
∫ M

0

u2

(
1

n
+

(n− 1)rn∞
nrn

)
dx

≤ − d

dt

∫ M

0

(1 + t)α
u

rn−1

(
rn

n
− rn∞

n

)
dx + C

∫ M

0

u2dx + Cε20(1 + t)α−1,
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(3.30) B2 ≤ Cε0(1 + t)αf1,

B3 = −2c1 + c2
θ

∫ M

0

(ρθ)t(1 + t)α
(

1

ρ∞
− 1

ρ

)
dy

= −2c1 + c2
θ

∫ M

0

∂th(ρ, ρ∞)(1 + t)αdx

= −2c1 + c2
θ

d

dt

∫ M

0

h(ρ, ρ∞)(1 + t)αdx +
α(2c1 + c2)

θ

∫ M

0

h(ρ, ρ∞)(1 + t)α−1dx,

(3.31)

where h(ρ, ρ∞) =
∫ ρ

ρ∞
θsθ−1( 1

ρ∞
− 1

s )ds ∼ ρθ−1
∞ (g − g∞)2 and

B4 ≤ C(1 + t)α
∫ M

0

[
ρθ|ux| + ρθ−1|u|

]
dx

≤ C(1 + t)α

[∫ M

0

(
ρθ+1u2

x + ρθ−1u2
)
dx

] 1
2
[∫ M

0

(M − x)
θ−1
γ

] 1
2

≤ C(1 + t)α

[∫ M

0

(
ρθ+1u2

x + ρθ−1u2
)
dx

] 1
2

,(3.32)

since γ + θ − 1 > 0. From (3.27)–(3.32), we get

d

dt

∫ M

0

(1 + t)α
{

u

rn−1

(
rn

n
− rn∞

n

)
+

2c1 + c2
θ

h(ρ, ρ∞)

}
dx

+C−1

∫ M

0

(1 + t)α−1ρθ−1
∞ (g − g∞)2 + (1 + t)α

{
ργ−1
∞

[
(g − g∞)2 + (r − r∞)2

]}
dx

≤ C(1 + t)α

[∫ M

0

ρθ+1
∞ u2

xdx + ‖u(·, t)‖2
L∞

] 1
2

+ Cε0(1 + t)αf1

+C

∫ M

0

u2dx + Cε20(1 + t)α−1.

And using (1.23), (3.17)–(3.20), and Hölder’s inequality, we can immediately obtain
(3.26).

Let ε2 ∈ (0,min{ 1
4 , γ−θ−1

γ−θ , γ−1
2(3γ−1)}) be a constant. Define {βj} and {αj} by

βj+1 =
βj

2 + 1
2 − ε2

4 , αj =
βj

2 − 1
2 − ε2

4 and α0 = α = − 5
8 , j = 0, 1, . . . . Let N4 be an

integer satisfying βN4 ∈ [1 − ε2, 1 − 3ε2
4 ) and αN4 ∈ (−ε2,− ε2

4 ). It is easy to see that

β0 = − 1
4 + ε2

2 < 0, αj ∈ [− 5
8 ,−

ε2
4 ) and βj ∈ (− 1

4 , 1 − 3ε2
4 ), j = 0, 1, . . . , N4. Then,

the following lemma can be proved by induction.
Lemma 3.6. Under the assumptions of Lemma 3.3, if ε1 is small enough, then

there exists a positive constant C7 = C7(G,A,M0,M, a, n, γ, θ, c1, c2) such that

(3.33)

∫ M

0

{
u2 + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx ≤ C7ε

21−N4

0 (1 + t)ε2−1,

(3.34)∫ t

0

(1+ s)1−ε2‖u(·, s)‖2
L∞ds+

∫ t

0

∫ M

0

(1+ s)1−ε2
(
ρθ+1u2

x + ρθ−1u2
)
dxds ≤ C7ε

21−N4

0 ,
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and

(3.35)∫ M

0

(M − x)
θ−1
γ

(1 + t)ε2
(g − g∞)2dx +

∫ t

0

∫ M

0

ργ−1
∞ (g − g∞)2 + (r − r∞)2

(1 + s)ε2
dxds ≤ C7ε

2−N4

0

for all t ∈ [0, T ].
Proof. The following estimates can be proved by induction:

(3.36)

∫ M

0

{
u2 + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx ≤ Cj,ε2ε

21−j

0 (1 + t)−βj ,

(3.37)∫ t

0

(1+s)βj‖u(·, s)‖2
L∞ds+

∫ t

0

∫ M

0

(1+s)βj
(
ρθ+1u2

x + ρθ−1u2
)
(x, s)dxds ≤ Cj,ε2ε

21−j

0 ,

and

(1 + t)αj

∫ M

0

ρθ−1
∞ (g − g∞)2dx

+

∫ t

0

∫ M

0

(1 + s)αj
[
ργ−1
∞ (g − g∞)2 + (r − r∞)2

]
dxds ≤ Cj,ε2ε

2−j

0(3.38)

for all t ≥ 0, where Cj,ε2 is a constant depending on j and ε2, j = 0, 1, . . . , N4.
From (3.19)–(3.20) and (3.26), we obtain that (3.36)–(3.38) hold with j = 0.

Now, suppose that (3.36)–(3.38) hold with j = k ≥ 0. To show (3.36)–(3.37) hold
with j = k + 1, from (3.21), we have

d

dt

{
(1 + t)βk+1

(∫ M

0

1

2
u2dx + S[V ] − S[V∞]

)}

+ (1 + t)βk+1

∫ M

0

(
2

n
c1 + c2

)
ρ1+θ[∂x(rn−1u)]2 +

2(n− 1)

n
c1ρ

1+θ

(
rn−1ux − u

rρ

)2

dx

= βk+1(1 + t)αk

(∫ M

0

1

2
u2(x, t)dx + S[V ] − S[V∞]

)
− (1 + t)βk+1

∫ M

0

Δfudx.

Integrating the above equality in [0, t], using (1.24), (3.17)–(3.20), (3.22), and (3.38)
with j = k and the fact that αk < 0, we obtain

(1 + t)βk+1

∫ M

0

{
u2(x, t) + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx

+

∫ t

0

∫ M

0

(1 + s)βk+1
{
ρθ+1u2

x + ρθ−1u2
}
dxds

≤ Cε2
−k

0 + C

∫ t

0

(1 + s)βk+1f1(s)‖u(·, s)‖L∞ds.(3.39)

From (1.23) and (3.25), we can immediately obtain (3.36)–(3.37) with j = k + 1.
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To show (3.38) with j = k + 1, from (3.27)–(3.28), we have

(1 + t)αk+1

∫ M

0

[
A(ργ∞ − ργ)(ρ−1 − ρ−1

∞ )

+G(M0 + x)(r2−2n − r2−2n
∞ )

(
rn

n
− rn∞

n

)]
dx

= −(1 + t)αk+1

∫ M

0

ut

rn−1

(
rn

n
− rn∞

n

)
dx− (1 + t)αk+1

∫ M

0

Δfr1−n

(
rn

n
− rn∞

n

)
dx

+ (1 + t)αk+1

∫ M

0

(2c1 + c2)ρ
1+θ∂x(rn−1u)(ρ−1

∞ − ρ−1)dx

+(1 + t)αk+1

∫ M

0

2c1(n− 1)ρθ
(
u

r

(
rn

n
− rn∞

n

))
x

dx :=

4∑
i=1

Ei,(3.40)

and

(3.41) L.H.S. of (3.40) ≥ C8(1 + t)αk+1

∫ M

0

[
ργ−1
∞ (g − g∞)2 + (r − r∞)

2
]
dx.

Similar to (3.29)–(3.32), applying the estimates (3.17)–(3.19), integration by parts,
Hölder’s inequality, and the fact that αk+1 < 0, we can estimate Ei as follows:

(3.42) E1 ≤ − d

dt

∫ M

0

(1+ t)αk+1
u

rn−1

(
rn

n
− rn∞

n

)
dx+C‖u‖2

L∞
x

+Cε20(1+ t)αk+1−1,

(3.43) E2 ≤ Cε0f1(1 + t)αk+1 ,

E3 = −2c1 + c2
θ

d

dt

∫ M

0

h(ρ, ρ∞)(1 + t)αk+1dx

+
αk+1(2c1 + c2)

θ

∫ M

0

h(ρ, ρ∞)(1 + t)αk+1−1dx,(3.44)

and

(3.45) E4 ≤ C(1 + t)−
1
2−

ε2
4

[
(1 + t)βk+1

∫ M

0

ρθ+1u2
xdx + ‖u(·, t)‖2

L∞

] 1
2

.

Using (1.23), (3.40)–(3.45), (3.36)–(3.37) with j = k + 1 and Hölder’s inequality, we
get ∫ M

0

(1 + t)αk+1ρθ−1
∞ (g − g∞)2dx +

∫ t

0

∫ M

0

(1 + s)αk+1−1ρθ−1
∞ (g − g∞)2dxds

+

∫ t

0

∫ M

0

(1 + s)αk+1
{
ργ−1
∞

[
(g − g∞)2 + (r − r∞)2

]}
dxds

≤ C(1 + t)αk+1

∫ M

0

|u||r − r∞|dx + C

∫ M

0

|u0||r0 − r∞|dx

+C

∫ t

0

[
f1(1 + s)αk+1 + ε20(1 + s)αk+1−1 + ‖u‖2

L∞
x

]
ds

+C

∫ t

0

(1 + s)−
1
2−

ε2
4

[
(1 + t)βk+1

(∫ M

0

ρθ+1u2
xdx + ‖u(·, t)‖2

L∞

)] 1
2

ds

≤ Cε2
−(k+1)

0(3.46)
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and finish the proof of (3.38) with j = k + 1. Thus, we show that (3.36)–(3.38) hold
for j = 0, 1, . . . , N4 and obtain (3.33)–(3.35).

From Lemma 3.6, we can obtain the following estimate of the weighted L2−norm
of g − g∞.

Lemma 3.7. Under the assumptions of Lemma 3.3, then there exists a positive
constant C9 = C9(G,A,M0,M, a, n, γ, θ, c1, c2) such that

(3.47)

∫ M

0

(M − x)
θ−1+(γ−θ)ε2

γ (g − g∞)2dx ≤ C9ε
2−N4

0 , t ∈ [0, T ].

Proof. Using (3.33), (3.35), and Hölder’s inequality, we have

∫ M

0

(M − x)
θ−1+(γ−θ)ε2

γ (g − g∞)2dx

≤ C

[∫ M

0

(1 + t)1−ε2(M − x)
γ−1
γ (g − g∞)2dx

]ε2[∫ M

0

(M − x)
θ−1
γ

(1 + t)ε2
(g − g∞)2dx

]1−ε2

≤ Cε2
−N4

0 .

Then, using a similar argument as that in [22], we can finish the proof of Claim
1 in the following lemma.

Lemma 3.8. Under the assumptions of Lemma 3.3, if ε0 is small enough, then
there exists a positive constant C10 = C10(G,A,M0,M, a, n, γ, θ, c1, c2) such that

(3.48) |g(x, t) − g∞(x)| ≤ C10ε
θ
γ 2−N4−1

0 for all (x, t) ∈ [0,M ] × [0, T ].

Proof. From (3.2), for any fixed x ∈ [0,M ], we have

I1(x, t) +
θ

2c1 + c2

∫ t

0

Arβ(x, τ)(ργ(x, τ) − ργ∞(x))dτ

= rβ0 (x)ρθ0(x) + I2(x, t), x ∈ [0,M ], t ∈ [0, T ],(3.49)

where

I1(x, t) = rβ∞(x)ρθ(x, t) − (rβ∞(x) − rβ(x, t))ρθ(x, t)

+

∫ M

x

β[(rβ−nρθ−1)(y, t) − (rβ−n
0 ρθ−1

0 )(y)]dy

− θ

2c1 + c2

∫ M

x

[(rβ−n+1u)(y, t) − (rβ−n+1
0 u0)(y)]dy

+
θ(β − n + 1)

2c1 + c2

∫ t

0

∫ M

x

rβ−nu2dydτ

and

I2(x, t)

= − θAβ

2c1 + c2

∫ t

0

∫ M

x

rβ−n ρ
γ − ργ∞

ρ
dydτ

+
θ

2c1 + c2

∫ t

0

∫ M

x

{
rβG(M0 + y)(r2−2n − r2−2n

∞ ) + rβ−n+1Δf
}
dydτ.
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Using (3.17)–(3.18), (3.47), Hölder’s inequality, and the condition ε2 < γ−θ−1
γ−θ ,

i.e., θ+1+(γ−θ)ε2
γ < 1, we have

|(r − r∞)(x)| ≤ C|rn − rn∞|

≤ C

∫ x

0

|ρ−1 − ρ−1
∞ |dy ≤ C

∫ x

0

(M − y)−
1
γ |g − g∞|dy

≤ C

(∫ x

0

(M − y)
θ−1+(γ−θ)ε2

γ (g − g∞)2dy

) 1
2
(∫ x

0

(M − y)−
θ+1+(γ−θ)ε2

γ dy

) 1
2

≤ Cε2
−N4−1

0(3.50)

and

(3.51)∫ M

x

|ρθ−1 − ρθ−1
∞ |dy ≤ C

∫ M

x

(M − y)
θ−1
γ |g − g∞|dy

≤ C

(∫ M

x

(M − y)
θ−1+(γ−θ)ε2

γ (g − g∞)2dy

) 1
2
(∫ M

x

(M − y)
2θ
γ − θ+1+(γ−θ)ε2

γ dy

) 1
2

≤ Cε2
−N4−1

0 (M − x)
θ
γ .

From the fact θ ∈ (0, γ
2 ] and the estimate (3.18)–(3.19), we have∣∣∣∣∣− θ

2c1 + c2

∫ M

x

[(rβ−n+1u)(y, t) − (rβ−n+1
0 u0)(y)]dy

∣∣∣∣∣
≤ C(M − x)

1
2 (‖u‖L2

x
+ ‖u0‖L2

x
)

≤ Cε2
−N4−1

0 (M − x)
θ
γ , x ∈ [0,M ].(3.52)

Thus, from (1.23), (3.17)–(3.20), and (3.50)–(3.52), we obtain

(3.53) |I1(x, t) − rβ∞ρθ| ≤ C1,1(M − x)
θ
γ ε2

−N4−1

0 ,

and

(3.54) |I2(x, t1) − I2(x, t2)| ≤ C1,2(M − x)ε2
−N4−1

0 |t2 − t1|, x ∈ [0,M ].

Claim 2. For any fixed x ∈ [0,M ], we have

I1(x, t) ≥ min

{
I1(x, 0), rβ∞

(
ργ∞ − C1,2

C1,3
ε2

−N4−1

0 (M − x)

) θ
γ

− C1,1ε
2−N4−1

0 (M − x)
θ
γ

}

:= M1,1,

where C1,3 := Aθaβ

2c1+c2
≤ Aθrβ

2c1+c2
.

Proof of Claim 2. If not, there exists t1,1 > 0 such that I1(x, t1,1) < M1,1, then
we can find t1,2 ∈ (0, t1,1) such that I1(x, t1,2) = M1,1 and I1(x, t) < M1,1 for all
t ∈ (t1,2, t1,1). From (3.54), we have

I1(x, t1,1)−I1(x, t1,2)+
Aθ

2c1 + c2

∫ t1,1

t1,2

rβ(ργ−ργ∞) ≥ −C1,2ε
2−N4−1

0 (M−x)(t1,1−t1,2).
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From (3.53), we have

ρθ(x, t) = r−β
∞ (I1(x, t) − (I1(x, t) − rβ∞ρθ))

≤ r−β
∞ (M1,1 + C1,1ε

2−N4−1

0 (M − x)
θ
γ ) ≤

(
ργ∞ − C1,2

C1,3
ε2

−N4−1

0 (M − x)

) θ
γ

and

ργ ≤ ργ∞ − C1,2

C1,3
ε2

−N4−1

0 (M − x),

then I1(x, t1,1) ≥ I1(x, t1,2). It is a contradiction. Thus, Claim 2 holds.
Similarly, we can obtain the following claim.
Claim 3. For any fixed x ∈ [0,M ], we have

I1(x, t) ≤ max

{
I1(x, 0), rβ∞

(
ργ∞ +

C1,2

C1,4
ε2

−N4−1

0 (M − x)

) θ
γ

+ C1,1ε
2−N4−1

0 (M − x)
θ
γ

}

:= M1,2,

where C1,4 is a positive constant satisfying C1,4 ≥ Aθrβ

2c1+c2
.

From Claims 2 and 3, we have

|g(x, t) − g∞(x)| ≤ C1,5ε
θ
γ 2−N4−1

0 , x ∈ [0,M ], t ∈ [0, T ],

when ε0 ≤ δ11, with a small positive constant δ11(G,A,M0,M, a, n, γ, θ, c1, c2).
Using the results in Lemmas 3.3–3.8, we have that there exists ε0 satisfying

(3.55) 4ε1 < min
x∈[0,M ]

g∞, C3ε1 ≤ δ9, ε1 ≤ δ10 and ε0 ≤ δ11

such that Claim 1 holds with

ε1 = ε0 + C10ε
θ
γ 2−N4−1

0 .

From (3.6) and Claim 1, using the classical continuation method, we can easily obtain
the following lemma.

Lemma 3.9. Under the assumptions of Theorem 1.1, we obtain that (3.17)–(3.18),
(3.33)–(3.35), (3.48), and

(3.56) |r(x, t) − r∞(x)| ≤ C11ε
θ
γ 2−N4−1

0

hold for all x ∈ [0,M ] and t ∈ [0, T ∗).
Proof. Let A = {T ∈ [0, T ∗) | I(t) ≤ ε1 for all t ∈ [0, T ]}. Since I(0) ≤ ε0 < ε1

and I(t) ∈ C([0, T ∗)), then there exists a constant T0 > 0 such that I(t) ≤ ε1 for all
t ∈ [0, T0]. Thus, A is not empty and relatively closed in [0, T ∗). To show that A
is also relatively open in [0, T ∗), and hence the entire interval, it therefore suffices to
show that the weaker bound

I(t) ≤ 2ε1, for all t ∈ [0, T ′] ⊂ [0, T ∗),

implies I(t) ≤ ε1 for all t ∈ [0, T ′]. From Claim 1, we have that A = [0, T ∗).
Then, from Lemmas 3.3–3.8, we obtain that (3.17)–(3.18), (3.33)–(3.35), (3.48),

and (3.56) hold for all x ∈ [0,M ] and t ∈ [0, T ∗).
We will prove an estimate in weighted L2([0,M ] × [0, T ∗))-norm of the function

g − g∞.
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Lemma 3.10. Under the assumptions of Theorem 1.1, we obtain

(3.57)

∫ t

0

∫ M

0

(1 + s)−ε2(g − g∞)2dxds ≤ C,

where t ∈ [0, T ∗).
Proof. From (1.15), we have

A(ργ − ργ∞) =

∫ M

x

(
ut

rn−1
+

Δf

rn−1

)
dy +

∫ M

x

G(M0 + y)(r2−2n − r2−2n
∞ )dy

+ (2c1 + c2)ρ
θ+1(rn−1u)x − 2c1(n− 1)ρθ

u

r
− 2c1(n− 1)

∫ M

x

ρθ
(u
r

)
x
dy.

Multiplying the above equality by (1+ t)−ε2(M −x)−2(ργ − ργ∞), and integrating the
resulting equation over [0,M ] × [0, t], we obtain

(3.58)∫ t

0

∫ M

0

A(1 + s)−ε2(M − x)−2(ργ − ργ∞)2dxds

=

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)

∫ M

x

ut

rn−1
dydxds

+

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)

∫ M

x

Δf

rn−1
dydxds

+

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)

∫ M

x

G(M0 + y)(r2−2n − r2−2n
∞ )dydxds

+

∫ t

0

∫ M

0

(2c1 + c2)(1 + s)−ε2(M − x)−2(ργ − ργ∞)ρθ+1(rn−1u)xdxds

−
∫ t

0

∫ M

0

2c1(n− 1)(1 + s)−ε2(M − x)−2(ργ − ργ∞)ρθ
u

r
dxds

−
∫ t

0

∫ M

0

2c1(n− 1)(1 + s)−ε2(M − x)−2(ργ − ργ∞)

∫ M

x

ρθ
(u
r

)
x
dydxds

:=
6∑

i=1

Fi.

Using (1.15), (1.23), Lemma 3.9, integration by parts, and the Cauchy–Schwarz
inequality, we can estimate Fi as follows.

(3.59)

F1 =

{∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)

∫ M

x

u

rn−1
dydx

}∣∣∣∣∣
t

0

+

∫ t

0

∫ M

0

ε2(1 + s)−ε2−1(M − x)−2(ργ − ργ∞)

∫ M

x

u

rn−1
dydxds

+

∫ t

0

∫ M

0

γ(1 + s)−ε2(M − x)−2ργ+1(rn−1u)x

∫ M

x

u

rn−1
dydxds

+

∫ t

0

∫ M

0

(n− 1)(1 + s)−ε2(M − x)−2(ργ − ργ∞)

∫ M

x

u2

rn
dydxds
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≤ C‖g − g∞‖L∞
xt

(∫ M

0

u2dx

) 1
2
(∫ M

0

(M − x)−
1
2 dx

) 1
2

+ C

+C

(∫ t

0

∫ M

x

ργ−1
∞

(1 + s)ε2
(g − g∞)2dxds

) 1
2

(∫ t

0

‖u(·, s)‖2
L∞ds

∫ M

0

(M − x)−
γ−1
γ dx

) 1
2

+C

(∫ t

0

∫ M

x

ρθ+1(rn−1u)2xdxds

) 1
2
(∫ t

0

‖u(·, s)‖2
L∞ds

∫ M

0

(M − x)−
θ−1
γ dx

) 1
2

+C‖g − g∞‖L∞
xt

∫ t

0

‖u(·, s)‖2
L∞ds

≤ C,

(3.60) F2 ≤ C

(∫ t

0

(1 + t)−1−ε2

) 1
2
(∫ t

0

(1 + t)f2
1 dt

) 1
2

≤ C,

|r(x, t) − r∞(x)|

≤ C

∫ x

0

ρ−1
∞ |g − g∞|dy ≤ C

(∫ x

0

ργ−1
∞ (g − g∞)2dy

) 1
2
(∫ x

0

ρ−γ−1
∞ dy

) 1
2

≤ C(M − x)−
1
2γ

(∫ M

0

ργ−1
∞ (g − g∞)2dx

) 1
2

,(3.61)

F3 ≤ C

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2|ργ − ργ∞|

×
(∫ M

0

ργ−1
∞ (g − g∞)2dz

) 1
2 ∫ M

x

(M − y)−
1
2γ dydx

≤ A

4

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)2dxds

+C

∫ t

0

∫ M

0

(1 + s)−ε2ργ−1
∞ (g − g∞)2dxds

∫ M

0

(M − z)−
1
γ dz

≤ A

4

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)2dxds + C,(3.62)

F4 = −2c1 + c2
θ

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−2(ργ − ργ∞)(ρθ)tdxds

= −2c1 + c2
θ

{
(1 + s)−ε2

∫ M

0

(M − x)−2

(
θ

γ + θ
ργ+θ − ργ∞ρθ

)
dx

}∣∣∣∣∣
t

0

− ε2(2c1 + c2)

θ

∫ t

0

∫ M

0

(1 + s)−ε2−1(M − x)−2

(
θ

γ + θ
ργ+θ − ργ∞ρθ

)
dx

≤ C‖g − g∞‖L∞
t,x

∫ M

0

(M − x)
θ
γ −1dx

(
1 +

∫ t

0

(1 + s)−1−ε2ds

)
+ C

≤ C,(3.63)



GLOBAL BEHAVIOR OF NAVIER–STOKES EQUATIONS 893

F5 ≤ C

∫ t

0

∫ M

0

(1 + s)−ε2‖u(·, t)‖L∞(M − x)
θ
γ −1dxds

≤ C

{∫ t

0

(1 + s)−1−ε2ds

} 1
2
{∫ t

0

(1 + s)1−ε2‖u(·, t)‖2
L∞ds

} 1
2

≤ C(3.64)

and

(3.65)

F6 ≤ C

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−1

∫ M

x

(
|ρθux| + |ρθ−1u|

)
dydxds

≤ C

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)−1

[∫ M

x

(ρθ+1u2
x + ρθ−1u2)dy

] 1
2
[∫ M

x

ρθ−1dy

] 1
2

dxds

≤ C

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)
θ−1
2γ − 1

2

[∫ M

x

(
ρθ+1u2

x + ρθ−1u2
)
dy

] 1
2

dxds

≤ C

[∫ t

0

∫ M

0

(1 + s)1−ε2
(
ρθ+1u2

x + ρθ−1u2
)
dxds

] 1
2 [∫ t

0

(1 + s)−1−ε2dt

] 1
2

≤ C.

From (3.58)–(3.65), we can immediately get (3.57).
Lemma 3.11. Under the assumptions of Theorem 1.1, we obtain

(1 + t)−ε2

∫ M

0

(M − x)1−
θ
γ (ρθ − ρθ∞)2x(x, t)dx

+

∫ t

0

∫ M

0

(1 + s)−ε2(M − x)2−
2θ
γ (ρθ − ρθ∞)2x(x, s)dxds ≤ C(3.66)

for all t ∈ [0, T ∗).
Proof. From (3.2), we have

∂t

[
θ

2c1 + c2
r1+β−nu + rβ(ρθ)x − rβ∞(ρθ∞)x

]

+
Aγργ−θ

2c1 + c2

[
θ

2c1 + c2
r1+β−nu + rβ(ρθ)x − rβ∞(ρθ∞)x

]

=
Aγθ

(2c1 + c2)2
ργ−θr1+β−nu +

θ(1 + β − n)

2c1 + c2
rβ−nu2 − θ

2c1 + c2
r1+β−nΔf

− θ

2c1 + c2

(
rβ

G(M0 + x)

r2n−2
+ rβ∞

ργ−θ

ργ−θ
∞

(Aργ∞)x

)
.(3.67)

Let H = θ
2c1+c2

r1+β−nu+ rβ(ρθ)x − rβ∞(ρθ∞)x. Multiplying (3.67) by (1 + t)−ε2(M −
x)1−

θ
γ H, integrating the resulting equation over [0,M ], and using the Cauchy–Schwarz
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inequality, we obtain

d

dt

∫ M

0

(1 + t)−ε2(M − x)1−
θ
γ H2dx + C13

∫ M

0

(1 + t)−ε2(M − x)2−
2θ
γ H2dx

≤ C

∫ M

0

(1 + t)−ε2(M − x)1−
θ
γ

(
(M − x)1−

θ
γ |Hu| + |u2H| + |ΔfH|

)
dx

+

∫ M

0

(1 + t)−ε2(M − x)1−
θ
γ

∣∣∣∣rβGM0 + x

r2n−2
+

ργ−θrβ∞

ργ−θ
∞

(Aργ∞)x

∣∣∣∣ |H|dx

≤ C13

4

∫ M

0

(1 + t)−ε2(M − x)2−
2θ
γ H2dx + C‖u(·, t)‖2

L∞ + C‖u(·, t)‖2
L∞‖u(·, t)‖2

L2

+Cf2
1 + C

∫ M

0

(1 + t)−ε2

∣∣∣∣rβGM0 + x

r2n−2
+

ργ−θrβ∞

ργ−θ
∞

(Aργ∞)x

∣∣∣∣
2

dx.(3.68)

Here, we use the estimates (3.17)–(3.18) and the condition θ ∈ (0, γ − 1). From (3.9)
and (3.17)–(3.18), we have

∫ M

0

(1 + t)−ε2

∣∣∣∣rβGM0 + x

r2n−2
+

ργ−θrβ∞

ργ−θ
∞

(Aργ∞)x

∣∣∣∣
2

dx

=

∫ M

0

(1 + t)−ε2

∣∣∣∣∣rβGM0 + x

r2n−2
−G

(ργ−θrβ∞)(M0 + x)

(ργ−θ
∞ )(r2n−2

∞ )

∣∣∣∣∣
2

dx

≤ C

∫ M

0

(1 + t)−ε2
[
(r − r∞)2 + (g − g∞)2

]
dx.(3.69)

From (3.33) and (3.68)–(3.69), we obtain

d

dt

∫ M

0

(1 + t)−ε2(M − x)1−
θ
γ H2dx +

C13

2

∫ M

0

(1 + t)−ε2(M − x)2−
2θ
γ H2dx

≤ C

∫ M

0

(1 + t)−ε2
(
(r − r∞)2 + (g − g∞)2

)
dx + C‖u(·, t)‖2

L∞ + Cf2
1 .(3.70)

From (A2), (1.23), (3.33)–(3.35), (3.56)–(3.57), and (3.70), we can immediately obtain
(3.66).

Lemma 3.12. Under the assumptions of Theorem 1.1, we obtain

(3.71)

(1 + t)1−ε2

∫ M

0

(
ρθ−1u2 + ρθ+1u2

x

)
(x, t)dx +

∫ t

0

∫ M

0

(1 + s)1−ε2u2
t (x, s)dxds ≤ C,

(3.72) ‖u(·, t)‖L∞ ≤ C(1 + t)−
1
2+

ε2
2

for all t ∈ [0, T ∗).
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Proof. Multiplying (1.15)2 by (1 + t)1−ε2ut, integrating the resulting equation
over [0,M ]× [0, t], and using integration by parts and the boundary conditions (1.17),
we obtain

(3.73)∫ t

0

∫ M

0

(1 + s)1−ε2u2
t (x, s)dxds

=

∫ t

0

∫ M

0

A(1 + s)1−ε2ργ∂x(rn−1ut)dxds

−
∫ t

0

∫ M

0

(2c1 + c2)(1 + s)1−ε2ρ1+θ∂x(rn−1u)∂x(rn−1ut)dxds

+

∫ t

0

∫ M

0

2c1(n− 1)(1 + s)1−ε2ρθ∂x(rn−2uut)dxds−
∫ t

0

∫ M

0

(1 + s)1−ε2futdxds

:=

4∑
i=1

Hi.

Using (A3), (1.23), (3.17)–(3.18), (3.33)–(3.34), and the Cauchy–Schwarz inequality,
we obtain

H2 + H3

=

{
(1 + s)1−ε2

∫ M

0

[
−2c1 + c2

2
ρ1+θ[∂x(rn−1u)]2

+ c1(n− 1)ρθ∂x(rn−2u2)

]
dx

}∣∣∣∣∣
t

0

+

∫ t

0

∫ M

0

(2c1 + c2)(1 − ε2)

2
(1 + s)−ε2ρ1+θ(rn−1u)2xdxds

−
∫ t

0

∫ M

0

c1(n− 1)(1 − ε2)(1 + s)−ε2ρθ∂x(rn−2u2)dxds

+

∫ t

0

∫ M

0

(1 + s)1−ε2

{
(2c1 + c2)(n− 1)ρ1+θ∂x(rn−1u)∂x(rn−2u2)

− (2c1 + c2)

2
(1 + θ)ρ2+θ[∂x(rn−1u)]3 + 2θc1(n− 1)ρθ+1u

r
[∂x(rn−1u)]2

− θc1n(n− 1)ρθ
u2

r2
∂x(rn−1u) + 2nc1(n− 1)(n− 2)ρθ−1u

3

r3

− 3c1(n− 1)(n− 2)ρθ
u2

r2
∂x(rn−1u)

}
dxds

≤ C + C

∫ t

0

(
‖u‖L∞

x
+ ‖ρ(rn−1u)x‖L∞

x

)
(1 + s)1−ε2

∫ M

0

[
ρ1+θ(rn−1u)2x + ρθ−1u2

]
dxds

−C14(1 + t)1−ε2

∫ M

0

[ρ1+θ(rn−1u)2x + ρθ−1u2]dx,(3.74)
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H1 =

{
(1 + s)1−ε2

∫ M

0

Aργ∂x(rn−1u)dx

}∣∣∣∣∣
t

0

+

∫ t

0

∫ M

0

Aγ(1 + s)1−ε2ργ+1[∂x(rn−1u)]2dxds

−
∫ t

0

∫ M

0

2A(n− 1)(1 + s)1−ε2ργ
u

r
∂x(rn−1u)dxds

+

∫ t

0

∫ M

0

An(n− 1)(1 + s)1−ε2ργ−1u
2

r2
dxds

−
∫ t

0

∫ M

0

A(1 − ε2)(1 + s)−ε2ργ∂x(rn−1u)dxds

≤ (1 + s)1−ε2

∫ M

0

Aργ∂x(rn−1u)dx + C,(3.75)

and

H4 = −
{

(1 + s)1−ε2

∫ M

0

G
u(M0 + x)

rn−1
dx

}∣∣∣∣∣
t

0

−
∫ t

0

∫ M

0

(1 + s)1−ε2Δfutdxds

+ (1 − ε2)

∫ t

0

∫ M

0

(1 + s)−ε2
Gu(M0 + x)

rn−1
dxds

+

∫ t

0

∫ M

0

(1 − n)(1 + s)1−ε2G(M0 + x)r−nu2dxds

≤ −(1 + s)1−ε2

∫ M

0

G
u(M0 + x)

rn−1
dx + C +

1

2

∫ t

0

∫ M

0

(1 + s)1−ε2u2
tdxds.(3.76)

Using (3.17)–(3.18), (3.24), (3.33), integration by parts, and the Cauchy–Schwarz
inequality, we obtain

(3.77)

(1 + s)1−ε2

∫ M

0

Aργ∂x(rn−1u)dx− (1 + s)1−ε2

∫ M

0

G
u(M0 + x)

rn−1
dx

= (1 + s)1−ε2

∫ M

0

(
A(ργ − ργ∞)∂x(rn−1u) −Grn−1u(M0 + x)(r2−2n − r2−2n

∞ )
)
dx

≤ C14

4
(1 + t)1−ε2

∫ M

0

ρ1+θ(rn−1u)2xdx + C.

From (3.73)–(3.77), we can obtain

(1 + t)1−ε2

∫ M

0

[
ρ1+θ(rn−1u)2x + ρθ−1u2

]
dx +

∫ t

0

∫ M

0

(1 + s)1−ε2u2
tdxds

≤ C + C

∫ t

0

(
‖u‖L∞

x
+ ‖ρ(rn−1u)x‖L∞

x

)
(1 + s)1−ε2

×
∫ M

0

[
ρ1+θ(rn−1u)2x + ρθ−1u2

]
dxds.(3.78)
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From (3.3), we have

ρ(rn−1u)x =
1

(2c1 + c2)ρθ

{
Aργ + 2c1(n− 1)ρθ

u

r

+

∫ M

x

[
− ut

rn−1
+ 2c1(n− 1)ρθ

(u
r

)
x
− f

rn−1

]
dy

}
.

Using conditions θ ∈ (0, γ
2 ] ∩ (0, γ − 1), (1.23), estimates (3.17)–(3.20), and Hölder’s

inequality, we conclude that

(3.79) ‖ρ∂x(rn−1u)‖L∞
x

≤ C + C

(
‖u(·, t)‖2

L∞ +

∫ M

0

[
ρ1+θ(rn−1u)2x + u2

t

]
dx

) 1
2

.

Using (3.24), (3.34), (3.78)–(3.79), and the Cauchy–Schwarz inequality, we can obtain

(1 + t)1−ε2

∫ M

0

[
ρ1+θ(rn−1u)2x + ρθ−1u2

]
dx +

∫ t

0

∫ M

0

(1 + s)1−ε2u2
tdxds

≤ C + C

∫ t

0

(∫ M

0

(1 + s)1−ε2
[
ρ1+θ(rn−1u)2x + ρθ−1u2

]
dx

)2

ds.

Using Gronwall’s inequality and the estimate (3.34), we can immediately get (3.71).
From (3.17), (3.71), and the fact θ ∈ (0, γ − 1), we can obtain

|u(x, t)| ≤
∣∣∣∣
∫ x

0

uxdy

∣∣∣∣ ≤ C

(∫ x

0

ρθ+1u2
xdy

) 1
2
(∫ x

0

(M − y)−
θ+1
γ dy

) 1
2

≤ C(1 + t)−
1
2+

ε2
2 , (x, t) ∈ [0,M ] × [0, T ∗).

Lemma 3.13. Under the assumptions of Theorem 1.1, we obtain

(3.80)

∫ M

0

u2
t (x, t)dx +

∫ t

0

∫ M

0

[
ρθ+1u2

xt + ρθ−1u2
t

]
dxds ≤ C11,

(3.81) ‖ρ(rn−1u)x(·, t)‖L∞ ≤ C11

for all t ∈ [0, T ∗).
Proof. We differentiate the equation (1.15)2 with respect to t, multiply it by ut,

and integrate it over [0,M ] × [0, t] using the boundary conditions (1.17), then derive

(3.82)∫ M

0

1

2
u2
tdx

=

∫ M

0

1

2
u2
t (x, 0)dx−

∫ t

0

∫ M

0

[
(2c1 + c2)ρ

1+θ∂x(rn−1u) −Aργ − 2c1(n− 1)ρθ
u

r

]

× ∂x((n− 1)rn−2uut)dxds−
∫ t

0

∫ M

0

∂t

[
(2c1 + c2)ρ

1+θ∂x(rn−1u) −Aργ

− 2c1(n− 1)ρθ
u

r

]
∂x(rn−1ut)dxds +

∫ t

0

∫ M

0

2c1(n− 1)∂t

(
rn−1ρθ∂x

(u
r

))
utdxds
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−
∫ t

0

∫ M

0

ftutdxds

:=
5∑

i=1

Ji.

From (A2)–(A3), we have

J1 ≤ C

(∥∥∥∥((2c1 + c2)ρ
θ+1
0 (rn−1

0 u0)x
)
x
− 2c1(n− 1)

u0

r0
(ρθ0)x

∥∥∥∥
L2

+‖(ργ0)x‖L2 + ‖f(x, r0, 0)‖L2)
2

≤ C.(3.83)

From (3.17)–(3.20) and the Cauchy–Schwarz inequality, we get

J3 + J4

= −
∫ t

0

∫ M

0

[
(2c1 + c2)ρ

1+θ(rn−1ut)
2
x − 2c1(n− 1)ρθ(rn−2u2

t )x
]
dxds

+

∫ t

0

∫ M

0

{
(2c1 + c2)(1 + θ)ρθ+2[∂x(rn−1u)]2 − (n− 1)(2c1 + c2)ρ

1+θ∂x(rn−2u2)

−γργ+1∂x(rn−1u) − 2c1(n− 1)θρθ+1∂x(rn−1u)
u

r
− 2c1(n− 1)ρθ

u2

r2

}

×
[
(n− 1)

ut

rρ
+ rn−1utx

]
dxds + 2c1(n− 1)

∫ t

0

∫ M

0

{
(n− 1)rn−2uρθ

(u
r

)
x
ut

− θrn−1ρθ+1(rn−1u)x

(u
r

)
x
ut − rn−1ρθ

(
u2

r2

)
x

ut

}
dxds

≤ −C15

∫ t

0

∫ M

0

(ρθ+1u2
xt + ρθ−1u2

t )dxds + C

+C

∫ t

0

(
‖u‖2

L∞
x

+ ‖ρ(rn−1u)x‖2
L∞

x

)∫ M

0

[
ρθ+1u2

x + ρθ−1u2
]
dxds.(3.84)

From (1.11), (3.17)–(3.20), and the Cauchy–Schwarz inequality, we obtain

J2 ≤ C15

8

∫ t

0

∫ M

0

(
ρθ−1u2

t + ρθ+1u2
xt

)
dxds + C

+C

∫ t

0

(
‖u‖2

L∞
x

+ ‖ρ(rn−1u)x‖2
L∞

x

)∫ M

0

[
ρθ+1u2

x + ρθ−1u2
]
dxds(3.85)

and

J5 ≤ C15

8

∫ t

0

∫ M

0

ρθ−1u2
tdxds

+C

∫ t

0

∫ M

0

(G(M0 + x)r−n|u| + |∂rΔfu| + |∂tΔf |)2ρ1−θdxds

≤ C15

8

∫ M

0

rα−2u2
tdxds + C.(3.86)
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From (3.82)–(3.86), we have

∫ M

0

u2
t (x, t)dx +

∫ t

0

∫ M

0

[
ρθ+1u2

xt + ρθ−1u2
t

]
dxds

≤ C + C

∫ t

0

(
‖u‖2

L∞
x

+ ‖ρ(rn−1u)x‖2
L∞

x

)∫ M

0

[
ρθ+1u2

x + ρθ−1u2
]
dxds.(3.87)

From (3.71)–(3.72) and (3.79), we have

(3.88) ‖ρ∂x(rn−1u)‖L∞
x

≤ C + C‖ut‖L2
x
.

From (3.20), (3.71)–(3.72), and (3.87)–(3.88), we obtain

∫ M

0

u2
t (x, t)dx +

∫ t

0

∫ M

0

[
ρθ+1u2

xt + ρθ−1u2
t

]
dxds

≤ C + C

∫ t

0

∫ M

0

[
ρθ+1u2

x + ρθ−1u2
]
dx‖ut‖2

L2
x
ds.

Using Gronwall’s inequality and the estimate (3.20), we can immediately obtain
(3.80)–(3.81).

Proof of existence and uniqueness. If T ∗ < ∞, from Lemmas 3.9–3.13, we
have, for all t ∈ [0, T ∗),

C−1(M − x)1/γ ≤ ρ(x, t) ≤ C(M − x)1/γ , x ∈ [0,M ],

∫ M

0

(M − x)1−
θ
γ (ρθ)2xdx ≤ C,

∫ M

0

(ργ)2xdx ≤ C,

∫ M

0

u2 + (M − x)
θ+1
γ u2

xdx ≤ C, u(0, t) = 0

and ∫ M

0

{(
(2c1 + c2)ρ

θ+1(rn−1u)x
)
x
− 2c1(n− 1)

u

r
∂xρ

θ
}2

dx ≤ C.

Thus, from Theorem 3.1, there exists T2 > 0 such that the free boundary problem
(1.15)–(1.17) admits a unique weak solution (ρ2, u2, r2)(x, t) on [0,M ]× [T ∗− T2

2 , T ∗+
T2

2 ], with initial data (ρ, u, r)(x, T ∗ − T2

2 ). Using the uniqueness result in Theorem
3.1, we obtain that

(ρ̃, ũ, r̃)(x, t) =

{
(ρ, u, r)(x, t), t ∈ [0, T ∗ − T2

2 ],
(ρ2, u2, r2)(x, t), t ∈ [T ∗ − T2

2 , T ∗ + T2

2 ],

is a solution of the system (1.15)–(1.17), which is in contradiction with the definition
of T ∗. Thus, we have that T ∗ = ∞. From Lemmas 3.9–3.13, we can show that
the global weak solution satisfies the regularity conditions (1.25)–(1.26) and (1.28) in
Theorem 1.1.

Remark 3.2. The uniqueness of the solution of Theorem 3.1 is obtained by the
energy method. Let (ui, ρi, ri), i = 1, 2, be two solutions of the system (1.15)–(1.17)
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satisfying the regularity conditions in Theorem 1.1. Using similar arguments as that
in the uniqueness part in [3], we can obtain, for all T > 0,

d

dt

∫ M

0

(
w2 + ρ1−θ

1 ρ2θ−4
2 �2 + ρθ1ρ

−1
2 R2

)
dx

+C−1

∫ M

0

ρ1+θ
1

(
ρ1r

2n−2
1 (∂xw)

2
+

w2

r2
1ρ1

)
dx

≤ C

∫ M

0

(
w2 + ρ1−θ

1 ρ2θ−4
2 �2 + ρθ1ρ

−1
2 R2

)
dx, t ∈ [0, T ],

where (w, �,R) = (u1 − u2, ρ1 − ρ2, r1 − r2). Using Gronwall’s inequality, we could
obtain that (u1, ρ1, r1) = (u2, ρ2, r2), a.e. (x, t) ∈ [0,M ] × [0, T ].

4. Further decay result.
Lemma 4.1. Let ν be a positive constant satisfying ν < min{1, 2γ−2

γ+θ }. Under the
assumptions of Theorem 1.1, we obtain

(4.1)
∥∥∥ρ γ+θ

2 (·, t) − ρ
γ+θ
2∞ (·)

∥∥∥
L∞

≤ C(1 + t)−
1
4+

ε2
2 ,

and

(4.2) ‖r(·, t) − r∞(·)‖L∞ ≤ Cν(1 + t)−
1
4ν+

ε2ν
2

for all t ≥ 0, where Cν is a positive constant depending on ν.
Proof. From (3.48), (3.56), and (3.66), we have

(4.3)

∫ M

0

(
ρ

γ+θ
2 − ρ

γ+θ
2∞

)2

x
dx ≤ C(1 + t)ε2 , t ≥ 0.

Combining (3.33) and the Galiardo–Nirenberg inequality ‖φ‖L∞ ≤ ‖φ‖
1
2

L2‖φ′‖
1
2

L2 , we
obtain ∥∥∥ρ γ+θ

2 − ρ
γ+θ
2∞

∥∥∥
L∞

≤ C(1 + t)−
1
4+

ε2
2 , t ≥ 0.

From (3.17)–(3.18), (3.48), and (4.1), we have∥∥∥∥ρ ν(γ+θ)
2 (·, t) − ρ

ν(γ+θ)
2∞ (·)

∥∥∥∥
L∞

≤ C‖ρ
γ+θ
2 (·, t) − ρ

γ+θ
2∞ (·)‖νL∞ ≤ C(1 + t)−

ν
4 +

ε2ν
2

and

‖r(·, t) − r∞(·)‖L∞ ≤ C

∫ M

0

|ρ−1 − ρ−1
∞ |dx

≤ C‖ρ
ν(γ+θ)

2 (·, t) − ρ
ν(γ+θ)

2∞ (·)‖L∞

∫ M

0

(M − x)−
1
γ − ν(γ+θ)

2γ dx

≤ Cν(1 + t)−
ν
4 +

ε2ν
2

for all t ≥ 0.
Using similar arguments as that in Lemmas 3.6, 3.11–3.12, and 4.1 with ν = γ−1

2γ ,
we can obtain the following lemma and omit the proof.
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Lemma 4.2. Under the assumptions of Theorem 1.1, we have

(4.4)

∫ M

0

(M −x)
θ−1
γ (g− g∞)2dx+

∫ t

0

∫ M

0

[
ργ−1
∞ (g − g∞)2 + (r − r∞)2

]
dxds ≤ C,

(4.5)

∫ M

0

{
u2(x, t) + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx ≤ C(1 + t)−1,

(4.6)

∫ t

0

(1 + s)‖u(·, s)‖2
L∞ds +

∫ t

0

∫ M

0

(1 + s)
(
ρθ+1u2

x + ρθ−1u2
)
(x, s)dxds ≤ C,

(4.7)

∫ M

0

(M − x)1−
θ
γ (ρθ − ρθ∞)2xdx +

∫ t

0

∫ M

0

(M − x)2−
2θ
γ (ρθ − ρθ∞)2xdxds ≤ C,

and

(4.8) (1 + t)

∫ M

0

(
ρθ−1u2 + ρθ+1u2

x

)
(x, t)dx +

∫ t

0

∫ M

0

(1 + s)u2
t (x, s)dxds ≤ C

for all t ≥ 0.
Remark 4.1. The key point is as follows: Similar to (3.32), using the estimates

(3.18), (3.34), (4.2), and the condition ε2 < γ−1
2(3γ−1) , we have

∫ t

0

∫ M

0

2c1(n− 1)ρθ
(
u

r

(
rn

n
− rn∞

n

))
x

dxds

≤ C

∫ t

0

∫ M

0

{
|r − r∞|

(
|ρθux| + |ρθ−1u|

)
+ ρθ|u(ρ−1 − ρ−1

∞ )|
}
dxds

≤ C

∫ t

0

∫ M

0

(1 + s)1−ε2
(
ρθ+1u2

x + ρθ−1u2
)
(x, s)dxds

+C

∫ t

0

(1 + s)ε2−1‖r(·, t) − r∞(·)‖2
L∞

∫ M

0

(M − x)
θ−1
γ dxds

+C

∫ t

0

(1 + s)ε2−1‖ρ
ν(γ+θ)

2 (·, t) − ρ
ν(γ+θ)

2∞ (·)‖2
L∞

∫ M

0

(M − x)
θ+1
γ − 2

γ − ν(γ+θ)
γ dxds

≤ C + C

∫ t

0

(1 + s)ε2−1− ν
2 +ε2νds ≤ C, t ≥ 0.

Without loss of generality, we assume that η ∈ (0, 2(γ+θ)
γ+θ+1 ). Let ε4 ∈ (0, γ+θ−1

3(γ+θ) )

be a constant satisfying 1−ε4
2− 3γ+3θ−1

2(γ+θ) +
ε4
2

> 2(γ+θ)
γ+θ+1 − η. Define {κj} and {ηj} by ηj+1 =

1 + κj , κj = 3γ+3θ−1
4(γ+θ) ηj − ε4

4 ηj −
1
2 − ε4

2 , and η0 = 1. Let N5 be a positive integer

satisfying ηN5
> 2(γ+θ)

γ+θ+1 − η. It is easy to see that η < 2 and κj < 1, j = 0, 1 . . . , N5.
Using similar arguments as that in Lemma 4.2, applying the induction method, we
can obtain the following lemma and omit the proof.

Lemma 4.3. Under the assumptions of Theorem 1.1, we have

(4.9)

∫ M

0

{
u2(x, t) + (M − x)

γ−1
γ (g − g∞)2 + (r − r∞)2

}
dx ≤ Cη,j(1 + t)−ηj ,

(4.10)∫ t

0

(1 + s)ηj‖u(·, s)‖2
L∞ds +

∫ t

0

∫ M

0

(1 + s)ηj
(
ρθ+1u2

x + ρθ−1u2
)
(x, s)dxds ≤ Cη,j ,
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(4.11)
∥∥∥ρ γ+θ

2 (·, t) − ρ
γ+θ
2∞ (·)

∥∥∥
L∞

≤ Cη,j(1 + t)−
ηj
4 ,

(4.12)

∫ t

0

∫ M

0

(1 + s)κj
[
ργ−1
∞ (g − g∞)2 + (r − r∞)2

]
dxds ≤ Cη,j ,

(4.13) (1+t)ηj

∫ M

0

(
ρθ−1u2 + ρθ+1u2

x

)
(x, t)dx+

∫ t

0

∫ M

0

(1+s)ηju2
t (x, s)dxds ≤ Cη,j ,

and

(4.14) ‖u(·, t)‖L∞ ≤ Cη,j(1 + t)−
ηj
2

for all t ≥ 0, j = 0, . . . , N5, where Cη,j is a positive constant depending on η and j.
Remark 4.2. The main difficulty is to show (4.12) with j = k, when (4.9)–(4.11)

hold with j = k. From (3.27)–(3.28), we have∫ T

0

∫ M

0

(1 + t)κk

[
A(ργ∞ − ργ)(ρ−1 − ρ−1

∞ )

+G(M0 + x)(r2−2n − r2−2n
∞ )

(
rn

n
− rn∞

n

)]
dxdt

= −
∫ T

0

∫ M

0

(1 + t)κk
ut

rn−1

(
rn

n
− rn∞

n

)
dxdt

−
∫ T

0

∫ M

0

(1 + t)κkΔfr1−n

(
rn

n
− rn∞

n

)
dxdt

+

∫ T

0

∫ M

0

(1 + t)κk(2c1 + c2)ρ
1+θ∂x(rn−1u)(ρ−1

∞ − ρ−1)dxdt

+

∫ T

0

∫ M

0

(1 + t)κk2c1(n− 1)ρθ
(
u

r

(
rn

n
− rn∞

n

))
x

dxdt

:=
4∑

i=1

Qi, T > 0(4.15)

and

(4.16) L.H.S. of (4.15) ≥ C12

∫ T

0

∫ M

0

(1 + t)κk

[
ργ−1
∞ (g − g∞)2 + (r − r∞)

2
]
dxdt.

Similar to (3.29)–(3.32), applying the estimates (3.17)–(3.20), (4.4), integration by
parts, the Cauchy–Schwarz inequality, and the fact that κj = 3γ+3θ−1

4(γ+θ) ηj − ε4
4 ηj −

1
2 −

ε4
2 < ηj , we can estimate Qi as follows:

Q1 ≤ −
∫ M

0

(1 + t)κk
u

rn−1

(
rn

n
− rn∞

n

)
dx

∣∣∣∣∣
T

0

+ C

∫ T

0

(1 + t)κk‖u‖2
L∞

x
dt

+C

∫ T

0

∫ M

0

(1 + t)κk−1|u||r − r∞|dxdt

≤ C,(4.17)

Q2 ≤ C12

6

∫ T

0

∫ M

0

(1 + t)κk (r − r∞)
2
dxdt + C

∫ T

0

f2
1 (1 + t)κkdt
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≤ C12

6

∫ T

0

∫ M

0

(1 + t)κk (r − r∞)
2
dxdt + C,(4.18)

Q3 ≤ C

∫ T

0

∫ M

0

(1 + t)ηkρ1+θ(rn−1ux)2xdxdt

+C

∫ T

0

∫ M

0

(1 + t)2κk−ηk− ηkν1
2 (M − x)

θ−1
γ − ν1(γ+θ)

γ dxdt

≤ C,(4.19)

where ν1 = γ+θ−1
γ+θ − ε4,

‖r(·, t) − r∞(·)‖L∞ ≤ C(1 + t)
ν1ηk

4 ,

and

Q4 ≤ C

∫ T

0

∫ M

0

(1 + t)ηk
(
ρ1+θ(rn−1ux)2x + ρθ−1u2

)
dxdt

+C

∫ T

0

∫ M

0

(1 + t)2κk−ηk− ηkν1
2 (M − x)

θ−1
γ dxdt

≤ C.(4.20)

From (4.15)–(4.20), we finish the proof of (4.12) with j = k.
From (4.12) with j = N5, using similar arguments as that in Lemma 3.11, we can

obtain the following lemma and omit the proof.
Lemma 4.4. Under the assumptions of Theorem 1.1, we have

(4.21)

∫ M

0

(M − x)2−
2θ
γ (ρθ − ρθ∞)2xdx ≤ Cη(1 + t)η−

γ+θ−1
γ+θ ,

and

(4.22) ‖ργ(·, t) − ργ∞(·)‖L∞ ≤ C(1 + t)
η
2−

3γ+3θ−1
4(γ+θ+1) , t ≥ 0.

Thus, we finish the proof of Theorem 1.1.
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Abstract. In this paper, we obtain symmetric C∞ real-valued tight wavelet frames in L2(R)
with compact support and the spectral frame approximation order. Furthermore, we present a family
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1. Introduction. In this paper, we are interested in symmetric compactly sup-
ported C∞ tight wavelet frames with the spectral frame approximation order. Since
it is impossible to achieve all these properties under the framework of stationary tight
wavelet frames, it is natural for us to consider nonstationary tight wavelet frames, in
particular, nonstationary tight wavelet frames derived from nonstationary multireso-
lution analysis by the new (nonstationary) unitary extension principle.

We start with a family of 2π-periodic trigonometric polynomials âj , j ∈ N, and
their associated nonstationary refinable functions (or tempered distributions) φj−1, j ∈
N, defined by

(1.1) φ̂j−1(ξ) := âj(ξ/2)φ̂j(ξ/2) =

∞∏
n=1

ân+j−1(2
−nξ), ξ ∈ R, j ∈ N,

where the 2π-periodic trigonometric polynomials âj , j ∈ N, are called refinement

masks. Here, the Fourier transform f̂ of a function f ∈ L1(R) used in this paper

is defined to be f̂(ξ) :=
∫

R
f(t)e−itξ dt and can be naturally extended to square

integrable functions and tempered distributions.

The stationary multiresolution analysis corresponds to the case that all the masks
âj are the same; therefore, all the functions φj are the same, and, in particular,

φ̂0(ξ) = â1(ξ/2)φ̂1(ξ/2). We say that a function φ : R �→ C is refinable with a 2π-

periodic trigonometric polynomial refinement mask â if φ̂(ξ) = â(ξ/2)φ̂(ξ/2). The

frame generators ψ� are generally obtained from the refinable function φ via ψ̂�(ξ) =

b̂�(ξ/2)φ̂(ξ/2) for some 2π-periodic trigonometric polynomials b̂� with some desirable
properties.
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A tight wavelet frame in L2(R) (in the stationary case) is generated by the integer
translates and dyadic dilates of a finite set of elements in L2(R). More precisely, we
say that {ψ1, . . . , ψL} generates a (normalized) tight wavelet frame in L2(R) if

(1.2) ‖f‖2
L2(R) =

L∑
�=1

∑
j∈Z

∑
k∈Z

|〈f, ψ�
j,k〉|2 ∀ f ∈ L2(R),

where ψ�
j,k := 2j/2ψ�(2j · −k) and 〈f, g〉 :=

∫
R
f(t)g(t) dt. As a redundant wavelet

system, tight frame wavelet systems are easier to design and provide more flexibilities
in applications than orthonormal wavelet bases, especially in image inpainting (see
[1, 2, 3, 4, 5] for details). Because of this, tight wavelet frames have been extensively
studied in the literature; to mention only a few, see [6, 7, 8, 14, 16, 18, 19, 21, 25, 26,
27, 33] and the many references therein.

Tight wavelet frames obtained from refinable functions are of particular interest,
due to their associated multiresolution structure (which we refer to as MRA-based)
and fast frame algorithms. Constructions of tight wavelet frames from a refinable
function can be done by the unitary extension principle in [33]. In fact, many tight
wavelet frames have been constructed in [6, 16, 33]. Later, by using the more general
oblique extension principle, which is independently developed in [7, 14], more tight
wavelet frames with various desirable properties have been obtained in [7, 14, 21, 25,
26, 27] and many other references therein.

For the stationary case, it already has been pointed out in [13] that there does
not exist a compactly supported refinable function φ with a 2π-periodic trigonometric
polynomial refinement mask such that φ belongs to C∞(R). Hence, it is impossible to
obtain MRA-based compactly supported (stationary) tight wavelet frames in L2(R)
whose generators are in C∞(R). However, it is shown in [10] that, by using the
class of masks for orthonormal refinable functions of [12] whose integer shifts form an
orthonormal system, one can obtain a family of nonstationary refinable functions such
that every nonstationary refinable function belongs to C∞(R) and its integer shifts
still form an orthonormal system in L2(R). For this family of nonstationary refinable
functions, a C∞ nonstationary orthonormal wavelet basis in L2(R) is derived in [10].
In fact, ideas of generating a class of nonstationary refinable functions in C∞(R) from
a given family of masks for stationary refinable functions have already been discussed
in [15, 35]. One such example is the up-function [10, 15, 35] generated from the family
of masks for the B-splines. Let âj(ξ) = 2−j(1 + e−iξ)j , j ∈ N, be the mask for the
B-spline of order j and define φj−1, j ∈ N, as in (1.1). Then all φj−1, j ∈ N, are
compactly supported C∞ functions. In particular, the function φ0 is supported on
[0, 2] (see [10, 15, 35]).

Motivated by the interesting work of Cohen and Dyn [10] and equipped with
the pseudosplines (a more general class of refinable functions containing B-splines,
interpolatory refinable functions, and Daubechies orthonormal refinable functions in
[12] as special cases), together with the idea of the unitary extension principle, we
establish the analysis needed here for constructing nonstationary C∞(R) tight wavelet
frames in L2(R) with desirable properties, especially the symmetry property, which
cannot be achieved by real-valued orthonormal dyadic refinable functions. As we will
see, the construction more or less follows the idea of the unitary extension principle
for the stationary case, while the main analysis of this paper is somehow different
from that of [10]. For example, in the orthonormal wavelet case, the approximation
order of the truncated wavelet series in [10] is the same as that of the (nonstationary)
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multiresolution analysis, while in the tight wavelet frame case, they are different, even
for the stationary case, as shown in [14].

Next, we briefly describe ideas of the construction of tight wavelet frames. Al-
though one of our major objectives of this paper is to use the family of refinement
masks for pseudosplines to construct tight wavelet frames and to provide the corre-
sponding analysis, the construction in this paper is given for the general setting.

We start with 2π-periodic measurable functions âj , j ∈ N, as a sequence of refine-
ment masks. To make the idea of the unitary extension principle work, it is necessary
to require that for every j ∈ N, the mask âj should satisfy

(1.3) |âj(ξ)|2 + |âj(ξ + π)|2 � 1 a.e. ξ ∈ R.

Since we are interested only in compactly supported tight wavelet frames, it is
natural to start with compactly supported refinable functions φj , which, in turn, re-
quire that the degrees of the trigonometric polynomials âj do not increase too fast.
For a 2π-periodic trigonometric polynomial â, we denote deg(â) the smallest nonnega-
tive integer such that its Fourier coefficients of â vanish outside [−deg(â),deg(â)]. We
note that deg(â) defined here is somewhat slightly different from the usual definition
of the degree of a trigonometric polynomial; deg(â) here is the minimal integer k such
that [−k, k] contains the support of the Fourier coefficients of both â and â(−·). For
φ0 in (1.1) to be compactly supported, by a simple calculation, it is very natural to
require [10] that

(1.4)

∞∑
j=1

2−j deg(âj) < ∞.

With (1.3) and (1.4), under the condition that
∑∞

j=1 |âj(0) − 1| < ∞, it can be
proved that all the corresponding refinable functions φj−1 in (1.1) are well-defined
compactly supported functions in L2(R).

Wavelet functions ψ�
j−1, j ∈ N and � ∈ {1, . . . ,Jj}, are obtained from φj by

(1.5) ̂ψ�
j−1(ξ) := b̂�j(ξ/2)φ̂j(ξ/2), � = 1, . . . ,Jj ,

where Jj are positive integers and each b̂�j , � = 1, . . . ,Jj , is called a (high-pass) wavelet

mask. Denote N0 := N ∪ {0}. We say that {φ0} ∪ {ψ�
j : j ∈ N0, � = 1, . . . ,Jj+1}

generates a nonstationary tight wavelet frame in L2(R) if

(1.6) {φ0(·−k) : k ∈ Z}∪{ψ�
j;j,k := 2j/2ψ�

j(2
j ·−k) : j ∈ N0, k ∈ Z, � = 1, . . . ,Jj+1}

is a tight frame of L2(R); that is, the following holds:

(1.7) ‖f‖2
L2(R) =

∑
k∈Z

|〈f, φ0(· − k)〉|2 +

∞∑
j=0

Jj+1∑
�=1

∑
k∈Z

|〈f, ψ�
j;j,k〉|2 ∀ f ∈ L2(R).

We say that ψ�
j has ν vanishing moments if ψ̂�

j

(n)

(0) = 0 for all n = 0, . . . , ν−1, where

ψ̂�
j

(n)

denotes the nth derivative of ψ̂�
j . It is clear that (1.7) is equivalent to

(1.8) f =
∑
k∈Z

〈f, φ0(· − k)〉φ0(· − k) +

∞∑
j=0

Jj+1∑
�=1

∑
k∈Z

〈f, ψ�
j;j,k〉ψ�

j;j,k, f ∈ L2(R).
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The frame approximation operators Qn, n ∈ N, associated with the truncation of the
tight wavelet frame in (1.6) at level n, are defined to be

(1.9) Qn(f) :=
∑
k∈Z

〈f, φ0(·−k)〉φ0(·−k)+

n−1∑
j=0

Jj+1∑
�=1

∑
k∈Z

〈f, ψ�
j;j,k〉ψ�

j;j,k, f ∈ L2(R).

For ν � 0, we denote W ν
2 (R) the Sobolev space of all functions f ∈ L2(R) such that

(1.10) ‖f‖2
W ν

2 (R) :=

∫
R

(1 + |ξ|2ν)|f̂(ξ)|2 dξ < ∞.

The Sobolev seminorm |f |W ν
2 (R) is defined to be

(1.11) |f |2W ν
2 (R) :=

∫
R

|ξ|2ν |f̂(ξ)|2 dξ, f ∈ W ν
2 (R).

The unitary extension principle provides a sufficient condition on the wavelet

masks âj and b̂�j , � = 1, . . . ,Jj , so that, with ψ�
j−1 defined in (1.5), the wavelet system

in (1.6) forms a tight frame in L2(R). Altogether, we have the following result on
nonstationary tight wavelet frames in L2(R).

Theorem 1.1. Let âj , j ∈ N, be 2π-periodic trigonometric polynomials with
âj(0) = 1 for all j ∈ N. If (1.3) and (1.4) hold, letting φj and ψ�

j−1, j ∈ N and
� ∈ {1, . . . ,Jj}, be defined in (1.1) and (1.5), respectively, then the following hold:

(i) All functions φj−1, j ∈ N, are well-defined compactly supported functions in
L2(R).

(ii) If b̂�j, j ∈ N and � ∈ {1, . . . ,Jj}, are 2π-periodic trigonometric polynomials
satisfying

|âj(ξ)|2 +

Jj∑
�=1

|b̂�j(ξ)|2 = 1 and

âj(ξ)âj(ξ + π) +

Jj∑
�=1

b̂�j(ξ)b̂
�
j(ξ + π) = 0,

(1.12)

then the wavelet system in (1.6) is a compactly supported tight wavelet frame
in L2(R).

(iii) If, in addition to (1.12), we assume that

(1.13) deg(âj) = O(jα2βj) as j → ∞ for some α � 0, 0 � β < 1

and assume that there exist a positive number ν ∈ 1
2N and a positive integer

N such that 1 − |âj(ξ)|2 has a zero of order 2ν at ξ = 0 for all j � N , that
is, for j � N ,

(1.14) |âj(ξ)|2 = 1 + O(|ξ|2ν), ξ → 0,

then there exists a positive constant C, independent of f and n, such that

‖f −Qn(f)‖L2(R) � Cnνα2−ν(1−β)n|f |W ν
2 (R)

∀ f ∈ W ν
2 (R) and n � N,

(1.15)

where the linear operators Qn are defined in (1.9).
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Item (ii) of Theorem 1.1 is called the unitary extension principle for the nonsta-
tionary case. Theorem 1.1 will be proved in section 4. As we shall see in section 4,
the main effort there is to prove items (i) and (iii) of Theorem 1.1. To show item (ii)
of Theorem 1.1, one needs to show the convergence of the frame series in the right
side of (1.8) to the function f in L2(R). When (1.13) holds, the convergence of the
frame series follows from (iii) by observing that the masks in item (ii) satisfy (1.14)
for ν = 1/2. Furthermore, a refined analysis establishes the convergence of the frame
series even without assuming (1.13).

We further remark that (1.12) guarantees the multiresolution frame decompo-
sition algorithm whose proof can be straightforwardly verified and is more or less
known. In fact, Theorem 1.1 generalizes the unitary extension principle from the
stationary case in [33] to the general nonstationary case. It is clear that, similar to
the stationary case, for every fixed j ∈ N, in order to construct a set of 2π-periodic

trigonometric polynomials b̂�j , � = 1, . . . ,Jj , derived from the mask âj so that (1.12)
is satisfied, the mask âj must satisfy (1.3). Hence, (1.3) is a necessary and sufficient
condition to make (1.12) hold, as we shall see later in this section.

Nonstationary spline tight wavelet frames using the oblique extension principle
developed in [7, 14] have been systematically studied in Chui, He, and Stöckler [8]
recently. There, they considered an even more general nonstationary setting; i.e., it
is not even shift-invariant at each level. Since the oblique extension principle is a
generalization of the unitary extension principle, the proof of [8] might be modified
to prove item (ii) of Theorem 1.1. However, this at most leads to the conclusion
Qn(f) → f in L2(R). Our approach of item (ii) is beyond the proof of the tight frame
property itself in (1.8). Instead, we analyze the approximation power of the truncated
tight wavelet frame series as stated in item (iii) of Theorem 1.1. As a consequence of
this analysis, we obtain the tight frame property stated in item (ii) of Theorem 1.1.
Finally, we remark that a systematic study of general nonstationary wavelet frames
that may not be MRA-based was given in [34]

Following [14], we say that a tight wavelet frame {φ0(· − k) : k ∈ Z} ∪ {ψ�
j;j,k :

j ∈ N0, k ∈ Z, � = 1, . . . ,Jj+1} provides frame approximation order ν if there exist a
positive constant C, independent of f and n, and a positive integer N such that

(1.16) ‖f −Qn(f)‖L2(R) � C2−νn|f |W ν
2 (R) ∀ f ∈ W ν

2 (R) and n � N.

We say that a tight wavelet frame provides the spectral frame approximation order if
it provides frame approximation order ν for any positive integer ν. Here, we point
out that for the frame approximation order discussed in this paper, the constant C
in (1.15) of Theorem 1.1 and the constant C in (1.16) of Theorems 1.2 and 1.4 can
be explicitly obtained.

In section 4, we shall study when Qn(f) approaches f with an approximation
order ν as n → ∞. As a consequence, we prove item (ii) of Theorem 1.1 and (1.8) by
showing that Qn(f) → f in L2(R) as n → ∞ for every f ∈ L2(R), provided that the
conditions in Theorem 1.1 are satisfied. The approximation order of Qn(f) was not
studied in [10], since it was not needed there. In fact, since only orthonormal wavelet
systems were considered in [10], the associated operators Qn become orthogonal pro-
jections and attain the approximation order provided by the nonstationary multires-
olution analysis. Therefore, one only needs to understand the conditions under which
Qn(f) → f in L2(R) as n → ∞ in the orthonormal wavelet case. Nevertheless, our
approach here applies to this special case as well and simplifies the conditions given
in [10]. The approximation order of Qn(f) was not studied in [8] either, since it is a
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more challenging problem in its more general setting of [8]. For the stationary case, it
is evident that (1.13) holds with α = β = 0 and, consequently, the notion of the frame
approximation power in (1.15) agrees with that of the frame approximation order in
(1.16). However, we shall present an example of nonstationary tight wavelet frames
derived from the up-function (see Theorem 1.3) to demonstrate that (1.15) holds with
ν = 2, α = 1, and β = 0, while (1.16) fails for any ν > 0; that is, this particular
nonstationary tight wavelet frame has a “weak” frame approximation order 2 in the
sense of (1.15), but it does not have any “strong” frame approximation order in the
sense of (1.16).

Finally, we note that the 2π-periodic trigonometric polynomial wavelet masks

b̂�j , j ∈ N and � ∈ {1, . . . ,Jj}, can be constructed from the masks âj by many
ways provided that the refinement masks âj , j ∈ N, satisfy (1.3). Here is one such
construction modified from the stationary case of [6] (also cf. [16, 27, 25]). For every
j ∈ N, from the mask âj with real coefficients and satisfying (1.3), define

b̂1j (ξ) := e−iξâj(ξ + π),

b̂2j (ξ) := 2−1[Aj(ξ) + e−iξAj(ξ)],

b̂3j (ξ) := 2−1[Aj(ξ) − e−iξAj(ξ)],

(1.17)

where Aj is a π-periodic trigonometric polynomial with real coefficients such that

|Aj(ξ)|2 = 1 − |âj(ξ)|2 − |âj(ξ + π)|2.

Then, âj , b̂1j , b̂
2
j , and b̂3j , j ∈ N, satisfy (1.12) with Jj = 3. Furthermore, the corre-

sponding wavelets defined by (1.5) using masks in (1.17) are symmetric or antisym-
metric whenever φj is symmetric.

After establishing Theorem 1.1, we focus on constructing nonstationary C∞(R)
wavelets derived from a family of refinement masks for pseudosplines. Pseudosplines
(of type I) were first introduced in [14] and [36] to improve the approximation order of
truncated tight wavelet frame series for the tight wavelet frame system obtained by the
unitary extension principle. The pseudosplines in [14] are generally not symmetric.
The pseudosplines of type II are symmetric and were introduced in [16]. Since we are
aiming at constructing symmetric tight wavelet frames, we will use pseudosplines of
type II. For positive integers m, l ∈ N, throughout the paper we denote

(1.18) Pm,l(x) :=

l−1∑
j=0

(
m + j − 1

j

)
xj =

l−1∑
j=0

(m + j − 1)!

j!(m− 1)!
xj , x ∈ R.

The masks for pseudosplines of type II with order (m, l) [16] are given by

(1.19) âm,l(ξ) := cos2m(ξ/2)Pm,l(sin
2(ξ/2)), m ∈ N, l = 1, . . . ,m.

Since it is evident that âm,l(ξ) � 0 for all ξ ∈ R, the mask âIm,l, for the pseudospline
of type I with order (m, l) introduced in [14] and [36], is obtained by taking the square
root of the mask âm,l in (1.19) for the pseudospline of type II with order (m, l) using
the Fejér–Riesz lemma such that

(1.20) |âIm,l(ξ)|2 = âm,l(ξ), ξ ∈ R.
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While the pseudosplines of type II and their masks in (1.19) are symmetric, their
type I counterparts usually do not have symmetry. For the case l = 1, the corre-
sponding refinable pseudosplines are B-splines for both types. For the case l = m,

the corresponding refinable pseudospline φ of type I with mask âIm,m in (1.20) has or-
thonormal integer shifts (i.e., {φ(· − k) : k ∈ Z} is an orthonormal system in L2(R)),
and the corresponding refinable pseudospline φ of type II with mask âm,m in (1.19)
is interpolatory (i.e., φ(0) = 1 and φ(k) = 0 for all k ∈ Z\{0}). It is easy to verify
that the condition in (1.3) is satisfied for all the masks for pseudosplines of type I and
type II (e.g., see [14, 16]).

Our construction here employs masks âm,l in (1.19) for pseudosplines of type II,
since we are interested in constructing symmetric tight wavelet frames. We have
the following result on symmetric C∞ tight wavelet frames in L2(R) with compact
support and the spectral frame approximation order.

Theorem 1.2. Let âj := âmj ,lj be defined in (1.19), where 1 � lj � mj and mj

(j ∈ N) are positive integers satisfying

(1.21) lim
j→∞

mj = ∞ and

∞∑
j=1

2−jmj < ∞.

For j ∈ N, define φj−1 as in (1.1) and ψ1
j−1, ψ2

j−1, and ψ3
j−1 as in (1.5) with the

wavelet masks b̂1j , b̂
2
j , and b̂3j being derived from âj in (1.17). Then the following hold:

(1) Each nonstationary refinable function φj, j ∈ N0, is a compactly supported
C∞ real-valued function that is symmetric about the origin: φj(− ·) = φj.

(2) Each wavelet function ψ�
j, � = 1, 2, 3 and j ∈ N0, is a compactly supported

C∞ function with lj+1 vanishing moments and satisfies ψ�
j(1 − ·) = ψ�

j for

� = 1, 2 and ψ3
j (1 − ·) = −ψ3

j .

(3) The system {φ0(· − k) : k ∈ Z} ∪ {ψ�
j;j,k := 2j/2ψ�

j(2
j · −k) : j ∈ N0, k ∈

Z, � = 1, 2, 3} is a compactly supported symmetric C∞ tight wavelet frame in
L2(R).

(4) If in addition lim infj→∞ lj/mj > 0, then the tight wavelet frame in item (3)
has the spectral frame approximation order.

The simplest choice in Theorem 1.2 is mj = lj = j for all j ∈ N, for which the
condition in (1.21) is evidently satisfied and lim infj→∞ lj/mj = 1 > 0. Therefore, by
Theorem 1.2, we have a symmetric C∞ tight wavelet frame in L2(R) with compact
support and the spectral frame approximation order. Of course, the claims in Theo-
rem 1.2 also hold if one chooses m ≈ ρ1j and lj ≈ ρ2j for all j ∈ N with some fixed
positive numbers ρ1 and ρ2. In order to have refinable functions φj , j ∈ N, in (1.1)
with support as small as possible, one should choose a sequence {mj}∞j=1 so that mj

goes to ∞ as slowly as possible. This is one of our motivations to choose a general
integer mj instead of the standard choice mj = j for our setup. We point out that
such a strategy has already been considered by Cohen [9]. We also mention that all
the claims in Theorem 1.2 hold, except possibly for the symmetry property, if one

chooses the masks âj := ̂aImj ,lj
in (1.20) for the pseudosplines of type I instead of

type II in Theorem 1.2.
It is clear that the frame approximation order in (1.16) implies (1.15). For the

stationary case, it is evident that (1.13) holds with α = β = 0 and, consequently,
the notion of the frame approximation power in (1.15) agrees with that of the frame
approximation order in (1.16). However, as illustrated by the following result, they
could be quite different in the case of nonstationary tight wavelet frames.
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Theorem 1.3. Let âj(ξ) := 2−j(1 + e−iξ)j, j ∈ N, be the masks for the up-
function; in other words, we take mj := j and lj := 1 in Theorem 1.2. For j ∈ N,
define φj−1 as in (1.1) and ψ1

j−1, ψ
2
j−1, and ψ3

j−1 as in (1.5) with the wavelet masks

b̂1j , b̂
2
j , and b̂3j being derived from âj in (1.17). Then the following hold:

(i) {φ0(· − k) : k ∈ Z} ∪ {ψ�
j;j,k : j ∈ N0, k ∈ Z, � = 1, 2, 3} is a compactly

supported symmetric C∞ tight wavelet frame in L2(R), and each ψj has one
vanishing moment.

(ii) There exists a positive constant C, independent of f and n, such that

(1.22) ‖f −Qn(f)‖L2(R) � Cn22−2n|f |W 2
2 (R) ∀ f ∈ W 2

2 (R) and n � 2,

where the linear operators Qn are defined in (1.9).
(iii) The nonstationary tight wavelet frame in (i) does not have any frame ap-

proximation order; i.e., for any given ν > 0, there does not exist a positive
constant C such that (1.16) is satisfied.

The Daubechies orthogonal masks âIj,j in (1.20) with real coefficients for the pseu-
dosplines of type I with order (j, j) have been considered in [10] (also see [9] for the

general case âImj ,mj
) to obtain C∞ compactly supported (nonstationary) orthonor-

mal refinable functions, from which (nonstationary) orthonormal wavelets with the
spectral approximation order are derived in [9, 10]. However, it is well known [13]

that such Daubechies orthogonal masks âIj,j , having real coefficients and obtained

from âj,j via the Fejér–Riesz lemma in (1.20), are not symmetric (except j = 1) and
therefore, all the associated nonstationary refinable functions φj , j ∈ N0, are not sym-
metric. One way to achieve symmetry is to split the masks âj,j into masks that are

similar to âIj,j in (1.20) but allow complex-valued coefficients (see [30]). Examples of
symmetric orthonormal complex wavelets were first constructed in [30] in this way
from Daubechies orthogonal masks of odd orders. Recently, symmetric orthonormal
complex-valued wavelets have been systematically studied in Han [23].

Let Pj,j be the polynomial defined in (1.18). For an odd integer j, one can
always construct [23, Lemma 6 and section 2] two polynomials P r

j and P i
j with real

coefficients such that

(1.23) Pj,j(x) = [P r
j (x)]2 + [P i

j (x)]2, x ∈ R with P r
j (0) = 1, P i

j (0) = 0.

Now define

(1.24) âSj (ξ) := ei(j−1)ξ/22−j(1 + e−iξ)j [P r
j (sin2(ξ/2)) + iP i

j (sin
2(ξ/2))].

It is easy to check [23, Lemma 3] that |âSj (ξ)|2 = |âIj,j(ξ)|2 = âj,j(ξ) and the integer

shifts of the stationary refinable function associated with the mask âSj are orthonor-
mal. Using this family of masks, one can obtain symmetric C∞ orthonormal complex
wavelets with compact support. We summarize the above discussion into the following
result.

Theorem 1.4. Let mj , j ∈ N, be positive odd integers such that (1.21) holds.

Take âj(ξ) := âSmj
, where âSmj

is defined in (1.24). Define

ψ̂j−1(2ξ) := e−iξâj(ξ + π)φ̂j(ξ), j ∈ N,

where φj , j ∈ N0, are defined in (1.1). Then the following hold:
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(1) Each refinable function φj , j ∈ N0, is a compactly supported C∞ complex-
valued function such that φj(1 − ·) = φj and {φj(· − k) : k ∈ Z} is an
orthonormal system in L2(R).

(2) Each wavelet function ψj , j ∈ N0, is a compactly supported C∞ complex-
valued function such that ψj(1 − ·) = −ψj and ψj has mj+1 vanishing mo-
ments.

(3) {φ0(· − k) : k ∈ Z} ∪ {ψj;j,k := 2j/2ψj(2
j · −k) : j ∈ N0, k ∈ Z} is a

compactly supported symmetric C∞ orthonormal basis of L2(R) and has the
spectral approximation order.

This paper is organized as follows. In section 2, we shall discuss nonstation-
ary cascade algorithms and some properties of nonstationary refinable functions. In
particular, we study the initial functions in a nonstationary cascade algorithm and
provide a sufficient condition for the convergence of a nonstationary cascade algo-
rithm in a Sobolev space W ν

2 (R). As a consequence, we obtain a characterization
for nonstationary orthonormal wavelet bases in L2(R). In section 3, we shall study
the frame approximation order of a nonstationary tight wavelet frame. The proofs of
Theorems 1.1–1.4 will be given in section 4.

2. Nonstationary cascade algorithms and refinable functions. In this sec-
tion, we first discuss the existence of L2-solutions of nonstationary refinable functions
for a general set of masks satisfying (1.3). In fact, this follows from the following
result, proved in this section:

(2.1) [φ̂j , φ̂j ](ξ) :=
∑
k∈Z

|φ̂j(ξ + 2πk)|2 � 1, a.e. ξ ∈ R ∀ j ∈ N0

for all masks satisfying (1.3), provided that the infinite products in (1.1) exist almost
everywhere. The above inequality plays a critical role in our study of nonstationary
tight wavelet frames and their frame approximation orders.

The question of when the refinable functions are in Sobolev spaces is discussed
next. In fact, we prove it as a consequence of the convergence of the cascade algorithm
in various Sobolev spaces when âj , j ∈ N, are masks of pseudosplines. The proof is
done in the Fourier domain with the initial function whose Fourier transform is the
characteristic function of [−π, π]. We then prove that when the cascade algorithm
converges for one initial function, it converges for a large class of functions. Although a
similar result is well known for the stationary case, it is not straightforward for the case
of nonstationary cascade algorithms. However, this result is important in computer
aided geometric design, because it results in a compactly supported function in each
iteration of the cascade algorithm that generates a curve from a finitely supported
sequence of points to approximate the underlying curve. Hence, it is desirable to prove
the convergence of a cascade algorithm with a compactly supported initial function
instead of an infinitely supported band-limited function in computer aided geometric
design [17].

For the nonstationary refinable functions φj , j ∈ N0, defined by masks for pseu-
dosplines as in Theorem 1.2, one could use the same techniques developed in [10]
to show that the cascade algorithm converges for the special initial function whose
Fourier transform is the characteristic function of [−π, π] that leads to φj ∈ C∞(R)
for all j ∈ N0. But our discussion on nonstationary cascade algorithms in this section
will supplement the results in [10] on nonstationary cascade algorithms. We use the
results in [10] whenever they can be directly applied, e.g., Lemma 2.1, and at the same
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time develop our own results to achieve our goal with a systematic and comprehen-
sive approach. We also believe that some results (e.g., Theorem 2.4 and Lemmas 2.2
and 2.7) derived in this section have their own value in addition to being used to prove
Theorem 2.8 in this section.

2.1. L2-solutions. We start with a basic property about the pointwise conver-
gence of the infinite product in (1.1). A sufficient condition for the convergence of the
infinite product in (1.1) has been established in the following lemma by Cohen and
Dyn in [10, Theorem 2.1].

Lemma 2.1. Let âj , j ∈ N, be 2π-periodic trigonometric polynomials such that
supj∈N ‖âj‖L∞(R) < ∞. If (1.4) holds and

∑∞
j=1 |âj(0) − 1| < ∞, then the infinite

product in (1.1) converges uniformly on every compact set of R and all φj , j ∈ N0, in
(1.1) are well-defined compactly supported tempered distributions.

Next, we consider when φj ∈ L2(R), j ∈ N0, provided that the infinite products in
(1.1) exist almost everywhere. In order to investigate the frame approximation order
of a nonstationary tight wavelet frame, we establish (2.1), which is the following
lemma.

Lemma 2.2. Let âj , j ∈ N, be 2π-periodic measurable functions satisfying (1.3)

for each j ∈ N. Assume that, for every j ∈ N0, φ̂j(ξ) := limN→∞
∏N

n=1 ân+j(2
−nξ)

is well defined for almost every ξ ∈ R; that is, the infinite product in (1.1) exists
for almost every point in R. Then (2.1) holds, and, consequently, φj ∈ L2(R) with
‖φj‖L2(R) � 1 for every j ∈ N0.

Proof. It suffices to prove the case j = 0, since the proof of the general case j ∈ N0

is the same. Note that φ̂0(ξ) = limn→∞
∏n

j=1 âj(2
−jξ) for almost every ξ ∈ R. For

any fixed positive integer K, we have

(2.2)
K∑

k=−K

|φ̂0(ξ + 2πk)|2 = lim
n→∞

K∑
k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2 a.e. ξ ∈ R.

Let N be the smallest positive integer such that N > 1 + log2 K. Then we have
[−K,K] ⊆ [−K, 2N − 1 − K]. Consequently, for all n � N , we have [−K,K] ⊆
[−K, 2n − 1 −K] and

(2.3)

K∑
k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2� 2n−1−K∑

k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2.

Let L∞(T) := {f ∈ L∞(R) : f is 2π-periodic}. The transition operator Tj :
L∞(T) → L∞(T) is defined for each f ∈ L∞(T) as follows:

[Tjf ](ξ) := |âj(ξ/2)|2f(ξ/2) + |âj(ξ/2 + π)|2f(ξ/2 + π), ξ ∈ R.

Observing that |[Tjf ](ξ)| �
[
|âj(ξ/2)|2 + |âj(ξ/2+π)|2

]
‖f‖L∞(R), by (1.3), we deduce

that

(2.4) ‖Tjf‖L∞(R) � ‖f‖L∞(R)

∥∥|âj(·/2)|2 + |âj(·/2 + π)|2
∥∥
L∞(R)

� ‖f‖L∞(R).

By induction on n, we can verify (e.g., [21, Lemma 2.1]) that

(2.5)

2n−1−K∑
k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2= [T1T2 · · ·Tn−1Tn1](ξ), ξ ∈ R.
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Now it follows from (2.3) and (2.4) that, for n � N and for almost every ξ ∈ R,

K∑
k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2� [T1T2 · · ·Tn−1Tn1](ξ) � ‖T1T2 · · ·Tn−1Tn1‖L∞(R) � 1.

That is, we have

K∑
k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2� 1 a.e. ξ ∈ R, n � N.

It follows from the above inequality and (2.2) that, for any fixed positive integer K,

K∑
k=−K

|φ̂0(ξ + 2πk)|2 = lim
n→∞

K∑
k=−K

n∏
j=1

∣∣âj(2−j(ξ + 2πk)
)∣∣2� 1 a.e. ξ ∈ R.

Taking K → ∞ in the above inequality, we conclude that (2.1) is true for j = 0.

Since (2.1) implies that ‖φ̂j‖2
L2(R) =

∫ π

−π
[φ̂j , φ̂j ](ξ) dξ �

∫ π

−π
1 dξ = 2π, by

Plancherel’s theorem, it follows that ‖φj‖L2(R) � 1.
As Lemma 2.1 states, the assumption that, for j ∈ N0,

φ̂j(ξ) := lim
N→∞

N∏
n=1

ân+j(2
−nξ)

is well defined for almost every ξ ∈ R, required in Lemma 2.2, is satisfied whenever
the conditions âj(0) = 1, j ∈ N, and (1.4) hold. In other words, Lemma 2.2 says that
if the masks âj , j ∈ N, satisfy (1.3), (1.4), and âj(0) = 1, then the corresponding
nonstationary refinable functions φj ∈ L2(R), j ∈ N0.

Since the approximation property of φj , j ∈ N0, discussed in this paper depends
only on φj for large enough j, without loss of generality, throughout the paper we
shall assume that the normalization condition âj(0) = 1 holds for all j ∈ N. In fact,
if the conclusion in Lemma 2.1 holds, since

∏∞
n=1 ân+j(0) converges and is nonzero

for sufficiently large j, then we can replace φ̂j and âj with φ̂j/φ̂j(0) and âj(ξ)/âj(0),
respectively.

2.2. Cascade algorithms. A cascade algorithm is often used to study various
properties of refinable functions and is closely related to a subdivision scheme in
computer aided geometric design for generating smooth curves [10, 15, 20, 24]. For
a given sequence of masks {âj}∞j=1, starting with an initial function f ∈ L2(R), one
computes a sequence of cascade functions fn by

(2.6) f̂n(ξ) := f̂(2−nξ)

n∏
j=1

âj(2
−jξ), ξ ∈ R, n ∈ N.

If limn→∞ f̂(2−nξ) = 1 and φ̂(ξ) := limn→∞
∏n

j=1 âj(2
−jξ) exists for almost every

ξ ∈ R, then by (2.6) it is evident that limn→∞ f̂n(ξ) = φ̂(ξ) for almost every ξ ∈ R.
The cascade algorithm is closely related to another algorithm, called a subdivision

scheme, which we define next. For a sequence u : Z �→ C, we denote û its Fourier series
as û(ξ) :=

∑
k∈Z

u(k)e−ikξ. In particular, by δ we denote the Dirac sequence on Z such
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that δ(0) = 1 and δ(k) = 0 for k ∈ Z\{0}. That is, δ̂ = 1. For a sequence u and a mask
a, the subdivision operator Sa maps the sequence u into a new sequence, Sau on Z,
which is determined by Ŝau(ξ) = 2â(ξ)û(2ξ). In fact, the product 2n

∏n
j=1 âj(2

n−jξ)
is the Fourier series of the subdivision sequence SanSan−1 · · ·Sa2Sa1δ. More precisely,
it follows from (2.6) that the cascade sequence {fn}∞n=1 and the subdivision sequence
{San

San−1
· · ·Sa2

Sa1
δ}∞n=1 are related by

(2.7) fn =
∑
k∈Z

[SanSan−1 · · ·Sa2Sa1δ](k)f(2n · −k), n ∈ N.

Recall that f ∈ W ν
2 (R) if ‖f‖2

W ν
2 (R) :=

∫
R
(1 + |ξ|2ν)|f̂(ξ)|2 dξ < ∞. For a sequence of

masks {âj}∞j=1 and an initial function f ∈ W ν
2 (R), we say that the (nonstationary)

cascade algorithm associated with masks {âj}∞j=1 and an initial function f converges
in the Sobolev space W ν

2 (R) if fn ∈ W ν
2 (R) for all n ∈ N and the sequence {fn}∞n=1

is convergent in W ν
2 (R). Many (but not all) functions in W ν

2 (R) can serve as an
initial function in a cascade algorithm. One popular and natural choice of an initial
function f in computer aided geometric design is from the B-spline functions, since
they are compactly supported functions of piecewise polynomials. Hence, it is easy to
compute the values of the underlying approximating function. However, to analyze
the convergence of the cascade algorithm in the frequency domain, the sinc function

f(x) = sin(πx)
πx , that is, f̂ = χ[−π,π], the characteristic function of the interval [−π, π],

is a more natural choice (see, e.g., [9, 10, 11, 13, 22]). Our analysis will show that
the cascade algorithm generated by pseudospline masks with the sinc function being
the initial function converges in W ν

2 (R). To make sure that this cascade algorithm
also converges in W ν

2 (R) when the initial seed is replaced by splines, we prove a more
general result as follows: if a cascade algorithm converges in W ν

2 (R) for one initial seed
with stable integer shifts, then it converges in W ν

2 (R) for a class of initial functions. As
we will see, the proof is more technical than the stationary case, because a stationary
refinable function is a fixed point of a stationary cascade algorithm, while this is no
longer the case for the nonstationary case.

Before proceeding further, let us introduce the following notation. For ν ∈ R and
f ∈ L2(R), we define

(2.8) [f̂ , f̂ ]ν(ξ) :=
1

|ξ|2ν
∑
k∈Z

|f̂(ξ + 2πk)|2|ξ + 2πk|2ν , ξ ∈ R,

and

(2.9) {f̂ , f̂}ν(ξ) :=
1

|ξ|2ν
∑

k∈Z\{0}
|f̂(ξ + 2πk)|2|ξ + 2πk|2ν , ξ ∈ R.

Clearly, we have [f̂ , f̂ ] := [f̂ , f̂ ]0 =
∑

k∈Z
|f̂(· + 2πk)|2 and

(2.10) [f̂ , f̂ ]ν(ξ) = {f̂ , f̂}ν(ξ) + |f̂(ξ)|2.

Following [20, 22], we introduce the set Fν of initial functions in a cascade algorithm
as

Fν :=
{
f ∈ W ν

2 (R) : lim
n→∞

f̂(2−nξ) = 1, lim
n→∞

{f̂ , f̂}ν(2−nξ) = 0,

a.e. ξ ∈ [−π, π], [f̂ , f̂ ]ν ∈ L∞([−π, π])
}
.

(2.11)
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The following result will be needed later; its proof is rather simple and therefore
is omitted.

Lemma 2.3. Let f ∈ Fν for some ν � 0. Then [f̂ , f̂ ](ξ) � [f̂ , f̂ ]ν(ξ) for almost

every ξ ∈ [−π, π] (consequently, [f̂ , f̂ ] ∈ L∞(R)), and

(2.12) lim
n→∞

[f̂ , f̂ ](2−nξ) = lim
n→∞

[f̂ , f̂ ]ν(2
−nξ) = 1 a.e. ξ ∈ R.

We say that the integer shifts of a function f ∈ L2(R) are stable in L2(R) if there
exists a positive constant C such that

(2.13) C−1 � [f̂ , f̂ ](ξ) � C, a.e. ξ ∈ R.

Now we state the following result on an initial function with stable integer shifts
in a nonstationary cascade algorithm.

Theorem 2.4. Let âj , j ∈ N, be 2π-periodic measurable functions such that

f̂∞(ξ) := lim
n→∞

n∏
j=1

âj(2
−jξ)

exists for almost every ξ ∈ R. For a function f ∈ Fν with ν � 0 and stable integer
shifts, define fn, n ∈ N, by (2.6). Assume that {fn}∞n=1 converges in W ν

2 (R). Then it
converges to f∞ in W ν

2 (R). Furthermore, for every g ∈ Fν , the sequence of functions
gn, n ∈ N, defined by

(2.14) ĝn(ξ) := ĝ(2−nξ)

n∏
j=1

âj(2
−jξ), ξ ∈ R, n ∈ N,

converges to f∞ in W ν
2 (R).

Proof. By the definition of fn in (2.6), we deduce that∫
R

(1 + |ξ|2ν)|f̂n(ξ)|2 dξ

=

∫
R

χ[−π,π](2
−nξ)

(
[f̂ , f̂ ](2−nξ) + |ξ|2ν [f̂ , f̂ ]ν(2

−nξ)
) n∏

j=1

|âj(2−jξ)|2 dξ.

That is, (2.6) implies

(2.15) ‖fn‖2
W ν

2 (R) :=

∫
R

(1 + |ξ|2ν)|f̂n(ξ)|2 dξ =

∫
R

Fn(ξ) dξ

with

Fn(ξ) :=
(
[f̂ , f̂ ](2−nξ) + |ξ|2ν [f̂ , f̂ ]ν(2

−nξ)
)
χ[−π,π](2

−nξ)

n∏
j=1

|âj(2−jξ)|2, ξ ∈ R.

Similarly, by (2.14), we deduce that

(2.16) ‖gn‖2
W ν

2 (R) :=

∫
R

(1 + |ξ|2ν)|ĝn(ξ)|2 dξ =

∫
R

Gn(ξ) dξ
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with

Gn(ξ) :=
(
[ĝ, ĝ](2−nξ) + |ξ|2ν [ĝ, ĝ]ν(2−nξ)

)
χ[−π,π](2

−nξ)

n∏
j=1

|âj(2−jξ)|2.

On the one hand, since g ∈ Fν , by the definition of Fν in (2.11) and Lemma 2.3, we
see that there exists a positive constant C1 such that [ĝ, ĝ](ξ) � [ĝ, ĝ]ν(ξ) � C1 for

almost every ξ ∈ [−π, π]. By Lemma 2.3, it follows from (2.13) that C−1 � [f̂ , f̂ ]ν(ξ)
for almost every ξ ∈ [−π, π] and

[ĝ, ĝ](ξ) � C1 � CC1[f̂ , f̂ ](ξ) and [ĝ, ĝ]ν(ξ) � C1 � CC1[f̂ , f̂ ]ν(ξ) a.e. ξ ∈ [−π, π].

Now it follows from the above inequalities that

(2.17) |Gn(ξ)| � CC1Fn(ξ) a.e. ξ ∈ R and n ∈ N.

On the other hand, by f, g ∈ Fν and Lemma 2.3, since limn→∞
∏n

j=1 âj(2
−jξ) =

f̂∞(ξ) for almost every ξ ∈ R, we see that limn→∞ Fn(ξ) = limn→∞ Gn(ξ) = (1 +

|ξ|2ν)|f̂∞(ξ)|2 for almost every ξ ∈ R. Since {fn}∞n=1 is a convergent sequence in

W ν
2 (R) and limn→∞ f̂n(ξ) = f̂∞(ξ) for almost every ξ ∈ R, we have f∞ ∈ W ν

2 (R)
and limn→∞ ‖fn − f∞‖W ν

2 (R) = 0. In particular, we have limn→∞ ‖fn‖2
W ν

2 (R) =

‖f∞‖2
W ν

2 (R). By (2.15), we have ‖fn‖2
W ν

2 (R) =
∫

R
Fn(ξ) dξ. Therefore, we conclude

that limn→∞
∫

R
Fn(ξ) dξ = ‖f∞‖2

W ν
2 (R). Now by (2.17) and the generalized Lebesgue

dominated convergence theorem, it follows from (2.16) and limn→∞ Gn(ξ) = (1 +

|ξ|2ν)|f̂∞(ξ)|2 for almost every ξ ∈ R that

(2.18) lim
n→∞

∫
R

(1 + |ξ|2ν)|ĝn(ξ)|2 dξ = lim
n→∞

∫
R

Gn(ξ) dξ =

∫
R

(1 + |ξ|2ν)|f̂∞(ξ)|2 dξ.

But we also have

(1 + |ξ|2ν)|ĝn(ξ) − f̂∞(ξ)|2 � 2(1 + |ξ|2ν)
[
|ĝn(ξ)|2 + |f̂∞(ξ)|2

]
.

By (2.18), we have

lim
n→∞

∫
R

2(1 + |ξ|2ν)
[
|ĝn(ξ)|2 + |f̂∞(ξ)|2

]
dξ = 4

∫
R

(1 + |ξ|2ν)|f̂∞(ξ)|2 dξ < ∞.

Now by the generalized Lebesgue dominated convergence theorem again, we conclude
that

lim
n→∞

‖gn − f∞‖2
W ν

2 (R) = lim
n→∞

∫
R

(1 + |ξ|2ν)|ĝn(ξ) − f̂∞(ξ)|2 dξ

=

∫
R

(1 + |ξ|2ν) lim
n→∞

|ĝn(ξ) − f̂∞(ξ)|2 dξ = 0,

since limn→∞ ĝn(ξ) = f̂∞(ξ) for almost every ξ ∈ R. This completes the proof.
As shown in the next result, the conditions in (2.11) and (2.13) are not very

restrictive. In fact, the sinc function and all B-spline functions belong to Fν for some ν.

Proposition 2.5. If f(x) := sin(πx)
πx , then f ∈ Fν for all ν � 0 and (2.13) holds,

where Fν is defined in (2.11). For the B-spline Bm of order m, that is, B̂m(ξ) =
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(
1−e−iξ

iξ

)m
, Bm ∈ Fν and (2.13) holds for all 0 � ν < m − 1/2. Note that Bm 
∈

W
m−1/2
2 (R).

Proof. Letting ν � 0, we note that f̂ = χ[−π,π] and therefore, f ∈ W ν
2 (R). For

ξ ∈ (−π, π), we have f̂(ξ + 2πk) = 0 for all k ∈ Z\{0} and, hence,

{f̂ , f̂}ν(ξ) :=
1

|ξ|2ν
∑

k∈Z\{0}
|f̂(ξ + 2πk)|2|ξ + 2πk|2ν = 0, ξ ∈ (π, π)\{0}.

Therefore, it is evident that limn→∞ f̂(2−nξ) = 1 and limn→∞{f̂ , f̂}ν(2−nξ) = 0 for
almost every ξ ∈ [−π, π]. Moreover, by (2.10), we have

[f̂ , f̂ ]ν(ξ) = |f̂(ξ)|2 + {f̂ , f̂}ν(ξ) = |f̂(ξ)|2 = 1, ξ ∈ (−π, π)\{0}.

Hence, [f̂ , f̂ ]ν ∈ L∞([−π, π]). Thus, f ∈ Fν . Inequality (2.13) is obviously true by

[f̂ , f̂ ](ξ) = 1 for almost every ξ ∈ R.

Letting 0 � ν < m−1/2, from B̂m(ξ) =
(

1−e−iξ

iξ

)m
, we have limj→∞ B̂m(2−jξ) =

B̂m(0) = 1, Bm ∈ W ν
2 (R), and |B̂m(ξ)|2 = sin2m(ξ/2)

(ξ/2)2m . Now a simple computation

shows that

{B̂m, B̂m}ν(ξ) � 22(m−ν) sin2(m−ν)(ξ/2)
∑

k∈Z\{0}
|ξ + 2πk|−2(m−ν).

Since 0 � ν < m − 1/2, we have 2(m − ν) > 1. Hence, for all ξ ∈ [−π, π], the series∑
k∈Z\{0} |ξ + 2πk|−2(m−ν) uniformly converges and therefore is uniformly bounded.

Now it follows from the above inequality that {B̂m, B̂m}ν(ξ) is uniformly bounded on
[−π, π] and

lim
n→∞

{B̂m, B̂m}ν(2−nξ) � lim
n→∞

sin2(m−ν)(2−n−1ξ) = 0 ∀ ξ ∈ [−π, π].

Now it follows from (2.10) that [B̂m, B̂m]ν ∈ L∞([−π, π]), since B̂m ∈ L∞(R) and

{B̂m, B̂m}ν ∈ L∞([−π, π]). It is well known that (2.13) holds for Bm.
The following result provides us a sufficient condition on the convergence of a

nonstationary cascade algorithm in a Sobolev space W ν
2 (R). As we will see, this

result is sufficient to study the convergence of nonstationary cascade algorithms with
masks for pseudosplines.

Proposition 2.6. Let âj and b̂j (j ∈ N) be 2π-periodic measurable functions
such that, for all j ∈ N,

(2.19) |âj(ξ)| � |b̂j(ξ)| a.e. ξ ∈ R.

Let η ∈ W ν
2 (R) such that limj→∞ η̂(2−jξ) = 1 for almost every ξ ∈ R. Define

f̂n(ξ) := η̂(2−nξ)

n∏
j=1

âj(2
−jξ) and ĝn(ξ) := η̂(2−nξ)

n∏
j=1

b̂j(2
−jξ), ξ ∈ R.

Assume that f̂∞(ξ) := limn→∞
∏n

j=1 âj(2
−jξ) and ĝ∞(ξ) := limn→∞

∏n
j=1 b̂j(2

−jξ)
are well defined for almost every ξ ∈ R. Then, limn→∞ ‖gn − g∞‖W ν

2 (R) = 0 implies
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limn→∞ ‖fn − f∞‖W ν
2 (R) = 0. In particular, suppose that there are a positive integer

J and a 2π-periodic measurable function b̂ such that

(2.20) |âj(ξ)| � |b̂(ξ)| a.e. ξ ∈ R, ∀ j > J and âj ∈ L∞(R), 1 � j � J.

For n ∈ N, define ĥn(ξ) := η̂(2−nξ)
∏n

j=1 b̂(2
−jξ). If {hn}∞n=1 converges in W ν

2 (R),
then fn converges to f∞ in W ν

2 (R); i.e., limn→∞ ‖fn − f∞‖W ν
2 (R) = 0.

Proof. The assumption that the functions f̂∞ and ĝ∞ are well defined implies

that limn→∞ f̂n(ξ) = f̂∞(ξ) and limn→∞ ĝn(ξ) = ĝ∞(ξ) for almost every ξ ∈ R.
By assumption, {gn}∞n=1 converges to g∞ in W ν

2 (R); together with the fact that
limn→∞ ĝn(ξ) = ĝ∞(ξ) for almost every ξ ∈ R, we must have g∞ ∈ W ν

2 (R) and
limn→∞ ‖gn − g∞‖W ν

2 (R) = 0. In particular, we have

lim
n→∞

∫
R

(1 + |ξ|2ν)|ĝn(ξ)|2 dξ =

∫
R

(1 + |ξ|2ν)|ĝ∞(ξ)|2 dξ < ∞.

Denote ηn(ξ) := 2(1 + |ξ|2ν)
[
|ĝn(ξ)|2 + |ĝ∞(ξ)|2

]
. It follows from the above identity

that

(2.21) lim
n→∞

∫
R

ηn(ξ) dξ = 4

∫
R

(1 + |ξ|2ν)|ĝ∞(ξ)|2 dξ < ∞.

By (2.19), it follows from the definition of ĝn and f̂n that |f̂n(ξ)| � |ĝn(ξ)| for almost

every ξ ∈ R. Since we have limn→∞ f̂n(ξ) = f̂∞(ξ) for almost every ξ ∈ R, we also

have |f̂∞(ξ)| � |ĝ∞(ξ)| for almost every ξ ∈ R. Consequently, by g∞, gn ∈ W ν
2 (R) for

all n ∈ N, we have f∞, fn ∈ W ν
2 (R) for all n ∈ N. Moreover, we have

(1 + |ξ|2ν)|f̂n(ξ) − f̂∞(ξ)|2 � 2(1 + |ξ|2ν)
[
|f̂n(ξ)|2 + |f̂∞(ξ)|2

]
� ηn(ξ) a.e. ξ ∈ R.

By (2.21) and the generalized Lebesgue dominated convergence theorem, we conclude
that

lim
n→∞

‖fn − f∞‖2
W ν

2 (R) = lim
n→∞

∫
R

(1 + |ξ|2ν)|f̂n(ξ) − f̂∞(ξ)|2 dξ

=

∫
R

lim
n→∞

(1 + |ξ|2ν)|f̂n(ξ) − f̂∞(ξ)|2 dξ = 0.

Therefore, limn→∞ ‖gn − g∞‖W ν
2 (R) = 0 implies limn→∞ ‖fn − f∞‖W ν

2 (R) = 0.
If (2.20) holds, for n > J we deduce that, for almost every ξ ∈ R,

|f̂n(ξ)| =

⎡
⎣ J∏
j=1

|âj(2−jξ)|

⎤
⎦ |η̂(2−nξ)|

n∏
j=J+1

|âj(2−jξ)|

� C|η̂(2−nξ)|
n∏

j=J+1

|b̂(2−jξ)| = C|ĥn−J(2−Jξ)|,

where C :=
∏J

j=1 ‖âj‖L∞(R) < ∞. Since {hn}∞n=1 is convergent in W ν
2 (R), it is

evident that {2Jhn−J(2J ·)}∞n=J+1 is also convergent in W ν
2 (R). Note that the Fourier

transform of 2Jhn−J(2J ·) is ĥn−J(2−J ·). Now by the generalized Lebesgue dominated
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convergence theorem, we conclude that {fn}∞n=1 is also convergent in W ν
2 (R); that is,

we have limn→∞ ‖fn − f∞‖W ν
2 (R) = 0.

Let {âj}∞j=1 be a sequence of 2π-periodic measurable functions. Define {fn}∞n=1

by

(2.22) f̂n(ξ) := χ[−π,π](2
−nξ)

n∏
j=1

âj(2
−jξ), ξ ∈ R, n ∈ N,

where χ[−π,π] denotes the characteristic function of the interval [−π, π]. This can
be understood as a representation of the nonstationary cascade algorithm associated
with the masks {âj}∞n=1 in the frequency domain. Due to Theorem 2.4, we say that a
nonstationary cascade algorithm associated with masks {âj}∞j=1 converges in W ν

2 (R)
if the sequence {fn}∞n=1 in (2.22) converges in W ν

2 (R). Note that the initial function

here in (2.22) is the sinc function f(x) = sin(πx)
πx since f̂(ξ) = χ[−π,π]. Similarly, we

say that a stationary cascade algorithm associated with a mask â converges in W ν
2 (R)

if the cascade algorithm associated with {âj}∞j=1 converges in W ν
2 (R) with âj = â for

all j ∈ N.

Basically, Proposition 2.6 says that if (2.19) holds and if the nonstationary cas-

cade algorithm associated with {b̂j}∞j=1 converges in W ν
2 (R), then so does the non-

stationary cascade algorithm associated with {âj}∞j=1. Similarly, if (2.20) holds and

the stationary cascade algorithm associated with mask b̂ converges in W ν
2 (R), then

Proposition 2.6 says that the nonstationary cascade algorithm associated with masks
{âj}∞j=1 must converge in W ν

2 (R).

The convergence of a stationary cascade algorithm associated with a finitely sup-
ported mask can be verified easily by calculating the spectrum of the transition
operator. Let â be a 2π-periodic trigonometric polynomial with â(0) = 1. Write
â(ξ) = (1+ e−iξ)mĉ(ξ) for some nonnegative integer m and some 2π-periodic trigono-

metric polynomial ĉ(ξ) with ĉ(π) 
= 0. Write |ĉ(ξ)|2 =
∑K

k=−K cke
−ikξ, where K

is some nonnegative integer. Denote ρ(â) the spectral radius of the square matrix
(c2j−k)−K�j,k�K and define ν2(â) := −1/2 − log2

√
ρ(â). It is known ([20, The-

orem 4.3 and Proposition 7.2] and [22, Theorem 2.1]) that the stationary cascade
algorithm associated with a 2π-periodic trigonometric polynomial mask â converges
in W ν

2 (R) if and only if ν2(â) > ν. Moreover, φ ∈ W ν
2 (R) for all 0 � ν < ν2(â), where

φ is the nontrivial compactly supported refinable function associated with mask â
such that φ̂(2ξ) = â(ξ)φ̂(ξ). Moreover, φ 
∈ W ν

2 (R) for ν > ν2(â) whenever the integer
shifts of φ are stable. See [17, 20, 22, 24, 32, 37] and the many references therein on
the convergence of stationary cascade algorithms.

2.3. Convergence of cascade algorithms with pseudospline masks. We
show that the nonstationary cascade algorithm associated with masks for pseudo-
splines in Theorem 1.2 converges in W ν

2 (R) for arbitrary ν � 0. We first prove
the following lemma which is not only used in the proof of the convergence of the
nonstationary cascade algorithms associated with pseudospline refinement masks, but
also plays an important role in our proof of Theorem 1.2 and the spectral frame
approximation order.

Lemma 2.7. Let âm,l be the refinement mask for the pseudospline of type II with
order (m, l) in (1.19). For positive integers m1, m2, and l2 such that 1 � m1 � m2
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and 1 � l2 � m2, the following inequality holds:

|âm2,l2(ξ)| � |̂aIm2,l2
(ξ)| � |b̂m1(ξ)| ∀ ξ ∈ R with

b̂m1(ξ) := 2(1 + e−iξ)−1âIm1,m1
(ξ).

(2.23)

Note that b̂m1 is uniquely determined by âIm1,m1
(ξ) = 2−1(1 + e−iξ)b̂m1(ξ).

Proof. Since |âm,l(ξ)| � 1 for all ξ ∈ R and 1 � l � m, it follows from the

relation |âIm,l(ξ)|2 = âm,l(ξ) and (1.18) that |âm,l(ξ)| � |âIm,l(ξ)| � |âIm,m(ξ)| for
all ξ ∈ R and 1 � l � m. Now in order to prove (2.23), it suffices to prove that

âm2,m2
(ξ) = |âIm2,m2

(ξ)|2 � |b̂m1(ξ)|2 for all ξ ∈ R and 1 � m1 � m2.

Setting x = sin2(ξ/2), by the definition of âm2,m2
in (1.19), we see that âm2,m2

(ξ) � |b̂m1(ξ)|2 for all ξ ∈ R and 1 � m1 � m2 is equivalent to

(1 − x)m2Pm2,m2
(x) � (1 − x)m1−1Pm1,m1

(x)

∀ x ∈ [0, 1] and 1 � m1 � m2.
(2.24)

By the definition of Pm,l in (1.18), we deduce that

(1 − x)m+1Pm+1,m+1(x) = (1 − x)m+1
m∑
j=0

(m + j)!

j!m!
xj

= (1 − x)m
m∑
j=0

(m + j)!

j!m!
(xj − xj+1)

= (1 − x)m

⎡
⎣ m∑
j=0

(m + j)!

j!m!
xj −

m+1∑
j=1

(m + j − 1)!

(j − 1)!m!
xj

⎤
⎦

= (1 − x)m

⎡
⎣1 − (2m)!

m!m!
xm+1 +

m∑
j=1

(
(m + j)!

j!m!
− (m + j − 1)!

(j − 1)!m!

)
xj

⎤
⎦

= (1 − x)m

⎡
⎣1 − (2m)!

m!m!
xm+1 +

m∑
j=1

(m + j − 1)!

j!(m− 1)!
xj

⎤
⎦ .

That is, we have

(1 − x)m+1Pm+1,m+1(x)

= (1 − x)m

⎡
⎣ (2m− 1)!

m!(m− 1)!
xm − (2m)!

m!m!
xm+1 +

m−1∑
j=0

(m + j − 1)!

j!(m− 1)!
xj

⎤
⎦

= (1 − x)m
[

(2m− 1)!

m!(m− 1)!
xm(1 − 2x) + Pm,m(x)

]

= (1 − x)mPm,m(x) − (2m− 1)!

m!(m− 1)!
xm(1 − x)m(2x− 1) ∀ m ∈ N.
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Consequently, for x ∈ [1/2, 1] and m2 � m1, we have 2x− 1 � 0 and

(1 − x)m2Pm2,m2(x) � (1 − x)m2−1Pm2−1,m2−1(x) � · · · � (1 − x)m1Pm1,m1(x)

� (1 − x)m1−1Pm1,m1
(x).

Therefore, (2.24) holds for x ∈ [1/2, 1].
It remains to prove (2.24) for all x ∈ [0, 1/2]. Since

(1 − x)m2Pm2,m2(x) � (1 − x)m2Pm2,m2(x) + xm2Pm2,m2(1 − x) = 1,

in order to prove (2.24) for all x ∈ [0, 1/2], now it suffices to show that

(2.25) 1 � (1 − x)m1−1Pm1,m1
(x) ∀ x ∈ [0, 1/2].

Note that

1 = (1 − x)(1 − x)m1−1Pm1,m1(x) + xxm1−1Pm1,m1(1 − x)

= (1 − x)m1−1Pm1,m1(x) − x
[
(1 − x)m1−1Pm1,m1(x) − xm1−1Pm1,m1(1 − x)

]
,

from which we have

(1 − x)m1−1Pm1,m1
(x) = 1 + x

[
(1 − x)m1−1Pm1,m1

(x) − xm1−1Pm1,m1
(1 − x)

]
.

In order to prove (2.25), by the above identity, it suffices to prove that

(2.26) (1 − x)m1−1Pm1,m1(x) � xm1−1Pm1,m1(1 − x) ∀ x ∈ [0, 1/2].

Note that for x ∈ [0, 1/2], we have 0 � x/(1−x) � 1. By the definition of Pm1,m1
(x) :=∑m1−1

j=0

(
m1+j−1

j

)
xj , we have

1 =
1

1
�

(
m1

1

)
x(

m1

1

)
(1 − x)

�
(
m1+1

2

)
x2(

m1+1
2

)
(1 − x)2

� · · · �
(
2m1−2
m1−1

)
xm1−1(

2m1−2
m1−1

)
(1 − x)m1−1

=
xm1−1

(1 − x)m1−1
, x ∈ [0, 1/2].

But for positive numbers a, b, c, d, it is easy to see that a
b � c

d implies a
b � a+c

b+d � c
d .

Now it follows from the above inequalities that

1 � Pm1,m1(x)

Pm1,m1(1 − x)
=

∑m1−1
j=0

(
m1+j−1

j

)
xj∑m1−1

j=0

(
m1+j−1

j

)
(1 − x)j

� xm1−1

(1 − x)m1−1
, x ∈ [0, 1/2],

from which we see that (2.26) holds.
Next we establish the following result on C∞ nonstationary refinable functions.

In fact, we prove that the nonstationary cascade algorithm associated with the masks
for pseudosplines of type I or type II in Theorem 1.2 converges in W ν

2 (R) for any
ν � 0.

Theorem 2.8. Let âj be the mask for the pseudospline of type I or type II
with order (mj , lj), where 1 � lj � mj and j ∈ N are positive integers such that
(1.21) holds. Then, for every n ∈ N0, the nonstationary cascade algorithm (2.22)
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associated with {âj+n}∞j=1 converges in W ν
2 (R) for any ν � 0. Consequently, the

nonstationary refinable functions φj , j ∈ N0, in (1.1) must be well-defined compactly
supported C∞(R) functions.

Proof. Since âj(ξ) = âmj ,lj (ξ) or âj(ξ) = ̂aImj ,lj
(ξ), it is easy to see that deg(âj) �

2mj and âj(0) = 1. Therefore, by our assumption in (1.21), we see that

∞∑
j=1

2−j deg(âj) � 2

∞∑
j=1

2−jmj < ∞.

Moreover, we have |âj(ξ)| � 1 for all j ∈ N and ξ ∈ R. Thus, the condition of
Lemma 2.1 is satisfied. By Lemma 2.1, we conclude that φj , j ∈ N0, are well-defined
compactly supported tempered distributions.

Let âj,j be the refinement mask for the pseudospline of type II with order (j, j).

It was proved by Daubechies [12, 13] that limj→∞ ν2(âj,j) = limj→∞ ν2(âIj,j) = ∞.

Hence, there exists a positive integer J such that ν2(âIJ,J) � ν + 2. By limj→∞ mj =
∞, there exists a positive integer N such that

(2.27) mj � J and ν2(âj) � ν2(âIJ,J) � ν + 2 ∀ j � N.

Let b̂ be the unique 2π-periodic trigonometric polynomial such that âIJ,J(ξ) = 2−1(1+

e−iξ)b̂(ξ). By the definition of ν2(b̂) and (2.27), it is straightforward to see that

ν2(b̂) = ν2(âIJ,J) − 1 � ν + 1 > ν. Therefore, the stationary cascade algorithm

associated with the mask b̂ converges in W ν
2 (R) (see [20, Theorem 4.3]). On the other

hand, by (2.23) of Lemma 2.7, since mj � J for j � N , we deduce that

|âj(ξ)| � |̂aImj ,lj
(ξ)| � |b̂(ξ)| ∀ ξ ∈ R, j � N.

Since the stationary cascade algorithm associated with the mask b̂ converges in W ν
2 (R),

by Proposition 2.6, the nonstationary cascade algorithm associated with masks {âj}∞j=1

converges in W ν
2 (R). Therefore, we have φ0 ∈ W ν

2 (R) for all ν � 0. That is, φ0 is a
compactly supported C∞ function. The same proof works for every φn and for the
nonstationary cascade algorithm associated with masks {ân+j}∞j=1.

In computer aided geometric design, it is of interest to consider the convergence
of a subdivision scheme and a cascade algorithm in Cκ(R), the space of functions with
the κth continuous derivative, instead of the Sobolev space W ν

2 (R). When a cascade
algorithm is implemented in the space domain as given in (2.7), the initial function is
often chosen to be a compactly supported function such as spline functions of order
ν with ν > κ + 1/2. This is indeed true and can be proved easily by the imbedding
theorems of Sobolev spaces.

Corollary 2.9. Let âj (j ∈ N) be the masks satisfying the conditions given in
Theorem 2.8. Let κ be any nonnegative integer, and let f be a compactly supported
initial function in W ν

2 ∩Fν with ν > κ+1/2. Then the nonstationary cascade algorithm
defined by (2.7) associated with {ân+j}∞j=1 converges in Cκ(R).

Proof. The convergence of the cascade algorithm in W ν
2 (R) defined by (2.7) follows

from Proposition 2.6 and Theorem 2.8. Since all fn (n ∈ N0) and φ0 are supported
inside some compact set, it follows from the imbedding theorem that the sequence fn
also converges in Cκ(R).
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2.4. Orthogonality. For the stationary case, it is well known that for a com-
pactly supported refinable function φ with a 2π-periodic trigonometric polynomial â,
the integer shifts of φ form an orthonormal system if and only if its refinement mask
â satisfies

|â(ξ)|2 + |â(ξ + π)|2 = 1 a.e. ξ ∈ R

and the corresponding stationary cascade algorithm converges in L2(R) (that is,
ν2(â) > 0; see [20, 22]). Furthermore, if one chooses the wavelet function ψ by

ψ̂(2ξ) := e−iξâ(ξ + π)φ̂(ξ), then the wavelet system generated by ψ forms an or-
thonormal basis in L2(R). For example, see [11, 12, 13, 20, 22, 24, 31, 32, 37] and the
references therein. It turns out that this is also true for the nonstationary case, as a
consequence of the proof of Theorem 2.4.

Theorem 2.10. Let âj , j ∈ N, be 2π-periodic measurable functions such that,

for every j ∈ N0, φ̂j(ξ) := limN→∞
∏N

n=1 ân+j(2
−nξ) is well defined for almost every

ξ ∈ R. Then the integer shifts of φj form an orthonormal system in L2(R) for all
j ∈ N; i.e.,

(2.28) 〈φj(· − k), φj〉 :=

∫
R

φj(x− k)φj(x) dx = δ(k) ∀ k ∈ Z and j ∈ N0,

where δ(0) = 1 and δ(k) = 0 for all k 
= 0 if and only if
(1) all the masks âj satisfy

(2.29) |âj(ξ)|2 + |âj(ξ + π)|2 = 1 a.e. ξ ∈ R, ∀ j ∈ N0;

(2) the nonstationary cascade algorithm associated with masks {an+j}∞n=1 con-
verges in L2(R) for large enough j ∈ N0.

Moreover, if (1.4) and (2.28) hold, define ψ̂j−1(ξ) := e−iξ/2âj(ξ/2 + π)φ̂j(ξ/2) for
j ∈ N; then {φ0(· − k) : k ∈ Z} ∪ {ψj;j,k : j ∈ N0, k ∈ Z} is an orthonormal basis
of L2(R).

Proof. It is known that (2.28) holds for each j if and only if [φ̂j , φ̂j ](ξ) = 1 almost
everywhere ξ ∈ R.

Assume that (1) and (2) hold. Then [φ̂j , φ̂j ](ξ) = 1 almost everywhere x ∈ R for
all j ∈ N0 can be proved by an argument similar to that in the stationary case (see
[11, 13, 22, 24, 32]). We omit the details here.

The necessity part is proved as follows. If (2.28) holds, then [φ̂j , φ̂j ] = 1 for all
j ∈ N0. Now (2.29) can be verified by the same argument as in the stationary case.
So, item (1) holds. Next, we prove item (2); that is, the sequence {fN}∞N=1, defined
by

f̂N (ξ) := χ[−π,π](2
−Nξ)

N∏
n=1

ân+j(2
−nξ), N ∈ N,

converges in L2(R) for every j ∈ N0. By the relation φ̂j(ξ) = âj+1(ξ/2)φ̂j+1(ξ/2), we
deduce that

(2.30) φ̂j(ξ) = φ̂N+j(2
−Nξ)

N∏
n=1

ân+j(2
−nξ), N ∈ N and j ∈ N0.
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Applying (2.30) and [φ̂N , φ̂N ] = 1, one obtains that

‖φ̂j‖2
L2(R) =

∫
R

|f̂N (ξ)|2 dξ, N ∈ N.

In particular, we have limN→∞
∫

R
|f̂N (ξ)|2 dξ = ‖φ̂j‖2

L2(R) < ∞. Note that

|f̂N (ξ) − φ̂j(ξ)|2 � 2
[
|f̂N (ξ)|2 + |φ̂j(ξ)|2

]
=: ηN (ξ), ξ ∈ R,

and

lim
N→∞

∫
R

ηN (ξ) dξ = 4

∫
R

|φ̂j(ξ)|2 dξ < ∞.

By limN→∞ f̂N (ξ) = φ̂j(ξ) for almost every ξ ∈ R and the generalized Lebesgue

dominated convergence theorem, we conclude that limN→∞ ‖f̂N−φ̂j‖L2(R) = 0. Thus,
for every j ∈ N0, the cascade algorithm associated with masks {ân+j}∞n=1 converges
in L2(R).

If (2.28) holds, by the definition of ψj and (2.29), then it is easy to check that
{φ0(· − k) : k ∈ Z} ∪ {ψj;j,k : j ∈ N0, k ∈ Z} is an orthonormal system of L2(R).
By Theorem 1.1, we see that {φ0(· − k) : k ∈ Z} ∪ {ψj;j,k : j ∈ N0, k ∈ Z} is a
tight frame in L2(R). Therefore, {φ0(· − k) : k ∈ Z} ∪ {ψj;j,k : j ∈ N0, k ∈ Z} is an
orthonormal basis of L2(R).

3. The approximation order of the truncated frame series. In this sec-
tion, we shall study the approximation property of a nonstationary tight wavelet
frame, i.e., the frame approximation properties of the operators Qn in (1.9). The ap-
proximation operators Qn and their approximation order for a given stationary tight
wavelet frame have been extensively studied in [14]. The approximation operators Qn

provide a simple approximation scheme for a given tight wavelet frame and have close
links to the frame decomposition and reconstruction algorithms for a tight wavelet
frame (see, e.g., [14]). Moreover, their approximation order determines the accuracy
of the truncation operators and is not necessarily equal to the best approximation
order provided by the underlying nonstationary multiresolution analysis.

Since the approximation operators Qn provide a simple approximation scheme for
a given tight wavelet frame, they are often used in various applications. For example,
in [1, 2, 3, 4, 5], where the (stationary) tight wavelet frame based algorithms for
high/super resolution image reconstructions, image inpainting, and deconvolutions
are given, the operators Qn are used there to approximate the underlying function
from a given data set. The interested reader should consult [1, 2, 3, 4, 5] for details.

The operators Qn are closely related to other operators. For a sequence {φn}∞n=0

of functions in L2(R), we define the linear operators Pn(f), n ∈ N0, by

Pn(f) :=
∑
k∈Z

〈f, φn;n,k〉φn;n,k, f ∈ L2(R) with

φn;n,k := 2n/2φn(2n · −k).

(3.1)
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Similar to the stationary case, by calculation, it is easy to verify that (1.12) implies

Jj∑
�=1

∑
k∈Z

〈f, ψ�
j−1;j−1,k〉ψ�

j−1;j−1,k

=
∑
k∈Z

〈f, φj;j,k〉φj;j,k −
∑
k∈Z

〈f, φj−1;j−1,k〉φj−1;j−1,k

(3.2)

for f ∈ L2(R). Consequently, by the definition of the linear operators Qn in (1.9), it
follows from the relation in (3.2) that

Qn(f) =
∑
k∈Z

〈f, φ0(· − k)〉φ0(· − k) +

n−1∑
j=0

Jj+1∑
�=1

∑
k∈Z

〈f, ψ�
j;j,k〉ψ�

j;j,k

=
∑
k∈Z

〈f, φn;n,k〉φn;n,k = Pn(f).

That is, if (1.12) holds, then the linear operators Qn in (1.9) and Pn in (3.1) are the
same.

The approximation order of Qn’s for a stationary tight wavelet frame is investi-
gated in [14] through that of Pn’s, since Qn = Pn for a tight frame system constructed
from the unitary extension principle. The relationship has been studied in [14] for sta-
tionary tight wavelet frames between the approximation order of Pn’s and the (best)
approximation order provided by the spaces Sn(φn), where Sn(φn) is the smallest
closed subspace of L2(R) generated by the linear span of φn(2n · −k), k ∈ Z; that is,
Sn(φn) is the same as the smallest closed subspace of L2(R) containing the truncated
tight frame system {φ0(·−k) : k ∈ Z}∪{ψ�

j;j,k : k ∈ Z, 0 � j < n, � = 1, . . . ,Jj+1}.
It is well known that the approximation order provided by the spaces Sn(φn) is de-
termined by the order of the Strang–Fix conditions satisfied by φn. However, the
approximation order of Pn’s is determined by the order of the zero at the origin of
the function 1 − |φ̂|2, in addition to the order of the Strang–Fix conditions satisfied
by φn. Consequently, the frame approximation order can be (much) smaller than the
approximation order provided by the spaces Sn(φn) (see [14] for details). This is also
true for the nonstationary case. For example, let âj(ξ) := 2−j(1 + e−iξ)j , j ∈ N, be
the masks for the up-functions. Then, item (iii) of Theorem 1.3 says that it does not
have any “strong” frame approximation order in the sense of (1.16); i.e., for any given
ν > 0, there does not exist a positive constant C such that (1.16) is satisfied. But
one can check that the corresponding spaces Sn(φn) provide a spectral approximation
order.

If the integer shifts of φn are orthonormal, then the linear operator Pn in (3.1)
becomes an orthogonal projection from L2(R) to Sn(φn). That is, for this case,
Pn(f) is the best approximation of f ∈ L2(R) in the closed subspace Sn(φn) of
L2(R). This is the reason why the approximation order of Qn’s is identified with the
best approximation order provided by the spaces Sn(φn) in [10], which is simpler to
understand, since only orthonormal wavelets are studied in [10].

To summarize our discussion here, the understanding of the approximation or-
der of the approximation operators Qn for a given tight wavelet frame is necessary,
since it is simple and used in applications such as image inpainting, and since, unlike
orthonormal wavelets, the approximation order of a truncated tight frame series is
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not necessarily the same as the best approximation order provided by the underlying
nonstationary multiresolution analysis.

The main result of this section is Theorem 3.2, which is interesting in its own right
and is independent of its role in our proofs of some of major parts of Theorems 1.1–1.4.

The following result can be directly obtained by applying Jetter and Zhou [28]
and [29, Theorem 2.1].

Proposition 3.1. Let ϕ ∈ L2(R) and ν � 0. Define a linear operator P by

P (f) :=
∑
k∈Z

〈f, ϕ(· − k)〉ϕ(· − k), f ∈ L2(R).

Then ‖f − P (f)‖L2(R) � Cϕ|f |W ν
2 (R) for all f ∈ W ν

2 (R) with a positive constant

(3.3) Cϕ := π−1/2
√

max(c1, c3) + max(2c2, 2c4 + 1),

provided that there exist positive constants c1, c2, c3, c4 such that, for almost every
ξ ∈ [−π, π], the following inequalities hold:∣∣1 − |ϕ̂(ξ)|2

∣∣2� c1|ξ|2ν ,(3.4) ∑
k∈Z\{0}

|ϕ̂(ξ)|2|ϕ̂(ξ + 2πk)|2 � c2|ξ|2ν ,(3.5)

∑
k∈Z\{0}

|ξ + 2πk|−2ν |ϕ̂(ξ)|2|ϕ̂(ξ + 2πk)|2 � c3,(3.6)

∑
k∈Z\{0}

|ξ + 2πk|−2ν
∑

�∈Z\{0}
|ϕ̂(ξ + 2π�)|2|ϕ̂(ξ + 2πk)|2 � c4.(3.7)

Next, we present the following result on the approximation properties of the
operators Pn defined in (3.1).

Theorem 3.2. Let âj , j ∈ N, be 2π-periodic measurable functions such that (1.3)

holds for all j ∈ N, and, for every n ∈ N0, the function φ̂n(ξ) := limJ→∞
∏J

j=1

âj+n(2−jξ) is well defined for almost every ξ ∈ R. Let ν � 0. If, for n ∈ N,∣∣∣1 − |φ̂n(ξ)|2
∣∣∣2 � Cφn |ξ|2ν a.e. ξ ∈ [−π, π],

∑
k∈Z\{0}

|φ̂n(ξ)|2|φ̂n(ξ + 2πk)|2 � Cφn
|ξ|2ν a.e. ξ ∈ [−π, π],

(3.8)

where Cφn is a constant depending only on φn, then, for the linear operators Pn in
(3.1),

(3.9) ‖f−Pn(f)‖L2(R) � max(2,
√
Cφn) 2−νn|f |W ν

2 (R) ∀ f ∈ W ν
2 (R) and n ∈ N.

In particular, (3.8) is satisfied if

(3.10) 1 − |φ̂n(ξ)|2 � Cφn |ξ|2ν a.e. ξ ∈ [−π, π].

Proof. By (1.3) and Lemma 2.2, we have φn ∈ L2(R) for all n ∈ N0. For each
fixed n ∈ N0, we denote Pn,0 the following linear operator on L2(R):

Pn,0(f) :=
∑
k∈Z

〈f, φn(· − k)〉φn(· − k), f ∈ L2(R).
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It is apparent [28] that the operators Pn and Pn,0 are linked through the relation
Pn(f) = [Pn,0(f(2−n·))](2n·) and

(3.11) ‖f − Pn(f)‖L2(R) = 2−n/2‖f(2−n·) − Pn,0(f(2−n·))‖L2(R).

Since (1.3) holds, by Lemma 2.2, we have

[φ̂n, φ̂n](ξ) :=
∑
k∈Z

|φ̂n(ξ + 2πk)|2 � 1 a.e. ξ ∈ R.

In particular, we have |φ̂n(ξ)| � 1 for almost every ξ ∈ R.
Since ν � 0, for ξ ∈ [−π, π], it is evident that |ξ + 2πk|−2ν � 1 for all k ∈ Z\{0}

and ∑
k∈Z\{0}

|ξ + 2πk|−2ν
∑

�∈Z\{0}
|φ̂n(ξ + 2π�)|2|φ̂n(ξ + 2πk)|2

�
∑
k∈Z

|φ̂n(ξ + 2πk)|2
∑
�∈Z

|φ̂n(ξ + 2π�)|2 � 1.

Hence, (3.7) holds with c4 = 1 and ϕ = φn. Similarly, for ξ ∈ [−π, π], we have∑
k∈Z\{0}

|ξ + 2πk|−2ν |φ̂n(ξ)|2|φ̂n(ξ + 2πk)|2 �
∑
k∈Z

|φ̂n(ξ + 2πk)|2 � 1.

Therefore, (3.6) holds with c3 = 1 and ϕ = φn.
By (3.8), we see that (3.4) and (3.5) hold with c1 = c2 = Cφn and ϕ = φn.
Note that |f(2−n·)|W ν

2 (R) = 2n/22−νn|f |W ν
2 (R). Therefore, by Proposition 3.1 and

(3.11), we conclude that, for all f ∈ W ν
2 (R),

‖f − Pn(f)‖L2(R) = 2−n/2‖f(2−n·) − Pn,0(f(2−n·))‖L2(R)

� max(2,
√

Cφn
)2−νn|f |W ν

2 (R),
(3.12)

since

max(c1, c3) + max(2c2, 2c4 + 1) = max(Cφn , 1) + max(2Cφn , 3) � max(3Cφn , 6)

� πmax(Cφn , 4).

Therefore, (3.9) is verified.
If (3.10) holds, then∣∣1 − |φ̂n(ξ)|2

∣∣2� C2
φn

|ξ|2ν |ξ|2ν � Cφn |ξ|2ν , |ξ| � C
− 1

2ν

φn
,

and by |φ̂n(ξ)| � 1,∣∣1 − |φ̂n(ξ)|2
∣∣2� 1 = Cφn [C

− 1
2ν

φn
]2ν � Cφn |ξ|2ν , |ξ| � C

− 1
2ν

φn
.

Also, by |φ̂n(ξ)|2 � [φ̂n, φ̂n](ξ) � 1 and the above two inequalities, we have∑
k∈Z\{0}

|φ̂n(ξ)|2|φ̂n(ξ + 2πk)|2 �
∑

k∈Z\{0}
|φ̂n(ξ + 2πk)|2 = [φ̂n, φ̂n](ξ) − |φ̂n(ξ)|2

� 1 − |φ̂n(ξ)|2.
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Consequently, (3.10) implies (3.8).

The behavior of 1−|φ̂n(ξ)|2 near the origin ξ = 0 in (3.10) is closely related to that
of the masks 1−|âj(ξ)|2 for all j ∈ N near the origin ξ = 0. As we will see in the proof
of the next section, when only masks are available and the nonstationary refinable
functions are not explicitly given, one can use the estimate of 1 − |âj(ξ)|2 near ξ = 0

for all j ∈ N to obtain the estimate of 1 − |φ̂n(ξ)|2 near ξ = 0. The following result
provides the estimate of 1 − |âj(ξ)|2 near the origin for the masks of pseudosplines,
which will be needed later in our proof of the spectral frame approximation order in
Theorems 1.2 and 1.4.

Lemma 3.3. Let âIm,l and âm,l be pseudospline masks of types I and II of order
(m, l) defined in (1.19) and (1.20), respectively. For any 0 < ρ � 1 and ν � 0, there
exist a positive integer N and a positive constant C (both of them depend only on ρ
and ν), such that, for all N � ρm < l � m,

(3.13) 0 � 1 − |âIm,l(ξ)|2 � 1 − |âm,l(ξ)|2 � C|ξ|2ν ∀ ξ ∈ [−π, π].

Proof. Since |âIm,l(ξ)|2 = âm,l(ξ) � 1, we have

0 � 1 − |âIm,l(ξ)|2 � 1 − |âm,l(ξ)|2 = [1 + âm,l(ξ)][1 − âm,l(ξ)] � 2[1 − âm,l(ξ)].

Setting x = sin2(ξ/2), by the definition of âm,l(ξ) in (1.19), we have âm,l(ξ) = (1 −
x)mPm,l(x), where the polynomial Pm,l is defined in (1.18). In order to prove (3.13),
now it is easy to see that it is equivalent to proving that, for any 0 < ρ � 1 and
any positive integer ν, there exist a positive integer N and a positive constant C, all
depending only on ρ and ν, such that

(3.14) 1 − (1 − x)mPm,l(x) � Cxν ∀ x ∈ [0, 1] and N � ρm < l � m.

Since (1 − x)mPm,m(x) + xmPm,m(1 − x) = 1, we deduce that

1 − (1 − x)mPm,l(x) = (1 − x)mPm,m(x) + xmPm,m(1 − x) − (1 − x)mPm,l(x)

= xmPm,m(1 − x) + (1 − x)m
m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj .

= xν

⎡
⎣xm−νPm,m(1 − x) + (1 − x)m

m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj−ν

⎤
⎦ .

By Lemma 2.7, (2.24) holds. In particular, replacing x by 1−x in (2.24), we conclude
that

xm−νPm,m(1 − x) � xN−ν−1PN,N (1 − x) ∀ x ∈ [0, 1] and m � N � ν + 1.

Therefore, on the one hand, we have

xm−νPm,m(1 − x) � CN := max
x∈[0,1]

xN−ν−1PN,N (1 − x) < ∞

∀ x ∈ [0, 1], m � N � ν + 1.

(3.15)
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On the other hand, for x ∈ [0, 1], we have

(1 − x)m
m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj−ν = (1 − x)mxl−ν

m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj−l

� (1 − x)mxl−ν
m−1∑
j=l

(m + j − 1)!

j!(m− 1)!

= (1 − x)mxl−ν
m−1∑
j=l

[
(m + j)!

j!m!
− (m + j − 1)!

(j − 1)!m!

]

� (1 − x)mxl−ν (2m− 1)!

(m− 1)!m!
.

By Stirling’s formula, we have limn→∞
n!√

2πnn+1/2e−n
= 1. Thus, when m is large

enough and for all x ∈ [0, 1], we have

(2m− 1)!

(m− 1)!m!
=

1

2

(2m)!

m!m!
� 1√

2π

(2m)2m+1/2e−2m

m2m+1e−2m
� 4mm−1/2.

Thus, for large enough m, we have

(1−x)m
m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj−ν � (1−x)mxl−ν4mm−1/2 = [4(1−x)x(l−ν)/m]mm−1/2.

Since ρm < l, we have l/m > ρ. Since ν is fixed, when m is large enough, we have
(l − ν)/m � ρ and, hence, x(l−ν)/m � xρ for all x ∈ [0, 1]. Therefore, we have

(1 − x)m
m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj−ν � [4(1 − x)xρ]mm−1/2 ∀ x ∈ [0, 1].

Note that ρ > 0. The continuous function (1−x)xρ has only one critical point x = ρ
1+ρ

on the interval (0, 1), and it takes value zero at x = 0. Thus, we can choose 0 < τ � 1
such that 4(1 − x)xρ � 1 for all x ∈ [0, τ ]; one may prefer to choose such τ as large
as possible; in particular, τ may be obtained by solving 4(1 − τ)τρ = 1. Therefore,
there exists a positive integer N such that, for N � ρm < l � m,

(1 − x)m
m−1∑
j=l

(m + j − 1)!

j!(m− 1)!
xj−ν � [4(1 − x)xρ]mm−1/2 � m−1/2 � 1

∀ x ∈ [0, τ ].

(3.16)

Combining (3.15) and (3.16), we conclude that

1 − (1 − x)mPm,l(x) � xν [CN + 1] ∀ x ∈ [0, τ ], N � ρm < l � m.

Observing that 0 � (1 − x)mPm,l(x) � 1 for all x ∈ [0, 1], we deduce that

1 − (1 − x)mPm,l(x) � 1 = x−νxν � τ−νxν ∀ x ∈ [τ, 1], 1 � l � m, m ∈ N.

Thus, (3.14) is verified with C := max(CN +1, τ−ν). This completes the proof.
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4. Proofs of Theorems 1.1–1.4. In this section, we shall prove Theorems 1.1–
1.4. We start with a proof of Theorem 1.1.

Proof of Theorem 1.1. By our assumption in Theorem 1.1, item (i) follows from

Lemmas 2.1 and 2.2. Since (1.3) holds, by Lemma 2.2, we have [φ̂n, φ̂n] � 1 and
φn ∈ L2(R). Therefore, the linear operators Qn in (1.9) and Pn in (3.1) are well
defined, bounded, and the same (see section 3).

Let us first prove (1.15) in item (iii). In order to do so, in the following we

estimate the constants Cφn
in (3.10). Denote d̂j(ξ) := |âj(ξ)|2 for j ∈ N. Since

âj(0) = 1, we have d̂j(0) = 1 for all j ∈ N. By our assumption and Lemma 2.1, we

have |φ̂n(ξ)|2 =
∏∞

j=1 d̂j+n(2−jξ) for all ξ ∈ R. Therefore, we have

1 − |φ̂n(ξ)|2 =

∞∏
j=1

d̂j+n(0) −
∞∏
j=1

d̂j+n(2−jξ)

=

∞∑
�=1

[ �−1∏
j=1

d̂j+n(0)
][
d̂�+n(0) − d̂�+n(2−�ξ)

][ ∞∏
j=�+1

d̂j+n(2−jξ)
]
.

Since d̂j+n(0) = 1 and 0 � d̂j+n(ξ) � 1 by (1.3), we conclude that

(4.1) 0 � 1 − |φ̂n(ξ)|2 �
∞∑
�=1

|d̂�+n(0) − d̂�+n(2−�ξ)|, ξ ∈ R.

Since âj is a 2π-periodic trigonometric polynomial, by the definition of d̂j , we see

that d̂j is a real-valued C∞ function. Note that, by our assumption, 2ν is a positive
integer. Therefore, for ξ ∈ [−π, π], there exists ζξ,j ∈ [−π, π] such that

(4.2) d̂j(ξ) = d̂j(0) +
d̂j

(1)
(0)

1!
ξ + · · · + d̂j

(2ν−1)
(0)

(2ν − 1)!
ξ2ν−1 +

d̂j
(2ν)

(ζξ,j)

(2ν)!
ξ2ν .

By Bernstein’s inequality and 0 � d̂j(ξ) � 1, we have

‖d̂j
(2ν)

‖L∞(R) � [deg(d̂j)]
2ν‖d̂j‖L∞(R) � [deg(d̂j)]

2ν .

By assumption in (1.14), for j � N , we have d̂j
(�)

(0) = 0 for all � = 1, . . . , 2ν − 1.
Therefore, it follows from (4.2) that, for n � N , � ∈ N, and ξ ∈ [−π, π],

|d̂�+n(0) − d̂�+n(2−�ξ)| � [deg(d̂�+n)]2ν

(2ν)!
|2−�ξ|2ν � 1

(2ν)!
|ξ|2ν2−2ν�[deg(d̂�+n)]2ν .

Therefore, we have

∞∑
�=1

|d̂�+n(0) − d̂�+n(2−�ξ)| � 1

(2ν)!
|ξ|2ν

∞∑
�=1

2−2ν�[deg(d̂�+n)]2ν .

That is, by (4.1) we see that, for every n � N , (3.10) holds with

(4.3) Cφn :=
1

(2ν)!

∞∑
�=1

2−2ν�[deg(d̂�+n)]2ν .
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Now we estimate Cφn
using the condition in (1.13). By (1.13), there exists a positive

constant C1 such that

(4.4) deg(âj) � C1j
α2βj ∀ j ∈ N.

By the definition of d̂j , we have deg(d̂j) � 2 deg(âj) for all j ∈ N. Therefore, from
(4.4), we deduce that

2−2ν�[deg(d̂�+n)]2ν � 22νC2ν
1 (� + n)2να22νβ(�+n)2−2ν�

= 22νC2ν
1 n2να22νβn(1 + �/n)2να2−2ν(1−β)�

� 22νC2ν
1 n2να22νβn(1 + �)2να2−2ν(1−β)�.

Consequently, we have the following estimate for the constant Cφn :

Cφn
=

1

(2ν)!

∞∑
�=1

2−2ν�[deg(d̂�+n)]2ν � 22νC2ν
1

(2ν)!
n2να22νβn

∞∑
�=1

(1 + �)2να2−2ν(1−β)�

= C2n
2να22νβn,

where C2 := 22νC2ν
1 [(2ν)!]−1

∑∞
�=1(1 + �)2να2−2ν(1−β)� < ∞, since 1 − β > 0 and

ν > 0. Since Qn = Pn, by Theorem 3.2, we conclude that

‖f−Qn(f)‖L2(R) � max(2,
√

C2)n
να2−ν(1−β)n|f |W ν

2 (R) ∀ f ∈ W ν
2 (R) and n � N.

That is, (1.15) holds with C := max(2,
√
C2) < ∞, which is independent of f and n.

Now we prove item (ii). In order to show that {φ0(· − k) : k ∈ Z} ∪ {ψ�
j;j,k : j ∈

N0, k ∈ Z, � = 1, . . . ,Jj+1} is a tight frame of L2(R), since Qn = Pn, it now suffices
to show that

lim
n→∞

‖f −Qn(f)‖L2(R) = lim
n→∞

‖f − Pn(f)‖L2(R) = 0 ∀ f ∈ L2(R).

Since âj(0) = 1 and d̂j(ξ) = |âj(ξ)|2, it is evident that d̂j(0) = 1. Since d̂j is a 2π-
periodic trigonometric polynomial, the condition in (1.14) is automatically satisfied
with ν = 1/2.

Now from the above proof of item (iii) and by Theorem 3.2, we see that (3.9) holds
with the constant Cφn defined in (4.3) and ν = 1/2. More precisely, by Theorem 3.2,
for ν = 1/2, we have

(4.5) ‖f − Pn(f)‖2
L2(R) � Cn|f |2W 1/2

2 (R)
∀ f ∈ W

1/2
2 (R)

with

(4.6) Cn := max(4, Cφn)2−n and Cφn :=

∞∑
�=1

2−� deg(d̂�+n).

Now we prove that limn→∞ Cn = 0 by showing limn→∞ 2−nCφn
= 0. Note that

(4.7) 2−nCφn =

∞∑
�=1

2−(�+n) deg(d̂�+n) =

∞∑
j=n+1

2−j deg(d̂j).
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Since deg(d̂j) � 2 deg(âj), by our assumption in (1.4), we have

∞∑
j=1

2−j deg(d̂j) � 2

∞∑
j=1

2−j deg(âj) < ∞.

Consequently, by (4.7), we conclude that

0 � lim
n→∞

2−nCφn
� lim

n→∞

∞∑
j=n+1

2−j deg(d̂j) = 0.

That is, limn→∞ 2−nCφn = 0. Thus, we have limn→∞ Cn = limn→∞ max(4, Cφn)2−n =
0. Now from (4.5), we see that

lim
n→∞

‖f − Pn(f)‖2
L2(R) = lim

n→∞
Cn|f |2W 1/2

2 (R)
= 0 ∀ f ∈ W

1/2
2 (R).

Since Pn = Qn in (3.1), we conclude that

‖f‖2
L2(R) = lim

n→∞
〈Qn(f), f〉 =

∑
k∈Z

|〈f, φ0(· − k)〉|2 +

∞∑
j=0

Jj+1∑
�=1

∑
k∈Z

|〈f, ψ�
j;j,k〉|2

∀ f ∈ W
1/2
2 (R).

Since W
1/2
2 (R) is dense in L2(R), (1.2) must hold for all f ∈ L2(R). Therefore,

{φ0(· − k) : k ∈ Z} ∪ {ψ�
j;j,k : j ∈ N0, k ∈ Z, � = 1, . . . ,Jj+1} is a tight frame of

L2(R).
Next, we prove Theorem 1.2.
Proof of Theorem 1.2. For item (1), applying Theorem 2.8, we conclude that all

φj , j ∈ N0, are compactly supported functions in C∞(R). Since all the masks âj
are 2π-periodic trigonometric polynomials with real coefficients and are symmetric

about the origin, we have âj(ξ) = âj(ξ). Now by the definition of φ̂j in (1.1), it is

straightforward to see that all φj , j ∈ N0, are real-valued and φ̂j(ξ) = φ̂j(ξ); that is,
all φj , j ∈ N0, are symmetric about the origin.

By the definition of âIm,l and âm,l, we have

(4.8) 1 − |âIm,l(ξ)|2 = 1 + O(|ξ|2l) and 1 − |âm,l(ξ)|2 = 1 + O(|ξ|2l), ξ → 0.

By (1.12) and (4.8), we see that b̂�j(ξ) = O(|ξ|lj ) as ξ → 0. Therefore, ψ�
j has lj+1

vanishing moments. Thus, item (2) holds.

For item (3), by the definition of b̂�j in (1.17), it is straightforward to check that
(1.12) holds with Jj = 3 for all j ∈ N. Now by Theorem 1.1, we see that {φ0(· − k) :
k ∈ Z} ∪ {ψ�

j;j;k : j ∈ N0, k ∈ Z, � = 1, . . . ,Jj+1} is a tight wavelet frame in L2(R).
Now we prove item (4) by using Theorem 3.2 and Lemma 3.3. Let ν be an

arbitrary positive integer. Since lim infj→∞ lj/mj > 0, there exist a positive integer
N and 0 < ρ < lim infj→∞ lj/mj such that 2ν < N < ρmj < lj � mj for all j � N .

Denote d̂j(ξ) := |âj(ξ)|2. By Lemma 3.3, we see that (3.13) holds. That is, there
exists a positive constant C, independent of j, such that

(4.9) 0 � 1 − d̂j(ξ) � C|ξ|2ν , ξ ∈ [−π, π] and j � N.
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We now use (4.9) to estimate the constants Cφn
in (3.10) of Theorem 3.2. For n � N

and � ∈ N, since d̂�+n(0) = 1, it follows from (4.9) that

|d̂�+n(0) − d̂�+n(2−�ξ)| = |1 − d̂�+n(2−�ξ)| � C2−2ν�|ξ|2ν ∀ ξ ∈ [−π, π].

Now by (4.1), we conclude that

1 − |φ̂n(ξ)|2 � C|ξ|2ν
∞∑
�=1

2−2ν�, ξ ∈ [−π, π].

Therefore, (3.10) holds with

Cφn
:= C

∞∑
�=1

2−2ν� =
C

1 − 2−2ν
< ∞.

Consequently, by Qn = Pn and Theorem 3.2, we conclude that

‖f −Qn(f)‖L2(R) � C12
−νn|f |W ν

2 (R) ∀ f ∈ W ν
2 (R) and n � N,

where

C1 := max(2,
√
C/(1 − 2−2ν)) < ∞

is independent of f and n. Since ν is arbitrary, the tight wavelet frame has the desired
spectral frame approximation order.

Now we prove Theorem 1.3.
Proof of Theorem 1.3. Item (i) has been proved in Theorem 1.2. It is evident that

deg(âj) = j and |âj(ξ)|2 = cos2j(ξ/2) = 1 + O(|ξ|2), ξ → 0.

Now it follows from the proof of item (iii) of Theorem 1.1 that there exists a positive
constant C1 such that

1 − |φ̂n(ξ)|2 � C1n
2|ξ|2 ∀ ξ ∈ [−π, π] and n ∈ N.

That is, we conclude that

(4.10)
∣∣∣1 − |φ̂n(ξ)|2

∣∣∣2 � C2
1n

4|ξ|4 ∀ ξ ∈ [−π, π] and n ∈ N.

Let B2 be the B-spline of order 2. Then

|B̂2(ξ)|2 =
sin4(ξ/2)

(ξ/2)4
and |B̂2(2ξ)|2 = cos4(ξ/2)|B̂2(ξ)|2.

Since |âj(ξ)|2 = cos2j(ξ/2) � cos4(ξ/2) for all ξ ∈ R and j � 2, it is evident that

|φ̂n(ξ)|2 � |B̂2(ξ)|2 for all ξ ∈ R and n � 2. In particular, for ξ ∈ [−π, π], we deduce
that ∑

k∈Z\{0}
|φ̂n(ξ)|2|φ̂n(ξ + 2πk)|2 �

∑
k∈Z\{0}

|B̂2(ξ + 2πk)|2

= |ξ|4 sin4(ξ/2)

(ξ/2)4

∑
k∈Z\{0}

|ξ + 2πk|−4.
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Setting C2 := supξ∈[−π,π]

∑
k∈Z\{0} |ξ + 2πk|−4 < ∞, we conclude that∑

k∈Z\{0}
|φ̂n(ξ)|2|φ̂n(ξ + 2πk)|2 � C2|ξ|4, ξ ∈ [−π, π] and n � 2.

Now taking into account (4.10), we see that the two inequalities in (3.8) hold with
ν = 2 and Cφn

:= max(C1, C2)n
4. Thus, by Theorem 3.2, we see that item (ii) holds.

Now we prove item (iii) using proof by contradiction. Suppose that (1.16) holds

for some ν > 0. By [29, Theorem 2.2], we have
∣∣1 − |φ̂n(ξ)|2

∣∣2� πC2|ξ|2ν for almost
every ξ ∈ [−π, π] and n � N , where C is the positive constant in (1.16). That is, we
must have

(4.11) 1 − |φ̂j(ξ)|2 � C3|ξ|ν ∀ ξ ∈ [−π, π] and j � N,

where C3 :=
√
πC is a positive constant independent of j.

By the definition of φ̂j in (1.1) and âj(ξ) = 2−j(1 + e−iξ)j , it is evident that

φ̂j(ξ) = B̂j(ξ)φ̂0(ξ), where Bj is the B-spline of order j. Since |φ̂0(ξ)| � 1, by

φ̂j(ξ) = B̂j(ξ)φ̂0(ξ), we have |φ̂j(ξ)| � |B̂j(ξ)|, and, therefore, it follows from (4.11)
that

(4.12) 1 − |B̂j(ξ)|2 � 1 − |φ̂n(ξ)|2 � C3|ξ|ν ∀ ξ ∈ [−π, π] and j � N.

Since |B̂j(ξ)|2 = cos2j(ξ/4)|B̂j(ξ/2)|2 and |B̂j(ξ)| � 1, we have

1 − |B̂j(4ξ)|2 = 1 − cos2j(ξ) + cos2j(ξ)(1 − |B̂j(2ξ)|2) � 1 − cos2j(ξ).

Consequently, (4.12) implies

(4.13)
1 − cos2j(ξ)

|ξ|ν � 1 − |B̂j(4ξ)|2
|ξ|ν � C4 ∀ ξ ∈ [−π/4, π/4] and j � N,

where C4 := 4νC3 < ∞. Noting 1 = [cos2(ξ)+sin2(ξ)]j � cos2j(ξ)+j cos2j−2(ξ) sin2(ξ),
by 4π−2ξ2 � sin2(ξ) � |ξ|2 for all ξ ∈ [−π/2, π/2], we deduce that, for ξ ∈ [−π/4, π/4],

1 − cos2j(ξ)

|ξ|ν � j
sin2(ξ) cos2j−2(ξ)

|ξ|ν = j
sin2(ξ)(1 − sin2(ξ))j−1

|ξ|ν

� 4π−2j(ξ2)1−ν/2(1 − ξ2)j−1.

Taking ξj :=
√

1−ν/2
j−ν/2

, we observe that limj→∞ ξj = 0, and it follows from the above
inequalities and (4.13) that, for ξ ∈ [−π/4, π/4] and sufficiently large j,

C4 � 1 − cos2j(ξj)

|ξj |ν
� 4π−2j(ξ2

j )
1−ν/2(1 − ξ2

j )
j−1

= 4π−2j
(1 − ν/2)1−ν/2(j − 1)j−1

(j − ν/2)j−ν/2
:= C5cj ,

where 0 < C5 := 4π−2(1 − ν/2)1−ν/2 < ∞ and cj := j (j−1)j−1

(j−ν/2)j−ν/2 . That is, we must

have

(4.14) cj := j
(j − 1)j−1

(j − ν/2)j−ν/2
� C4/C5
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for all sufficiently large integers j.
By calculation, we have

cj = j
(j − 1)j−1

(j − ν/2)j−ν/2
= j

jj−1(1 − 1
j )j−1

jj−ν/2(1 − ν
2j )

j−ν/2
= jν/2

(
1 − 1

j

)j−1(
1 − ν

2j

)−j+ν/2

.

We note that limj→∞(1− 1
j )j−1 = e−1 and limj→∞(1− ν

2j )
−j+ν/2 = eν/2. Hence, by

ν > 0, we conclude that limj→∞ cj = limj→∞ jν/2eν/2−1 = ∞, which is a contradic-
tion to (4.14). So, the tight wavelet frame does not have any frame approximation
order. Now item (iii) is verified.

We finish this paper by proving Theorem 1.4.
Proof of Theorem 1.4. For item (1), by a direct calculation [23, Lemma 3], we

observe that

|âj(ξ)|2 = cos2mj (ξ/2)([P r
mj

(sin2(ξ/2))]2 + [P i
mj

(sin2(ξ/2))]2)

= cos2mj (ξ/2)Pmj ,mj (sin
2(ξ/2)) = |âImj ,mj

(ξ)|2.

Hence |âj(ξ)|2 + |âj(ξ + π)|2 = 1. By Theorem 2.8 and Proposition 2.6, we see that
the nonstationary cascade algorithm associated with {âj}∞j=1 converges in W ν

2 (R)
for any ν � 0 and, therefore, all φj , j ∈ N0, are well-defined compactly supported
functions in C∞(R). By Theorem 2.10, (2.28) holds, and {φ0(· − k) : k ∈ Z} ∪
{ψj;j,k : j ∈ N0, k ∈ Z} is an orthonormal basis of L2(R). By the same proof as in
Theorem 1.2 and Lemma 3.3 with lj = mj , this orthonormal wavelet basis has the
spectral approximation order. So, item (3) is verified.

The symmetry φj(1 − ·) = φj follows [23, Lemma 2] from the definition of φj in
(1.1) and the symmetry of the masks âj : âj(ξ) = e−iξâj(−ξ). Item (2) can be easily
verified by (4.8).
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Abstract. We obtain sufficient conditions for the stability of the synchronized solution for
certain classes of coupled dynamical systems. These discrete time systems can be used to describe
population patches coupled by migration, which are density and/or time dependent. Our results
follow from an analytic expression for the transverse Lyapunov exponent obtained through spectral
analysis. We then indicate some applications to population dynamics.
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1. Introduction. The study of coupled dynamical systems has received consid-
erable attention recently for its interest from the mathematical, physical, and biolog-
ical points of view; see, for instance, [22], [1], [7], [29], [26], and [3], among others.
One concern about such systems is whether or not they will present synchronization
phenomena and whether or not such synchronization is stable.

The system below describes the evolution of a system consisting of d identical
subsystems where, on every iteration, each subsystem undergoes its common local
evolution determined by f , followed by a density-dependent coupling process encoded
by C and ϕ. The system can model a population consisting of d patches, xj , j =
1, . . . , d, where, in the absence of migration, patch j is controlled by a local dynamics
xj
t+1 = f(xj

t ). When migration is present, ϕ(f(xj
t )) individuals leave patch j and are

distributed with density cji on patch i. The global dynamics is then

xj
t+1 = f(xj

t ) − ϕ(f(xj
t )) +

d∑
i=1

cjiϕ(f(xi
t)); i, j = 1, . . . , d.(1)

Here f is a bounded C1 map on [0,∞), C = [cij ] is doubly stochastic, that is, cij ≥ 0,

and for all i, j,
∑d

i=1 cij =
∑d

j=1 cij = 1. Furthermore we will assume ϕ differentiable
a.e. with ϕ′ bounded. The models in population dynamics considered in [1], [7], [8],
[27], [13], [26] are all particular cases of (1) for special choices of C and ϕ.

The condition on C being doubly stochastic reflects that there are no losses during
the migration process. It is also necessary for the invariance of the diagonal of the
phase space, that is, for xj

t = xi
t = xt to be a solution of (1), where each xj

t satisfies
xj
t+1 = f(xj

t ).
In this paper we obtain sufficient conditions for the stability of the aforementioned

synchronized solutions. The criteria involve the Lyapunov exponents, to be defined
below, of the one-dimensional map f and of the codimension one transverse dynamical
system.
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The paper is organized as follows. In the next section we provide a criterion for
stability for general systems. In section 3 we improve our result for the case of normal
operators. In section 4 we consider a system where the coupling/migration process
is time dependent. We formulate and prove the corresponding results of the previous
sections in this setting. In the last section we indicate some applications to population
dynamics.

Previous results treated only the cases where ϕ′ is a constant or a 2-valued step
function, as well as particular examples of matrices C, and these cases are covered
by our results. Our treatment only requires ϕ′ to be bounded and C to be doubly
stochastic and irreducible. This last condition is easily seen to be necessary; see
below. Moreover, we are unaware of any treatment of the systems as in section 4 in
the literature. Thus we extend some of the results of [7], [8], [10], [11], [27], [15], [3],
[13], and others to these more general situations.

2. Stability: General case. In order to understand the behavior of orbits
starting at nearby points of the diagonal of the phase space, we first linearize (1). If
Jt = [αij ] denotes the Jacobian matrix of (1) restricted to the synchronized orbit, we
have

αij =

{
f ′(xt) (1 − (1 − cii)ϕ

′(f(xt))) for i = j,

f ′(xt)ϕ
′(f(xt))cij for i �= j.

We have Jt = f ′(xt)Ht, where Ht = I − ϕ′(f(xt))B, and B = I − C.
We will assume that C is irreducible. This is almost a necessary condition, for

otherwise it permits the existence of uncoupled unsynchronized subsystems that are
each synchronized. In this case we can apply the Fröbenius theorem [12] to show
that λ = 1 is the simple dominant eigenvalue of C, associated to the eigenvector
v = (1, . . . , 1). This furnishes the decomposition R

d = Rv ⊕ W , where W is a C-
invariant (d− 1)-dimensional subspace. Under these conditions,

B = P−1

[
0

A

]
P,(2)

where P is the matrix of the appropriate change of basis. This decomposition implies
that the stability of the synchronized solution of (1) is a consequence of the stability
of the trivial solution of the transversal component, wt, which satisfies

wt+1 = f ′(xt) (I − ϕ′(f(xt))A)wt.(3)

We will show that under a certain integrability condition the map above is in fact a
contraction, which in turn implies the stability of wt ≡ 0. The analysis of (3) will be
based on the Lyapunov exponents (see [17], [18]) of (3). Define

Kn(x) =

∣∣∣∣∣
∣∣∣∣∣
n−1∏
k=0

f ′(fk(x))
(
I − ϕ′(fk+1(x))A

)∣∣∣∣∣
∣∣∣∣∣
1/n

,

where f0(x) = x and fk(x) = f(fk−1(x)) for k > 0. Clearly if K = lim supKn

satisfies K < 1, we have that (3) is a contraction. Now observe

Kn(x) = Ln(x)Λn(x) =

∣∣∣∣∣
n−1∏
k=0

f ′(fk(x))

∣∣∣∣∣
1/n ∣∣∣∣∣

∣∣∣∣∣
n−1∏
k=0

I − ϕ′(fk+1(x))A

∣∣∣∣∣
∣∣∣∣∣
1/n

.(4)



SYNCHRONISM IN COUPLED DYNAMICAL SYSTEMS 941

Ln(x) depends only on the local dynamics f , while Λn(x) reflects also the effects
of ϕ and C. Let ρ be an invariant measure of the local system. Define for x > 0,
ln+(x) = max(ln(x), 0). By Birkhoff’s ergodic theorem, if ln+ |f ′| ∈ L1(ρ), there

exists limn exp( 1
n

∑n−1
k=0 ln |f ′(fk(x))|) for ρ-a.e. x. For ρ ergodic, this limit, call it

L, is independent of x and is given by exp
(∫∞

0
ln |f ′(s)| dρ(s)

)
. L is the Lyapunov

exponent of the local system governed by f .
Similarly the ergodic theorem of Oseledec [18] implies that if∫ ∞

0

ln+ ||I − ϕ′(s)A|| dρ(s) < ∞,(5)

there exists limn Λn(x) =: Λ(x) for ρ-a.e. x, and this limit is independent of x provided
ρ is ergodic. In the rest of the paper we will assume that the f -invariant measure, ρ,
is ergodic. Nonergodic ρ can be treated at the cost of additional technicalities. See
remark (iii) in section 2.1. Our first result is the following.

Theorem 1. Consider the system (1), where f is a C1 map, ϕ′ is bounded,
and C is doubly stochastic and irreducible such that ln+ ||I − ϕ′(s)A|| and ln+ |f ′(s)|
are in L1(ρ), where ρ is an ergodic f-invariant measure. Let L = limn Ln(x) and
Λ = limn Λn(x) be as above. If L Λ < 1, there exists a set E with ρ(E) = 1 such that
for all x ∈ E, the synchronized solution of (1) is asymptotically stable.

Proof. By Birkhoff’s theorem there exists a set E with ρ(E) = 1 such that for all
x in E, limn Λn(x) = Λ. We claim that

Λ ≤ exp

(∫ ∞

0

ln+ ||I − ϕ′(s)A|| dρ(s)
)
.(6)

By the continuity of the norm and the function ln+(·), the dominated convergence
theorem implies that we need only prove (6) for ϕ′ simple.

Let ϕ′(x) =
∑r

k=1 akχEk
(x), where Ek are measurable and disjoint with ρ(Ek) >

0 and such E ⊂
⋃

k Ek. For 1 ≤ k ≤ r, and x in E, define ρk,n = ρk,n(x) by

ρk,n =
�{0 ≤ j < n : f j(x) ∈ Ek}

n
.

To keep the notation simple we omit the dependence of ρk,n on x since Birkhoff’s
ergodic theorem applied to χEk

shows that for 1 ≤ k ≤ r, and all x in E, we have

lim
n

ρk,n = ρ(Ek).

This gives

Λn(x) =

∣∣∣∣∣
∣∣∣∣∣
∏
k

(I − akA)nρk,n

∣∣∣∣∣
∣∣∣∣∣
1/n

,

which imply

Λn(x) ≤
∏
k

||I − akA||ρk,n and

ln Λn(x) ≤
∑
k

ρk,n ln ||I − akA||.
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Therefore, given ε > 0, there exists n0 such that for n > n0, we have ρk,n ≤
(1 + ε)ρ(Ek) and Ln(x) ≤ (1 + ε)L. Since ln(·) ≤ ln+(·),

ln Λn(x) ≤ (1 + ε)

r∑
k=1

ln+ ||I − akA|| ρ(Ek) = (1 + ε)

∫ ∞

0

ln+ ||I − ϕ′(s)A|| dρ(s).

This proves (6). Note that the right-hand side is independent of x. Thus for n > n0,

Kn(x) = Ln(x) Λn(x) ≤ (1 + ε)LΛ1+ε,

and since ε > 0 is arbitrary we have

lim
n

Kn(x) ≤ L Λ < 1,

and thus the transversal map (3) is a contraction.

2.1. Remarks.
(i) If E = [0,∞), L Λ ≤ 1 is necessary for the stability of the synchronized

solution.
(ii) In certain cases, which include the case Ht semisimple, we will prove below

that the norm ||I−ϕ′(fk(x))A|| is simply the spectral radius, σ−1(Ht), of the restric-
tion of Ht to the subspace W . Therefore, with the same hypothesis on f and ϕ, we
have

Λ ≤ Λ1 = exp

(∫ ∞

0

ln σ−1(Hϕ′(s)) dρ(s)

)
,(7)

and thus LΛ1 < 1 is a sufficient condition for the stability of the synchronized solution
of (1).

(iii) If ρ fails to be ergodic, a deep result of Choquet (Theorem 31.3 in [6]) gives
the representation

ρ =

∫
E(P1)

π dν(π),(8)

where P1 is the space of f -invariant probability measures and E(P1) is the set of
extreme points of P1, that is, the ergodic f -invariant probability measures, and ν is
a probability measure on E(P1). Also equality in (8) is, in the weak sense,∫

Ψ dρ =

∫
E(P1)

(∫
Ψ dπ

)
dν(π)

for all continuous Ψ. Given π ∈ E(P1), we apply Theorem 1 to obtain a set Eπ of full
π measure such that for all x ∈ Eπ, the limit Λπ = limn Λn(x) exists and

Λπ ≤ exp

(∫ ∞

0

ln+ ||I − ϕ′(s)A|| dπ(s)

)
.

Similarly, if ln+ |f ′| ∈ L1(π), by Birkhoff’s theorem, there exists Lπ =

exp(limn
1
n

∑n−1
k=0 ln |f ′(fk(x))|) for x ∈ Eπ, and it is given by Lπ = exp(

∫∞
0

ln
|f ′(s)| dπ(s)). From Theorem 1 it follows that if Lπ Λπ < 1, then the synchronized
solution of (1) is stable for all initial x in Dπ = {(x, x, . . . , x) : x ∈ Eπ}. Since any two
distinct ergodic f -invariant measures are mutually singular, the sets Eπ form a par-
tition of the whole space [0,∞) modulo null sets. Therefore, if supπ∈E(P1) Lπ Λπ < 1,
we have that the synchronized solution of (1) is asymptotically stable. Since the set
of ergodic invariant measures can be very complicated, it might be difficult to verify
the above condition in general.
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3. Stability: Normal operators. In the case of normal operators, that is,
AA∗ = A∗A, one can improve the previous result with the help of the functional
calculus of [16] and [23]. Let Ln be as in (4) and define the operator valued cocycle

On(x) =

n−1∏
k=0

(
I − ϕ′(fk+1(x))A

)
(9)

so that we have Kn(x) = Ln(x) ||On||1/n. The proof of Oseledec’s theorem in [24]
shows that

lim
n

(O∗
n(x)On(x) )

1
2n = O(x)(10)

exists a.e. in operator norm. The ergodicity of ρ implies that O(x) is independent of
x; call it O. Spectral analysis of O determines the Lyapunov exponents and respective
subspaces. Oseledec’s theorem was extended to operator valued cocycles in Hilbert
and Banach spaces in [25] and [21] under an additional compactness hypothesis and
with the operator norm convergence replaced by strong convergence in (10). The very
special nature of our cocycles (9) allows us to determine O above whenever A is a
bounded, normal, and not necessarily compact operator on a Hilbert space H. We
present the result in this generality for its own sake and because it involves little extra
work. Note, however, that the study of the stability of synchronized solutions of (1)
for d = ∞ offers additional difficulties; see the remarks in section 3.1.

If A is normal, Theorem 12.23 in [23] gives

A =

∫
σ(A)

λ dP (λ),(11)

where dP (λ) are the spectral projections associated with A; that is, for all u, v in H,
d 〈P (λ)u, v〉 is a complex measure and

〈Au, v〉 =

∫
σ(A)

λ d 〈P (λ)u, v〉.(12)

For a bounded measurable function F : σ(A) → C, F (A) is defined by

F (A) =

∫
σ(A)

F (λ) dP (λ).(13)

Observe that

||F (A)|| ≤ ||F (λ)||L∞(σ(A)),(14)

implying that if Fn(λ) → F (λ) in L∞(σ(A)), Fn(A) → F (A) in operator norm.
Setting ln 0 = −∞, e−∞ = 0, and recalling that an upper semicontinuous real

valued function satisfies that for all α ∈ R, {λ : F (λ) < α} is open, we now prove the
following.

Proposition 2. The function F : C → R defined by

F (λ) = exp

(∫ ∞

0

ln |1 − λϕ′(s)| dρ(s)
)

(15)

is upper semicontinuous and therefore bounded on compact subsets of C.
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Proof. First note that F (λ) ≥ 0 and

F (λ) = 0, if and only if

∫ ∞

0

ln |1 − λϕ′(s)| dρ(s) = −∞.(16)

Moreover, f bounded implies that the support of ρ, supp ρ, is compact and Jenssen’s
inequality gives

F (λ) ≤
∫
supp ρ

|1 − λϕ′(s)| dρ(s) ≤ 1 + K|λ| < ∞,(17)

where K = sup { |ϕ′(s)| : s ∈ supp ρ}. Thus F (λ) is a well-defined nonnegative real
number. Defining

FM (λ) = exp

(∫ ∞

0

gM (λ, s) dρ(s)

)
, where gM (λ, s) = max{−M, ln |1 − λϕ′(s)| },

we have FM+1(λ) ≤ FM (λ), and monotone convergence gives F (λ) = limM FM (λ).
Since gM (λ, s) is continuous with respect to λ on C× supp ρ and supp ρ is compact,
FM is continuous on C. Thus F is the pointwise limit of a nonincreasing sequence of
continuous functions and is therefore upper semicontinuous.

The proposition enables us to define O = F (A),

O =

∫
σ(A)

exp

(∫ ∞

0

ln |1 − λϕ′(s)| dρ(s)
)

dP (λ).(18)

The spectral mapping theorem then implies

σ (O) = F (σ(A)) = {F (λ) : λ ∈ σ(A)} .(19)

The application of (10) to synchronization is contained in the next theorem.
Theorem 3. Let f , ϕ′, C, and L be as in Theorem 1. Assume A is normal and

let Λ be the spectral radius of (18). Then, if L Λ < 1, the synchronized solution of (1)
is asymptotically stable.

Proof. As in Theorem 1 the inequality L Λ < 1 implies that the transverse
component (3) is a contraction, implying the stability of the synchronized solution.
Therefore, in order to prove the theorem we need only establish (10) in the strong

sense, with O given by (18). We first consider ϕ′ simple. Let ϕ′ =
∑N

k=1 ϕkχEk
,

where Ek are disjoint measurable. As before, we define

ρk,n =
�{0 ≤ j < n : f j(x) ∈ Ek}

n
.

Then

(O∗
nOn)

1
2n =

N∏
k=1

|I − ϕkA|ρk,n =

∫
σ(A)

(
N∏

k=1

|1 − λϕk|ρk,n

)
dP (λ).(20)

For each n, Fn(λ) =
∏N

k=1 |1 − λϕk|ρk,n is continuous. Moreover, for k = 1, . . . , N ,
Birkhoff’s theorem gives limn ρn,k = ρ(Ek) > 0. Since σ(A) is compact, we have that

lim
n

Fn(λ) = F (λ) =

N∏
k=1

|1 − λϕk|ρ(Ek)
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uniformly for λ in σ(A). We can rewrite this as

lim
n

Fn(λ) = exp

(
N∑

k=1

ρ(Ek) ln |1 − λϕk|
)

= exp

(∫ ∞

0

ln |1 − λϕ′(s)| dρ(s)
)
,

where the last equality is just the definition of the Lebesgue integral. By (14), we
have (10) for ϕ′ simple. For an arbitrary ϕ′, the right-hand side of (10) is already
well defined by (18). We now have

(O∗
nOn)

1
2n =

∫
σ(A)

Fn(λ) dP (λ),

where Fn(λ) = (
∏n

k=1 |1 − λϕ′(xk)|)1/n. Since one can approximate ϕ′ uniformly by
simple functions, the ergodic theorem and the above result for simple functions imply
that for all λ in σ(A), limn Fn(λ) = F (λ)-pointwise convergence.

Thus for all u, v in H, the Lebesgue dominated convergence theorem implies

lim
n

∫
σ(A)

Fn(λ)〈dP (λ)u, v〉 =

∫
σ(A)

F (λ) 〈dP (λ)u, v〉.

Since dP (λ) is a resolution of the identity, this implies that

lim
n

∣∣∣∣∣∣((O∗
nOn)

1
2n − F (A)

)
u
∣∣∣∣∣∣ = 0

for all u in H, which establish strong convergence in (10). This finishes the proof of
Theorem 3.

3.1. Remarks.
(i) In finite dimension we have σ(A) = {λ1, . . . , λM} with corresponding spaces

Ej , mutually orthogonal, with R
d−1 = E1 ⊕ · · · ⊕ EM , and the conclusion of the

theorem is that if u �= 0 is in Ej , then limn ||(O∗
nOn)

1
2nu|| = F (λj).

(ii) Since for all λ ∈ σ(A), |1 − λϕ′(s)| ≤ ||I − ϕ′(s)A||, we have Λ ≤ exp
(
∫∞
0

ln+ ||I − ϕ′(s)A|| dρ(s)), and therefore Theorem 3 is an improvement of Theo-
rem 1.

(iii) By definition Λ = sup{ |F (λ)| : λ ∈ σ(A)}, and thus (19) gives (7). All the
effect of coupling to synchronization is reflected in Λ and can therefore, in certain
cases, be independent of d; see section 5.

(iv) The case d = ∞ is more subtle. First, the choice of a function space for
{xj(t)}j plays an important role. For instance, the synchronized solution belongs to
lp only for p = ∞. Second, the Fröbenius theorem is not valid in the same generality.
Third, if the function space considered is not a Hilbert space, the functional calculus
above is not available.

4. Extensions. The analysis above can be applied to more general systems.
One such instance is the case below, where the coupling/migration process no longer
depends on the density but instead obeys a seasonal dynamics; that is, on each cycle
a time-dependent fraction μt of each patch will mix according to a time-dependent
distribution Ct = [ctij ] as follows:

xj
t+1 = f(xj

t ) − μt f(xj
t ) +

d∑
i=1

ctji μt f(xi
t); i, j = 1, . . . , d.(21)
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Again f is a C1 map on [0,∞). The evolution of the migration parameters μt and
Ct is governed by maps g and h on [0, 1]. The idea is to write μt+1 = g(μt) and
Ct+1 = h(Ct), but this is not accurate. To make this precise we argue as follows.
For g continuous on [0, 1] and μ0 arbitrary, we assume that μt = μt(μ0) is given
by μt+1 = g(μt). Similarly if {Cs}s∈[0,1] is a family of doubly stochastic irreducible
matrices, h is a continuous map on [0, 1], and s0 is arbitrary, we define st+1 = h(st) and
Ct = Ct(s0) by Ct+1 = Ch(st). Assume that G(μ, s) = μ Cs is a measurable operator
valued map with respect to the product measure ν× η on [0, 1]× [0, 1], where ν and η
are, respectively, a g-invariant and h-invariant ergodic measure on [0, 1]. Under these
assumptions the diagonal of the phase space, xi

t = xj
t = xt, is a synchronized solution

and we are interested in its stability. This system falls under the general theory of
random dynamical systems as presented in [2] and thus obeys, under the appropriate
integrability condition, a mutiplicative ergodic theorem. Our approach is direct and
avoids the use of this theory. Moreover, due to the particular nature of (21), we are
able, as in the previous sections, to obtain much more precise information about the
limit operators than is given by the ergodic theorem alone.

The Jacobian matrix of (21), Jt = [αt
ij ], is now given by

αij =

{
f ′(xt) (1 − μt(1 − ctii)) for i = j,

f ′(xt) μt c
t
ij for i �= j,

yielding Jt = f ′(xt)(I − μtBt), where Bt = I − Ct. Our first task is to decompose
the linearized system into diagonal and transversal components and then estimate the
respective Lyapunov exponents by the appropriate ergodic theorem. This cannot be
done in general for arbitrary families {Ct}; therefore we will consider special cases of
increasing generality.

4.1. Simultaneous diagonalizable matrices. This includes the families of
commuting symmetric matrices and of circulant matrices. In this case there exists a
matrix P such that for all t, Bt = P−1 Mt P , where Mt is a diagonal matrix with
entries {0, λ2(t), . . . , λd(t)} in its diagonal. Each λj(t) is measurable and satisfies
0 < |1 − λj(t)| < 1 by the Fröbenius theorem (applied to Ct). In the symmetric
(commuting) case the λj(t) are real and lie in (0, 2). We obtain that the transversal
component of (21) satisfies

wt+1 = f ′(xt) (I − μt Dt)wt,(22)

where Dt is the (d − 1)-dimensional {λ2(t), . . . , λd(t)} diagonal matrix. As before,
the synchronized solution of (21) is stable if and only if wt = 0 is a stable solution of
(22). For each x, μ0, s0 in [0, 1], define Ln(x) as in (4), and for j = 2, . . . , d, define

Λj n(μ0, s0) =

(
n−1∏
k=0

|1 − gk(μ0)λj(h
k(s0))|

)1/n

.

The analogue of Theorem 3 is as follows.
Theorem 4. Consider the system (21) under the above conditions. Assume in

addition that
(i) ln+ |f ′(s)| belongs to L1(ρ), where ρ is an ergodic f-invariant probability mea-

sure on [0,∞).
(ii) for all 2 ≤ j ≤ d, ln+ |1 − μλj(s)| belong to L1(ν × η).
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Then there exist sets E ⊂ [0,∞) and F ⊂ [0, 1] × [0, 1] with ρ(E) = (ν × η)(F ) = 1,
such that for all x ∈ E and (μ0, s0) ∈ F , the limits L = limn Ln(x) and Λj =
limn Λj n(μ0, s0) exist and are independent of x and (μ0, s0). Moreover, if Λ =
maxj Λj satisfies LΛ < 1, the synchronized solution of (21) is asymptotically stable.

Proof. The existence of L(x) for x in a set of full measure follows, as before,
from Birkhoff’s ergodic theorem applied to lnLn(·) and (i). In addition, the limit
is independent of x since ρ is ergodic. The decomposition (22) allows us to derive
the transversal component directly without making use of Oseledec’s theorem. For
2 ≤ j ≤ d, (μ0, s0) ∈ [0, 1] × [0, 1], we can write

Λj n(μ0, s0) = exp

(
1

n

n−1∑
k=0

ln |1 − gk(μ0)λj(h
k(s0))|

)
.

Condition (ii) and a (d− 1)-fold application of Birkhoff’s ergodic theorem imply the
existence of a set F , with ν × η (F ) = 1 such that for all j and all (μ0, s0) ∈ F , there
exists Λj(μ0, s0) = limn Λj n(μ0, s0). Since, in addition, ν × η is ergodic, the limit is
independent of (μ0, s0) and is given by

Λj = exp

(∫
[0,1]×[0,1]

ln |1 − μλj(s)| d(ν × η)(μ, s)

)
.(23)

This gives diag{Λ2, . . . ,Λd} as the analogue of (18). Its spectral radius is then Λ =
maxj Λj . Thus, if LΛ < 1, the synchronized solution is asymptotically stable.

4.2. Symmetric (noncommuting) matrices. In this case we no longer have
a decomposition yielding a diagonal transversal component, like (22), and therefore
our conclusions are somewhat weaker than the previous theorem. Since each Ct is
symmetric, doubly stochastic, and irreducible, λ = 1 is the dominant eigenvalue with
corresponding eigenvector v = {1, . . . , 1}. Moreover, the (d−1)-dimensional subspace
W = (Rv)⊥ is invariant for all Ct. This provides a decomposition like (2),

Bt = P−1

[
0

At

]
P.(24)

Accordingly, the transversal component of (21) now satisfies

wt+1 = f ′(xt) (I − μt At)wt.(25)

The following theorem is the analogue of Theorem 1 in the present situation.
Theorem 5. Consider the system (21), where f and μt are as in Theorem 4,

and assume {Ct} as above. For each (μ0, s0), define

Λn(μ0, s0) =

∣∣∣∣∣
∣∣∣∣∣
n−1∏
k=0

(
I − gk(μ0)Ahk(s0)

)∣∣∣∣∣
∣∣∣∣∣
1/n

.

Assume that ln+ ||I−μAh(s)|| belongs to L1(ν×η). Then there exists a set F ⊂ [0, 1]×
[0, 1] of full ν×η-measure such that for all (μ0, s0) ∈ F , the limit Λ = limn Λn(μ0, s0)
exists and is independent of (μ0, s0). Moreover, if Λ satisfies LΛ < 1, the synchronized
solution of (21) is asymptotically stable.

Proof. Consider the map Q on [0, 1] × [0, 1], given by Q(μ, s) = (g(μ), h(s)).
Clearly ν × η is Q invariant, and by assumption, Λn(μ, s) above defines a (ν × η)-
measurable cocycle. The existence of Λ(μ0, s0) for (μ0, s0) on a set of full measure
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then follows from Oseledec’s ergodic theorem applied to Λn(μ, s). We also have that
for a.e. (μ0, s0),

Λ(μ0, s0) ≤ exp

(∫
[0,1]×[0,1]

ln+ ||I − μAh(s)|| d(ν × η)(μ, s)

)
.(26)

The proof of (26) follows the same path as the proof of (6), and thus we will omit
the details. Note that since each At is symmetric, there exists λ(t) ∈ σ(At) for which
||I − μAt|| = |1− μλ(t)|. λ(t) is the lowest eigenvalue of Ct. Moreover, since ν × η is
ergodic, Λ(μ0, s0), is independent of (μ0, s0), and in this case we have

Λ = exp

(∫
[0,1]×[0,1]

ln |1 − μλ(h(s))| d(ν × η)(μ, s)

)

as a consequence of Birkhoff’s theorem. As in the previous theorems, the condition
LΛ < 1 implies the asymptotic stability of the synchronized solution.

4.3. Remarks.
(i) The assumptions on the continuity of g and h above can be relaxed. All that

is needed is that each map possess an ergodic invariant probability measure, ν and η.
(ii) Similarly to the density-dependent migration, the results above do not extend

to the d = ∞ case even though, once again, the effect of d is encoded in the joint
spectrum of {Ct}.

4.4. Examples. Some special cases of (23) and (26) are worth mentioning.

(i) If s0 is a periodic point for h, that is, hp(s0) = s0, and we take η = 1
p

∑p−1
k=0 δhk(s0),

then (23) becomes

Λj = exp

(
1

p

p−1∑
k=0

∫
[0,1]

ln |1 − μλj(sk)| dν(μ)

)
.

A similar expression corresponding to the case of a periodic point for g also holds.
(ii) If g = h and η = ν, but μ0 �= s0, we get for (23),

Λj = exp

(∫
[0,1]×[0,1]

ln |1 − μλj(s)| d(ν × ν)(μ, s)

)
.

(iii) If in (ii) we have, in addition, μ0 = s0, that is, the term μt At in (25) is of
the form gt(s0)Agt(s0), then (23) becomes

Λj = exp

(∫
[0,1]

ln |1 − s λj(s)| dν(s)

)
.

Similar corresponding expressions can be obtained, without difficulty, to represent
(26) in the special cases above. We leave the details, as well as the formulation of
other special instances of (26), to the interested reader. These formulas are useful in
cases where ν and η are known, say Lebesgue, for they permit the exact calculations
of the Lyapunov numbers of the transversal dynamical system.
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5. Applications. In this section we will restrict ourselves to the density-
dependent system (1) and leave the corresponding formulations of the results related
to the time-dependent system (21) to the interested reader.

A direct problem consists of determining stability once f , ϕ, and C are given. In
such situations we compute the eigenvalues λ1, . . . , λd of C. Discarding the eigenvalue
1, we evaluate the integrals defining the spectrum of Λ above by Birkhoff’s ergodic
theorem ∫ ∞

0

ln |1 − λϕ′(s)| dρ(s) = lim
n

1

n

n−1∑
k=0

ln |1 − λϕ′(fk(x))|,(27)

and then the maximum of these values gives the spectral radius Λ and we can then
determine stability once the Lyapunov exponent for f is known. We note that in
order to use (27) we need the ergodic f -invariant measure, ρ, to be such that for x
belonging to a set E of full Lebesgue measure, and all continuous functions Ψ,

lim
n

1

n

n−1∑
j=0

Ψ(f i(x)) =

∫
Ψ(s) dρ(s).

Such measures, called physical or SRB (Sinai–Ruelle–Bowen) measures, are known to
exist in certain important cases, such as expansive maps, piecewise monotonic maps of
the interval, as well as axiom A diffeomorphisms, even though a recent result of Ávila
and Bochi [4] shows that they are not typical in the C1-topology. Further information
can be found in [31], [19], [20]. See also [32] for a survey.

In [5] we consider the following particular instance of (1). The local map f is
taken from the Riker family, f(x) = xer(1−x), r > 0, often considered in popula-
tion dynamics. It is known that there exists an ergodic f -invariant probability SRB
measure ρ which describes the asymptotic distribution of almost all orbits of f (see
Theorems 25 and 29 in [30]). We let ϕ(x) = xμ(x), where the dispersal fraction, μ(x),
is a sigmoidal function

μ(x) =
α

1 + eβ(γ−x)
,(28)

where the parameter α ∈ (0, 1) determines the maximal dispersal, and β describes
the steepness of dispersal. Moreover, the sign of β determines whether dispersal is
positively or negatively density dependent. γ is the inflection point, at which dispersal
is half of its maximum. The cases β = ±∞ correspond to threshold population size
triggering migration and have been considered in [8]. Here we consider the following
two extreme types of coupling:

(I) A ring configuration of d patches, each patch connected to the 2k-nearest
neighbors, with uniform dispersion, that is, cij = 1/2k for 0 < |i− j| ≤ k and
cij = 0 otherwise. In this case the eigenvalues of B are given by (see [27],
[28], where the stability of equilibria is analyzed)

λj = 1 −
(
Dk(

2π(j−1)
d ) − 1

2k

)
, j = 1, 2, . . . , d,

where Dk(x) = sin(k + 1
2 )x/ sin x

2 .
(II) Global uniform coupling, that is, each of the d patches is connected to the

others yielding cii = 0 and cij = 1/(d− 1) for i �= j. Here the eigenvalues of
B are λ1 = 0 and λ2 = · · · = λd = d/(d− 1).
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For i = I, II, let Λi = Λi(d, r, α, β, γ) be the value of Λ, obtained using (27), for the
respective configuration. In [5] we observe numerically the dependence of Λi on the
different parameters and its effects on the stability of synchronization. For instance,
one can prove (see Corollary 3.1 there) that limd→∞ ΛI ≥ 1, independent of the other
parameters, which are kept fixed. This easily implies the impossibility of chaotic
synchronization for sufficiently large ring configurations such as (I). The situation is
different for (II), where, given any d, one can find a local chaotic map f (L > 1)
and migration parameters, α, β, and γ, yielding a stable synchronized dynamics
(LΛ < 1).

One feature of Theorems 1 and 3 is their continuous dependence on ϕ′, that is,
C1-uniform topology. This follows directly from the formulas for Λ above. On the
other hand, by analyzing (27) one can see that for certain f , C, it is possible to make
Λ arbitrarily large by taking ||ϕ′||L∞(ρ) large. In our case, where ϕ is given using (28),
this implies that there exist situations where threshold triggered migration, β = ±∞,
that present chaotic synchronization, while all systems with β greater than a certain
β0 have unstable synchronized orbits. The same reasoning proves that, in general,
there is no continuity of Λ in ϕ in the C0-topology.

We can also make use of the results from previous sections to study an inverse
problem. In this case f and ϕ are given and one is interested in finding a double
stochastic matrix C, if possible, yielding the desired stability behavior for the syn-
chronized solution of (1). In this regard, Theorem 7 below gives a partial result for
symmetric matrices. We will make use of the following result from [14].

Proposition 6. The following are Corollaries 7 and 8 from [14].
(i) If {λ2, . . . , λd} ∈ [−1/(d−1), 1], then there exists a symmetric doubly stochastic

matrix C with σ(C) = {1, λ2, . . . , λd}.
(ii) If λ ∈ (−1, 1], there exists a positive symmetric doubly stochastic matrix C

such that λ ∈ σ(C).
The proof of Proposition 6 in [14] provides algorithms to find the matrices C in

(i) and (ii) above.
Theorem 7. Let f and ϕ be as in Theorems 1 and 3. Let L denote the Lyapunov

exponent of the one-dimensional map f . For λ ∈ [0, 2], let F (λ) be as in (15), and
define m = inf F (λ) and M = supF (λ). Then

(i) if Lm > 1, the synchronized solution of (1) is unstable for all symmetric
configurations C.

(ii) if LM < 1, the synchronized solution of (1) is stable for all symmetric con-
figurations C.

(iii) if L ∈ ( 1
M , 1

m ), it is possible to find a symmetric doubly stochastic matrix C
such that the synchronized solution of (1) has a prescribed stability behavior.

Proof. Let us first note that any nonnegative symmetric doubly stochastic matrix
has its spectrum contained in (−1, 1]. This follows from Gershgorin’s theorem [9]
which states that σ(C) is contained in the set {λ ∈ C : for all i, |λ−cii| ≤

∑
j 	=i |cij |}.

The hypotheses on C then imply that σ(C) ⊂ [−1, 1]. If C is positive, it is not difficult
to show that −1 cannot be an eigenvalue of C. Since B = I−C, we have σ(B) ⊂ [0, 2).
Since F (λ) gives the spectrum of F (A), Theorem 7 now follows easily from Theorem 3
and Proposition 6.
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Abstract. Via the monotonicity approach, we prove that the single-wave-form solution for the
underdamped Frenkel–Kontorova model with dc-driving and periodic boundary conditions is globally
stable, provided the driving force is large enough.
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1. Introduction. The dynamics of many physical systems, including charge
density waves and Josephson junctions, can be described by the standard Frenkel–
Kontorova (F-K) model [5, 6], which can also be seen as a one-dimensional lattice of
identical pendula oscillating in parallel planes, coupled to the nearest neighbors. The
equation of the F-K model with dc-driving is

(1.1) üj + Γu̇j + sinuj = K(uj−1 − 2uj + uj+1) + F,

where Γ > 0 denotes the damping effect, K > 0 measures the coupling strength, and
F ≥ 0 is the constant driving force.

In this paper we are concerned with the single-wave-form solutions of the F-K
model (1.1) with periodic boundary conditions

(1.2) uj+N (t) = uj(t) + 2πM,

where M and N are positive integers. A solution {uj(t)} of system (1.1)–(1.2) is
called a single-wave-form solution if there exist a constant T > 0 and a waveform
function f : R → R satisfying

(1.3) f(t + T ) = f(t) + 2π, t ∈ R,

such that

uj(t) = f (t + jTM/N) .

The positive number T is said to be the period of the waveform function f .
A running periodic solution is one for which there is a minimal T > 0 such that

uj(t + T ) = uj(t) + 2π for t ∈ R and j = 1, . . . , N . Note that a single-wave-form
solution is a special form of running periodic solution with the same waveform and
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equal phase lags. Single-wave-form solutions are also called ponies on a merry-go-
round [1], discrete rotating waves [2], or splay-phase solutions [11] in the literature.
Although single-wave-form solutions in the coupled oscillators systems play an im-
portant role, it is not easy, as remarked in [16], to give mathematically rigorous
analysis of their existence and stability. For the small coupling case, Levi proved
by the Brouwer fixed point theorem the existence result in [9]. By reformulating
the existence problem as a fixed point problem in a Banach space and applying the
Schauder fixed point theorem, Katriel [7] presented a rigorous and detailed analysis
on the existence of single-wave-form solutions of system (1.1)–(1.2). The method
used in [7] is close in spirit to that in [12], which studied the existence of single-
wave-form solutions for the Josephson junction systems. We remark that the sta-
bility question was not touched upon in [7] and [12]; see also the open problems in
[16]. For the small coupling case, the local stability of the single-wave-form solu-
tions, as remarked by Levi in [9], can be proved by applying the approach used in [8].
Meanwhile, by computing the Floquet multipliers and applying perturbation analysis,
Watanabe and Swift investigated the local stability of single-wave-form solutions in
series arrays of Josephson junctions [15]. Recently, Baesens and MacKay found the
monotonicity for the F-K model under the overdamped condition Γ > 2

√
2K + 1.

It can be inferred from the results of [3, 4] that the single-wave-form solution of
the overdamped F-K model (1.1)–(1.2) is globally stable if there is no equilibrium.
Note that from [3] we know that there exists Fd ≥ 0, which depends on Γ and K,
such that the F-K model has equilibria for 0 ≤ F ≤ Fd and has no equilibria for
F > Fd.

The goal of this paper is to study the global stability of the single-wave-form
solutions for the underdamped F-K model, the existence of which was demonstrated
by Katriel [7]. By global stability we mean that given any initial value {uj(0)} satis-
fying the periodic boundary condition uj+N (0) = uj(0) + 2πM , the solution {uj(t)}
approaches the single-wave-form solution {ûj(t)} as t → +∞. Moreover, we will show
that {ûj(t)} attracts each orbit with phase; i.e., for a solution {uj(t)}, there exists a
τ ∈ R, such that limt→+∞ |uj(t) − ûj(t + τ)| = 0.

Theorem 1.1. Assume that Γ > 2
√

2K. Then there exists F0 > 1, such that the
F-K model (1.1)–(1.2) with F ≥ F0 admits a globally stable single-wave-form solution,
which attracts each orbit with phase.

The main idea of the proof is as follows. Inspired by the work of [3, 4, 13], we know
that strong monotonicity generally implies stability of running periodic solutions.
Therefore, as the first step, we show that the Poincaré map PmT of system (1.1)–
(1.2), where T is the period of the waveform function and m is some positive integer,
is strongly monotone if Γ > 2

√
2K and the driving force F is large enough. Then

we prove via the strong monotonicity that the single-wave-form solution is globally
stable.

We should remark that under the overdamped condition, i.e., Γ > 2
√

2K + 1,
the strong monotonicity found by Baesens and MacKay together with the approach
presented for finite chains in [3] leads immediately to the stability of single-wave-form
solutions. Here we extend the parameter range to the underdamped case, where the
damping coefficient Γ could be small if the coupling strength K is small.

2. Trapping region. Let u = (u1, . . . , uN )T ∈ R
N . Then system (1.1)–(1.2)

can be written as

(2.1) ü + Γu̇ + S(u) = −KAu + E,
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where

A =

⎛
⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1

−1 2 −1 · · · 0 0

...
. . .

. . .
. . .

. . .
...

−1 0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎠

is an N ×N matrix, S(u) = (sinu1, . . . , sinuN )T , E = (−2πKM + F, F, F, . . . , F, F,
2πKM + F )T . The eigenvalues of matrix A are

λj = 4 sin2 jπ

N
, j = 0, 1, . . . , N − 1.

Let

êj =

(
1, cos

2jπ

N
, . . . , cos

(N − 1)2jπ

N

)T

, ẽj =

(
0, sin

2jπ

N
, . . . , sin

(N − 1)2jπ

N

)T

,

j = 1, . . . , [N2 ]. Then êj and ẽj are eigenvectors corresponding to λj = λN−j . Note
that if N is even, then λN/2 is a simple eigenvalue with eigenvector êN/2. Let ej =

ê/|êj | and eN−j = ẽj/|ẽj | for j = 1, . . . , [N2 ]. Then ej is the normalized eigenvector
corresponding to λj , j = 1, . . . , N − 1. The normalized eigenvector corresponding to

λ0 = 0 is e0 = (1/
√
N, . . . , 1/

√
N)T . Denoting u = (u, u̇)T , we have

(2.2) u̇ = Cu + S(u) + E,

where

C =

(
0 I

−KA −ΓI

)
, S(u) =

(
0

−S(u)

)
, E =

(
0

E

)
.

The eigenvalues of matrix C are

μ±
j =

−Γ ±
√

Γ2 − 4Kλj

2
,

with the corresponding eigenvector being (ej , μ
±
j ej)

T , j = 0, . . . , N −1. In particular,

μ+
0 = 0, μ−

0 = −Γ.
The conclusions of the following lemma have been proved by Katriel; see Theo-

rem 2 in [7].
Lemma 2.1. System (1.1)– (1.2) admits a single-wave-form solution, provided

F > 1. Moreover, the period T of the waveform function satisfies

2πΓ/(F + 1) ≤ T ≤ 2πΓ/(F − 1).

The method of proof involves reformulating the problem as a fixed point problem
in a Banach space and applying the Schauder fixed point theorem. The uniqueness
of the single-wave-form solution needs some further assumptions; see the last section
in [7].

A closed subset Ω of the phase space R
2N is called a trapping region of (2.2) if it

is positively invariant for the flow generated by (2.2), and for each point u0 ∈ R
2N ,
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there exists t0 such that the orbit {u(t)} with u(0) = u0 enters Ω and remains there
for t > t0.

Lemma 2.2. System (2.2) has a trapping region Ω. Moreover, there exist con-
stants b > 0, independent of F , v−, and v+, depending upon the driving force F , such
that

|uj−1 − 2uj + uj+1| ≤ b, v− ≤ u̇j ≤ v+, j = 1, . . . , N, u0 = uN , u1 = uN+1,

for u = (u1, . . . , un, u̇1, . . . , u̇N ) ∈ Ω.
Proof. There exists an orthonormal matrix D, the jth column being ej−1, such

that D−1AD = diag (λ0, λ1, . . . , λN−1)
Δ
= Λ. Note that D−1 = DT , the transpose

of D since D is an orthonormal matrix. Making a transformation x = D−1u, where
x = (x1, x2, . . . , xN )T , we convert system (2.1) into

(2.3) ẍ + Γẋ + D−1S(Dx) = −KΛx + D−1E.

Noting that the jth element of D−1S(Dx) is 〈ej−1, S(Dx)〉, denoted by gj(x, t), we

have the fact that |gj(x, t)| ≤
√
N . Meanwhile, it follows that

D−1E = D−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

F

F

...

F

F

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ D−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2πKM

0

...

0

2πKM

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Δ
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f1

f2

...

fN−1

fN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and hence

f1 =
√
NF, |fj | ≤ 2

√
2πKM, j = 2, . . . , N.

Consequently, we derive that in an x-coordinate system,

(2.4) ẍj + Γẋj + Kλj−1xj = −gj(x, t) + fj .

There are three cases to discuss.
(1) Γ2 > 4Kλj−1. In this case the matrix

Cj =

(
0 1

−Kλj−1 −Γ

)

has two real eigenvalues, μ±
j−1 = (−Γ±

√
Γ2 − 4Kλj−1)/2. It then follows that there

exists a real matrix

Tj =

(
1 1

μ+
j−1 μ−

j−1

)
, such that T−1

j CjTj =

(
μ+
j−1 0

0 μ−
j−1

)
.

Let (
yj

zj

)
= T−1

j

(
xj

ẋj

)
.
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Then from (2.4) we have(
ẏj

żj

)
=

(
μ+
j−1 0

0 μ−
j−1

)(
yj

zj

)
+ T−1

j

(
0

−gj(x, t) + fj

)
.

Denoting

Yj =

(
yj

zj

)
, Λj =

(
μ+
j−1 0

0 μ−
j−1

)
, and hj(x, t) = T−1

j

(
0

−gj(x, t) + fj

)

yields Ẏj = ΛjYj + hj(x, t), and hence

Yj(t) = eΛjtYj(0) +

∫ t

0

eΛj(t−τ)hj(x(τ), τ)dτ.

The boundedness of gj(x, t) and fj implies that there exists dj > 0, such that
supt |hj(x(t), t)| ≤ dj , and

|Yj(t)| ≤ e(μ+
j−1)t|Yj(0)| + dj

|μ+
j−1|

(
1 − e(μ+

j−1)t
)
, t ≥ 0.

Note that dj (j = 2, . . . , N) are independent of F . Let bj = (dj + 1)/|μ+
j−1|. Then

it follows that |Yj(t)| ≤ bj for all t ≥ 0 if |Yj(0)| ≤ bj . Moreover, for each solution
of (2.2), there exists t0 > 0 such that |Yj(t)| ≤ bj for t > t0.

In particular, when j = 1, we have the following estimates:

T1 =

(
1 1

0 μ−
0

)
and T−1

1 =

(
1 −1/μ−

0

0 1/μ−
0

)
.

As a consequence, it follows that

ż1 = μ−
0 z1 −

g1(x, t)

μ−
0

+
f1

μ−
0

= −Γz1 +
1

Γ
(g1(x, t) − f1).

Let b−1 = −Γ−2
√
N(F +1) and b+1 = −Γ−2

√
N(F − 1). Then we have z1(t) ∈ [b−1 , b

+
1 ]

for all t ≥ 0 if z1(0) ∈ [b−1 , b
+
1 ]. Moreover if z1(0) 
∈ [b−1 , b

+
1 ], then there exists t0 > 0

such that z1(t) ∈ [b−1 , b
+
1 ] for all t > t0.

(2) Γ2 = 4Kλj−1. In this case, taking

Cj =

(
0 1

−Kλj−1 −Γ

)
and Tj =

(
1 1

−Γ/4 −3Γ/4

)
,

we have

T−1
j CjTj = T−1

j

(
0 1

− 3
4Kλj−1 −Γ

)
Tj + T−1

j

(
0 0

− 1
4Kλj−1 0

)
Tj

=

(
−Γ

4 0

0 − 3
4Γ

)
− Γ

8

(
1 1

−1 −1

)
.
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For each z = (z1, z2) ∈ R
2, it follows that

〈T−1
j CjTjz, z〉 = −Γ

4
z2
1 − 3

4
Γz2

2 − Γ

8
(z2

1 − z2
2) ≤ −Γ

4
(z2

1 + z2
2) = −Γ

4
|z|2.

Let (
yj

zj

)
= T−1

j

(
xj

ẋj

)
.

Then we have Ẏj = ΛjYj + hj(x, t), where Λj = T−1
j CjTj . Since 〈Λjz, z〉 ≤ −Γ

4 |z|2,
then ‖eΛjt‖ ≤ e−

Γ
4 t for t ≥ 0, and hence

|Yj(t)| ≤ e−
Γ
4 t|Yj(0)| +

∫ t

0

e−
Γ
4 (t−τ)|hj(x(τ), τ)|dτ

≤ e−
Γ
4 t|Yj(0)| + 4dj

Γ

(
1 − e−

Γ
4 t
)
, t ≥ 0.

Let bj = (4dj + 1)/Γ. Then we obtain the same conclusion as in case (1).
(3) Γ2 < 4Kλj−1. In this case, the eigenvalues of the matrix Cj are a pair of

conjugate complex numbers μ±
j−1 = αj ± iβj = (−Γ ±

√
Γ2 − 4Kλj−1)/2, where

αj = −Γ/2 < 0. Taking

Tj =

(
1 0

αj βj

)
yields T−1

j CjTj =

(
αj βj

−βj αj

)
Δ
= Λj .

Making a transformation (
yj

zj

)
= T−1

j

(
xj

ẋj

)
,

we obtain from (2.4) that Ẏj = ΛjYj +hj(x, t). From the fact ‖eΛjt‖ ≤ eαjt for t ≥ 0,
it follows that

|Yj(t)| ≤ eαjt|Yj(0)| + dj
|αj |

(1 − eαjt).

Taking bj = (dj + 1)/|αj | leads to the same conclusion as in case (1).
Consequently, the set

Ω′ = {(y1, z1, . . . , yN , zN ) | b−1 ≤ z1 ≤ b+1 , |(yj , zj)| ≤ bj , j = 2, . . . , N}

is a trapping region. Let Ω denote this trapping region in a u-coordinate system. For
each u = (u, u̇)T = (u1, . . . , uN , u̇1, . . . , u̇N )T ∈ Ω, let x = (x1, . . . , xN )T = D−1u
and x̂ = (0, x2, . . . , xN )T . Since u ∈ Ω, then the corresponding (y1, z1, . . . , yN , zN )
satisfies |(yj , zj)| ≤ bj for j = 2, . . . , N , and

(2.5) |(xj , ẋj)| ≤ ‖Tj‖|(yj , zj)| ≤ bj‖Tj‖
Δ
= b̂j , j = 2, . . . , N,

implying that |xj | ≤ b̂j , and |x̂| ≤
∑N

j=2 b̂j . From ADx = ADx̂ we deduce that

|uj−1 − 2uj + uj+1| = |Au| = |ADx| = |ADx̂| ≤ ‖A‖‖D‖|x̂| ≤ 4|x̂| ≤ 4

N∑
j=2

b̂j
Δ
= b.
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Note that bj (j = 2, . . . , N) are independent of F . So is b. From the facts ẋ1 =
μ−

0 z1 = −Γz1 and z1 ∈ [b−1 , b
+
1 ] we derive that

ẋ1 ∈
[
Γ−1

√
N(F − 1),Γ−1

√
N(F + 1)

]
.

Denoting D = (Djk), we have from u̇ = Dẋ that

u̇j =
1√
N

ẋ1 + Dj2ẋ2 + · · · + DjN ẋN ,

implying by (2.5) that

F − 1

Γ
−

N∑
k=2

|Djk|b̂k ≤ u̇j ≤
F + 1

Γ
+

N∑
k=2

|Djk|b̂k.

Let b∗ =
√∑N

k=2 b̂
2
k. Then b∗ is independent of F , and

∑N
k=2 |Djk|b̂k < b∗ by the

Cauchy inequality. Taking

(2.6) v− =
F − 1

Γ
− b∗ and v+ =

F + 1

Γ
+ b∗

yields v− ≤ u̇j ≤ v+, j = 1, . . . , N .

Let û(t) = (û(t), ˙̂u(t))T = (û1(t), . . . , ûN (t), ˙̂u1(t), . . . , ˙̂uN (t))T denote the single-
wave-form solution obtained in Lemma 2.1.

Lemma 2.3. The single-wave-form solution û(t) ∈ Ω for t ∈ R.
Proof. Let x̂(t) = (x̂1(t), . . . , x̂N (t), ˙̂x1(t), . . . , ˙̂xN (t))T = (D−1û(t), D−1 ˙̂u(t))T .

Then it is easy to check that x̂1(t + T ) = x̂1(t) + 2π
√
N for t ∈ R, and the other

components are periodic with period T > 0, where T is the period of the waveform
function corresponding to û(t). From the proof of Lemma 2.2 we can denote this
single-wave-form solution by (ŷ1(t), ẑ1(t), . . . , ŷN (t), ẑN (t)). It follows that all the
components, except ŷ1(t), are periodic, implying that the single-wave-form solution
belongs to the trapping region Ω′ for all t ∈ R.

In the remainder of this paper, we assume that F ≥ F1 = Γb∗ + 1 such that
v− > 0. Let T0 = 2π/b∗. Then from Lemma 2.1 it follows that 0 < T ≤ T0 if F ≥ F1.
Let

(2.7) c =
2

v−
+

v+T0(Kb + F + 1 + Γv+ + 2πKM)

v3
−

.

Note that c is a continuous function of F and c → 0 as F → +∞.
Lemma 2.4. Assume that u(t) = (u1(t), . . . , uN (t), u̇1(t), . . . , u̇N (t)) is a solution

of (2.2) with u(t) ∈ Ω for t ≥ 0. Then∣∣∣∣
∫ t1

t0

cosuj(t)dt

∣∣∣∣ ≤ c,

where 0 ≤ t0 < t1 and t1 − t0 ≤ T0, j = 1, . . . , N .
Proof. From Lemma 2.2 it follows that for t ≥ 0,∣∣∣∣ üj

u̇j

∣∣∣∣ =

∣∣∣∣K(uj−1 + uj+1 − 2uj) − sinuj + F − Γu̇j

u̇j

∣∣∣∣
≤ Kb + F + 1 + Γv+ + 2πKM

v−
,
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and hence ∣∣∣∣
∫ t1

t0

cosuj(t)dt

∣∣∣∣ =

∣∣∣∣
∫ t1

t0

cosuj

u̇j
duj

∣∣∣∣ =

∣∣∣∣
∫ t1

t0

1

u̇j
d(sinuj)

∣∣∣∣
≤
∣∣∣∣ sinuj

u̇j
|t1t0 +

∫ t1

t0

sinuj

(u̇j)2
du̇j

∣∣∣∣ ≤ 2

v−
+

∣∣∣∣
∫ t1

t0

sinuj

(u̇j)2
üj

u̇j
duj

∣∣∣∣
≤ 2

v−
+

1

v2
−

(
Kb + F + 1 + Γv+ + 2πKM

v−

) ∣∣∣∣
∫ t1

t0

duj

∣∣∣∣
≤ 2

v−
+

v+T0(Kb + F + 1 + Γv+ + 2πKM)

v3
−

= c.

3. Strong monotonicity. We know from [3] that there exists Fd ≥ 0, which
depends on Γ and K, such that the F-K model has equilibria for 0 ≤ F ≤ Fd and has
no equilibria for F > Fd. Meanwhile, strong monotonicity generally implies stability
of running periodic solutions if there is no equilibrium; see [3] and [13]. Therefore, we
investigate in this section the strong monotonicity of system (1.1)–(1.2). To proceed,
we make a transformation of variables:

(3.1) ξj = uj + Γ−1u̇j , ηj = Γ−1u̇j , j = 1, 2, . . . , N,

i.e., Ξ = IΓ u, in which Ξ = (ξ, η)T , ξ = (ξ1, . . . , ξN )T , η = (η1, . . . , ηN )T ,

IΓ =

(
I Γ−1I

0 Γ−1I

)
,

and I is the identity matrix of order N . Now the system (1.1)–(1.2) becomes

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇1 = −Γ−1 sin(ξ1 − η1) + Γ−1K[ξ2 − η2 + ξN − ηN − 2(ξ1 − η1)]

− 2πKΓ−1M + Γ−1F,

ξ̇2 = −Γ−1 sin(ξ2 − η2) + Γ−1K[ξ1 − η1 + ξ3 − η3 − 2(ξ2 − η2)]

+ Γ−1F,

...

ξ̇N−1 = −Γ−1 sin(ξN−1 − ηN−1)

+ Γ−1K[ξN−2 − ηN−2 + ξN − ηN − 2(ξN−1 − ηN−1)] + Γ−1F,

ξ̇N = −Γ−1 sin(ξN − ηN ) + Γ−1K[ξ1 − η1 + ξN−1 − ηN−1 − 2(ξN − ηN )]

+ 2πKΓ−1M + Γ−1F,

η̇1 = −Γη1 + ξ̇1,

...

η̇N = −ΓηN + ξ̇N .
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Set Φ = (φ1, . . . , φN )T and Ψ = (ψ1, . . . , ψN )T . The linearized equations along a
solution Ξ(t) ∈ IΓΩ (t ≥ 0) are

(3.3)

⎧⎪⎪⎨
⎪⎪⎩
φ̇j = −Γ−1(cos(ξj − ηj))(φj − ψj) + Γ−1K[φj+1 − ψj+1

+φj−1 − ψj−1 − 2(φj − ψj)]
Δ
= Lj(Φ,Ψ, t),

ψ̇j = −Γψj + φ̇j
Δ
= Hj(Φ,Ψ, t),

in which j = 1, 2, . . . , N, φ0 = φN , φN+1 = φ1, ψ0 = ψN , ψN+1 = ψ1.
First we study the properties of the auxiliary equations

(3.4) φ̇j = Lj(Φ,Ψ, t) + ε, ψ̇j = Hj(Φ,Ψ, t),

in which ε > 0. Let

(3.5) Σ =
{
(Φ,Ψ) ∈ R

2N | − φj ≤ ψj ≤ φj , φj ≥ 0, j = 1, . . . , N
}
.

Let int Σ and ∂Σ denote the interior and boundary of Σ, respectively.
Consider a first order equation

(3.6) ẇ =
1

Γ

[
−Γ2w − 2K(1 − w)2 − cosuj(t)(1 − w)2

]
,

where uj(t) is a component of u(t) and u(t) ∈ Ω (t ≥ 0) is a solution of (2.2) with
external force F . The proof of the following lemma is postponed to the appendix.

Lemma 3.1. Assume Γ > 2
√

2K. Then there exists F0 ≥ F1, such that each
solution w(t) of (3.6), in which uj(t) is a component of a solution u(t) ∈ Ω (t ≥ 0)
to (2.2) with F ≥ F0, satisfies that if w(0) ∈ [−1, 1], then 1−Γ2/(4K) < w(t) < 1 for
all t > 0 and −1 < w(t) < 1 for t ∈ [T0/2, T0].

We remark that F0 increases as N and M increase, as can be seen from the value
F1, which depends on the eigenvalues of matrix A and the proof in the appendix.

Lemma 3.2. Assume Γ > 2
√

2K and F ≥ F0. Then the solution (Φ(ε, t),Ψ(ε, t))
of (3.4), in which Ξ(t) ∈ IΓΩ (t ≥ 0) is a solution to (3.2), satisfies that φj(ε, t) > 0
and 1 − Γ2/(4K) < ψj(ε, t)/φj(ε, t) < 1 for all t > 0, and −1 < ψj(ε, t)/φj(ε, t) < 1
for t ∈ [T0/2, T0], j = 1, . . . , N , if (Φ(ε, 0),Ψ(ε, 0)) ∈ ∂Σ\{0}.

Proof. There are three cases to discuss for (Φ(ε, 0),Ψ(ε, 0)) ∈ ∂Σ\{0}.
(i) φj(ε, 0) > 0 and φj(ε, 0) = ψj(ε, 0). Then there is a maximum t0j > 0, or

t0j = +∞, such that φj(ε, t) > 0 for t ∈ [0, t0j ). Let wj(ε, t) = ψj(ε, t)/φj(ε, t) for

t ∈ [0, t0j ). Then it follows that

ẇj = (ψ̇jφj − ψj φ̇j)/φ
2
j

= Γ−1
[
−Γ2wj − 2K(1 − wj)

2 − cos(ξj − ηj)(1 − wj)
2
]
− εwj/φj

+
K

Γφj
(φj−1 − ψj−1 + φj+1 − ψj+1)(1 − wj),

and hence

ẇj |wj=1,t=0 = −Γ − ε/φj(ε, 0) < 0,

implying that wj(ε, t) < 1 as long as φj(ε, t) > 0, i.e., ψj(ε, t) < φj(ε, t) for t ∈ (0, t0j ).
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(ii) φj(ε, 0) = ψj(ε, 0) = 0. In this case we have that Lj(Φ,Ψ, t)|(Φ(ε,0),Ψ(ε,0)) ≥ 0,

i.e., φ̇j |t=0 ≥ ε > 0, and

0 ≤ Hj(Φ,Ψ, t)

Lj(Φ,Ψ, t) + ε

∣∣∣∣(Φ(ε,0),Ψ(ε,0)) =
Γ−1K(φj−1 − ψj−1 + φj+1 − ψj+1)

Γ−1K(φj−1 − ψj−1 + φj+1 − ψj+1) + ε
< 1.

Consequently, there is a maximum t0j > 0, or t0j = +∞, such that φj(ε, t) > 0 and

ψj(ε, t)/φj(ε, t) < 1 for t ∈ (0, t0j ).

(iii) φj(ε, 0) > 0 and ψj(ε, 0) = −φj(ε, 0). Then there exists a maximum t0j > 0,

or t0j = +∞, such that φj(ε, t) > 0 and ψj(ε, t) < φj(ε, t) for t ∈ (0, t0j ). From the
discussions of cases (i) and (ii) we know that

K

Γφj
(φj−1 − ψj−1 + φj+1 − ψj+1)(1 − wj) ≥ 0

for t ∈ (0, t0), where t0 = minj{t0j}. Furthermore, from the fact
−εwj

φj
|wj=−1,t=0 >

0, Lemma 3.1, and the comparison principle we deduce that φj(ε, t) > 0 and 1 −
Γ2/(4K) < wj(ε, t) = ψj(ε, t)/φj(ε, t) < 1 for t ∈ (0, t0). We claim that t0 = +∞.
If this is not true, then we have φj(ε, t) → 0 or wj(ε, t) → 1 as t → t−0 . In the
former case, we have ψj(ε, t) → 0 as t → t−0 , leading to a contradiction of the fact

limt→t−0
φ̇j(ε, t) ≥ ε > 0. The latter case is also impossible. Indeed, if φj(ε, t) ≥ a > 0,

where a is a positive number, then from part (i) we have that wj(ε, t) < 1 − δ for
some small positive number δ since ẇ|wj=1,t=0 < 0. Consequently, we have t0 =
+∞. Another direct consequence from Lemma 3.1 and the comparison principle is
that −1 < ψj(ε, t)/φj(ε, t) < 1 for t ∈ [T0/2, T0]. Note that

−εwj

φj
|wj=−1 > 0 and

−εwj

φj
|wj=1 < 0. Then for t ∈ [T0/2, T0], we have from the comparison principle that

−1 < ψj(ε, t)/φj(ε, t) < 1 holds true uniformly with respect to ε > 0.

Lemma 3.3. Assume that Γ > 2
√

2K and F ≥ F0. Then the solution (Φ(t),Ψ(t))
of (3.3), the linearized equations of (3.2) along Ξ(t) ∈ IΓΩ (t ≥ 0), satisfies that
φj(t) ≥ 0 and [1 − Γ2/(4K)]φj(t) ≤ ψj(t) ≤ φj(t) for all t > 0, j = 1, . . . , N , if
(Φ(0),Ψ(0)) ∈ ∂Σ\{0}.

Proof. Assume that (Φ(ε, t),Ψ(ε, t)) is a solution of the auxiliary equations (3.4)
with the initial values Φ(ε, 0) = Φ(0) and Ψ(ε, 0) = Ψ(0). Then from Lemma 3.2 it
follows that [1 − Γ2/(4K)]φj(ε, t) < ψj(ε, t) < φj(ε, t) and φj(ε, t) > 0 for all t > 0.
Keeping t fixed and taking ε → 0, we complete the proof.

In fact, we have further conclusions on φj(t) and ψj(t) under the same conditions
of Lemma 3.3.

Lemma 3.4. Assume that Γ > 2
√

2K and F ≥ F0. Then the solution (Φ(t),Ψ(t))
of (3.3), the linearized equations of (3.2) along Ξ(t) ∈ IΓΩ (t ≥ 0), satisfies that
φj(t) > 0 for all t > 0, and −φj(t) < ψj(t) < φj(t) for t ∈ [T0/2, T0], j = 1, . . . , N , if
(Φ(0),Ψ(0)) ∈ ∂Σ\{0}.

Proof. Since (Φ(0),Ψ(0)) ∈ ∂Σ\{0}, then we may assume that there is some k
such that φk(0) > 0. From Lemma 3.3 we know that [1 − Γ2/(4K)]φk(t) ≤ ψk(t) ≤
φk(t), ψk+1(t) ≤ φk+1(t), and ψk−1(t) ≤ φk−1(t) for t ≥ 0, and thus we obtain
from (3.3)

φ̇k(t) ≥ −Γ−1Γ2/(4K)φk(t) − 2Γ−1KΓ2/(4K)φk(t) = −Γ(2K + 1)

4K
φk(t),

implying from the Gronwall inequality that

φk(t) ≥ φk(0) e
−Γ(2K+1) t

4K > 0 for t > 0.
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Let wk(t) = ψk(t)/φk(t). Then

ẇk = Γ−1
[
−Γ2wk − 2K(1 − wk)

2 − cos(ξk − ηk)(1 − wk)
2
]

+
K

Γφk
(φk−1 − ψk−1 + φk+1 − ψk+1)(1 − wk).

From the fact ẇk|wk=1 = −Γ < 0, we obtain wk(t) < 1, i.e., φk(t) − ψk(t) > 0 for
t > 0. Therefore from (3.3) we have that

φ̇k+1 ≥ −Γ(2K + 1)

4K
φk+1 + Γ−1K(φk(t) − ψk(t))

and, again by the Gronwall inequality, that

φk+1(t) ≥ e
−Γ(2K+1) t

4K φk+1(0)+

∫ t

0

e
−Γ(2K+1)(t−τ)

4K Γ−1K (φk(τ) − ψk(τ)) dτ > 0, t > 0.

With the same reasoning we have that φk+2(t) > 0, t > 0, . . . , and φk−1(t) > 0,
t > 0, . . . . Consequently, we derive that φj(t) > 0 for t > 0, j = 1, . . . , N .

Keeping t ∈ [T0/2, T0] fixed, we know from Lemma 3.2 that there exists δ > 0
such that the solution (Φ(ε, t),Ψ(ε, t)) of the auxiliary equations (3.4) with the initial
values Φ(ε, 0) = Φ(0) and Ψ(ε, 0) = Ψ(0) has the property that

−1 + δ ≤ ψj(ε, t)

φj(ε, t)
≤ 1 − δ.

We remark by virtue of the proof of Lemma 3.2 that δ is independent of ε. Taking
ε → 0, we derive that −1 + δ ≤ ψj(t)/φj(t) ≤ 1 − δ.

Now we define a partial order in the phase space R
2N . Let Ξ = (ξ1, . . . , ξN , η1, . . . ,

ηN )T and Ξ′ = (ξ′1, . . . , ξ
′
N , η′1, . . . , η

′
N )T .

Definition 3.5. We define Ξ ≤ Ξ′ if ξj ≤ ξ′j and |ηj − η′j | ≤ |ξj − ξ′j | for
j = 1, . . . , N . We also define Ξ < Ξ′ if Ξ ≤ Ξ′ and Ξ 
= Ξ′, and

Ξ � Ξ′ if ξj < ξ′j and |ηj − η′j | < |ξj − ξ′j | for j = 1, . . . , N.

We remark that Ξ ≤ Ξ′ if and only if Ξ′ − Ξ ∈ Σ, and Ξ � Ξ′ if and only if
Ξ′ − Ξ ∈ int Σ. Let P t denote the Poincaré map of system (3.2), i.e., P tΞ = Ξ(t), in
which Ξ(t) is a solution of (3.2) with initial condition Ξ(0) = Ξ.

Definition 3.6. The Poincaré map P t (t > 0) of system (3.2) is said to be
strongly monotone in the set B with P t(B) ⊂ B if

Ξ0 < Ξ′
0 ⇒ P tΞ0 � P tΞ′

0 for t > 0 and Ξ0,Ξ
′
0 ∈ B.

Now we can prove strong monotonicity by the above discussion and defining a
homotopy as in [4, 14].

Lemma 3.7. Assume that Γ > 2
√

2K and F ≥ F0. Then the Poincaré map P t

of system (3.2) is strongly monotone in IΓΩ for t ∈ [T0/2, T0].
Proof. Assume that Ξ0, Ξ′

0 ∈ IΓΩ, that Ξ0 < Ξ′
0, and that Ξ(t) and Ξ′(t) are two

solutions of (3.2) with initial values Ξ(0) = Ξ0 and Ξ′(0) = Ξ′
0, respectively. Let

Ξ(λ, 0) = (1 − λ)Ξ(0) + λΞ′(0),
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where λ ∈ [0, 1]. Assume that Ξ(λ, t) is a solution of (3.2) with initial value Ξ(λ, 0).
Then Ξ(λ, t) ∈ IΓΩ for t ≥ 0 since IΓΩ is convex and positively invariant for sys-
tem (3.2). Set

Υ(λ, t) =
∂ Ξ(λ, t)

∂λ
= (φ1(λ, t), . . . , φN (λ, t), ψ1(λ, t), . . . , ψN (λ, t))

T
.

Then

Υ(λ, 0) =
∂ Ξ(λ, 0)

∂λ
= Ξ′(0) − Ξ(0) and Ξ′(t) − Ξ(t) =

∫ 1

0

Υ(λ, t)dλ.

One can easily verify that Υ(λ, t) is a solution of the linearized equations (3.3) with
initial value Υ(λ, 0). Since Ξ(0) < Ξ′(0), then

φj(λ, 0) ≥ 0 and |ψj(λ, 0)| ≤ φj(λ, 0), j = 1, . . . , N,

i.e., Υ(λ, 0) ∈ Σ\{0}. From Lemma 3.4 it follows that Υ(λ, t) ∈ int Σ for t ∈ [T0/2, T0],
i.e.,

φj(λ, t) > 0 and |ψj(λ, t)| < φj(λ, t), j = 1, . . . , N, t ∈ [T0/2, T0],

which implies that

ξ′j(t) − ξj(t) =

∫ 1

0

φj(λ, t)dλ >

∫ 1

0

|ψj(λ, t)|dλ ≥
∣∣∣∣
∫ 1

0

ψj(λ, t)dλ

∣∣∣∣ = |η′j(t) − ηj(t)|,

i.e., Ξ(t) � Ξ′(t), t ∈ [T0/2, T0]. This completes the proof.

4. Stability analysis. In this section we assume that Γ > 2
√

2K and F ≥ F0

so that the conclusion of Lemma 3.7 holds true. We know from Lemma 2.1 that sys-
tem (1.1)–(1.2) admits a single-wave-form solution (û1(t), . . . , ûN (t)) since F ≥ F0 >

1. Let us denote it in the Ξ-coordinate system by Ξ̂(t) = (ξ̂1(t), . . . , ξ̂N (t), η̂1(t), . . . ,
η̂N (t)), i.e.,

ξ̂j(t) = ûj(t) + Γ−1 ˙̂uj(t), η̂j(t) = Γ−1 ˙̂uj(t), j = 1, . . . , N.

Consequently, Ξ̂(t) has the following property:

(4.1) Ξ̂(t + T ) = Ξ̂(t) + 2πe,

where e = (1, 0)T , and 1 denotes a vector in R
N with all components equal to 1.

From Lemma 2.1 it follows that there exists an integer m such that mT ∈ [T0/2, T0].
Let

� = {Ξ̂(t)|t ∈ R} and Q(Ξ) = PmTΞ − 2mπe.

The following properties will be used in the subsequent discussion.
(I) Q is strongly monotone in IΓΩ, and each point in � is a fixed point of the

map Q.
(II) For any Ξ ∈ R

2N , there exist Ξ1, Ξ2 ∈ � such that Ξ1 � Ξ � Ξ2. Indeed, we
can take Ξ1 = Ξ̂(−nT ) and Ξ2 = Ξ̂(nT ) with n large enough.

Lemma 4.1. Ξ̂(t1) � Ξ̂(t2) if t1 < t2.
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Proof. First we show that every two points in � are ordered by the partial order
“≤.” Assume that there are two points Ξ̂(t1) and Ξ̂(t2) (t1 < t2) which are unordered,
i.e., Ξ̂(t2) − Ξ̂(t1) 
∈ Σ. From the above property (II) we know that there exists a t′

such that Ξ̂(t′) � Ξ̂(t2), i.e., Ξ̂(t2) − Ξ̂(t′) ∈ int Σ. Increasing t′, we deduce from the
continuity that there exists t0 such that Ξ̂(t2) − Ξ̂(t0) ∈ ∂Σ, implying by the strong
monotonicity of Q that QΞ̂(t2) −QΞ̂(t0) ∈ int Σ. This is a contradiction since Ξ̂(t2)
and Ξ̂(t0) are fixed points of Q.

Now we show that Ξ̂(t1) � Ξ̂(t) for all t > t1. The above property (II) implies
that there exists t2 such that Ξ̂(t1) � Ξ̂(t) for t ≥ t2. Let

t0 = sup{t ≥ t1 | Ξ̂(t) − Ξ̂(t1) ∈ ∂Σ}.

It is evident that t0 = t1. Indeed, if t0 > t1, then Ξ̂(t0) − Ξ̂(t1) ∈ ∂Σ, which is
impossible by the strong monotonicity of Q. Therefore, Ξ̂(t) − Ξ̂(t1) ∈ int Σ, i.e.,
Ξ̂(t1) � Ξ̂(t) for t > t1.

Proof of Theorem 1.1. Let

[Ξ1,Ξ2] = {Ξ |Ξ1 ≤ Ξ ≤ Ξ2} for Ξ1 ≤ Ξ2.

For each Ξ0 ∈ IΓΩ, by the above property (II), there always exist Ξ1 and Ξ2 ∈ �
such that Ξ1 � Ξ2 and Ξ0 ∈ [Ξ1,Ξ2]. The strong monotonicity of Q leads to the
conclusion that {QnΞ0}+∞

n=1 ⊂ [Ξ1,Ξ2] since Q(Ξ1) = Ξ1 and Q(Ξ2) = Ξ2. From the
boundedness of the set [Ξ1,Ξ2], it follows that the ω-limit set ω(Ξ0) of {QnΞ0}+∞

n=1 is
nonempty. Define for n ≥ 0

τ−(n; Ξ0) = sup{τ ∈ R | Ξ̂(τ) ≤ Qn(Ξ0)},

τ+(n; Ξ0) = inf{τ ∈ R |Qn(Ξ0) ≤ Ξ̂(τ)}.

From Lemma 4.1 and the strong monotonicity of Q we know that τ−(n; Ξ0) is strictly
increasing, τ+(n; Ξ0) is strictly decreasing with respect to n, and τ−(n; Ξ0) ≤ τ+(n; Ξ0).
Moreover, τ±(n; Ξ0) are continuous with respect to Ξ0. If τ−(0; Ξ0) = τ+(0; Ξ0) = τ ,
then Ξ0 = Ξ̂(τ) and Ξ0(t) = Ξ̂(t + τ), t ∈ R, where Ξ0(t) is a solution of (3.2) with
initial value Ξ0 at t = 0. If τ−(0; Ξ0) < τ+(0; Ξ0), let

τ∞− = sup
n≥0

{τ−(n; Ξ0)}, τ∞+ = inf
n≥0

{τ+(n; Ξ0)}.

Then τ∞− ≤ τ∞+ . If τ∞− < τ∞+ , denote a limit point of {QnΞ0} by Ξ̃0. Then τ±(0; Ξ̃0) =
τ∞± , and

τ∞− = τ−(0; Ξ̃0) < τ−(1; Ξ̃0) ≤ τ+(1; Ξ̃0) < τ+(0; Ξ̃0) = τ∞+ .

Take k large enough such that Qk(Ξ0) is sufficiently close to Ξ̃0. Then we have

τ∞− < τ−(1;QkΞ0) ≤ τ+(1;QkΞ0) < τ∞+ ,

i.e.,

τ∞− < τ−(k + 1; Ξ0) ≤ τ+(k + 1; Ξ0) < τ∞+ ,

implying a contradiction. Consequently, τ∞− = τ∞+
Δ
= τ . We deduce that |Ξ0(nmT )−

Ξ̂(nmT + τ)| → 0 as n → +∞, leading to the conclusion |Ξ0(t) − Ξ̂(t + τ)| → 0 as
t → +∞.
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Appendix. Proof of Lemma 3.1. Since uj(t) in the right-hand side of (3.6)
depends upon the external driving force F , so does the solution w(t) of (3.6). If
w(0) = 1, then since ẇ|w=1 = −Γ < 0, it is easy to check that w(t) < 1 for t > 0. Now

we assume that w(0) = −1. First we show by contradiction that 1 − Γ2

4K < w(t) < 1
for t ∈ [0, T0] if F is large enough.

Assume that there exists t̂ ∈ [0, T0] such that w(t̂) ≤ 1 − Γ2

4K < −1. Taking

t1 = inf
{
t
∣∣ t ∈ (0, t̂], w(t) = 1 − Γ2/(4K)

}
and t0 = sup{t | t ∈ [0, t1), w(t) = −1}

yields that w(t) ∈ [1− Γ2

4K ,−1] for t ∈ [t0, t1]. Note that the function f(x) = −Γ2x−
2K(1 − x)2 is positive on the interval [1 − Γ2

4K ,−1]. It follows that

w(t1) = w(t0) +

∫ t1

t0

1

Γ

[
−Γ2w(t) − 2K(1 − w(t))2 − cosuj(t)(1 − w(t))2

]
dt

> −1 − 1

Γ

∣∣∣∣
∫ t1

t0

cosuj(t)(1 − w(t))2dt

∣∣∣∣ .
Note also that

∫ t1

t0

cosuj(t)(1 − w(t))2dt =

∫ t1

t0

(1 − w(t))2d

(∫ t

t0

cosuj(τ)dτ

)

= (1 − w(t))2
∫ t

t0

cosuj(τ)dτ

∣∣∣∣
t1

t0

+ 2

∫ t1

t0

[∫ t

t0

cosuj(τ)dτ

]
(1 − w(t))ẇ(t)dt.

Since [t0, t1] ∈ [0, T0], we deduce from Lemma 2.4 that

(A.1)

∣∣∣∣∣ (1 − w(t))2
∫ t

t0

cosuj(τ)dτ

∣∣∣∣
t1

t0

∣∣∣∣∣ ≤ c(Γ2/4K)2.

From the fact

max
x∈[1− Γ2

4K ,−1]

f(x) = Γ2

(
Γ2

8K
− 1

)
,

it follows that for t ∈ [t0, t1],

|ẇ| =
1

Γ

∣∣−Γ2w − 2K(1 − w)2 − cosuj(1 − w)2
∣∣

≤ 1

Γ

∣∣−Γ2w − 2K(1 − w)2
∣∣+ 1

Γ

∣∣cosuj(1 − w)2
∣∣

≤ Γ

(
Γ2

8K
− 1

)
+

1

Γ

(
Γ2

4K

)2

,
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and hence ∣∣∣∣
∫ t1

t0

[∫ t

t0

cosuj(τ)dτ

]
(1 − w(t))ẇ(t)dt

∣∣∣∣
≤ sup

t∈[t0,t1]

{
|1 − w(t)| · |ẇ(t)| ·

∣∣∣∣
∫ t

t0

cosuj(τ)dτ

∣∣∣∣
}
· (t1 − t0)

≤ c T0Γ
2

4K

[
Γ

(
Γ2

8K
− 1

)
+

1

Γ

(
Γ2

4K

)2
]
.(A.2)

Combining (A.1) and (A.2) yields

1

Γ

∣∣∣∣
∫ t1

t0

cosuj(t)(1 − w(t))2dt

∣∣∣∣
<

c

Γ

(
Γ2

4K

)2

+
c T0Γ

2K

[
Γ

(
Γ2

8K
− 1

)
+

1

Γ

(
Γ2

4K

)2
]

= cΔ,(A.3)

where

Δ =
1

Γ

(
Γ2

4K

)2

+
T0

2K

[
Γ2

(
Γ2

8K
− 1

)
+

(
Γ2

4K

)2
]
.

From (2.6) and (2.7) it follows that c → 0 as F → +∞. Choosing F large enough,

we have cΔ < Γ2

4K − 2 and hence a contradiction with w(t1) = 1− Γ2

4K . Consequently,

there exists F2 ≥ F1 such that 1 − Γ2

4K < w(t) < 1 for t ∈ [0, T0] if F ≥ F2.
Now we construct a first order equation

ṡ = Γ−1
[
−Γ2s− 2K(1 − s)2

]
.

It is easy to check by the assumption Γ > 2
√

2K that s(t) ∈ (−1, 1) for t > 0 if
s(0) ∈ [−1, 1]. Assume that s(0) = w(0) = −1. Then for t ∈ [0, T0] it follows that

|w(t) − s(t)| ≤ 1

Γ

∣∣∣∣
∫ t

0

(
2K(w(τ) + s(τ) − 2) + Γ2

)
(w(τ) − s(τ))dτ

∣∣∣∣
+

1

Γ

∣∣∣∣
∫ t

0

cosuj(τ)(1 − w(τ))2dτ

∣∣∣∣ .
Since s(t) ∈ (−1, 1) and 1 − Γ2

4K < w(t) < 1 for t ∈ (0, T0], then we have

(A.4)

∣∣∣∣
∫ t

0

(
2K(w(τ) + s(τ) − 2) + Γ2

)
(w(τ) − s(τ))dτ

∣∣∣∣ ≤
∫ t

0

Γ2 |w(τ) − s(τ)| dτ,

and hence by (A.3) and (A.4),

|w(t) − s(t)| ≤
∫ t

0

Γ |w(τ) − s(τ)| dτ + cΔ.
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The Gronwall inequality implies that

|w(t) − s(t)| ≤ cΔeΓt ≤ cΔeΓT0 , t ∈ [0, T0].

As a consequence, there exists F3 ≥ F1, such that if F ≥ F3, then

cΔeΓT0 < s(T0/2) + 1,

and hence w(t) > −1 for t ∈ [T0/2, T0]. Meanwhile, since w(T0) > −1, then it follows
that 1 − Γ2/(4K) < w(t) < 1 for t ∈ [T0, 2T0] if F ≥ F2, and thus 1 − Γ2/(4K) <
w(t) < 1 for all t > 0. The proof is completed by taking F0 = max{F2, F3}.

We should mention here that the above proof was highly inspired by Levi’s idea
on dealing with a single oscillator [10].
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Abstract. A stochastic model for the lay-down of fibers on a conveyor belt in the production
process of nonwovens is investigated. In particular, convergence of the stochastic process to the
stationary solution is proven and estimates on the speed of convergence are given. Numerical results
and examples are presented and compared with the analytical estimates on the speed of convergence.
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1. Introduction. The understanding of the forms generated by the lay-down
of flexible fibers onto a moving conveyor belt is of great interest in the production
process of nonwovens that find their applications, e.g., in composite materials (filters),
textiles, and the hygiene industry. In the melt-spinning process of nonwoven materials,
hundreds of individual endless fibers obtained by the continuous extrusion of a melted
polymer are stretched and entangled by highly turbulent air flows to finally form a web
on the conveyor belt. The quality of this web and the resulting nonwoven material—in
terms of homogeneity and load capacity—depends essentially on the dynamics and
the deposition of the fibers.

For the description of the interaction between fibers and turbulent flow a stochas-
tic force model is derived and analyzed in [MW06]. Applying this concept, the fiber
fabric can in principle be numerically generated and its quality investigated. However,
these or similar simulations usually lead to excessively large computation times, when
all physical details of the production process are considered. Thus, simplified models
for the lay-down process are needed. In particular, this is true for optimization and
control procedures where many different simulations are needed. In [GKM+07] a new
simplified stochastic model for the fiber lay-down process, i.e., for the generation of a
fiber web on a conveyor belt, has been presented. The process, which takes into ac-
count the fiber motion under the influence of turbulence, is described by a stochastic
differential system; see section 2.

The solution of the associated Fokker–Planck equation gives the density of the
stochastic process. An important criterion for the quality of the web and the resulting
nonwoven material is how it converges to equilibrium. In particular, the speed of
convergence to the stationary solution is important. The faster this convergence is,
the more uniform the produced textile will be. This means that process parameters
should be adjusted such that the speed of convergence to equilibrium is optimal.

The trend to equilibrium for Fokker–Planck-type equations has been investi-
gated in many papers. In [AMTU01] a unified presentation of entropy methods for
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α

ξ
τ

Fig. 1. Fiber scenario on the conveyor belt.

nondegenerate linear and nonlinear Fokker–Planck-type equations is given. In [DV01]
the linear kinetic Fokker–Planck equation is discussed. In this case the degeneracy of
the diffusion operator is similar to the present case. A more general theory for degen-
erate linear and nonlinear problems has been developed in [Vil06]. A more detailed
discussion of these methods with respect to the present problem is given in the next
section.

As in the above-mentioned papers, the purpose of the present paper is to inves-
tigate analytically the convergence to equilibrium. In particular, we aim at obtaining
explicit estimates on the rate of convergence. However, instead of using entropy
methods we use here Dirichlet form and operator semigroup techniques.

The paper is organized as follows. In section 2 we present the stochastic model
for the fiber dynamics. Furthermore, we relate our convergence result for the solution
of the stochastic differential equation with the convergence of the solution of the
associated Fokker–Planck equation and outline our strategy for proving ergodicity. In
section 3 we prove existence results for the stochastic process as well as several other
properties of the process which are important for our analysis. Section 4 investigates
several properties of an associated nondegenerate Ornstein–Uhlenbeck-type process.
Section 5 proves the ergodicity of the original process and gives explicit bounds on
the rates to convergence. Section 6 is devoted to some numerical results comparing
the analytical rates of convergence with the numerical ones.

2. The stochastic model for the fiber lay-down process and its asso-
ciated Fokker–Planck equation. Focusing on a single slender elastic inextensible
fiber in a lay-down process, the fiber on the nonmoving conveyor belt can be described
by an arc-length parameterized curve ξ : R

+
0 → R

2, as visualized in Figure 1.
Due to its inextensibility, ‖∂tξ‖ = 1 holds. The web-forming is modeled as

∂tξ = τ(α),

∂tα = −∇φ(ξ) · τ⊥(α),

where τ(α) = (cosα, sinα)T denotes the normalized tangent on the fiber. Since a
curved fiber tends back to its starting point, the change of the angle α is assumed to
be proportional to ∇φ(ξ) ·τ⊥(α) with τ⊥(α) = (− sinα, cosα)T . The potential of this
drive is prescribed by a function φ : R

2 → R with the generic example φ(ξ) = ‖ξ‖2/2.
In general, the potential depends on the physical process and needs to be adapted to
the experimental parameters.

Considering a turbulent flow in the deposition region of the fiber close to the
conveyor belt, the fiber lay-down is additionally affected by a stochastic force that
can be modeled by a Wiener process Bt in R with amplitude σ.
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The resulting stochastic differential system reads

dξt = τ(αt) dt,(2.1)

dαt = −∇φ(ξt) · τ⊥(αt) dt + σ dBt,(2.2)

where the conservation of length ‖∂tξ‖ = 1 is still valid. For details on the mathemat-
ical modeling of the process we refer to [GKM+07]. An illustration of the pathwise
behavior of the process for different σ and φ(ξ) = ‖ξ‖2/2 is displayed in Figure 2,
where the paths of Monte Carlo simulations for different σ are shown. The slow
convergence to equilibrium is clearly seen for small and large values of σ.

The density of the above stochastic process can be found by solving the associated
Fokker–Planck equation:

(2.3) ∂tu + cos(α)∂ξ1u + sin(α)∂ξ2u− ∂α

(
∇φ(ξ)

( − sin(α)

cos(α)

)
u

)
=

σ2

2
∂2
αu.

A stationary solution of (2.3) is the function

(ξ, α) �→ m(ξ) :=
1

N
exp(−φ(ξ)), N > 0.

For φ(ξ) = ‖ξ‖2/2 we obtain the standard Gaussian as stationary distribution. By
μ we denote the measure on E = R

2 × [0, 2π] having density m with respect to
(w.r.t.) the Lebesgue measure. Except for sections 3 and 4 we consider only potentials
φ such that m is integrable and choose N as a normalizing constant to obtain a
probability measure μ. In the following sections we are concerned with the approach
to equilibrium of the stochastic process (2.1) or the convergence to the stationary
solution of (2.3), respectively.

Remark 2.1. A formal argument for convergence to equilibrium of the solution of
(2.3) is given by the following computations; cf. [DV01]. Define the relative entropy

H(u/m) =

∫
R2

∫ 2π

0

ulog
( u

m

)
dαdξ.

An easy computation gives

∂tH(u/m) = −
∫

R2

∫ 2π

0

u
(
∂αlog

( u

m

))2

dαdξ.

This vanishes if and only if

u = ρ(t, ξ)m(ξ).

That means u converges formally to a local equilibrium. Plugging u = ρ(t, ξ)m(ξ)
into the evolution equation, one obtains

m∂tρ + cos(α)
(
∂ξ1(ρm) + ρm∂ξ1φ

)
+ sin(α)

(
∂ξ2(ρm) + ρm∂ξ2φ

)
= 0

or

∂tρ = 0, ∂ξ1ρ = 0, ∂ξ2ρ = 0.

This means u = m(ξ), i.e., convergence to global equilibrium.



ERGODICITY AND RATE OF CONVERGENCE 971

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

σ = 0 σ = 0.1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

σ = 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

σ = 5 σ = 10

Fig. 2. Representative path behavior for balanced (σ = 1) as well as deterministic (σ < 1) and
stochastic (σ > 1) dominated (ξ, α)-systems.



972 MARTIN GROTHAUS AND AXEL KLAR

In [Vil06] the arguments described in the above remark were rigorously justified
for similar equations. To apply these methods in the context of the present paper
among other conditions, the existence of proper Liapunov functions would be neces-
sary. Their existence is another open problem. In the following we choose a different
route and consider the stochastic differential equation (2.1) directly.

In section 3 we construct a diffusion process solving (2.1) and having μ as an
invariant measure. The law of this process we denote by Pμ. Then in section 5 we
prove that this diffusion is ergodic with rate of convergence

∥∥∥1

t

∫ t

0

f(Xs) ds− Eμ[f ]
∥∥∥
L2(Pμ)

(2.4)

≤ 1

c1/2

(2

t
+

1

t1/2

(A(C)c1/2 + B(C)c−1/2

σ
+ (1 + 2−1/2)σ

))
‖f − Eμ[f ]‖L2(μ), t > 0;

see Theorem 5.3 for details. The convergence in (2.4) implies mean ergodicity of the
corresponding semigroup (Tt)t≥0, i.e.,

∥∥∥1

t

∫ t

0

Tsf ds− Eμ[f ]
∥∥∥
L2(μ)

(2.5)

≤ 1

c1/2

(2

t
+

1

t1/2

(A(C)c1/2 + B(C)c−1/2

σ
+ (1 + 2−1/2)σ

))
‖f − Eμ[f ]‖L2(μ), t > 0.

In the case of an analytic semigroup from (2.5) we even could conclude strongly
mixing, i.e.,

lim
t→∞

‖Ttf − Eμ[f ]‖L2(μ) = 0;

see, e.g., [Gol85, Exer. 8.24.17]. In our case, however, the corresponding generator

L = S + A, S =
σ2

2
∂2
α, A = cos(α)∂ξ1 + sin(α)∂ξ2 −∇φ(ξ) · τ⊥(α)∂α(2.6)

is nonsectorial. Hence, (Tt)t≥0 cannot be the restriction of an analytic semigroup;
see, e.g., [Gol85, Thm. 5.9].

However, since the adjoint to L w.r.t. the scalar product in L2(μ) is given by
L∗ = S −A, then also for the adjoint process and semigroup we have ergodicity with
the same rate of convergence.

Now, strong mixing of (T ∗
t )t≥0 would imply L1-convergence of the solution u

of the associated Fokker–Planck equation (2.3) with normalized nonnegative initial
distribution u(0) = f , because

‖u(t) −m‖L1(dx) =
∥∥∥u(t)

m
− 1

∥∥∥
L1(μ)

= ‖T ∗
t f − 1‖L1(μ) ≤ ‖T ∗

t f − 1‖L2(μ).

Although (L,D(L)) is nonsectorial, we are convinced that for C∞-potentials φ
we have strong mixing by another reasoning not worked out rigorously in the present
paper. Since the generator (L,D(L)) is hypoelliptic in the sense of Hörmander, it is
not too hard to show that (Tt)t≥0 is strong Feller. Showing that (Tt)t≥0 additionally
is irreducible, strong mixing then follows from Doob’s theorem; see, e.g., [DPZ96,
Prop. 4.1.1, Thm. 4.2.1]. But here we would like to stress that this does not give an
explicit rate of convergence. Moreover, our approach also applies to C3-potentials φ.
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That ((Tt)t≥0) is weak mixing, i.e.,

lim
t→∞,t∈I

‖Ttf − Eμ[f ]‖L2(μ) = 0,

where I ⊂ R
+
0 has relative measure 1, follows from weaker spectral properties of

(L,D(L)) than those giving rise to a corresponding analytic semigroup. Sufficient for
(Tt)t≥0 being weak mixing is the following condition:

Let f ∈ L2(μ; C) and λ ∈ R. If

Ttf = exp(iλt)f for all t ≥ 0,(2.7)

then λ = 0 and f is constant; see, e.g., [DPZ96, Thm. 3.4.1]. Here of course we have
to consider the corresponding complexified spaces.

The condition in (2.7) implies that f ∈ D(L) is an eigenvector to the eigenvalue
iλ, λ ∈ R. If f is now sufficiently smooth, such that we can apply the operators S and
A from (2.6) separately, then this condition easily can be verified (S is a symmetric
and A an antisymmetric operator in L2(μ)). Hence it is left to show that eigenvectors
to (L,D(L)) are sufficiently smooth. This is not clear a priori, since S is degenerated.
But L = S + A is of Hörmander form such that we expect to obtain hypoelliptic
estimates.

The interplay of S and A is very crucial for our proof of ergodicity. Only the
operator S without A would not give ergodic behavior. The idea is to project onto
the orthogonal complement of the kernel of (S,D(S)). On this subspace (S,D(S))
has a bounded inverse. On the kernel of (S,D(S)) in turn, L can be associated with
a nondegenerated, self-adjoint operator (G,D(G)) in L2(γ), where γ is the marginal
measure of μ on R

2. Assuming that the Dirichlet form corresponding to (G,D(G))
fulfills a Poincaré inequality, finally ergodicity can be shown. Such ideas have been
used before in, e.g., [OT03] in the context of scaling limit for interacting particles
systems.

Crucial for the rate of convergence is Lemma 4.1. There Kato perturbation
techniques and a ground state transform are used to show that the functions h =
∇ξg · τ, g ∈ D(G), are in D(L). These functions are our “key functions” for relating
(L,D(L)) with (G,D(G)); see the proof of Theorem 5.3. The explicit estimates ob-
tained in the proof of Lemma 4.1 finally provide us with the constants for our rate of
convergence (2.4).

3. Stochastic differential equation and its solution. We are considering
the following stochastic differential equation in E := R

2 × [0, 2π]:

dξt = τ(αt) dt,

dαt = −∇φ(ξt) · τ⊥(αt) dt + σ dBt, σ > 0, t ≥ 0.(3.1)

Using Itô’s formula we find the generator of the corresponding Markov process:

L = S + A, S =
σ2

2
∂2
α, A = cos(α)∂ξ1 + sin(α)∂ξ2 −∇φ(ξ) · τ⊥(α)∂α.

Set

D := C∞
0,pb(E) := {f |E | f ∈ C∞

0 (R3), f(ξ, 0) = f(ξ, 2π) for all ξ ∈ R
2

and the same holds for all derivatives of f},
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where C∞
0 (R3) denotes the set of compactly supported, infinitely differentiable func-

tions on R
3. (S,D) is symmetric and (A,D) is antisymmetric w.r.t. the scalar product

in L2(μ), where μ is the measure on E having density m w.r.t. the Lebesgue measure.
In the following theorem H1,∞(R2) denotes the Sobolev space of weakly differ-

entiable functions on R
2, which are essentially bounded together with their deriva-

tive. The adjoint operator (L∗, D(L∗)) to (L,D) obviously is a closed extension of
(S −A,D).

Lemma 3.1. Let φ ∈ H1,∞(R2). Then (L,D) and (L∗|D, D) are essentially m-
dissipative Dirichlet operators in L2(μ). In particular, (L∗, D(L∗)) is the m-dissipative
extension of (L∗|D, D). The m-dissipative extension (closure) of (L,D) we denote by
(L,D(L)).

Proof. Since (S,D) is dissipative and (A,D) is antisymmetric, obviously

(Lf, f)L2(μ) ≤ 0 for all f ∈ D,

i.e., (L,D) is dissipative. Moreover, as in, e.g., [CG08a] one can show that

(Lf, (f − 1)+)L2(μ) ≤ 0 for all f ∈ D,

i.e., (L,D) is a Dirichlet operator (here g+ := (|g| + g)/2 for a mapping g : E → R).
Analogously one obtains that (L∗|D, D) is also a dissipative Dirichlet operator in
L2(μ). Hence it is left to show that D is a core for the m-dissipative extensions of
(L,D) and (L∗|D, D).

First we consider the case φ = 0. Then we have

Lf = Sf + cos(α)∂ξ1f + sin(α)∂ξ2f, f ∈ D.

In the following we show that in this case L is essentially m-dissipative on

F := S(R2) × C∞
pb([0, 2π]),

where S(R2) denotes the space of infinitely differentiable, more than polynomial de-
creasing functions on R

2. Since D ⊂ F is dense in graph norm, this implies that
(L,D) is essentially m-dissipative.

Consider the complexified setting, i.e., the corresponding spaces

FC := S(R2; C) × C∞
pb([0, 2π]; C) ⊂ L2(μ; C),

of complex valued functions, and let L act componentwise. Then we apply the Fourier
transform F in the first variable and obtain the corresponding operator

L̂ := FLF−1 = Sf + i cos(α)ξ1 + i sin(α)ξ2.

Recall that F : FC → FC is a continuous isomorphism and F : L2(μ; C) → L2(μ; C)
is a unitary isomorphism. Furthermore, by an elementary consideration one shows
that FC is a core for the m-dissipative extension of (L̂, FC). Hence, L is essentially
m-dissipative on F .

Finally the case φ ∈ H1,∞(R2) follows by a standard Kato perturbation technique.
The adjoint operator can be treated analogously.

Since (L,D(L)) is m-dissipative, it generates a semigroup of contractions (Tt)t≥0.
Let (T ∗

t )t≥0 denote the dual semigroup. It is well known that its generator is (L∗,
D(L∗)). The corresponding stochastic process we can construct as a diffusion process



ERGODICITY AND RATE OF CONVERGENCE 975

(i.e., Markov process with continuous sample path) only on the manifold R
2 × S1

which is naturally associated with E. Here S1 denotes the unit circle. Since the
measure μ and above function spaces naturally can be lifted on R

2 × S1, in what
follows we simply identify

E = R
2 × S1.

By γ we denote the marginal measure of μ on R
2.

Theorem 3.2. Let m be bounded and continuous, m > 0 almost everywhere
w.r.t. the Lebesgue measure on R

2, and φ weakly differentiable on {m > 0} with
∇φ ∈ L2(γ). Furthermore, let ∇φ be bounded on the sets {φ ≤ K} for all K ∈ R.
Then for any probability measure ν which is absolutely continuous and has a bounded
density w.r.t. μ there exists a Markov process (C([0,∞);E),B, (Ft)t≥0, (Xt)t≥0,Pν)
having the following properties:

(i) The initial distribution of the process is given by ν. If μ is a probability
measure, then it is an invariant measure for the process.

(ii) Finite-dimensional distributions of Pν are given in terms of a contraction
semigroup (Tt)t≥0 having as generator (L,D(L)) an m-dissipative extension
of (L,D). This determines the law Pν uniquely.

(iii) The process solves (3.1) in the sense of the corresponding martingale problem,
i.e., for all f ∈ D,

M(f)t = f(Xt) − f(X0) −
∫ t

0

Lf(Xs) ds, t ≥ 0,

is an Ft-martingale under Pν .
Analogous statements hold for the adjoint operators. The associated stochastic

process (C([0,∞);E),B, (Ft)t≥0, (Xt)t≥0,P
∗
ν) is called the adjoint process.

Proof. First we consider φ ∈ H1,∞(R2). Then from Lemma 3.1 we can conclude
that (L,D(L)) is an m-dissipative Dirichlet operator with core D. Hence (L,D(L))
generates a quasi-regular, generalized Dirichlet form and therefore has an associated
Markov process; see [Sta99].

For a general φ a corresponding stochastic process can be constructed as in
[CG08b, sec. 2.3] by an approximation via Markov process associated to potentials
from H1,∞(R2).

Then as in [CG08b] and [CG08a], respectively, one can show that it is a diffusion
with the properties (i)–(iii).

Remark 3.3. (i) For φ ∈ H1,∞(R2) one can obtain much stronger existence
results, as shown in [CG08a], where the concepts of generalized Dirichlet forms were
applied to a similar problem.

(ii) The process (Xt)t≥0 in Theorem 3.2 is the coordinate process, i.e., Xt(ω) =
ω(t), t ≥ 0, ω ∈ C([0,∞);E), B is the Borel σ-algebra, and (Ft)t≥0 is the correspond-
ing natural filtration.

Corollary 3.4. Let the assumptions of Theorem 3.2 hold and let μ be a proba-
bility measure. Then

M(f)t = f(Xt) − f(X0) −
∫ t

0

Lf(Xs) ds, t ≥ 0,(3.2)
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is a Ft-martingale under Pμ for all f from D
L
, the closure of D w.r.t. the graph

norm to (L,D(L)). For f ∈ D
L

the quadratic variation process of M(f)t is given by

〈M(f)〉t = σ2

∫ t

0

|∂αf |2(Xs) ds, t ≥ 0.(3.3)

The corresponding statement holds for the adjoint process. The corresponding mar-
tingale we denote by

M∗(f)t := f(Xt) − f(X0) −
∫ t

0

L∗f(Xs) ds, t ≥ 0,(3.4)

where f ∈ D
L∗

. For f ∈ D
L∗

again we have

〈M∗(f)〉t = σ2

∫ t

0

|∂αf |2(Xs) ds, t ≥ 0.(3.5)

Proof. The enlargement of the class of admissible functions for the martingale
problem is obvious. Formulas (3.3) and (3.5) for the corresponding quadratic variation
processes can be derived as in [CG08b, sec. 3].

4. Associated nondegenerated generator. In L2(γ) we consider the pre-
Dirichlet form

E(f, g) =
1

2

∫
R2

∇ξf · (∇ξg)
T dγ, f, g ∈ C∞

0 (R2).

Its closure (E , D(E)) has a corresponding self-adjoint generator (G,D(G)) which on
smooth, compactly supported functions is given by

Gf =
1

2
Δξf − 1

2
∇ξφ · (∇ξf)T , f ∈ C∞

0 (R2).

Lemma 4.1. Let φ ∈ C3(R2), ∇φ ∈ L2(γ), and assume there exist 0 < C < ∞
and K ⊂ R

2 compact such that

(∂ξi∂ξj∂ξkφ(ξ))2 + (∂ξi∂ξjφ(ξ))2

≤ C
(
∂ξ1φ(ξ)

)2
+
(
∂ξ2φ(ξ)

)2
for all i, j, k ∈ {1, 2}, ξ ∈ R

2 \K.

Then

∇ξf · τ ∈ D
L ⊂ D(L)

for all f ∈ D(G).
Proof. First recall that D(E) ⊂ D(G); hence ∇ξf · τ ∈ L2(γ) is well-defined. Our

assumptions imply that (G,C∞
0 (R2)) is essentially self-adjoint; see, e.g., [BKR97,

Thm. 7]. Hence there exists a sequence (fn)n∈N in C∞
0 (R2) which converges to f in

the graph norm. Moreover

∇ξfn · τ ∈ D ⊂ D(L) for all n ∈ N.

Obviously, (∇ξfn · τ)n∈N converges to ∇ξf · τ in L2(μ). Hence it is sufficient to show
that (L(∇ξfn · τ))n∈N is a Cauchy sequence in L2(μ).
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We fix g ∈ C∞
0 (R2). Then

(4.1) ‖L(∇ξg · τ)‖2
L2(μ) =

∫
R2

∫
[0,2π]

(L(cos(α)∂ξ1g(ξ) + sin(α)∂ξ2g(ξ)))2 dα dγ(ξ)

=
1

8

(
σ4E(g, g) +

∫
R2

(
(2∂ξ1∂ξ2 + ∂ξ1φ(ξ)∂ξ2 + ∂ξ2φ(ξ)∂ξ1)g(ξ)

)2
+ 3

(
(∂2

ξ1 − ∂ξ2φ(ξ)∂ξ2)g(ξ)
)2

+ 3
(
(∂2

ξ2 − ∂ξ1φ(ξ)∂ξ1)g(ξ)
)2

+ 2(∂2
ξ1 − ∂ξ2φ(ξ)∂ξ2)g(ξ)(∂2

ξ2 − ∂ξ1φ(ξ)∂ξ1)g(ξ)dγ(ξ)
)
.

Therefore (L(∇ξfn · τ))n∈N is a Cauchy sequence if the operators

∂ξi∂ξj , ∂ξiφ(ξ)∂ξj , i, j ∈ {1, 2},

are Kato bounded by G on C∞
0 (R2).

To show this, it is useful to introduce the operators

Gi := ∂2
ξi − ∂ξiφ(ξ)∂ξi , i ∈ {1, 2}.

A straightforward integration by parts yields the following for g ∈ C∞
0 (R2):

(
G1g,G1g

)
L2(γ)

+
(
G2g,G2g

)
L2(γ)

≤ C1

(
Gg,Gg

)
L2(γ)

+ C2

(
g, g

)
L2(γ)

+ C3

2∑
i=1

(
(∂ξiφ)g, (∂ξiφ)g

)
L2(γ)

+ C4

2∑
i,j=1

(
(∂ξi∂ξjφ)g, (∂ξi∂ξjφ)g

)
L2(γ)

+ C5

2∑
i,j,k=1

(
(∂ξi∂ξj∂ξkφ)g, (∂ξi∂ξj∂ξkφ)g

)
L2(γ)

and

(
∂2
ξig, ∂

2
ξig

)
L2(γ)

≤ C6

(
Gig,Gig

)
L2(γ)

+ C7

(
g, g

)
L2(γ)

+ C8

(
(∂2

ξiφ)g, (∂2
ξiφ)g

)
L2(γ)

+ C9

(
(∂3

ξiφ)g, (∂3
ξiφ)g

)
L2(γ)

, i ∈ {1, 2},

and

(
∂ξ2∂ξ1g, ∂ξ2∂ξ1g

)
L2(γ)

≤ C10

(
G1g,G1g

)
L2(γ)

+C11

(
G2g,G2g

)
L2(γ)

+C12

(
g, g

)
L2(γ)

+ C13

2∑
i,j,k=1

(
(∂ξi∂ξj∂ξkφ)g, (∂ξi∂ξj∂ξkφ)g

)
L2(γ)

and

(
∂ξiφ∂ξjg, ∂ξiφ∂ξjg

)
L2(γ)

≤ C14

(
Gjg,Gjg

)
L2(γ)

+C15

(
g, g

)
L2(γ)

+C16

(
(∂ξiφ)g, (∂ξiφ)g

)
L2(γ)

+ C17

2∑
k,l=1

(
(∂ξk∂ξlφ)g, (∂ξk∂ξlφ)g

)
L2(γ)

, i 
= j, i, j ∈ {1, 2},
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where 0 < C1, . . . , C17 < ∞ are constants. Hence it is left to show that the operators
given through multiplication by the functions ∂ξiφ, ∂ξi∂ξjφ and ∂ξi∂ξj∂ξkφ, i, j, k ∈
{1, 2}, are Kato bounded by G on C∞

0 (R2).
To get this, we transform the problem to L2(dx). That is, we use the isometric

isomorphism

L2(γ) � f �→ exp(−φ/2)f ∈ L2(dx)

to define

Ĝ := exp(−φ/2)G exp(φ/2) = −1

2
Δξ+

1

8

((
∂ξ1φ

)2
+
(
∂ξ2φ

)2)−1

4

((
∂2
ξ1φ

)
+
(
∂2
ξ2φ

))

on D̂ := {exp(−φ/2)f | f ∈ C∞
0 (R2)}. Using our assumptions on φ one easily shows

that the multiplication operators ∂ξiφ, ∂ξi∂ξjφ and ∂ξi∂ξj∂ξkφ, i, j, k ∈ {1, 2}, are

Kato bounded by Ĝ on D̂. Hence they are also Kato bounded by G on C∞
0 (R2).

Remark 4.2. The assumptions in Lemma 4.1 allow a large class of potentials φ.
For example, the potentials φ = ‖ · ‖p, p = 2, 4 or p ≥ 6, are admissible. Of course, φ
may also be nonisotropic.

Remark 4.3. It is interesting to note that the stochastic process associated
to the generator G is obtained from the original process (2.1) in the large σ-limit;
see [BGK+07].

5. Ergodicity and rate of convergence. From now on we assume that μ is a
probability measure on E. We are interested in the convergence to zero of

∥∥∥1

t

∫ t

0

f(Xs) ds− Eμ[f ]
∥∥∥
L2(Pμ)

= EPμ

[(1

t

∫ t

0

f(Xs) ds− Eμ[f ]
)2]1/2

as t → ∞

for f ∈ L2(μ). Denote by Eμ[f |p1] the conditional expectation of f ∈ L2(μ) w.r.t. the
σ-algebra in E = R

2 × [0, 2π] generated by the projection on the first variable. Note
that

Eμ[f |p1](ξ, α) =
1

2π

∫
[0,2π]

f(ξ, α) dα for μ a.a. (ξ, α) ∈ E,

i.e., Eμ[f |p1] has a version which is independent of α ∈ [0, 2π]. Each f ∈ L2(μ) we
can write as

f = (f − Eμ[f |p1]) + Eμ[f |p1],(5.1)

where

Eμ[(f − Eμ[f |p1])|p1]) = 0.(5.2)

Hence, by the triangle inequality, it is sufficient to consider the following two types of
functions: (i) f ∈ L2(μ) with Eμ[f |p1] = 0. (ii) Eμ[f |p1] with f ∈ L2(μ).

Denote by (S,D(S)) the closure of (S,D). Of course, (S,D(S)) is self-adjoint.
Proposition 5.1. Let the assumptions of Theorem 3.2 hold and let f ∈ D(S).

Then

EPμ

[(1

t

∫ t

0

Sf(Xs) ds
)2]

≤ σ2

t
‖∂αf‖2

L2(μ), t > 0.
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Proof. It is sufficient to consider f ∈ D. We fix t > 0 and below we canonically
project the laws of the equilibrium processes Pμ onto C([0, t], E) without expressing
this explicitly. We define the time reversal rt(ω) := ω(t− ·), ω ∈ C([0, t], E).

Using that

S =
1

2
(L + L∗) on D,

we obtain

−
∫ t

0

Sf(Xs) ds =
1

2

(
M(f)t − R∗(f)0

)
,

where M(f)t is the martingale as in (3.2) and

R∗(f)u := f(Xt) − f(Xu) +

∫ t

u

L∗f(Xs) ds, 0 ≤ u ≤ t.

Observe that

−R∗(f)t−u = M∗(f)u ◦ rt, 0 ≤ u ≤ t,

where M∗(f)t is the martingale as in (3.4). Hence

EPμ

[(
R∗(f)0

)2]
= EP∗

μ

[(
M∗(f)t

)2]
,

because time reversal gives the adjoint process. Now by the Burkholder–Gundy–Davis
inequality and (3.3), (3.5) we obtain

EPμ

[(1

t

∫ t

0

Sf(Xs) ds
)2]1/2

≤ 1

2t
EPμ

[(
M(f)t

)2]1/2
+

1

2t
EP∗

μ

[(
M∗(f)t

)2]1/2
≤ 1

2t
EPμ

[
〈M(f)〉t

]1/2
+

1

2t
EP∗

μ

[
〈M∗(f)〉t

]1/2 ≤ σ

t1/2
‖∂αf‖L2(μ).

Corollary 5.2. Let the assumptions of Theorem 3.2 hold and let f ∈ L2(μ)
with Eμ[f |p1] = 0. Then

EPμ

[(1

t

∫ t

0

f(Xs) ds
)2]

≤ 4

σ2t
‖f‖2

L2(μ), t > 0.

Proof. Since Eμ[f |p1] = 0, f is in the orthogonal complement of the kernel of
(S,D(S)). But the orthogonal complement of the kernel of (S,D(S)) is the range of
(S,D(S)), because (S,D(S)) is self-adjoint. Hence there exists S−1f ∈ D(S). Then
Proposition 5.1 yields

EPμ

[(1

t

∫ t

0

f(Xs) ds
)2]

≤ σ2

t
‖∂αS−1f‖2

L2(μ) ≤
4

σ2t
‖f‖2

L2(μ),

because S−1 is bounded by 2σ−2 on the range of (S,D(S)).
Theorem 5.3. Let φ ∈ C3(R2), ∇φ ∈ L2(γ), and assume there exist 0 < C < ∞

and K ⊂ R
2 compact such that

(∂ξi∂ξj∂ξkφ(ξ))2 + (∂ξi∂ξjφ(ξ))2

≤ C
(
∂ξ1φ(ξ)

)2
+
(
∂ξ2φ(ξ)

)2
for all i, j, k ∈ {1, 2}, ξ ∈ R

2 \K.
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Furthermore assume that the Dirichlet form (E , D(E)) corresponding to the nonde-
generated generator from section 4 fulfills a Poincaré inequality, i.e., there exists
0 < c < ∞ such that

E(f − Eγ [f ], f − Eγ [f ]) ≥ c
(
f − Eγ [f ], f − Eγ [f ]

)
L2(γ)

for all f ∈ D(E).

Then

(5.3)
∥∥∥1

t

∫ t

0

f(Xs) ds− Eμ[f ]
∥∥∥
L2(Pμ)

≤ 1

c1/2

(2

t
+

1

t1/2

(A(C)c1/2 + B(C)c−1/2

σ
+ (1 + 2−1/2)σ

))
‖f − Eμ[f ]‖L2(μ)

for some constants 0 < A(C), B(C) < ∞ independent of c, σ > 0, f ∈ L2(μ), and
t > 0.

Proof. Let f ∈ L2(μ), and without lost of generality we assume Eμ[f ] = 0. Since
(E , D(E)) fulfills a Poincaré inequality, there exists g ∈ D(G) such that

Gg = Eμ[f |p1].

Now consider

h := ∇ξg · τ.

Then h ∈ D
L

by Lemma 4.1 and

Lh− Eμ[f |p1] = Lh−Gg = −σ2

2

(
cos(α)∂ξ1g + sin(α)∂ξ2g

)

+ 2 sin(α) cos(α)∂ξ2∂ξ1g +
(

cos(α)2 − 1

2

)
∂2
ξ1g +

(
sin(α)2 − 1

2

)
∂2
ξ2g

− ∂ξ1φ(ξ)
((

sin(α)2 − 1

2

)
∂ξ1g − cos(α) sin(α)∂ξ2g

)

− ∂ξ2φ(ξ)
((

cos(α)2 − 1

2

)
∂ξ2g − cos(α) sin(α)∂ξ1g

)
.

It is easy to check that

Eμ[Lh− Eμ[f |p1]|p1] = 0.

Hence Lh− Eμ[f |p1] can be treated by Corollary 5.2. Thus by (5.1), (5.2) it is only
left to consider Lh. Using (3.2), the Burkholder–Gundy–Davis inequality, and (3.3)
we obtain

(5.4)∥∥∥1

t

∫ t

0

Lh(Xs) ds
∥∥∥
L2(Pμ)

≤ 1

t
‖h(Xt) − h(X0)‖L2(Pμ) +

1

t
‖Mh

t ‖L2(Pμ) ≤
2

t
‖h‖L2(μ)

+
1

t
EPμ

[
〈Mh〉t

]1/2 ≤ 2

t
‖∇ξg‖L2(γ) +

σ

t1/2
‖∂αh‖L2(μ) ≤

2 + σt1/2

t
‖∇ξg‖L2(γ)

=
2 + σt1/2

t

(
G−1Eμ[f |p1],Eμ[f |p1]

)1/2
L2(γ)

≤ (2 + σt1/2)

c1/2t
‖f‖L2(μ), t > 0,

where 0 < c < ∞ is the spectral gap of G.
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Now we obtain by Corollary 5.2 and (5.4) for t > 0

∥∥∥1

t

∫ t

0

f(Xs) ds
∥∥∥
L2(Pμ)

≤
∥∥∥1

t

∫ t

0

(f − Eμ[f |p1])(Xs) ds
∥∥∥
L2(Pμ)

+
∥∥∥1

t

∫ t

0

Eμ[f |p1](Xs) ds
∥∥∥
L2(Pμ)

≤ 2

σt1/2
‖f‖L2(μ) +

∥∥∥1

t

∫ t

0

(Eμ[f |p1] − Lh)(Xs) ds
∥∥∥
L2(Pμ)

+
∥∥∥1

t

∫ t

0

Lh(Xs) ds
∥∥∥
L2(Pμ)

≤ 2

σt1/2
(
‖f‖L2(μ) + ‖Lh‖L2(μ)

)
+

(2 + σt1/2)

c1/2t
‖f‖L2(μ).

To obtain the last inequality we used the fact that

‖Lh− Eμ[f |p1]‖2
L2(μ) = (Lh−Gg,Lh−Gg)L2(μ) = (Lh,Lh)L2(μ) − (Gg,Gg)L2(μ),

because

(Lh,Gg)L2(μ) = (Gg,Gg)L2(μ).

Finally, using (4.1) and the Kato bound provided in Lemma 4.1, we get the estimate
(5.3).

Remark 5.4. The assumptions in Theorem 5.3 also allow potentials of the form
φ = ‖ · ‖p, p = 2, 4, or p ≥ 6, as in Remark 4.2, since in these cases also a Poincaré
inequality holds. More generally, under our assumptions on the potential a Poincaré
inequality holds if φ grows as fast as or faster than ‖x‖ for large x ∈ R

2; see [RW01].

6. Numerical Results. For a numerical investigation of the rate of convergence
to equilibrium for (2.3) we use a semi-Lagrangian method. The method consists of two
fractional steps. The first step is the Lagrangian interpretation for the advection part
of (2.3) by the modified method of characteristics, while the second step uses Eulerian
coordinates for the discretization of the reaction-diffusion part in (2.3). To preserve
mass we use the modified method of characteristics with adjusted advection; see
[DHP99]. For details on the numerical method we refer to [KRS07]. We consider the
cases φ(ξ) = ‖ξ‖ and φ(ξ) = ‖ξ‖2/2. We concentrate on the behavior of the relative
entropy. One could also consider other observables. However, since convergence
of the relative entropy is stronger than convergence of the distribution functions or
convergence of time averages, we restrict ourselves to the investigation of the time
development of the relative entropy. Figures 3 and 4 show log-plots of the time
development of the relative entropy H(u/m)(t) for different values of σ, and Figure 5
shows plots of the inverse decay rate

limT→∞

∫ T

0

H(u/m)(t)dt

for various values of σ. The quantitative behavior depends on the initial values
chosen; however, for other initial values qualitatively similar results are obtained.
From Figures 3 and 4 an exponential decay seems possible. Moreover, one observes
from Figure 5 that the optimal rate of convergence is found for a finite value of σ.
On the other hand, considering the analytical estimate (5.3) one notes that the speed
of convergence is dominated by the factor

1

c1/2t1/2

(A(C)c1/2 + B(C)c−1/2

σ
+ (1 + 2−1/2)σ

)
.
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Obviously, a minimal rate of convergence can be determined—as from the numerical
results—for a finite value of σ. Moreover, these observations fit the Monte Carlo
results shown in Figure 2. From a practical point of view, this means that the process
parameters have to be adapted such that σ is in an intermediate range of values to
obtain the fastest possible decay to equilibrium and a fiber web which is as uniform
as possible.

7. Concluding remarks. A stochastic model for fiber lay-down processes has
been investigated analytically. Existence and ergodicity of the process have been
shown and estimates on the rates of convergence presented. The results are supported
by numerical simulations. According to these results the fastest decay to equilibrium
is obtained for process parameters giving a diffusion coefficient σ in an intermediate
range of values. We plan to extend this work to problems with moving conveyor
belts; see [BGK+07]. In this case an additional difficulty is given by the fact that the
stationary solution is not known explicitly.

Acknowledgment. We are grateful to L. Bonilla, F. Conrad, N. Marheineke,
M. Seaid, and C. Villani as well as to the unknown referees for helpful discussions.
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DETERMINATION OF A LINEAR CRACK IN AN ELASTIC BODY
FROM BOUNDARY MEASUREMENTS—LIPSCHITZ STABILITY∗
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Abstract. We discuss the stability issue for the problem of determining a thin inclusion in a
homogeneous isotropic elastic body from boundary measurements. This problem is severely ill-posed,
but in this paper we prove that by restricting ourselves to the class of thin neighborhoods of line
segments, a Lipschitz stability estimate holds.
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1. Introduction. Let Ω ⊂ R
2 be a bounded connected domain, with a suffi-

ciently smooth boundary, representing the region occupied by an elastic, homoge-
neous, isotropic material.

Let σ ⊂ Ω be a simple smooth curve and define, for a positive small ε, the set

ωε = {x ∈ Ω : d(x, σ) < ε} ,

which represents an inclusion of small size made of a different elastic material.

Let C0 and C1 be the elastic tensor fields in Ω \ ωε and ωε, respectively.

Given a traction field g on ∂Ω, the displacement field uε, generated by this traction
in the body containing the inclusion ωε, solves the following system of linearized
elasticity:

(1)

⎧⎨
⎩div

(
Cε∇̂uε

)
= 0 in Ω,

(Cε∇̂uε)ν = g on ∂Ω,

where Cε = C0χΩ\ωε
+C1χωε , ∇̂uε = 1

2

(
∇uε + (∇uε)

T
)

is the symmetric deformation
tensor and ν denotes the outward unit normal to ∂Ω.

Let us also introduce the background displacement field u0 generated by the same
traction g in the absence of the inclusion, namely, the solution of

(2)

⎧⎨
⎩div

(
C0∇̂u0

)
= 0 in Ω,

(C0∇̂u0)ν = g on ∂Ω.
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In [BF06] the following asymptotic expansion for (uε − u0)|∂Ω as ε → 0 has been
derived:

(3) (uε − u0)(y) = 2ε

∫
σ

M(x)∇̂u0(x) · ∇̂N(x, y) dσ(x) + O(ε1+θ) for y ∈ ∂Ω,

where N(x, y) denotes the Neumann function for the operator div
(
C0∇̂ ·

)
in Ω, M

is a fourth order symmetric tensor which depends on σ and on the elastic properties
of the material occupied by the region Ω, and θ ∈ (0, 1) is independent of ε.

In the following, the symbol “·” (as in formula (3)) will denote the usual scalar
product between matrices (A ·B =

∑
ij aijbij) or vectors (u · v =

∑
i uivi).

Clearly, in order to get information on ωε, we need to consider the first order term
of the expansion (3). Let us consider

(4) uσ(y) = 2

∫
σ

M(x)∇̂u0(x) · ∇̂N(x, y) dσ(x) for y ∈ Ω\σ.

The inverse problem we are interested in is the following:
Given the trace of the correction term uσ on some open subset Γ of ∂Ω, determine

the curve σ.
Due to the nonlinearity, the problem is severely ill-posed and the reconstruction

of an arbitrary smooth curve is expected to fail. On the other hand, restricting
the class of admissible curves σ, we expect to regularize the problem. In fact, in
the scalar conductivity case, if σ is restricted to be linear, it is possible to show a
Lipschitz continuous dependence of the segment σ from the boundary data uσ|∂Ω

(cf. [ABF04, ABF06]).
In this paper we show that the same type of continuous dependence holds true

in the elastic case. More precisely, in Theorem 2.2 we prove a Lipschitz continuous
dependence of the segment σ from boundary data of the correction term uσ. In order
to do this we use the qualitative properties of the correction term and quantitative
estimates of the unique continuation property for elliptic systems with constant coef-
ficients. In Corollary 2.3 we show that the segment σ depends Lipschitz continuously
on the rescaled boundary deviation of the solution uε.

Our method allows us to detect thin elastic inclusions from knowledge of one
boundary measurement. In the book [AK04], the authors deal with a similar problem
for diametrically small inclusions. We would like to point out that this analysis is on
one side motivated by applications (breast imaging, mine detection), and, on the other
side, it is not known if an arbitrary inclusion can be detected with a finite number of
boundary measurements, not even in the scalar case.

The plan of the paper is the following: In section 2 we introduce some notation
and the main assumptions, and we state the main result. In section 3 we describe
some properties and the asymptotic behavior near the endpoints of the crack σ of
the function uσ. Section 4 contains the proof of the main result. The final section is
devoted to the proof of some auxiliary lemmas and propositions stated in section 4.

2. The main result. We introduce some notation and assumptions that will be
useful in what follows. For any r > 0 we denote

Ωr = {x ∈ Ω | d(x, ∂Ω) > r},

and by diamΩ the diameter of Ω. We also denote by Br(P ) the open disc centered
in P with radius r.
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For any P,Q ∈ R
2 we denote by [P,Q] the segment with endpoints P and Q;

more precisely,

[P,Q] = {P + t(Q− P ) | t ∈ [0, 1]}.

Given positive constants γ, ρ0, E0, E1, L, γ0 with L ≥ 1 and γ ∈ (0, 1], which we shall
name a priori data,

(H1) we assume that Ω is a bounded simply connected domain of R
2 such that

diamΩ ≤ E1.

Concerning the regularity of ∂Ω, we assume that

∂Ω is of class C2,γ with constants ρ0, E0.

More precisely, for any point P̃ ∈ ∂Ω, there exists a rigid transformation of coordinates
under which we have P̃ = 0 and

Ω ∩Bρ0
(0) = {x ∈ Bρ0

(0) | x2 > ψ(x1)},

where ψ is a C2,γ function on (−ρ0, ρ0) ⊂ R satisfying

ψ(0) = 0, ψ′(0) = 0, and ‖ψ‖C2,γ(−ρ0,ρ0) ≤ E0.

Moreover we assume that there exists an open subset Γ of ∂Ω such that for some
point Q̃ ∈ Γ,

∂Ω ∩Bρ0(Q̃) ⊂ Γ.

(H2) We assume that σ is a segment of endpoints P,Q satisfying

L−1 ≤ |P −Q| ≤ L and d(σ,R2\Ω) ≥ L−1.

(H3) We will assume Ω and ωε are both homogeneous and isotropic, i.e., the elastic
tensor fields C0 and C1 are of the form

(Cm)ijlk = λmδijδkl + μm(δkiδlj + δkjδli) for i, j, k, l = 1, 2, m = 0, 1,

where (λ0, μ0) and (λ1, μ1) are the Lamé coefficients corresponding to Ω \ ωε and ωε,
respectively, and satisfy the monotonicity condition

(λ0 − λ1)(μ0 − μ1) ≥ γ0

for some positive constant γ0.
(H4) There are two positive constants α0, β0 such that

min(μ0, μ1) ≥ α0, min(λ0 + μ0, λ1 + μ1) ≥ β0/2.

We note that hypothesis (H4) ensures that Cε is strongly convex in Ω; i.e., if we set
ξ0 = min(2α0, β0), then

CεA ·A ≥ ξ0|A|2

for any symmetric 2 × 2 matrix A.
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(H5) We shall prescribe the traction field g on ∂Ω of the form

g = (C0W )ν,

where W is a nonzero symmetric 2 × 2 constant matrix.
Remark 2.1. Under assumptions (H3), (H4) there exist weak solutions uε and u0

in H1(Ω,R2) of (1) and of (2), respectively (see, for example, [F72]). In particular u0

can be explicitly calculated and corresponds to a pure strain displacement

u0(x) = Wx + c,

where c is an arbitrary constant vector. We observe that choosing g as in (H5) is
not too restrictive since a pure strain can always be accomplished either by simple
extensions in perpendicular directions or by a uniform dilation followed by an isochoric
pure strain [G72].

In order to uniquely determine uε and u0, we assume that they satisfy the following
normalization conditions:

(5)

∫
∂Ω

u = 0,

∫
Ω

∇u− (∇u)T = 0.

For y ∈ Ω, we will denote by N(·, y) the Neumann function related to Ω, i.e., the
weak solution to the problem⎧⎨

⎩
div

(
C0∇̂N(·, y)

)
= −δy Id in Ω,(

C0∇̂N(·, y)
)
· ν = − 1

|∂Ω| Id on ∂Ω,

with the normalization conditions (5). Here Id is the identity matrix in R
2. Note that

by well-known regularity results for elliptic systems (cf. [C80]) we have

(6) N(x, y) = Γ(x− y) + w(x, y),

where w is a smooth function of x and y and Γ(x, y) is the fundamental free space

solution of div
(
C0∇̂ ·

)
, given by

(7) Γij(x) =
A

2π
δij log |x| − B

2π

xixj

|x|2 , i, j = 1, 2,

where A = 1
2

(
1
μ0

+ 1
λ0+2μ0

)
and B = 1

2

(
1
μ0

− 1
λ0+2μ0

)
.

Let us fix an orthonormal system (n, τ) on σ such that n is a unit normal vector
field to the segment and τ is a unit tangent vector field.

By Theorem 2.1 of [BF06] we have that, for any y ∈ ∂Ω, the first order term uσ

of the expansion of uε−u0 can be computed explicitly up to a reminder term and has
the form

(8) uσ(y) = 2

∫
σ

MW · ∇̂N(x, y) dσ(x),

where

MW = a(trW )Id + bW + c(τTWτ)τ ⊗ τ + d(nTWn)n⊗ n.
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Here trW denotes the trace of the matrix W and the coefficients are given by

a = (λ1 − λ0)
λ0 + 2μ0

λ1 + 2μ1
, b = 2(μ1 − μ0)

μ0

μ1
,(9)

c = 2(μ1 − μ0)

[(
2λ1 + 2μ1 − λ0

λ1 + 2μ1
− μ0

μ1

)]
,(10)

and

(11) d = 2(μ1 − μ0)
μ1λ0 − μ0λ1

μ1(λ1 + 2μ1)
.

We are now ready to state our main result.
Theorem 2.2. Let σ0 and σ1 be two segments satisfying assumption (H2). As-

sume (H1), (H3), (H4), and (H5). Let uσ0
and uσ1

be the functions defined by (8)
where σ is replaced by σ0 and σ1, respectively. Then there exists a constant C, de-
pending only on the a priori data, such that

dH(σ0, σ1) ≤ C‖uσ0 − uσ1‖L2(Γ).

Here dH denotes the Hausdorff distance

dH(σ0, σ1) = min{max{|P0 − P1|, |Q0 −Q1|},max{|P0 −Q1|, |Q0 − P1|}},

where P0, Q0 and P1, Q1 are the endpoints of σ0 and σ1, respectively.
The proof of Theorem 2.2 is postponed to section 4.
A straightforward consequence of Theorem 2.2 and of the asymptotic formula (3)

is the following.
Corollary 2.3. Let σ0 and σ1 be as in Theorem 2.2. For i = 0, 1, let ui

ε be
the solution of (1) corresponding to ωi

ε = {x ∈ Ω : d(x, σi) < ε}. Then there exist a
positive constant C and θ ∈ (0, 1), depending only on the a priori data, such that

dH(σ0, σ1) ≤ C
(
ε−1‖u0

ε − u1
ε‖L2(Γ) + εθ

)
.

Remark 2.4. A similar rescaled stability estimate has been obtained, for example,
in [FV89] and in [CMV98] for the case of diametrically small inclusions.

3. Properties of the function uσ. In this section we first establish a represen-
tation formula for the function uσ (defined in (4)), and then we deduce some results
concerning the regularity of this function and its behavior near the endpoints of σ.

Lemma 3.1. Let σ = [P,Q], and fix τ = Q−P
|Q−P | and let n = τ⊥. For y ∈ Ω \ σ,

(12) uσ(y) =

∫
σ

C0∇̂N(x, y)n · ϕσ dσ(x) + (N(Q, y) · τ −N(P, y) · τ) fσ,

where ϕσ is the vector whose components in the (n, τ) directions are given by

(13)

ϕσ · n =
2

λ1 + 2μ1
((λ1 − λ0) trW + 2(μ1 − μ0)n

TWn),

ϕσ · τ =
4(μ1 − μ0)

μ1
nTWτ



DETERMINATION OF A LINEAR CRACK IN AN ELASTIC BODY 989

and fσ is the constant function

(14) fσ = α trW − β nTWn,

where

α =
4

λ1 + 2μ1
((μ1 − μ0)(λ1 + 2μ1) + μ1(λ1 − λ0)), β =

8(μ1 − μ0)

λ1 + 2μ1
(λ1 + μ1).

Proof. By straightforward calculations and by the symmetry of N and W , one
can easily check that

uσ(y) =

∫
σ

C0∇̂N(x, y)n · ϕσ dσ(x) + 2

∫
σ

τT ∇̂N(x, y)τfσdσ(x).(15)

Finally an integration by parts in (15) gives the thesis.
Let us consider the double layer potential

Dσϕ(y) =

∫
σ

C0∇̂Γ(x, y)n · ϕdσ(x), y ∈ R2\σ,

with ϕ constant vector field. Let us point out the following properties.
Lemma 3.2. We have

(16) [Dσϕ]σ = ϕ,

and there exists a positive constant C such that, for any y ∈ R
2\σ,

|Dσϕ(y)| ≤ C

(∣∣∣∣log
|Q− y|
|P − y|

∣∣∣∣ + 1

)
|ϕ|,

|∇Dσϕ(y)| ≤ C

(
1

|P − y| +
1

|Q− y| + 1

)
|ϕ|,

where [Dσϕ]σ denotes the jump of Dσϕ across σ.
Proof. Formula (16) follows from standard properties of double layer potentials

(see, for example, [AK04]). The behavior of Dσϕ at the endpoints of segment σ follows
from straightforward computations.

We are now ready to state and prove the following.
Proposition 3.3. Under assumptions (H1)–(H5), uσ satisfies

(17)

⎧⎨
⎩div

(
C0∇̂uσ

)
= 0 in Ω\σ,

(C0∇̂uσ)ν = 0 on ∂Ω,

and the normalization condition (5).
The function uσ has a jump on σ given by

(18) [uσ]σ = ϕσ.

Moreover there exists a positive constant C, depending only on the a priori data, such
that

(19) |uσ(y)| ≤ C

(∣∣∣∣log
|Q− y|
|P − y|

∣∣∣∣ + 1

)
.
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Proof. From the representation formula (12) and by the properties of the function
N it is easy to see that uσ satisfies (17). Recalling that uσ is the correction term in
the expansion of uε−u0 and that uε and u0 have the same Neumann condition on ∂Ω,
and observing that the expansion (3) holds true in a neighborhood of ∂Ω, it follows
that uσ satisfies the homogeneous Neumann datum.

Observe now that uσ is expressed in terms of a double layer potential and the
Neumann function at the endpoints of σ. From (6) and Lemma 3.2, equations (18)
and (19) follow.

4. Proof of Theorem 2.2. We start by establishing a first rough estimate of
dH(σ0, σ1) in terms of the boundary data error.

Lemma 4.1. Let σ0 = [P0, Q0] and σ1 = [P1, Q1] be two segments satisfying
assumption (H2). Assume (H1), (H3), (H4), and (H5). Let uσ0 , uσ1

be the functions
defined by (12) and corresponding to σ0 and σ1, respectively. Let ε := ‖uσ0−uσ1‖L2(Γ);
then

dH(σ0, σ1) ≤ ω1(ε),

where ω1(s) = C (log | log(ε)|)−1/4
for some positive constant C depending only on the

a priori data.
Proof. We first describe the proof in the case ε = 0 (corresponding to the unique-

ness).

Let u := uσ0
− uσ1 . Recalling that (C0∇̂uσ0) · ν = (C0∇̂uσ1) · ν = 0 on ∂Ω, we

have that

u = (C0∇̂u) · ν = 0 on ∂Ω.

Since u is solution of

div
(
C0∇̂u

)
= 0 in Ω\(σ0 ∪ σ1),

by the unique continuation property of solutions to elliptic systems with constant
coefficients (see [AM01] and [MR04]) we have that

(20) u = 0 in Ω\(σ0 ∪ σ1).

Assume that σ0 �= σ1. Then there exists a portion Σ, for instance, of σ0, containing
an endpoint P0 of σ0 such that Σ is not contained in σ1. For the sake of simplicity,
let us denote ϕ0 := ϕσ0

and f0 := fσ0
the functions appearing in (12) corresponding

to σ0. By (20), [u]Σ = 0, and since [u]Σ = [uσ0 ]Σ = ϕ0 we get

(21) ϕ0 = 0.

Furthermore, from the representation formula (12), uσ0
has logarithmic singularities

at the endpoints P0, Q0. Hence again by (20) and by (12) we have

(22) f0 = 0.

Recalling (13) and (14), conditions (21) and (22) can be written as

(23)

⎧⎪⎨
⎪⎩

nT
0 Wτ0 = 0,

α(trW ) − βnT
0 Wn0 = 0,

a(trW ) + (b + d)nT
0 Wn0 = 0,
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where n0 and τ0 denote the normal and tangent unit vector to σ0, the numbers a, b, and
d are defined in (9), (10), (11), and α and β are defined in (14). By assumption (H3)
it is easy to see that the conditions (23) imply trW = 0, nT

0 Wn0 = 0, from which it
follows that τT0 Wτ0 = 0. Finally, by the symmetry of W , since nT

0 Wτ0 = τT0 Wn0 we
get that also τT0 Wn0 = 0. Hence W = 0, which contradicts assumption (H5).

The proof of the case ε > 0 is a quantitative version of the uniqueness part. For
the sake of simplicity we postpone this part of the proof to section 5.

Denote by σt the segment [Pt, Qt], where

Pt = (1 − t)P0 + tP1, Qt = (1 − t)Q0 + tQ1,

and for y ∈ Ω\σt let

ut(y) := uσt(y) =

∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)nt · ϕt|Qt − Pt| ds

+(N(Qt, y) · τt −N(Pt, y) · τt)ft,

where τt = Qt−Pt

|Qt−Pt| , nt = τ⊥t , ft := fσt , and ϕt := ϕσt . Clearly, from the above

formula, ut is differentiable for any t ∈ [0, 1] and its derivative u′
t satisfies the problem

(24)

⎧⎨
⎩div

(
C0∇̂u′

t

)
= 0 in Ω\σt,

(C0∇̂u′
t)ν = 0 on ∂Ω

and the normalization condition (5).
The following statements, whose proof we defer until section 5, allow us to con-

clude the proof of Theorem 2.2.
Lemma 4.2. For any y ∈ ∂Ω

u′
t(y) :=

d

dt
ut(y)

= −
∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)nt · ϕt((Q1 −Q0 − (P1 − P0)) · τt)ds

+

∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)nt ·
d

dt
(ϕt|Qt − Pt|) ds

+ C0∇̂N(Qt, y) ((Q1 −Q0) · τt)nt − (Q1 −Q0) · nt)τt) · ϕt(25)

− C0∇̂N(Pt, y) ((P1 − P0) · τt)nt − (P1 − P0) · nt)τt) · ϕt

+

(
∇N(Qt, y)

dQt

dt
· τt −∇N(Pt, y)

dPt

dt
· τt

)
ft

+ (N(Qt, y) −N(Pt, y))
d(τtft)

dt
.

Proposition 4.3. There exist constants C0, m0 > 0, depending only on the
a priori data, such that

‖u′
0‖L2(Γ) ≥ m0dH(σ0, σ1)
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and

(26) ‖u′
t − u′

0‖L2(Γ) ≤ C0(dH(σ0, σ1))
2.

Let us conclude now the proof of Theorem 2.2.
Let ε0 > 0 such that

(27) ω1(ε0) ≤
m0

2C0
,

where ω1 is defined as in Lemma 4.1.
Let us distinguish two cases:
(1) ε ∈ (0, ε0]. By the differentiability of ut we have that for any x ∈ Γ

uσ1
(x) − uσ0

(x) =

∫ 1

0

u′
t(x) dt = u′

0(x) +

∫ 1

0

(u′
t(x) − u′

0(x)) dt.

By the triangular inequality we get

ε = ‖uσ1
− uσ0

‖L2(Γ) ≥ ‖u′
0‖L2(Γ) − ‖u′

t − u′
0‖L2(Γ).

By Proposition 4.3 we get

(28) ε ≥ (m0 − C0dH(σ0, σ1)) dH(σ0, σ1).

On the other hand, from Lemma 4.1 we have that

dH(σ0, σ1) ≤ ω1(ε0).

Hence, by (27), we get

m0 − C0dH(σ0, σ1) ≥ m0 − C0ω1(ε0) ≥
m0

2
.

By the last inequality and (28) we derive

(29) dH(σ0, σ1) ≤
2

m0
ε.

(2) Let us consider the case ε ≥ ε0. One easily gets

(30) dH(σ0, σ1) ≤ diamΩ ≤ E1
ε

ε0
.

Hence, by (29) and (30) we have

dH(σ0, σ1) ≤ max

{
E1

ε0
,

2

m0

}
ε,

which concludes the proof of the theorem.

5. Proofs of the preliminary results.

5.1. Proof of Lemma 4.1. Let us now consider the case ε > 0. Let d :=
dH(σ0, σ1) and let us assume that d = |P0 − P1|. By classical regularity results in
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potential theory and by Lemma 3.2 we have that uσj
∈ C1(Ω\σj) for j = 0, 1 and,

for any r ∈ (0, ρ1), where ρ1 = min(L−1, ρ0),

(31)
‖uσj

‖L∞(Ω\(Br(Pj)∪Br(Qj)) ≤ C
(
log 1

r + 1
)
,

‖∇uσj
‖L∞(Ω\(σj∪Br(Pj)∪Br(Qj)) ≤ C 1

r ,

where C depends only on the a priori data. From stability estimates for the Cauchy
problem for solutions of elliptic systems (cf. [MR04]) and by (31) we have

(32) ‖uσj‖
L∞

(
Ω∩B ρ1

2
(P )

) ≤ Cεδ,

where P is a point on Γ and C > 0, δ ∈ (0, 1) depend on the a priori data only.
Starting from (32) we now establish a propagation error estimate in a neighborhood
of Ω\(σ0 ∪ σ1). Let r ∈ (0, ρ1

156 ), and define

(33) (σi)8r = {x ∈ Ω : dist(x, σi) > 8r} for i = 0, 1

and Ω′
(r) = Ω8r\((σ0)8r) ∪ (σ1)8r) and let z0 = P − ν

16ρ1, where ν is the outward unit
normal vector to ∂Ω at the point P . Let x ∈ Ω′

(r) and let γ ⊂ Ω′
(r) be an open arc

joining x to z0. With the usual procedure we construct a chain of balls with centers
along γ where we apply the three-spheres inequality (cf. [AM01] and [MR04]),∫

B3r

|u|2 ≤ C

(∫
Br

|u|2
)τ (∫

B4r

|u|2
)1−τ

(τ ∈ (0, 1), C > 0 absolute constants), in order to give an estimate of the propagation
of the error from Br(z0) to x. In fact, by (31) and (32) and the above inequality we
get

∫
B3r(x)

|u|2 ≤ Cr2(εδ)τ
Nr

(
log

1

r

)1−τNr

,

where Nr ≤ |Ω|
πr2 . Finally by interpolation we get

(34) |u(x)| ≤ ω(ε, r) := C(εδ)τ
Nr

(
log

1

r

)1−τNr

for every x ∈ Ω′
(r).

It is easy to check that there exist a constant C0, 0 < C0 < 1/2, depending only
on the a priori constants such that if d > 0 and ρ ≤ C0d

2, then at least one of the
following conditions is satisfied:

(35) Bρ(P0) ∩ σ1 = ∅ or Bρ(P1) ∩ σ0 = ∅.

Without loss of generality we might assume that

Bρ(P0) ∩ σ1 = ∅.

Up to a rigid transformation we might assume that P0 = 0 and that σ0 lies along the
positive x1 axis. For t ∈ (0, 1], ρ ∈ (0, C0d

2), let

x+
tρ = xρ + e2

ρt

2
, x−

tρ = xρ − e2
ρt

2
,



994 ELENA BERETTA, ELISA FRANCINI, AND SERGIO VESSELLA

where xρ = (ρ/2, 0) and e2 = (0, 1). Let

u±
σ0

(xρ) = lim
s→0+

uσ0
(xρ ± se2)

and

u±(xρ) = lim
s→0+

u(xρ ± se2).

We have

|[uσ0
(xρ)]σ0 | = |[u(xρ)]σ0 | ≤ |u+(xρ)−u(x+

tρ)|+ |u−(xρ)−u(x−
tρ)|+ |u(x+

tρ)|+ |u(x−
tρ)|.

By applying the second of (31) we get

|u+(xρ) − u(x+
tρ)| ≤ Ct

and

|u−(xρ) − u(x−
tρ)| ≤ Ct,

where C > 0 depends only on the a priori data. Hence using (34) and the last
inequalities we derive

|[uσ0(xρ)]| ≤ Ct + 2ω(ε; tρ/2).

Therefore, from the properties of double layer potentials, we get

(36) |ϕ0| = |[uσ0
(xρ)]| ≤ Ct + 2ω(ε; tρ/2),

where C depends only on the a priori constants.
Now we argue by contradiction. Assume

d ≥ ηε,

where

ηε :=

√
2√
C0

(
8E2

1 | log τ |
log | log εδ|

)1/8

.

Let

ρ =

(
8E2

1 | log τ |
log | log εδ|

)1/4

and t =

(
8E2

1 | log τ |
log | log εδ|

)1/4

.

By (36) there exists ε0 > 0, depending only on the a priori data, such that if ε ≤ ε0

and

d ≥ ηε,

then

(37) |ϕ0| ≤ ω1(ε) := C (log | log(ε)|)−1/4
,

where C depends only on the a priori constants.
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By using (12) for σ0 and σ1 and estimating the difference, we can easily see that

|Γ(P0, y)τ0f0| ≤ |Γ(Q0, y)τ0f0| +
∣∣∣∣
∫
σ0

C0∇̂N(x, y)n0 · ϕ0 ds(x)

∣∣∣∣
+

∣∣∣∣
∫
σ1

C0∇̂N(x, y)n1 · ϕ1 ds(x)

∣∣∣∣ + |(N(P0, y) − Γ(P0, y))τ0f0|

+ |u(y)| + |N(Q1, y)τ1f1| + |N(P1, y)τ1f1|.

From Lemma 3.2 and (37) we get, for any y ∈ Ω\σ0∣∣∣∣
∫
σ0

C0∇̂N(x, y)n0 · ϕ0 ds(x)

∣∣∣∣ ≤ Cω1(ε)

∣∣∣∣log
|y − P0|
|y −Q0|

∣∣∣∣
and, for any y ∈ Ω\σ1,∣∣∣∣

∫
σ1

C0∇̂N(x, y)n1 · ϕ1 ds(x)

∣∣∣∣ ≤ C|ϕ1|
∣∣∣∣log

|y − P1|
|y −Q1|

∣∣∣∣ ,
where C depends only on the a priori data. Furthermore, by regularity estimates, we
have

|N(P0, y) − Γ(P0, y)| ≤ C for every y ∈ Ω,

where C depends only on the a priori constants. It is now straightforward to see that
there exists ε1 > 0, depending only on the a priori data, such that if ε ≤ ε1 and

d ≥
(
log(log | log εδ|)

)−1
,

then

(38) |f0| ≤ Cω1(ε).

Hence, for ε ≤ ε2 := min(ε0, ε1) and d ≥
(
log(log | log εδ|)

)−1
, inequalities (37) and

(38) hold true and we get⎧⎪⎨
⎪⎩

|nT
0 Wτ0| ≤ Cω1(ε),

|α(trW ) − βnT
0 Wn0| ≤ Cω1(ε),

|a(trW ) + (b + d)nT
0 Wn0| ≤ Cω1(ε),

which lead to

k0 = max
|x|=1

|xTWx| ≤ Cω1(ε),

a contradiction for ε small enough. Hence

d ≤
(
log(log | log εδ|)

)−1

for every ε ≤ ε2. If ε ≥ ε2, then

d ≤ E1 ≤ E1
ε

ε1

and the proof is complete.
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5.2. Proof of Lemma 4.2. Taking the derivative of ut,

u′
t(y) =

∫ 1

0

(
d

dt
C0∇̂N((1 − s)Pt + sQt, y)

)
nt · ϕt|Qt − Pt| ds

+

∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)nt ·
d

dt
(ϕt|Qt − Pt|) ds

+

∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)

(
d

dt
nt

)
· ϕt|Qt − Pt| ds

+

(
∇N(Qt, y)

dQt

dt
· τt −∇N(Pt, y)

dPt

dt
· τt

)
ft(39)

+ (N(Qt, y) −N(Pt, y))
d(τtft)

dt

:= I1 + I2 + I3 +

(
∇N(Qt, y)

dQt

dt
· τt −∇N(Pt, y)

dPt

dt
· τt

)
ft

+ (N(Qt, y) −N(Pt, y))
d(τtft)

dt
.

Observe that

d

dt
C0∇̂N((1 − s)Pt + sQt, y)

= ∇x(C0∇̂N((1 − s)Pt + sQt, y)) • ((1 − s)(P1 − P0) + s(Q1 −Q0)),

where the symbol • should be intended in the following way:

∇xM • v :=
∑
i

∂M

∂xi
vi.

On the other hand

d

ds

(
C0∇̂N((1−s)Pt + sQt, y)

)
=∇x(C0∇̂N((1−s)Pt + sQt, y)) • (Qt−Pt)

= ∇x(C0∇̂N((1 − s)Pt + sQt, y)) • τt|Qt − Pt|.

Set

(1 − s)(P1 − P0) + s(Q1 −Q0) = At(s)τt + Bt(s)nt,

where

At(s) = (1 − s)(P1 − P0) · τt + s(Q1 −Q0) · τt

and

Bt(s) = (1 − s)(P1 − P0) · nt + s(Q1 −Q0) · nt.
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Hence

I1 =

∫ 1

0

(
∇x(C0∇̂N((1 − s)Pt + sQt, y)) • (At(s)τt + Bt(s)nt)

)
nt · ϕt ds

=

∫ 1

0

At(s)
d

ds

(
C0∇̂N((1 − s)Pt + sQt, y)

)
nt · ϕt ds(40)

+

∫ 1

0

Bt(s)
(
∇x(C0∇̂N((1 − s)Pt + sQt, y)) • nt

)
nt · ϕt|Qt − Pt| ds.

Integrating by parts the first integral appearing on the right-hand side of (40), we
obtain

I1 = At(1)C0∇̂N(Qt, y)nt · ϕt −At(0)C0∇̂N(Pt, y)nt · ϕt

−
∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)
d

ds
(At(s)nt · ϕt) ds(41)

+

∫ 1

0

Bt(s)
(
∇x(C0∇̂N((1 − s)Pt + sQt, y)) • nt

)
nt · ϕt|Qt − Pt| ds.

Observing now that, for any y ∈ ∂Ω,

∇x

(
C0∇̂N(·, y)nt

)
• nt + ∇x

(
C0∇̂N(·, y) · τt

)
• τt = 0 in Ω,

we can rewrite∫ 1

0

Bt(s)
(
∇x(C0∇̂N((1 − s)Pt + sQt, y)) • nt

)
nt · ϕt|Qt − Pt|ds

= −
∫ 1

0

Bt(s)
(
∇x(C0∇̂N((1 − s)Pt + sQt, y)) • τt

)
τt · ϕt|Qt − Pt|ds

= −
∫ 1

0

Bt(s)

(
d

ds
C0∇̂N((1 − s)Pt + sQt, y)

)
τt · ϕtds

= −Bt(1)C0∇̂N(Qt, y)τt · ϕt + Bt(0)C0∇̂N(Pt, y)τt · ϕt(42)

+

∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)
d

ds
(Bt(s)τt · ϕt) ds.

Inserting (42) into (41) we derive finally

I1 = C0∇̂N(Qt, y)(At(1)nt −Bt(1)τt) · ϕt

− C0∇̂N(Pt, y)(At(0)nt −Bt(0)τt) · ϕt(43)

−
∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)
d

ds
(At(s)nt · ϕt −Bt(s)τt · ϕt) ds,
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where

d

ds
(At(s)nt −Bt(s)τt) · ϕt

= {((Q1 −Q0) − (P1 − P0)) · τt)nt − ((Q1 −Q0) − (P1 − P0)) · nt)τt} · ϕt,

At(1) = (Q1 −Q0) · τt, At(0) = (P1 − P0) · τt

and

Bt(1) = (Q1 −Q0) · nt, Bt(0) = (P1 − P0) · nt.

It is easy to calculate

d

dt
nt = −

(
(Q1 −Q0) − (P1 − P0)

|Qt − Pt|
· nt

)
τt,

and, with this, we get

(44) I3 = −
∫ 1

0

C0∇̂N((1 − s)Pt + sQt, y)τt · ϕt((Q1 −Q0) − (P1 − P0)) · nt ds.

Inserting (43) and (44) into (39) gives (25), which concludes the proof.

5.3. Proof of Proposition 4.3. In Lemma 4.2 we established that

u′
0(y) = −

∫ 1

0

C0∇̂N((1 − s)P0 + sQ0, y)n0 · ϕ0((Q1 −Q0) − (P1 − P0)) · τ0

+

∫ 1

0

C0∇̂N((1 − s)P0 + sQ0, y)n0 ·
d

dt
(ϕt|Qt − Pt|)|t=0

+ C0∇̂N(Q0, y) (((Q1 −Q0) · τ0)n0 − ((Q1 −Q0) · n0)τ0) · ϕ0(45)

− C0∇̂N(P0, y) (((P1 − P0) · τ0)n0 − ((P1 − P0) · n0)τ0) · ϕ0

+ (∇N(Q0, y)(Q1 −Q0) −∇N(P0, y)(P1 − P0)) · τ0f0

+ (N(Q0, y) −N(P0, y))
d(τtft)

dt
|t=0.

We divide the proof of the first inequality of Proposition 4.3 into two steps.
(1) We first prove that if

(46) ‖u′
0‖L2(∂Ω) = 0, then dH(σ0, σ1) = 0.

Since dH(σ0, σ1) = |P1 − P0| it will be sufficient to show that P1 = P0.
By (24), (46), and the unique continuation property, we have that

u′
0(y) = 0 for y ∈ Ω\σ0.
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In particular u′
0 is zero in a neighborhood of P0 contained in Ω\σ0. From (45) it is

immediate to see that u′
0 has a singularity at P0 whose leading term is

(47) −C0∇̂Γ(P0, y)
(
(P1 − P0)

⊥) · ϕ0 −∇Γ(P0, y)(P1 − P0) · τ0f0.

Without loss of generality let us now fix the coordinate system in such a way
that P0 = 0, τ0 = (1, 0), and n0 = (0, 1), let ϕ0 = (ϕ1

0, ϕ
2
0), and let us set h1 =

(h1
1, h

2
1) := (P1 − P0). Since the leading singularity given by (47) cannot appear and

by the definition of C0, we must have, for i = 1, 2 and for any y ∈ Br(0) \σ0 for some
small and positive radius r,

(48) α1 ∂1Γi1(y) + α2 ∂1Γi2(y) + α3 ∂2Γi1(y) + α4 ∂2Γi2(y) = 0,

where the coefficients are given by

(49)
α1 = λ0(h

1
1ϕ

2
0 − h2

1ϕ
1
0) − 2μ0h

2
1ϕ

1
0 + h1

1f0, α2 = −μ0h
2
1ϕ

2
0 + μ0h

1
1ϕ

1
0,

α3 = −μ0h
2
1ϕ

2
0 + μ0h

1
1ϕ

1
0 + h2

1f0, α4 = λ0(−h2
1ϕ

1
0 + h1

1ϕ
2
0) + 2μ0h

1
1ϕ

2
0.

By calculating explicitly the derivatives of Γ, equations (48) become

1

2π|y|4
[
y3
1(Aα1−Bα4) + y2

1y2(Bα2+(A + 2B)α3)+y1y
2
2((A− 2B)α1+Bα4)

+ y3
2(−Bα2 + Aα3)

]
= 0 for every y ∈ Br(0) \ σ0(50)

for i = 1, and

1

2π|y|4
[
y3
1(Aα2−Bα3) + y2

1y2(Bα1+(A− 2B)α4)+y1y
2
2((A + 2B)α2+Bα3)

+ y3
2(−Bα1 + Aα4)

]
= 0 for every y ∈ Br(0)σ0(51)

for i = 2.
Equations (50) and (51) can be satisfied if and only if each coefficient of the

polynomials appearing in the numerators is zero. Since A+B and A−B are different
from zero this implies that

α1 = α2 = α3 = α4 = 0.

Easy computations show that these four equations can be satisfied for some vector
h1 �= (0, 0) only if

f0 = ϕ1
0 = ϕ2

0 = 0,

which implies that W is identically zero, leading to a contradiction. Hence h1 =
P1 − P0 = 0 and the first step is proved.

(2) Since u′
0 depends linearly on h := (h1, h2) := (P1 − P0, Q1 −Q0), in order to

prove the estimate from below it is sufficient to show that if |h|R4 = (|h1|2+|h2|2)1/2 =
1, then

‖u′
0‖L2(∂Ω) ≥ m0,

where m0 > 0 depends only on the a priori data.
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Let h ∈ R
4 be such that |h|R4 = 1, where dH(σ0, σ1) = |h1|R2 ≥ |h2|R2 . Denote

v = u′
0, and θ = ‖v‖L2(∂Ω).

Recall that v is a solution of (24) and proceed similarly as in Lemma 4.1. If we define
ρ1 := min

(
L−1, ρ0

)
, we have, for any r ∈ (0, ρ1/156),

|v(x)| ≤ ω(θ, r) := C(θδ)τ
Nr

(
log

1

r

)1−τNr

for every x ∈ Ω′
r := Ω8r\(σ0)8r, where (σ0)8r is defined as in (33), τ, δ ∈ (0, 1) and

C > 1 depend on the a priori data only, and Nr ≤ |Ω|
πr2 . Without loss of generality we

might assume that P0 = 0. By (44) we have that

(52) v(y) =
H(y)

|y|4 + J(y) for y ∈ Ω\σ0,

where H is an homogeneous polynomial of degree three whose coefficients are equal
to the expressions in (50) and (51), and J satisfies the inequality

|J(y)| ≤ C |log |y|| for y ∈ Ω\σ0, |y| ≤ 1

2L
,

where C depends on the a priori data only. Let y ∈ R
2, |y| = 1 such that

|H(y)| = max
|y|=1

|H(y)|.

Denote

M = |H(y)|, yr = 8ry.

Since |H(yr)| = |H(−yr)| and yr or −yr ∈ Ω′
r, it is not restrictive to assume that

yr ∈ Ω′
r.

By (52) we have

|H(y)| =
|H(yr)|
|yr|3

≤ |yr||v(yr)| + |yr||J(yr)|,

and hence

(53) M ≤ 8rω(θ; r) + Cr log
1

r

for every 0 ≤ r ≤ ρ2, where ρ2 = 1
256 min

(
L−1, ρ0

)
. Denote

rθ =

(
E2

1 | log τ |
log | log θδ|

)1/2

.

There exists θ0 < e−1/δ, θ0 depending only on the a priori data, such that if θ ∈ (0, θ0),
then rθ ∈ (0, ρ2). We now choose, for θ ∈ (0, θ0), r = rθ and by (53) we have

(54) M ≤ Cω2(θ),
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where

ω2(θ) =
(
log | log θδ|

)−1/4

and C depends only on the a priori data. This implies that each coefficient of the
polynomials appearing in the numerators of (50) and (51) are bounded by Cω2(θ) for
some positive constant C depending only on a priori data.

Now, proceeding as in step (1) we derive easily that

(55) if θ ∈ (0, θ0), then |h2| ≤ |h1| ≤ Cω2(θ),

where C depends only on the a priori data. On the other hand, since |h1|2 + |h2|2 = 1,
by (55) we obtain that

(56) if θ ∈ (0, θ0), then 1 ≤ 2C2
0 (ω2(θ))

2.

Denote by θ1 = min{θ0, exp(− 1
δ exp(16C4

0 ))}. By (55) we get that if θ ∈ (0, θ1), then
1 ≤ 2C2

0 (ω2(θ))
2 ≤ 1/2, a contradiction. Therefore θ ≥ θ1 and recalling that v = u′

0,
and θ = ‖v‖L2(∂Ω), we get the thesis for m0 = θ1.

Let us finally prove (26). Observe that u′
t is differentiable in t and taking, for

instance, the following term appearing in u′
t − u′

0 we get

|∇N(Qt, y)(Q1 −Q0) · τtft −∇N(Q0, y)(Q1 −Q0) · τ0f0|

≤ |(∇N(Qt, y) −∇N(Q0, y))||(Q1 −Q0) · τtft|

+ |∇N(Q0, y)(Q1 −Q0) · (τt − τ0)ft|

+ |∇N(Q0, y)(Q1 −Q0) · τ0(ft − f0)|.

Since

|∇N(Qt, y) −∇N(Q0, y)| ≤ C|Q1 −Q0| ≤ CdH(σ0, σ1),

|τt − τ0| ≤ C|P1 − P0| = CdH(σ0, σ1),

and, also,

|ft − f0| ≤ C|Q1 −Q0| ≤ CdH(σ0, σ1),

where C is a constant depending only on the a priori data, hence

|∇N(Qt, y)(Q1 −Q0) · τtft −∇N(Q0, y)(Q1 −Q0) · τ0f0| ≤ C (dH(σ0, σ1))
2
.

Evaluating the other terms appearing in u′
t − u′

0 in a similar way, we get the desired
inequality and the proof is concluded.
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Abstract. We study the monotone skew-product semiflow generated by a family of neutral
functional differential equations with infinite delay and stable D-operator. The stability properties
of D allow us to introduce a new order and to take the neutral family to a family of functional
differential equations with infinite delay. Next, we establish the 1-covering property of omega-limit
sets under the componentwise separating property and uniform stability. Finally, the obtained results
are applied to the study of the long-term behavior of the amount of material within the compartments
of a neutral compartmental system with infinite delay.
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1. Introduction. After the pioneering work of Hale and Meyer [11], the theory
of neutral functional differential equations (NFDE) aroused considerable interest and
a fast development ensued. At present a wide collection of theoretical and practical
results make up the main body of the theory of NFDEs (see Hale [10], Hale and
Verduyn Lunel [12], Kolmanovskii and Myshkis [18], and Salamon [22], among many
others). In particular, a substantial number of results for delayed functional differen-
tial equations (FDEs) have been generalized for NFDEs solving new and challenging
problems in these extensions.

In this paper we provide a dynamical theory for nonautonomous monotone NFDEs
with infinite delay and autonomous stable D-operator along the lines of the results
by Jiang and Zhao [17] and Novo, Obaya, and Sanz [20]. We assume some recurrence
properties on the temporal variation of the NFDE. Thus, its solutions induce a skew-
product semiflow with minimal flow on the base. In particular, the uniform almost
periodic and almost automorphic cases are included in this formulation. The skew-
product formalism permits the analysis of the dynamical properties of the trajectories
using methods of ergodic theory and topological dynamics.

Novo et al. [20] study the existence of recurrent solutions of nonautonomous FDEs
with infinite delay using the phase space BU ⊂ C((−∞, 0],Rm) of bounded and uni-
formly continuous functions with the supremum norm. Assuming some technical
conditions on the vector field, it is shown that every bounded solution is relatively
compact for the compact-open topology, and its omega-limit set admits a flow exten-
sion. An alternative method for the study of recurrent solutions of almost periodic
FDEs with infinite delay makes use of a fading memory Banach phase space (see Hino,
Murakami, and Naiko [13] for an axiomatic definition and main properties). Since this
kind of space contains BU and, under natural assumptions, the restriction of the norm
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topology to the closure of a bounded solution agrees with the compact-open topology,
it seems that the approach considered in Novo et al. [20] becomes natural in many
cases of interest.

In this paper we consider NFDEs with linear autonomous operator D defined
on BU which is continuous for the norm, continuous for the compact-open topology
on bounded sets, and atomic at zero. We obtain an integral representation of D by
means of Riesz theorem Dx =

∫ 0

−∞[ dμ]x, where μ is a real Borel measure with finite

total variation. The convolution operator D̂ defined by D̂x(s) =
∫ 0

−∞[dμ(θ)]x(θ + s)

maps BU into BU . We prove that if D is stable in the sense of Hale [10], then D̂ is an
isomorphism of BU which is continuous for the norm and continuous for the compact-
open topology on bounded sets. Moreover, D̂−1 inherits these same properties and
is associated to a linear stable operator D∗. In fact, the mentioned behavior of D̂−1

characterizes the stability of the operator D. The proofs are self-contained and require
only quantitative estimates associated to the stability of the operator D.

Staffans [24] shows that every NFDE with finite delay and autonomous stable
D-operator can be written as an FDE with infinite delay in an appropriate fading
memory space. A more systematic study on the inversion of the convolution operator
D̂ can be found in the work of Gripenberg, Londen, and Staffans [4]. The papers by
Haddock et al. [8, 9], Arino and Bourad [1], among others, make a systematic use of
these ideas which have a theoretical and practical interest. We give a version of the
above results for infinite delay NFDEs. It is obvious that the inversion of the convo-
lution operator D̂ on BU allows us to transform the original equation into a retarded
nonautonomous FDE with infinite delay. In addition, we transfer the dynamical the-
ory of Jiang and Zhao [17] and Novo et al. [20] to nonautonomous monotone NFDEs
with infinite delay and autonomous stable D-operator. In an appropriate dynamical
framework we assume that the trajectories are bounded, uniformly stable, and satisfy
a componentwise separating property, and we show that the omega-limit sets are all
copies of the base. It is important to mention that no conditions of strong monotonic-
ity are required, which permits the application of the results under natural physical
conditions.

In this paper we provide a detailed description of the long-term behavior of the
dynamics in some classes of compartmental systems extensively studied in the litera-
ture. Compartmental systems have been used as mathematical models for the study
of the dynamical behavior of many processes in biological and physical sciences, which
depend on local mass balance conditions (see Jacquez [14], Jacquez and Simon [15, 16],
and the references therein). Some initial results for models described by FDEs with
finite and infinite delay can be found in Györi [5] and Györi and Eller [6]. The paper
by Arino and Haourigui [2] proves the existence of almost periodic solutions for com-
partmental systems described by almost periodic finite delay FDEs. NFDEs represent
systems where the compartments produce or swallow material. Györi and Wu [7] and
Wu and Freedman [28] study autonomous NFDEs with finite and infinite delay sim-
ilar to those considered in this paper. We provide a nonautonomous version, under
more general assumptions, of the monotone theory for NFDEs included in Wu and
Freedman [28] and Wu [27]. More precise results for the case of scalar NFDEs can be
found in Arino and Bourad [1] and Krisztin and Wu [19].

We study the dynamics of monotone compartmental systems in terms of the
geometrical structure of the pipes connecting the compartments. Irreducible subsets
of the set of indices detect the occurrence of subsystems on the complete system
which reduce the dimension of the problem being studied. When the system is closed,
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the total mass is an invariant continuous function which implies the stability and
boundedness of the solutions. In particular, the omega-limit set of every solution is a
minimal set and a copy of the base. In a general compartmental system the existence
of a bounded solution assures that every solution is bounded and uniformly stable.
We first check that when there is no inflow of material then all the compartments of
each irreducible subset with some outflow of material are empty on minimal subsets.
On the contrary, when the solutions remain bounded and there is an inflow of material
in some compartment of an irreducible subset, then for the indices of this irreducible
subset all the minimal sets agree, and all the compartments contain some material.
Finally, we describe natural physical conditions which ensure the existence of a unique
minimal set asymptotically stable.

This paper is organized as follows. Basic notions in topological dynamics, used
throughout the rest of the sections, are stated in section 2. Section 3 is devoted to
the study of general and stability properties of linear autonomous operators from
BU to R

m, as well as the behavior of solutions of the corresponding homogeneous
and nonhomogeneous equations given by them. In section 4, we study the monotone
skew-product semiflow generated by a family of NFDEs with infinite delay and stable
D-operator. In particular, we establish the 1-covering property of omega-limit sets
under the componentwise separating property and uniform stability. These results
are applied in section 5 to show that the solutions of a compartmental system given
by a monotone NFDE with infinite delay are asymptotically of the same type as
the transport functions. Finally, section 6 deals with the long-term behavior of its
solutions in terms of the geometrical structure of the pipes, as explained above.

2. Some preliminaries. Let (Ω, d) be a compact metric space. A real continu-
ous flow (Ω, σ,R) is defined by a continuous mapping σ : R×Ω → Ω, (t, ω) �→ σ(t, ω)
satisfying

(i) σ0 = Id,
(ii) σt+s = σt ◦ σs for each s, t ∈ R,

where σt(ω) = σ(t, ω) for all ω ∈ Ω and t ∈ R. The set {σt(ω) | t ∈ R} is called the
orbit or the trajectory of the point ω. We say that a subset Ω1 ⊂ Ω is σ-invariant if
σt(Ω1) = Ω1 for every t ∈ R. A subset Ω1 ⊂ Ω is called minimal if it is compact, σ-
invariant, and its only nonempty compact σ-invariant subset is itself. Every compact
and σ-invariant set contains a minimal subset; in particular it is easy to prove that
a compact σ-invariant subset is minimal if and only if every trajectory is dense. We
say that the continuous flow (Ω, σ,R) is recurrent or minimal if Ω is minimal.

The flow (Ω, σ,R) is distal if for any two distinct points ω1, ω2 ∈ Ω the orbits
keep at a positive distance, that is, inft∈R d(σ(t, ω1), σ(t, ω2)) > 0. The flow (Ω, σ,R)
is almost periodic when for every ε > 0 there is a δ > 0 such that if ω1, ω2 ∈ Ω with
d(ω1, ω2) < δ, then d(σ(t, ω1), σ(t, ω2)) < ε for every t ∈ R. If (Ω, σ,R) is almost
periodic, it is distal. The converse is not true; even if (Ω, σ,R) is minimal and distal,
it does not need to be almost periodic. For the basic properties of almost periodic
and distal flows we refer the reader to Ellis [3] and Sacker and Sell [21].

A flow homomorphism from another continuous flow (Y,Ψ,R) to (Ω, σ,R) is a
continuous map π : Y → Ω such that π(Ψ(t, y)) = σ(t, π(y)) for every y ∈ Y and t ∈ R.
If π is also bijective, it is called a flow isomorphism. Let π : Y → Ω be a surjective
flow homomorphism and suppose (Y,Ψ,R) is minimal (then so is (Ω, σ,R)). (Y,Ψ,R)
is said to be an almost automorphic extension of (Ω, σ,R) if there is ω ∈ Ω such that
card(π−1(ω)) = 1. Then actually card(π−1(ω)) = 1 for ω in a residual subset Ω0 ⊆ Ω;
in the nontrivial case Ω0 � Ω the dynamics can be very complicated. A minimal flow
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(Y,Ψ,R) is almost automorphic if it is an almost automorphic extension of an almost
periodic minimal flow (Ω, σ,R). We refer the reader to the work of Shen and Yi [23]
for a survey of almost periodic and almost automorphic dynamics.

Let E be a complete metric space and R
+ = {t ∈ R | t ≥ 0}. A semiflow (E,Φ,R+)

is determined by a continuous map Φ : R
+ × E → E, (t, x) �→ Φ(t, x) which satisfies

(i) Φ0 = Id,
(ii) Φt+s = Φt ◦ Φs for all t, s ∈ R

+,
where Φt(x) = Φ(t, x) for each x ∈ E and t ∈ R

+. The set {Φt(x) | t ≥ 0} is the
semiorbit of the point x. A subset E1 of E is positively invariant (or just Φ-invariant)
if Φt(E1) ⊂ E1 for all t ≥ 0. A semiflow (E,Φ,R+) admits a flow extension if there

exists a continuous flow (E, Φ̃,R) such that Φ̃(t, x) = Φ(t, x) for all x ∈ E and
t ∈ R

+. A compact and positively invariant subset admits a flow extension if the
semiflow restricted to it admits one.

Write R
− = {t ∈ R | t ≤ 0}. A backward orbit of a point x ∈ E in the semiflow

(E,Φ,R+) is a continuous map ψ : R
− → E such that ψ(0) = x and for each s ≤ 0

it holds that Φ(t, ψ(s)) = ψ(s + t) whenever 0 ≤ t ≤ −s. If for x ∈ E the semiorbit
{Φ(t, x) | t ≥ 0} is relatively compact, we can consider the omega-limit set of x,

O(x) =
⋂
s≥0

closure{Φ(t + s, x) | t ≥ 0} ,

which is a nonempty compact connected and Φ-invariant set. Namely, it consists of
the points y ∈ E such that y = limn→∞ Φ(tn, x) for some sequence tn ↑ ∞. It is
well known that every y ∈ O(x) admits a backward orbit inside this set. Actually,
a compact positively invariant set M admits a flow extension if every point in M
admits a unique backward orbit which remains inside the set M (see Shen and Yi [23,
part II]).

A compact positively invariant set M for the semiflow (E,Φ,R+) is minimal if it
does not contain any nonempty compact positively invariant set other than itself. If
E is minimal, we say that the semiflow is minimal.

A semiflow is of skew-product type when it is defined on a vector bundle and has
a triangular structure; more precisely, a semiflow (Ω × X, τ, R

+) is a skew-product
semiflow over the product space Ω × X, for a compact metric space (Ω, d) and a
complete metric space (X, d), if the continuous map τ is as follows:

(2.1)
τ : R

+ × Ω ×X −→ Ω ×X

(t, ω, x) �→ (ω·t, u(t, ω, x)) ,

where (Ω, σ,R) is a real continuous flow σ : R × Ω → Ω, (t, ω) �→ ω·t, called the base
flow . The skew-product semiflow (2.1) is linear if u(t, ω, x) is linear in x for each
(t, ω) ∈ R

+ × Ω.
Now, we introduce some definitions concerning the stability of the trajectories.

A forward orbit {τ(t, ω0, x0) | t ≥ 0} of the skew-product semiflow (2.1) is said to be
uniformly stable if for every ε > 0 there is a δ(ε) > 0, called the modulus of uniform
stability , such that if s ≥ 0 and d(u(s, ω0, x0), x) ≤ δ(ε) for certain x ∈ X, then for
each t ≥ 0,

d(u(t + s, ω0, x0), u(t, ω0·s, x)) = d(u(t, ω0·s, u(s, ω0, x0)), u(t, ω0·s, x)) ≤ ε .

A forward orbit {τ(t, ω0, x0) | t ≥ 0} of the skew-product semiflow (2.1) is said to be
uniformly asymptotically stable if it is uniformly stable and there is a δ0 > 0 with
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the following property: for each ε > 0 there is a t0(ε) > 0 such that if s ≥ 0 and
d(u(s, ω0, x0), x) ≤ δ0, then

d(u(t + s, ω0, x0), u(t, ω0·s, x)) ≤ ε for each t ≥ t0(ε) .

3. Stable D-operators. We consider the Fréchet space X = C((−∞, 0],Rm)
endowed with the compact-open topology, i.e., the topology of uniform convergence
over compact subsets, which is a metric space for the distance

d(x, y) =
∞∑

n=1

1

2n
‖x− y‖n

1 + ‖x− y‖n
, x, y ∈ X ,

where ‖x‖n = sups∈[−n,0] ‖x(s)‖ and ‖ · ‖ denotes the maximum norm on R
m.

Let BU ⊂ X be the Banach space

BU = {x ∈ X | x is bounded and uniformly continuous}

with the supremum norm ‖x‖∞ = sups∈(−∞,0] ‖x(s)‖. Given r > 0, we will denote

Br = {x ∈ BU | ‖x‖∞ ≤ r} .

As usual, given I = (−∞, a] ⊂ R, t ∈ I, and a continuous function x : I → R
m, xt

will denote the element of X defined by xt(s) = x(t + s) for s ∈ (−∞, 0].
This section is devoted to the study of general and stability properties of linear

autonomous operators D : BU → R
m, as well as the behavior of solutions of the

corresponding homogeneous equation Dxt = 0, t ≥ 0, and nonhomogeneous equations
Dxt = h(t), t ≥ 0, for h ∈ C([0,∞),Rm). We will assume the following:

(D1) D is linear and continuous for the norm.
(D2) For each r > 0, D : Br → R

m is continuous when we take the restriction of
the compact-open topology to Br; i.e., if xn

d→ x as n → ∞ with xn, x ∈ Br,
then limn→∞ Dxn = Dx.

(D3) D is atomic at 0 (see the definition in Hale [10] or Hale and Verduyn Lunel [12]).
From (D1) and (D2) we obtain the following representation.
Proposition 3.1. If D : BU → R

m satisfies (D1) and (D2), then for each
x ∈ BU

Dx =

∫ 0

−∞
[dμ(s)]x(s),

where μ = [μij ] and μij is a real regular Borel measure with finite total variation
|μij |(−∞, 0] < ∞ for all i, j ∈ {1, . . . ,m}.

Proof. From Riesz representation theorem we obtain the above relation for each
x whose components are of compact support. Moreover, if x ∈ BU , there are an
r > 0 and a sequence of functions of compact support {xn}n∈N ⊂ Br with ‖xn‖∞ ≤
‖x‖∞ such that xn

d→ x as n → ∞ and, from hypothesis (D2), limn→∞ Dxn = Dx.
However,

Dxn =

∫ 0

−∞
[dμ(s)]xn(s),

and the Lebesgue-dominated convergence theorem yields

lim
n→∞

Dxn =

∫ 0

−∞
[dμ(s)]x(s) ,

which finishes the proof.
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Since in addition D is atomic at 0, det[μij({0})] 
= 0, and without loss of gener-
ality, we may assume that

(3.1) Dx = x(0) −
∫ 0

−∞
[dν(s)]x(s),

where ν = [νij ]i,j∈{1,...,m}, νij is a real regular Borel measure with finite total vari-
ation, and |νij |({0}) = 0 for all i, j ∈ {1, . . . ,m}. We will denote by |ν|[−r, 0] the
m×m matrix [ |νij |[−r, 0] ] and by ‖ν‖∞[−r, 0] the corresponding matricial norm.

From now on, we will assume that the operator D satisfying (D1)–(D3) has the
form (3.1). First, it is easy to check the following result, whose proof is omitted.

Proposition 3.2. For all h ∈ C([0,∞),Rm) and ϕ ∈ BU with Dϕ = h(0), the
nonhomogeneous equation

(3.2)

{
Dxt = h(t) , t ≥ 0 ,

x0 = ϕ

has a solution defined for all t ≥ 0.
Next we obtain a bound for the solution in a finite interval [0, T ], in terms of the

initial data and the independent term h, which in particular implies the uniqueness
of the solution of (3.2).

Lemma 3.3. Given T > 0, there are positive constants k1
T , k2

T such that if x is a
solution of (3.2), then for each t ∈ [0, T ]

(3.3) ‖xt‖∞ ≤ k1
T sup

0≤u≤t
‖h(u)‖ + k2

T ‖ϕ‖∞ .

Proof. Since |νij |[−r, 0] → 0 as r → 0, for each i, j ∈ {1, . . . ,m}, there is an r > 0
such that ‖ν‖∞[−r, 0] < 1/2. Let x be a solution of (3.2). From (3.1),

x(t) = h(t) +

∫ 0

−t

[dν(s)]x(t + s) +

∫ −t

−∞
[dν(s)]ϕ(t + s)

for each t ≥ 0. Consequently, if t ∈ [0, r],

‖x(t)‖ ≤ ‖h(t)‖ +
1

2
sup

0≤u≤t
‖x(u)‖ + ‖ϕ‖∞‖ν‖∞(−∞, 0] ,

from which we deduce that if t ∈ [0, r],

(3.4) sup
0≤u≤t

‖x(u)‖ ≤ 2 sup
0≤u≤t

‖h(u)‖ + 2 a ‖ϕ‖∞ ,

where a = ‖ν‖∞(−∞, 0]. Next, let y(t) = x(t + r), which is a solution of{
Dyt = h(t + r) , t ≥ 0 ,

y0 = xr .

As above, we conclude that if t ∈ [0, r],

sup
0≤u≤t

‖y(u)‖ ≤ 2 sup
0≤u≤t

‖h(u + r)‖ + 2 a ‖xr‖∞ ,
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which together with ‖xr‖∞ ≤ ‖ϕ‖∞ + sup0≤u≤r ‖x(u)‖ and (3.4) yields

sup
0≤u≤t

‖x(u)‖ ≤ b sup
0≤u≤t

‖h(u)‖ + c ‖ϕ‖∞

for t ∈ [r, 2 r] and some positive constants b and c independent of h and ϕ. This way,
the result is obtained in a finite number of steps.

Following Hale [10], we introduce the concept of stability for the operator D.
Although the initial definition is given for the homogeneous equation, it is easy to
deduce quantitative estimates in terms of the initial data for the solution of a nonho-
mogeneous equation.

Definition 3.4. The linear operator D is said to be stable if there is a continuous
function c ∈ C([0,∞),R+) with lim t→∞ c(t) = 0 such that, for each ϕ ∈ BU with
Dϕ = 0, the solution of the homogeneous problem{

Dxt = 0 , t ≥ 0,

x0 = ϕ

satisfies ‖x(t)‖ ≤ c(t) ‖ϕ‖∞ for each t ≥ 0.
Proposition 3.5. Let us assume that D is stable. Then there is a positive

constant d > 0 such that, for each h ∈ C([0,∞),Rm) with h(0) = 0, the solution of{
Dxt = h(t) , t ≥ 0 ,

x0 = 0

satisfies ‖x(t)‖ ≤ d sup0≤u≤t ‖h(u)‖ for each t ≥ 0.
Proof. Let {e1, . . . , em} be the canonical basis of R

m. A proof similar to that of
Lemma 3.2 of Hale [10, sec. 12] shows that there are m functions φ1, . . . , φm ∈ BU
such that Dφj = ej for each j ∈ {1, . . . ,m}. We will denote by Φ the m×m matrix
function Φ = [φ1, . . . , φm] and by ‖Φ‖∞ the matricial norm corresponding to the norm
‖ · ‖∞ on BU .

Let c ∈ C([0,∞),Rm) be the function given in Definition 3.4. Assume that
c is decreasing and take T > 0 such that c(T ) < 1. From Lemma 3.3, ‖x(t)‖ ≤
k1
T sup 0≤u≤t ‖h(u)‖, provided that t ∈ [0, T ].

If t ≥ T , there is a j ∈ N such that t ∈ [j T, (j + 1)T ] and it is easy to check that
x(t) = x1(t− (j − 1)T ) + x2(t− (j − 1)T ), where x1 and x2 are the solutions of{

Dx1
t = 0 , t ≥ 0 ,

x1
0 = x(j−1)T − Φh((j − 1)T ) ,

{
Dx2

t = h(t + (j − 1)T ) , t ≥ 0 ,

x2
0 = Φh((j − 1)T ) ,

respectively. From the stability of D and Lemma 3.3, we deduce that

‖x(t)‖ ≤ c(t− (j − 1)T ) ‖x(j−1)T − Φh((j − 1)T )‖∞ + k2T sup
(j−1)T≤u≤t

‖h(u)‖ .

In addition, since t− (j − 1)T ≥ T and c is decreasing we conclude that

(3.5) ‖x(t)‖ ≤ c(T ) cj + (c(T ) ‖Φ‖∞ + k2T ) sup
0≤u≤t

‖h(u)‖ , t ∈ [j T, (j + 1)T ],

where cj = ‖xjT ‖∞ = sup0≤u≤jT ‖x(u)‖.
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Let aT = max{k1
T , c(T ) ‖Φ‖∞ + k2T }. We have c1 ≤ aT sup0≤u≤T ‖h(u)‖ and

from (3.5), if j ≥ 2,

cj ≤ max

{
cj−1, c(T ) cj−1 + aT sup

0≤u≤j T
‖h(u)‖

}
.

Hence, we check that for each j ≥ 2

cj ≤ aT
(
1 + c(T ) + · · · + c(T )j−1

)
sup

0≤u≤j T
‖h(u)‖ ,

and again from (3.5) we finally deduce that for t ≥ 0 (and hence t ∈ [j T, (j + 1)T ]
for some j ≥ 0)

‖x(t)‖ ≤ aT

j∑
k=0

c(T )k sup
0≤u≤t

‖h(u)‖ ≤ aT
1 − c(T )

sup
0≤u≤t

‖h(u)‖ ,

which finishes the proof.
Theorem 3.6. Let us assume that D is stable. Then there is a continuous

function c ∈ C([0,∞),R+) with lim t→∞ c(t) = 0 and a positive constant k > 0 such
that the solution of (3.2) satisfies

‖x(t)‖ ≤ c(t) ‖ϕ‖∞ + k sup
0≤u≤t

‖h(u)‖

for each t ≥ 0.
Proof. It is not hard to check that x(t) = x1(t) + x2(t), where x1 and x2 are the

solutions of{
Dx1

t = ψ(t)h(t) , t ≥ 0 ,

x1
0 = ϕ ,

{
Dx2

t = (1 − ψ(t))h(t) , t ≥ 0 ,

x2
0 = 0 ,

respectively, and

ψ : [0,∞) −→ R

t �→ ψ(t) =

{
1 − t, 0 ≤ t ≤ 1 ,

0 , 1 ≤ t .

Moreover, since y(t) = x1(t + 1) satisfies Dyt = 0, t ≥ 0, with y0 = x1
1, the result

follows from the application of Definition 3.4, Lemma 3.3, and Proposition 3.5 to y,
x1 on [0, 1], and x2, respectively.

The conclusions of Theorem 3.6 are essential in what follows. In particular, it
allows us to estimate the norm of a function x in terms of the norm of the func-
tion (−∞, 0] → R

m, s �→ Dxs.
Proposition 3.7. Let us assume that D is stable. Then there is a positive

constant k > 0 such that ‖xh‖∞ ≤ k ‖h‖∞ for all h ∈ BU and xh ∈ BU satisfying
Dxh

s = h(s) for s ≤ 0.
Proof. Let x(t) be the solution of{

Dxt = h(0) , t ≥ 0 ,

x0 = xh ,
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h̃(t) =

{
h(t) , t ≤ 0 ,

h(0) , t ≥ 0 ,

and for s ≤ 0 we define

ys(t) =

{
x(t + s) , t + s ≥ 0 ,

xh(t + s) , t + s ≤ 0 .

Then {
Dyst = h̃(t + s) , t ≥ 0 ,

ys0 = xh
s ,

and Theorem 3.6 yields

‖ys(t)‖ ≤ c(t) ‖xh
s‖∞ + k sup

0≤u≤t
‖h̃(u + s)‖∞ ≤ c(t) ‖xh‖∞ + k ‖h‖∞

for all t ≥ 0 and s ≤ 0. Hence, ‖xh(s)‖ = ‖ys−t(t)‖ ≤ c(t) ‖xh‖∞ + k ‖h‖∞, and as
t → ∞ we prove the result.

Let D be stable and given by (3.1). We define the linear operator

(3.6)

D̂ : BU −→ BU

x �→ D̂x : (−∞, 0] → R
m

s �→ Dxs ,

that is, D̂x(s) = x(s) −
∫ 0

−∞[dν(θ)]x(θ + s) for each s ∈ (−∞, 0], which is well

defined, i.e., h = D̂x ∈ BU , provided that x ∈ BU because D is bounded and
h(s + τ) − h(s) = D (xs+τ − xs) for all τ , s ≤ 0. Moreover, it is easy to check that

D̂ is bounded for the norm and uniformly continuous when we take the restriction
of the compact-open topology to Br; i.e., given ε > 0 there is a δ(r) > 0 such that

d(D̂x1, D̂x2) < ε for all x1, x2 ∈ Br with d(x1, x2) < δ(r). The next result shows,

after proving that D̂ is invertible, that the same happens for D̂−1.
Theorem 3.8. Let us assume that D is stable. Then D̂ is invertible, and D̂−1

is bounded for the norm and uniformly continuous when we take the restriction of
the compact-open topology to Br; i.e., given ε > 0 there is a δ(r) > 0 such that

d(D̂−1h1, D̂
−1h2) < ε for all h1, h2 ∈ Br with d(h1, h2) < δ(r).

Proof. D̂ is injective because from Proposition 3.7 the only solution of Dxs = 0
for s ≤ 0 is x = 0. To show that D̂ is onto, let h ∈ BU and {hn}n∈N ⊂ Br, for
some r > 0, be a sequence of continuous functions whose components are of compact
support such that hn

d→ h as n ↑ ∞. Moreover, it is easy to choose them with the
same modulus of uniform continuity as h. It is not hard to check that for each
n ∈ N there is an xn ∈ BU such that D̂xn = hn, that is, Dxn

s = hn(s) for s ≤ 0
and n ∈ N. From Proposition 3.7, xn ∈ Bkr because ‖xn‖∞ ≤ k ‖hn‖∞ ≤ k r and
‖xn−xn

τ ‖∞ ≤ k ‖hn−(hn)τ‖∞ for each τ ≤ 0 and n ∈ N, which implies that {xn}n∈N is
equicontinuous, and hence relatively compact for the compact-open topology. Hence,
there is a convergent subsequence, let us assume the whole sequence; i.e., there is a
continuous function x such that xn d→ x as n ↑ ∞. From this, xn

s
d→ xs for each s ≤ 0

and (3.1) yields Dxn
s = hn(s) → Dxs, i.e., Dxs = h(s) for s ≤ 0 and D̂x = h. It is

immediate to check that x ∈ BU and then D̂ is onto, as claimed.
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Since D̂ is linear, bounded for the norm, and bijective, the continuity of D̂−1 for
the norm is immediate. However, it also follows from Proposition 3.7 which reads as
‖D̂−1h‖∞ ≤ k ‖h‖∞. Finally, since D̂−1 is linear, to check the uniform continuity

for the metric on each Br, it is enough to prove the continuity at 0, i.e., D̂−1xn
d→ 0

as n ↑ ∞, whenever xn
d→ 0 as n ↑ ∞ and {xn}n∈N ⊂ Br. Let yn = D̂−1xn ∈ Bkr. We

extend the definition of yn to t ≥ 0 as the solution of{
Dynt = xn(0) , t ≥ 0 ,

yn0 = yn .

The stability of D provides

(3.7) ‖yn(t + s)‖ ≤ c(t) ‖yn‖∞ + k sup
s≤u≤0

‖xn(u)‖

for all t ≥ 0 and s ≤ 0. Now we check that {yn}n∈N converges uniformly to 0 on each
compact set K = [−a, 0]. Given ε > 0, there is a t0 > 0 such that c(t0) ‖yn‖∞ < ε/2

for each n ∈ N. Moreover, xn → 0 in K̃ = [−a− t0, 0], and hence there is an n0 such
that for each n ≥ n0 we have k ‖xn‖K̃ < ε/2. Therefore, from (3.7) we deduce that
for all u ∈ K = [−a, 0] and n ≥ n0,

‖yn(u)‖ = ‖yn(t0 + u− t0)‖ <
ε

2
+

ε

2
= ε ,

that is, ‖yn‖K < ε, and D̂−1xn = yn
d→ 0 as n ↑ ∞, which finishes the proof.

A more systematic study of the properties of the linear operator D̂ defined in (3.6)
can be found in Staffans [25]. The next result provides a necessary and sufficient

condition for a continuous operator D to be stable. In particular, if D̂ is invertible
and D̂−1 is continuous for the restriction of the compact-open topology to Br, then
D is stable.

Theorem 3.9. Let D : BU → R
m be given by (3.1) and let D̂ be the linear

operator in BU defined in (3.6). The following statements are equivalent:
(i) D is stable.
(ii) For each r > 0 and each sequence {xn}n∈N in BU such that ‖D̂xn‖∞ ≤ r

and D̂xn
d→ 0 as n ↑ ∞, xn(0) → 0 as n ↑ ∞.

Proof. (i) ⇒ (ii) is a consequence of Theorem 3.8.
(ii) ⇒ (i) For each T > 0 we define LT : {ϕ ∈ BU | Dϕ = 0} → R

m, ϕ �→ x(T ),
where x is the solution of {

Dxt = 0 , t ≥ 0 ,

x0 = ϕ .

It is easy to check that LT is well defined and linear. In addition, from (3.3) we
deduce that ‖LT (ϕ)‖ ≤ ‖xT ‖∞ ≤ k2

T ‖ϕ‖∞, and hence it is bounded.
Next we check that ‖LT ‖∞ → 0 as T → ∞, which shows the stability of D

because ‖x(T )‖ ≤ c(T ) ‖ϕ‖∞ for c(T ) = ‖LT ‖∞. Let us assume, on the contrary,
that there exist δ > 0, a sequence Tn ↑ ∞, and a sequence {ϕn}n∈N with ‖ϕn‖∞ ≤ 1
and Dϕn = 0 such that ‖LTn(ϕn)‖ ≥ δ for each n ∈ N. That is, ‖xn(Tn)‖ ≥ δ, where
xn is the solution of {

Dxn
t = 0 , t ≥ 0 ,

xn
0 = ϕn .
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Therefore, {
D((xn

Tn
)s) = D(xn

Tn+s) = 0 if s ∈ [−Tn, 0] ,

D((xn
Tn

)s) = D((ϕn)Tn+s) if s ≤ −Tn ,

and taking r = ‖D‖∞, the sequence {xn
Tn

}n∈N ⊂ BU satisfies ‖D̂xn‖∞ ≤ r and

D̂xn
Tn

d→ 0 as n ↑ ∞. Consequently, xn
Tn

(0) = xn(Tn) → 0 as n ↑ ∞, which contradicts
the fact that ‖xn(Tn)‖ ≥ δ and finishes the proof.

Proposition 3.10. Let D : BU → R
m be a stable operator given by (3.1) and

let D̂ be the linear operator in BU defined in (3.6). Then

D∗ : BU −→ R
m

x �→ D̂−1x(0)

is also stable and satisfies (D1)–(D3).
Proof. From Theorem 3.8, we deduce that D∗ satisfies (D1)–(D2). Hence as in

Proposition 3.1, there is a real regular Borel measure μ∗ with finite total variation

such that D∗x =
∫ 0

−∞[dμ∗(s)]x(s) for each x ∈ BU . We can write μ∗ = Aδ − ν∗

with A = [μ∗
ij({0})]. We claim that D∗ is atomic at 0, i.e., detA 
= 0. Assume, on

the contrary, that detA = 0 and let v ∈ R
m be a unitary vector with Av = 0. For

each ε > 0 we take ϕε : (−∞, 0] → R with ‖ϕε‖∞ = ϕε(0) = 1 and ϕε(s) = 0 for
each s ∈ (−∞,−ε]. Let x ε ∈ BU be defined by x ε(s) = ϕε(s) v. The continuity of

D̂ yields

(3.8) 1 = ‖x ε‖∞ ≤ c ‖D̂−1x ε‖∞ .

However, for each s ∈ (−∞, 0]

D̂−1x ε(s) = D∗x ε
s = ϕε(s)Av −

∫ 0

−∞
[dν∗(θ)]ϕε(θ + s) v

and, consequently, ‖D̂−1x ε‖∞ ≤ ‖ν∗‖∞(−ε, 0], which tends to 0 as ε → 0, contra-
dicts (3.8) and shows that D∗ is atomic at 0. Finally, D∗ is stable as a consequence
of Theorem 3.9. Notice that μ∗ is the inverse of the measure μ for the convolution
defining the operator D̂.

4. Monotone NFDEs. Throughout this section, we will study the monotone
skew-product semiflow generated by a family of NFDEs with infinite delay and stable
D-operator. In particular, we establish the 1-covering property of omega-limit sets
under the componentwise separating property and uniform stability, as in Jiang and
Zhao [17] for FDEs with finite delay, and Novo, Obaya, and Sanz [20] for infinite
delay. The main tool in the proof of the result is the transformation of the initial
family of NFDEs into a family of FDEs with infinite delay in whose study the results
of Novo et al. [20] turn out to be useful.

Let (Ω, σ,R) be a minimal flow over a compact metric space (Ω, d) and denote
σ(t, ω) = ω·t for all ω ∈ Ω and t ∈ R. In R

m, we take the maximum norm ‖v‖ =
maxj=1,...,m |vj | and the usual partial order relation

v ≤ w ⇐⇒ vj ≤ wj for j = 1, . . . ,m ,

v < w ⇐⇒ v ≤ w and vj < wj for some j ∈ {1, . . . ,m} .
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As in section 3, we consider the Fréchet space X = C((−∞, 0],Rm) endowed with the
compact-open topology, i.e., the topology of uniform convergence over compact sub-
sets, and BU ⊂ X the Banach space of bounded and uniformly continuous functions
with the supremum norm ‖x‖∞ = sups∈(−∞,0] ‖x(s)‖.

Let D : BU → R
m be an autonomous and stable linear operator satisfying hy-

potheses (D1)–(D3) and given by relation (3.1). The subset

BU+
D = {x ∈ BU | Dxs ≥ 0 for each s ∈ (−∞, 0]}

is a positive cone in BU , because it is a nonempty closed subset BU+
D ⊂ BU satisfying

BU+
D + BU+

D ⊂ BU+
D , R

+BU+
D ⊂ BU+

D , and BU+
D ∩ (−BU+

D ) = {0}. As usual, a
partial order relation on BU is induced, given by

x ≤D y ⇐⇒ Dxs ≤ Dys for each s ∈ (−∞, 0] ,

x <D y ⇐⇒ x ≤D y and x 
= y .

Remark 4.1. Notice that if we denote the usual partial order of BU

x ≤ y ⇐⇒ x(s) ≤ y(s) for each s ∈ (−∞, 0] ,

we have that x ≤D y if and only if D̂ x ≤ D̂ y, where D̂ is defined by relation (3.6).
Although in some cases they may coincide, this new order is different from the one
given by Wu and Freedman in [28].

We consider the family of nonautonomous NFDEs with infinite delay and stable
D-operator

(4.1)ω
d

dt
Dzt = F (ω·t, zt) , t ≥ 0 , ω ∈ Ω ,

defined by a function F : Ω × BU → R
m, (ω, x) �→ F (ω, x) satisfying the following

conditions:
(F1) F is continuous on Ω ×BU and locally Lipschitz in x for the norm ‖ · ‖∞.
(F2) For each r > 0, F (Ω ×Br) is a bounded subset of R

m.
(F3) For each r > 0, F : Ω ×Br → R

m is continuous when we take the restriction
of the compact-open topology to Br; i.e., if ωn → ω and xn

d→ x as n → ∞
with x ∈ Br, then limn→∞ F (ωn, xn) = F (ω, x).

(F4) If x, y ∈ BU with x ≤D y and Dj x = Dj y holds for some j ∈ {1, . . . ,m},
then Fj(ω, x) ≤ Fj(ω, y) for each ω ∈ Ω.

From hypothesis (F1), the standard theory of NFDEs with infinite delay (see Wang
and Wu [26] and Wu [27]) assures that for each x ∈ BU and each ω ∈ Ω the
system (4.1)ω locally admits a unique solution z(t, ω, x) with initial value x, i.e.,
z(s, ω, x) = x(s) for each s ∈ (−∞, 0]. Therefore, the family (4.1)ω induces a local
skew-product semiflow

(4.2)
τ : R

+ × Ω ×BU −→ Ω ×BU

(t, ω, x) �→ (ω·t, u(t, ω, x)) ,

where u(t, ω, x) ∈ BU and u(t, ω, x)(s) = z(t + s, ω, x) for s ∈ (−∞, 0].

As proved in Theorem 3.8, the operator D̂ defined by relation (3.6) is an isomor-

phism of BU . Hence, the change of variable y = D̂z takes (4.1)ω to

(4.3)ω y′(t) = G(ω·t, yt) , t ≥ 0 , ω ∈ Ω ,
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with G : Ω × BU → R
m, (ω, x) �→ G(ω, x) = F (ω, D̂−1x) satisfying the following

conditions:
(H1) G is continuous on Ω ×BU and locally Lipschitz in x for the norm ‖ · ‖∞.
(H2) For each r > 0, G(Ω ×Br) is a bounded subset of R

m.
(H3) For each r > 0, G : Ω ×Br → R

m is continuous when we take the restriction
of the compact-open topology to Br, i.e., if ωn → ω and xn

d→ x as n → ∞
with x ∈ Br, then limn→∞ G(ωn, xn) = G(ω, x).

(H4) If x, y ∈ BU with x ≤ y and xj(0) = yj(0) holds for some j ∈ {1, . . . ,m},
then Gj(ω, x) ≤ Gj(ω, y) for each ω ∈ Ω.

From hypothesis (H1), the standard theory of infinite delay FDEs (see Hino, Mu-
rakami, and Naiko [13]) assures that for each x ∈ BU and each ω ∈ Ω the system (4.3)ω
locally admits a unique solution y(t, ω, x) with initial value x, i.e., y(s, ω, x) = x(s)
for each s ∈ (−∞, 0]. Therefore, the new family (4.3)ω induces a local skew-product
semiflow

(4.4)
τ̂ : R

+ × Ω ×BU −→ Ω ×BU

(t, ω, x) �→ (ω·t, û(t, ω, x)) ,

where û(t, ω, x) ∈ BU and û(t, ω, x)(s) = y(t + s, ω, x) for s ∈ (−∞, 0], and it is
related to the previous one, (4.2), by

(4.5) û(t, ω, x) = D̂ u(t, ω, D̂−1 x) .

As a consequence, most of the results obtained in Novo et al. [20] for the skew-
product semiflow (4.4) can now be translated to (4.2).

From hypotheses (F1) and (F2), each bounded solution z(t, ω0, x0) provides a
relatively compact trajectory, as deduced from Proposition 4.1 of Novo et al. [20].

Proposition 4.2. Let z(t, ω0, x0) be a bounded solution of (4.1)ω0
, that is, r =

supt∈R ‖z(t, ω0, x0)‖ < ∞. Then closureX{u(t, ω0, x0) | t ≥ 0} is a compact subset of
BU for the compact-open topology.

From hypotheses (F1), (F2), and (F3) and Proposition 4.2 and Corollary 4.3 of
Novo et al. [20] for the skew-product semiflow (4.4), we can deduce the continuity
of the semiflow (4.2) restricted to some compact subsets K ⊂ Ω × BU when the
compact-open topology is considered on BU .

Proposition 4.3. Let K ⊂ Ω × BU be a compact set for the product metric
topology and assume that there is an r > 0 such that τt(K) ⊂ Ω × Br for all t ≥ 0.
Then the map

τ : R
+ ×K −→ Ω ×BU

(t, ω, x) �→ (ω·t, u(t, ω, x))

is continuous when the product metric topology is considered.
From Proposition 4.2, when z(t, ω0, x0) is bounded we can define the omega-limit

set of the trajectory of the point (ω0, x0) as

O(ω0, x0) = {(ω, x) ∈ Ω ×BU | ∃ tn ↑ ∞ with ω0·tn → ω , u(tn, ω0, x0)
d→ x} .

Notice that the omega-limit set of a pair (ω0, x0) ∈ Ω × BU makes sense when-
ever closureX{u(t, ω0, x0) | t ≥ 0} is a compact set, because then {u(t, ω0, x0)(0) =
z(t, ω0, x0) | t ≥ 0} is a bounded set. Proposition 4.3 implies that the restriction
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of the semiflow (4.2) to O(ω0, x0) is continuous for the compact-open topology. The
following result is a consequence of Proposition 4.4 of Novo et al. [20].

Proposition 4.4. Let (ω0, x0) ∈ Ω × BU be such that supt≥0 ‖z(t, ω0, x0)‖ <
∞. Then K = O(ω0, x0) is a positively invariant compact subset admitting a flow
extension.

From hypothesis (F4), the monotone character of the semiflow (4.2) is deduced.
Proposition 4.5. For all ω ∈ Ω and x, y ∈ BU such that x ≤D y it holds that

u(t, ω, x) ≤D u(t, ω, y)

whenever they are defined.
Proof. From x ≤D y we know that D̂ x ≤ D̂ y, and since (F4) ⇒ (H4), from

Proposition 4.5 of Novo et al. [20] we deduce that û(t, ω, D̂ x) ≤ û(t, ω, D̂ y) whenever
they are defined, that is,

u(t, ω, x) = D̂−1 û(t, ω, D̂ x) ≤D D̂−1û(t, ω, D̂ y) = u(t, ω, y) ,

as stated.
We establish the 1-covering property of omega-limit sets when in addition to

hypotheses (F1)–(F4) the componentwise separating property and uniform stability
are assumed:

(F5) If x, y ∈ BU with x ≤D y and Di x < Di y holds for some i ∈ {1, . . . ,m},
then Di zt(ω, x) < Di zt(ω, y) for all t ≥ 0 and ω ∈ Ω.

(F6) There is an r > 0 such that all the trajectories with initial data in D̂−1Br

are uniformly stable in D̂−1Br′ for each r′ > r, and relatively compact for
the product metric topology.

From relation (4.5) we deduce that the transformed skew-product semiflow (4.4) sat-
isfies the following:

(H5) If x, z ∈ BU with x ≤ z and xi(0) < zi(0) holds for some i ∈ {1, . . . ,m},
then yi(t, ω, x) < yi(t, ω, z) for all t ≥ 0 and ω ∈ Ω.

(H6) There is an r > 0 such that all the trajectories with initial data in Br are
uniformly stable in Br′ for each r′ > r, and relatively compact for the product
metric topology.

Finally, from Theorem 5.3 of Novo et al. [20] applied to the skew-product semi-
flow (4.4) satisfying hypotheses (H1)–(H6), we obtain the next result for NFDEs
with infinite delay.

Theorem 4.6. Assume that hypotheses (F1)–(F6) hold and let (ω0, x0) ∈ Ω ×
D̂−1Br be such that K = O(ω0, x0) ⊂ Ω × D̂−1Br. Then K = {(ω, c(ω)) | ω ∈ Ω} is
a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous equilibrium, i.e., c(ω·t) = u(t, ω, c(ω)) for any
ω ∈ Ω, t ≥ 0, and it is continuous for the compact-open topology on BU .

Remark 4.7. It is easy to check that it is enough to ask for property (F5) (and for
(H5) in the case of FDEs with infinite delay) for initial data in BU whose trajectories
are globally defined on R.

5. Compartmental systems. We consider compartmental models for the math-
ematical description of processes in which the transport of material between compart-
ments takes a nonnegligible length of time, and each compartment produces or swal-
lows material. We provide a nonautonomous version, without strong monotonicity
assumptions, of previous autonomous results by Wu and Freedman [28] and Wu [26].
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First, we introduce the model with which we are going to deal as well as some no-
tation. Let us suppose that we have a system formed by m compartments C1, . . . , Cm.
Denote by C0 the environment surrounding the system, and by zi(t) the amount of
material within compartment Ci at time t for each i ∈ {1, . . . ,m}. Material flows
from compartment Cj into compartment Ci through a pipe Pij having a transit time
distribution given by a positive regular Borel measure μij with finite total variation
μij(−∞, 0] = 1 for each i, j ∈ {1, . . . ,m}. Let g̃ij : R × R → R be the so-called
transport function determining the volume of material flowing from Cj to Ci given
in terms of the time t and the value of zj(t) for i ∈ {0, . . . ,m}, j ∈ {1, . . . ,m}. For

each i ∈ {1, . . . ,m}, we will assume that there exists an incoming flow of material Ĩi
from the environment into compartment Ci which depends only on time. For each
i ∈ {1, . . . ,m}, at time time t ≥ 0, the compartment Ci produces material itself at

a rate
∑m

j=1

∫ 0

−∞ z′j(t + s) dνij(s), where νij is a positive regular Borel measure with
finite total variation νij(−∞, 0] < ∞ and νij({0}) = 0 for all i, j ∈ {1, . . . ,m}.

Once the destruction and creation of material is taken into account, the change
of the amount of material of any compartment Ci, 1 ≤ i ≤ m, equals the difference
between the amount of total influx into and total outflux out of Ci, and we obtain a
model governed by the following system of infinite delay NFDEs:

(5.1)
d

dt

⎡
⎣zi(t) − m∑

j=1

∫ 0

−∞
zj(t + s) dνij(s)

⎤
⎦ = −g̃0i(t, zi(t)) −

m∑
j=1

g̃ji(t, zi(t))

+

m∑
j=1

∫ 0

−∞
g̃ij(t + s, zj(t + s)) dμij(s) + Ĩi(t),

i = 1, . . . ,m. For simplicity, we denote g̃i0 : R × R → R
+, (t, v) �→ Ĩi(t) for i ∈

{1, . . . ,m} and let g̃ = (g̃ij)i,j : R × R → R
m(m+2). We will assume that

(C1) g̃ is C1-admissible, i.e., g̃ is C1 in its second variable and g̃, ∂
∂v g̃ are uniformly

continuous and bounded on R × {v0} for all v0 ∈ R; all its components are
monotone in the second variable, and g̃ij(t, 0) = 0 for each t ∈ R;

(C2) g̃ is a recurrent function, i.e., its hull is minimal;

(C3) μij(−∞, 0] = 1 and
∫ 0

−∞ |s| dμij(s) < ∞;

(C4) νij({0}) = 0 and
∑m

j=1 νij(−∞, 0] < 1, which implies that the operator

D : BU → R
m, with Di x = xi(0) −

∑m
j=1

∫ 0

−∞ xj(s) dνij(s), i = 1, . . . ,m, is
stable and satisfies (D1)–(D3);

(C5) the measures dηij = cij dμij −
∑m

k=0 dki dνij are positive, where

cij = inf
(t, v)∈R2

∂g̃ij
∂v

(t, v) and dij = sup
(t, v)∈R2

∂g̃ij
∂v

(t, v) .

In practical cases, in which the solutions with physical interest belong to the
positive cone and the functions gij are only defined on R × R

+, we can extend them
to R × R by gij(t,−v) = −gij(t, v) for all v ∈ R

+. Note that (C5) is a condition
for controlling the material produced in the compartments in terms of the material
transported through the pipes.

The above formulation includes some particularly interesting cases. When the
measures νij and μij are concentrated on a compact set, then (5.1) is an NFDE with
finite delay. When the measures νij ≡ 0, then (5.1) is a family of FDEs with finite or
infinite delay.
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As usual, we include the nonautonomous system (5.1) in a family of nonau-
tonomous NFDEs with infinite delay and stable D-operator of the form (4.1)ω as
follows.

Let Ω be the hull of g̃, namely, the closure of the set of mappings {g̃t | t ∈ R}, with
g̃t(s, v) = g̃(t+s, v), (s, v) ∈ R

2, with the topology of uniform convergence on compact
sets, which from (C1) is a compact metric space (more precisely from the admissibility
of g̃; see Hino et al. [13]). Let (Ω, σ,R) be the continuous flow defined on Ω by
translation, σ : R × Ω → Ω, (t, ω) �→ ω·t, with ω·t(s, v) = ω(t + s, v). By hypothesis
(C2), the flow (Ω, σ,R) is minimal. In addition, if g̃ is almost periodic (resp., almost
automorphic) the flow will be almost periodic (resp., almost automorphic). Notice
that these two cases are included in our formulation.

Let g : Ω × R → R
m(m+2), (ω, v) �→ ω(0, v), continuous on Ω × R and denote

g = (gij)i,j . It is easy to check that, for all ω = (ωij)i,j ∈ Ω and all i ∈ {1, . . . ,m},
ωi0 is a function dependent only on t; thus, we can define Ii = ωi0, i ∈ {1, . . . ,m}.
Let F : Ω ×BU → R

m be the map defined by

Fi(ω, x) = −g0i(ω, xi(0)) −
m∑
j=1

gji(ω, xi(0)) +

m∑
j=1

∫ 0

−∞
gij(ω·s, xj(s)) dμij(s) + Ii(ω)

for (ω, x) ∈ Ω ×BU and i ∈ {1, . . . ,m}. Hence, the family

(5.2)ω
d

dt
Dzt = F (ω·t, zt) , t ≥ 0 , ω ∈ Ω ,

where the stable operator D is defined in (C4) and satisfies (D1)–(D3), includes
system (5.1) when ω = g̃.

It is easy to check that this family satisfies hypotheses (F1)–(F3). The following
lemma will be useful when proving (F4) and (F5). We omit its proof, which is analo-
gous to the one given in Wu and Freedman [28] for the autonomous case with finite
delay.

Lemma 5.1. For all ω ∈ Ω, x, y ∈ BU with x ≤D y, and i = 1, . . . ,m

(5.3) Fi(ω, y) − Fi(ω, x) ≥ −
m∑
j=0

dji [Diy −Dix] +

m∑
j=1

∫ 0

−∞
(yj(s) − xj(s)) dηij(s),

where the measures ηij are defined in (C5).
Condition (C5) is essential to proving the monotone character of the semiflow. It

can be improved in some cases (see Arino and Bourad [1] for the scalar case).
Proposition 5.2. Under assumptions (C1)–(C5), the family (5.2)ω satisfies

hypotheses (F4), (F5) and Ω ×BU+
D is positively invariant.

Proof. Let x, y ∈ BU with x ≤D y and Di x = Di y for some i ∈ {1, . . . ,m}. From
(C4), apart from the stability of the operator D, it is easy to prove that the inverse

operator of D̂ defined by (3.6) is positive. Hence, from x ≤D y, that is, D̂ x ≤ D̂ y,
we also deduce that x ≤ y, which, together with Di x = Di y, relation (5.3), and
hypothesis (C5), yields Fi(ω, y) ≥ Fi(ω, x), that is, hypothesis (F4) holds.

Next, we check hypothesis (F5). Let x, y ∈ BU with x ≤D y and Di x < Di y for
some i ∈ {1, . . . ,m}. Since (F4) holds, from Proposition 4.5 u(t, ω, x) ≤D u(t, ω, y)
and, as before, we deduce in this case that u(t, ω, x) ≤ u(t, ω, y), i.e., zt(ω, x) ≤
zt(ω, y) for all t ≥ 0 and ω ∈ Ω. Let h(t) = Dizt(ω, y) −Dizt(ω, x). From (5.2)ω and
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Lemma 5.1

h′(t) = Fi(ω·t, zt(ω, y)) − Fi(ω·t, zt(ω, x))

≥−
m∑
j=0

djih(t) +

m∑
j=1

∫ 0

−∞
(zj(t + s, ω, y) − zj(t + s, ω, x)) dηij(s) ,

and again from hypothesis (C5) we deduce that h′(t) ≥ −dh(t) for some d ≥ 0, which
together with h(0) > 0 yields h(t) = Dizt(ω, y) − Dizt(ω, x) > 0 for each t ≥ 0
and (F5) holds. Finally, since Ii(ω) ≥ 0 for each ω ∈ Ω and i ∈ {1, . . . ,m}, and
the semiflow is monotone, a comparison argument shows that Ω ×BU+

D is positively
invariant, as stated.

Next we will study some cases in which hypothesis (F6) is satisfied. In order to
do this, we define M : Ω ×BU → R, the total mass of the system (5.2)ω, as

(5.4) M(ω, x) =

m∑
i=1

Dix +

m∑
i=1

m∑
j=1

∫ 0

−∞

(∫ 0

s

gji(ω·τ, xi(τ)) dτ

)
dμji(s)

for all ω ∈ Ω and x ∈ BU , which is well defined from condition (C3). The next result
shows the continuity properties of M and its variation along the flow.

Proposition 5.3. The total mass M is a continuous function on all the sets of
the form Ω×Br with r > 0 for the product metric topology. Moreover, for each t ≥ 0

(5.5)
d

dt
M(τt(ω, x)) =

m∑
i=1

[Ii(ω·t) − g0i(ω·t, zi(t, ω, x))] .

Proof. The continuity follows from (D2), (C1), and (C3). A straightforward
computation similar to that given in Wu and Freedman [28] shows that

(5.6) M(ω·t, zt(ω, x)) = M(ω, x) +

m∑
i=1

∫ t

0

[Ii(ω·s) − g0i(ω·s, zi(s, ω, x))] ds ,

from which (5.5) is deduced.
The following lemma is essential in the proof of the stability of solutions.
Lemma 5.4. Let x, y ∈ BU with x ≤D y. Then

0 ≤ Dizt(ω, y) −Dizt(ω, x) ≤ M(ω, y) −M(ω, x)

for each i = 1, . . . ,m and whenever z(t, ω, x) and z(t, ω, y) are defined.
Proof. From Propositions 5.2 and 4.5 the skew-product semiflow induced by (5.2)ω

is monotone. Hence, if x ≤D y, then u(t, ω, x) ≤D u(t, ω, y) whenever they are

defined. From this, as before, since D̂−1 is positive we also deduce that x ≤ y and
u(t, ω, x) ≤ u(t, ω, y). Therefore, Dizt(ω, x) ≤ Dizt(ω, y) and zi(t, ω, x) ≤ zj(t, ω, y)
for each i = 1, . . . ,m. In addition, the monotonicity of transport functions yields
gij(ω, zj(t, ω, x)) ≤ gij(ω, zj(t, ω, y)) for each ω ∈ Ω. From all these inequalities and
(5.4) and (5.6) we deduce that

0 ≤ Dizt(ω, y) −Dizt(ω, x) ≤
m∑
i=1

[Dizt(ω, y) −Dizt(ω, x)]

≤ M(ω·t, zt(ω, y)) −M(ω·t, zt(ω, x)) ≤ M(ω, y) −M(ω, x) ,

as stated.
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Proposition 5.5. Fix r > 0. Then given ε > 0 there exists δ > 0 such that if x,
y ∈ Br with d(x, y) < δ, then ‖z(t, ω, x) − z(t, ω, y)‖ ≤ ε whenever they are defined.

Proof. Let c = maxi

∑m
j=1 νij(−∞, 0] < 1. From the continuity of M , given

ε0 = ε (1 − c) > 0 there exists 0 < δ < ε0, such that if x, y ∈ Br with d(x, y) < δ,
then |M(ω, y)−M(ω, x)| < ε0. Therefore, if x, y ∈ Br and x ≤D y, from Lemma 5.4
we deduce that 0 ≤ Dizt(ω, y)−Dizt(ω, x) < ε0 whenever d(x, y) < δ. The definition
of Di yields

0 ≤ zi(t, ω, y) − zi(t, ω, x) < ε0 +

m∑
j=1

∫ 0

−∞
[zj(t + s, ω, y) − zj(t + s, ω, x)] dνij(s)

≤ ε0 + ‖zt(ω, y) − zt(ω, x)‖∞
m∑
j=1

νij(−∞, 0] ,

from which we deduce that ‖zt(ω, y) − zt(ω, x)‖∞(1 − c) < ε0 = ε(1 − c), that is,
‖z(t, ω, x)− z(t, ω, y)‖ ≤ ε whenever they are defined. The case in which x and y are
not ordered follows easily from this one.

As a consequence, from the existence of a bounded solution for one of the systems
of the family, the boundedness of all solutions is inferred, and this is the case in which
hypothesis (F6) holds.

Theorem 5.6. Under assumptions (C1)–(C5), if there exists ω0 ∈ Ω such that
(5.2)ω0 has a bounded solution, then all solutions of (5.2)ω are bounded as well, hy-
pothesis (F6) holds, and all omega-limit sets are copies of the base.

Proof. The boundedness of all solutions is an easy consequence of the previous
proposition and the continuity of the semiflow. Let (ω, x) ∈ Ω ×BU and r′ > 0 such
that zt(ω, x) ∈ Br′ for all t ≥ 0. Then also from Proposition 5.5, we deduce that
given ε > 0 there exists a δ > 0 such that

‖z(t + s, ω, x) − z(t, ω·s, y)‖ = ‖z(t, ω·s, zs(ω, x)) − z(t, ω·s, y)‖ < ε

for all t ≥ 0 whenever y ∈ Br′ and d(zs(ω, x), y) < δ, which shows the uniform
stability of the trajectories in Br′ for each r′ > 0. Moreover, for each r > 0 there is
an r′ > 0 such that D̂−1Br ⊂ Br′ . Hence, hypothesis (F6) holds for all r > 0 and
Theorem 4.6 applies for all initial data, which finishes the proof.

Concerning the solutions of the original compartmental system, we obtain the
following result providing a nontrivial generalization of the autonomous case, in which
the asymptotical constancy of the solutions was shown (see Wu and Freedman [28]).
Although the theorem is stated in the almost periodic case, similar conclusions are
obtained changing almost periodic to periodic, almost automorphic, or recurrent, that
is, all solutions are asymptotically of the same type as the transport functions.

Theorem 5.7. Under assumptions (C1)–(C5) and in the almost periodic case, if
there is a bounded solution of (5.1), then there is at least an almost periodic solution
and all the solutions are asymptotically almost periodic. For closed systems, i.e.,
Ĩi ≡ 0 and g̃0i ≡ 0 for each i = 1, . . . ,m, there are infinitely many almost periodic
solutions and the rest of them are asymptotically almost periodic.

Proof. The first statement is an easy consequence of the previous theorem. Let
ω0 = g̃. The omega-limit of each solution z(t, ω0, x0) is a copy of the base O(ω0, x0) =
{(ω, x(ω)) | ω ∈ Ω}, and hence z(t, ω0, x(ω0)) = x(ω0·t)(0) is an almost periodic
solution of (5.1) and

lim
t→∞

‖z(t, ω0, x0) − z(t, ω0, x(ω0))‖ = 0 .
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The statement for closed systems follows in addition from (5.6), which implies that
the mass is constant along the trajectories. Hence, there are infinitely many minimal
subsets because from the definition of the mass and (C4), given c > 0 there is an
(ω0, x0) ∈ Ω×BU+

D such that M(ω0, x0) = c and hence M(ω, x) = c for each (ω, x) ∈
O(ω0, x0).

6. Long-term behavior of compartmental systems. This section deals with
the long-term behavior of the amount of material within the compartments of the com-
partmental system (5.1) satisfying hypotheses (C1)–(C5). As in the previous section,
the study of the minimal sets for the corresponding skew-product semiflow (4.2) in-
duced by the family (5.2)ω will be essential. In addition to hypotheses (C1)–(C5) we
will assume the following hypothesis:

(C6) Given i ∈ {0, . . . ,m} and j ∈ {1, . . . ,m} either g̃ij ≡ 0 on R × R
+ (and

hence gij ≡ 0 on Ω × R
+), i.e., there is not a pipe from compartment Cj to

compartment Ci, or for each v > 0 there is a δv > 0 such that g̃ij(t, v) ≥ δv
for all t ∈ R (and hence gij(ω, v) > 0 for all ω ∈ Ω and v > 0). In this case
we will say that the pipe Pij carries material (or that there is a pipe from
compartment Cj to compartment Ci).

Let I = {1, . . . ,m}. P(I) denotes, as usual, the set of all subsets of I.
Definition 6.1. Let ζ : P(I) → P(I), J �→ ∪j∈J{i ∈ I | Pij carries material}.

A subset J of I is said to be irreducible if ζ(J) ⊂ J and no proper subset of J has
that property. System (5.1) is irreducible if the whole set I is irreducible.

Note that ζ(I) ⊂ I, so there is always some irreducible subset of I. Irreducible
sets detect the occurrence of dynamically independent subsystems. Our next result
gives a useful property of irreducible sets with more than one element.

Proposition 6.2. If a subset J of I is irreducible, then, for all i, j ∈ J with
i 
= j, there exist p ∈ N and i1, . . . , ip ∈ J such that Pi1i, Pi2i1 , . . . , Pipip−1

, and Pjip

carry material.
Proof. Let us assume, on the contrary, that j /∈ ∪∞

n=1ζ
n({i}) = J̃i. Then J̃i � J

and, obviously, ζ(J̃i) ⊂ J̃i, which contradicts the fact that J is irreducible.
Let J1, . . . , Jk be all the irreducible subsets of I and let J0 = I \ ∪k

l=1Jl. These
sets reflect the geometry of the compartmental system in a good enough way as to
describe the long-term behavior of the solutions, as we will see below.

Let K be any minimal subset of Ω × BU for the skew-product semiflow induced
by (5.2)ω. From Theorem 5.6, K is of the form K = {(ω, x(ω)) | ω ∈ Ω}, where x
is a continuous map from Ω into BU . All of the subsequent results give qualitative
information about the long-term behavior of the solutions. Let us see that, provided
that we are working on a minimal set K, if there is no inflow from the environment,
then the total mass is constant on K, all compartments out of an irreducible subset
are empty, and, in an irreducible subset, either all compartments are empty or all are
never empty. In particular, in any irreducible subset with some outflow of material,
all compartments are empty.

Theorem 6.3. Assume that Ĩi ≡ 0 for each i ∈ I and let K = {(ω, x(ω)) | ω ∈ Ω}
be a minimal subset of Ω ×BU with K ⊂ Ω ×BU+

D . Then the following hold:
(i) There exists c ≥ 0 such that M |K ≡ c.
(ii) xi ≡ 0 for each i ∈ J0.
(iii) If, for some l ∈ {1, . . . , k}, there exists jl ∈ Jl such that xjl ≡ 0, then xi ≡ 0

for each i ∈ Jl. In particular, this happens if there is a jl ∈ Jl such that there
is an outflow of material from Cjl .
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Proof. We first suppose that the system is closed, i.e., g̃0i ≡ 0, Ĩi ≡ 0 for all i ∈ I,
from which we deduce g0i ≡ 0 and Ii ≡ 0 for all i ∈ I.

(i) From (5.6) the total mass M is constant along the trajectories, and hence
M(ω·t, x(ω·t)) = M(ω, x(ω)) for all t ≥ 0 and ω ∈ Ω, which together with the fact
that Ω is minimal and M continuous shows the statement.

(ii) Let i ∈ J0. The set J̃i = ∪∞
n=1ζ

n({i}) satisfies ζ(J̃i) ⊂ J̃i and hence contains
an irreducible set Jl for some l ∈ {1, . . . , k}. Consequently, there are i1, . . . , ip ∈ J0

and jl ∈ Jl such that Pjlip carry material.
It is easy to prove that there is an r > 0 such that ‖x(ω)‖∞ ≤ r for each ω ∈ Ω.

We define Ml : Ω ×BU → R, the mass restricted to Jl, as

(6.1) Ml(ω, y) =
∑
i∈Jl

Diy +
∑

i,j∈Jl

∫ 0

−∞

(∫ 0

s

gji(ω·τ, yi(τ)) dτ

)
dμji(s) ,

which is continuous on Ω × Br. From x(ω) ≥D 0, which also implies x(ω) ≥ 0, and
(C1), we have 0 ≤ Ml(ω, x(ω)) ≤ M(ω, x(ω)) = c for each ω ∈ Ω.

Since Jl is irreducible, for all i ∈ Jl and ω ∈ Ω

d

dt
Dix(ω·t) = −

∑
j∈Jl

gji(ω·t, xi(ω·t)(0)) +
∑

j∈Jl∪J0

∫ 0

−∞
gij(ω·(s + t), xj(ω·t)(s)) dμij(s)

because the rest of the terms vanish. Consequently,

(6.2)
d

dt
Ml(ω·t, x(ω·t)) =

∑
i∈Jl

∑
j∈J0

∫ 0

−∞
gij(ω·(s + t), xj(ω·t)(s)) dμij(s) ≥ 0

for each ω ∈ Ω. We claim that Ml(ω, x(ω)) is constant for each ω ∈ Ω. Assume, on
the contrary, that there are ω1, ω2 ∈ Ω such that Ml(ω1, x(ω1)) < Ml(ω2, x(ω2)), and
let tn ↑ ∞ such that limn→∞ ω2·tn = ω1. From (6.2) we deduce that Ml(ω2, x(ω2)) ≤
Ml(ω2·tn, x(ω2·tn)) for each n ∈ N, and taking limits as t → ∞ we conclude that
Ml(ω2, x(ω2)) ≤ Ml(ω1, x(ω1)), a contradiction. Hence Ml(ω, x(ω)) is constant and
from (6.2)

(6.3)
∑
i∈Jl

∑
j∈J0

∫ 0

−∞
gij(ω·(s + t), xj(ω·t)(s)) dμij(s) = 0 .

Next we check that xip ≡ 0. From (6.3) we deduce that for each ω ∈ Ω

(6.4)

∫ 0

−∞
gjlip(ω·s, xip(ω)(s)) dμjlip(s) = 0 .

Assume that there is an ω0 ∈ Ω such that xip(ω0)(0) > 0. Hence there is an
ε > 0 with xip(ω0)(s) > 0 for each s ∈ (−ε, 0], and since Pjlip carries material
gjlip(ω0·s, xip(ω0)(s)) > 0 for s ∈ (−ε, 0]. In addition, from μjlip(−∞, 0] = 1 there is
a b ≤ 0 such that μjlip(b− ε, b] > 0. Hence, denoting ω0·(−b) = ω1 we deduce that

∫ b

b−ε

gjlip(ω1·s, xip(ω1)(s)) dμjlip(s) > 0 ,

which contradicts (6.4) and shows that xip ≡ 0, as claimed. Since x(ω) ≥D 0, we
have Dipx(ω) ≥ 0 and from the definition of Dip we deduce that Dipx(ω) = 0 for each
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ω ∈ Ω. Therefore,

0 =
d

dt
Dipx(ω·t) =

m∑
j=1

∫ 0

−∞
gipj(ω·(t + s), xj(ω·t)(s)) dμipj(s) ,

from which
∫ 0

−∞ gipip−1
(ω·s, xip−1

(ω)(s)) dμipip−1
(s) = 0, and as before xip−1

≡ 0. In
a finite number of steps we check that xi ≡ 0, as stated.

(iii) From Proposition 6.2, given i, jl ∈ Jl there exist p ∈ N and i1, . . . , ip ∈ Jl such
that Pi1i, Pi2i1 , . . . , Pipip−1 , and Pjlip carry material. If xjl ≡ 0, the same argument
given in the last part of (ii) shows that xi ≡ 0, which finishes the proof for closed
systems.

Next we deal with the case when Ĩi ≡ 0 for each i ∈ I but the system is not
necessarily closed. We also have Ii ≡ 0 and from (5.5) we deduce that the total mass
M is decreasing along the trajectories. In particular,

(6.5)
d

dt
M(ω·t, x(ω·t)) = −

n∑
i=1

g0i(ω·t, xi(ω·t)(0)) ≤ 0 .

Assume that there are ω1, ω2 ∈ Ω such that M(ω1, x(ω1)) < M(ω2, x(ω2)), and
let tn ↑ ∞ such that limn→∞ ω1·tn = ω2. From relation (6.5) we deduce that
M(ω1·tn, x(ω1·tn)) ≤ M(ω1, x(ω1)) for each n ∈ N, and taking limits as n ↑ ∞
we conclude that M(ω2, x(ω2)) ≤ M(ω1, x(ω1)), a contradiction, which shows that
M is constant on K, as stated in (i). Consequently, the derivative in (6.5) van-
ishes and g0i(ω·t, xi(ω·t)(0)) = 0 for all i ∈ I, ω ∈ Ω, and t ≥ 0. This means that
z(t, ω, x(ω)) = x(ω·t)(0) is a solution of a closed system, and (ii) and the first part of
(iii) follow from the previous case.

Finally, let jl ∈ Jl be such that there is an outflow of material from Cjl , that is,
g0jl(ω, v) > 0 for all ω ∈ Ω and v > 0. Moreover, as before, g0jl(ω, xjl(ω)(0)) = 0 for
each ω ∈ Ω, which implies that xjl ≡ 0 and completes the proof.

Remark 6.4. Notice that, concerning the solutions of the family of systems (5.2)ω
and hence the solutions of the original system (5.1) when ω = g̃, we deduce that in
the case of no inflow from the environment, limt→∞ zi(t, ω, x0) = 0 for all i ∈ J0,
i ∈ Jl for compartments Jl with some outflow, and each x0 ≥D 0.

Remark 6.5. If there is no inflow from the environment and for all l ∈ {1, . . . , k}
there is a jl ∈ Jl such that there is outflow of material from Cjl , then the only minimal
set in Ω × BU+

D is K = {(ω, 0) | ω ∈ Ω} and all the solutions z(t, ω, x0) with initial
data x0 ≥D 0 tend to 0 as t → ∞.

In a nonclosed system, that is, a system which may have any inflow and any
outflow of material, if there exists a bounded solution, i.e., all solutions are bounded
as shown above, and an irreducible set which has some inflow, then, working on a
minimal set, all compartments of that irreducible set are nonempty and there must
be some outflow from the irreducible set.

Theorem 6.6. Assume that there exists a bounded solution of (5.1) and let
K = {(ω, x(ω)) | ω ∈ Ω} be a minimal subset of Ω×BU+

D . If, for some l ∈ {1, . . . , k},
there is a jl ∈ Jl such that Ĩjl 
= 0, i.e., there is some inflow into Cjl , then

(i) xi 
≡ 0 for each i ∈ Jl, and
(ii) there is a j ∈ Jl such that there is outflow of material from Cj.
Proof. (i) Let us assume, on the contrary, that there is an i ∈ Jl such that xi ≡ 0.

Then since x(ω) ≥D 0 we have that 0 ≤ Dix(ω), and from the definition of Di given
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in (C4) we deduce that Dix(ω) = 0 for each ω ∈ Ω. Therefore,

(6.6) 0 =
d

dt
Dix(ω·t) =

m∑
j=1

∫ 0

−∞
gij(ω·(t + s), xj(ω·t)(s)) dμij(s) + Ii(ω·t)

for all ω ∈ Ω, t ≥ 0, and, as in (ii) of Theorem 6.3, we check that xjl ≡ 0. However,

since Ĩjl 
≡ 0, there is an ω0 ∈ Ω such that Ijl(ω0) > 0, which contradicts (6.6) for
ω = ω0, i = jl at t = 0.

(ii) Assume, on the contrary, that g0j ≡ 0 for each j ∈ Jl. Then if we consider (6.1)
the restriction of the mass to Jl, we check that

d

dt
Ml(ω·t, x(ω·t)) =

∑
i∈Jl

⎡
⎣Ii(ω·t) +

∑
j∈J0

∫ 0

−∞
gij(ω·(s + t), xj(ω·t)(s)) dμij(s)

⎤
⎦ ≥ 0

for all ω ∈ Ω and t ≥ 0. A similar argument to the one given in (ii) of Theorem 6.3
shows that Ml(ω, x(ω)) is constant for each ω ∈ Ω, which contradicts the fact that the
above derivative is strictly positive for ω = ω0 at t = 0 and proves the statement.

Finally, we will change hypothesis (C6) to the following, slightly stronger one.
(C6)* Given i ∈ {0, . . . ,m} and j ∈ {1, . . . ,m} either g̃ij ≡ 0 on R × R

+ (and
hence gij ≡ 0 on Ω × R

+), i.e., there is not a pipe from compartment Cj to
compartment Ci, or for each v ≥ 0 there is a δv > 0 such that ∂

∂v g̃ij(t, v) ≥ δv
for each t ∈ R (and hence ∂

∂v gij(ω, v) > 0 for all ω ∈ Ω and v ≥ 0). In this
case we will say that the pipe Pij carries material (or that there is a pipe
from compartment Cj to compartment Ci).

In this case, we are able to prove that if there exists a bounded solution, then all
the minimal sets coincide both on irreducible sets having some outflow and out of
irreducible sets. Concerning the solutions of the initial compartmental system (5.1),

lim
t→∞

|zi(t, x0) − zi(t, y0)| = 0

for all i ∈ J0, i ∈ Jl for compartments Jl with some outflow, and all x0, y0 ≥D 0.
Theorem 6.7. Let us assume that hypotheses (C1)–(C5) and (C6)* hold and

that there exists a bounded solution of system (5.1). Let K1 = {(ω, x(ω)) | ω ∈ Ω}
and K2 = {(ω, y(ω)) | ω ∈ Ω} be two minimal subsets of Ω ×BU+

D . Then
(i) xi ≡ yi for each i ∈ J0;
(ii) if, for some l ∈ {1, . . . , k}, there is a jl ∈ Jl such that there is outflow of

material from Cjl , then xi ≡ yi for each i ∈ Jl.
Proof. For each i ∈ {0, . . . ,m} and each j ∈ {1, . . . ,m} we define hij : Ω → R

+ as

hij(ω) =

∫ 1

0

∂gij
∂v

(ω, s xj(ω)(0) + (1 − s) yj(ω)(0)) ds ≥ 0 ,

and we consider the family of monotone linear compartmental systems

(6.7)ω
d

dt
Diẑt = −h0i(ω·t) ẑi(t) −

m∑
j=1

hji(ω·t) ẑi(t)

+

m∑
j=1

∫ 0

−∞
hij(ω·(s + t)) ẑj(t + s) dμij(s) , ω ∈ Ω,
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satisfying the corresponding hypotheses (C1)–(C4) and (C6). Moreover, (C5) for each
of the systems (6.7)ω, follows from

inf
ω∈Ω

hij(ω) ≥ inf
v≥0 , ω∈Ω

∂gij
∂v

(ω, v) , sup
ω∈Ω

hij(ω) ≤ sup
v≥0 , ω∈Ω

∂gij
∂v

(ω, v) ,

and (C5) for (5.1). From the definition of hij and (C6)* we deduce that the irre-
ducible sets for the families (6.7)ω and (5.2)ω coincide. Consequently, Theorem 6.3
(see Remark 6.4) applies to this case, and we deduce that if z0 ≥D 0 and Jl is a
compartment with some outflow of material, then

lim
t→∞

ẑi(t, ω, z0) = 0 for each i ∈ J0 ∪ Jl .

The same happens for z0 ≤D 0 because the systems are linear.
Let z(ω) = x(ω)−y(ω) for each ω ∈ Ω. It is easy to check ẑ(t, ω, z(ω)) = z(ω·t)(0)

for all ω ∈ Ω and t ≥ 0 . Moreover, we can find z1 ≤D 0 and z0 ≥D 0 such that
z1 ≤D z(ω) ≤D z0 for each ω ∈ Ω. Hence, the monotonicity of the induced skew-

product semiflow and the positivity of D̂−1 yields

ẑ(t, ω, z1) ≤ z(ω·t)(0) ≤ ẑ(t, ω, z0) for all ω ∈ Ω t ≥ 0 ,

from which we deduce that zi ≡ 0 for all i ∈ J0, i ∈ Jl and (i) and (ii) follow.
As a consequence, under the same assumptions of the previous theorem, when for

all l ∈ {1, . . . , k} there is an outflow of material from one of the compartments in Jl,
there is a unique minimal set K = {(ω, x(ω)) | ω ∈ Ω} in Ω×BU+

D attracting all the
solutions with initial data in BU+

D ; i.e.,

lim
t→∞

‖z(t, ω, x0) − x(ω·t)(0)‖ = 0 , whenever x0 ≥D 0 .

Moreover, x 
≡ 0 if and only if there is some j ∈ {1, . . . ,m} such that Ĩj 
= 0; i.e.,
there is some inflow into one of the compartments Cj .

For the next result, in addition to hypotheses (C1)–(C5) and (C6)* we will assume
the following hypothesis:

(C7) If K1 = {(ω, x(ω)) | ω ∈ Ω} and K2 = {(ω, y(ω)) | ω ∈ Ω} are two minimal
subsets of Ω×BU+

D such that x(ω) ≤D y(ω) and Dix(ω0) = Diy(ω0) for some
ω0 ∈ Ω and i ∈ {1, . . . ,m}, then x(ω) = y(ω) for each ω ∈ Ω, i.e., K1 = K2.

Note that if Dix(ω0) = Diy(ω0) holds for some ω0 ∈ Ω and i ∈ {1, . . . ,m}, then
from hypothesis (F5) we deduce that it holds for each ω ∈ Ω.

Hypothesis (C7) is relevant when it applies to closed systems, and it holds in
many cases studied in the literature. A closed system satisfying (C7) is irreducible.
Systems with a unique compartment, studied by Arino and Bourad [1] and Krisztin
and Wu [19], satisfy (C7). It follows from Theorem 6.3 that irreducible closed systems
described by FDEs (see Arino and Haourigui [2]) satisfy (C7). Closed systems given
by Wu [27], and Wu and Freedman [28] in the strongly ordered case, also satisfy (C7).

Definition 6.8. Let K1 = {(ω, x(ω)) | ω ∈ Ω} and K2 = {(ω, y(ω)) | ω ∈ Ω} be
two minimal subsets. It is said that K1 <D K2 if x(ω) <D y(ω) for each ω ∈ Ω.

Hypothesis (C7) allows us to classify the minimal subsets in terms of the value of
their total mass, as shown in the next result.

Theorem 6.9. Assume that system (5.1) is closed (i.e., Ĩi ≡ 0 and g̃0i ≡ 0
for each i ∈ {1, . . . ,m}), and hypotheses (C1)–(C5), (C6)*, and (C7) hold. Then for
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each c > 0 there is a unique minimal subset Kc such that M |Kc
= c. Moreover,

Kc ⊂ Ω ×BU+
D and Kc1 <D Kc2 whenever c1 < c2.

Proof. Since the minimal subsets are copies of the base, and the total mass (5.4) is

constant along the trajectories and increasing for the D-order because D̂−1 is positive,
it is easy to check that given c > 0 there is a minimal subset Kc ⊂ Ω × BU+

D such
that M |Kc

= c.

Let D̂ be the isomorphism of BU defined by the relation (3.6). For each x ∈ BU

we define x+ = D̂−1 sup(0, D̂x). Hence 0 ≤D x+, x ≤D x+, and if y ∈ BU with
x ≤D y and 0 ≤D y, then x+ ≤D y.

Since the semiflow is monotone, from x ≤D x+ we deduce that u(t, ω, x) ≤D

u(t, ω, x+). Since the system is closed, u(t, ω, 0) = 0, and from 0 ≤D x+ we check
that 0 ≤D u(t, ω, x+). Consequently u(t, ω, x)+ ≤D u(t, ω, x+) for each t ≥ 0.

Next we check that if K = {(ω, x(ω)) | ω ∈ Ω} is minimal, the same happens
for K+ = {(ω, x(ω)+) | ω ∈ Ω}. Since x(ω·t) = u(t, ω, x) for each t ≥ 0, we deduce

that x(ω·t)+ = u(t, ω, x(ω))+ ≤D u(t, ω, x(ω)+), and the fact that D̂−1 is positive
yields x(ω·t)+ ≤ u(t, ω, x(ω)+) for each t ≥ 0. In addition, since the total mass (5.4)
is constant along the trajectories and increasing for the D-order, we deduce that
M(ω, x(ω)+) = M(ω·t, u(t, ω, x(ω)+)) ≥ M(ω·t, u(t, ω, x(ω))+) = M(ω·t, x(ω·t)+)
for each t ≥ 0. Moreover, since x(ω)+ is a continuous function in ω and Ω is minimal,
a similar argument to the one given in (ii) of Theorem 6.3 shows that M(ω, x(ω)+)
is constant on Ω and, consequently, M(ω·t, u(t, ω, x(ω)+) = M(ω·t, x(ω·t)+) for each
ω ∈ Ω and t ≥ 0. Hence, from (5.4) we conclude that

0 =
m∑
i=1

Di(u(t, ω, x(ω)+) − x(ω·t)+) ,

that is, D(u(t, ω, x(ω)+)) = D(x(ω·t)+) for each ω ∈ Ω and t ≥ 0. In addition,
it is easy to check that (ϕs)

+ = (ϕ+)s whenever ϕ ∈ BU and s ≤ 0, from which
we deduce that D((u(t, ω, x(ω)+))s) = D((x(ω·t)+)s) for each s ≤ 0, t ≥ 0, and

ω ∈ Ω. That is, D̂(u(t, ω, x(ω)+)) = D̂(x(ω·t)+) for each t ≥ 0 and ω ∈ Ω, and

since D̂ is an isomorphism u(t, ω, x(ω)+) = x(ω·t)+ for each t ≥ 0 and ω ∈ Ω, which
shows that K+ is a minimal subset, as stated. Let K1 = {(ω, x(ω)) | ω ∈ Ω} and
K2 = {(ω, y(ω)) | ω ∈ Ω} be two minimal subsets such that M |Ki

= c for i = 1, 2.
We fix ω ∈ Ω. The change of variable ẑ(t) = z(t) − y(ω·t) takes (5.2)ω to

d

dt
Dẑt = G(ω·t, ẑt) , t ≥ 0 , ω ∈ Ω ,

where G(ω·t, ẑt) = F (ω·t, ẑt + y(ω·t)) − F (ω·t, y(ω·t)). It is not hard to check that
this is a new family of compartmental systems satisfying the corresponding hypotheses
(C1)–(C5) and (C6)*, and

K̂ = {(ω, x(ω) − y(ω)) | ω ∈ Ω}

is one of its minimal subsets. As before

K̂+ = {(ω, (x(ω) − y(ω))+) | ω ∈ Ω}

is also a minimal subset, and hence

K+ = {(ω, y(ω) + (x(ω) − y(ω))+) | ω ∈ Ω} = {(ω, z(ω)) | ω ∈ Ω}
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is a minimal set for the initial family. For each ω ∈ Ω we have z(ω) ≥D y(ω).
Let us assume that Dz(ω) � Dy(ω) for each ω ∈ Ω, which implies that D((x(ω)−

y(ω))+) � 0 for each ω ∈ Ω. Consequently, D((x(ω) − y(ω))+s ) = D(((x(ω) −
y(ω))s)

+) = D((x(ω·s)− y(ω·s))+) � 0 for each s ≤ 0, and we deduce that D̂x(ω) >

D̂y(ω), i.e., x(ω) >D y(ω) for each ω ∈ Ω, and M |K1
> M |K2

, a contradiction.
Hence, there are an ω0 ∈ Ω and an i ∈ {1, . . . ,m} such that Diz(ω0) = Diy(ω0), and
hypothesis (C7) provides that z(ω) = y(ω) for each ω ∈ Ω. That is, (x(ω)−y(ω))+ ≡ 0
for each ω ∈ Ω, or equivalently x(ω) − y(ω) ≤D 0 for each ω ∈ Ω. Finally, as
before, from M |K1

= M |K2
we conclude by contradiction that x(ω) = y(ω) for each

ω ∈ Ω, and the minimal set Kc is unique, as stated. The same argument shows that
Kc1 <D Kc2 whenever c1 < c2 and finishes the proof.

REFERENCES

[1] O. Arino and F. Bourad, On the asymptotic behavior of the solutions of a class of scalar
neutral equations generating a monotone semiflow, J. Differential Equations, 87 (1990),
pp. 84–95.

[2] O. Arino and E. Haourigui, On the asymptotic behavior of solutions of some delay differential
systems which have a first integral, J. Math. Anal. Appl., 122 (1987), pp. 36–46.

[3] R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969.
[4] G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra Integral and Functional Equations,

Encyclopedia Math. Appl., Cambridge University Press, Cambridge, New York, 1990.
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1. Introduction. Our main focus is systems driven by nonlocal energies. Of
particular interest are nonlocal Cahn–Hilliard-type equations and equations modeling
biological aggregation. The nonlocal Cahn–Hilliard equations that we consider were
derived by Giacomin and Lebowitz [8] as limits of the lattice-gas dynamics modeling
phase segregation in binary alloys. In this setting, they represent a refinement in
modeling over the standard, fourth order Cahn–Hilliard equations. The equations
modeling biological aggregation were derived by Topaz, Bertozzi, and Lewis [18].

The mathematical descriptions of these systems are rather similar. Both equations
are gradient flows of the same general energy:

(1) E(u) :=

∫∫
(u(x) − u(y))2K(x− y)dxdy +

∫
W (u(x))dx.

Here K ≥ 0 is the interaction kernel, and W is a double-well potential whose minima
are at 0 and 1. We leave the domain of integration vague at the moment. Heuristi-
cally it is convenient to consider the domains to be R

N × R
N and R

N , respectively.
However, for technical reasons, when stating and proving rigorous results we consider
the problem on a finite domain.

The equations we study are gradient flows of the energy, in the appropriate met-
rics:

(2) ut −∇ ·
(
μ(u)∇

(
δE

δu

))
= 0.

That is,

(3) ut −∇ ·
(
μ(u)∇

(
4

∫
K(y)dy u− 4K ∗ u + W ′(u)

))
= 0.
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For both equations the mobility μ is a nonnegative function. More precisely, for the
aggregation equation μ(u) = u, while for the nonlocal Cahn–Hilliard equation μ > 0
on [0, 1].

The second term of the energy causes the system to separate into phases, while the
first term penalizes the existence of interfaces. The energy E is a nonlocal counterpart
of the energy

(4) Eloc(u) :=

∫
1

2
|∇u(x)|2 + W (u(x))dx.

Roughly speaking, both of the energies measure interfacial area. The longer the
length scale in the system, the better the approximation to the interfacial area. More
precisely, for both energies, the Γ-limit of the appropriately rescaled energy is the
functional measuring perimeter of the set occupied by one of the phases

E
Γ→ const. Eper.

Eper is defined for BV functions with the range {0, 1}. For Eloc this is the result of
Modica and Mortola [15] (see also [14]), while for E it was proven by Alberti et al. [2]
(see also [1]). Moreover matched asymptotics arguments (by Giacomin and Lebowitz
[9] and by Bertozzi and Slepčev [4]) show that the sharp-interface limits of the dynam-
ics described by (2) are the Mullins–Sekerka (MS) equation for the nonlocal Cahn–
Hilliard equation and the Hele–Shaw (HS) equation for the aggregation model.

After the interfaces have formed, the system slowly evolves, reducing the interfa-
cial area. During this process the length scales that characterize the coarseness of a
configuration grow. We are interested in the rate at which these length scales grow—
the rate of coarsening. The fact that the sharp interface limits, (MS) and (HS), are
both invariant under the scaling x → λx, t → λ3t suggests that the typical length
scale grows as t1/3. We prove a weak formulation of this statement, following the
technique of Kohn and Otto [10], who proved the result for gradient flows of local
energies (4). We use the energy as the measure of the coarseness of the system. In
particular let E be the energy density, that is, the energy per unit volume. Note that
E has units of 1/length. We show a weak version of the statement

E � t−1/3.

This provides an upper bound on rate of coarsening as it shows that the interfacial
area cannot decay faster than the given rate.

Outline. In the remainder of the introduction we discuss the gradient-flow struc-
ture of the equations, and the framework for obtaining rigorous result on coarsening
rates introduced by Kohn and Otto. We also introduce the two applications we have
in mind in more detail. In section 2 we list the assumptions needed and give the
precise formulation of the main results on the rate of coarsening. In particular we
present a relaxed formulation of the abstract Kohn–Otto framework that is applicable
to weak solutions of gradient-flow equations. We also show that the “geodesic dis-
tance” associated to the metric of the configuration space can be utilized even when
the mobility is nonlinear. In section 3 we present the proof of the bound on the rate
of coarsening. The main technical ingredient, the interpolation inequality, is proved
in section 4. The approach we take in proving the interpolation inequality is general;
essentially the same proof covers both types of mobilities and both nonlocal and local
energies. We illustrate the application to local energies in subsection 4.1.
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1.1. Gradient flow structure. We now introduce the geometric structure of
(2). It is based on the formal Riemannian viewpoint developed by Otto [16]. Equa-
tion (2) can be understood as a gradient flow of the energy (1) on the manifold of
configurations. Since the equation is in divergence form it preserves the integral of
u over the space. Thus the solution of the equation is a path on the manifold of
functions with the same integral.

At each point the tangent space is the set of possible perturbations, all of which
have mean zero. The local metric is defined as follows: Let s1, s2 be two tangent
vectors at u. Then

(5) gu(s1, s2) =

∫
μ(u)∇p1 · ∇p2,

where

−∇ · (μ(u)∇pi) = si for i = 1, 2.

Equation (2) is the gradient flow of energy (1) with respect to the metric (5), that is,
for every tangent vector s

g(ut, s) = −δE

δu
[s].

Considering the configuration space as a manifold enables us to measure the
steepness of the energy landscape in a certain sense. This information provides bounds
on the speed of the dynamics.

In particular the local metric gives rise to a global metric on the manifold. Given
a regular enough path, v(s) for, say, s ∈ [0, 1], on the manifold, we can measure its
length

length(v) =

∫ 1

0

√
gv(s)(v′, v′) ds.

We can then define the global metric on the manifold: Let the distance of u1 and u2

be

d(u1, u2) = inf{length(v) : v is a path connecting u1 and u2}.

It turns out that when μ = const., then d(u1, u2) is a multiple of the H−1 norm,
while for μ(u) = u the distance becomes the Wasserstein metric.

1.2. Kohn–Otto framework. Kohn and Otto [10] introduced an approach for
obtaining information on the flatness of the energy landscape, and consequently on
the rate of coarsening. The approach is robust and has been applied to studies of
coarsening in epitaxial growth, mean-field models, thin-liquid films, and other systems
[6, 7, 5, 11, 12, 17]. See also [13] for a related result.

We first present it in the abstract setting used in [17], which applies to gradi-
ent flows. Consider an energy E on a Riemannian manifold (M, g). The metric g
introduces a global distance on M, which we denote by d.

Proposition 1. Let h∗ ∈ M. Let h : R+ → M be a solution of

(6) ht = −gradE(h),

and let h(0) = h0.
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Assume that for some α ≥ 0 the interpolation inequality

(7) E(h) dist(h, h∗)α ≥ 1 for all h ∈ M with E(h) ≤ ε

holds. Then for σ ∈ (1, 1 + 2
α )

(8)

∫ T

0

E(h(t))σ dt �
∫ T

0

(t−
α

α+2 )σ dt,

provided T � dist(h0, h
∗)α+2 and E(h(0)) ≤ ε.

Remark 1. The precise meaning of � and � is the following: For all σ ∈ (1, 1+ 2
α )

there exists a constant C = C(α, σ) such that for all δ > 0 there exists Cδ = C(α, σ, δ):

(9)

∫ T

0

E(h(t))σ dt ≥ (1 − δ)C

∫ T

0

(t−
α

α+2 )σ dt,

provided T ≥ Cδ dist(h0, h
∗)α+2.

Proof of the proposition is based on the ODE arguments of [10] and can be found
in [17].

We adapt Proposition 1 to our setting in section 2 (Theorem 2). In particular since
the Riemannian structure is only formal, the theorem states precisely which elements
of the geometric structure are needed. Furthermore it applies to weak solutions of the
gradient flow equations.

The main technical difficulty in applying the proposition is showing the interpo-
lation inequality. Section 4 is devoted to proving interpolation inequalities relevant
to nonlocal energies.

1.3. Nonlocal Cahn–Hilliard equation. Equation (2) is a rescaled version
of the model by Giacomin and Lebowitz [8, 9]. We introduce it in original variables
below and, for completeness, present the rescaling needed.

The free energy is given by

E =
1

4

∫
Ω

∫
RN

K(x− y)(ρ(x) − ρ(y))2dxdy +

∫
Ω

fc(ρ(x))dx.

The associated gradient flow is

ρt −∇ ·
(
σ(ρ)∇

(
δE
δρ

))
= 0.

Here K ≥ 0 is a smooth kernel with symmetry K(x) = K(−x). Giacomin and
Lebowitz assume that K is compactly supported, with support contained in Ω. This
assumption is physically quite reasonable, but it is not necessary from the mathe-
matical point of view. The function fc is a double-well potential, symmetric about 1

2
with minima at 1

2 ±m. The mobility function σ is assumed to be smooth, symmetric
about 1

2 , and positive on (0, 1), with

(GL1) σ(0) = 0 and σ(1) = 0.

Let

f(ρ) = fc(ρ) +

∫
RN K(x)dx

2

(
ρ− 1

2

)2

.
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Giacomin and Lebowitz assume that for some c > 0 and for all ρ ∈ (0, 1)

(GL2)
1

c
≤ σ(ρ)f ′′(ρ) ≤ c.

This assumption is needed for the existence/uniqueness theory they use (it makes
the equation uniformly parabolic), but is not directly required for the coarsening
estimates.

Under the assumptions above, Giacomin and Lebowitz show that for initial datum
0 < ρ0 < 1, there exists a unique weak solution ρ ∈ L2([0, T ], H1(Ω)) with ρt ∈
L2([0, T ], H−1(Ω)) for any T > 0. Furthermore 0 < ρ < 1.

Rescaling. We rescale the dependent variable, the potential, and the mobility so
that the wells of the new potential are 0 and 1. Let

u =
1

2m

(
ρ− 1

2

)
+

1

2
,

Wm(u) =
1

4m2
fc(ρ) =

1

4m2
fc

(
2m

(
u− 1

2

)
+

1

2

)
,

μm(u) = σ(ρ) = σ

(
2m

(
u− 1

2

)
+

1

2

)
.

Under this rescaling u solves (2) and is hence a gradient flow of (1).

1.4. Biological aggregation. Topaz, Bertozzi, and Lewis [18] introduced a
model of biological aggregation that emerges due to “social forces” between individ-
uals. That is, the individuals are attracted to other individuals of their species, but
avoid overcrowding. The population is modeled by its density u. The velocity of
individuals is modeled as

v = va + vr = ∇(K ∗ u) −∇g(u),

where va = ∇(K ∗ u) is the term modeling attraction to other individuals which are
being sensed through the kernel K. The term modeling repulsion, vr, is given by
a local operator vr = −∇g(u), where g is an increasing function. The continuity
equation then reads

ut + ∇ · (u v) = ut + ∇ · (u∇(K ∗ u− g(u))) = 0.

From a biological perspective it is reasonable to assume that g′(0) = 0 and g is strictly
convex. However, it is sufficient to assume that

the function g′(z) −
∫
RN

K(x)dx has exactly one zero on R
+,

g′(0) <

∫
RN

K(x)dx and lim inf
z→∞

g′(z) −
∫

RN

K(x)dx > 0.

(BA)

Under this assumption u solves (3) for some double-well potential W . More precisely,
let G(z) :=

∫ z

0
g(s)ds and W̃ (z) := G(z) − 1

2

∫
RN K(x)dx z2. The condition (BA)

implies that W̃ is concave at 0, and has exactly one inflection point. Thus we can
define

W (z) := 4

(
W̃ (z) −

(
min
s>0

W̃ (s)

s

)
z

)
.
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Then W is a double-well potential on [0,∞) with one well at 0. It follows that

ut −∇ ·
(
u∇

(∫
RN

K(y)dy u−K ∗ u +
1

4
W ′(u)

))
= 0,

which after scaling the time by factor 4 is (3).
On the level of the model, the equation provides information on why herds (or

other animal groups) form, why they have an almost constant density, why they have
sharp boundaries, and how they evolve. Numerical simulations conducted in one
dimension in [18] also observe the coarsening phenomenon. The primary driving force
for coarsening in one dimension is the nonlocal interaction via kernel K, as there are
no surface-tension-like effect. The rate of coarsening depends on the decay of K at
∞. Nevertheless the rigorous bounds we prove still apply and are in fact optimal for
certain kernels.

2. Statement of the result. When thinking about coarsening we have in mind
an infinite domain on which coarsening persists for all time. However, building the
theory for such solutions poses major challenges. We instead consider domains of
finite size and prove results that are independent of the domain size. In particular we
consider the domain Ω = [0,Λ]N . We investigate the dynamics of periodic configura-
tions on R

N with period cell Ω. Thus we consider Ω with the topology of the torus
R

N/(ΛZ)N . In particular the distances on Ω are measured on the torus, and thus
may be different from the ones measured in R

N .
Throughout the paper we use the following, somewhat nonstandard notation. For

U ⊆ Ω and a function u,

−
∫
U

f(x)dx :=
1

|Ω|

∫
U

f(x)dx and ‖U‖ :=
|U |
|Ω| .

Let P be the maximal interval containing 1 on which μ > 0:

P = {z : z ≤ 1, μ|[z,1] > 0} ∪ {z : z ≥ 1, μ|[1,z] > 0}.

The configuration space is

M := L1(Ω, P ).

While the configurations are functions defined on Ω, when convenient we also consider
them as periodic functions of R

N .
To a configuration, u, we associate the energy density

(10) E(u) := −
∫

Ω

∫
RN

(u(x) − u(y))2K(x− y)dxdy + −
∫

Ω

W (u(x))dx.

If the expression is not defined, we say that the energy density is infinite. Conditions
on the interaction kernel, K, and the double-well potential, W , are described below.

We make the following assumptions on the interaction kernel K:
(K1) K is nonnegative and K ∈ L1(RN ) ∩ C2(RN ).

(K2) K(x) = K(−x) for all x ∈ R
N . (This condition ensures the symmetry of the

interaction term in (10) with respect to x and y.)

(K3) K(0) > 0.

(K4) K ∈ W 2,1(RN ) and ‖K‖C2(RN ) < ∞.
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The last condition is needed only for the existence theory [4]. Condition (K3) is not
essential either, but significantly simplifies parts of the presentation. In particular it
enables us to associate a length scale to a kernel in the following way: For r > 0 let

(11) κ(x) :=
1

|B(0, 1)|χB(0,1)(x) and κr(x) :=
1

rN
κ
(x
r

)
,

where χU is the characteristic function of the set U . Given r > 0 let hK(r) := sup{c :
K ≥ cκr}. Note that by assumption (K3), hK(r) > 0 for r small. It is not hard to
prove that hK(r) → 0 as r → 0 and also as r → ∞. Consider the location of the
maximum of hK(r). If there is more than one maximum, we pick the first one. More
precisely let

(12) rK := min{rmax | hK(rmax) = max
r>0

hK(r)}.

We let

HK = hK(rK).

To state the conditions on the potential W we define

a := −
∫

Ω

u(x, 0)dx.

To simplify the presentation, from here on we restrict our attention only to

(13) 0 < a ≤ 1

2
.

We assume the following:
(W1) W is a nonnegative continuous function.

(W2) W (0) = W (1) = 0 and W > 0 on P\{0, 1}.
(W3) At least linear growth at ±∞: There exists a constant hW such that W (z) ≥

8hW (z−1) for all z ∈ P ∩( 9
8 ,∞) and W (z) ≥ hW |z| for all z ∈ P ∩(−∞,−a

4 ).
We can furthermore require

hW ≤ W (z) for all z ∈
[
a

4
,
7

8

]
.

The condition on growth of W is needed only if P is infinite.
We now state the main results. Theorem 2 is an adaptation of Proposition 1 that

applies to the configuration spaces we are investigating. In particular the paths are
given as weak solutions of the continuity equation. Having the gradient-flow structure
is reduced to requiring a dissipation inequality. The theorem relies on interpolation
inequalities we establish in section 4. In Corollary 3 we apply the theorem to the
main equations of our interest. The classes of solutions of (3) studied in [9] and [4]
satisfy the conditions of the theorem, and thus the bounds on coarsening hold.

Below, by Cweak we mean continuous with respect to weak topology of the target
space.

Theorem 2. Let Ω = [0,Λ]N . Assume that conditions (13), (K1)–(K3), and
(W1)–(W3) hold and that mobility μ(z) ≡ z or that μ ∈ C(P, (0, cμ]). Suppose that
u ∈ Cweak([0,∞), L1(Ω, P )) is a weak solution of

ut + ∇ · J = 0
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for some flux J ∈ L1(Ω,RN ). Assume that the energy dissipation inequality holds:
For almost all 0 ≤ t1 < t2

(14)

∫ t2

t1

∫
Ω

1

μ(u)
|J |2dxdt ≤ −(E(u(t2)) − E(u(t1))).

In the case μ(z) �≡ z we also need the regularity assumption that u(t) ∈ L2(Ω) for
all t ≥ 0 and that the range of u( · , 0) is contained in P . Assume further that
lim supt→0+ E(u( · , t)) � 1.

Then for all σ ∈ (1, 2) there exists a constant C = C(σ, a,HK , rK , cμ) such that
for all T � 1

(15)

∫ T

0

E(u(t))σdt ≥ C

∫ T

0

(
t−

1
3

)σ

dt.

The precise meaning of condition E � 1 is that E has to be small enough for
the interpolation inequality to hold. Precise values can be found in the statement of
Theorem 6.

By weak solution we mean that for all φ ∈ C∞
c (Ω × [0,∞))∫∫

[0,∞)×Ω

uφt + J · ∇φdxdt +

∫
Ω

u(x, 0)φ(x, 0)dx = 0.

Recall that we consider Ω with the topology of a torus, which means that the test
functions used in the definition of a weak solution are also defined on the torus; in
other words they are periodic.

The form of the equation ensures (via testing against test functions with only
time dependence) that ∫

Ω

u(x, t)dx = const.

Note that the dissipation inequality (14) is an equality if u is a classical solution of
the gradient flow (2), when J = −μ(u)∇ δE

δu .
Corollary 3. Let Ω = [0,Λ]N . Assume that conditions (K1)–(K4) and (W1)–

(W3) hold. Assume only one of the following holds:
(i) μ(z) ≡ z, W ∈ C2([0,∞)) with W ′′ > −4

∫
RN K(y)dy on R

+, and u is the
solution of (3) in the sense of [4] with u( · , 0) ∈ L∞(Ω).

(ii) μ(z) ≤ cμ for all z, conditions (GL1) and (GL2) hold, and u is a solution
of (3) in the sense of [9]. Furthermore assume that the range of u( · , 0) is
contained in the interior of P .

(iii) 0 < μ(z) ≤ cμ for all z, (GL2) holds on R, and u is a solution of (3) in the
sense of [9]. Furthermore assume that u( · , 0) ∈ L∞(Ω).

Assume that lim supt→0+ E(u( · , t)) � 1 and (13) holds. Then for all σ ∈ (1, 2) there
exists a constant C = C(σ, a,HK , rK , cμ) such that for all T � 1

(16)

∫ T

0

E(u(t))σdt ≥ C

∫ T

0

(
t−

1
3

)σ

dt.

Proof. In the first case the conditions of W imply that associated g(z) :=∫
RN K(x)dx + 1

4W
′(z) is an increasing function. This in turn implies that the condi-

tions under which Bertozzi and Slepčev [4] proved existence of solutions of (3) hold.
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Properties of solutions ensuring that the assumptions of Theorem 2 hold were also
established. This implies the claim of the corollary.

Case (ii) the existence theory needed for Theorem 2 to apply was established by
Giacomin and Lebowitz [9].

The case (iii) is in principle simpler than case (ii) and includes the constant
mobility case. The only technical issue is that the L∞ bounds used in [9] follow from
condition (GL1). In our case appropriate bounds can be established, for example, as
in [4].

3. Proof of Theorem 2. We seek to apply the framework of Proposition 1.
However, the configuration space, M, is not a true Riemannian manifold and the
only remnant of the gradient flow structure is the energy dissipation inequality (14).
Nevertheless arguments of the proof of the proposition can be adapted to include this
setting. We define the “geodesic distance” on M as follows: Given u0, u1 ∈ M let us
first define a representation of admissible paths between u0 and u1:

A(u0, u1) :=

{
(u, J) : u : [0, 1] → M, J ∈ L1(Ω × [0, 1],RN ) such that

ut + ∇ · J = 0 on Ω × [0, 1] weakly,

u ∈ Cweak([0, 1], L1(Ω)) and u(0) = u0, u(1) = u1, and∫ 1

0

∫
Ω

1

μ(u(x, t))
|J(x, t)|2dxdt < ∞

}
.

We define

(17) d2(u0, u1) := inf
(u,J)∈A

∫ 1

0

∫
Ω

1

μ(u(x, t))
|J(x, t)|2dxdt.

Here 0
0 = 0. We note that d may, in general, be infinite. It follows from the definition

that d satisfies the triangle inequality. This can be shown by concatenating the
appropriate test flows (with optimally rescaled times).

Let u be as in the statement of the theorem. We define

(18) L(t) := d(u(t), a), L(t) :=
1√
|Ω|

d(u(t), a).

In the case μ(u) = u it follows from the characterization of d given below in (19) that
L(t) is finite for all t. In the other case, from the assumption on the range of u0 it
follows that L(0) is finite. To see this it is enough to consider the test pair (ũ, J̃)
with ũ(s) = u0 + s(a − u0) for s ∈ [0, 1] and J̃ = ∇p, where p solves −Δp = a − u0.
The fact that L(t) is finite for all t then follows from the argument for continuity of
L given in Lemma 4.

Let

E(t) := E(u(t)).

From (14) we have that E is nonincreasing almost everywhere. We now modify E on
a set of measure 0 to ensure that it is nonincreasing:

Enew(t) = min{lim inf
s→t−

E(s), E(t)}.
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Inspecting the proof of Proposition 1 from [17] shows that in addition to the
interpolation inequality, one only needs the inequality

(
dL

dE

)2

≤ − dt

dE

(since E is nonincreasing, L can be considered as a function of E), which follows from
the more familiar form of the dissipation inequality,

(
dL

dt

)2

≤ −dE

dt
,

where both inequalities are to be understood as a comparison of measures (with given
densities). The latter inequality in turn follows from the assumption (14). We prove
these claims in Lemmas 4 and 5.

To be able to prove the interpolation inequalities we need a more workable form
of d. In the case μ(u) = u the distance d is nothing else than the Wasserstein distance.
This was shown by Benamou and Brenier [3] (see also section 8.1 in Villani’s book
[19]):

(19)

dW (u0, u1)
2 = inf

{∫∫
Ω×Ω

|x− y|2dπ(x, y)
∣∣∣ ∫

Ω

dπ(·, y) = u0,

∫
Ω

dπ(x, ·) = u1

}
.

The distance above, |x− y|, is taken on torus Ω.
In the case μ(u) ≤ cμ first note that from the definition of the distance (17), it

follows that the distance corresponding to μ(u) is greater than the distance corre-
sponding to constant mobility cμ. Thus

Lμ ≥ Lcμ =
1

cμ
L1.

Thus it is enough to establish the interpolation inequality for L = L1. But for mobility
equal to one, the distance is the H−1 norm. More precisely, for u0, u1 ∈ M∩ L2(Ω),∫
Ω
u1 − u0dx = 0, and hence we can consider the following representation of the H−1

norm:

d(u0, u1)
2 = ‖u0 − u1‖2

H−1 =

∫
Ω

|∇p|2dx,

where p ∈ H2(Ω) (p is periodic by topology of Ω) is a solution of

−Δp = u1 − u0.

Proof of this claim is straightforward; it relies on convexity in J of the functional on
the right-hand side of (17) and the observation that J = ∇p, along with u(t) = u0 +
t(u1−u0), minimizes the action functional. One can also show that for u ∈ M∩L2(Ω)

(20) L(u) = max
ξ∈H1(Ω), ξ �≡const.

−
∫
Ω
(u− a)ξdx√
−
∫
Ω
|∇ξ|2dx
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by using Cauchy–Schwarz inequality to show that ξ = p (with u1 = u and u2 = a)
is the maximizing function. Given that u(t) ∈ M ∩ L2(Ω) for all t we can use this
characterization.

Thus to complete the proof of the theorem one only needs the interpolation in-
equalities established in section 4.

We now prove the two lemmas that were used in the arguments above.
Lemma 4. Assume that u satisfies the conditions of Theorem 2 and L is defined

in (18). Then L is a continuous function and for almost all t ≥ 0 and h > 0(
L(u(t + h)) − L(u(t))

h

)2

≤ −E(u(t + h)) − E(u(t))

h
.

Proof. By the assumptions of the theorem u is a distributional solution of

ut + ∇ · J = 0 on Ω × [t, t + h].

Moreover it follows from assumption (14) for all t ≥ 0 and all h > 0 that∫ t+h

t

∫
Ω

1

μ(u)
|J |2dxdt ≤ lim sup

s→0+
E(u(s)) < ∞.

Note that it was also assumed that u ∈ Cweak([t, t + h], L1(Ω)). Thus (u, J), after
appropriate rescaling in time, belongs to A(u(t), u(t+h)). By the triangle inequality,

(
L(u(t + h)) − L(u(t))

)2 ≤ inf
(ũ,J̃)∈A(u(t),u(t+h))

∫ 1

0

∫
Ω

1

μ(ũ(x, s))
|J̃(x, s)|2 dx ds

≤ h

∫ h

0

∫
Ω

1

μ(u(x, t + s))
|J |2dxds.

Thus L is a continuous function. Dividing the above by h2 and using (14) gives that
for almost all t ≥ 0 and h > 0(

L(u(t + h)) − L(u(t))

h

)2

≤ 1

h

∫ h

0

∫
Ω

1

μ(u(x, t + s))
|J |2dxds

≤ −E(u(t + h)) − E(u(t))

h
.

For a function e on R let us define e(t+) := lims→t+ e(s) and e(t−) := lims→t− e(s).
Lemma 5. Let e be a nonnegative, nonincreasing function on [0,∞). Let l be a

continuous function on [0,∞), such that

(21)

(
l(t2) − l(t1)

t2 − t1

)2

≤ −e(t2) − e(t1)

t2 − t1
for almost all t2 > t1 ≥ 0.

Then l(t) is an absolutely continuous function on [0,∞) and for all τ2 > τ1 ≥ 0∫ τ2

τ1

(
dl

dt

)2

dt ≤ e(τ1+) − e(τ2−).

Furthermore, consider t(e) := sup{t : e(t) ≥ e}, the “inverse” of the function e and
l(e) := l(t(e)). Then(

l(e2) − l(e1)

e2 − e1

)2

≤ − t(e2) − t(e1)

e2 − e1
for all e(0) ≥ e1 > e2 ≥ 0.
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Consequently l is an absolutely continuous function of e, and for all e(0) ≥ e1 > e2 ≥ 0

∫ e1

e2

(
dl

de

)2

de ≤ t(e2+) − t(e1−).

Proof. If e(0) = 0, the proof is trivial. So assume e(0) > 0. Continuity of l implies
that

(
l(t2) − l(t1)

t2 − t1

)2

≤ −e(t2−) − e(t1+)

t2 − t1
for all t2 > t1 ≥ 0.

Let ε > 0 and δ := ε2/e(0). Let [xi, yi] for i = 1, . . . ,m be a family of disjoint intervals
on [0,∞) of total length less than δ:

m∑
i=1

yi − xi < δ.

Then

m∑
i=1

|l(yi) − l(xi)| ≤
m∑
i=1

√
e(xi) − e(yi)

√
yi − xi

≤

√√√√ m∑
i=1

e(xi) − e(yi)

√√√√ m∑
i=1

yi − xi

≤
√
e(0)

√
δ = ε.

So l is absolutely continuous.
To prove the second claim note that for any h > 0

∫ τ2

τ1

(
l(t + h) − l(t)

h

)2

dt ≤
∫ τ2

τ1

e(t+) − e(t + h−)

h
dt

≤ 1

h

(∫ τ1+h

τ1

e(t+)dt−
∫ τ2+h

τ2

e(t−)dt

)
.

By taking the lim infh→0 and using Fatou’s lemma we obtain

∫ τ2

τ1

(
dl

dt

)2

dt ≤ e(τ1+) − e(τ2+).

Now use this claim on interval (τ1, τ2 − ε) and take the limit as ε → 0.
To prove the remaining claims, note that

(l(t(e2)) − l(t(e1)))
2 ≤ (e(t(e2)−) − e(t(e1)+))(t(e2) − t(e1)).

Observing that e(t(e2)−) ≥ e2 and e(t(e1)+) ≤ e1 yields the desired inequality. The
claims then follow from the arguments presented above.
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4. Interpolation inequalities. In this section we prove the interpolation in-
equalities needed. As shown in section 3 we only need to consider the L corresponding
Wasserstein distance (19) and to H−1 norm (20).

The proof we present is general and extends to local energies, which we discuss
in subsection 4.1. It also captures the improved constants established in [5]; see
Remark 2. It is based on simple geometric heuristic. Consider function ũ with range
{0, 1} and κr ∗ ũ, its average over ball of radius r. Then for r small∫

|ũ− κr ∗ ũ|dx

contains information about the interfacial area, while for r large it carries informa-
tion on the distance d(ũ, a). This allows us to interpolate between the energy and
the distance. We divided the proof into steps and present the motivation at their
beginning.

Theorem 6 (interpolation inequality). Let 0 < a ≤ 1
2 . Assume K satisfies

conditions (K1)–(K3) and W satisfies (W1)–(W3). There exists a constant C =
C(a, hW , rK , HK) > 0 such that for all Λ > 0 and all configurations u ∈ M for which
E(u) < a

64

(
hW

1+hW

)
HK , and in the H−1 case also E(u) < 1

2N+2
ahW

20 HK , the following
holds:

(22) E(u)L(u) ≥ C.

The constant C = c(N)rK
(

hW

1+hW

)
a3/2HK .

Proof. Step 1: Reduction. Let κrK be as defined by (11) and (12). We use
the notation κr := κrK . To make the distinction between energies, let EK and Eκr

be the energy densities corresponding to kernels K and κr, respectively. Note that
EK ≥ HKEκr . So it is enough to show the above claim for κr, with rK = r and
HK = 1. Therefore from here on we consider only K = κr.

Step 2: u is separated into phases. We show that any low-energy-density config-
uration, u, has a significant portion of the mass on the set where values of u are close
to 1. More precisely:

Claim. Let A := {x : u(x) ≥ 7
8} and ũ := χA. For future reference let A := {x :

u(x) < a
4} and let I be the interfacial region, I := Ω\(A∪A). Assume E(u) < 3

32ahW .
Then

(23) ‖A‖ =
|A|
|Ω| = −

∫
Ω

ũ(x)dx >
1

2
−
∫

Ω

u(x)dx =
a

2
and ‖A‖ ≤ 2a.

Proof. Due to assumption (W3)

E(u) ≥ hW

(∥∥∥∥
{
a

4
< u ≤ 7

8

}∥∥∥∥ +

∥∥∥∥
{

9

8
< u

}∥∥∥∥
)
.

Consequently

a = −
∫

Ω

udx = −
∫
{u≤ a

4 }
udx + −

∫
{ a

4<u≤ 7
8}

udx + −
∫
{ 7

8<u≤ 9
8}

udx + −
∫
{ 9

8<u}
udx

≤ a

4
+

7

8

∥∥∥∥
{
a

4
< u ≤ 7

8

}∥∥∥∥ +
9

8
−
∫

Ω

ũdx +

∥∥∥∥
{

9

8
< u

}∥∥∥∥ +
1

hW
−
∫
{ 9

8<u}
W (u)dx

≤ a

4
+

E

hW
+

9

8
−
∫

Ω

ũdx +
E

hW

<
a

4
+

3a

16
+

9

8
−
∫

Ω

ũdx.
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Therefore −
∫
Ω
ũdx > a

2 .
To prove the second claim, note that

a = −
∫

Ω

u(x)dx ≥ 7

8
‖A‖ + −

∫
{− a

4≤a<0}
u(x)dx + −

∫
{u<− a

4 }
u(x)dx

≥ 7

8
‖A‖ − a

4
− 1

hW
−
∫

Ω

W (u(x))dx

≥ 7

8
‖A‖ − a

4
− E

hW

≥ 7

8
‖A‖ − a

2
.

Step 3: Energy bounds a measure of interfacial area.
Claim.

−
∫

Ω

|ũ− κr ∗ ũ|dx ≤
(

16

9
+

2

hW

)
E.

Heuristically, when r is small the expression on the left-hand side measures r times
the area of the boundary of {ũ = 1}. More precisely the area is measured in such a
way that features of size less than r are smoothed out, and thus neglected, to some
extent.

Proof. We use the following notation for the sum of sets X + Y := {x + y | x ∈
X, y ∈ Y }. Using the fact that ũ takes only values 0 and 1, we obtain

−
∫

Ω

∣∣∣ũ(x)−
∫

RN

κr(x− y)ũ(y)dy
∣∣∣dx

= −
∫

Ω

∫
RN

|ũ(x) − ũ(y)|κr(x− y)dydx

≤ 1

|Ω|

[∫
A

∫
A+ΛZN

+

∫
A

∫
A+ΛZN

|ũ(x) − ũ(y)|2κr(x− y)dydx

+

∫
I

∫
RN

+

∫
Ω

∫
I+ΛZN

κr(x− y)dydx

]

≤
(

3

4

)−2

−
∫

Ω

∫
RN

|u(x) − u(y)|2κr(x− y)dydx + 2

∥∥∥∥
{
a

4
≤ u ≤ 7

8

}∥∥∥∥
≤

(
16

9
+

2

hW

)
E.

Step 4. Claim. φ : (0,∞) → [0,∞) defined by

φ(s) := −
∫

Ω

|ũ− ũ ∗ κs|dx

is subadditive.
One should note that some other possible measures of surface area (for example,

the volume of appropriate tubular neighborhood) do not have this property in general
and may have a superlinear growth (for appropriate range of r).
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Proof. Let s = p + q for some p, q > 0. As in Step 3 we have

φ(s) = −
∫

Ω

∫
RN

|ũ(x) − ũ(y)|κs(y)dydx.

Now let z = x − p
sy. Using periodicity and the scaling properties of kernel κs one

finds

φ(s) ≤ −
∫

Ω

∫
RN

(|ũ(x) − ũ(z)| + |ũ(z) − ũ(y)|)κs(y)dydx

= −
∫

Ω

∫
RN

∣∣∣ũ(x) − ũ
(
x− p

s
y
)∣∣∣κs(y)dydx + −

∫
Ω

∫
RN

∣∣∣ũ(z) − ũ
(
z − q

s
y
)∣∣∣κs(y)dydz;

substitute ỹ = p
s y in the first integral and ỹ = q

s y and x = z in the second to obtain

= −
∫

Ω

∫
RN

|ũ(x) − ũ(ỹ)|κp(ỹ)dỹdx + −
∫

Ω

∫
RN

|ũ(x) − ũ(ỹ)|κq(ỹ)dỹdx

= φ(p) + φ(q).

Step 5. κl ∗ ũ ∼ ũ for some l of size 1
E

. More precisely:
Claim. Let μ > 2 be a constant, which we specify later. If E < a

μ

(
hW

1+hW

)
, then

for

(24) l =

⌊
a

μ

(
hW

1 + hW

)
1

E

⌋
r =: i r

the following holds:

(25) φ(l) = −
∫

Ω

|ũ− κl ∗ ũ| dx <
2

μ
a.

Proof. The assumption on E implies that l > 1
2
a
μ

(
hW

1+hW

)
1
E
r > 0. Subadditivity

of φ established in Step 4 and the bound of Step 3 imply

−
∫

Ω

|ũ−κl∗ũ| dx ≤ i−
∫

Ω

|ũ−κr∗ũ| dx ≤
⌊
a

μ

(
hW

1 + hW

)
1

E

⌋
2

(
1 +

1

hw

)
E ≤ 2

μ
a.

Step 6. If for some l > 1,

κl ∗ ũ ∼ ũ, then L � l.

More precisely:
Claim. Set μ = 64. There exists a constant c, depending only on dimension N

and on a, such that for any l > 1,

(26) if −
∫

Ω

|ũ− κl ∗ ũ| dx <
2

μ
a, then L > cl.

We split the proof of this claim into four parts. First we establish two auxiliary claims.
Then we prove claim (26) for the Wasserstein metric case and for the H−1 metric case
separately.
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Step 6a. Let Al := {x ∈ Ω : ũ ∗ κl >
7
8}. If

−
∫

Ω

|ũ− κl ∗ ũ| dx <
2

μ
a,

then

(27) ‖Al‖ >
μ− 32

2μ
a.

By the assumption

2

μ
a > −

∫
Ω

|ũ− κl ∗ ũ| dx ≥ −
∫
A\Al

1

8
dx =

1

8
‖A\Al‖.

From (23) we have ‖A‖ > a
2 . Combining the two inequalities gives

‖Al‖ ≥ ‖A‖ − ‖A\Al‖ >

(
1

2
− 16

μ

)
a.

Remark. From this point on the proof does not require the closeness of ũ and κl∗ũ
explicitly, but rather it uses only the fact that Al is large, as described by (27). That
is, we require only that after ũ is averaged over radius l it still have well-developed
interfaces.

Step 6b. A significant subset of Al can be well approximated by balls of radius l.
More precisely:

Claim. Set μ = 64. There exists a finite subset, J , of Al such that for Aball =
∪x∈JB(x, l),

(28)
8

7
‖Aball ∩A‖ ≥ ‖Aball‖ >

1

2N+2
a.

This claim has its roots in [5]; see also [17]. Let J be a maximal family of points in
Al such that balls in {B(x, l)}x∈J are disjoint. Then Al ⊂ ∪x∈JB(x, 2l), by definition.
Therefore, using (27)

‖Aball‖ ≥ 1

2N
‖Al‖ >

1

2N+2
a.

Since J ⊂ Al, for all x ∈ J we have that

7

8
≤ kl ∗ ũ(x) ≤ |B(x, l) ∩A|

|B(x, l)| .

Summing over x ∈ J gives the first inequality.

Step 6c (Wasserstein). Let γ =
(

9
8

)1/N − 1. For set U and λ ≥ 0, let

Uλ := {x ∈ Ω : dist(x, U) ≤ λ}.
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Let λ = γl. Using Lemma 8 and the fact that u ≥ 0,

L
2

=
dWass(u, a)

2

|Ω| ≥ λ2

(
−
∫
Aball

u(x)dx− a‖Aλ
ball‖

)

≥ λ2

(
7

8
‖A ∩Aball‖ − a

(
1 +

λ

l

)N

‖Aball‖
)

≥ γ2l2
(

49

64
− 1

2
(1 + γ)N

)
‖Aball‖

≥ γ2 1

5

1

2N+2
a l2.

Combining the conclusions of Steps 5 and 6 now proves the interpolation inequal-
ity (22). In particular

L ≥ c(N)r

(
hW

1 + hW

)
a3/2 1

E
.

Step 6d (H−1). Assume E < 1
20

1
2N+2 ahw. To obtain a lower bound on L,

given by (20), we first build a local test function. For γ > 1 to be determined, let
η : [0,∞) → [0, 1] be defined by

η(z) :=

⎧⎪⎨
⎪⎩

1 if z ∈ [0, l],

l − z−l
γl−l if l < z < γl,

0 if γl ≤ z.

Let ξ̄(x) := η(|x|). This is the local test function. Assume, for the moment, that
0 ∈ Al. Let û(x) := max

{
u(x),−a

4

}
. Then

(29)

∫
B(0,γl)

|∇ξ̄|2dx = (γN − 1)|B(0, l)| 1

(γ − 1)2l2
.

Also∫
B(0,γl)

(û− a)ξ̄dx

≥ 7

8
|A ∩B(0, l)| − a

4

(
|B(0, l)\A| + (γN − 1)|B(0, l)|

)
− aγN |B(0, l)|

≥
((

7

8

)2

− a

32
− a(γN − 1)

4
− aγN

)
|B(0, l)|.

Let us now set γ =
(

8
7

)1/N
. Then

(30)

∫
B(0,γl)

(û− a)ξ̄dx ≥ 3

20
|B(0, l)|.

Now let us construct the (global) test function on Ω. Let

ξ(x) = sup
y∈J

ξ̄(x− y).
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Using (29), (23), and (28) we obtain

(31) −
∫

Ω

|∇ξ|2dx ≤ γN − 1

(γ − 1)2l2
‖Aball‖ ≤ a

(γ − 1)2l2
.

Using the fact that balls of radius l centered at points in J are disjoint we obtain

−
∫

Ω

(u− a)ξdx ≥ −
∫

Ω

(û− a)ξdx + −
∫
{u<− a

4 }
udx

≥ 3

20
‖Aball‖ −

1

hW
−
∫

Ω

W (u)dx

≥ 3

20

1

2N+2
a− E

hw

≥ 1

10

1

2N+2
a.

Here we used the assumption E < 1
20

1
2N+2 ahw. Therefore

L ≥
−
∫
Ω
(u− a)ξdx√
−
∫
Ω
|∇ξ|2dx

≥ c̃(N)
√
al.

The definition of l now implies

L ≥ c(N)r

(
hW

1 + hW

)
a3/2 1

E
,

which proves the interpolation inequality.
Remark 2. In the case N = 2, one can obtain a sharper result with respect to

scaling in a (as a → 0+) by considering more carefully constructed test functions.
This was done for the Mullins–Sekerka evolution by Conti, Niethammer, and Otto in
[5]. In particular if γ is taken of size a−1/2, and on [l, cl], we replace the linear η by
the optimal one, η(z) = (ln γl− ln z)/ ln γ. By using such a test function one obtains
that

L ≥ c(N)r

(
hW

1 + hW

)
a3/2| ln a|1/2 1

E
.

4.1. Interpolation inequalities for the local energy. Let us now consider
the case of the local energy density:

(32) E(u) := −
∫

Ω

1

2
|∇u(x)|2 + W (u(x))dx.

The method developed in the proof of Theorem 6 applies to the local energy with
minor modifications.

Corollary 7 (interpolation inequality). Let 0 < a ≤ 1
2 . Assume W satisfies

(W1)–(W3). There exists a constant C = C(a, hW ) > 0 such that for all Λ > 0
and all configurations u ∈ M for which E(u) < a

64

(
hW

1+hW

)
, and in the H−1 case also

E(u) < 1
2N+2

ahW

20 , the following holds:

(33) E(u)L(u) ≥ C.

The constant C = c(N)
(

hW

1+hW

)
a3/2.
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Proof. Note that Step 1 is not needed, while the estimate of Step 2 used only
the W term, which is the same for both the local and the nonlocal energy. The main
fact we need to check is the statement of Step 3, which we prove below for r2 = 1

2 .
Steps 4, 5, and 6 do not require any modifications.

To prove that

−
∫

Ω

|ũ− κr ∗ ũ|dx ≤
(

16

9
+

2

hW

)
E

with r2 = 1
2 we begin as in Step 3 of the proof of Theorem 6:

−
∫

Ω

∣∣∣ũ(x)−
∫

RN

κr(x− y)ũ(y)dy
∣∣∣dx

≤
(

3

4

)−2

−
∫

Ω

∫
RN

|u(x) − u(y)|2κr(x− y)dydx + 2

∥∥∥∥
{
a

4
≤ u ≤ 7

8

}∥∥∥∥
≤ 16

9
−
∫

Ω

1

|B(x, r)|

∫
B(x,r)

|u(x) − u(y)|2dydx +
2

hW
E.

It remains to further estimate the first term:

−
∫

Ω

1

|B(x, r)|

∫
B(x,r)

|u(x) − u(y)|2dydx

≤ −
∫

Ω

1

|B(0, r)|

∫
B(x,r)

|x− y|2
∣∣∣∣
∫ 1

0

∇u(x− s(x− y))ds

∣∣∣∣
2

dydx

≤ 1

2
−
∫

Ω

1

|B(0, r)|

∫
B(0,r)

∫ 1

0

|∇u(x− sz)|2dsdzdx

≤ 1

2

1

|B(0, r)|

∫
B(0,r)

∫ 1

0

2Edsdz = E.

5. Appendix.

5.1. A property of Wasserstein distance. The following lemma is analogous
to Lemma 5 in [17]. We state it in large generality, the reason being that we want to
consider Ω with metric from the torus RN/(ΛZ)N . In applications σ is the Lebesgue
measure.

Lemma 8. Let (Ω, d, σ) be a metric space endowed with finite measure σ. Let
u ∈ L1(Ω) be a nonnegative function with average a := −

∫
Ω
u(x)dσ(x). Let A ⊂ Ω

measurable, and let Al := {x ∈ Ω : d(x,A) ≤ l}. Then

d2
Wass(u, a) ≥ l2

(∫
A

u(x)dσ(x) − aσ(Al)

)
.

Proof. We use the definition of Wasserstein distance. Let π be an admissible
transportation plan, that is, a measure on Ω×Ω with marginals u(x)dσ(x) and aσ(y).
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Then ∫
Ω×Ω

|x− y|2dπ(x, y) =

∫
A×(Ω\Al)

|x− y|2dπ(x, y)

≥ l2 π(A× (Ω\Al))

≥ l2(π(A× Ω) − π(Ω ×Al))

= l2
(∫

A

u(x)dσ(x) −
∫
Al

adσ(y)

)

= l2
(∫

A

u(x)dσ(x) − aσ(Al)

)
.

Acknowledgments. The author would like to thank Andrea Bertozzi and Chad
Topaz for helpful discussions, as well as the referees for carefully reading the manu-
script and providing valuable suggestions. The author would also like to thank the
Center for Nonlinear Analysis for its support during the preparation of this paper.

REFERENCES

[1] G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymp-
totic behaviour of rescaled energies, European J. Appl. Math., 9 (1998), pp. 261–284.

[2] G. Alberti, G. Bellettini, M. Cassandro, and E. Presutti, Surface tension in Ising sys-
tems with Kac potentials, J. Statist. Phys., 82 (1996), pp. 743–796.

[3] J.-D. Benamou and Y. Brenier, A numerical method for the optimal time-continuous mass
transport problem and related problems, in Monge Ampère Equation: Applications to Ge-
ometry and Optimization (Deerfield Beach, FL, 1997), Contemp. Math. 226, AMS, Provi-
dence, RI, 1999, pp. 1–11.
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UNIQUENESS OF POSITIVE BOUND STATES TO SCHRÖDINGER
SYSTEMS WITH CRITICAL EXPONENTS∗

CONGMING LI† AND LI MA‡

Abstract. We prove the uniqueness of the positive solutions of the following elliptic system:
(1) −Δ(u(x)) = u(x)αv(x)β , (2) −Δ(v(x)) = u(x)βv(x)α. Here x ∈ Rn, n ≥ 3, and 1 ≤ α <
β ≤ n+2

n−2
with α + β = n+2

n−2
. In the special case when n = 3 and α = 2, β = 3, the system is

closely related to the ones from the stationary Schrödinger system with critical exponents for the
Bose–Einstein condensate. As the first step, we prove the radial symmetry of the positive solutions
to the elliptic system above with critical exponents. We then prove that u = v, which is a key point
for our uniqueness result.

Key words. moving plane, positive solutions, radial symmetric, uniqueness
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1. Introduction. In this paper, we consider the uniqueness of positive solutions
to the following stationary Schrödinger system:

{
−Δ(u(x)) = u(x)αv(x)β ,

−Δ(v(x)) = u(x)βv(x)α.
(1)

Here, in the special case when n = 3 and α = 2, β = 3, and u = v, system (1)
is reduced to the quintic Schrödinger equation considered by Bourgain [1]. We prove
in this paper that there is a uniqueness result for the system above. In general, our
system is related to the ones from the stationary Schrödinger system with critical
exponents for the Bose–Einstein condensate (see [15], [19], [20], and [23]). In the
earlier works [19], [20], and [23], more attention was paid to the elliptic system (1)
with subcritical exponents. Very interestingly, Chen and Li proved that the best
constant in the weighted Hardy–Littlewood–Sobolev inequality can be achieved by
explicit radial symmetric functions (see [5] and [18]). As a consequence of their work,
the uniqueness of positive solutions to the corresponding elliptic system (it is (1) in the
case when α = 0 and β = n+2

n−2 ) has been settled. However, when 0 < α, β ≤ n+2
n−2 , the

uniqueness of smooth positive solutions to the stationary Schrödinger system (1) is an
open question. Generally speaking, there are very few results even for the uniqueness
of positive solutions to ordinary differential systems. The aim of this paper is to
prove the radial symmetry and uniqueness of positive solutions to (1) with critical
exponents and 1 ≤ α < β ≤ n+2

n−2 .
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As one can expect, just like in the work of Weinstein [28] in the scalar case with
subcritical exponent, there is a close relationship between the stationary Schrödinger
system with critical exponent and the Hardy–Littlewood–Sobolev inequality. As we
show below, this is true.

Since we shall use Hardy–Littlewood–Sobolev inequality to prove radial symmetry
of our solutions, let’s first explore the recent progress of Lieb’s conjecture. We begin
by recalling the well-known Hardy–Littlewood–Sobolev inequality. Let 0 < λ < n,
1 < s, r < ∞, and ‖f‖p be the Lp(Rn) norm of the function f . We shall write by
‖f‖p,Ω the Lp norm of the function f on the domain Ω. Then the classical Hardy–
Littlewood–Sobolev inequality states that

∫
Rn

∫
Rn

f(x)g(y)

|x− y|λ dxdy ≤ Cs,λ,n‖f‖r‖g‖s(2)

for any f ∈ Lr(Rn), g ∈ Ls(Rn), and for 1
r + 1

s + λ
n = 2. Hardy and Littlewood also

introduced the double weighted inequality, which was later generalized by Stein and
Weiss in [26] in the following form:

∣∣∣∣
∫
Rn

∫
Rn

f(x)g(y)

|x|α0 |x− y|λ|y|β0
dxdy

∣∣∣∣ ≤ Cα0,β0,s,λ,n‖f‖r‖g‖s,(3)

where α0 + β0 ≥ 0,

1 − 1

r
− λ

n
<

α0

n
< 1 − 1

r
and

1

r
+

1

s
+

λ + α0 + β0

n
= 2.(4)

The best constant in the weighted inequality (3) can be obtained by maximizing
the functional

J(f, g) =

∫
Rn

∫
Rn

f(x)g(y)

|x|α0 |x− y|λ|y|β0
dxdy(5)

under the constraints ‖f‖r = ‖g‖s = 1. Then the corresponding Euler–Lagrange
equations are the system of integral equations

⎧⎨
⎩

λ1rf(x)
r−1

= 1
|x|α0

∫
Rn

g(y)
|y|β0 |x−y|λ dy,

λ2sg(x)
s−1

= 1
|x|β0

∫
Rn

f(y)
|y|α0 |x−y|λ dy,

(6)

where f, g ≥ 0, x ∈ Rn, and λ1r = λ2s = J(f, g).

Let u = c1f
r−1, v = c2g

s−1, p = 1
r−1 , q = 1

s−1 , pq �= 1, and for a proper choice of
constants c1 and c2, system (6) becomes

⎧⎨
⎩

u(x) = 1
|x|α0

∫
Rn

v(y)q

|y|β0 |x−y|λ dy,

v(x) = 1
|x|β0

∫
Rn

u(y)p

|y|α0 |x−y|λ dy,
(7)

where u, v ≥ 0, 0 < p, q < ∞, 0 < λ < n, α0

n < 1
p+1 < λ+α0

n , and 1
p+1 + 1

q+1 =
λ+α0+β0

n .
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Note that in the special case where α0 = 0 and β0 = 0, system (7) reduces to the
following system: ⎧⎨

⎩
u(x) =

∫
Rn

vq(y)
|x−y|λ dy,

v(x) =
∫
Rn

up(y)
|x−y|λ dy

(8)

with

1

q + 1
+

1

p + 1
=

λ

n
.(9)

It is well known that this integral system is closely related to the system of partial
differential equations

{
(−Δ)γ/2u = vq, u > 0, in Rn,

(−Δ)γ/2v = up, v > 0, in Rn,
(10)

where γ = n− λ.

When p = q = n+γ
n−γ and u(x) = v(x), system (8) becomes the single equation

u(x) =

∫
Rn

u(y)
n+γ
n−γ

|x− y|n−γ
dy, u > 0, in Rn.(11)

The corresponding PDE is the well-known family of semilinear equations

(−Δ)γ/2u = u(n+γ)/(n−γ), u > 0, in Rn.(12)

In particular, when n ≥ 3, and γ = 2, (12) becomes

−Δu = u(n+2)/(n−2), u > 0, in Rn.(13)

The classification of the solutions of (13) has provided an important ingredient
in the study of the well-known Yamabe problem and the prescribing scalar curvature
problem. Equation (13) was studied by Gidas, Ni, and Nirenberg [11], Caffarelli,
Gidas, and Spruck [2], Chen and Li [3], and Li [16]. They classified all the positive
solutions. Recently, Wei and Xu [27] generalized this result to the solutions of the
more general equation (12) with γ being any even number between 0 and n. Some
results of Chen, Li, and Ou have been improved by Hang in [12]. One may see related
results in [14] and [17].

Although the systems for other real values of α, β between 0 and n are of interest to
some, we shall concentrate in this paper only on the system (1) with critical exponents
when 1 ≤ α, β ≤ n+2

n−2 and α + β = n+2
n−2 .

Our main results are the following two theorems.

Theorem 1. Assume that n ≥ 3, 1 ≤ α, β ≤ n+2
n−2 , and α + β = n+2

n−2 . Then any

L
2n

n−2 (Rn)×L
2n

n−2 (Rn) positive solution pair (u, v) to system (1) is radial symmetric.

Theorem 2. Assume that n ≥ 3, 1 ≤ α ≤ β ≤ n+2
n−2 , and α+β = n+2

n−2 . Then any

L
2n

n−2 (Rn) × L
2n

n−2 (Rn) radial symmetric solution pair (u, v) to system (1) is unique
and u = v.
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In the proof of Theorem 1, we shall use the equivalent integral form for the non-
negative solutions

(u, v) ∈ L
2n

n−2 (Rn) × L
2n

n−2 (Rn)

to system (1):

u(x) =

∫
Rn

uαvβ(y)

|x− y|n−2
dy

and

v(x) =

∫
Rn

vαuβ(y)

|x− y|n−2
dy.

This equivalent form can be proved in the same way as in section 4 in the work of
Chen, Li, and Ou [8].

We point out that when u = v, the elliptic system (1) reduces to the elliptic
equation (13) with critical exponent. Then u = v is in a special family of functions:

φxo,t(x) = c

(
t

t2 + |x− xo|2

)(n−2)/2

,(14)

where t > 0, xo ∈ Rn, with some positive constant c such that each φxo,t(x) solves
(13). This special family of functions is important in the study of (1).

Our results are motivated by the previous work [6], where Chen, Li, and Ou con-
sidered the more general system (8) and established the symmetry and monotonicity
of the solutions. In [4], Chen and Li also obtained a regularity result of the solutions
to (8). To establish the symmetry of the solutions to (8), Chen, Li, and Ou [8], [6], [7]
introduced a new idea: an integral form of the method of moving planes. It is entirely
different from the traditional method used for PDEs. Instead of relying on maximum
principles, certain integral norms were estimated. The new method is a very powerful
tool in studying qualitative properties of other integral equations and systems. In
fact, following Chen, Li, and Ou’s work, Jin and Li [13] studied the symmetry of the
solutions to the more general system (7).

Using the maximum principle trick, de Figueiredo and Felmer [10] found an in-
teresting Liouville-type result for certain type of elliptic systems. Recently Ma and
Chen [21] discussed the Liouville-type theorem for the positive solutions to the elliptic
system (10). They also discussed the radial symmetry property of nonnegative solu-
tions to a higher-order differential equation [22]. Naito and Usami [24] studied the
existence of nonoscillatory solutions to second-order elliptic systems of Emden–Fowler
type. Some nonexistence results for the Emden–Fowler system can be found in [25].
We refer to [13], [9], and [24] for more references about elliptic systems.

We first prove the radial symmetry of the solutions to (1) with critical exponents.
It is obvious that the radial symmetry of the solutions reduces (1) to a system of
ODEs, which has the special solution pair (φo,t(x), φo,t(x)). To prove the uniqueness,
we prove that u(0) = v(0). Then by the uniqueness of the initial value problem for
ODEs, we conclude that u = v = φo,t. This is the key observation in establishing the
uniqueness of positive solutions for (1) with critical exponents.

Theorems 1 and 2 will be proved in the next two sections.
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2. Proof of the radial symmetry. We use the moving plane method in-
troduced by Chen, Li, and Ou in [8] to study system (1). We recall the Hardy–
Littlewood–Sobolev inequality:

|Tf |p ≤ C(n, p)|f | np
n+2p

,(15)

where C(n, p) is a uniform positive constant and

Tf(x) =

∫
Rn

|x− y|2−nf(y)dy.

Proof of Theorem 1. For each λ ∈ R, we denote

Hλ = {x ∈ Rn;x1 < λ}.

For each x = (x1, x
′) ∈ Rn, we let

xλ = (2λ− x1, x
′)

be the reflection point of x with respect to the hyperplane ∂Hλ. We let e1 =
(1, 0, . . . , 0).

We define

uλ(x) = u(xλ), Bu
λ = {x ∈ Hλ;uλ(x) > u(x)}

and

vλ(x) = v(xλ), Bv
λ = {x ∈ Hλ; vλ(x) > v(x)}.

To do the moving plane method, we need the following formula, which is obtained
by a change of variables.

u(x) =

∫
Hλ

uαvβ(y)

|x− y|n−2
dy +

∫
Hλ

uα
λv

β
λ(y)

|xλ − y|n−2
dy

and

uλ(x) =

∫
Hλ

uαvβ(y)

|xλ − y|n−2
dy +

∫
Hλ

uα
λv

β
λ(y)

|x− y|n−2
dy.

Then we have

uλ(x) − u(x) =

∫
Hλ

(uα
λv

β
λ − uαvβ)(y)

(
1

|x− y|n−2
− 1

|xλ − y|n−2

)
dy.(16)

Note that for x ∈ Hλ, we have

1

|x− y|n−2
>

1

|xλ − y|n−2
.

Then for x ∈ Bu
λ , using the mean value theorem to

uα
λv

β
λ − uαvβ = (uα

λ − uα)vβλ + uα(vβλ − vβ)
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and after dropping the term of the integration on the region vλ − v ≤ 0, we have⎧⎪⎪⎨
⎪⎪⎩

0≤ uλ(x) − u(x)

≤ α
∫
Bu

λ

uα−1
λ vβ

λ(uλ−u)
|x−y|n−2 dy + β

∫
Bv

λ

uα
λvβ−1

λ (vλ−v)
|x−y|n−2 dy

:= I + II.

(17)

Let p = 2n
n−2 . Using the Hardy–Littlewood–Sobolev inequality (15) we can bound

the first term I in (17) by{
|I|p ≤ C(n, p)|uα−1

λ vβλ(uλ − u)| 2n
n+2

≤ C(n, p)|uλ|α−1
p |vλ|βp |uλ − u|p.

(18)

Here the integrations are over the set Bu
λ .

Using again the Hardy–Littlewood–Sobolev inequality (15) we can bound the first
term II in (17) by {

|II|p ≤ C(n, p)|uα
λv

β−1
λ (vλ − v)| 2n

n+2

≤ C(n, p)|uλ|αp |vλ|β−1
p |vλ − v|p.

(19)

Here the integrations are over the domain Bv
λ. Hence, we have

|uλ − u|p,Bu
λ

≤ C(n, p)(|uλ|α−1
p,Bu

λ
|vλ|βp,Bu

λ
|uλ − u|p,Bu

λ
+ |uλ|αp,Bv

λ
|vλ|β−1

p,Bv
λ
|vλ − v|p,Bv

λ
).

(20)

Similarly, we have the following formulae for v and vλ:

v(x) =

∫
Hλ

vαuβ(y)

|x− y|n−2
dy +

∫
Hλ

vαλu
β
λ(y)

|xλ − y|n−2
dy

and

vλ(x) =

∫
Hλ

vαuβ(y)

|xλ − y|n−2
dy +

∫
Hλ

vαλu
β
λ(y)

|x− y|n−2
dy.

Then we have the following estimate:

|vλ − v|p,Bv
λ

≤ C(n, p)(|vλ|α−1
p,Bv

λ
|uλ|βp,Bv

λ
|vλ − v|p,Bv

λ
+ |vλ|αp,Bu

λ
|uλ|β−1

p,Bu
λ
|uλ − u|p,Bu

λ
).

(21)

After these preparations, we can use the moving plane method as developed in
[8] to prove the radial symmetry of the solutions.

At first, let’s start the plane from infinity. Indeed, for λ � 1 large enough, we
know that the quantities

|vλ|p,Bu
λ
, |uλ|p,Bu

λ
, |vλ|p,Bv

λ

and

|uλ|p,Bv
λ
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all are small, which give us that

|uλ − u|p,Bu
λ
≤ 1

4
(|vλ − v|p,Bv

λ
+ |uλ − u|p,Bu

λ
)

and

|vλ − v|p,Bv
λ
≤ 1

4
(|vλ − v|p,Bv

λ
+ |uλ − u|p,Bu

λ
).

These imply that |uλ − u|p,Bu
λ

= 0 and |vλ − v|p,Bv
λ

= 0. In other words, Bu
λ = φ and

Bv
λ = φ.

Next we define

λ0 = inf{λ ∈ R;Bu
λ′ = Bv

λ′ = φ ∀ λ′ ≥ λ}.

Then it comes from the fact that u(x) → 0 as |x| → ∞ and u(x) > 0 in Rn that
λ0 < +∞. By the definition of λ0, we have uλ0(x) ≤ u(x) for x ∈ Hλ0 . If u or v is
not symmetric in the x1 direction at λ0, then using the expression (16), we see that
uλ0(x) < u(x) and vλ0(x) < v(x) for x ∈ Hλ0 . This implies that both of Bu

λ0
and

Bv
λ0

are empty. Then by the absolute continuity of the integral with respect to the
domain we see that |vλ|p,Bu

λ
, |uλ|p,Bu

λ
, |vλ|p,Bv

λ
, and |uλ|p,Bv

λ
are small for λ close to

λ0 and enable us to repeat the above argument showing that both of Bu
λ and Bv

λ are
empty for λ close to λ0. This contradicts the definition of λ0.

3. Proof of the uniqueness. In some sense, the proof of Theorem 2 is just at
hand by using the integral expression of the solution pair (u, v).

Proof of Theorem 2. Let (u, v) ∈ L
2n

n−2 (Rn)×L
2n

n−2 (Rn) be a pair of solutions to
system (1). By Theorem 1, we know that u and v are radial symmetric about some
point x0, say, x0 = 0. We will consider only the case when 1 ≤ α < β < n+2

n−2 , and the
case when α = β can be done similarly.

Since u ∈ L
2n

n−2 (Rn) and v ∈ L
2n

n−2 (Rn), using the same method in [8], we have
that u ∈ C2(Rn) and v ∈ C2(Rn) with

u(x) → 0, v(x) → 0,

as |x| → ∞.
Since our solution u is radial symmetric, we can write, in polar coordinates, the

first equation in (1) as

(rn−1u′(r))′ = −rn−1u(r)αv(r)β ,

where r = |x|.
Integrating both sides of the above equation from 0 to r yields

rn−1u′(r) = −
∫ r

0

sn−1uαvβ(s)ds.

It follows by another integration that

u(r) = u(0) −
∫ r

0

1

τn−1

∫ τ

0

sn−1uαvβdsdτ.(22)

Similarly, for v(r), we have

v(r) = v(0) −
∫ r

0

1

τn−1

∫ τ

0

sn−1vαuβdsdτ.(23)
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As we mentioned in the introduction, we need to show only that u(0) = v(0).
Otherwise, suppose that

u(0) < v(0).(24)

Then by continuity, for all small r > 0,

u(r) < v(r).(25)

In other words, there exists an R > 0, such that

u(r) < v(r) ∀r ∈ (0, R).(26)

Let Ro be the supreme value of R such that (26) holds. Then Ro ≤ ∞ and
u(Ro) = v(Ro), where we have used the fact that u(+∞) = v(+∞) = 0. By the
definition of Ro and α < β, we have that

u(r)αv(r)β > v(r)αu(r)β ∀r ∈ (0, Ro).(27)

Then we have from (22) and (23) that

0 > u(0) − v(0) =

∫ Ro

0

1

τn−1

∫ τ

0

sn−1(uαvβ − uβvα)(s)dsdτ > 0.

This is impossible.
Similarly, one can show that u(0) > v(0) is impossible too. Therefore, we must

have

u(0) = v(0).

Finally, by the standard ODE theory, we arrive at

u(r) ≡ v(r).

Hence, our elliptic system (1) has been reduced to the elliptic equation (13) with the
critical exponent. By now, it is standard that our solution pair u and v is of the form
(14). This completes the proof of Theorem 2.
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Abstract. We establish the existence and the stability of traveling wave solutions of a quasi-
linear hyperbolic system with both relaxation and diffusion. The traveling wave solutions are shown
to be asymptotically stable under small disturbances and under the subcharacteristic condition using
a weighted energy method. The delicate balance between the relaxation and the diffusion that leads
to the stability of the traveling waves is identified; namely, the diffusion coefficient is bounded by a
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1. Introduction. The phenomenon of relaxation arises in many physical prob-
lems such as kinetic relaxation to fluid dynamics, gases not in local thermodynamic
equilibrium, elasticity with memory, phase transitions, shallow water waves, and traf-
fic flows. A remarkable development of the stability theory for various relaxation
systems has appeared in past decades; see, e.g., [1, 2, 8, 10, 11, 13, 15, 16, 18, 23].
The real physical problems usually involve both relaxation and diffusion. It was found
by asymptotic analysis and numerical simulations that the fine interplay between the
relaxation and the diffusion may enhance physically interesting behavior such as soli-
ton waves and oscillatory solutions [4, 3, 5, 6, 7, 9, 14, 17, 20, 22, 24]. However, the
rigorous stability theory for such systems has not been well studied. In the current
paper, we establish rigorously the existence and the stability of traveling wave so-
lutions of a quasi-linear hyperbolic system with both relaxation and diffusion. The
delicate balance between the relaxation and the diffusion that leads to the nonlinear
stability of the traveling wave fronts is identified to occur when the diffusion coefficient
is bounded by a constant multiple of the relaxation time. Such a result provides an
important first step toward understanding the transition from stability to instability
as the diffusion coefficient and the relaxation time vary in the physical problems.

Consider the following quasi-linear hyperbolic system with relaxation and diffu-
sion: {

vt − ux = 0,

ut + p(v)x =
1

τ
(ue(v) − u) + μuxx

(1)

subject to the initial data

(v, u)(x, 0) = (v0, u0)(x) → (v±, u±) as x → ±∞, u± = ue(v±),(2)

where, in the context of traffic flows, v is specific volume and u velocity. The first
equation in (1) is a conservation law, while the second describes drivers’ acceleration

∗Received by the editors May 6, 2007; accepted for publication (in revised form) June 20, 2008;
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behavior. The first term on the right-hand side of the second equation in (1) expresses
the tendency of traffic at a given specific volume v to relax to some equilibrium speed
ue satisfying

u′
e(v) > 0.

The parameter τ > 0 corresponds to drivers’ response time to the traffic. The second
term on the left-hand side of the second equation in (1) is an anticipation factor:
drivers slow down at the sight of an increase in traffic density ahead. The function p
is the so-called traffic pressure satisfying

p′(v) < 0.(3)

The last term on the right-hand side of the second equation in (1) models viscosity
with coefficient μ > 0, a presumed tendency to adjust one’s speed to that of the
surrounding traffic.

A strict subcharacteristic condition,

−
√
−p′(v) < u′

e(v) <
√
−p′(v),(4)

is imposed for all v under consideration. Subcharacteristic condition (4) is a necessary
condition for linear stability (Whitham [23]) and for nonlinear stability (Li and Liu
[10] and Liu [15]) when μ = 0.

The purpose of this paper is to show the existence and stability of the traveling
wave solutions (V,U)(x − st) of (1) under appropriate conditions on the relaxation
time τ and the diffusion coefficient μ.

A traveling wave solution is a solution of the form

(v, u)(x, t) = (V,U)(x− st) ≡ (V,U)(z),

where z = x− st, satisfying

(V,U)(z) → (v±, u±) as z → ±∞, u± = ue(v±),(5)

where v+, v−, and s satisfy the Rankine–Hugoniot condition

−s(v+ − v−) − ue(v+) + ue(v−) = 0(6)

and the entropy condition

(v+ − v−)(ue(v) − ue(v±) + s(v − v±)) < 0(7)

for all v in between v+ and v−. Indeed, the corresponding jump (v−, v+) is an admis-
sible shock of the equilibrium equation

vt − ue(v)x = 0.(8)

Furthermore, the speed s of the traveling wave must be subcharacteristic; i.e., for all
z ∈ R it holds

−
√
−p′(V (z)) < s <

√
−p′(V (z)).(9)

For a weight function w ≥ 0, L2
w denotes the space of measurable functions f

satisfying
√
wf ∈ L2 with norm

||f ||L2
w

=

(∫
w(x)|f(x)|2dx

)1/2

.
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Hj
w, j ≥ 0, denotes the weighted Sobolev space with norm

||f ||Hj
w

=

(
j∑

k=0

||∂k
xf ||2w

)1/2

.

We now state our main results.
Theorem 1.1. Suppose that subcharacteristic conditions (4) and (9), the Rankine–

Hugoniot condition (6), and the entropy condition (7) hold, and suppose that the dif-
fusion coefficient is appropriately small,

0 < μ ≤ mτ,(10)

for some m > 0 critically depending on subcharacteristic conditions (4) and (9). Then
there exists a traveling wave solution (V,U)(x− st) of (1) and (5), which is unique up
to a shift.

Moreover, there exists a constant ε0 > 0 such that if

|v− − v+| + ||v0(·) − V (· + x0)||2 + ||u0(·) − U(· + x0)||2 + ||(φ0, φ0,x, ψ0)||L2
w
≤ ε0,

where x0 is determined by∫ +∞

−∞
(v0 − V )(x)dx = x0(v+ − v−)(11)

and

(φ0, ψ0)(x) =

(∫ x

−∞
(v0(y) − V (y + x0))dy, u0(x) − U(x + x0)

)

and where the weight function w is defined as

w(V (x + x0)) =
(V (x + x0) − v+)(V (x + x0) − v−)

Q(V (x + x0))
,(12)

then the Cauchy problem (1), (2) has a unique global solution (v, u)(x, t) satisfying

v(x, t)−V (x+x0−st), u(x, t)−U(x+x0−st) ∈ C0(0,∞;H2∩L2
w)∩L2(0,∞;H2∩L2

w)

and

sup
x∈R

|(v, u)(x, t) − (V,U)(x + x0 − st)| → 0 as t → +∞.(13)

Previously, Jin and Liu [4] derived that the weakly nonlinear limit of the relaxation
system of Jin and Xin [2] with a viscous term is governed by the Kortweg–de Vries
(KdV) equation and dispersive waves are enhanced when the diffusion coefficient
dominates in the sense that

τ 
 O(τ
1
4 ) 
 μ.

When the diffusion coefficient is not too small, Kerner and Konhäuser [6], Kurtze and
Hong [7], Lee, Lee, and Kim [9], and Ou et al. [22] were able to derive a modified
KdV equation and obtain soliton-like solutions and oscillatory solutions for traffic
flow models similar to (1) by asymptotic analysis and numerical simulations. The
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phenomena occur in other applications. Keener [5] studied the diffusion induced
insulin oscillatory secretion. He found that oscillatory secretion of insulin results
from an important interplay between flow rate of the reactor and insulin diffusion.

In the absence of the diffusion term,

μ = 0,

Li and Liu [10] established the nonlinear stability of traveling waves of (1) under the
subcharacteristic conditions (4) and (9). The stability result is a consequence of the
nonlinearity, the relaxation, and the subcharacteristic conditions (4) and (9).

In the current paper, we prove that, in addition to assuming the subcharacter-
istic conditions (4) and (9), if the diffusion coefficient is appropriately small (10),
then traveling wave solutions of (1) are stable. In the context of traffic flows, our
results indicate that the stability of the traveling fronts is guaranteed if the diffusion
mechanism, the tendency to adjust one’s speed to that of the surrounding traffic,
is dominated by the relaxation mechanism, the tendency of traffic to relax to some
equilibrium speed.

The plan of this paper is the following. In section 2, we prove the existence of
traveling wave solutions of the relaxation system with viscosity (1) by the phase plane
analysis provided that the diffusion coefficient is appropriately small (10). In section
3, the stability problem is reformulated in terms of perturbations to the underlying
traveling wave. Section 4 is devoted to establishing the desired a priori estimates for
the nonlinear stability of the traveling wave solutions. When the equilibrium function
ue(v) is nonconvex, there are traveling wave solutions that decay at an algebraic decay
rate at infinity. A weighted energy method was developed to establish the stability
of such degenerate traveling wave profiles [12, 10, 16, 19]. We adapt the weighted
energy method developed in [12, 10, 16, 19] to a system of conservation laws with
both relaxation and diffusion (1). It is under condition (10) that we prove the desired
weighted energy estimates that lead to the stability of the traveling wave solutions.

2. Existence of traveling wave profiles. In this section, we prove the exis-
tence of traveling wave solutions of the relaxation system with viscosity (1). We show
that, under the subcharacteristic conditions (4) and (9), and when the diffusion coef-
ficient is appropriately small (10), there is a traveling wave profile of (1) connecting
two states satisfying the Rankine–Hugoniot condition (6) and the entropy condition
(7).

Lemma 2.1. Assume that v+, v−, and s satisfy the Rankine–Hugoniot condition
(6), the entropy condition (7), and the subcharacteristic conditions (4), (9), and that
the diffusion coefficient is appropriately small (10). There exists a traveling wave
solution (V,U)(x − st) of (1) with boundary condition (5), which is unique up to a
shift.

Moreover, the profile V = V (z) is monotone and

(v+ − v−)(ue(V (z)) − ue(v±) + s(V (z) − v±)) < 0(14)

for all z ∈ R.
Proof. Substituting

(v, u)(x, t) = (V,U)(z), z = x− st,

into (1), we have { −sVz − Uz = 0,

−sUz + p(V )z = ue(V )−U
τ + μUzz.

(15)
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Integrating the first equation of (15) over (±∞, z) and using boundary condition (5)
yield

−sV − U = −sv± − u± = −sv± − ue(v±).(16)

Therefore the Rankine–Hugoniot condition (6) for the equilibrium equation (8) is
satisfied by the end states of the traveling wave of the relaxation system (1).

We derive from (15), (16), and (5) that V satisfies a second order nonlinear
differential equation

Vzz +
p′(V ) + s2

sμ
Vz −

ue(V ) − ue(v±) + s(V − v±)

τsμ
= 0(17)

and

V (z) → v± as z → ±∞.(18)

We will establish the existence of solutions for (17) and (18) by phase plane analysis.
Let W = V ′. Equation (17) is rewritten as a system of first order differential

equations {
V ′ = W,

W ′ = −p′(V )+s2

sμ W + ue(V )−ue(v±)+s(V−v±)
τsμ .

(19)

(v±, 0) are two equilibrium points of (19). Without loss of generality, we assume that
v− > v+. Other cases can be treated similarly.

The entropy condition (7) implies that

Q(V ) ≡ −1

τ
(ue(V ) − ue(v±) + s(V − v±)) < 0, v+ < V < v−,(20)

and consequently

−u′
e(v+) ≤ s < −u′

e(v−) ≤ 0.

Consider

−u′
e(v+) < s < −u′

e(v−) < 0.(21)

The degenerate cases −u′
e(v+) = s and s = −u′

e(v−) can be treated similarly.
Linearize the system of nonlinear equations (19) at equilibrium points (v±, 0) to

obtain {
(V − v±)′ = W,

W ′ = −p′(v±)+s2

sμ W +
u′
e(v±)+s
τsμ (V − v±).

(22)

The eigenvalues of the Jacobian of (22) satisfy

λ2 + λ
p′(v±) + s2

sμ
− u′

e(v±) + s

τsμ
= 0.

The entropy condition (21), the subcharacteristic condition (9), and s < 0 imply that

−u′
e(v−) + s

τsμ
< 0,

p′(v−) + s2

sμ
> 0.(23)
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Thus (v−, 0) is a saddle with eigenvalues

λ1− > 0 > λ2−

and the corresponding right eigenvectors

r1− = (1, λ1−)T , r2− = (1, λ2−)T .

Therefore the unstable manifold of (19) at (v−, 0) is tangent to r1−.
Similarly, the entropy condition (21), the subcharacteristic condition (9), and

s < 0 imply that

−u′
e(v+) + s

τsμ
> 0,

p′(v+) + s2

sμ
> 0.(24)

Thus (v+, 0) is a stable node provided that(
p′(v+) + s2

sμ

)2

+ 4
u′
e(v+) + s

τsμ
> 0

or

0 <
μ

τ
< − (p′(v+) + s2)2

4s(u′
e(v+) + s)

.

The above inequality holds provided that the diffusion coefficient is appropriately
small (10).

The eigenvalues of the Jacobian of (22) satisfy

0 > λ1+ > λ2+,

and the corresponding right eigenvectors are

r1+ = (1, λ1+)T , r2+ = (1, λ2+)T .

The nullclines of (19) consist of

W = 0(25)

and

W =
ue(V ) − ue(v±) + s(V − v±)

τ(p′(V ) + s2)
≡ g(V ).(26)

The nullclines intersect at the equilibrium points (v±, 0), where

g(v±) = 0.

Moreover, by using the entropy condition (21) and the subcharacteristic condition
(9), we have

g′(v−) =
u′
e(v−) + s

(p′(v−) + s2)τ
> 0, g′(v+) =

u′
e(v+) + s

(p′(v+) + s2)τ
< 0,(27)

and

g(V ) < 0, v+ < V < v−.
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Fig. 1. The invariant domain D.

Let v0 ∈ (v+, v−) be the minimum point of g on [v+, v−] and

W0 = g(v0) = min
v+<V<v−

g(V ).

Then

W0 < 0, g′(v0) = 0.

Let D be a region bounded by the following curves on the phase plane (see Figure 1):

Γ1 : W = 0, v+ ≤ V ≤ v−,

Γ2 : W = −a(V − v+), v+ ≤ V ≤ v1,

Γ3 : W = W0 = g(v0), v1 ≤ V ≤ v0,

Γ4 : W = g(V ), v0 ≤ V ≤ v−,

where a > 0 is to be determined and (v1,W0) is the intersection point of Γ2 and Γ3

satisfying

W0 = −a(v1 − v+), v+ ≤ v1 ≤ v0.

We will show that, under the condition that the diffusion coefficient is appropri-
ately small (10), a can be chosen such that D is an invariant region of (19).

(i) From (19) and (21) we derive that on the top boundary of D, Γ1, W
′ < 0, the

flow points downward toward the interior of D.
(ii) On the bottom boundary of D, Γ3, the flow points in the upper left direction,

which points toward the interior of D. This is because Γ3 lies below the nullcline
W = g(V ) and thus W ′ > 0.

(iii) On the right boundary of D, Γ4, which is part of the nullcline W = g(V ),
the flow points leftward toward the interior of D. This is because V ′ = W ≤ 0 and
W ′ = 0.
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(iv) It remains to show that the flow points toward the interior of D on the left
boundary of D, Γ2.

Statement (iv) is true if we can choose a > 0 such that

dW

dV

∣∣∣∣
Γ2

< −a < 0, v+ ≤ V ≤ v1.(28)

We show that such a > 0 exists if the diffusion coefficient μ is appropriately small
(10). Noting (24) and (27), we have

λ1+ =
2
u′
e(v+)+s
τsμ√(

p′(v+)+s2

sμ

)2

+ 4
u′
e(v+)+s
τsμ + p′(v+)+s2

sμ

< g′(v+) < 0.

Thus Γ2 is below W = g(V ) for V near v+, V ∈ (v+, v+ + ε) for some ε > 0.
Indeed, if λ1+ < min[v+,v0] g

′(V ), we will choose a satisfying

λ1+ < −a < min
[v+,v0]

g′(V ) < 0.

Thus Γ2 is below W = g(V ) for v+ ≤ V ≤ v1.
We now show that (28) is satisfied. Since

λ2+ < λ1+ < −a < g′(v+) < 0,

there is an ε > 0, such that

dW

dV

∣∣∣∣
Γ2

< −a < 0, v+ ≤ V ≤ v+ + ε.(29)

If V is away from v+, then there is a δ > 0 such that

0 <
g(V )

W
≤ 1 − δ, v+ + ε ≤ V ≤ v1.

From (19) we have

dW

dV

∣∣∣∣
Γ2

=
W ′

V ′ = −p′(V ) + s2

sμ

(
1 − g(V )

W

)
≤ −δ

p′(V ) + s2

sμ
< 0

for v+ + ε ≤ V ≤ v1. Noting the definition of g and (26) and assuming that the
diffusion coefficient μ is appropriately small (10), we have

dW

dV

∣∣∣∣
Γ2

≤ −δ
p′(V ) + s2

sμ
< g′(V ) < 0, v+ + ε ≤ V ≤ v1.

Thus

dW

dV

∣∣∣∣
Γ2

< −a < 0, v+ + ε ≤ V ≤ v1.(30)

Combining (29) and (30), we prove that there is an a satisfying (28). If min[v+,v0] g
′(V ) <

λ1+, we consider a piecewise linear curve Γ2 instead. The above argument can be
modified to prove (28).
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Therefore D is an invariant region of (19).
Now we look for a trajectory connecting the two equilibrium points (v±, 0). Noting

(23) and (27), we have

0 < λ1− =
2
u′
e(v−)+s
τsμ√(

p′(v−)+s2

sμ

)2

+ 4
u′
e(v−)+s
τsμ + p′(v−)+s2

sμ

< g′(v−).

Since the unstable manifold of (19) at (v−, 0) is tangent to r1− = (1, λ1−)T with
0 < λ1− < g′(v−), there is a trajectory of (19) originating from (v−, 0) that enters
the domain D. Since D is an invariant region, such a trajectory is trapped inside D.
Therefore the trajectory flows into the stable node (v+, 0) as t → +∞.

We thus find a solution V of (17) and (18) which is monotone decreasing. The
entropy condition (7) follows from (20) and the above monotonicity. The existence of
the traveling wave profile (V,U) of (15) and (5) is proved by using (16).

Lemma 2.1 is proved.

3. Reformulation of the stability problem. In this section, we reformulate
the problem that the solution (v, u)(x, t) of (1), (2) exists globally and approaches a
shifted traveling wave solution (V,U)(x+x0−st) under the subcharacteristic condition
(4) and under condition (10) as t → ∞.

We will look for a solution of the following form:

(v, u)(x, t) = (V,U)(z + x0) + (φz, ψ)(z, t),(31)

where z = x− st.
For initial data satisfying (11), the conservation law in (1) implies that

φ(±∞, t) =

∫ +∞

−∞
(v(x, t) − V (x + x0 − st))dx =

∫ +∞

−∞
(v0(x) − V (x + x0))dx

= x0(v+ − v−) −
∫ +∞

−∞
(V (x + x0) − V (x))dx = 0.

For simplicity of notation, we assume the shift x0 = 0 in the rest of the paper.
We substitute (31) into (1), by virtue of (15), and integrate the first equation

once with respect to z, to obtain that the perturbation (φ, ψ) satisfies⎧⎪⎨
⎪⎩

φt − sφz − ψ = 0,
ψt − sψz + (p(V + φz) − p(V ))z

=
1

τ
(ue(V + φz) − ue(V ) − ψ) + μψzz.

(32)

The first equation of (32) gives

ψ = φt − sφz.(33)

Substituting (33) into the second equation of (32), we get a closed equation for φ,

L(φ) ≡ (φt − sφz)t − s(φt − sφz)z + (p′(V )φz)z +
1

τ
φt + λφz − μ(φt − sφz)zz

= −F (V, φz),(34)
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where Q < 0 is defined in (20) and

λ = Q′(V ) = −1

τ
(u′

e(V ) + s),

and

F (V, φz) = F1 + F2

with

F1 := −1

τ
(ue(V + φz) − ue(V ) − u′

e(V )φz),(35)

F2 := (p(V + φz) − p(V ) − p′(V )φz)z = (G(V, φz)φ
2
z)z,(36)

and

G(V, φz) :=

∫ 1

0

∫ 1

0

p′′(V + θηφz)θdθdη

which is the error term due to nonlinearity of the function p.
The corresponding initial data for (34) become

φ(z, 0) = φ0(z), φt(z, 0) = sφ′
0(z) − ψ0 = φ1(z).(37)

The asymptotic stability of the profile (V,U) means that the perturbation (φz, ψ)
decays to zero as t → +∞.

First, by noting (14), we have that the weight function defined in (12) satisfies
w(V ) > 0.

Now we introduce the solution space of the problem (34), (37) as follows:

X(0, T ) =

{φ(z, t) : φ ∈ C0([0, T );H3 ∩ L2
w) ∩ C1(0, T ;H2 ∩ L2

w), φz, φt ∈ L2(0, T ;H2 ∩ L2
w)}

with 0 < T ≤ +∞.
By virtue of (33), we have

ψ ∈ C0([0, T );H2 ∩ L2
w) ∩ L2(0, T ;H2 ∩ L2

w).

By the Sobolev embedding theorem, if we let

N(t) = sup
0≤s≤t

{||φ(s)||3 + ||φt(s)||2 + ‖φ(s)‖H1
w

+ ||φt(s)||L2
w
},(38)

then

sup
z∈R

{|φ|, |φz|, |φzz|, |φt|, |φtz|} ≤ CN(t).(39)

Thus Theorem 1.1 is a consequence of the following theorem.
Theorem 3.1. Under the conditions of Theorem 1.1, there exist positive con-

stants δ1, C, and C1 such that if N(0) ≤ δ1, then the problem (34), (37) has a unique
global solution φ ∈ X(0,+∞) satisfying

||φ(t)||23 + ||φt||22 + ||φ||2H1
w

+ ||φt||2L2
w

+

∫ t

0

||(φt, φz)(s)||22ds

+ C1μ

(∫ t

0

||(φt − sφz)z||2L2
w
ds +

∫ t

0

||(φt − sφz)zz||21ds
)

≤ CN2(0)(40)
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for t ∈ [0,+∞). Furthermore,

sup
z∈R

|(φz, φt)(z, t)| → 0 as t → ∞.(41)

If φ is the global solution in the above theorem, then (φ, ψ), defined in (33),
becomes a global solution of the problem (32) with (φ, ψ)(z, 0) = (φ0, ψ0)(z), and
consequently we have the desired solution of the problem (1), (2) through the relation
(31). On the other hand, the solution of (1) is unique in the space C0(0, T ;H2 ∩L2

w);
therefore Theorem 1.1 follows from Theorem 3.1. The estimate (40) gives

φ2
t + φ2

z =

∫ z

−∞
(2φtφtz + 2φzφzz)(y, t)dy

≤
(∫ +∞

−∞
(φ2

t + φ2
z)dy

)1/2 (∫ +∞

−∞
(φ2

tz + φ2
zz)dy

)1/2

→ 0 as t → ∞

as claimed in Theorem 1.1.
Global existence for φ will be derived from the following local existence theorem

for φ combined with a priori estimates.
Proposition 3.2 (local existence). For any δ0 > 0, there exists a positive

constant T0 depending on δ0, such that if φ0 ∈ H3 ∩ H1
w and φ1 ∈ H2 ∩ L2

w, with
N(0) < δ0/2, then the problem (34), (37) has a unique solution φ ∈ X(0, T0) satisfying

N(t) < 2N(0)(42)

for any 0 ≤ t ≤ T0.
Proposition 3.3 (a priori estimates). Let φ ∈ X(0, T ) be a solution for a

positive constant T ; then there exists a positive constant δ2 independent of T such
that if

N(t) < δ2, t ∈ [0, T ],

then φ satisfies (40) for any 0 ≤ t ≤ T .
The local existence is classical, so we omit the proof; cf. [21]. Proving Proposition

3.3 is our main task in the following section.

4. Energy estimates. In this section, we will complete the proof of our stabil-
ity theorem by establishing the desired a priori estimates. The stability result is a
consequence of the compressibility of the traveling wave profile (14), the subcharac-
teristic conditions (4) and (9), the fact that the diffusion coefficient is bounded by a
constant multiple of the relaxation time (10), and the weighted energy estimates.

Lemma 4.1. Under the conditions of Theorem 1.1, there are positive constants
C and C1 such that if subcharacteristic condition (4) is satisfied for v ∈ [v+, v−], then
any solution φ ∈ X(0, T ) of problem (34), (37) satisfies

||φ(t)||2H1
w

+ ||φt(t)||2L2
w

+

∫ t

0

||(φt, φz)(s)||2L2
w
ds

+

∫ t

0

∫
R

|Uz|φ2dzds + C1μ

∫ t

0

∫
R

w(φt − sφz)
2
zdzds
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≤ C

{
||φ0||2H1

w
+ ||φ1||2L2

w
+

∫ t

0

∫
R

w|F |(|φ| + |(φt, φz)|)dzds
}

(43)

for t ∈ [0, T ].

Proof. Let w = w(V ) > 0 be the weight function defined in (12).

Multiplying (34) by 2w(V )φ, we obtain

2w(V )φL(φ) = −2Fw(V )φ.(44)

The left-hand side of (44) is reduced to

2[(φt − sφz)t − s(φt − sφz)z + (p′(V )φz)z]wφ + 2

(
1

τ
φt + λφz

)
wφ

− 2μwφ(φt − sφz)zz

=

[
1

τ
wφ2 + 2wφ(φt − sφz)

]
t

− 2w(φt − sφz)
2 − 2wp′(V )φ2

z + (p′(V )wz)zφ
2

− (λw)zφ
2 + swz(φ

2)t − s2{wz(φ
2)}z + s2wzzφ

2

+ {−2swφ(φt − sφz) + 2p′(V )wφφz − p′(V )wzφ
2 + λwφ2 − 2μwφ(φt − sφz)z}z

+ 2μwzφ(φt − sφz)z + 2μwφz(φt − sφz)z

=

[
1

τ
wφ2 + 2wφ(φt − sφz) + swzφ

2

]
t

− 2w(φt − sφz)
2 − 2p′(V )wφ2

z + A(V )φ2

+ 2μwzφ(φt − sφz)z + 2μwφz(φt − sφz)z + 2μsw′(V )Vzzφφz + {· · · }z,(45)

where {· · · }z denotes the terms which will disappear after integration with respect to
z ∈ R and

A(V ) = − {(−p′(V ) − s2)w′(V )Vz + λw − μsw′(V )Vzz}z
= − {w′(V )Q(V ) + Q′(V )w}z
= − {wQ}′′(V )Vz,

(46)

where the second equality is due to (17).

Since V is monotone decreasing and

(wQ)′′(V ) = 2,

therefore

A(V ) = −2Vz > 0.(47)

Then we calculate

2(φt − sφz)wL(φ) = −2F (φt − sφz)w.(48)
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The left-hand side of (48) is

2[(φt − sφz)t − s(φt − sφz)z + (p′(V )φz)z]w(φt − sφz)

+
2

τ
w(φt − sφz)(φt − sφz − uV ′

e (V )φz) − 2μw(φt − sφz)(φt − sφz)zz

= [w(φt − sφz)
2]t +

(
2

τ
w + swz

)
(φt − sφz)

2 − 2p′(V )wzφz(φt − sφz)

− 2

τ
wu′

e(V )φz(φt − sφz) − [p′(V )wφ2
z]t + [swp′(V )φ2

z]z − s(wp′(V ))zφ
2
z

− [sw(φt − sφz)
2 − 2p′(V )wφz(φt − sφz)]z

− (2μw(φt − sφz)(φt − sφz)z)z + 2μwz(φt − sφz)(φt − sφz)z + 2μw(φt − sφz)
2
z

= [−wp′(V )φ2
z + w(φt − sφz)

2]t +

(
2

τ
w + swz

)
(φt − sφz)

2

− s(wp′(V ))zφ
2
z −

2

τ
u′
e(V )wφz(φt − sφz) − 2p′(V )wzφz(φt − sφz)

+ 2μwz(φt − sφz)(φt − sφz)z + 2μw(φt − sφz)
2
z + {· · · }z.

Hence, the combination (44) + (48) × 2τ yields

{E1(φ, (φt − sφz)) + E3(φz)}t + E2(φz, (φt − sφz)) + E4(φ) + 4μτw(φt − sφz)
2
z

+ 2μwzφ(φt − sφz)z + 2μwφz(φt − sφz)z + 2μsw′(V )Vzzφφz

+ 4μτwz(φt − sφz)(φt − sφz)z + {· · · }z = −2Fw{φ + 2τ(φt − sφz)},(49)

where

E1(φ, (φt − sφz)) = 2τw(φt − sφz)
2 + 2wφ(φt − sφz) +

(
1

τ
w + swz

)
φ2,

E3(φz) = −2τwp′(V )φ2
z,

E2(φz, (φt − sφz)) = 2(w + τswz)(φt − sφz)
2

+ 4(−u′
e(V )w − τp′(V )wz)φz(φt − sφz)

+ 2(−wp′(V ) − τs(wp′(V ))z)φ
2
z,

E4(φ) = A(V )φ2,(50)

where A(V ) is defined in (46).
The discriminants of the quadratics Ej(j = 1, 2) are, respectively,

D1 = −4w[w + 2τswz],

D2 = 16{(−u′
e(V )w − τp′(V )wz)

2 + (w + τswz)(wp
′(V ) + τs(wp′(V ))z)}.

We claim that

D1 < 0, D2 < 0,(51)

provided that |v+−v−| is suitably small and subcharacteristic condition (4) is satisfied.
Indeed, the two inequalities in (51) are equivalent to

1 + 2sτ
wz

w
> 0,(52)
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(
−u′

e(V ) − τp′(V )
wz

w

)2

<
(
1 + sτ

wz

w

)(
−p′(V ) − sτ

(wp′(V ))z
w

)
.(53)

Noticing that |τ(w(V ))z| and |τ(w(V )p′(V ))z| are small provided that |v+ − v−| is
suitably small and subcharacteristic condition (4) is satisfied, we derive inequalities
(52) and (53). Thus condition (51) is satisfied.

Therefore there exist positive constants M0 and M such that⎧⎨
⎩

M0w{φ2 + (φt − sφz)
2} ≤ E1 ≤ Mw{φ2 + (φt − sφz)

2},

M0w{φ2
z + (φt − sφz)

2} ≤ E2.
(54)

Furthermore, (3) and (47) yield⎧⎨
⎩

E3 = −2τwp′(V )φ2
z ≥ 0,

E4 ≥ 2|Vz|φ2 ≥ 0.
(55)

Now we estimate terms containing μ in (49).
First, note that 4μτw(φt − sφz)

2
z is a good term, namely, nonnegative. Other

terms containing μ are estimated by using the Cauchy–Schwarz inequality, estimate
(54), the fact that |w(V )z| and |Vzz| are small, and (10). Indeed, let us estimate the
second term

|2μwφz(φt − sφz)z|

≤ μτw(φt − sφz)
2
z +

μ

4τ
wφ2

z ≤ μτw(φt − sφz)
2
z +

1

4
M0wφ

2
z(56)

provided that μ
τ ≤ m ≤ M0 (10).

Substituting estimates (54), (55), and (56) into (49) and integrating the result
with respect to t and z, we arrive at the desired estimate (43).

This completes the proof of Lemma 4.1.
Next we estimate the higher order derivatives of φ.
Let φz = Φ; then

∂zL(φ) = (φzt − sφzz)t − s(φzt − sφzz)z + (p′(V )φz)zz

+ φzt + λφzz + λzφz − μ(φzt − sφzz)zz

= L(φz) + λzφz + (p′(V )zφz)z = L(Φ) + λzΦ + (p′(V )zΦ)z.(57)

Multiplying the derivative of (34) with respect to z by 2φz and 2(φt − sφz)z,
respectively, we have

2∂zL(φ)φz = −2Fzφz,

2∂zL(φ)(φt − sφz)z = −2Fz(φt − sφz)z.

By a similar argument used in obtaining estimates for the first order derivatives with
w = 1, we have[

1

τ
Φ2 + 2Φ(Φt − sΦz)

]
t

− 2p′(V )Φ2
z − 2(Φt − sΦz)

2 + λzΦ
2

+ 2μΦz(Φt − sΦz)z − 2p′(V )zΦΦz + {· · · }z = −2FzΦ(58)
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and

[(Φt − sΦz)
2 − p′(V )Φ2

z]t +
2

τ
(Φt − sΦz)

2 − 2

τ
u′
e(V )Φz(Φt − sΦz)

− sp′(V )zΦ
2
z + 2λzΦ(Φt − sΦz) + 2(p′(V )Φ)z(Φt − sΦz) + {· · · }z

+ 2μ(Φt − sΦz)
2
z = −2Fz(Φt − sΦz).(59)

The combination (58) + (59) × 2τ yields

{E1(Φ, (Φt − sΦz)) + E3(Φz)}t + E2(Φz, (Φt − sΦz)) + H(Φ) + {· · · }z
+ 4μτ(Φt − sΦz)

2
z + 2μΦz(Φt − sΦz)z = −Fz{2Φ + 4τ(Φt − sΦz)},(60)

where

(61)

H(Φ) = λzΦ
2 + 4τλzΦ(Φt − sΦz) − 2p′(V )zΦΦz + 4τ(p′(V )Φ)z(Φt − sΦz),

E1(Φ, (Φt − sΦz)) = 2τ(Φt − sΦz)
2 + 2Φ(Φt − sΦz) +

1

τ
Φ2,

E3(Φz) = −2p′(V )Φ2
z,

E2(Φz, (Φt − sΦz)) = 2(Φt − sΦz)
2 − 4u′

e(V )Φz(Φt − sΦz)

−2(p′(V ) + sτp′(V )z)Φ
2
z.

Integrating (60) with respect to t and z and taking μ
τ and |v+ − v−| suitably small,

we have the following estimate:

||Φ(t)||21 + ||Φt(t)||2 +

∫ t

0

||(Φt,Φz)(s)||2ds + C1μ

∫ t

0

||(Φt − sΦz)z(s)||2ds(62)

≤ C

{
||Φ0||21 + ||Φ1||2 +

∫ t

0

∫
|H(Φ)|dzds +

∫ t

0

∫
R

|Fz|(|Φ| + |(Φt,Φz)|)dzds
}
,

where Φ0 = φ′
0 and Φ1 = φ′

1, and C and C1 are positive constants.
Using the estimate (43), we obtain∫ t

0

∫
R

|H(Φ)|dzds ≤ 1

2

∫ t

0

||(Φt,Φz)(s)||2ds + C

∫ t

0

∫
R

Φ2dzds

≤ 1

2

∫ t

0

||(Φt,Φz)(s)||2ds

+ C

{
||φ0||2H1

w
+ ||φ1||2L2

w
+

∫ t

0

∫
w|F |(|φ| + |(φt, φz)|)dzds

}
.(63)

Substituting (63) into (62) and replacing Φ by ∂zφ, we have the following lemma.
Lemma 4.2. Under the conditions of Theorem 1.1, there are positive constants

C and C1 such that if subcharacteristic condition (4) is satisfied for all v ∈ [v+, v−],
then any solution φ ∈ X(0, T ) of problem (34), (37) satisfying

||∂zφ||21 + ||∂zφt||2 +
1

2

∫ t

0

||(∂zφt, ∂zφz)(s)||2ds + C1μ

∫ t

0

||(φt − sφz)zz(s)||2ds

≤ C

{
||φ0||22 + ||φ1||21 +

∫ t

0

∫
|Fz|(|∂zφ| + |(∂zφt, ∂zφz)|)dzds

+ ||φ0||2H1
w

+ ||φ1||2L2
w

+

∫ t

0

∫
w|F |(|φ| + |(φt, φz)|)dzds

}
(64)
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holds for t ∈ [0, T ].
Next we calculate the equality

∂2
zφ∂

2
zL(φ) + 2∂2

z (φt − sφz)∂
2
zL(φ) = −Fzz(∂

2
zφ + 2∂2

z (φt − sφz))

in the same way as in the proof of Lemma 4.2. Setting Ψ := ∂2
zφ, we have

∂2
zL(φ) = L(Ψ) + (p′(V )Φ)zzz − (p′(V )Ψz)z + (λΦ)zz − λΨz.

A straightforward calculation gives[
2τ(Ψt − sΨz)

2 − 2τp′(V )Ψ2
z + 2τΨ(Ψt − sΨz) +

1

τ
Ψ2

]
t

+ 2(Ψt − sΨz)
2

− 4u′
e(V )Ψz(Ψt − sΨz) + 2(−p′(V ) − sτp′(V )z)Ψ

2
z + 8τλzΨ(Ψt − sΨz)

+ 3τλzΨ
2 + 2τλzzΨφz + 4τλzzφz(Ψt − sΨz) + 4μτ(Ψt − sΨz)

2
z

+ 2μΨz(Ψt − sΨz)z + {· · · }z = −2Fzz[Ψ + 2τ(Ψt − sΨz)] + J,(65)

where J satisfies

|J | = |[−(p′(V )Φ)zzz + (p′(V )Ψz)z][Ψ + 2τ(Ψt − sΨz)]|

≤ 1

3
|(Ψt,Ψz)|2 + C|(Φ,Ψ)|2.

Thus, noting Ψ = φzz and (10), we derive from (65) and |v+ − v−| 
 1 that

||∂2
zφ(t)||21 + ||∂2

zφt||2 +
2

3

∫ t

0

||(∂2
zφt, ∂

2
zφz)(s)||2ds− C

∫ t

0

(||∂2
zφ||2 + ||φz||2)ds

+ C1μ

∫ t

0

||(∂2
zφt − s∂2

zφz)zz(s)||2ds

≤ C

{
||φ0||23 + ||φ1||22 +

∣∣∣∣
∫ t

0

∫
Fzz(∂

2
zφ + 2∂2

z (φt − sφz))dzds

∣∣∣∣
}
,(66)

where C and C1 are positive constants.
Combining successively estimates (43), (64), and (66), we have

||φ(t)||23 + ||φt(t)||22 + ||φ(t)||2H1
w

+ ||φt(t)||2L2
w

+

∫ t

0

∫
|λz|φ2dzds +

∫ t

0

||(φt, φz)||22ds

+

∫ t

0

||(φt, φz)(s)||L2
w
w2ds + C1μ

(∫ t

0

||(φt − sφz)z||2L2
w
ds +

∫ t

0

||(φt − sφz)zz||21ds
)

≤ C

{
||φ0||23 + ||φ1||22 + ||φ0||2H1

w
+ ||φ1||2L2

w

+

∫ t

0

∫
(w|F |(|φ| + |(φt, φz)|) + |Fz|(|∂zφ| + |(∂zφt, ∂zφz)|))dzds

+

∣∣∣∣
∫ t

0

∫
Fzz(∂

2
zφ + 2∂2

z (φt − sφz))dzds

∣∣∣∣
}
,(67)

where

F = F1 + F2 = O(1)(φ2
z + φ2

zz)
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as defined in (35), (36). There are terms containing fourth order derivatives of φ
in F2,zz. The energy estimates for the derivatives of φ up to fourth order can be
established; see [10].

Thus by virtue of (39), the integrals on the right-hand side of (67) are majored
by

CN(t)

(∫ t

0

||(φt, φz)||22ds +

∫ t

0

||(φt, φz)(s)||2L2
w
ds

)
;

then we have

N2(t) +

∫ t

0

||(φt, φz)||22ds +

∫ t

0

||(φt, φz)(s)||2L2
w
ds

≤ CN2(0) + CN(t)

(∫ t

0

||(φt, φz)||22ds +

∫ t

0

||(φt, φz)(s)||2L2
w
ds

)
.

Therefore, by assuming N(T ) ≤ 1
2C = δ2, we obtain the desired estimate

N2(t) +

∫ t

0

||(φt, φz)||22ds +

∫ t

0

||(φt, φz)(s)||2L2
w
ds ≤ CN2(0) for t ∈ [0, T ].

By choosing N(0) ≤ δ1 small, we arrive at N(T ) ≤ δ2 for any T > 0.
Thus the proof of Proposition 3.3 is completed.
In summary, we established the weighted energy estimates by assuming the small-

ness of |v+ − v−|, the compressibility of the traveling wave profile (14), the subchar-
acteristic conditions (4) and (9), and the fact that the diffusion coefficient is bounded
by a constant multiple of the relaxation time (10).
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1. Introduction. The aim of this paper is to study traveling wave solutions for
nonlinear Schrödinger equations

i
∂Φ

∂t
+ ΔΦ + F (x, |Φ|2)Φ = 0 in RN ,(1.1)

where F is a real-valued function defined on RN×R+, Φ is a complex-valued function
on RN satisfying the “boundary condition” |Φ| −→ r0 as |x| −→ ∞, and r0 is a
positive constant verifying lim|x|→∞, s→r2

0
F (x, s) = 0.

The above equation with the considered nonzero conditions at infinity arises in
a large variety of physical problems, such as superconductivity, superfluidity in he-
lium II, phase transitions, and Bose–Einstein condensates. Two important particular
cases of (1.1) have been extensively studied both by physicists and by mathematicians:
the Gross–Pitaevskii equation (where F (x, s) = 1− s) and the so-called cubic-quintic
Schrödinger equation (where F (x, s) = −α1 + α3s − α5s

2, α1, α3, α5 are positive,
and 3

16 < α1α5

α2
3

< 1
4 ).

Equation (1.1) has a Hamiltonian structure: denoting V (x, s) =
∫ r2

0

s
F (x, τ) dτ , it

is easy to see that, at least formally, the “energy”

E(Φ) =

∫
RN

|∇Φ|2 dx +

∫
RN

V (x, |Φ|2) dx(1.2)

is a conserved quantity. There is another important (vector) quantity associated to
(1.1), namely, the momentum. It is given by

(1.3)

P (Φ) = (P1(Φ), . . . , PN (Φ)),wherePk(Φ) =

∫
RN

(
i
∂Φ

∂xk
,Φ

)
dx =

∫
RN

Re

(
i
∂Φ

∂xk
Φ

)
dx.

∗Received by the editors December 17, 2007; accepted for publication (in revised form) June 17,
2008; published electronically October 17, 2008.

http://www.siam.org/journals/sima/40-3/71118.html
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Note that, in general, the momentum is not well-defined for any function Φ of finite
energy. In the case where F does not depend on the variable xk, the momentum with
respect to the xk-direction, Pk, is conserved by those solutions of (1.1) for which it
can be well-defined.

It is worth noting that (1.1) can be put into a hydrodynamical form by using
Madelung’s transformation Φ(x, t) =

√
ρ(x, t)eiθ(x,t) (which is singular when Φ = 0).

A straightforward computation shows that in the region where Φ �= 0, the functions
ρ = |Φ|2 and θ satisfy the system

ρt + 2div(ρ∇θ) = 0,(1.4)

θt + |∇θ|2 − Δρ

2ρ
+

|∇ρ|2
4ρ

− F (x, ρ) = 0.(1.5)

Equation (1.4) and the derivatives with respect to x1, . . . , xN of (1.5) are, respectively,
the equation of conservation of mass and Euler’s equations for a compressible inviscid
fluid of density ρ and velocity 2∇θ.

Let us assume that F admits a partial derivative with respect to the last vari-
able (in what follows, this derivative will be denoted by ∂N+1F or by ∂F

∂s ) and that
lim|x|→∞, ρ→r2

0
∂N+1F (x, ρ) = −L, where L is a positive constant. Taking the deriva-

tive with respect to t of (1.5) and substituting ρt from (1.4) we obtain

θtt + 2∂N+1F (x, ρ)(ρΔθ + ∇ρ.∇θ) +
∂

∂t

(
|∇θ|2 − Δρ

2ρ
+

|∇ρ|2
4ρ

)
= 0.(1.6)

For a small oscillatory motion (i.e., a sound wave), all nonlinear terms in (1.6), except
2ρΔθ, may be neglected. In view of the behavior of ρ and ∂N+1F (x, ρ) for large |x|,
we find that in a neighborhood of infinity, the velocity potential θ essentially obeys
the wave equation θtt − 2r2

0LΔθ = 0. It is well known that the solutions of the wave
equation propagate with a finite speed; in the present situation, we infer that the
velocity of sound waves at infinity is r0

√
2L. In what follows we will always assume

that ∂N+1F (x, ρ) −→ −L as |x| −→ ∞ and ρ −→ r2
0 (the convergence being in a

sense to be defined) and we will denote by vs = r0
√

2L the sound velocity at infinity.
For a fixed y ∈ SN−1, a traveling wave for (1.1) moving with velocity c in direction

y is a solution of the form Φ(x, t) = ψ(x − cty). Without loss of generality we will
assume that y = (1, 0, . . . , 0), i.e., traveling waves move in the x1-direction. The
traveling wave profile satisfies the equation

−ic
∂ψ

∂x1
+ Δψ + F (x, |ψ|2)ψ = 0 in RN .(1.7)

In a series of papers, Grant, Jones, Putterman, and Roberts, among others, for-
mally and numerically studied traveling waves for the Gross–Pitaevskii equation and
related systems (see, e.g., [16], [19], [21], [22], [5], and the references therein). In
particular, they conjectured that such solutions exist if and only if their speed c be-
longs to the interval (−vs, vs). For the cubic-quintic nonlinear Schrödinger equation,
the existence of subsonic traveling waves in one dimension has been proved in [1]
and their stability has been studied in [2]. The nonexistence of such solutions for
sonic and supersonic speeds has also been conjectured in any space dimension. In
the case of the Gross–Pitaevskii equation, it has been shown in [17] that any trav-
eling wave of finite energy and speed c > vs must be constant. It has also been
proved in [18] that the same result is true if N = 2 and c2 = v2

s . The proofs in
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[17], [18] strongly depend on the special algebraic structure of the nonlinearity in the
Gross–Pitaevskii equation. In the present paper we show that the nonexistence of
finite-energy traveling waves moving faster than the sound velocity is a general phe-
nomenon which holds for a large class of equations and systems of the form (1.1). We
also prove that there are no finite-energy sonic traveling waves in space dimension
two. In higher dimensions we show that any finite-energy sonic traveling wave ψ must
satisfy |ψ|2 − r2

0 ∈ Lp(RN ) for any p > 2N−1
2N−3 . On the other hand, if a sonic traveling

wave satisfies |ψ|2 − r2
0 ∈ L

2N−1
2N−3 (RN ), then it must be constant.

This article is organized as follows: In the next section we prove that traveling
waves, whenever they exist, are smooth functions. If their speed is supersonic (or
sonic, provided they converge sufficiently fast at infinity), then they must satisfy a
special integral identity. This will be proved in section 3. In section 4 we show how
this identity implies, under general assumptions, the nonexistence of traveling waves
with finite energy. We apply our results to the Gross–Pitaevskii equation, to the
cubic-quintic Schrödinger equation, and to a Gross–Pitaevskii–Schrödinger system,
which describes the motion of an uncharged impurity in a Bose condensate. In the
last section we describe all supersonic and sonic traveling waves (with finite or infinite
energy) for one-dimensional equations with nonlinearities independent on the space
variable.

2. Basic properties of traveling waves. We keep the previous notation and
consider the following set of assumptions:

• (H1) F : RN×[0,∞) −→ R is a measurable function which has the following
properties:
(a) for any s ∈ [0,∞), F (·, s) is measurable;
(b) for any x ∈ RN , F (x, ·) is continuous;
(c) F is bounded on bounded subsets of RN × [0,∞).

• (H2) There exist α > 0, C > 0, and r∗ > 0 such that for any x ∈ RN and
for any s ≥ r∗ we have F (x, s) ≤ −Csα.

• (H3) lim|x|→∞ F (x, r2
0) = 0 and F (·, r2

0) ∈ L1(RN ).
• (H4) F admits a partial derivative with respect to the last variable and
∂N+1F is bounded on bounded subsets of RN × [0,∞). Moreover, lim|x|→∞
∂N+1F (x, r2

0) = −L, where L > 0 and ∂N+1F (·, r2
0) + L ∈ Lp0(RN ) for some

p0 ∈ [1, 2].
• (H5) There are some positive constants R0, η, M such that ∂2

N+1F exists on

(RN \B(0, R0)) × (r2
0 − η, r2

0 + η) and

|∂2
N+1F (x, s)| ≤ M for all (x, s) ∈ (RN \B(0, R0)) × (r2

0 − η, r2
0 + η).

Definition 2.1. A traveling wave (of speed c) for (1.1) is a function ψ ∈
L1
loc(R

N ) that satisfies (1.7) in D′(RN ) together with the “boundary condition” |ψ| −→
r0 as |x| −→ ∞.

In view of (1.2), we say that a traveling wave ψ has finite energy if ∇ψ ∈ L2(RN )
and V (·, |ψ|2) ∈ L1(RN ).

We have the following result concerning the regularity of traveling waves.
Proposition 2.2. Let ψ be a finite-energy traveling wave for (1.1).
(i) Assume that F : RN × R+ −→ R is measurable and satisfies (H1a), (H1b),

(H2), the function x 
−→
∫ r∗
r2
0
F (x, τ) dτ belongs to L1

loc(R
N ) (where r∗ is given by

(H2)), and F (·, |ψ|2)ψ ∈ L1
loc(R

N ). Then ψ ∈ L∞(RN ).
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If, in addition, F satisfies (H1c), then ψ ∈ W 2,p
loc (RN ) for any p ∈ [1,∞). In

particular, ψ ∈ C1,α(RN ) for any α ∈ [0, 1).
(ii) Suppose that F ∈ Ck(RN × [0,∞)) for some k ∈ N∗, (H2) holds, and

F (·, |ψ|2)ψ ∈ L1
loc(R

N ). Then ψ ∈ W k+2,p
loc (RN ) for any p ∈ [1,∞). In particu-

lar, if F is C∞, then ψ ∈ C∞(RN ).
Proof. (i) The proof relies upon the ideas and methods developed by Farina in

[13], [14]. By (H2) we have

V (x, s) = −
∫ s

r2
0

F (x, τ) dτ ≥ −
∫ r∗

r2
0

F (x, τ) dτ +

∫ s

r∗

Cτα dτ

= −
∫ r∗

r2
0

F (x, τ) dτ +
C

α + 1
(sα+1 − rα+1

∗ ).

Consequently, for any s ≥ r∗ we get sα+1 ≤ rα+1
∗ + α+1

C (V (x, s) +
∫ r∗
r2
0
F (x, τ) dτ), so

that

|ψ|2α+2(x) ≤ max
(
rα+1
∗ , rα+1

∗ +
α + 1

C

(
V (x, |ψ|2(x)) +

∫ r∗

r2
0

F (x, τ) dτ
))

.

Since V (·, |ψ|2) and
∫ r∗
r2
0
F (·, τ) dτ belong to L1

loc(R
N ), we infer that ψ ∈ L2α+2

loc (RN ).

We will use a well-known inequality of Kato (see Lemma A, p. 138, in [23]):
If u ∈ L1

loc(R
N ) is a real-valued function and Δu ∈ L1

loc(R
N ), then

Δ(u+) ≥ sgn+(u)Δu in D′(RN ).(2.1)

Let ϕ(x) = e−
icx1

2 ψ(x). Then ϕ ∈ L2α+2
loc (RN ) ⊂ L1

loc(R
N ) and an easy compu-

tation shows that ϕ satisfies

Δϕ +
(
F (x, |ϕ|2) +

c2

4

)
ϕ = 0 in D′(RN ).(2.2)

It is clear that F (·, |ϕ|2)ϕ ∈ L1
loc(R

N ) (because F (x, |ψ|2)ψ ∈ L1
loc(R

N ) by hypothe-
sis) and it follows from (2.2) that Δϕ ∈ L1

loc(R
N ). Choose r̃ ≥ r∗ and C1 > 0 such

that Cs2α − c2

4 ≥ C1(s− r̃)2α for any s ≥ r̃. Denoting ϕ1 = Re(ϕ), ϕ2 = Im(ϕ) and
using Kato’s inequality for ϕi − r̃, i = 1, 2, then using (2.2) and (H2) we get

Δ(ϕi − r̃)+ ≥ sgn+(ϕi − r̃)Δ(ϕi − r̃) = sgn+(ϕi − r̃)

[
−
(
F (x, |ϕ|2) +

c2

4

)
ϕi

]

≥ sgn+(ϕi − r̃)

[
C|ϕ|2α − c2

4

]
ϕi ≥ sgn+(ϕi − r̃)

[
C|ϕi|2α − c2

4

]
ϕi

≥ C1sgn+(ϕi − r̃)(ϕi − r̃)2α+1 = C1[(ϕi − r̃)+]2α+1.

(2.3)

Next we use the following result of Brézis (Lemma 2, p. 273, in [9]).
Lemma 2.3 (see [9]). Let p ∈ (1,∞). Assume that u ∈ Lp

loc(R
N ) satisfies

−Δu + |u|p−1u ≤ 0 in D′(RN ).

Then u ≤ 0 a.e. on RN .
It follows from (2.3) that the function ui = (C1)

1
2α (ϕi − r̃)+ satisfies −Δui +

|ui|2αui ≤ 0 in D′(RN ). Since ui ∈ L2α+1
loc (RN ), we may use Lemma 2.3 and thus get

ui ≤ 0 a.e. in RN , that is, ϕi ≤ r̃ a.e. in RN .
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It is obvious that both ϕ and −ϕ satisfy (2.2). Repeating the above argument
for −ϕ, we infer that −ϕi ≤ r̃ a.e. on RN . Therefore we have |ϕi| ≤ r̃ a.e. on RN ,
i = 1, 2, which implies that ϕ ∈ L∞(RN ). Since |ϕ| = |ψ|, we have proved that
ψ ∈ L∞(RN ).

Using (H1c) and (2.2) we infer that Δϕ ∈ L∞(B(x, 2R)) ⊂ Lp(B(x, 2R)) for
any x ∈ RN , R > 0, and p ≥ 1. By standard elliptic estimates we obtain ϕ ∈
W 2,p(B(x,R)) for any x ∈ RN , R > 0, and p ∈ (1,∞). Thus ψ = e

icx1
2 ϕ ∈ W 2,p

loc (RN )

for any p ∈ (1,∞), and consequently ψ belongs to C1,α
loc (RN ) for any α ∈ [0, 1) by the

Sobolev embedding theorem.
(ii) Assume F ∈ C1(RN × [0,∞)). Differentiating (1.7) with respect to xk we get

−icψx1xk
+ Δψxk

+
∂F

∂xk
(x, |ψ|2)ψ(2.4)

+ 2∂N+1F (x, |ψ|2)
(
ψ.

∂ψ

∂xk

)
ψ + F (x, |ψ|2) ∂ψ

∂xk
= 0

in D′(RN ). Hence Δψxk
∈ Lp

loc(R
N ) for 1 ≤ p < ∞. By standard elliptic regularity

theory we get ψxk
∈ W 2,p

loc (RN ) for 1 < p < ∞, 1 ≤ k ≤ N ; therefore ψ ∈ W 3,p
loc (RN )

for 1 ≤ p < ∞. If F ∈ Ck(RN × [0,∞)), we may differentiate (2.4) further and

repeat the above arguments. After an easy induction, we get ψ ∈ W k+2,p
loc (RN ) for

any p ∈ (1,∞).
Lemma 2.4. Assume that (H1), (H3), (H4), (H5) hold and u ∈ L4

loc(R
N ,C)

satisfies |u(x)| −→ r0 as |x| −→ ∞ and V (·, |u|2) ∈ L1(RN ).
Then |u|2 − r2

0 ∈ L2(RN ).
Proof. Let R0, η, M be as in (H5). From (H4) and the fact that |u(x)| −→ r0 as

|x| −→ ∞ it follows that there exists R1 > R0 such that

∂N+1F (x, r2
0) < −L

2
and |u(x)|2 ∈ (r2

0−η, r2
0+η) for any x satisfying |x| ≥ R1.

For (x, s) ∈ (RN \ B(0, R1)) × (r2
0 − η, r2

0 + η) we get, by Taylor’s formula with
respect to the (N + 1)th variable,

V (x, s) = −(s− r2
0)F (x, r2

0)−
1

2
(s− r2

0)
2∂N+1F (x, r2

0)−
1

2

∫ s

r2
0

(s− τ)2∂2
N+1F (x, τ) dτ.

In particular, for s = |u(x)|2 we obtain

(2.5)

−1

2
(|u(x)|2 − r2

0)
2∂N+1F (x, r2

0)

= V (x, |u(x)|2) + (|u(x)|2 − r2
0)F (x, r2

0) +
1

2

∫ |u(x)|2

r2
0

(|u(x)|2 − τ)2∂2
N+1F (x, τ) dτ.

For x ∈ RN \B(0, R1) we get by (H5)∣∣∣∣
∫ |u(x)|2

r2
0

(|u(x)|2 − τ)2∂2
N+1F (x, τ) dτ

∣∣∣∣ ≤ M

∣∣∣∣
∫ |u(x)|2

r2
0

(|u(x)|2 − τ)2 dτ

∣∣∣∣
=

M

3

∣∣(|u(x)|2 − r2
0)
∣∣3.



NONEXISTENCE OF SUPERSONIC WAVES FOR NLS 1081

It is clear that there exists R2 ≥ R1 such that M
3

∣∣|u(x)|2 − r2
0

∣∣ ≤ L
4 on RN \B(0, R2).

Using (H4) and (2.5) we infer that

L

4
(|u(x)|2 − r2

0)
2 ≤ −1

2
(|u(x)|2 − r2

0)
2∂N+1F (x, r2

0)

≤ V (x, |u(x)|2) + (|u(x)|2 − r2
0)F (x, r2

0) +
1

2
· M

3

∣∣∣ |u(x)|2 − r2
0

∣∣∣3
≤ V (x, |u(x)|2) + (|u(x)|2 − r2

0)F (x, r2
0) +

L

8

∣∣∣ |u(x)|2 − r2
0

∣∣∣2 on RN \B(0, R2).

Consequently

L

8
(|u(x)|2 − r2

0)
2 ≤ V (x, |u(x)|2) + (|u(x)|2 − r2

0)F (x, r2
0) on RN \B(0, R2).(2.6)

Since F (·, r2
0) ∈ L1(RN ) by (H3), V (·, |u|2) ∈ L1(RN ), and | |u(x)|2 − r2

0| ≤ 3L
4M on

RN \B(0, R2), using (2.6) we get (|u|2 − r2
0)

2 ∈ L1(RN \B(0, R2)). It is obvious that
(|u|2 − r2

0)
2 ∈ L1(B(0, R2)) because u ∈ L4

loc(R
N ). Hence (|u|2 − r2

0)
2 ∈ L1(RN ) and

Lemma 2.4 is proved.
Proposition 2.5. Assume that (H1)–(H5) hold and let ψ be a finite-energy trav-

eling wave for (1.1) (in the sense of Definition 2.1) such that F (·, |ψ|2)ψ ∈ L1
loc(R

N ).
Then the following hold:

(i) ∇ψ ∈ W 1,p(RN ) for any p ∈ [2,∞).
(ii) Let R∗ ≥ 0 be such that |ψ(x)| ≥ r0

2 for |x| ≥ R∗. There exists a real-valued

function θ such that θ ∈ W 2,p
loc (RN \ B(0, R∗)) for any p < ∞, ∇θ ∈ W 1,p(RN \

B(0, R∗)) for any p ∈ [2,∞), and

ψ(x) = |ψ(x)|eiθ(x) on RN \B(0, R∗).

Proof. (i) We already know by Proposition 2.2(i) and Lemma 2.4 that ψ is
bounded, ψ ∈ W 2,p

loc (RN ) for any p ∈ [1,∞), and |ψ|2 − r2
0 ∈ L2(RN ).

Let R0, η, M be as in (H5). Choose R1 > R0 such that |ψ|2(x) ∈ (r2
0 − η, r2

0 + η)
for x ∈ RN \B(0, R1).

By using Taylor’s formula with respect to the last variable for the function F we
get

F (x, s) = F (x, r2
0) + (s− r2

0)∂N+1F (x, r2
0) +

∫ s

r2
0

(s− τ)∂2
N+1F (x, τ) dτ(2.7)

if (x, s) ∈ (RN \B(0, R0)) × (r2
0 − η, r2

0 + η); hence

(2.8)

F (x, |ψ|2(x))ψ(x) = F (x, r2
0)ψ(x) + (|ψ|2(x) − r2

0)∂N+1F (x, r2
0)ψ(x)

+ ψ(x)

∫ |ψ|2(x)

r2
0

(|ψ|2(x) − τ)∂2
N+1F (x, τ) dτ for any |x| ≥ R1.

We analyze the three terms on the right-hand side of (2.8). Assumptions (H1) and
(H3) imply F (·, r2

0) ∈ L1 ∩ L∞(RN ). Since ψ ∈ L∞(RN ), it follows that F (·, r2
0)ψ ∈

L1 ∩ L∞(RN ).
We may write (|ψ|2 − r2

0)∂N+1F (·, r2
0)ψ = −L(|ψ|2 − r2

0)ψ + (|ψ|2 − r2
0)(L +

∂N+1F (·, r2
0))ψ. We know that ψ ∈ L∞(RN ), |ψ|2 − r2

0 ∈ L2 ∩L∞(RN ) and by (H4)
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we have L + ∂N+1F (·, r2
0) ∈ Lp0 ∩ L∞(RN ) for some p0 ∈ [1, 2], so we infer that

(|ψ|2 − r2
0)∂N+1F (·, r2

0)ψ ∈ L2 ∩ L∞(RN ).
As in the proof of Lemma 2.4, for x ∈ RN \B(0, R1) we have∣∣∣∣

∫ |ψ|2(x)

r2
0

(|ψ|2(x) − τ)∂2
N+1F (x, τ) dτ

∣∣∣∣ ≤ M

∣∣∣∣
∫ |ψ|2(x)

r2
0

∣∣∣ |ψ|2(x) − τ
∣∣∣ dτ

∣∣∣∣(2.9)

=
M

2
(|ψ|2(x) − r2

0)
2.

Consequently the function x 
−→
∫ |ψ|2(x)

r2
0

(|ψ|2(x)− τ)∂2
N+1F (x, τ) dτ belongs to L1 ∩

L∞(RN \B(0, R1)).
Summing up, we have proved that F (·, |ψ|2)ψ ∈ L2 ∩ L∞(RN \B(0, R1)). From

(H1) and the fact that ψ is bounded on RN it follows that F (·, |ψ|2)ψ is bounded on
B(0, R1), and hence F (·, |ψ|2)ψ ∈ L2 ∩ L∞(RN ).

We have ∂ψ
∂xk

∈ L2(RN ) because ψ has finite energy. Coming back to (1.7), we
get

Δψ = ic
∂ψ

∂x1
− F (·, |ψ|2)ψ ∈ L2(RN ).

It is well known that Δψ ∈ Lp(RN ) with 1 < p < ∞ implies ∂2ψ
∂xj∂xk

∈ Lp(RN ) for any

j, k ∈ {1, . . . , N} (this follows, e.g., from the fact that
ξjξk
|ξ|2 is a Fourier multiplier on

Lp(RN ) if 1 < p < ∞; see Theorem 3, p. 96, in [27]). Therefore all second derivatives
of ψ are in L2(RN ), so that ∂ψ

∂xk
∈ H1(RN ) = W 1,2(RN ) for k = 1, . . . , N .

The rest of the proof is an easy bootstrap argument. Assume that ∇ψ ∈ W 1,p(RN )
for some p ≥ 2. In case p < N , it follows from the Sobolev embedding theorem that
∇ψ ∈ Lp∗

(RN ), where 1
p∗ = 1

p − 1
N . From (1.7) we have Δψ = ic ∂ψ

∂x1
− F (·, |ψ|2)ψ ∈

Lp∗
(RN ) and infer as previously that ∇ψ ∈ W 1,p∗

(RN ). Repeating this argument
if necessary, after a finite number of steps we get ∇ψ ∈ W 1,q(RN ) for some q ≥ N .
Then by Sobolev embedding we get ∇ψ ∈ Lr(RN ) for any r ∈ [q,∞). From (1.7)
we obtain Δψ ∈ Lp(RN ) for p ∈ [2,∞) and infer that ∇ψ ∈ W 1,p(RN ) for any
p ∈ [2,∞).

(ii) Take R∗ > 0 such that |ψ(x)| ≥ r0
2 on RN \B(0, R∗) and denote ψ̃(x) = ψ(x)

|ψ(x)| .

It is then standard to prove that ψ̃ ∈ W 2,p
loc (RN \ B(0, R∗)) for p ∈ [1,∞) and

∇ψ̃ ∈ W 1,p(RN \B(0, R∗)) for any p ∈ [2,∞) (see, e.g., Lemma C1, p. 66, in [11]).
Let us consider first the case N ≥ 3. For R∗ ≤ R1 < R2, the domain ΩR1,R2 =

B(0, R2)\B(0, R1) is simply connected in RN . It follows from Theorem 3, p. 38, in [11]
that there exists a real-valued function θR1,R2 ∈ W 2,p(ΩR1,R2) (1 < p < ∞) such that

ψ̃ = eiθR1,R2 on ΩR1,R2 . If R∗ ≤ R1 < R2, R∗ ≤ R3 < R4, and (R1, R2)∩(R3, R4) �= ∅,
then ψ̃ = eiθR1,R2 = eiθR3,R4 on ΩR1,R2 ∩ ΩR3,R4 , and thus θR3,R4 − θR1,R2 ∈ 2πZ
on ΩR1,R2 ∩ ΩR3,R4 . Since functions in W s,p(ΩR1,R2 ∩ ΩR3,R4) with values in Z are
constant when sp ≥ 1 (see Theorem B1, p. 65, in [11]), there exists k ∈ Z such that
θR3,R4 − θR1,R2 = 2πk on ΩR1,R2 ∩ ΩR3,R4 . Let (Rn)n≥1 be an increasing sequence
such that R∗ < R1 and Rn −→ ∞. Let kn ∈ Z be such that θR∗,Rn = θR∗,R1 + 2πkn
on ΩR∗,R1

. Define θ(x) = θR∗,Rn(x) − 2πkn for x ∈ ΩR∗,Rn . It is clear that θ is well-

defined on RN \B(0, R∗), ψ̃ = eiθ, and θ ∈ W 2,p
loc (RN \B(0, R∗)) for any p ∈ [1,∞).

Next we consider the case N = 2. Since ψ is C1 and |ψ| ≥ r0
2 on R2 \ B(0, R∗),

the topological degree deg(ψ, ∂B(0, R)) is well-defined for any R ≥ R∗ and does
not depend on R. It is well known that ψ admits a C1 lifting θ (i.e., ψ = |ψ|eiθ)
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on R2 \ B(0, R∗) if and only if deg(ψ, ∂B(0, R)) = 0 for R ≥ R∗. Denoting by
τ = (− sin ζ, cos ζ) the unit tangent vector at ∂B(0, R) at a point Reiζ , we get

|deg(ψ, ∂B(0, R))| =

∣∣∣∣ 1

2iπ

∫ 2π

0

∂
∂ζ (ψ(Reiζ))

ψ(Reiζ)
dζ

∣∣∣∣ =

∣∣∣∣ R

2iπ

∫ 2π

0

∂ψ
∂τ (Reiζ)

ψ(Reiζ)
dζ

∣∣∣∣
≤ R

2π

∫ 2π

0

2

r0
|∇ψ(Reiζ)| dζ ≤ R

πr0

√
2π

(∫ 2π

0

|∇ψ(Reiζ)|2 dζ
) 1

2

.

(2.10)

On the other hand,∫
R2\B(0,R∗)

|∇ψ(x)|2 dx =

∫ ∞

R∗

R

∫ 2π

0

|∇ψ(Reiζ)|2 dζ dR.

We have
∫
R2\B(0,R∗)

|∇ψ(x)|2 dx < ∞ (because ψ has finite energy) and infer that

there exists R1 > R∗ such that R1

∫ 2π

0
|∇ψ(R1e

iζ)|2 dζ <
πr2

0

8
1
R1

. From (2.10) we get

|deg(ψ, ∂B(0, R1))| <
R1

πr0

√
2π

(
πr2

0

8

1

R2
1

) 1
2

=
1

2
.

Since the topological degree is an integer, we have necessarily deg(ψ, ∂B(0, R1)) = 0.
Consequently deg(ψ, ∂B(0, R)) = 0 for any R ≥ R∗ and ψ admits a C1 lifting θ. In
fact, θ ∈ W 2,p

loc (R2 \B(0, R∗)) because ψ ∈ W 2,p
loc (R2 \B(0, R∗)) (see Theorem 3, p. 38,

in [11]).
If N = 1, the existence of a lifting ψ = |ψ|eiθ follows immediately from Theorem 1,

p. 27, in [11].

Finally, it is easy to see that | ∂ψ̃∂xj
| = | ∂θ

∂xj
| and | ∂2ψ̃

∂xj∂xk
|2 = | ∂2θ

∂xj∂xk
|2+ | ∂θ

∂xj
|2| ∂θ

∂xk
|2

≥ | ∂2θ
∂xj∂xk

|2, and (i) implies ∇θ ∈ W 1,p(RN \B(0, R∗)) for any p ∈ [2,∞).

3. An integral identity. The main result of this section is given by the next
theorem.

Theorem 3.1. Assume that (H1)–(H5) hold. Let ψ = ψ1 + iψ2 be a finite-energy
traveling wave for (1.1) such that F (·, |ψ|2) ∈ L1

loc(R
N ). Let R∗ be sufficiently big, so

that |ψ| ≥ r0
2 on RN \ B(0, R∗), and let θ be the lifting given by Proposition 2.5 (ii).

Let χ ∈ C∞(RN ) be a cut-off function such that χ = 0 on B(0, 2R∗) and χ = 1 on
RN \B(0, 3R∗). Then the following hold:

(i) The functions F (·, |ψ|2)|ψ|2 +
v2
s

2 (|ψ|2 − r2
0) and Gj = ψ1

∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
−

r2
0

∂
∂xj

(χθ), j = 1, . . . , N , belong to L1 ∩ L∞(RN ). (We always extend χθ by zero

on B(0, R∗).)
(ii) If N ≥ 2 and c2 > v2

s , we have the identity∫
RN

|∇ψ|2 − F (x, |ψ|2)|ψ|2 − v2
s

2
(|ψ|2 − r2

0) dx

= c

(
1 − v2

s

c2

)∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ) dx.

(3.1)

(iii) Identity (3.1) holds if c2 = v2
s and either

• N = 2 or
• N ≥ 3, and we assume in addition that ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ).
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Proof. (i) Let R0, η, M be as in (H5) and take R1 > R0 such that |ψ|2(x) ∈
(r2

0 − η, r2
0 + η) for x ∈ RN \B(0, R1). Using (2.7) and the fact that v2

s = 2Lr2
0 we get

F (x, |ψ|2(x))|ψ|2(x) +
v2
s

2
(|ψ|2(x) − r2

0) = F (x, r2
0)|ψ|2(x)

+ (|ψ|2(x) − r2
0)[∂N+1F (x, r2

0) + L]|ψ|2(x) − L
(
|ψ|2(x) − r2

0

)2
+ |ψ|2(x)

∫ |ψ|2(x)

r2
0

(|ψ|2(x) − τ)∂2
N+1F (x, τ) dτ for any |x| ≥ R1.

(3.2)

Since ψ ∈ L∞(RN ) by Proposition 2.2 (i) and F (·, r2
0) ∈ L1 ∩ L∞(RN ) by (H1)

and (H3), we infer that F (·, r2
0)|ψ|2 ∈ L1 ∩ L∞(RN ).

We have ψ ∈ L∞(RN ), ∂N+1F (·, r2
0)+L ∈ Lp0 ∩L∞(RN ) by (H4) and |ψ|2−r2

0 ∈
L2∩L∞(RN ) by Lemma 2.4; hence (|ψ|2−r2

0)[∂N+1F (·, r2
0)+L]|ψ|2 ∈ L1∩L∞(RN ).

From Proposition 2.2 (i), Lemma 2.4, and (2.9) it follows that the last two terms
on the right-hand side of (3.2) are in L1 ∩L∞(RN \B(0, R1)). Hence F (·, |ψ|2)|ψ|2 +
v2
s

2 (|ψ|2−r2
0) ∈ L1∩L∞(RN \B(0, R1)). Clearly, the function F (·, |ψ|2)|ψ|2+

v2
s

2 (|ψ|2−
r2
0) is bounded on B(0, R1); therefore this function belongs to L1 ∩ L∞(RN ).

Since ψ1 = |ψ| cos θ and ψ2 = |ψ| sin θ, a straightforward computation gives

ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
= (ψ2

1 + ψ2
2)

∂θ

∂xj
on RN \B(0, R∗).(3.3)

Therefore

ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
− r2

0

∂

∂xj
(χθ) = (|ψ|2 − r2

0)
∂θ

∂xj
on RN \B(0, 3R∗).(3.4)

From Lemma 2.4, Proposition 2.5 (ii), and the Sobolev embedding theorem we have
|ψ|2 − r2

0 ∈ L2 ∩ L∞(RN ) and ∂θ
∂xj

∈ L2 ∩ L∞(RN \B(0, R∗)), respectively. Identity

(3.4) implies Gj ∈ L1 ∩ L∞(RN \ B(0, 3R∗)). Since Gj is continuous on RN , we
conclude that Gj ∈ L1 ∩ L∞(RN ).

(ii) Equation (1.7) is equivalent to the system

c
∂ψ2

∂x1
+ Δψ1 + F (x, |ψ|2)ψ1 = 0 in D′(RN ),(3.5)

−c
∂ψ1

∂x1
+ Δψ2 + F (x, |ψ|2)ψ2 = 0 in D′(RN ).(3.6)

In view of Proposition 2.2 (i), equalities (3.5) and (3.6) hold in Lp
loc(R

N ) for 1 ≤
p < ∞. Multiplying (3.5) by ψ2 and (3.6) by ψ1 and then subtracting the resulting
equalities gives us

c

2

∂

∂x1
(|ψ|2 − r2

0) = div(ψ1∇ψ2 − ψ2∇ψ1).(3.7)

We multiply (3.5) by ψ1 and (3.6) by ψ2, then add the corresponding equalities to
obtain

|∇ψ1|2 + |∇ψ2|2 − F (x, |ψ|2)|ψ|2 − c

(
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1

)
=

1

2
Δ(|ψ|2 − r2

0).(3.8)
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From (3.7) and (3.8) we get

c

2

∂

∂x1
(|ψ|2 − r2

0) = div(ψ1∇ψ2 − ψ2∇ψ1 − r2
0∇(χθ)) + r2

0Δ(χθ),(3.9)

respectively,

(3.10)

1

2
Δ(|ψ|2 − r2

0) −
v2
s

2
(|ψ|2 − r2

0) = |∇ψ1|2 + |∇ψ2|2 − F (x, |ψ|2)|ψ|2 − v2
s

2
(|ψ|2 − r2

0)

− c

(
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ)

)
− cr2

0

∂

∂x1
(χθ).

Since ψ ∈ W 2,p
loc (RN ), equalities (3.7)–(3.10) hold in Lp

loc(R
N ) for 1 ≤ p < ∞. We

denote

H = |∇ψ1|2+|∇ψ2|2−F (x, |ψ|2)|ψ|2−v2
s

2
(|ψ|2−r2

0)−c

(
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ)

)
.

We take the derivative of (3.9) with respect to x1 (in D′(RN )), multiply it by
c, and then take the Laplacian of (3.10) (in D′(RN )). Summing up the resulting
equalities, we obtain

1

2

(
Δ2 − v2

sΔ + c2
∂2

∂x2
1

)
(|ψ|2 − r2

0) = ΔH + c
∂

∂x1
(div(G)) in D′(RN ).(3.11)

From (i) we have H,G1, . . . , GN ∈ L1 ∩L∞(RN ), and we know from Lemma 2.4 that
|ψ|2 − r2

0 ∈ L2 ∩L∞(RN ). Therefore H,G1, . . . , GN , |ψ|2 − r2
0 ∈ S ′(RN ), and we infer

that, in fact, equality (3.11) holds in S ′(RN ). Taking the Fourier transform of (3.11)
we get

1

2
(|ξ|4 + v2

s |ξ|2 − c2ξ2
1)F(|ψ|2 − r2

0) = −|ξ|2Ĥ − c

N∑
k=1

ξ1ξkĜk in S ′(RN ).(3.12)

We have Ĥ, Ĝk ∈ L∞ ∩ C0(RN ) because H, Gk ∈ L1(RN ). Thus the right-hand
side of (3.12) is a continuous function on RN . Since |ψ|2 − r2

0 ∈ L2(RN ), we have
F(|ψ|2−r2

0) ∈ L2(RN ) and infer that the left-hand side of (3.12) belongs to L2
loc(R

N )
and (3.12) holds a.e. on RN .

We denote

Γ = {ξ ∈ RN | |ξ|4 + v2
s |ξ|2 − c2ξ2

1 = 0}.

If c2 ≤ v2
s , we have Γ = {0}. If c2 > v2

s , it is easy to see that Γ is a nontrivial
submanifold of RN . In the latter case, we claim that

|ξ|2Ĥ(ξ) + c

N∑
k=1

ξ1ξkĜk(ξ) = 0 for any ξ ∈ Γ.(3.13)

To prove this claim, we argue by contradiction and suppose that there exists
ξ0 ∈ Γ such that |ξ0|2Ĥ(ξ0) + c

∑N
k=1 ξ

0
1ξ

0
kĜk(ξ

0) �= 0. By continuity, there exist
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m > 0 and a neighborhood U of ξ0 such that
∣∣ |ξ|2Ĥ + c

∑N
k=1 ξ1ξkĜk

∣∣ ≥ m on U .
From (3.12) we infer that

|F(|ψ|2 − r2
0)(ξ)| ≥

2m

| |ξ|4 + v2
s |ξ|2 − c2ξ2

1 |
a.e. on U \ Γ.

Since 0 and (
√
c2 − v2

s , 0, . . . , 0) are not isolated points of Γ, we may assume that

ξ0 �= 0 and ξ0 �= (
√
c2 − v2

s , 0, . . . , 0). A straightforward computation (details can be
found in [17, p. 98] in the case v2

s = 2; the general case is similar) shows that∫
U\Γ

1

| |ξ|4 + v2
s |ξ|2 − c2ξ2

1 |2
dξ = ∞;

consequently
∫
U\Γ |F(|ψ|2−r2

0)(ξ)|2 dξ = ∞. But this is in contradiction with F(|ψ|2−
r2
0) ∈ L2(RN ) and the claim is proved.

It is not difficult to see that Γ = {(ξ1, ξ′) ∈ R × RN−1 | |ξ′|2 = 1
2 (−v2

s − 2ξ2
1+√

v4
s + 4c2ξ2

1)}. Let f(t) =
√

1
2

(
− v2

s − 2t2 +
√
v4
s + 4c2t2

)
. The function f is well-

defined for t ∈ [−
√
c2 − v2

s ,
√

c2 − v2
s ], f(0) = 0, and limt→0

f2(t)
t2 = −1 + c2

v2
s
. Fix

j ∈ {2, . . . , N}. For t ∈ (0,
√
c2 − v2

s ], let ξ(t) = (t, 0, . . . , 0, f(t), 0, . . . , 0) and ξ̃(t) =
(t, 0, . . . , 0,−f(t), 0, . . . , 0), where f(t), respectively, −f(t), stand at the jth place. It
is obvious that ξ(t), ξ̃(t) ∈ Γ. From (3.13) we obtain, respectively,

(t2 + f2(t))Ĥ(ξ(t)) + ct2Ĝ1(ξ(t)) + ctf(t)Ĝj(ξ(t)) = 0,(3.14)

(t2 + f2(t))Ĥ(ξ̃(t)) + ct2Ĝ1(ξ̃(t)) − ctf(t)Ĝj(ξ̃(t)) = 0.(3.15)

We multiply (3.14) and (3.15) by 1
t2 , then pass to the limit as t ↓ 0 to obtain, respec-

tively,

c2

v2
s

Ĥ(0) + cĜ1(0) + c

√
−1 +

c2

v2
s

Ĝj(0) = 0,(3.16)

c2

v2
s

Ĥ(0) + cĜ1(0) − c

√
−1 +

c2

v2
s

Ĝj(0) = 0.(3.17)

From (3.16) and (3.17) we infer that c2

v2
s
Ĥ(0) + cĜ1(0) = 0 and Ĝj(0) = 0, that

is,
∫
RN H(x) +

v2
s

c G1(x) dx = 0 and
∫
RN Gj(x) dx = 0. The first of these integral

identities is exactly (3.1) and the latter can be written as∫
RN

ψ1
∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
− r2

0

∂

∂xj
(χθ) dx = 0 for j = 2, . . . , N.(3.18)

(iii) Assume that c2 = v2
s . Then (3.1) is equivalent to Ĥ(0) + cĜ1(0) = 0.

Denoting ξ = (ξ1, ξ
′), where ξ′ = (ξ2, . . . , ξN ), identity (3.12) implies

F(|ψ|2 − r2
0)(ξ) = −2

ξ2
1

|ξ|4 + c2|ξ′|2 (Ĥ(ξ) + cĜ1(ξ))

− 2c

N∑
k=2

ξ1ξk
|ξ|4 + c2|ξ′|2 Ĝk(ξ) − 2

|ξ′|2
|ξ|4 + c2|ξ′|2 Ĥ(ξ) a.e. ξ ∈ RN .

(3.19)
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For ε ∈ (0, 1], we denote Ωε = {(ξ1, ξ′) ∈ R × RN−1 | ξ1 ∈ [0, ε], 0 ≤ |ξ′| ≤ ξ1}.
We will use the following lemma.

Lemma 3.2. Let N ≥ 2 and k ∈ {2, . . . , N}.
(i) The function ξ 
−→ ξ2

1

ξ4
1+c2|ξ′|2 belongs to Lp(Ωε) if and only if p < N − 1

2 .

(ii) The function ξ 
−→ ξ1ξk
ξ4
1+c2|ξ′|2 belongs to Lp(Ωε) for any p ∈ [1, 2N − 1).

Proof of Lemma 3.2. (i) Using Fubini’s theorem for positive functions, then pass-
ing to spherical coordinates in RN−1 and making the change of variables r = ξ2

1t
we get

(3.20) ∫
Ωε

(
ξ2
1

ξ4
1 + c2|ξ′|2

)p

dξ =

∫ ε

0

ξ2p
1

∫
{|ξ′|≤ξ1}

1

(ξ4
1 + c2|ξ′|2)p dξ′ dξ1

=

∫ ε

0

ξ2p
1 |SN−2|

∫ ξ1

0

rN−2

(ξ4
1 + c2r2)p

dr dξ1

= |SN−2|
∫ ε

0

ξ2p
1

∫ 1
ξ1

0

(ξ2
1t)

N−2

(ξ4
1 + c2ξ4

1t
2)p

ξ2
1 dt dξ1 (change of variables r = ξ2

1t)

= |SN−2|
∫ ε

0

ξ
2(N−1−p)
1

∫ 1
ξ1

0

tN−2

(1 + c2t2)p
dt dξ1.

Assume that p < N − 1
2 . Obviously tN−2

(1+c2t2)p ≤ 1 for t ∈ [0, 1] and t2

1+c2t2 ≤ 1
c2 , and

thus we have∫ 1
ξ1

0

tN−2

(1 + c2t2)p
dt ≤ 1 +

1

c2p

∫ 1
ξ1

1

tN−2p−2 dt =

{
C1 + C2

ξN−2p−1
1

if p �= N−1
2 ,

C3 + C4 ln ξ1 if p = N−1
2 ,

where Cj are some positive constants. This estimate implies that the right-hand side
of (3.20) is finite if p < N − 1

2 .

If p ≥ N − 1
2 , denote cp =

∫ 1

0
tN−2

(1+c2t2)p dt > 0. Since 1
ξ1

> 1 for ξ1 ∈ (0, ε), the

right-hand side of (3.20) is greater than |SN−2|cp
∫ ε

0
ξ
2(N−1−p)
1 dξ1 = ∞.

(ii) Proceeding as above, we have

(3.21)∫
Ωε

∣∣∣∣ ξ1ξk
ξ4
1 + c2|ξ′|2

∣∣∣∣
p

dξ ≤
∫

Ωε

ξp1 |ξ′|p
(ξ4

1 + c2|ξ′|2)p dξ =

∫ ε

0

ξp1 |SN−2|
∫ ξ1

0

rp+N−2

(ξ4
1 + c2r2)p

dr dξ1

= |SN−2|
∫ ε

0

ξp1

∫ 1
ξ1

0

(ξ2
1t)

p+N−2

(ξ4
1 + c2ξ4

1t
2)p

ξ2
1 dt dξ1 (change of variables r = ξ2

1t)

= |SN−2|
∫ ε

0

ξ2N−p−2
1

∫ 1
ξ1

0

tp+N−2

(1 + c2t2)p
dt dξ1.

As previously,

∫ 1
ξ1

0

tp+N−2

(1 + c2t2)p
dt <

1

c2p

∫ 1
ξ1

0

tN−p−2 dt =
1

c2p(N − p− 1)

1

ξN−p−1
1

if N−p−1 > 0.

Therefore in the case p < N−1, the right-hand side of (3.21) is less than C
∫ ε

0
ξN−1
1 dξ1

< ∞. If p > N − 1, the integral
∫∞
0

tp+N−2

(1+c2t2)p dt converges. Let ap be its value. If
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N − 1 < p < 2N − 1, we get
∫
Ωε

∣∣ ξ1ξk
ξ4
1+c2|ξ′|2

∣∣pdξ ≤ |SN−2|ap
∫ ε

0
ξ2N−2−p
1 dξ1 < ∞ by

(3.21).
Remark. It can be proved that the function ξ 
−→ ξ1ξk

ξ4
1+c2|ξ′|2 does not belong to

Lp(Ωε) if p ≥ 2N − 1, but we will not make use of this fact here.
Now we come back to the proof of Theorem 3.1. All we have to do is to show that

Ĥ(0) + cĜ1(0) = 0. We argue by contradiction and assume that Ĥ(0) + cĜ1(0) �=
0. Since the functions Ĥ and Ĝj are continuous, there exists ε ∈ (0, 1) such that

|Ĥ(ξ) + cĜ1(ξ)| ≥ 1
2 |Ĥ(0) + cĜ1(0)| for any ξ ∈ Ωε. Taking a smaller ε if necessary,

we may also assume that |ξ|4 + c2|ξ′|2 ≤ 2(ξ4
1 + c2|ξ′|2) for any ξ ∈ Ωε. By (3.19) we

have

(3.22)

1

2

ξ2
1

ξ4
1 + c2|ξ′|2 |Ĥ(0) + cĜ1(0)| ≤ 2

ξ2
1

|ξ|4 + c2|ξ′|2 |Ĥ(ξ) + cĜ1(ξ)|

≤ |F(|ψ|2 − r2
0)(ξ)| + 2|c|

N∑
k=2

|ξ1ξk|
ξ4
1 + c2|ξ′|2 |Ĝk(ξ)| + 2

|ξ′|2
|ξ|4 + c2|ξ′|2 |Ĥ(ξ)| a.e. on Ωε.

Consider first the case N = 2. We know that F(|ψ|2 − r2
0) ∈ L2(R2), and

consequently F(|ψ|2 − r2
0) ∈ Lp(Ωε) for any p ∈ [1, 2]. Since Ĝk are continuous

and bounded, by Lemma 3.2 (ii) we infer that the functions ξ 
−→ ξ1ξk
ξ4
1+c2|ξ′|2 Ĝk(ξ)

belong to Lp(Ωε) for any p ∈ [1, 3). It is obvious that |ξ′|2
|ξ|4+c2|ξ′|2 |Ĥ(ξ)| ≤ 1

c2 |Ĥ(ξ)|
and Ĥ is continuous and bounded on RN . We conclude that the right-hand side of

(3.22) belongs to Lp(Ωε) for any p ∈ [1, 2]. Then (3.22) implies that ξ 
−→ ξ2
1

ξ4
1+c2|ξ′|2

belongs to L2(Ωε), which contradicts Lemma 3.2 (i). This contradiction proves that

Ĥ(0) + cĜ1(0) = 0.

Next we assume that N ≥ 3 and ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ). Equation (3.8)

can be written as

−1

2
Δ(|ψ|2 − r2

0) +
v2
s

2
(|ψ|2 − r2

0)

= −|∇ψ1|2 − |∇ψ2|2 + F (x, |ψ|2)|ψ|2 +
v2
s

2
(|ψ|2 − r2

0) + c

(
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1

)
.

(3.23)

We have already proved that F (·, |ψ|2)|ψ|2 +
v2
s

2 (|ψ|2 − r2
0) ∈ L1 ∩ L∞(RN ). From

Proposition 2.5 (i) we have |∇ψ|2 ∈ Lp(RN ) for any p ∈ [1,∞]. Using the assumption

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ), we infer that the right-hand side of (3.23) belongs to

L
2N−1
2N−3 (RN ). By the Hausdorff–Young inequality, for any function f ∈ Lp(RN ) with

1 ≤ p ≤ 2 we have F(f) ∈ Lp′
(RN ), where 1

p + 1
p′ = 1 (see, e.g., Theorem 1.2.1, p. 6,

in [4]). Passing to Fourier transforms in (3.23) we get

F(|ψ|2 − r2
0)(ξ) =

2

|ξ|2 + v2
s

F
[
−|∇ψ|2 +

(
F (·, |ψ|2)|ψ|2 +

v2
s

2
(|ψ|2 − r2

0)

)

+ c

(
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1

)]
(ξ) a.e. ξ ∈ RN .

(3.24)

We obtain from (3.24) that F(|ψ|2−r2
0) ∈ LN− 1

2 (RN ). Combined with Lemma 3.2 (ii)

and the fact that Ĥ, Ĝj , and ξ 
−→ |ξ′|2
|ξ|4+c2|ξ′|2 are bounded, this implies that the last
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expression in (3.22) is in LN− 1
2 (Ωε). We infer that the function ξ 
−→ ξ2

1

ξ4
1+c2|ξ′|2 |Ĥ(0)+

cĜ1(0)| must be in LN− 1
2 (Ωε) for any sufficiently small ε. If Ĥ(0) + cĜ1(0) �= 0, this

contradicts Lemma 3.2 (i). Thus necessarily Ĥ(0) + cĜ1(0) = 0 and the proof of
Theorem 3.1 is complete.

It is an open problem whether any finite-energy traveling wave ψ of (1.1) moving

with speed c = ±vs satisfies ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ). Even for very particular

cases of (1.1), such as the Gross–Pitaevskii equation, the answer to this question is
not known. However, we have the following.

Proposition 3.3. Assume that (H1)–(H5) hold and let ψ = ψ1 + iψ2 be a finite-
energy traveling wave for (1.1) such that F (·, |ψ|2) ∈ L1

loc(R
N ). Let R∗ be sufficiently

big so that |ψ| ≥ r0
2 on RN \B(0, R∗), let θ be the lifting given by Proposition 2.5 (ii),

and let χ ∈ C∞(RN ) be a cut-off function as in Theorem 3.1. Then the following
hold:

(i) Let p ∈ (1,∞). The following assertions are equivalent:
(a) ∇(χθ) ∈ Lp(RN );
(b) ψ1

∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
∈ Lp(RN ) for any j ∈ {1, . . . , N};

(c) ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ Lp(RN );

(d) |ψ|2 − r2
0 ∈ W 2,p(RN );

(e) |ψ|2 − r2
0 ∈ Lp(RN ).

(ii) If N ≥ 3, there exists θ0 ∈ R such that χθ − θ0 ∈ W 2,q(RN ) for any q ∈
[ 2N
N−2 ,∞).

Moreover, if c2 = v2
s , we have the following:

(iii) |ψ|2 − r2
0 ∈ Lp(RN ) and ψ1

∂ψ2

∂xj
− ψ2

∂ψ1

∂xj
∈ Lp(RN ) for any p > 2N−1

2N−3 and
j ∈ {1, . . . , N}.

(iv) ∇(|ψ|2 − r2
0) ∈ Lp(RN ) for any p > 2N−1

2N−2 .

(v) ∂2
j,k(|ψ|2 − r2

0) ∈ Lp(RN ) for any p ∈ (1,∞).

Proof. (i) Since ψ ∈ L∞(RN ) and (3.3) holds, the equivalence (a) ⇔ (b) is clear.
It is also obvious that (b) ⇒ (c).

From the classical Marcinkiewicz theorem (see Theorem 3, p. 96, in [27]) it fol-

lows that the functions 1
|ξ|2+v2

s
,

ξj
|ξ|2+v2

s
, and

ξjξk
|ξ|2+v2

s
are Lp-multipliers for 1 < p <

∞. Assume that ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ Lp(RN ). Since |∇ψ|2 ∈ L1 ∩ L∞(RN ) and

F (·, |ψ|2)|ψ|2 +
v2
s

2 (|ψ|2 − r2
0) ∈ L1 ∩ L∞(RN ) by Theorem 3.1 (i), we have −|∇ψ|2 +

(F (·, |ψ|2)|ψ|2 +
v2
s

2 (|ψ|2 − r2
0)) + c(ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
) ∈ Lp(RN ) and infer from (3.24)

that |ψ|2 − r2
0 ∈ W 2,p(RN ). Hence (c) ⇒ (d). It is obvious that (d) ⇒ (e).

It follows from Proposition 2.5 (ii) that ∂k(χθ) ∈ S ′(RN ). It is then clear that
all terms appearing in (3.9) belong to S ′(RN ). We take the derivative of (3.9) with
respect to xk (in S ′(RN )), then take the Fourier transform of the resulting equality
to obtain

r2
0F

(
∂

∂xk
(χθ)

)
= −

N∑
j=1

ξjξk
|ξ|2 Ĝj +

c

2

ξ1ξk
|ξ|2 F(|ψ|2 − r2

0)

or, equivalently,

r2
0

∂

∂xk
(χθ) =

N∑
j=1

RjRk(Gj) −
c

2
R1Rk(|ψ|2 − r2

0),(3.25)
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where Rj is the Riesz transform, Rjφ = F−1(i
ξj
|ξ| φ̂). It is well known that the Riesz

transform maps continuously Lp(RN ) into Lp(RN ) for 1 < p < ∞ (see, e.g., The-
orem 3, p. 96, and Example (iii), p. 95, in [27]). From Theorem 3.1 (i) we have
Gj ∈ L1 ∩ L∞(RN ); therefore RjRk(Gj) ∈ Lq(RN ) for any q ∈ (1,∞). Assume that
|ψ|2 − r2

0 ∈ Lp(RN ) for some p ∈ (1,∞). Then R1Rk(|ψ|2 − r2
0) ∈ Lp(RN ) and from

(3.25) we infer that ∂
∂xk

(χθ) ∈ Lp(RN ) for any k ∈ {1, . . . , N}. Thus (e) ⇒ (a) and

(i) is proved.
(ii) It is well known that for any function φ satisfying ∇φ ∈ Lp(RN ) with p < N ,

there exists a constant λ such that φ − λ ∈ Lp∗
(RN ), where 1

p∗ = 1
p − 1

N (see

Theorem 4.5.9 in [20] or Lemma 7 and Remark 4.2 in [15, pp. 774–775] for a different
proof). From Proposition 2.5 (ii) we have ∇(χθ) ∈ W 1,p(RN ) for any p ∈ [2,∞). If
N ≥ 3, we infer that there exists θ0 ∈ R such that χθ−θ0 ∈ Lq(RN ) for q ∈ [ 2N

N−2 ,∞).

Therefore χθ− θ0 ∈ W 2,q(RN ) for any q ∈ [ 2N
N−2 ,∞) and, in particular, χθ− θ0 −→ 0

as |x| −→ ∞.
(iii) We will use the following result due to Lizorkin (see Theorem 8, p. 288,

in [24]).
Theorem 3.4 (see [24]). Let β ∈ [0, 1) and let K ∈ L∞(RN ) ∩ CN (RN \ {0}).

Assume that

( N∏
j=1

|ξj |kj+β
)
∂k1
1 . . . ∂kN

N K ∈ L∞(RN ) for any k1, . . . , kN ∈ {0, 1}.

Then K is a Fourier multiplier from Lp(RN ) to L
p

1−βp (RN ) for any p ∈ (1, 1
β ).

Let K(ξ) = |ξ|2
|ξ|4+c2|ξ′|2 , where ξ′ = (ξ2, . . . , ξN ). A straightforward but tedious

computation shows that K satisfies the assumptions of Lizorkin’s theorem for β =
1

2N−1 . From (3.19) we obtain

|ψ|2 − r2
0 = 2R2

1

(
F−1

(
K(Ĥ + cĜ1)

))
(3.26)

+ 2c

N∑
j=2

R1Rj

(
F−1(KĜj)

)
+ 2

N∑
j=2

R2
j

(
F−1(KĤ)

)
,

where Rj ’s denote Riesz transforms. Since H,G1, . . . , GN ∈ L1 ∩L∞(RN ), by (3.26)
and Lizorkin’s theorem we infer that |ψ|2 − r2

0 ∈ Lp(RN ) for any p ∈ ( 2N−1
2N−3 ,∞). The

rest of (iii) follows from part (i), (b) ⇔ (e).
(iv) and (v) From (iii) and (i), (d) ⇔ (e) it follows immediately that |ψ|2 − r2

0 ∈
W 2,p(RN ) for any p ∈ ( 2N−1

2N−3 ,∞). Using (3.19) we obtain

∂2
k


(
|ψ|2 − r2

0

)
= 2RkR
R

2
1

(
F−1

(
|ξ|2K(Ĥ + cĜ1)

))

+2c

N∑
j=2

RkR
R1Rj

(
F−1(|ξ|2KĜj)

)

+2

N∑
j=2

RkR
R
2
j

(
F−1(|ξ|2KĤ)

)
in S ′(RN ).

(3.27)

It can be proved by direct computation that the function |ξ|2K satisfies the assump-
tions of Lizorkin’s theorem for β = 0. Consequently |ξ|2K is an Lp-multiplier for
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1 < p < ∞. Since H,Gj ∈ L1 ∩L∞(RN ), it follows from (3.27) that ∂2
k


(
|ψ|2 − r2

0

)
∈

Lp(RN ) for 1 < p < ∞.
By using the Gagliardo–Nirenberg inequality

||∇φ||2Lp ≤ C||φ||Lq ||∇2φ||Lr if
1

p
=

1

2

(
1

q
+

1

r

)
,

we infer that ∇(|ψ|2 − r2
0) ∈ Lp(RN ) for any p > 2N−1

2N−2 .
Corollary 3.5. Under the assumptions of Theorem 3.1, assume that N ≥ 3,

c2 = v2
s , and the momentum of ψ with respect to the x1-direction is well-defined, that

is, ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L1(RN ). Then ψ satisfies (3.1).

Proof. From Proposition 3.3 (iii) and (i) we have ψ1
∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
∈ Lp(RN ) for p ∈

( 2N−1
2N−3 ,∞). Then the assumption ψ1

∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
∈ L1(RN ) implies ψ1

∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
∈

Lp(RN ) for any p ∈ [1,∞). Now the conclusion follows from Theorem 3.1 (iii).

4. Nonexistence results. In this section we show how Theorem 3.1 may be
used to prove nonexistence of supersonic and sonic traveling waves with finite energy
for some equations of type (1.1).

4.1. Equations invariant by translations. We consider the equation

i
∂Φ

∂t
+ ΔΦ + G(|Φ|2)Φ = 0 in RN .(4.1)

We assume that the function G : [0,∞) −→ R satisfies the following assumptions:
• (A1) G ∈ C2([0,∞),R) and there exists r0 > 0 such that G(r2

0) = 0 and
G′(r2

0) < 0.

• (A2) There exists α > 0 such that lim sups→∞
G(s)
sα < 0.

Obviously, (4.1) is of the form (1.1). As previously, we associate to (4.1) the “boundary
condition” |Φ| −→ r2

0 as |x| −→ ∞. In this context, the sound velocity at infinity

is vs = r0
√
−2G′(r2

0). The energy corresponding to (4.1) is E(Φ) =
∫
RN |∇Φ|2 dx+∫

RN V (|Φ|2) dx, where V (s) =
∫ r2

0

s
G(τ) dτ. Let ψ be a finite-energy traveling wave

for (4.1) (in the sense of Definition 2.1) moving with speed c. Then ψ satisfies the
equation

−ic
∂ψ

∂x1
+ Δψ + G(|ψ|2)ψ = 0 in D′(RN ), |ψ| −→ r0 as |x| −→ ∞.(4.2)

If G satisfies (A1)–(A2), it is easy to see that F (x, s) := G(s) satisfies the assumptions
(H1)–(H5) in section 2 (with L = −G′(r2

0)). It is then clear that the conclusions of
Propositions 2.2 and 2.5 and Theorem 3.1 (i) are valid for ψ. Moreover, we have the
following.

Proposition 4.1 (Pohozaev identities). Let ψ be as above. Choose R∗ > 0 such
that |ψ| ≥ r0

2 on RN \ B(0, R∗). Let θ be the lifting of ψ
|ψ| on RN \ B(0, R∗) (as

given by Proposition 2.5 (ii)) and let χ be a cut-off function as in Theorem 3.1. The
following identities hold:

−
∫
RN

∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

dx +

∫
RN

N∑
j=2

∣∣∣∣ ∂ψ∂xj

∣∣∣∣
2

dx +

∫
RN

V (|ψ|2) dx = 0,(4.3)
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−
∫
RN

∣∣∣∣ ∂ψ∂xk

∣∣∣∣
2

dx +

∫
RN

N∑
j=1, j 	=k

∣∣∣∣ ∂ψ∂xj

∣∣∣∣
2

dx +

∫
RN

V (|ψ|2) dx

− c

∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ) dx = 0 for k = 2, . . . , N.

(4.4)

It is worth noting that Proposition 4.1 is valid for any speed c ∈ R.
Proof. Since the arguments are rather classical, we only sketch the proof.
Formally, traveling waves are critical points of the functional Ec = E+cP1, where

E is the energy and P1 is the momentum with respect to the x1-direction (see (1.3)).
Identities (4.3) and (4.4) are simple consequences of the behavior of Ec with respect to
dilations in RN . To be more precise, define ψk,t(x) = ψ(x1, . . . , xk−1, txk, xk+1, . . . ,
xN ) and gk(t) = Ec(ψk,t). If ψ is a critical point of Ec, one would expect that
g′k(1) = d

dt (Ec(ψk,t))
∣∣
t=1

= 0, and this is precisely (4.3) if k = 1, respectively, (4.4)
if k ≥ 2. However, this argument is not rigorous for at least two reasons. First, it is
not clear what function space one should consider to define Ec (and this could not
be a vector space because of the boundary conditions at infinity). Second, even if an
appropriate function space is found, we do not know whether d

dt (ψk,t)
∣∣
t=1

= xk
∂ψ
∂xk

belong to the tangent space at ψ of the considered function space.
The most convenient way to prove Pohozaev identities is to use a truncation

argument. Fix a function η ∈ C∞
c (RN ) such that η = 1 on B(0, 1) and η = 0 on

RN \ B(0, 2). For n ≥ 1, define ηn(x) = η( x
n ). We take the scalar product of (4.2)

by xkηn(x) ∂ψ
∂xk

and integrate by parts the resulting equality. It is standard (see, e.g.,

Proposition 1, p. 320, in [3] or Lemma 2.4, p. 104, in [10]) to prove that

lim
n→∞

∫
RN

(
Δψ, xkηn(x)

∂ψ

∂xk

)
dx

(4.5)

= −
∫
RN

∣∣∣∣ ∂ψ∂xk

∣∣∣∣
2

dx +
1

2

∫
RN

|∇ψ|2 dx

and

lim
n→∞

∫
RN

(
G(|ψ|2)ψ, xkηn(x)

∂ψ

∂xk

)
dx =

1

2

∫
RN

V (|ψ|2) dx.(4.6)

It is obvious that (ic ∂ψ
∂x1

, ηn(x)x1
∂ψ
∂x1

) = cηn(x)x1(i
∂ψ
∂x1

, ∂ψ
∂x1

) = 0. Thus taking the

scalar product of (4.2) by x1ηn(x) ∂ψ
∂x1

, integrating, and using (4.5) and (4.6) we
get (4.3).

By (3.3) we have (−i ∂ψ
∂xj

, ψ) = ψ1
∂ψ2

∂xj
−ψ2

∂ψ1

∂xj
= |ψ|2 ∂θ

∂xj
on RN \B(0, R∗). Using

the convention ∂α(χθ) = 0, (∂αχ)θ = 0 on B(0, 2R∗), we have

(
−i

∂ψ

∂xj
, ψ

)
= (1 − χ)

(
−i

∂ψ

∂xj
, ψ

)
+ χ|ψ|2 ∂θ

∂xj

= (1 − χ)

(
−i

∂ψ

∂xj
, ψ

)
+ |ψ|2 ∂(χθ)

∂xj
− |ψ|2θ ∂χ

∂xj
on RN .

(4.7)
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Therefore we get for k = 2, . . . , N

∫
RN

(
−ic

∂ψ

∂x1
, xkηn(x)

∂ψ

∂xk

)
dx

=
c

2

∫
RN

xkηn(x)

[
∂

∂x1

(
−iψ,

∂ψ

∂xk

)
+

∂

∂xk

(
−i

∂ψ

∂x1
, ψ

)]
dx

= − c

2

∫
RN

xk
∂ηn
∂x1

(x)

(
−iψ,

∂ψ

∂xk

)
+

(
ηn(x) + xk

∂ηn
∂xk

(x)

)(
−i

∂ψ

∂x1
, ψ

)
dx

=
c

2

∫
RN

xk
∂ηn
∂x1

(x)

[
(1 − χ)

(
−i

∂ψ

∂xk
, ψ

)
+ |ψ|2 ∂(χθ)

∂xk
− |ψ|2θ ∂χ

∂xk

]
dx(4.8)

− c

2

∫
RN

ηn(x)

(
−i

∂ψ

∂x1
, ψ

)
dx

− c

2

∫
RN

xk
∂ηn
∂xk

(x)

[
(1 − χ)

(
−i

∂ψ

∂x1
, ψ

)
+ |ψ|2 ∂(χθ)

∂x1
− |ψ|2θ ∂χ

∂x1

]
dx

=
c

2

∫
RN

xk|ψ|2
(
∂ηn
∂x1

∂(χθ)

∂xk
− ∂ηn

∂xk

∂(χθ)

∂x1

)
− ηn(x)

(
−i

∂ψ

∂x1
, ψ

)
dx if n > 3R∗

because supp(1−χ) ⊂ B(0, 3R∗) and supp∇ηn ⊂ B(0, 2n)\B(0, n), and consequently
(1 − χ)∂ηn

∂xj
= 0 and ∂χ

∂x�

∂ηn

∂xj
= 0 on RN for n > 3R∗.

It is obvious that

∫
RN

xk

(∂ηn
∂x1

∂(χθ)

∂xk
− ∂ηn

∂xk

∂(χθ)

∂x1

)
dx

=

∫
RN

xk

[ ∂

∂x1

(
ηn

∂(χθ)

∂xk

)
− ∂

∂xk

(
ηn

∂(χθ)

∂x1

)]
dx =

∫
RN

ηn
∂(χθ)

∂x1
dx.

(4.9)

Since |ψ|2 − r2
0 and ∇(χθ) belong to L2(RN ), using the dominated convergence the-

orem we obtain∣∣∣∣
∫
RN

xk(|ψ|2 − r2
0)

(
∂ηn
∂x1

∂(χθ)

∂xk
− ∂ηn

∂xk

∂(χθ)

∂x1

)
dx

∣∣∣∣
≤ 4||∇η||L∞(RN )

∫
B(0,2n)\B(0,n)

| |ψ|2 − r2
0| · |∇(χθ)| dx −→ 0 as n −→ ∞.

(4.10)

Recall that ψ1
∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
−r2

0
∂(χθ)
∂x1

∈ L1(RN ) by Theorem 3.1 (i), and by dominated
convergence we get

∫
RN

ηn

[(
− i

∂ψ

∂x1
, ψ

)
− r2

0

∂(χθ)

∂x1

]
dx =

∫
RN

ηn

[
ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)

∂x1

]
dx

−→
∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)

∂x1
dx as n −→ ∞.

(4.11)
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Combining (4.8)–(4.11) we find

lim
n→∞

∫
RN

(
−ic

∂ψ

∂x1
, xkηn(x)

∂ψ

∂xk

)
dx(4.12)

= − c

2

∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)

∂x1
dx.

Taking the scalar product of (4.2) by ηn(x)xk
∂ψ
∂xk

, integrating over RN , and using

(4.5), (4.6), and (4.12) we obtain (4.4).
Theorem 4.2. Assume that N ≥ 2, (A1), (A2) hold and let ψ be a finite-energy

traveling wave for (3.1) such that G(|ψ|2)ψ ∈ L1
loc(R

N ). Suppose that either

• c2 > v2
s , where vs = r0

√
−2G′(r2

0) is the sound velocity at infinity, or
• N = 2 and c2 = v2

s , or

• N ≥ 3, c2 = v2
s , and ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ).

Moreover, assume that G satisfies

• (A3) there exists α ∈ [−1 + N−3
N−1 (1 − v2

s

c2 ),
v2
s

c2 ] such that

sG(s) +
v2
s

2
(s− r2

0) +

(
1 − α− v2

s

c2

)
V (s) ≤ 0 for any s ≥ 0.

Then ψ is constant.
Proof. It follows from Propositions 2.2 and 2.5 that ψ is smooth, and Proposi-

tion 4.1 implies that ψ satisfies (4.3) and (4.4). Summing up the identities (4.4) for
k = 2, . . . , N we get∫

RN

∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

+
N − 3

N − 1

N∑
k=2

∣∣∣∣ ∂ψ∂xk

∣∣∣∣
2

dx +

∫
RN

V (|ψ|2) dx

− c

∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂(χθ)

∂x1
dx = 0.

(4.13)

On the other hand, from Theorem 3.1 we have∫
RN

|∇ψ|2 −G(|ψ|2)|ψ|2 − v2
s

2
(|ψ|2 − r2

0) dx

− c

(
1 − v2

s

c2

)∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− r2

0

∂

∂x1
(χθ) dx = 0.

(4.14)

We multiply (4.13) by −1 +
v2
s

c2 and add the resulting equality to (4.14) to get∫
RN

v2
s

c2

∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

+

(
1 −

(
1 − v2

s

c2

)
N − 3

N − 1

) N∑
k=2

∣∣∣∣ ∂ψ∂xk

∣∣∣∣
2

dx

−
∫
RN

G(|ψ|2)|ψ|2 +
v2
s

2
(|ψ|2 − r2

0) +

(
1 − v2

s

c2

)
V (|ψ|2) dx = 0.

(4.15)

Let α satisfy (A3). Multiplying (4.3) by α and adding it to (4.15) we obtain∫
RN

(
v2
s

c2
− α

) ∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

+

(
α + 1 −

(
1 − v2

s

c2

)
N − 3

N − 1

) N∑
k=2

∣∣∣∣ ∂ψ∂xk

∣∣∣∣
2

dx

=

∫
RN

G(|ψ|2)|ψ|2 +
v2
s

2
(|ψ|2 − r2

0) +

(
1 − α− v2

s

c2

)
V (|ψ|2) dx.

(4.16)
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By (A3), the right-hand side of (4.16) is less than or equal to zero. If α ∈ (−1 + (1−
v2
s

c2 )N−3
N−1 ,

v2
s

c2 ), it follows from (4.16) that
∫
RN

∣∣ ∂ψ
∂xk

∣∣2 dx = 0 for k = 1, . . . , N , which

implies ∇ψ = 0 on RN , i.e., ψ is constant. If α = −1 + (1 − v2
s

c2 )N−3
N−1 , we infer from

(4.16) that
∫
RN

∣∣ ∂ψ
∂x1

∣∣2 dx = 0; consequently ∂ψ
∂x1

= 0 on RN , which implies that ψ

does not depend on x1. Since
∫
RN |∇ψ|2 dx is finite, we have necessarily ∇ψ = 0 on

RN , which means that is ψ is constant. A similar argument shows that ψ is constant

in the case α =
v2
s

c2 .

Remark. Let α, C1, and r̃ be positive constants satisfying G(s2) + c2

4 ≤ −C1(s−
r̃)2α for any s ≥ r̃ (such constants exist by assumption (A2)). Let ψ be as in Theo-
rem 4.2. It follows from the proof of Proposition 2.2 (i) that |ψ(x)| ≤ r̃

√
2 for any x.

Therefore the proof of Theorem 4.2 is still valid if the inequality in (A3) holds only
for all s ∈ [0, 2r̃2].

If c2 = v2
s , N ≥ 3, and ψ is as above, we already know from Proposition 3.3 (iii)

that ψ1
∂ψ2

∂x1
−ψ2

∂ψ1

∂x1
∈ Lp(RN ) for any p ∈ ( 2N−1

2N−3 ,∞). Therefore we have the follow-
ing.

Corollary 4.3. Assume that (A1), (A2), (A3) hold, N ≥ 3, and c2 = v2
s . Let ψ

be a traveling wave for (4.1) having finite energy, finite momentum with respect to the
x1-direction (i.e., ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L1(RN )), and such that G(|ψ|2)ψ ∈ L1

loc(R
N ).

Then ψ is constant.
Example 4.4. The Gross–Pitaevskii equation is of type (4.1) with G(s) = 1 − s.

In this case we have r0 = 1, V (s) = 1
2 (s − 1)2, and vs =

√
2. For any finite-energy

function ψ we have
∫
RN (|ψ|2 − 1)2 dx < ∞; hence ψ ∈ L4

loc(R
N ) and consequently

G(|ψ|2)ψ ∈ L1
loc(R

N ). Assumptions (A1) and (A2) are clearly satisfied. We find

sG(s) +
v2
s

2 (s− r2
0) + (1−α− v2

s

c2 )V (s) = −( 1
2 +α+

v2
s

c2 )(1− s)2. The last expression is

nonpositive for any s if α ≥ −1
2−

v2
s

c2 , and thus assumption (A3) is also satisfied. Hence
the conclusion of Theorem 4.2 holds for the Gross–Pitaevskii equation. In particular,
we recover the nonexistence results in [17], [18].

Example 4.5. The cubic-quintic Schrödinger equation is of the form (4.1) with
G(s) = −α1+α3s−α5s

2, where α1, α3, α5 are positive and 3
16 < α1α5

α2
3

< 1
4 . The non-

linearity G can be written as G(s) = −α5(s− r2
1)(s− r2

0), where 0 < r1 < r0. In this

case we have v2
s = −2r2

0G
′(r0) = 2α5r

2
0(r

2
0−r2

1) and V (s) = α5

3 (s−r2
0)

2(s+ 1
2r

2
0− 3

2r
2
1).

For any function ψ with finite energy we have V (|ψ|2) ∈ L1(RN ), which implies

ψ ∈ L6
loc(R

N ) and consequently G(|ψ|2)ψ ∈ L1
loc(R

N ). It is obvious that G satisfies

(A1) and (A2). If c2 ≥ v2
s , we have −v2

s

c2 ∈ [−1+N−3
N−1 (1− v2

s

c2 ),
v2
s

c2 ] and an easy computa-

tion shows that sG(s) +
v2
s

2 (s− r2
0) + V (s) = −α5

6 (4s + 5r2
0 − 3r2

1) ≤ 0 for any s ≥ 0.
Hence assumption (A3) holds for α = −v2

s

c2 ; therefore the conclusion of Theorem 4.2
is valid for the cubic-quintic Schrödinger equation.

Remark. The proof of nonexistence of supersonic and sonic traveling waves for
equations of type (1.1) relies on identity (3.1), combined with Pohozaev identities.
We have proved (3.1) in an “indirect” way, starting from (3.11), using the Fourier
transform and analyzing the behavior near the origin of the symbols of the differential
operators involved. A natural question is whether (3.1) could be proved “directly” by
multiplying the equations by appropriate functions and integrating by parts (and it
is very tempting to try to do so because of the form of (3.7) and (3.8)!). We suspect
that it is not possible to find such a proof, a heuristical reason being the following:
If a “direct” proof of (3.1) could be found, it should be valid for any value of c.
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Since Pohozaev identities are also valid for any c, one could infer that, for any c,
equation (4.1) and system (4.17)–(4.18) below do not admit nontrivial finite-energy
traveling waves. However, in the case of the Gross–Pitaevskii equation the existence
of nontrivial, finite-energy traveling waves moving with sufficiently small speed c has
been proved in [5] in dimension N = 2, respectively, in [7] and [12] in dimension N = 3.
In a recent work [6], existence of traveling waves has been proved in space dimensions
N = 2 and N = 3 for a wider range of speeds, including speeds c close to (and less
than) vs if N = 2. For Schrödinger equations of cubic-quintic type, the existence of
small velocity traveling waves has been proved in [25] in any space dimension N ≥ 4.
Even for these particular cases, the question of whether such solutions exist for any
speed c ∈ (−vs, vs) is, to our knowledge, still open.

4.2. A Gross–Pitaevskii–Schrödinger system. Our second application con-
cerns the system

i
∂Ψ

∂t
+ ΔΨ − 1

ε2

(
|Ψ|2 +

1

ε2
|Φ|2 − 1

)
Ψ = 0 in RN ,(4.17)

iδ
∂Φ

∂t
+ ΔΦ − 1

ε2
(q2|Ψ|2 − ε2k2)Φ = 0 in RN ,(4.18)

which describes the motion of an uncharged impurity in a Bose condensate (see [16]).
Here Ψ and Φ are the wavefunctions for bosons, respectively, for the impurity, and ε,
δ, q, k are dimensionless physical constants. Assuming that the condensate is at rest
at infinity, the functions Ψ and Φ must satisfy the “boundary conditions” |Ψ| −→ 1
and |Φ| −→ 0 as |x| −→ ∞.

System (4.17)–(4.18) has a Hamiltonian structure, the associated energy being

(4.19)

E(Ψ,Φ) =

∫
RN

|∇Ψ|2 +
1

ε2q2
|∇Φ|2 +

1

2ε2
(|Ψ|2 − 1)2 +

1

ε4
|Ψ|2|Φ|2 − k2

ε2q2
|Φ|2 dx.

We are interested in traveling wave solutions for (4.17)–(4.18), i.e., solutions of
the form Ψ(x, t) = ψ(x1 − ct, x2, . . . , xN ), Φ(x, t) = ϕ(x1 − ct, x2, . . . , xN ). Such
solutions must satisfy the equations

−ic
∂ψ

∂x1
+ Δψ − 1

ε2

(
|ψ|2 +

1

ε2
|ϕ|2 − 1

)
ψ = 0,(4.20)

−icδ
∂ϕ

∂x1
+ Δϕ− 1

ε2
(q2|ψ|2 − ε2k2)ϕ = 0,(4.21)

together with the boundary conditions |ψ| −→ 1 and |ϕ| −→ 0 as |x| −→ ∞.
Equation (4.17) is of type (1.1). In view of the analysis in the introduction, the

associated sound velocity at infinity is
√

2
ε .

In one space dimension, system (4.20)–(4.21) with the considered boundary con-
ditions has been studied in [26]. It was proved that it admits nontrivial solutions
if c is less than the sound velocity at infinity; in this case the structure of the set
of traveling waves has been investigated, and it was proved that it contains global
subcontinua in appropriate (weighted) Sobolev spaces.

Here we study the finite-energy traveling waves for (4.17)–(4.18) in dimension
N ≥ 2. In view of (4.19), by finite-energy traveling wave we mean a couple of functions



NONEXISTENCE OF SUPERSONIC WAVES FOR NLS 1097

(ψ,ϕ) ∈ L1
loc(R

N ) × L1
loc(R

N ) which satisfy (4.20)–(4.21) in D′(RN ), the boundary
conditions |ψ| −→ 1, ϕ −→ 0 as |x| −→ ∞, and such that ∇ψ, ∇ϕ, ϕ ∈ L2(RN ),
(|ψ|2 − 1)2 + 2

ε2 |ψ|2|ϕ|2 ∈ L1(RN ). As before, we denote ψ1 = Re(ψ), ψ2 = Im(ψ),
ϕ1 = Re(ϕ), ϕ2 = Im(ϕ). We have the following.

Proposition 4.6. Let c ∈ R and let (ψ,ϕ) be a finite-energy traveling wave for
(4.17)–(4.18). Then the following hold.

(i) The function ψ is bounded and C∞ and ϕ,∇ψ ∈ W k,p(RN ) for any k ∈ N
and p ≥ 2.

(ii) There exist R∗ ≥ 0 and a real-valued function θ such that ψ = |ψ|eiθ on
RN \B(0, R∗) and ∇θ ∈ W k,p(RN \B(0, R∗)) for any k ∈ N and p ≥ 2.

(iii) Let χ ∈ C∞(RN ) be a cut-off function such that χ = 0 on B(0, 2R∗) and
χ = 1 on RN \ B(0, 3R∗). We have ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) ∈ L1(RN ) and the

following Pohozaev-type identities hold:

∫
RN

−
∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

− 1

ε2q2

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣
2

+

N∑
j=2

(∣∣∣∣ ∂ψ∂xj

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣ ∂ϕ∂xj

∣∣∣∣
2
)

dx

+

∫
RN

1

2ε2
(|ψ|2 − 1)2 +

1

ε4
|ψ|2|ϕ|2 − k2

ε2q2
|ϕ|2 dx = 0,

(4.22)

and for any k ∈ {2, . . . , N},

∫
RN

−
∣∣∣∣ ∂ψ∂xk

∣∣∣∣
2

− 1

ε2q2

∣∣∣∣ ∂ϕ∂xk

∣∣∣∣
2

+

N∑
j=1, j 	=k

(∣∣∣∣ ∂ψ∂xj

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣ ∂ϕ∂xj

∣∣∣∣
2
)

dx

+

∫
RN

1

2ε2
(|ψ|2 − 1)2 +

1

ε4
|ψ|2|ϕ|2 − k2

ε2q2
|ϕ|2 dx

− c

∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx− 2cδ

ε2q2

∫
RN

ϕ1
∂ϕ2

∂x1
dx = 0.

(4.23)

Proof. Putting F (x, s) = − 1
ε2 (s + 1

ε2 |ϕ(x)|2 − 1), equation (4.20) is a particular
case of (1.7). Clearly, in this case we have r0 = 1.

It is obvious that F satisfies the assumptions (H1a) and (H1b) in section 2.
Clearly, F (x, s) ≤ − 1

ε2 (s − 1) ≤ − 1
2ε2 s for any s ≥ 2 and x ∈ RN , and hence F

satisfies (H2) for r∗ = 2. Moreover,
∫ r∗
r2
0
F (x, τ) dτ = − 1

ε2 ( 1
2 + 1

ε2 |ϕ(x)|2) is a locally

integrable function of x. We have |ψ|4 ≤ 2(|ψ|2 − 1)2 + 2 and (|ψ|2 − 1)2 ∈ L1(R)
because (ψ,ϕ) has finite energy, and hence ψ ∈ L4

loc(R
N ). We also have | |ϕ|2ψ| ≤

1
2 (|ϕ|2 + |ϕ|2|ψ|2) and |ϕ|2, |ϕ|2|ψ|2 ∈ L1(R). It is then clear that F (·, |ψ|2)ψ =
− 1

ε2 |ψ|2ψ− 1
ε4 |ϕ|2ψ+ 1

ε2ψ belongs to L1
loc(R

N ). Hence we may use Proposition 2.2 (i)
and infer that ψ ∈ L∞(RN ).

By hypothesis we have ϕ ∈ L2(RN ) and ∇ϕ ∈ L2(RN ), that is, ϕ ∈ W 1,2(RN ).
Assume that ϕ ∈ W 1,p(RN ) for some p ∈ (1,∞). Since ψ is bounded, by (4.21)
we find Δϕ ∈ Lp(RN ), and we infer that ϕ ∈ W 2,p(RN ). If p < N , by the Sobolev
embedding we have ϕ ∈ Lp∗

(RN ) and ∇ϕ ∈ Lp∗
(RN ) (where 1

p∗ = 1
p −

1
N ), and hence

ϕ ∈ W 1,p∗
(RN ). Repeating the above argument if necessary, after a finite number of

steps we find ϕ ∈ W 2,q(RN ) for some q ≥ N and the Sobolev embedding implies
ϕ ∈ Lr(RN ) and ∇ϕ ∈ Lr(RN ) for any r ∈ [q,∞). Using (4.21) again, we conclude
that Δϕ ∈ Lr(RN ), and hence ϕ ∈ W 2,r(RN ) for any r ∈ [2,∞).
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It follows that ϕ ∈ C1(RN ), which implies F ∈ C1(RN ) (and consequently F
satisfies (H1c)). By Proposition 2.2 (ii) we get ψ ∈ W 3,p

loc (RN ) for any p ∈ [1,∞). In
particular, ψ ∈ C2(RN ).

We have F (x, 1) = − 1
ε4 |ϕ(x)|2, and F clearly satisfies assumption (H3). It is

obvious that ∂N+1F (x, s) = − 1
ε2 and ∂2

N+1F (x, s) = 0 on RN × R+, and therefore
F satisfies (H4) and (H5). Thus we may use Proposition 2.5 (i) and infer that ∇ψ ∈
W 1,p(RN ) for any p ∈ [2,∞).

The rest of the proof is a very easy induction. For k ∈ N∗, assume that ∇ψ ∈
W k,p(RN ) and ϕ ∈ W k+1,p(RN ) for any p ∈ [2,∞). Consider α ∈ NN such that
|α| = k. Differentiating (4.20) and (4.21) we obtain, respectively,

Δ(∂αψ) = ic∂α ∂ψ

∂x1
+

1

ε2
∂α

((
|ψ|2 +

1

ε2
|ϕ|2 − 1

)
ψ
)
,

Δ(∂αϕ) = icδ∂α ∂ϕ

∂x1
+

1

ε2
∂α

(
(q2|ψ|2 − ε2k2)ϕ

)
.

We infer that Δ(∂αψ), Δ(∂αϕ) ∈ Lp(RN ) for any p ∈ [2,∞). By hypothesis we have
∂αψ, ∂αϕ ∈ Lp(RN ), and therefore ∂αψ, ∂αϕ ∈ W 2,p(RN ) for any p ∈ [2,∞). Since
this is true for any α with |α| = k, we have ∇ψ ∈ W k+1,p(RN ) and ϕ ∈ W k+2,p(RN ).
We conclude that ∇ψ and ϕ belong to W k,p(RN ) for any k ∈ N and p ∈ [2,∞).

(ii) is an immediate corollary of Proposition 2.5 (ii).
(iii) It follows directly from Theorem 3.1 (i) that ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) ∈

L1(RN ). The proof of (4.22) and (4.23) is similar to that of (4.3) and (4.4) (multiply
(4.20) by xjηn

∂ψ
∂xj

and (4.21) by 1
ε2q2xjηn

∂ϕ
∂xj

, where ηn(x) = η( x
n ) is a cut-off function,

add the resulting equalities, integrate by parts, and pass to the limit as n −→ ∞).
We omit the details.

We have the following result concerning the nonexistence of supersonic traveling
waves for (4.17)–(4.18).

Theorem 4.7. Let N ≥ 2 and let (ψ,ϕ) be a finite-energy traveling wave for the
system (4.17)–(4.18), moving with velocity c. Assume that either

• c2 > 2
ε2 , or

• N = 2 and c2 = 2
ε2 , or

• N ≥ 3, c2 = 2
ε2 , and ψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
∈ L

2N−1
2N−3 (RN ).

Then ϕ = 0 and ψ is constant on RN .
Proof. Let θ, χ be as in Proposition 4.6 and let F (x, s) = − 1

ε2 (s+ 1
ε2 |ϕ(x)|2 − 1).

We have already seen that F satisfies assumptions (H1)–(H5), and it follows that
identity (3.1) holds. Taking into account the particular form of F , this identity can
be written as ∫

RN

|∇ψ|2 +
1

ε2
(|ψ|2 − 1)2 +

1

ε4
|ϕ|2|ψ|2 dx

= c

(
1 − 2

ε2c2

)∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx.

(4.24)

We take the scalar product of (4.21) by ϕ, then integrate the resulting equality to get

∫
RN

|∇ϕ|2 dx +
q2

ε2

∫
RN

|ϕ|2|ψ|2 dx− k2

∫
RN

|ϕ|2 dx− 2cδ

∫
RN

ϕ1
∂ϕ2

∂x1
dx = 0.(4.25)
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Summing up the identities (4.23) for k = 2, 3, . . . , N , we find

∫
RN

∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣ ∂ϕ∂x1

∣∣∣∣
2

+
N − 3

N − 1

N∑
j=2

(∣∣∣∣ ∂ψ∂xj

∣∣∣∣
2

+
1

ε2q2

∣∣∣∣ ∂ϕ∂xj

∣∣∣∣
2
)

dx

+

∫
RN

1

2ε2
(|ψ|2 − 1)2 +

1

ε4
|ψ|2|ϕ|2 − k2

ε2q2
|ϕ|2 dx

− c

∫
RN

ψ1
∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx− 2cδ

ε2q2

∫
RN

ϕ1
∂ϕ2

∂x1
dx = 0.

(4.26)

Next we combine equalities (4.24)–(4.26) in order to eliminate the terms
∫
RNϕ1

∂ϕ2

∂x1
dx

and
∫
RNψ1

∂ψ2

∂x1
− ψ2

∂ψ1

∂x1
− ∂

∂x1
(χθ) dx. We find

2

ε2c2

∫
RN

∣∣∣∣ ∂ψ∂x1

∣∣∣∣
2

dx +
(
1 −

(
1 − 2

ε2c2

)N − 3

N − 1

)∫
RN

N∑
j=2

∣∣∣∣ ∂ψ∂xj

∣∣∣∣
2

dx

+
2

(N − 1)ε2q2

(
1 − 2

ε2c2

)∫
RN

N∑
j=2

∣∣∣∣ ∂ϕ∂xj

∣∣∣∣
2

dx

+
1

2ε2

(
1 +

2

ε2c2

)∫
RN

(|ψ|2 − 1)2 dx +
1

ε4

∫
RN

|ϕ|2|ψ|2 dx = 0.

(4.27)

Obviously, all integrals in (4.27) are nonnegative. If c2 ≥ 2
ε2 , all coefficients are also

nonnegative, and therefore each term in (4.27) must be zero. In particular,
∫
RN

∣∣ ∂ψ
∂xk

∣∣2
dx = 0 for any k ∈ {1, . . . , N}, which implies ∇ψ = 0 on RN , i.e., ψ is constant.
Since

∫
RN (|ψ|2 − 1)2 dx = 0, necessarily |ψ| = 1. We also have 0 =

∫
RN |ϕ|2|ψ|2 dx =∫

RN |ϕ|2 dx, and hence ϕ = 0 on RN .

5. The one-dimensional case. Since most of the proofs in the preceding sec-
tion are not valid in space dimension N = 1 (in particular, we do not have identities
analogous to (4.4) and (4.23)), we treat separately the one-dimensional case. It turns
out that some integrations can be performed explicitly and some of the results are
stronger than in higher dimensions.

Let G : [0,∞) −→ R be a function satisfying the following assumption:
• (A) G ∈ C([0,∞)) and there exists r0 > 0 such that G(r2

0) = 0. Moreover,
G ∈ C1([r2

0 − η, r2
0 + η]) for some η > 0 and G′(r2

0) = −L < 0.
We consider the Schrödinger equation

i
∂Ψ

∂t
+ Ψxx + G(|Ψ|2)Ψ = 0 in R,(5.1)

together with the “boundary condition” |Ψ| −→ r0 as x −→ ±∞. We have seen
in the introduction that the sound velocity at infinity associated to (5.1) and to the
considered boundary condition is vs = r0

√
2L. As usually, a traveling wave moving

with velocity c is a solution of the form Ψ(x, t) = ψ(x− ct). It must satisfy

−icψ′ + ψ′′ + G(|ψ|2)ψ = 0 in R, |ψ(x)| −→ r0 as x −→ ±∞.(5.2)

We have the following result concerning supersonic and sonic traveling waves.
Theorem 5.1. Let ψ ∈ L1

loc(R) be a solution of (5.2) in D′(R) such that
G(|ψ|2)ψ ∈ L1

loc(R). Assume that G satisfies (A) and either
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(i) c2 > v2
s , or

(ii) c2 = v2
s and, denoting V (s) =

∫ r2
0

s
G(τ) dτ and W (s) = v2

ss
2 − 4(s+ r2

0)V (s+
r2
0), there exists ε > 0 such that one of the following conditions is verified:

(a) W (s) > 0 on (−ε, 0) ∪ (0, ε);
(b) W (s) > 0 on (−ε, 0) and W (s) < 0 on (0,∞);
(c) W (s) > 0 on (0, ε) and W (s) < 0 on [−r2

0, 0).
Then either ψ is constant or ψ(x) = r0e

i(cx+θ0), where θ0 is a real constant.
Remark. Theorem 5.1 gives all supersonic and sonic traveling waves for (5.1), no

matter whether their energy is finite or not (and we see that finite-energy traveling
waves must be constant).

It is easy to see that W is C2 near 0 and W (0) = W ′(0) = W ′′(0) = 0. Condition
(ii)(a) is satisfied, for instance, if G is C3 near r2

0 (this clearly implies that W is
C4 near 0) and W ′′′(0) = 0, W (iv)(0) > 0, or equivalently r2

0G
′′(r2

0) = 3L and
4G′′(r2

0) + r2
0G

′′′(r2
0) > 0. The condition W (s) > 0 on (−ε, 0) in (ii)(b), respectively,

W (s) > 0 on (0, ε) in (ii)(c), is satisfied if G is C3 near r2
0 and W ′′′(0) < 0 (respectively,

W ′′′(0) > 0); however, in these cases only the information on the behavior of G in a
neighborhood of r2

0 is not sufficient to get the conclusion of Theorem 5.1.

Proof of Theorem 5.1. Let ϕ(x) = e−
icx
2 ψ(x). Then ϕ ∈ L1

loc(R) and it is easy to
see that

ϕ′′ +
(
G(|ϕ|2) +

c2

4

)
ϕ = 0 in D′(R).(5.3)

From (5.3) we get ϕ′′ ∈ L1
loc(R). This implies that ϕ′ is a continuous function on

R (see, e.g., Lemma VIII.2, p. 123, in [8]). Thus ϕ ∈ C1(R). Since |ϕ| −→ r0 as
x −→ ±∞, we infer that ϕ is bounded on R. Coming back to (5.3) we see that ϕ′′ is
continuous and bounded on R. In particular ϕ ∈ C2(R), and this implies ψ ∈ C2(R).

Denoting ψ1 = Re(ψ), ψ2 = Im(ψ), equation (5.2) is equivalent to the system

cψ′
2 + ψ′′

1 + G(|ψ|2)ψ1 = 0,(5.4)

−cψ′
1 + ψ′′

2 + G(|ψ|2)ψ2 = 0 in R.(5.5)

We multiply (5.4) by 2ψ′
1 and (5.5) by 2ψ′

2, then add the resulting equalities to
get [(ψ′

1)
2 + (ψ′

2)
2]′ − (V (|ψ|2))′ = 0. Hence there exists k1 ∈ R such that

|ψ′|2(x) − V (|ψ|2)(x) = k1 for any x ∈ R.(5.6)

Multiplying (5.4) by ψ2 and (5.5) by −ψ1, then summing up the corresponding equa-
tions we obtain c

2 (|ψ|2−r2
0)

′−(ψ1ψ
′
2−ψ2ψ

′
1)

′ = 0. Consequently there is some k2 ∈ R
such that

c

2
(|ψ|2 − r2

0) − (ψ1ψ
′
2 − ψ2ψ

′
1) = k2 in R.(5.7)

Next we multiply (5.4) by 2ψ1 and (5.5) by 2ψ2, then add the resulting equalities to
find

2c(ψ1ψ
′
2 − ψ2ψ

′
1) + (|ψ|2 − r2

0)
′′ − 2|ψ′|2 + 2G(|ψ|2)|ψ|2 = 0.(5.8)

Taking into account (5.6) and (5.7), equation (5.8) can be written as

(|ψ|2 − r2
0)

′′ + c2(|ψ|2 − r2
0) − 2V (|ψ|2) + 2G(|ψ|2)|ψ|2 = 2k1 + 2ck2.(5.9)
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Denote v(x) = |ψ|2(x)−r2
0. Then v is real-valued, C2, and tends to zero as x −→ ±∞,

and hence there exists a sequence xn −→ ∞ such that v′′(xn) −→ 0. Writing (5.9)
for xn, then passing to the limit as n −→ ∞ we see that necessarily k1 + ck2 = 0 and
v satisfies the equation

v′′ + c2v − 2V (v + r2
0) + 2(v + r2

0)G(v + r2
0) = 0 in R.(5.10)

Next we multiply (5.10) by 2v′, then integrate the resulting equation and obtain
(v′)2 + c2v2 − 4(v + r2

0)V (v + r2
0) = k3 in R, where k3 is a constant. It is clear that

there exists a sequence yn −→ ∞ such that v′(yn) −→ 0; consequently k3 = 0 and we
have

(v′)2(x) + c2v2(x) − 4(v + r2
0)V (v + r2

0)(x) = 0 for any x ∈ R.(5.11)

Our aim is to prove that, under the assumptions of Theorem 5.1, we have v = 0
on R.

Suppose first that c2 > v2
s = 2Lr2

0. Since G satisfies (A), it follows that V ∈
C2([r2

0 − η, r2
0 + η]) and we have by Taylor’s formula

V (r2
0+s) = V (r2

0)+sV ′(r2
0)+

1

2
s2V ′′(r2

0)+s2h(s) =
1

2
Ls2+s2h(s) for s ∈ [−η, η],

where h(s) −→ 0 as s −→ 0. Take ε1 ∈ (0, η] such that c2−v2
s−2Ls−4(s+r2

0)h(s) > 0
for any s ∈ [−ε1, ε1]. Suppose that v(x0) ∈ [−ε1, 0) ∪ (0, ε1] for some x0 ∈ R. By
(5.11) we obtain

0 = (v′)2(x0) + v2(x0)[c
2 − v2

s − 2Lv(x0) − 4(v(x0) + r2
0)h(v(x0))] > 0,

a contradiction. Consequently we cannot have v(x) ∈ [−ε1, 0) ∪ (0, ε1]. Since v is
continuous and v(x) −→ 0 as x −→ ±∞, we infer that necessarily v(x) = 0 for any
x ∈ R.

Next assume that c2 = v2
s . Equation (5.11) can be written as

(v′)2(x) + W (v(x)) = 0 on R.(5.12)

If assumption (iia) is verified, we cannot have v(x) ∈ (−ε, 0) ∪ (0, ε) and we infer, as
above, that v = 0 on R. In case (iib), we cannot have v(x) ∈ (−ε, 0) and we infer
that v(x) ≥ 0 for any x ∈ R. Since v(x) −→ 0 as x −→ ∞, there is some x0 such that
v achieves a nonnegative maximum at x0. Then v′(x0) = 0 and from (5.12) we get
W (v(x0)) = 0. But W (s) < 0 for s > 0 by (iib); hence v(x0) = 0 and consequently
v = 0 on R. Similarly we have v = 0 in the case (iic) (note that v = |ψ|2 − r2

0 ≥ −r2
0

and it suffices to know that W < 0 on [−r2
0, 0)).

Thus we always have v = 0, that is, |ψ|2 = r2
0 on R. Consequently there exists a

lifting θ ∈ C2(R,R) such that ψ(x) = r0e
iθ(x) for any x ∈ R. It is clear that ψ1ψ

′
2 −

ψ2ψ
′
1 = |ψ|2θ′ = r2

0θ
′ (see (3.3)). On the other hand we have ψ1ψ

′
2 − ψ2ψ

′
1 = −k2 by

(5.7), and hence θ′ = −k2

r2
0

is constant; therefore θ(x) = −k2

r2
0
x + θ0, where θ0 is a real

constant. Since ψ = r0e
i(−(k2/r

2
0)x+θ0) satisfies (5.2), we find −ck2

r2
0
−

(
k2

r2
0

)2
= 0, and

thus either k2

r2
0

= 0 or k2

r2
0

= −c. Finally we have either ψ(x) = eiθ0 or ψ(x) = ei(cx+θ0)

and the proof is complete.
Example 5.2. In the case of the Gross–Pitaevskii equation we have G(s) = 1 − s

and obtain W (s) = −2s3 (see Example 4.4). In the case of the cubic-quintic nonlinear-
ity we have G(s) = −α5(s− r2

1)(s− r2
0), where α5 > 0, 0 < r1 < r0 (see Example 4.5)
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and a simple computation gives W (s) = −2α5s
3( 4

3r
2
0 − r2

1 + 1
3s). Therefore both

the Gross–Pitaevskii and the cubic-quintic nonlinearities satisfy assumption (iib) and
Theorem 5.1 gives all sonic and supersonic traveling waves for these equations.

Remark. The proof of Theorem 5.1 provides a method to find subsonic traveling
waves for (5.1). With the above notation, it follows from (5.11) that on any interval
where v′ �= 0 we have v′(x) = ±

√
4(v + r2

0)V (v + r2
0)(x) − c2v2(x). In many interest-

ing applications this equation can be integrated, and we obtain explicitly v = |ψ|2−r2
0.

Then it is not hard to find (up to a constant) the corresponding phase θ.
Remark. Assume that N = 1 and let (ψ,ϕ) be a finite-energy traveling wave for

system (4.17)–(4.18). It follows from the proof of Proposition 4.6 that ψ and ϕ are
C∞ functions and ψ′, ϕ ∈ W k,p(R) for any k ∈ N and p ≥ 2. If c2 ≥ 2

ε2 (recall that
√

2
ε is the sound velocity at infinity associated to (3.21)–(3.22)) and if there is a lifting

ψ(x) = v(x)eiα(x), ϕ(x) = u(x)eiβ(x), where v, u, α, β are real-valued functions of
class C2, [26, Proposition 3.1, p. 1545] implies that v = 1, α is constant, and ϕ = 0
on R.
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[6] F. Béthuel, P. Gravejat, and J.-C. Saut, Travelling-Waves for the Gross-Pitaevskii Equa-
tion II, preprint; available online from http://arxiv.org/abs/0711.2408v1.
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EULERIAN CALCULUS FOR THE DISPLACEMENT CONVEXITY
IN THE WASSERSTEIN DISTANCE∗

SARA DANERI† AND GIUSEPPE SAVARÉ‡

Abstract. In this paper we give a new proof of the (strong) displacement convexity of a class
of integral functionals defined on a compact Riemannian manifold satisfying a lower Ricci curvature
bound. Our approach does not rely on existence and regularity results for optimal transport maps on
Riemannian manifolds, but it is based on the Eulerian point of view recently introduced by Otto and
Westdickenberg [SIAM J. Math. Anal., 37 (2005), pp. 1227–1255] and on the metric characterization
of the gradient flows generated by the functionals in the Wasserstein space.
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1. Introduction. In this paper we give a new proof, based on a gradient flow
approach and on the Eulerian point of view introduced by [19], of the so-called “dis-
placement convexity” for integral functionals as

(1.1) E(μ) :=

∫
M

e(ρ) dV + e′(∞)μ⊥(M), ρ =
dμ

dV
,

where μ is a Borel probability measure on a compact, connected Riemannian manifold
without boundary (M, g), V is the volume measure on M induced by the metric tensor
g, μ⊥ is the singular part of μ with respect to V, e : [0,+∞) → R is a smooth
convex function satisfying the so-called McCann conditions (see (1.7) below), and

e′(∞) = limr→+∞
e(r)
r . When e has a superlinear growth, e′(∞) = +∞ so that μ

should be absolutely continuous with respect to V when E(μ) is finite.

Displacement convexity for integral functionals. The notion of displace-
ment convexity has been introduced by [15] to study the behavior of integral function-
als like (1.1) along optimal transportation paths, i.e., geodesics in the space of Borel
probability measures P(M) endowed with the L2-Kantorovich-Rubinstein-Wasserstein
distance.

Recall that (the square of) this distance can be defined by the following optimal
transport problem

(1.2)

W 2
2 (μ0, μ1) := min

{∫
M×M

d2(x, y) dσ(x, y) : σ ∈ P(M × M),

σ(B × M) = μ0(B), σ(M ×B) = μ1(B) ∀B Borel set in M

}
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for the cost function induced by the Riemannian distance d on the manifold M. We
keep the usual notation to denote by P2(M) the metric space (P(M),W2), which is
called Wasserstein space; being M compact, W2 induces the topology of the weak
convergence of probability measures (i.e., the weak∗ topology associated with the
duality of P(M) with C0(M)).

As in any metric space (minimal, constant speed) geodesics can be defined as
curves μ : s ∈ [0, 1] �→ μs ∈ P2(M) between μ0 and μ1, satisfying

(1.3) W2(μ
r, μs) = |s− r|W2

(
μ0, μ1

)
∀ 0 ≤ r ≤ s ≤ 1.

A functional E : P(M) → (−∞,+∞] is then (strongly) displacement convex (or, more
generally, (strongly) displacement λ-convex for some λ ∈ R) if, for all Wasserstein
geodesics {μs}0≤s≤1 ⊂ P2(M), we have

(1.4) E(μs) ≤ (1 − s)E
(
μ0

)
+ sE

(
μ1

)
− λ

2
s(1 − s)W 2

2

(
μ0, μ1

)
, ∀ s ∈ [0, 1].

A weaker notion is also often considered: one can ask that there exists at least one
geodesic connecting μ0 to μ1 along which (1.4) holds. Figalli and Villani [12] has
recently proved that for the class of integral functionals (1.1) considered in the present
paper these two notions are equivalent.

The term “displacement convexity” arises from the strictly related concept of
“displacement interpolation” introduced by [15] in the Euclidean case M = R

d; in
a general metric setting, property (1.4) is simply called, as in the Riemannian case,
“λ−geodesic convexity” (or “geodesic convexity” if λ = 0).

It is possible to show [4] that, in the Euclidean case, the measures μs can also be
defined through the formula

(1.5)
μs(B) := σ

({
(x, y) ∈ R

d × R
d : (1 − s)x + sy ∈ B

})
,

where σ is a minimizer of (1.2).

A similar construction can also be performed in a Riemannian manifold [14, 20, 13]:
the segments s �→ (1 − s)x + sy should be substituted by a Borel map γ : M × M →
C0([0, 1]; M) that at each couple (x, y) ∈ M×M associate a (minimal, constant speed)
geodesic s �→ γs(x, y) in M connecting x to y. We have the representation formula

(1.6)
μs(B) := σ ({(x, y) ∈ M × M : γs(x, y) ∈ B}) , where σ is a minimizer of (1.2).

After the pioneering paper [15], the notion of displacement convexity for integral
functionals found applications in many different fields, as functional inequalities [18,
2, 9], generation, contraction, and asymptotic properties of diffusion equations and
gradient flows [17, 1, 19, 4, 8, 5], Riemannian geometry, and synthetic study of metric-
measure spaces [20, 21, 14].

In the context of Riemannian manifolds it turns out that displacement λ-convexity
of certain classes of entropy functionals is equivalent to a lower bound for the Ricci
curvature of the manifold. The connection between displacement convexity and Ricci
curvature, introduced by [18], was then further deeply studied by [9, 10, 20]; the
equivalence has been proved by Sturm and Von Renesse in [24], who considered the
case in which the domain of the functional consists only of measures that are absolutely
continuous with respect to the volume measure, and then completed by Lott and
Villani [14] (with the remarks made in [12], where convexity in the strong form has
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been proved), who extended the previous results to the functionals defined by (1.1) on
all P(M). We refer to the forthcoming monograph [23] for further references, details,
and discussions.

The strategy followed by the authors of [9] (and by all the following contributions)
in order to characterize the displacement convexity of entropy functionals relies on
a characterization of optimal transportation and Wasserstein geodesics [16] and on a
careful study of the Jacobian properties of the exponential function which are crucial
to estimate the integral functionals along this class of curves. The lack of regularity
of Wasserstein geodesics and the lack of global smoothness of the squared distance
function d2 on the manifold M (due to the existence of the cut-locus) require a care-
ful use of nonsmooth analysis arguments and nontrivial approximation processes to
extend the results to geodesics between arbitrary measures (see [14, 12]).

The main result is the following.
Theorem 1.1. (I) If e ∈ C∞(0,+∞) satisfies the McCann conditions

(1.7)

U(ρ) := ρe′(ρ)−
(
e(ρ)−e(0+)

)
≥ 0, ρU ′(ρ)−

(
1− 1

n

)
U(ρ) ≥ 0, n := dim(M) > 1

and M has nonnegative Ricci curvature, then the functional E defined by (1.1) is
(strongly) displacement convex.

(II) If E is the relative entropy functional, corresponding to e(ρ) = ρ log ρ (which
satisfies (1.7) in any dimension) in (1.1), and there exists λ ∈ R such that

(1.8) Ricgx (ξ, ξ) ≥ λ〈ξ, ξ〉gx ∀x ∈ M, ∀ ξ ∈ TxM,

then the functional E defined by (1.1) is (strongly) displacement λ-convex.
Remark 1.2. Besides the logarithmic entropy corresponding to e(ρ) = ρ log ρ

(and U(ρ) = ρ), typical examples of functionals that satisfy properties (1.7) are

(1.9) e(ρ) =
1

m− 1
ρm, U(ρ) = ρm, m ≥ 1 − 1

n
.

We recall that assumptions (1.7) imply the convexity of the function ρ �→ e(ρ) (since
the dimension n is greater than 1, they are in fact more restrictive).

Aim of the paper: an Eulerian approach to displacement convexity. In
this paper we present an alternative proof of Theorem 1.1, which does not rely on the
existence and smoothness of optimal transport maps and geodesics for the Wasserstein
distance.

Our strategy can be described in three steps:
1. Following the approach suggested by Otto and Westdickenberg in [19], we work

in the subspace Par
2 (M) of measures with smooth and positive densities, and we use

the “Riemannian” formula for the Wasserstein distance, originally introduced in the
Euclidean framework by Benamou and Brenier [6]: if μi = ρi V ∈ Par

2 (M), i = 0, 1,
then [19, Proposition 4.3]

(1.10) W 2
2

(
μ0, μ1

)
= inf

C(μ0,μ1)

{∫ 1

0

∫
M

|∇φs|2ρs dV ds

}
∀μ0, μ1 ∈ Par

2 (M)

where

(1.11)
C
(
μ0, μ1

)
=

{
(ρ, φ) : ρ ∈ C∞([0, 1] × M; R+), φ ∈ C∞([0, 1] × M)

∂sρ
s + ∇ · (ρs∇φs) = 0 in (0, 1) × M, μi = ρi V

}
.
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Even though the Wasserstein space can’t be endowed with a smooth Riemannian
structure, (1.11) still shows a “Riemannian” characterization of the Wasserstein dis-
tance on Par

2 (M).
2. The second important fact, originally showed by the so-called “Otto calculus”

in [17], is that the nonlinear diffusion equation

(1.12) ∂tρt − Δg U(ρt) = 0 in [0,+∞) × M, ρ|t=0
= ρ0,

where U : R
+ → R is the function defined in (1.7) and Δg is the Laplace–Beltrami

operator on M, is the gradient flow of the functional (1.1) in P2(M). Indeed, (1.12)
corresponds to the heat equation if U is the logarithmic entropy and to the porous
medium equation if U is defined by (1.9).

Starting directly from (1.10) and owing to the fact that the flow generated by
(1.12) preserves smooth and positive densities, when Ricg(M) ≥ 0 we shall show that
the measures μt = ρtV ∈ Par

2 (M) associated to the solutions of (1.12) also solve the
Evolution Variational Inequality (E.V.I.)

1

2

d+

dt
W 2

2 (ν, μt) ≤ E(ν) − E(μt) ∀ t ≥ 0, ν ∈ Par
2 (M),(1.13)

which has been introduced in [4] as a purely metric characterization of the gradi-
ent flows of geodesically convex functionals in metric spaces (and, in particular, in
P2(R

d)); here

(1.14)
d+

dt
ζ(t) = lim sup

h↓0

ζ(t + h) − ζ(t)

h

for every real function ζ : [0,+∞) → R.
When Ric (M) ≥ λ (a shorthand for (1.8)), we also show that the solutions of the

heat equation satisfy the modified inequality

1

2

d+

dt
W 2

2 (ν, μt) +
λ

2
W 2

2 (ν, μt) ≤ E(ν) − E(μt) ∀ t ≥ 0, ν ∈ Par
2 (M),(1.15)

where E is the relative entropy functional whose integrand function is e(ρ) = ρ log ρ.
Note that (1.15) reduces to (1.13) when λ = 0. In order to prove (1.13) and (1.15), we
propose an “Eulerian” strategy which could be adapted to more general situations.

3. The third crucial fact is the following: whenever a functional E satisfies (1.13)
(or, more generally, (1.15)) for a given semigroup St : μ0 = ρ0V �→ μt = ρtV in
Par

2 (M), E is displacement convex (resp., displacement λ-convex). Thus, the question
of the behavior of E along geodesics can be reduced to a differential estimate of E
along the smooth and positive solutions of its gradient flow.

Plan of the paper. In section 2 we present the main ideas of our approach
in the simplified (finite-dimensional and smooth) setting of geodesically convex func-
tions on Riemannian manifolds. We think that these ideas are sufficiently general to
be useful in other circumstances, at least for distances which admits a Riemannian
characterization as (1.10), see, e.g., [11, 7].

After a brief review of the definition of (gradient) λ-flows in arbitrary metric
spaces (basically following the ideas of [4]), we present in section 3 our first result,
showing that the existence of a flow satisfying the E.V.I. (1.15) (even on a dense
subset of initial data, such as Par

2 (M)) entails the (strong) displacement λ-convexity
of the functional E .
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Following the strategy explained in the second section, in the last two sections we
prove the differential estimates showing that (1.12) satisfies (1.13) (in section 4) or,
in the case of the Heat equation, (1.15) (in section 5).

2. Gradient flows and geodesic convexity in a smooth setting.

Contraction semigroups and action integrals. In order to explain the main
point of our strategy, let us first consider the simple setting of a smooth function
F : X → R on a complete Riemannian manifold X with metric 〈·, ·〉g, (squared) norm
|ξ|2g = 〈ξ, ξ〉g, and the endowed Riemannian distance

(2.1) d2(u, v) := min

{∫ 1

0

∣∣γ̇s|2g ds, γ : [0, 1] → X, γ0 = v, γ1 = u

}
.

In a smooth setting, the geodesic λ-convexity of F can be expressed through the
differential condition

(2.2)
d2

ds2
F (γs) ≥ λ |γ̇s|2g

along any geodesic curve γ minimizing (2.1). As we discussed in the introduction,
the direct computation of (2.2) could be difficult in a nonsmooth, infinite dimensional
setting; it is therefore important to find equivalent conditions which avoid twofold
differentiation along geodesics. One possibility, suggested in [19], is to find equivalent
conditions to geodesic λ-convexity in terms of the gradient flow generated by F .

Let us recall that the gradient flow of F is a continuous semigroup of (time-
dependent) maps St : X → X, t ∈ [0,+∞), which at every initial datum u associate
the curve ut := St(u) solution of the differential equation

(2.3) u̇t = −∇F (ut) ∀ t ≥ 0, u0 = u.

It is well known that, when F is geodesically λ-convex, St is λ-contracting; i.e.,

(2.4) d2(St(u),St(v)) ≤ e−2λtd2(u, v), ∀ t ≥ 0, ∀u, v ∈ X.

By the semigroup property, (2.4) is also equivalent to the differential inequality (see
(1.14))

(2.5)
d+

dt
d2(St(u),St(v))

∣∣∣
t=0

≤ −2λ d2(u, v) ∀u, v ∈ X.

Otto and Westdickenberg [19] revert this argument and observe that it could be
easier to directly prove (2.5) by a differential estimate involving only the action of the
semigroup along smooth curves; as a byproduct, one should obtain the convexity of
F . To this aim, they consider a smooth curve γs, s ∈ [0, 1], connecting v to u, and
the action integral At associated with its smooth perturbation

(2.6) γs
t := St(γ

s), As
t :=

∣∣∂sγs
t

∣∣2
g
, At :=

∫ 1

0

As
t ds,

where ∂sγ denotes the tangent vector in TγX obtained by differentiating w.r.t. s.
Since, by the very definition of d,

(2.7) d2(St(v),St(u)) ≤ At
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and for every ε > 0 one can always find a curve γs so that A0 ≤ d2(u, v) + ε (in a
smooth setting one can take ε = 0), (2.5) surely holds if one can prove that

(2.8)
d+

dt
At

∣∣∣
t=0

≤ −2λA0, or its pointwise version
∂+

∂t

∣∣∣
t=0

As
t ≤ −2λAs

0.

Having obtained the contraction property from (2.8), it still remains open how to
deduce that F is geodesically convex. Notice that along an arbitrary curve ηs

(2.9)
∂

∂s
F (ηs) = 〈∇F (ηs), ∂sη

s〉g = −〈∂rSr(η
s)|r=0

, ∂sη
s〉g;

applied to ηs := γs
t , (2.9) and the semigroup property Sr(γ

s
t ) = γs

t+r yield

(2.10)
∂

∂s
F (γs

t ) = −〈∂tγs
t , ∂sγ

s
t 〉g.

In a smooth setting we can assume that γs is a minimal geodesic; operating a further
differentiation with respect to s, we obtain

∂2

∂s2
F (γs)

(2.10)
= − ∂

∂s
〈∂tγs

t , ∂sγ
s
t 〉g

∣∣∣
t=0

= −〈D∂s∂tγ
s
t , ∂sγ

s
t 〉g

∣∣∣
t=0

(2.11)

− 〈∂tγs
t , D∂s∂sγ

s
t 〉g

∣∣∣
t=0

= −〈D∂s∂tγ
s
t , ∂sγ

s
t 〉g

∣∣∣
t=0

= −〈D∂t∂sγ
s
t , ∂sγ

s
t 〉g

∣∣∣
t=0

= −1

2

∂

∂t
〈∂sγs

t , ∂sγ
s
t 〉g

∣∣∣
t=0

(2.6)
= −1

2

∂

∂t

∣∣∣
t=0

As
t

(2.8)

≥ λ
∣∣∂sγs

∣∣2
g
,(2.12)

where we used the standard properties of the covariant differentiations D∂s
, D∂t

and,
in (2.11), the fact that at t = 0 D∂s

∂sγ
s
t = 0, being γs

t = γs a geodesic.

A metric derivation of convexity. Even if the previous differential argument
shows that (2.8) implies geodesic λ-convexity, it still requires nice smooth proper-
ties on geodesics and covariant differentiation, which could be hard to extend to a
nonsmooth setting.

This is not at all surprising, since the contraction property (2.5) and its action-
differential characterization (2.8) do not carry all the information linking the semi-
group S to F : in order to conclude the argument in (2.11), we had therefore to insert
the information coming from (2.9).

To overcome these difficulties, we shall deal with a more precise metric charac-
terization of S than (2.4). As it has been proposed and studied in [4], gradient flows
of geodesically λ-convex functionals in “almost” Euclidean settings should satisfy a
purely metric formulation in terms of the E.V.I.

(2.13)
1

2

d+

dt
d2(St(u), v) +

λ

2
d2(St(u), v) + F (St(u)) ≤ F (v), ∀ v ∈ X, t > 0.

It can be proved (see [5]) that (2.13) characterizes S and implies the contractivity
property (2.4).

As we discussed before, here we invert the usual procedure (starting from a convex
functional, construct its gradient flow) and we suppose that there exists a smooth flow
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ut = St(u) = γ1
t = γ̃1

t

v = γ0

u = γ1
S

S

γs

γs
t

γ0
t

γ̃
s t
=

S st
(γ

s )
Fig. 1. Variation of the curve γs under the action of the semigroup S.

St satisfying (2.13). The following result, whose proof will be postponed (in a more
general form) to Theorem 3.2 in the next section, shows that F is geodesically λ-
convex.

Theorem 2.1. Suppose that there exists a continuous semigroup of maps St ∈
C0(X; X), t ≥ 0, satisfying (2.13). Then for every (minimal, constant speed) geodesic
γ : [0, 1] → X

(2.14) F (γs) ≤ (1 − s)F
(
γ0

)
+ sF

(
γ1

)
− λ

2
s(1 − s)d2

(
γ0, γ1

)
, ∀ s ∈ [0, 1];

i.e., F is (strongly) geodesically λ-convex.

E.V.I. through action-differential estimates. Thanks to Theorem 2.1, it is
possible to prove the geodesic λ-convexity of F by exhibiting a flow S satisfying the
E.V.I. (2.13). According to the general strategy suggested by [19], we want to reduce
(2.13) to a suitable family of differential inequalities satisfied by the action As

t of (2.6).
The idea here is to consider a different family of perturbations of a given smooth

curve γ : [0, 1] → X, still induced by the semigroup S. In fact, differently from the
contraction estimate (2.5) where we are flowing both the points u, v through St, in
(2.13) we want to keep the point v := γ0 fixed and to vary only u := γ1. If γs is a
smooth curve connecting them, it is then natural to consider the new families (see
Figure 1)

(2.15) γ̃s
t := Sst(γ

s) = γs
st, F̃ s

t := F (γ̃s
t ) s ∈ [0, 1], t ≥ 0.

Notice that γ̃s
0 = γs, γ̃0

t = γ0 = v, and γ̃1
t = St(γ

1) = St(u). As before, we
introduce the quantities

(2.16) Ãs
t :=

∣∣∂sγ̃s
t

∣∣2
g
, Ãt :=

∫ 1

0

Ãs
t ds.

Theorem 2.2 (A differential inequality linking action and flow). Suppose that
for every smooth curve γ : [0, 1] → X, the quantities Ãs

t , F̃
s
t induced by the flow S

through (2.15),(2.16) satisfy

(2.17)
1

2

∂

∂t
Ãs

t +
∂

∂s
F̃ s
t ≤ −λ s Ãs

t , ∀ t ≥ 0.

Then S satisfies (2.13), it is the gradient flow of F , and F is geodesically λ-convex.
Moreover, it is sufficient to check (2.17) at t = 0.
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Proof. Let us first observe that (2.17) yields, after an integration with respect to
s in [0, 1],

(2.18)
1

2

d

dt
Ãt + F̃ 1

t − F̃ 0
t ≤ −λ

∫ 1

0

sÃs
t ds.

By the semigroup property, it is sufficient to prove (2.13) at t = 0. We choose a
geodesic γs connecting v to u, and we consider the curves given by (2.15). Since

(2.19) d2(St(u), v) ≤
∫ 1

0

Ãs
t ds = Ãt,

d2(v, u) =

∫ 1

0

Ãs
0 ds = Ã0, F̃ 1

t = F (St(u)), F̃ 0
t = F (v),

by (2.18) at t = 0 we obtain

(2.20)
1

2

d+

dt
d2(St(u), v)

∣∣∣
t=0

+ F (u) − F (v) ≤ −λ

∫ 1

0

s Ãs
0 ds = −λ

2
d2(u, v),

where in the last identity we used the fact that γs is a geodesic, and therefore Ãs
0 =

|∂sγs|2g is constant in [0, 1] and takes the value d2(γ0, γ1) = d2(v, u).
Since γ̃s

t0+t = Sstγ̃
s
t0 by the semigroup property, if S satisfies (2.17) at the initial

time t = 0 for an arbitrary smooth curve γ, then it also satisfies (2.17) for t > 0.
Our last result provides a simple criterion to check (2.17):
Theorem 2.3. Suppose that S : [0,+∞) × X → X is the “differential” gradient

flow of F satisfying (2.9) for any smooth curve γs, let γs
t , γ̃

s
t , A

s
t , Ã

s
t , F̃

s
t be defined as

in (2.6), (2.15), and (2.16), and let us set

(2.21) D̃s
r :=

1

2
lim
h↓0

h−1
(∣∣∂sγs

sr+h

∣∣2
g
−
∣∣∂sγs

sr

∣∣2
g

)
.

Then

(2.22)
1

2

∂

∂t
Ãs

t +
∂

∂s
F̃ s
t = sD̃s

t .

Furthermore, if (2.8) holds, then

(2.23) D̃s
t ≤ −λ Ãs

t ,

and (2.17) holds, too, so that F is geodesically λ-convex, and S is also its “metric”
gradient flow, characterized by the E.V.I. (2.13).

Proof. Let us set

(2.24) γ̃s
t,τ := Sτ γ̃

s
t = γs

st+τ , Ãs
t,τ :=

∣∣∂sγ̃s
t,τ

∣∣2
g
,

so that

(2.25) γ̃s
t+h = γ̃s

t,sh, ∂sγ̃
s
t+h = ∂sγ̃

s
t,τ + h∂τ γ̃

s
t,τ

∣∣∣
τ=sh

, D̃s
t =

1

2

∂

∂τ
Ãs

t,τ

∣∣∣
τ=0

.

Observe that the identity

(2.26) |x + y|2g = 2〈x + y, y〉g + |x|2g − |y|2g, ∀x, y ∈ TγX
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yields

Ãs
t+h =

∣∣∂sγ̃s
t+h

∣∣2
g

(2.25)
=

∣∣∂sγ̃s
t,τ + h∂τ γ̃

s
t,τ

∣∣2
g

∣∣∣
τ=sh

(2.26)
=

[
2h〈∂sγ̃s

t,τ + h∂τ γ̃
s
t,τ , ∂τ γ̃

s
t,τ 〉 +

∣∣∂sγ̃s
t,τ

∣∣2
g
− h2

∣∣∂τ γ̃s
t,τ

∣∣2
g

] ∣∣∣
τ=sh

= 2h 〈∂sγ̃s
t+h, ∂θSθ(γ̃

s
t+h)〉

∣∣∣
θ=0

+ Ãs
t,sh − o(h)

(2.9)
= −2h

∂

∂s
F (γ̃s

t+h)+ Ãs
t,sh − o(h).

We thus get

(2.27)
1

2h

(
Ãs

t+h − Ãs
t

)
+

∂

∂s
F (γ̃s

t+h) =
1

2h

(
Ãs

t,sh − Ãs
t

)
− o(1),

so that, passing to the limit as h ↓ 0 we get (2.22).
Remark 2.4. Notice that the remainder term o(1) in (2.27) is nonnegative, so it

can be simply neglected, if one is just interested in the inequality (2.17).

3. Gradient flows and geodesic convexity in a metric setting. In this
section we will briefly recall some basic definitions and properties of gradient flows in
a metric setting, and we will prove Theorem 2.1 in a slightly more general framework.

Let (X, d) be a metric space (not necessarily complete) and let F : X → (−∞,+∞]
be a lower semicontinuous functional, whose proper domain D(F ) :=

{
w ∈ X :

F (w) < +∞
}

is dense in X (otherwise we can always restrict all the next statements
to the closure of D(F ) in X). We also assume that F is bounded from below, i.e.,
Finf := infu∈X F (u) > −∞.

A C0-semigroup S in C0(X; X) is a family St, t ≥ 0, of continuous maps in X such
that

(3.1) St+h(u) = Sh

(
St(u)

)
, lim

t↓0
St(u) = S0(u) = u ∀u ∈ X, t, h ≥ 0.

Given a real number λ ∈ R, we say that S is the λ-(gradient) flow of F if it satisfies

St(X) ⊂ D(F ) for every t > 0;(3.2a)

the map t �→ F (St(u)) is not increasing in (0,+∞);(3.2b)

1

2

d+

dt
d2(St(u), v) +

λ

2
d2(St(u), v) + F (St(u)) ≤ F (v), ∀u ∈ X, v ∈ D(F ), t ≥ 0.

(3.2c)

Clearly, if S is a λ-flow for F , then it is also a λ′-flow for every λ′ ≤ λ. The next
proposition collects some useful properties of λ-flows.

Proposition 3.1 (Integral characterization of flows and contraction). A C0-
semigroup S satisfies (3.2a,b,c) if and only if it satisfies the following integrated form

(3.3)
eλ(t1−t0)

2
d2(St1(u), v)−1

2
d2(St0(u), v) ≤ Eλ(t1−t0) (F (v) − F (St1(u))) ∀ 0 ≤ t0 < t1,

for every u ∈ X, v ∈ D(F ), where

Eλ(t) :=

∫ t

0

eλr dr =

{
eλt−1

λ if λ �= 0,

t if λ = 0.
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In particular, S satisfies the uniform regularization bound

(3.4) F (St(u)) ≤ F (v) +
1

2 Eλ(t)
d2(u, v) ∀u ∈ X, v ∈ D(F ), t > 0,

the uniform continuity estimate

(3.5) d2(St1(u),St0(u)) ≤ 2E−λ(t1 − t0) (F (St0u) − Finf) ∀u ∈ D(F ), 0 ≤ t0 ≤ t1,

and the λ-contraction property, i.e.,

(3.6) d(St(u),St(v)) ≤ e−λtd(u, v) ∀u, v ∈ X, t ≥ 0.

Proof. Clearly (3.3) yields (3.2a), being D(F ) �= ∅; (3.2b) and (3.5) follow by
taking v := St0(u), and (3.2c) can be proved by dividing both sides of (3.3) by t1 − t0
and passing to the limit as t1 ↓ t0. In order to prove the converse implication, let us
first observe that for a continuous real function ζ : [0,+∞) → R

(3.7) lim inf
h↓0

ζ(t + h) − ζ(t)

h
≤ 0 ∀ t > 0 =⇒ ζ is not increasing.

In fact, if 0 ≤ t0 < t0+τ existed with δ := τ−1
(
ζ(t0+τ)−ζ(t0)

)
> 0, then a minimum

point t̄ ∈ [t0, t0 + τ) of t �→ ζ(t) − ζ(t0) − δ(t− t0) would satisfy

lim inf
h↓0

ζ(t̄ + h) − ζ(t̄)

h
− δ ≥ 0, which contradicts (3.7).

(3.3) then follows by (3.2c), after a multiplication by eλt and choosing

ζ(t) :=
eλt

2
d2(St(u), v) +

∫ t

t̄

eλr
(
F (Sr(u)) − F (v)

)
dr, t̄ > 0,

and recalling the monotonicity property (3.2b). A similar argument shows that

(3.8)
1

2
d2(St1(u), v)− 1

2
d2(St0(u), v)+

λ

2

∫ t1

t0

d2(Sr(u), v) dr ≤ (t1− t0) (F (v) − F (St1(u))) ,

for every 0 ≤ t0 < t1, u ∈ X, and v ∈ D(F ). In order to prove the λ-contracting
property, we apply (3.8) obtaining

d2(Sh(u),Sh(v)) − d2(u, v) = d2(Sh(u),Sh(v)) − d2(Sh(u), v) + d2(Sh(u), v) − d2(u, v)

≤ −λ

∫ h

0

(
d2(Sh(u),Sr(v)) + d2(Sr(u), v)

)
dr + 2h (F (v) − F (Sh(v))) .

We divide this inequality by h, and we pass to the limit as h ↓ 0; the continuity of St,
the lower semicontinuity of F , and the semigroup property of S yield

(3.9)
d+

dt
d2(St(u),St(v)) ≤ −2λ d2(u, v) ∀u, v ∈ X, t > 0,

which yields (3.6) thanks to (3.7).
We can now prove the main result of this section: if a functional F admits a

λ-flow, then F is geodesically λ-convex.
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Theorem 3.2 (Geodesic convexity via E.V.I.). Let us suppose that S is a λ-flow
for the functional F , according to (3.2a,b,c), and let γ : [0, 1] → X be a Lipschitz
curve satisfying

(3.10) d(γr, γs) ≤ L |r − s|, L2 ≤ d2
(
γ0, γ1

)
+ ε2 ∀ r, s ∈ [0, 1],

for some constant ε ≥ 0. Then for every t > 0 and s ∈ [0, 1]

(3.11) F (St(γ
s)) ≤ (1− s)F

(
γ0

)
+ sF

(
γ1

)
− λ

2
s(1− s)d2

(
γ0, γ1

)
+

ε2

2Eλ(t)
s(1− s).

In particular, when γ is a geodesic (i.e., γ satisfies (3.10) with L = d(γ0, γ1), ε = 0),
we have

(3.12) F (γs) ≤ (1 − s)F
(
γ0

)
+ sF

(
γ1

)
− λ

2
s(1 − s)d2

(
γ0, γ1

)
;

i.e., F is (strongly) geodesically λ-convex.
Proof. Let γ be satisfying (3.10) and let us set γs

t := St(γ
s). Choosing t0 = 0,

t1 = t, u := γs, and taking a convex combination of (3.3) written for v := γ0, and
v := γ1, we get

eλt

2

(
(1 − s) d2(γs

t , γ
0) + s d2(γs

t , γ
1)
)
− 1

2

(
(1 − s) d2(γs, γ0) + s d2(γs, γ1)

)
≤ Eλ(t)

(
(1 − s)F (γ0) + sF (γ1) − F (γs

t )
)
.(3.13)

We now observe that the elementary inequality

(3.14) (1 − s)a2 + sb2 ≥ s(1 − s)(a + b)2 ∀ a, b ∈ R, s ∈ [0, 1],

and the triangular inequality yield

(3.15)
(1 − s)d2

(
γs
t , γ

0
)

+ sd2
(
γs
t , γ

1
) (3.14)

≥ s(1 − s)
(
d
(
γs
t , γ

0
)

+ d
(
γs
t , γ

1
))2

≥ s(1 − s)d2
(
γ0, γ1

)
.

On the other hand, (3.10) yields

(3.16) (1 − s) d2
(
γs, γ0

)
+ s d2

(
γs, γ1

)
≤ L2s(1 − s).

Inserting (3.16) and (3.15) in (3.13) we obtain

(3.17)
eλt − 1

2
s(1 − s)d2

(
γ0, γ1

)
− ε2

2
s(1 − s) ≤ Eλ(t)

(
(1 − s)F

(
γ0

)
+ sF

(
γ1

)
− F (γs

t )
)
.

Dividing then both sides of (3.17) by Eλ(t) we get (3.11); when ε = 0 we can pass to
the limit as t ↓ 0 obtaining (3.12).

We conclude this section by considering the case when the flow S is defined only
on a dense subset X0 of D(F ) (which is dense in X). In order to prove the geodesic
convexity of F in X by Theorem 3.2 we first have to extend S to the whole space
X. This can be achieved by a density argument, if X is complete and the lower
semicontinuous functional F satisfies the following approximation property:
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(3.18) ∀u ∈ D(F ) ∃un ∈ X0: lim
n→∞

d(un, u) = 0, lim
n→∞

F (un) = F (u).

We state the precise extension result in the next theorem.
Theorem 3.3. Suppose that the functional F and the subset X0 ⊂ D(F ) satisfy

(3.18) and let S be a λ-flow for F in X0. If X is complete, S can be extended to a
unique λ-flow S̄ in X, and therefore F is (strongly) geodesically λ-convex in X.

Proof. Given u ∈ X and a sequence un ∈ X0 converging to u (X0 is also dense in
X), we can define

(3.19) S̄t(u) := lim
n→∞

St(un) ∀ t > 0,

where it is clear that the limit in (3.19) exists (being X complete and St Lipschitz
by (3.6)) and does not depend on the particular sequence un we used to approximate
u. Moreover, S̄t is a semigroup and satisfies the estimate (3.5) and the λ-contracting
property (3.6); being X0 dense in X, it is not difficult to combine (3.5), (3.6), and
(3.18) to show that limt↓0 St(u) = u for every u ∈ X.

In order to prove that S̄ is still a λ-flow for F in X we have to check (3.3) in X:
we fix v ∈ D(F ) and a sequence vn ∈ X0 converging to v with F (vn) → F (v), and we
pass to the limit as n → ∞ in the inequalities

(3.20)
eλ(t1−t0)

2
d2(St1(un), vn)− 1

2
d2(St0(un), vn) ≤ Eλ(t1− t0)

(
F (vn)−F (St1(un)),

using the lower semicontinuity of F .

4. Nonlinear diffusion equations as gradient flows of entropy function-
als in P2(M). We apply the strategy described in the section 2 to prove the geodesic
convexity of the integral functional (1.1) in the case of a Riemannian manifold of
nonnegative Ricci curvature. We therefore exhibit a smooth flow (induced by the
nonlinear diffusion equation (1.12) on the dense subset Par

2 (M)) which satisfies the
E.V.I. (1.13).

Before stating the main theorem of this section, let us recall a fundamental result
on this kind of evolution equations, which can be found in [22, 19]:

Theorem 4.1 (Classical solutions of nonlinear diffusion equations). Let e ∈
C∞(R+) and U be functions that satisfy the assumptions (1.7) of Theorem 1.1. For
every ρ0 ∈ C∞(M) with ρ0 > 0, there exists a unique smooth positive solution ρ ∈
C∞([0,+∞) × X) to the Cauchy problem

(4.1) ∂tρt = Δg U(ρt), ρ|t=0
= lim

t↓0
ρt = ρ0.

Moreover, given a one-parameter family of positive initial data s �→ ρs0 ∈ C∞([0, 1] × M),
the corresponding solutions ρst of the equation (4.1) depend smoothly on s, t.

For every μ0 = ρ0V ∈ Par
2 (M) we denote by St(μ0) ∈ Par

2 (M) the measure
μt = ρtV. The main result that we show in this section is the following.

Theorem 4.2. Let e ∈ C∞(R+) and U be functions that satisfy the assumptions
(1.7) of Theorem 1.1 and let us suppose that

(4.2) Ricg(x) ≥ 0 ∀x ∈ M.

The semigroup S induced by (4.1) in Par
2 (M) is a 0-flow in Par

2 (M) for the functional

(4.3) E(μ) =

∫
M

e(ρ) dV, ∀μ = ρV ∈ Par
2 (M).
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In particular, for every μ0 = ρ0V, ν ∈ Par
2 (M), the measures μt = St(μ0) = ρtV ∈

Par
2 (M) solving (4.1) satisfy the E.V.I.

(4.4)
1

2

d+

dt
W 2

2 (ν, μt) ≤ E(ν) − E(μt) ∀ t ∈ [0,+∞).

In order to prove Theorem 4.2, thanks to the “Riemannian-like” characterization of
the Wasserstein distance provided by (1.10), we can follow the strategy presented in
section 2; in particular we want to prove the differential inequality of Theorem 2.2.
Following Otto’s formalism [17], we collect in the next table the formal correspon-
dences between the various objects:

X, Riemannian manifold, with distance d Par
2 (M) with distance W2

a smooth curve γs in X a smooth family μs = ρsV ∈ Par
2 (M)

the tangent vector ∂sγs in TγsX the vector field ∇φs where −∇ · (ρs∇φs) = ∂
∂s

ρs∣∣∂sγs
∣∣2
g

∫
M

∣∣∇φs(x)
∣∣2
g
ρs(x) dV(x)

γs
t := St(γs), γ̃s

t := γs
st = Sst(γs) μs

t = ρst V := St(μs), μ̃s
t = ρ̃st V := μs

st = Sst(μs)

Ãs
t =

∣∣∂sγ̃s
t

∣∣2
g

∫
M

∣∣∇φ̃s
t (x)

∣∣2
g
ρ̃st (x) dV(x)

F (γs) E(μs) =

∫
M

e(ρs) dV(
∂θSθγ

s
)
|θ=0

= −∇F (γs) −∇U(ρs)/ρs = −∇e′(ρs).

The core of the proof of Theorem 4.2 lies in the following lemma:
Lemma 4.3. Let μs = ρsV, s ∈ [0, 1], be a smooth family of measures in Par

2 (M)
and let μ̃s

t = ρ̃stV = Sst(μ
s) be obtained by flowing ρs along the flow (4.1); i.e.,

ρ̃st = ρsst where ρst satisfies

(4.5)
∂

∂t
ρst − Δg U(ρst ) = 0 in M, ∀ s ∈ [0, 1], t > 0; ρst=0 = ρs.

Let φ̃s
t ∈ C∞([0, 1] × [0,+∞) × M) be the functions defined by the equation

(4.6) −∇·
(
ρ̃st∇φ̃s

t

)
= ∂sρ̃

s
t in M,

∫
M

φ̃s
t (x) dV(x) = 0 ∀ s ∈ [0, 1], t ∈ [0,+∞),

and let us set

(4.7)

Ãs
t :=

∫
M

|∇φ̃s
t (x)|2g ρ̃st (x) dV(x),

D̃s
t := −

∫
M

[(
|Hess φ̃s

t |2g +Ricg

(
∇φ̃s

t ,∇φ̃s
t

))
U (ρ̃st )+

(
Δg φ̃

s
t

)2(
ρ̃stU

′(ρ̃st ) − U (ρ̃st )
)]

dV.

Then, we have the formula

∂

∂t

1

2
Ãs

t +
∂

∂s
E(ρ̃stV) = sD̃s

t , ∀ t ∈ [0,+∞), ∀ s ∈ [0, 1].(4.8)

In particular, if M has nonnegative Ricci curvature, then D̃s
t ≤ 0 and therefore

(4.9)
∂

∂t

1

2
Ãs

t +
∂

∂s
E(ρ̃stV) ≤ 0.
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Proof. Being ρ̃st := ρστ |σ=s,τ=st
we get

∂

∂s
ρ̃st =

(
∂

∂σ
ρστ + t

∂

∂τ
ρστ

)
σ=s,τ=st

,
∂

∂t
ρ̃st = s∂τρ

s
τ |τ=st

= sΔg U (ρ̃st ),(4.10)

∂2

∂t ∂s
ρ̃st

(4.6)
= −∇ ·

(
∂

∂t
ρ̃st ∇φ̃s

t

)
−∇ ·

(
ρ̃st

∂

∂t
∇φ̃s

t

)
,(4.11)

∂2

∂s ∂t
ρ̃st

(4.10)
= sΔg

(
U ′ (ρ̃st )

∂

∂s
ρ̃st

)
+ Δg U (ρ̃st )

(4.6)
= −sΔg

(
U ′ (ρ̃st ) ∇ ·

(
ρ̃st∇φ̃s

t

))
+ Δg U (ρ̃st ).(4.12)

Differentiation and integration by parts yield

∂

∂t

∫
M

1

2
|∇φ̃s

t |2g ρ̃st dV =

∫
M

〈
∂

∂t
∇φ̃s

t ,∇φ̃s
t

〉
g

ρ̃st dV +
1

2

∫
M

|∇φ̃s
t |2g

∂

∂t
ρ̃st dV

= −
∫

M

∇ ·
(
ρ̃st

∂

∂t
∇φ̃s

t

)
φ̃s
t dV

(4.10)
+

1

2
s

∫
M

Δg

(
|∇φ̃s

t |2g
)
U(ρ̃st ) dV

(4.11)
=

∫
M

∂2

∂t∂s
ρ̃st φ̃

s
t dV +

∫
M

(
∇·

(
∂

∂t
ρ̃st∇φ̃s

t

))
φ̃s
t dV +

1

2
s

∫
M

Δg

(
|∇φ̃s

t |2g
)
U(ρ̃st ) dV

(4.12)
=

∫
M

(
Δg U (ρ̃st ) − sΔg

(
U ′(ρ̃st )∇ ·

(
ρ̃st∇φ̃s

t

))
φ̃s
t dV

(4.13)

− s

∫
M

Δg U(ρ̃st ) |∇φ̃s
t |2g dV +

s

2

∫
M

Δg

(
|∇φ̃s

t |2g
)
U(ρ̃st ) dV

=

∫
M

U(ρ̃st ) Δg φ̃
s
t dV − s

∫
M

(〈
∇U(ρ̃st ),∇φ̃s

t

〉
g

Δg φ̃
s
t + ρ̃st U

′ (ρ̃st )
(
Δg φ̃

s
t

)2)
dV

− s

2

∫
M

Δg

(
|∇φ̃s

t |2g
)
U(ρ̃st ) dV

=−
∫

M

〈
∇U (ρ̃st ),∇φ̃s

t

〉
g

dV + s

∫
M

[
−1

2
Δg

(
|∇φ̃s

t |2g
)

+
〈
∇φ̃s

t ,∇Δg φ̃
s
t

〉
g

]
U (ρ̃st ) dV

+ s

∫
M

(
Δg φ̃

s
t

)2 (
U (ρ̃st ) − ρ̃stU

′(ρ̃st )
)

dV

(4.14)

Applying Bochner formula:

(4.15) 〈∇φ,∇Δg φ〉g −
1

2
Δg

(
|∇φ|2g

)
= −|Hessφ|2g − Ricg(∇φ,∇φ),

we get

(4.16)
∂

∂t

1

2

∫
M

|∇φ̃s
t |2g ρ̃st dV +

∫
M

〈
∇U(ρ̃st ),∇φ̃s

t

〉
g
dV = sD̃s

t .

Now we observe that the second term in the right-hand side of (4.16) is the derivative
of the functional (4.3) along the curve s �→ ρ̃stV ∈ Par

2 (M):

(4.17)
∂

∂s
E(μ̃s

t ) =

∫
M

e′(ρ̃st )
∂

∂s
ρ̃st dV = −

∫
M

e′(ρ̃st )∇ ·
(
ρ̃st∇φ̃s

t

)
dV =

∫
M

∇U (ρ̃st ) · ∇φ̃s
t dV,

and we eventually obtain (4.8).
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Finally, when Ricg(M) ≥ 0, using the inequality (Δg φ)2 ≤ n|Hessφ|2g and (1.7)

we easily get D̃s
t ≤ 0 and (4.9).

Proof of Theorem 4.2. We argue as in the proof of Theorem 2.2: we fix ε > 0 and
we choose a smooth curve (ρ, φ) ∈ C(ν, μ) such that

(4.18)

∫ 1

0

Ãs
0 ds =

∫ 1

0

∫
M

|∇φs|2g ρs dVds ≤ W 2
2 (ν, μ) + ε.

Let (ρ̃, φ̃) be a smooth variation defined as in Lemma 4.3; since ρ̃0
tV = ρ0V = ν and

ρ̃1
tV = μt, for every t > 0 we have (ρ̃st , φ̃

s
t ) ∈ C(ν, μt), and therefore

(4.19) W 2
2 (ν, μt) ≤

∫ 1

0

∫
M

|∇φ̃s
t |2g ρ̃st dV ds =

∫ 1

0

Ãs
t ds.

Integrating (4.9) for s ∈ [0, 1] and t ∈ [0, τ ] and recalling that t �→ E(μt) is not
increasing, we get

(4.20)
1

2

∫ 1

0

Ãs
τ ds− 1

2

∫ 1

0

Ãs
0 ds ≤ τ (E(ν) − E(μτ )) .

Combining (4.20) with (4.19) and (4.18) we get

(4.21)
1

2
W 2

2 (ν, μτ ) −
1

2
W 2

2 (ν, μ) ≤ τ (E(ν) − E(μτ )) + ε,

and, as ε is arbitrary,

(4.22)
1

2
W 2

2 (ν, μτ ) −
1

2
W 2

2 (ν, μ) ≤ τ (E(ν) − E(μτ )) .

Since the semigroup associated with (4.1) is translation invariant, (4.22) is the integral
formulation (3.3) of (4.4).

Remark 4.4. Taking into account Theorem 2.3, (4.8) perfectly fits with the
calculation performed by [19, Lemma 4.4], which provides the same expression for
D̃s

t . Applying now Theorem 3.3, with the choices X := P2(M), X0 := Par
2 (M), and

F := E (which satisfies the approximation condition (3.18); see [3]), we can prove the
first part of Theorem 1.1.

Corollary 4.5. Let E : P2(M) → (−∞,+∞] be the functional defined in
(1.1). If e satisfies McCann conditions (1.7) and Ricg(M) ≥ 0, then E is (strongly)
displacement convex along every geodesic μ : s ∈ [0, 1] �→ μs ∈ P2(M), i.e.,

(4.23) E(μs) ≤ (1 − s)E(μ0) + sE(μ1) ∀ s ∈ [0, 1].

5. The heat equation and the displacement λ-convexity of the logarith-
mic entropy. In this last section we prove the second part of Theorem 1.1: we thus
assume that the Riemannian manifold M satisfies the lower Ricci curvature bound

(5.1) Ricg(M) ≥ λ i.e., Ricgx(ξ, ξ) ≥ λ |ξ|2g ∀ ξ ∈ Tx M,

and we consider the logarithmic entropy functional

(5.2) E(μ) =

∫
M

ρ log ρdV, ρ =
dμ

dV
,
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corresponding to e(ρ) := ρ log ρ. Since U(ρ) = ρ, the Wasserstein gradient flow
associated to E is the Heat equation

(5.3)
∂

∂t
ρt − Δg ρt = 0 in M, ρ|t=0

= ρ0.

The main result of this section is the following.
Theorem 5.1. The semigroup St : μ0 = ρ0V �→ μt = ρtV, generated by the

solution of the Heat equation (5.3), is a λ-flow in Par
2 (M) for the logarithmic entropy

functional; i.e., μt satisfies the inequality

(5.4)
1

2

d+

dt
W 2

2 (ν, μt) +
λ

2
W 2

2 (ν, μt) ≤ E(ν) − E(μt) ∀ t ∈ [0,+∞), ν ∈ Par
2 (M).

In particular, the logarithmic entropy functional (5.2) is (strongly) displacement λ-
convex; i.e., for every geodesic μs : [0, 1] → P2(M) between μ0 and μ1, we have

(5.5) E(μs) ≤ (1 − s)E(μ0) + sE(μ1) − λ

2
s(1 − s)W 2

2 (μ0, μ1), ∀ s ∈ [0, 1].

Proof. By Theorem 3.3, if S is a λ-flow for the functional (5.2) in Par
2 (M), then

E is (strongly) displacement λ-convex. In order to prove that S is a λ-flow, since
(3.2a,b) are immediate, we check that S satisfies the E.V.I. (3.2c), and we argue as
in the proof of Theorem 4.2 and Theorem 2.2. We thus fix ε > 0, and we choose a
smooth curve (ρ, φ) ∈ C(ν, μ)

(5.6)

∫ 1

0

Ãs
0 ds =

∫ 1

0

∫
M

|∇φs|2g ρs dVds ≤ W 2
2 (ν, μ) + ε2.

By a standard reparametrization technique (see next Lemma 5.1), we can also assume
that

(5.7)
W2(μ

s0 , μs1) ≤ L|s0 − s1|, L2 := W 2
2 (ν, μ) + ε2 ∀ s0, s1 ∈ [0, 1]; μs := ρs V.

We keep the same notation of Theorem 4.2 and Lemma 4.3; i.e.,

(5.8) μ̃s
t = ρ̃st V := Sst(μ

s), Ãs
t :=

∫
M

|∇φ̃s
t |2g ρ̃st dV, F̃ s

t = E(μ̃s
t ),

where φ̃s
t is a family of potentials associated with ρ̃st as in (4.6). Since U(ρ) = ρ, the

term ρU ′(ρ) − U(ρ) in the definition of D̃s
t vanishes, so that in the present case

(5.9)

D̃s
t = −

∫
M

(
|Hess φ̃s

t |2g + Ricg

(
∇φ̃s

t ,∇φ̃s
t

))
ρ̃st dV

(5.1)

≤ −λ

∫
M

|∇φ̃s
t |2gρ̃st dV = −λÃs

t ,

and (4.8) yields the differential inequality

(5.10)
1

2

∂

∂t
Ãs

t + λsÃs
t +

∂

∂s
F̃ s
t ≤ 0 ∀ s ∈ [0, 1], ∀ t > 0.

Multiplying inequality (5.10) by e2λst > 0 we obtain

(5.11)
1

2

∂

∂t

(
e2λstÃs

t

)
+

∂

∂s

(
e2λstF̃ s

t

)
≤ 2λt e2λst F̃ s

t .
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Integrating with respect to s from 0 to 1 we get

(5.12)
d

dt

(
1

2

∫ 1

0

e2λstÃs
t ds

)
+ e2λtF̃ 1

t − F̃ 0
t ≤

∫ 1

0

2λ t e2λstF̃ s
t ds,

and a further integration with respect to t yields

(5.13)
1

2

∫ 1

0

e2λstÃs
t ds− 1

2

∫ 1

0

As
0 ds + E2λ(t)E(μt) − tE(ν) ≤

∫ t

0

∫ 1

0

2λ r e2λsr F̃ s
r dsdr.

Applying the next Lemma 5.1, since for λ �= 0
∫ 1

0
1

e2λst ds = 1−e−2λt

2λt = 1
eλts(λt)

, s(t) :=
t

sinh(t) , we get

(5.14)

eλts(λt)

2
W 2

2 (μt, ν) − 1

2
W 2

2 (μ, ν) + E2λ(t)E(μt) − tE(ν)

≤
∫ t

0

∫ 1

0

2λre2λsrF̃ s
r dsdr + ε2/2.

Let us first consider the case λ ≤ 0: being E nonnegative, the right-hand side in (5.14)
is less or equal than ε; since ε > 0 is arbitrary, we obtain the same inequality with 0
in the right-hand side. Since t−1E2λ(t) → 1 as t ↓ 0 and s(0) = 1, we thus obtain

(5.15)
1

2

d+

dt

(
eλts(λt)W 2

2 (μt, ν)
)∣∣∣

t=0
+ E(μ) ≤ E(ν).

Being s′(0) = 0 it is then easy to check that

d+

dt

(
eλts(λt)W 2

2 (μt, ν)
)∣∣∣

t=0
=

d+

dt

(
W 2

2 (μt, ν)
)∣∣∣

t=0
+ λW 2

2 (μ, ν),

which yields (5.4).
Let us now consider the case λ > 0. Notice that we already know that S is a 0-flow;
by (5.7) we can apply the estimate (3.11) with λ = 0 obtaining

rF̃ s
r = rE(Srs(μ

s))
(3.11)

≤ r

(
(1 − s)E

(
μ0

)
+ sE

(
μ1

)
+

ε2

2 rs
s(1 − s)

)
≤ r

(
E
(
μ0

)
+ E

(
μ1

))
+ ε2/2,

since s ∈ [0, 1]. We thus get

(5.16)

∫ t

0

∫ 1

0

2λ r e2λsrF̃ s
r dsdr ≤ λte2λt

(
t
(
E(μ0) + E(μ1)

)
+ ε2

)
;

inserting this bound in (5.14) and passing to the limit as ε ↓ 0 we find

(5.17)
eλts(λt)

2
W 2

2 (μt, ν) − 1

2
W 2

2 (μ, ν) + E2λ(t)E(μt) − tE(ν) ≤ λt2e2λt (E(μ0) + E(μ1)) .

Dividing by t and letting t tend to 0, the second term vanishes, so we obtain the
E.V.I. also in the case in which λ > 0.
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Lemma 5.1. Let ν, μ ∈ Par
2 (M) and let (ρ, φ) ∈ C(ν, μ) be a smooth solution of

the continuity equation

∂

∂s
ρs + ∇ · (ρs ∇φs) = 0 in [0, 1] × M with

ρ0V = ν, ρ1V = μ, and As :=

∫
M

|∇φs|2g ρs dV.

For every positive function f ∈ C∞[0, 1]

(5.18) W 2
2 (ν, μ) ≤ Lf

∫ 1

0

f(s)As ds, where Lf :=

∫ 1

0

1

f(s)
ds.

Moreover, for every ε > 0 there exists a smooth rescaling sε : [0, 1] → [0, 1] so that the
reparametrized families

(5.19) ρ̄r := ρsε(r), φ̄r := s′ε(r)φ
sε(r), μ̄r := ρ̄r V

satisfy

(5.20)
(
ρ̄, φ̄

)
∈ C(ν, μ), W2(μ̄

r0 , μ̄r1) ≤ L|r0 − r1|, L2 ≤
∫ 1

0

As ds + ε2.

Proof. Let us consider the smooth increasing map r : [0, 1] → [0, 1]

r(s) := L−1
f

∫ s

0

1

f(s)
ds and its inverse s := r−1 with s′(r(s)) = Lff(s).

It is immediate to check that the smooth (reparametrized) curve

(5.21) ρ̄r(x) := ρs(r)(x), φ̄r(x) := s′(r)φs(r)(x)

belongs to C(ν, μ). It follows that

W 2
2 (ν, μ) ≤

∫ 1

0

Ār dr, where Ār :=

∫
M

|∇φ̄r|2g ρ̄r dV
(5.21)
=

(
s′(r)

)2
As(r),

so that ∫ 1

0

Ārdr =

∫ 1

0

As(r)
(
s′(r)

)2
dr =

∫ 1

0

Ass′(r(s)) ds = Lf

∫ 1

0

f(s)As ds.

Choosing now the reparametrization sε corresponding to the choice

(5.22) fε(s) :=
1√

ε2 + As
, Lfε :=

∫ 1

0

√
ε2 + As ds, L2

fε ≤ ε2 +

∫ 1

0

As ds,

we get

W 2(μ̄r0 , μ̄r1) ≤ |r1 − r0|
∫ r1
r0

Ār dr = |r1 − r0|L2
fε

∫ r1
r0

As(r)f2
ε (s(r)) dr

≤ (r1 − r0)
2L2

fε ,

which yields (5.20).
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POSITIVITY PROPERTIES OF THE FOURIER TRANSFORM AND
THE STABILITY OF PERIODIC TRAVELLING-WAVE SOLUTIONS∗

JAIME ANGULO PAVA† AND FÁBIO M. A. NATALI‡

Abstract. In this paper we establish a method to obtain the stability of periodic travelling-wave
solutions for equations of Korteweg–de Vries-type ut + upux − Mux = 0, with M being a general
pseudodifferential operator and where p ≥ 1 is an integer. Our approach uses the theory of totally
positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In
particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin–
Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal
and dnoidal waves solutions associated with the Korteweg–de Vries and modified Korteweg–de Vries
equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions
of other partial differential equations.

Key words. dispersive equations, Korteweg–de Vries-type equations, periodic travelling waves,
Jacobi elliptic functions, nonlinear stability

AMS subject classifications. 76B25, 35Q51, 35Q53

DOI. 10.1137/080718450

1. Introduction. One of the main properties of dispersive nonlinear evolu-
tion equations is that usually they sustain steadily translating waves called travel-
ling waves. These solutions imply a balance between the effects of nonlinearity and
of frequency dispersion. By depending on specific boundary conditions on the wave’s
shape, for instance, in the case of water waves, these special states of motion can
arise either solitary or periodic waves. The study of these special steady waveforms
is essential to the explanation of many wave phenomena observed in the practice,
for instance, in surface water waves propagating in a canal, in propagation of inter-
nal waves, or in shallow-water ocean surface waves (see Benjamin [12], [13], [14] and
Osborne et al. [44]).

In the water wave context, Constantin in [21] and Constantin and Escher in [22]
analyzed a free boundary problem for harmonic functions and showed that periodic or
solitary travelling waves possess stability properties within the shallow-water regime
(see also Toland [47] and Constantin and Strauss [23] and the citations therein).
Moreover, various nonlinear dispersive model equations are an accurate approximation
to the governing equations for water waves (see [5]). From these considerations,
questions about the stability of travelling waves and their existence as exact solutions
of the dynamical equations are very important.

The solitary waves are in general single crested, symmetric, localized travelling
waves, whose hyperbolic sech profiles are well known (see Ono [43] and Benjamin
[16] for the existence of solitary waves of algebraic type or with a finite number of
oscillations). The study of the nonlinear stability or instability in the form of solitary
waves has had a terrific development and refinement in recent years. The proofs have
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been simplified and sufficient conditions were obtained to ensure the stability to small
localized perturbations in the waveform. Those conditions have shown to be effective
in a variety of circumstances; see, for example, [2], [3], [4], [14], [17], [27], [28], [49],
and [48].

The situation regarding periodic travelling waves is very different. The stability
and the existence of explicit formulas of these progressive wavetrains have received
comparatively little attention. A first study of these waveforms was detemined by
Benjamin in [16] with regard to the periodic steady solutions called cnoidal waves,
which were found initially by Korteweg and de Vries in [34] for the equation currently
called the Korteweg–de Vries equation (KdV henceforth):

ut + uux + uxxx = 0,(1.1)

where u = u(x, t) is a real-valued function of the two variables x, t ∈ R. Benjamin
put forward an approach to the stability of cnoidal waves in the form

ϕ(ξ) = β2 + (β3 − β2)cn
2

(√
β3 − β1

12
ξ; k

)
,

but did not provide a detailed justification of his assertions, and several aspects seem
problematic. The first result of stability for periodic solutions of the KdV was obtained
by McKean in [37], who considered the orbital stability of all periodic finite-genus
solutions with respect to perturbations of the same period. McKean’s approach was
based on the integrable structure of the KdV. More recently Angulo, Bona, and
Scialom in [10] returned to Benjamin’s original question and gave a complete theory
of stability of cnoidal waves for (1.1) with respect to perturbations of the same period
(see also [7]). The approach for obtaining this result was based on the ideas of Bona,
Weinstein, and Grillakis, Shatah, and Strauss (see [17], [27], [48]) but adapted to the
periodic context. So new theories of stability for other dispersive equations such as the
focusing nonlinear Schrödinger equation and the modified KdV has been obtained (see
Angulo [9], [8]). It is remarkable to see that in all these works the use of an elaborated
spectral theory for the periodic eigenvalue problem was necessary (see [29], [36]),⎧⎨

⎩
d2

dx2
Ψ + [ρ− n(n + 1)k2sn2(x; k)]Ψ = 0,

Ψ(0) = Ψ(2K(k)), Ψ′(0) = Ψ′(2K(k)),

(1.2)

with specific values of n ∈ N. In (1.2), sn(·; k) represents the Jacobi elliptic function
of type snoidal with modulus k, k ∈ (0, 1), and K represents the complete elliptic
integral of the first kind defined by

K(k) =

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

.

We recall that the second order differential equation in (1.2) is known as the Jacobi
form of the Lamé equation.

We note also that Gardner in [26] provided a theory for determining that the
large wavelength periodic waves are linearly unstable whenever the limiting homoclinic
wave (solitary wave) is unstable. He applied it for diverse types of nonlinear evolution
equations in one space variable, in the case of the generalized KdV equations

ut + upux + uxxx = 0,
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p ∈ N, and assuming that this equation admits a family of large wavelength periodic
waves Uα such that the period Tα tends to infinity as α tends to zero, then they are
unstable whenever p > 4 and α > 0 is sufficiently small.

Then, the main focus in this paper will be the study of the existence and stability
of periodic travelling-wave solutions for equations of the form

ut + upux −Mux = 0,(1.3)

where p ≥ 1 is an integer and M is a differential or pseudodifferential operator in the
framework of periodic functions. M is defined as a Fourier multiplier operator by

M̂g(k) = α(k)ĝ(k), k ∈ Z,(1.4)

where the symbol α of M is assumed to be a mensurable, locally bounded, even
function on R, satisfying the conditions

A1|k|m1 � α(k) � A2(1 + |k|)m2(1.5)

for m1 � m2, |k| ≥ k0, α(k) > b for all k ∈ Z and Ai > 0. The travelling-wave
solutions for (1.3) will have the form

u(x, t) = ϕc(x− ct),

where the profile ϕc is a smooth periodic function with an a priori fundamental period
2L, L > 0. Hence substituting this form of u into (1.3) and integrating once (with
the integration constant being considered zero throughout our theory), one obtains
that ϕ = ϕc is the solution of the equation

(M + c)ϕ− 1

p + 1
ϕp+1 = 0.(1.6)

Associated with (1.6) we consider the linear, closed, unbounded, self-adjoint operator
L : D(L) → L2

per([−L,L]) defined on a dense subspace of L2
per([−L,L]) by

Lu = (M + c)u− ϕpu.(1.7)

From the theory of compact symmetric operators applied to the periodic eigenvalue
problem

{
Lψ = λψ,

ψ(−L) = ψ(L), ψ
′
(−L) = ψ

′
(L),

(1.8)

it is possible to see that the spectrum of L is a countable infinite set of eigenvalues,
{λn}, with

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · ·,(1.9)

where λn → ∞ as n → ∞ (see Proposition 3.1 below for a proof of this assertion). In
particular, from (1.6) we obtain that L has zero as an eigenvalue with eigenfunction
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dϕ/dx. As is well known this property of L is deduced from the invariance of the
solutions of (1.3) by translations.

A set of sharp conditions is available in the literature to imply the stability of
the orbit generated by ϕc, namely, Ωϕc = {ϕc(· + y) : y ∈ R}. So, we say that Ωϕc

(or ϕc) is stable in Hm2
per([−L,L]) by the periodic flow generated by (1.3) if, for any

ε > 0, there exists a δ > 0 such that, for u0 ∈ Hm2
per([−L,L]) with d(u0,Ωϕc

) ≡ infy∈R

‖u0−ϕc(·+y)‖Hm2
per

< δ, the solution u of (1.3) with u(x, 0) = u0 is global in time and
satisfies d(u(t),Ωϕc

) < ε for all t ∈ R. Thus, from [14], [17], [49], [27] the conditions
that imply stability are the following:

(1.10)

(P0) there is a nontrivial smooth curve of periodic solutions for (1.6) of the form

c ∈ I ⊆ R → ϕc ∈ Hm2
per([−L,L]);

(P1) L has an unique negative eigenvalue λ, and it is simple;

(P2) the eigenvalue 0 is simple;

(P3)
d

dc

∫ L

−L

ϕ2
c(x)dx > 0.

The problem about the existence of a nontrivial smooth curve of periodic solutions
in the form required by (P0) above presents new and delicate aspects that need to be
handled. The possibility of finding explicit solutions for (1.6) will depend naturally
on the form of M . If it is a differential operator of the form M = −∂2

x, then we use
the quadrature method (it means writing (1.6) in the form [ϕ′

c]
2 = F (ϕc)), and the

theory of elliptic functions has shown to be a main tool. So, the solutions will depend
on the Jacobi elliptic functions of snoidal, cnoidal, and dnoidal types (see [9], [8],
[10], [15]). Now, since the period of these functions depends on the complete elliptic
integral K(k), we have that the elliptic modulus k will depend on the velocity c, and
therefore we have that a priori the period of ϕc will depend on c. Hence, by using the
implicit function theorem, the wanted smooth branch of periodic solutions with a fixed
minimal period has been obtained in many cases. We note that the procedure of the
quadrature method in general does not work if M is a pseudodifferential operator such
as the nonlocal operator H∂x, with H being the Hilbert transform. In this paper we
will make a different approach to obtain explicit solutions of (1.6) for a specific form
of M and values of p. This approach will be based on the classical Poisson summation
theorem (see [38], [45], [46]). At least two important advantages of this approach can
be obtained: The first one is that it can be used for obtaining solutions when M is
a pseudodifferential operator, for example, in the case of H∂x. The other one is that
related with computing the integral in (1.10). In general obtaining property (P3) can
be very difficult in the periodic case, as the results that have appeared in the literature
have shown, since the use of nontrivial identities for the complete elliptic integrals of
the first and the second kinds sometimes come on the scene as a fundamental piece
in the analysis. As we will see our method to obtain property (P3) can be very easy
as a combination of the Poisson summation theorem and the Parseval theorem.

With regard to conditions (P1) and (P2), the problem is very delicate. One of the
most remarkable results in the theory of stability of solitary wave solutions was given
by Albert [2] and Albert and Bona [3], where sufficient conditions to obtain properties
(P1) and (P2) were given. The advantage of that approach is that it does not require
an explicit computation of the spectrum of the linear operator (1.7), since (P1) and
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(P2) are obtained exclusively from positivity properties of the Fourier transform of the
solitary wave in question. The present paper establishes an extension of the theory
in [2] and [3] in the case of periodic travelling-wave solutions. The periodic problem
has new points not encountered when considering issues related to the solitary waves.
Our analysis also relies upon the theory of totally positive operators, and so the class
PF (2) defined by Karlin in [32] (see also [2]) is basic in our study.

Our theory leads to a significant simplification of some recent proofs of stability of
periodic travelling-wave solutions of KdV-type equations (see [9], [7], [10]) such as in
the case of the KdV and the modified KdV equations, since in those cases the verifica-
tion of properties (P1) and (P2) required the determination of the instability intervals
associated with the Lamé equation in (1.2) and of an explicit formula of at least the
first three eigenvalues ρ (see [36]). Our analysis does not need this information.

Such as will be shown in section 4, this method establishes the first result about
the stability of periodic travelling-wave solutions found by Benjamin in [15] for the
Benjamin–Ono equation

ut + uux −Huxx = 0,(1.11)

where H denotes the periodic Hilbert transform defined by

Hf(x) =
1

2L
p.v.

∫ L

−L

cotg
[π(x− y)

2L

]
f(y) dy.(1.12)

The associated periodic waves for (1.11) with a minimal period 2L are given for c > π
L

as

ϕc(x) =
2π

L

(
senh(γ)

cosh(γ) − cos
(
πx
L

)
)
,(1.13)

such that γ > 0 satisfies tanh(γ) = π
cL .

It is important to note that the stability results now presented are obtained by
periodic initial disturbances having the same minimal period of our periodic solutions.
This method cannot be extended for obtaining stability results with more general
periodic perturbations, for instance, by periodic disturbances of two times the minimal
period of our periodic solutions. In section 6 we give an explanation of this fact.

The plan of this paper is as follows. The next section is devoted to describing
briefly the notation that will be used and making a few preliminary remarks regarding
periodic Sobolev spaces, the Poisson summation theorem, and some results of global
well-posedness in the periodic case of the KdV, modified KdV, and the Benjamin–Ono
equations. Sections 3 and 4 contain our full theory which relates positivity properties
of periodic travelling-wave solutions to the stability theory of [27]. Applications of sec-
tion 4 to specific periodic travelling waves are presented in section 5. In section 6 some
comments about the PF (2) property in the periodic case are established. Finally, the
appendix contains some basic properties of the elliptic integrals which are relevant to
the theory of section 5, and the proof of an inequality of Poincaré–Wintinger type for
nonlocal operators is established.

2. Notation and preliminaries.

2.1. Function classes. Let Ω be an open set of the real line R and 1 ≤
p ≤ ∞; then Lp(Ω) is the usual Banach space of (equivalence classes of) real- or
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complex-valued Lebesgue measurable functions defined on Ω provided with the norm

||f ||p =

(∫
Ω

|f(x)|pdx
) 1

p

if 1 ≤ p < ∞. When p = ∞ we have ||f ||∞ = supessx∈Ω|f(x)|. When p = 2
the Banach space Lp(Ω) is a Hilbert space with inner product defined by (f, g)2 =∫
Ω
f(x)g(x)dx, where f, g ∈ L2(Ω). The L2-based Sobolev spaces of periodic func-

tions are defined as follows [30]. If P = C∞
per denotes the collection of all of the

functions f : R → C which are C∞ and periodic with period 2l > 0, the collection P ′

of all continuous linear functionals from P into C is the set of periodic distributions.
If Ψ ∈ P ′, we denote the evaluation of Ψ at ϕ by Ψ(ϕ) = 〈Ψ, ϕ〉 for ϕ ∈ P. For k ∈ Z,

let Θk(x) = e
ikπx

l , x ∈ R. The Fourier transform of Ψ ∈ P ′ is a function Ψ̂ : Z → C

defined by Ψ̂(k) = 1
2l 〈Ψ,Θk〉, k ∈ Z. Ψ̂(k) are called the Fourier coefficients of Ψ. As

usual, a function ψ ∈ Lp([−l, l]), p ≥ 1, is an element of P ′ by defining

〈ψ,ϕ〉 =
1

2l

∫ l

−l

ψ(x)ϕ(x)dx, ϕ ∈ P.

If ψ ∈ Lp([−l, l]) for some p ≥ 1, then, for k ∈ Z,

ψ̂(k) =
1

2l

∫ l

−l

ψ(x)e−
ikπx

l dx.

The Fourier inverse transform of a sequence α = (αk)k∈Z ∈ S(Z), where S(Z) denotes
the space of the rapidly decreasing sequences, is the function α̌ ∈ P defined by
α̌(x) =

∑
k∈Z

αkΘk(x). We consider the space P ′ provided with the usual weak-
star topology, but it will not be needed here. We denote by C2l the space of the
continuous and 2l-periodic functions. Let α = (αk)k∈Z be a sequence of complex
value. The Hilbert space �2 := �2(Z) is defined by

�2 =

⎧⎨
⎩α; ||α||�2 :=

(
+∞∑

k=−∞
|αk|2

) 1
2

< ∞

⎫⎬
⎭ .

For s ∈ R, the Sobolev space Hs
per([−l, l]) := Hs

2l is the set of all f ∈ P ′ such that

||f ||2Hs
2l
≡ 2l

+∞∑
k=−∞

(1 + |k|2)s|f̂(k)|2 < ∞.

The collection Hs
2l is a Hilbert space with inner product

(f, g)Hs
2l

= 2l

+∞∑
k=−∞

(1 + |k|2)sf̂(k)ĝ(k).

When s = 0, Hs
2l is a Hilbert space that is isometrically isomorphic to a subspace of

L2([−l, l]) and (f, g)H0
2l

= (f, g) =
∫ l

−l
f(x)g(x)dx. The space H0

2l will be denoted by

L2
2l, and its norm will be ||.||L2

2l
. Of course, Hs

2l ⊆ L2
2l for all s ≥ 0, and we have
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for s > 1/2 the Sobolev embedding Hs
2l ↪→ C2l (see [30]). The space �2s,2l := �2s,2l(Z),

s ∈ R, is defined by

�2s,2l(Z) :=

⎧⎨
⎩α = (αk)k∈Z

; ||α||�2s :=

(
2l

+∞∑
k=−∞

(1 + |k|2)s|αk|2
) 1

2

< +∞

⎫⎬
⎭ .

�2s,2l is a Hilbert space with inner product

(α, β)�2s,2l = 2l

+∞∑
k=−∞

(1 + |k|2)sαkβk,

where α = (αk)k∈Z
and β = (βk)k∈Z

. Then we have that f ∈ Hs
2l if and only if

(f̂(k))k∈Z ∈ �2s,2l, and so from the Parseval theorem (see [30]), ||f̂ ||2�2 = 1
2l ||f ||2L2

�
,

it follows that ||f ||Hs
2l

= ||f̂ ||�2s,2l . The convolution of two sequences α and β is the

sequence α ∗ β defined, for all k ∈ Z, by (α ∗ β)k =
∑+∞

j=−∞ αk−jβj , whenever the
right-hand side of the identity above makes sense. Next, we present some results that
we will need throughout this work. We start with the Young inequality (see [38]).

Proposition 2.1. Let α ∈ �1(Z) and β ∈ �2(Z). Then α ∗ β ∈ �2(Z). Moreover,

||α ∗ β||�2 ≤ ||α||�1 ||β||�2 .

In particular, for every α ∈ �1 fixed, the linear operator β ∈ �2 
→ α ∗ β ∈ �2 is
continuous.

Now, we present the Poisson summation theorem. It will be used to find the
explicit form of the periodic travelling-wave solutions for some equations.

Theorem 2.1. Let f̂(x) =
∫ +∞
−∞ f(y)e−ixydy and f(y) =

∫∞
−∞ f̂(x)eixydx satis-

fying

|f(y)| ≤ A

(1 + |y|)1+δ
and |f̂(x)| ≤ A

(1 + |x|)1+δ
,

where δ > 0 and A > 0 (then f̂ and f can be assumed to be continuous functions).
Thus, for L > 0,

+∞∑
n=−∞

f(x + 2Ln) =
1

2L

+∞∑
n=−∞

f̂
( n

2L

)
e

πinx
L .

The two series above converge absolutely.
Proof. See [38], [45], and [46].

2.2. Results of global well-posedness. Some results about local and global
well-posedness associated with (1.3) in the periodic case were initially established in
[1]. Here we establish two results that we will use in our theory.

Theorem 2.2. Let s ≥ 1 be given. For each u0 ∈ Hs
2l there is a unique solution

of (1.3), for the cases p = 1, 2 and M = −∂2
x, that for each T > 0 lies in C(0, T ;Hs

2l).
Moreover, the correspondence u0 
→ u is an analytic function of the relevance function
spaces.

Proof. See [20].
Theorem 2.3. Let s ≥ 1

2 be given. For each u0 ∈ Hs
2l there is a unique solution

of (1.3), for the cases p = 1 and M = H∂x, that for each T > 0 lies in C(0, T ;Hs
2l).
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Moreover, the correspondence u0 
→ u is a continuous function of the relevance func-
tion spaces.

Proof. See [39], [41], and [40].

3. Basic functional spaces. In this section we establish the main spaces in our
study of the stability of periodic wave solutions associated with (1.6) for the case of
the Benjamin–Ono (BO), Korteweg–de Vries (KdV), and modified Korteweg–de Vries
(mKdV) equations. For the KdV and mKdV cases we have in (1.6), M = −∂2

x with

symbol
(
π
L

)2
n2, p = 1, and p = 2, respectively. Next, the BO equation is obtained

with M = H∂x, with the symbol being π
L |n| and p = 1. Here, H denotes the periodic

Hilbert transform defined in (1.12) and such that via the Fourier transform satisfies

Ĥf(n) = −isgn(n)f̂(n) for all n ∈ Z. Then, our three periodic travelling-wave
equations are

Hϕ′
c + cϕc − 1

2ϕ
2
c = 0 (BO),

ϕ′′
c + 1

2ϕ
2
c − cϕc = 0 (KdV),

ϕ′′
c + 1

3ϕ
3
c − cϕc = 0 (mKdV).

(3.1)

Remark 3.1. (a) Here, we shall consider a more convenient form for the mKdV
travelling-wave equation, namely,

ϕ′′
c + ϕ3

c − cϕc = 0.(3.2)

(b) The periodic travelling-wave solutions for the KdV and mKdV will be consid-
ered of period L, but the periodic travelling-wave solution for the BO equation will
be considered of period 2L only by convenience.

(c) After a “bootstrap” argument, we can conclude that every ϕc belongs to Hs
2L

for all s ∈ R. Thus, ϕ is infinitely differentiable, with all derivatives in L2
2L.

We will suppose that c > −b, where b satisfies α(k) > b for all k ∈ Z. With this
condition M + c represents a positive operator. Then, by using the spectral theorem
for compact and self-adjoint operators we have the following characterization of the
spectrum of L defined in (1.7).

Proposition 3.1. The operator L in (1.7) is a closed, unbounded, self-adjoint
operator on L2

2L whose spectrum consists of an enumerable (infinite) set of eigenvalues
{λk}∞k=0 satisfying λ0 ≤ λ1 ≤ λ2 ≤ · · ·, and λk → ∞ as k → ∞. In particular, L has
0 as an eigenvalue with eigenfunction d

dxϕc.
Proof. We suppose that our periodic functions have period L. Clearly L defined

on Hm2

L is a closed, unbounded, self-adjoint operator on L2
per([0, L]). Let us proof

that the spectrum of T := M + c is a countable infinite set of eigenvalues, {γn}, with

γ0 ≤ γ1 ≤ γ2 ≤ γ3 ≤ · · · ,(3.3)

where γn → ∞ as n → ∞. In fact, let Rc = (M + c)−1, whose symbol is 1
c+α(k) for

k ∈ Z. Since 1
c+α(k) ∈ �2(Z) we have that there is a unique Gc ∈ L2

per([0, L]) such

that Ĝc(k) = 1
c+α(k) , and, because of this, we have the action

Rcf(x) =
1

L

∫ L

0

Gc(x− y)f(y)dy,

defined for f ∈ L2
per([0, L]). Since [0, L] is a bounded set we have that the kernel

G̃c(x, y) := Gc(x − y) ∈ L2([0, L] × [0, L]). So, Rc is a Hilbert–Schmidt operator on
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L2
per([0, L]) (see [33]), and therefore Rc is a compact operator on L2

per([0, L]) for all
c > 0 (here we supposed without loss of generality that b = 0), and so we obtain (3.3).

Next, we will show that there is a μ1 (large enough) such that M = (L + μ1)
−1

exists and is a bounded, positive, compact, and self-adjoint operator. In fact, first of
all, it is easy to see that L is limited below; that is, if f ∈ D(L), we have 〈Lf, f〉 ≥
−β〈f, f〉, where β = ||ϕc||L∞

per
+ c. Then, we can choose a μ1 such that L + μ1 > 0;

that is, M is positive. We denote μ1 := μ only by convenience. Let ν be a positive
number such that ν + ϕc − c > 0 and ν + μ > 0. Thus, for μ > 0 we have f =
(L + μ)g ⇔ (I −M)g = Υf , where Mg = Rμ+ν [(ν + ϕc − c)g], Υ = Rν+μ, and we
denote h = ν + ϕc − c. Next, from the Parseval theorem, it follows that

||Mg||L2
per

≤ sup
k∈Z

{
1

α(k) + ν + μ

}
||h||L∞

per
||g||L2

per
.

Thus, we can choose μ such that ||M ||B(L2
per) < 1 and L + μ > 0. Then, I − M

is invertible, and we have g = (I − M)−1Υf and write M = (L + μ)−1 = (I −
M)−1Υ. Υ being a compact operator and (I −M)−1 ∈ B(L2

per) we have that M is
a compact operator. Then, there is an orthonormal basis {ϕk}∞k=0 of L2

per consisting
of eigenfunctions of M with nonzero eigenvalues {μk}∞k=0 satisfying μ1 ≥ μ2 ≥ μ3 ≥
· · · > 0, and μk → 0 as k → ∞. Since Mϕk = μkϕk ∈ D(L + μ) we have that

Lϕk =

(
1

μk
− μ

)
ϕk := λkϕk.

Thus, there is a sequence of eigenvalues of L, {λk}∞k=0, satisfying λ0 ≤ λ1 ≤ λ2 ≤ · · ·,
and λk → ∞ as k → ∞. This argument shows what is desired.

The next step will be centralized in the study of some specific spectral properties
of the operator L. For this, let us define two families of linear operators. They will be
related with L but with the advantage that both of them are compacts. The results
that will be present below are extensions of the results about stability of solitary
waves solutions in Albert [2] and Albert and Bona [3] to the periodic case.

For every θ ≥ 0 define the operator Sθ : �2(Z) → �2(Z) by considering

Sθα(n) =
1

ωθ(n)

∞∑
j=−∞

K(n− j)αj =
1

ωθ(n)
(K ∗ α)n,

where ωθ(n) = α(n) + θ + c, K(n) = ϕ̂p
c(n), n ∈ Z. Since ωθ(n) > 0 for all n ∈ Z, it

follows that the space X defined by

X =

⎧⎨
⎩α ∈ �2(Z); ||α||X,θ :=

( ∞∑
n=−∞

|αn|2ωθ(n)

) 1
2

< ∞

⎫⎬
⎭

is a Hilbert space with norm ||α||X,θ and corresponding inner product 〈α, β〉X,θ =∑∞
n=−∞ αnβnωθ(n).
Proposition 3.2. (a) If α ∈ �2 is an eigensequence of Sθ for a nonzero eigen-

value, then α ∈ X.
(b) The restriction of Sθ to X is a compact, self-adjoint operator on X with

respect to the norm || · ||X,θ.
Proof. In fact, we denote the norm in X simply by ||·||X , and the operator Sθ by S,

and μ := μθ = 1
ωθ

. It will be shown that S2g = S(Sg) ∈ X, since g = 1
γSg = 1

γ2S
2g;
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this will prove the proposition. By the Minkowski, Hölder, and Young inequalities we
obtain

(3.4)

||S2α||X =

∥∥∥∥∥∥
∑
j

K(· − j)μ(·)Sα(j)

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∑
j

∑
m

K(· − j)μ(·)K(j −m)μ(j)α(m)

∥∥∥∥∥∥
X

≤
∑
j

∑
m

[∑
n

K(n− j)2μ(n)

] 1
2

K(j −m)μ(j)|α(m)|

≤ ||K2||�1 ||μ||
1
2

�2 ||μ
3
2 ||

1
4

�1 ||μ
5
4 ||

1
2

�1 ||α||�2 .

Since |μ(x)| ≤ B(1 + |x|)−1 for every x ∈ R and some B > 0, all of the quantities
in the last expression on the right-hand side in (3.4) are finite. The proof of (a) is
complete.

Next, we prove that S
∣∣
X

determines a compact and self-adjoint operator. Let

K̃(n, j) =
K(n− j)

ωθ(n)ωθ(j)
;

then, by the Cauchy–Schwarz inequality we have

∑
n

∑
j

K̃2(n, j)ωθ(n)ωθ(j) =
∑
n

∑
j

K2(n− j)

ωθ(n)ωθ(j)

=
∑
n

(K2 ∗ μ)(n)μ(n) ≤ ||K2 ∗ μ||�2 ||μ||�2 ≤ ||K2||�1 ||μ||2�2 < ∞.

That is, Sθα(n) =
∑∞

j=−∞ K̃(n, j)αnωθ(j) is a Hilbert–Schmidt operator, and thus

S
∣∣
X

is compact. To prove that Sθ is self-adjoint it is necessary to observe that ωθ

and ϕ̂c being even, the real kernel K is symmetric.
The next two results are immediate consequences of Proposition 3.2 and the

spectral theorem for compact, self-adjoint operators on a Hilbert space.
Corollary 3.1. Suppose θ ≥ 0. Then, 1 is an eigenvalue of Sθ (as an operator

of X) if and only if −θ is an eigenvalue of L (as an operator of L2
2L). Furthermore,

both eigenvalues have the same multiplicity.
Corollary 3.2. For every θ ≥ 0, Sθ has a family of eigensequences {ψi,θ}∞i=0

forming an orthonormal basis of X with respect to the norm || · ||X,θ. The eigense-
quences correspond to real eigenvalues {λi(θ)}∞i=0 whose only possible accumulation
point is zero.

In this way, the eigenvalues can be enumerated in order of decreasing absolute
value, that is, |λ0(θ)| ≥ |λ1(θ)| ≥ |λ2(θ)| ≥ · · ·.

4. Positivity properties for periodic travelling-wave solutions. In this
section we give sufficient conditions to obtain properties (P1) and (P2) in (1.10).

Definition 4.1. We say that a sequence α = (αn)n∈Z ⊆ R is in the class PF (2)
discrete if

(i) αn > 0 for all n ∈ Z,
(ii) αn1−m1αn2−m2 − αn1−m2αn2−m1 > 0 for n1 < n2 and m1 < m2.
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The definition above is a particular case of the continuous ones which appear in
[2] and [32]; namely, we say that a function g : R → R is in the class PF (2) if

(i) g(x) > 0 for all x ∈ R,
(ii) g(x1 − y1)g(x2 − y2) − g(x1 − y2)g(x2 − y1) > 0 for x1 < x2 and y1 < y2.

As an example, consider g(x) = sech2(x).
The next result gives us a sufficient condition for a function g belonging to the

PF (2) continuous class. This result is very useful for our purpose (see [3]).
Lemma 4.1. Suppose g is a positive, twice-differentiable function on R satisfying

d2

dx2 (log g(x)) < 0 for x �= 0.

Then g ∈ PF (2).
The main result of this paper is now presented.
Theorem 4.1. Suppose that ϕc is a positive even solution of (1.6) such that

ϕ̂c > 0 and K = ϕ̂p
c ∈ PF (2) discrete. Then (P1) and (P2) in (1.10) hold for the

operator L in (1.7).
Proof. First, we noticed that, Sθ being a compact operator on X, we get a set of

eigenvalues {λi(θ)}∞i=0 and the corresponding set of eigenfunctions {ψi,θ}∞i=0, which
form an orthonormal basis for X. Moreover, we have |λ0(θ)| ≥ |λ1(θ)| ≥ |λ2(θ)| ≥ · · ·.
It will show that the eigenvalues λ0(θ) and λ1(θ) are positive, distinct, and simple. In
fact, since Sθ

∣∣
X

is a compact, self-adjoint operator it follows that

λ0(θ) = ± sup
||α||X=1

|〈Sθα, α〉X |.(4.1)

Let ψ(θ) := ψ be an eigensequence of Sθ corresponding to λ0(θ) := λ0. We will
show that ψ is one-signed; that is, either ψ(n) ≤ 0 or ψ(n) ≥ 0. By contradiction,
suppose ψ takes both negative and positive values. Since by hypotheses the kernel K
is positive we have

Sθ|ψ|(n) =
1

ωθ(n)

∞∑
j=−∞

K(n− j)ψ+(j) +
1

ωθ(n)

∞∑
j=−∞

K(n− j)ψ−(j)

>

∣∣∣∣∣∣
1

ωθ(n)

∞∑
j=−∞

K(n− j)ψ+(j) − 1

ωθ(n)

∞∑
j=−∞

K(n− j)ψ−(j)

∣∣∣∣∣∣ ,
where ψ+ e ψ− are the positive and negative parts of ψ, respectively. Then,

Sθ|ψ|(n) >

∣∣∣∣∣∣
1

ωθ(n)

∞∑
j=−∞

K(n− j)ψ(j)

∣∣∣∣∣∣ = |Sθψ(n)| = |λ0||ψ(n)|,

where “>” holds because ψ, by supposition, takes both positive and negative values.
From the last inequality we conclude that

〈Sθ(|ψ|), |ψ|〉X,θ =

∞∑
n=−∞

Sθ|ψ|(n)|ψ(n)|ωθ(n)

>

∞∑
n=−∞

|λ0||ψ(n)|2ωθ(n) = |λ0|‖ψ‖2
X,θ.
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Hence, if we assume that ||ψ||X = 1, we obtain 〈Sθ(|ψ|), |ψ|〉X〉|λ0|, which contradicts
(4.1). Then, there is an eigensequence ψ0 which is nonnegative. Since K is a positive
sequence and Sθ(ψ0) = λ0ψ0, we have ψ0(n) > 0 for all n ∈ Z. Now, such a ψ0 cannot
be orthogonal to any nontrivial one-signed eigensequence in X, and so λ0 is a simple
eigenvalue. Notice that the preceding argument also shows that −λ0 cannot be an
eigenvalue of Sθ; therefore it follows that |λ1| < λ0.

Next, we will study the eigenvalue λ1(θ) = λ1. But, first, we need some definitions
and results. We consider the following set of indices:

� = {(n1, n2) ∈ Z × Z; n1 < n2}.

Denoting n = (n1, n2) and m = (m1,m2), we define for n, m ∈ � the following
sequence:

K2(n,m) := K(n1 −m1)K(n2 −m2) −K(n1 −m2)K(n2 −m1).

By hypothesis K ∈ PF (2) discrete it follows that K2 > 0. Next, let �2(�) be defined
as

�2(�) =

⎧⎪⎨
⎪⎩α = (αn)n∈�;

∑∑
�

|αn|2 :=
∑
n1∈N

∑
n1<n2
n2∈Z

|α(n1, n2)|2 < +∞

⎫⎪⎬
⎪⎭ ,

and define the operator S2,θ : �2(�) → �2(�) by

S2,θg(n) =
∑∑

�
G2,θ(n,m)g(m),

where G2,θ(n,m) = K2(n,m)
ωθ(n1)ωθ(n2)

. We also consider the space

W =

⎧⎪⎨
⎪⎩α ∈ �2(�); ||α||W,θ :=

⎛
⎝∑∑

�
|α(n)|2ωθ(n1)ωθ(n2)

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭ .

Then W is a Hilbert space with norm || · ||W,θ given above and with inner product

〈α, β〉W,θ =
∑∑

�
α(n)β(n)ωθ(n1)ωθ(n2).

Remark 4.1. (1) We can show, in an analogous way to Proposition 3.2, that
S2,θ

∣∣
W

is a self-adjoint, compact operator. Therefore, the associated eigenvalues can
be enumerated in order of decreasing absolute value, that is, |μ0(θ)| ≥ |μ1(θ)| ≥
|μ2(θ)| ≥ · · ·.

(2) A similar argument can be used to show that μ0(θ) := μ0 is positive and
simple and |μ1| < μ0.

Definition 4.2. Let α1, α2 ∈ �2(Z); we define the wedge product α1 ∧ α2 in �
by

(α1 ∧ α2)(n1, n2) = α1(n1)α
2(n2) − α1(n2)α

2(n1).

We have the following results from Definition 4.2.
Lemma 4.2. Let A =

{
α1 ∧ α2; for α1, α2 ∈ X, α1 ∧ α2 ∈ �2(�)

}
. Then A is

dense in W .
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Proof. See [31] and [32].
Lemma 4.3. Let α1, α2 ∈ �2(Z). Then S2,θ(α

1 ∧ α2) = Sθα
1 ∧ Sθα

2.
Proof. See [31] and [32].
In what follows, we will represent by SX

θ the restriction of Sθ on the Hilbert space
X. We shall use some spectral results in Kato [33]. In fact, we decompose SX

θ into the
form SX

θ = λ0Pθ + Qθ, where Pθ is the orthogonal projection on M0 = [ψ0], PθQθ =
QθPθ = 0, and spectrum(Qθ) = spectrum(Pθ) \ {λ0}. Moreover, in this case we have
that the spectral radius of Qθ when restricted to the subspace N = KerPθ is exactly
|λ1|. Furthermore, we know that the eigenvalue λ0 = λ0(θ) is differentiable with
respect to θ ≥ 0. The same argument can be applied to μ0. Then, as a consequence
ψ0 and τ0 = eigensequence associated with μ are differentiable eigensequences with
respect to θ.

Lemma 4.4. (a) In the notation given above we have

(SX
θ )m

λm
0

−→ Pθ,

where m → +∞ on the strong topology of B(X,X).
(b) The statement in part (a) is valid if SX

θ is replaced by S2,θ, the eigenvalues
λ0 and λ1 are replaced by μ0 and μ1, and Pθ, M0, and Qθ are replaced by appropriate
operators and subspaces of X.

Proof. The proof is analogous as viewed in [2], [3] in the case of sequences.
Lemma 4.5. (a) μ0(θ) = λ0(θ)λ1(θ). Then, we can conclude that λ1 > 0.
(b) λ1 is simple.
Proof. (a) In fact, from Lemma 4.3 we have that λ0λ1 is an eigenvalue of S2,θ

whose eigensequence is ψ0 ∧ ψ1, where ψ1(θ) := ψ1 is the eigensequence associated
with λ1. Hence μ0 ≥ λ0|λ1|. Then, since −μ0 cannot be an eigenvalue of S2,θ, we will
show that μ0 ≤ λ0|λ1|. If |λ1| < μ0

λ0
, let Pθ be as in Lemma 4.4 and write W = M0⊕N .

Let α1 = r1ψ0 + ωγ1 and α2 = r2ψ0 + ωγ2, where r1, r2 ∈ R and γ1, γ2 ∈ N . For
instance, from the induction principle we have

(4.2)(
S2,θ

μ0

)m (
α1 ∧ α2

)
(n1, n2) = r1

[
ψ0(n1)

(
Sθ

β

)m

γ2(n2) − ψ0(n2)

(
Sθ

β

)m

γ2(n1)

]

+ r2

[
ψ0(n2)

(
Sθ

β

)m

γ1(n1) − ψ0(n1)

(
Sθ

β

)m

γ1(n2)

]

+

(
Sθ

λ0

)m

γ1(n1)

(
Sθ

β

)m

γ2(n2)

−
(
Sθ

λ0

)m

γ1(n2)

(
Sθ

β

)m

γ2(n1),

where β = μ0

λ0
> |λ1|. Since (

SX
θ

λ0
)m → Pθ with Pθ ≡ 0 on N and β is strictly greater

than the spectral radius of the restriction of SX
θ to N , each term on the right-hand

side of the preceding equality tends to zero as m → ∞. But the set A defined in
Lemma 4.2 is dense in W . Then, we can conclude from (4.2), after a computation,

that (
S2,θ

μ0
)mg → 0 strongly. But this contradicts Lemma 4.4. The proof of item (a)

is completed.
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(b) The next step is to show that λ1 is simple. We write ψ1 = ψP
1 + ψI

1 , where
ψP

1 and ψI
1 denote, respectively, the even and odd parts of ψ1. We begin by showing

that ψP
1 ≡ 0. Since the kernel K of Sθ is symmetric and ωθ is even, we have Sθ map

even sequences into even sequences and odd sequences into odd sequences. Then, we
get that ψ0 ∧ ψP

1 satisfies S2,θ(ψ0 ∧ ψP
1 ) = λ0λ1(ψ0 ∧ ψP

1 ). Since μ0 > 0 and simple
we obtain ψ0 ∧ ψP

1 ∈ [τ0]. Therefore, either ψ0 ∧ ψP
1 ≡ 0 or ψ0 ∧ ψP

1 �= 0; that is,
ψ0 ∧ψP

1 is one-signed. With this fact, if ψP
1 does not vanish, then it will have at most

one zero. Then, ψP
1 being an even sequence, either ψP

1 ≡ 0 or else ψP
1 is one-signed,

except possibly in n = 0. If the second case holds, we have to consider three cases:
ψP

1 (0) = 0, ψP
1 (0) > 0, and ψP

1 (0) < 0. If ψP
1 (0) = 0, then we should have, from the

definition of wedge product above, that 0 < (ψ0 ∧ ψP
1 )(0, n) = ψ0(0)ψP

1 (n) for n > 0
(where we are assuming that ψ0 > 0 and ψ0 ∧ ψP

1 > 0). Then, ψP
1 (n) > 0 for all

n ∈ Z because ψP
1 (n) is an even sequence. Next, if ψP

1 (0) > 0, then for n > 0 we get
0 < (ψ0∧ψP

1 )(0, n) = ψ0(0)ψP
1 (n)−ψ0(n)ψP

1 (0) < ψ0(0)ψP
1 (n) and therefore ψP

1 > 0.
The last case is similar to the second one. These considerations make ψP

1 a one-signed
eigensequence of Sθ (except possibly in n �= 0), and so the inner product 〈ψP

1 , ψ0〉X,θ

is also one-signed. But this a contradiction because we have two eigensequences of
a self-adjoint operator associated with distinct eigenvalues whose inner product is
nonzero. Therefore, ψP

1 ≡ 0, and so ψ1 is odd. A similar argument shows that ψ1 can
have at most one zero. Of course, this one must be in n = 0.

The sequence ψ1 shown previously was an arbitrary sequence, and this is asso-
ciated with eigenvalue λ1. Then, we show that any eigensequence ψ associated with
λ1 must be odd and ψ(n) = 0 ⇔ n = 0. But, two eigensequences of this kind cannot
be orthogonal since the product of them is even, and thus λ1 is simple. This fact
completes the proof of the lemma.

We turn back to the proof of Theorem 4.1. Let us consider ||ψi(θ)||X,θ = 1 for i =
0, 1. From Lemma 4.5, μ0(θ) = λ0(θ)λ1(θ) with μ0 and λ0 differentiable with respect
to θ, and we have that λ1 is also differentiable with respect to this parameter. Hence,
the associated eigensequence ψ1 is also differentiable since Sθψ1(θ) = λ1(θ)ψ1(θ).
Next, we will show that

d

dθ
λi(θ) < 0, i = 0, 1, θ ≥ 0.(4.3)

In fact, writing ψi(θ), i = 0, 1, instead of ψi,θ(n), we have

d

dθ
λi(θ) =

d

dθ

∞∑
n=−∞

Sθψi(θ)ψi(θ)ωθ(n).

Thus,

d

dθ
λi(θ) = 2

∞∑
n=−∞

d

dθ
ψi(θ)Sθψi(θ)ωθ(n) = 2λi(θ)

∞∑
n=−∞

(
d

dθ
ψi(θ)

)
ψi(θ)ωθ(n)

= 2λi(θ)

{
d

dθ

1

2

( ∞∑
n=−∞

ψi(θ)
2ωθ(n)

)
− 1

2

∞∑
n=−∞

ψi(θ)
2

}

= −λi(θ)

∞∑
n=−∞

ψi(θ)
2 < 0,
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which shows the affirmation. Next, for θ ≥ 0,

λ0(θ) = r(SX
θ ) = ||SX

θ ||B(X,X) ≤
( ∞∑

n=−∞

∞∑
m=−∞

{
K(n−m)

ωθ(n)

}2
) 1

2

=

∥∥∥∥K2 ∗ 1

ω2
θ

∥∥∥∥
1
2

�1(Z)

≤ ‖K‖�2(Z)

∥∥∥∥ 1

ωθ

∥∥∥∥
�2(Z)

.

Since 1
ωθ

→ 0 as θ → +∞ and ( 1
ωθ

)2 ∈ �1 with | 1
ωθ

|2 ≤ ( B
1+|n| )

2, for some B > 0,

‖ 1
ωθ

‖�2 → 0 as θ → +∞. Therefore,

lim
θ→+∞

λ0(θ) = 0.(4.4)

The next step is to show that

λ1(0) = 1.(4.5)

In fact, since d
dxϕc is an eigenfunction of L with eigenvalue θ = 0, we can conclude

from Corollary 3.1 that d̂
dxϕc is an eigensequence of Sθ with eigenvalue 1. On the

other hand, d̂
dxϕc(n) = −in π

L ϕ̂c(n) is odd and vanishes only at n = 0. Since ψ1 is also

odd and vanishes at n = 0 we must have 〈ψ1,
d̂
dxϕc〉X,θ �= 0. It follows that ψ1 and

d̂
dxϕc cannot be eigensequences of Sθ for distinct eigenvalues. Then, ψ1 and d̂

dxϕc are
associated with the same eigenvalue, and therefore λ1(0) = 1. With this fact, since
λ0(0) > λ1(0) = 1, from (4.3) and (4.4) it follows that there is a unique θ0 ∈ (0,+∞)
such that λ0(θ0) = 1. Then, from Corollary 3.1, if we consider κ = −θ0 < 0, then L
has a negative eigenvalue which is simple. Now, for i ≥ 2 and θ > 0 we have from
(4.5) that

λi(θ) ≤ λ1(θ) < λ1(0) = 1.

It is straightforward to see that 1 cannot be an eigenvalue of Sθ for all θ ∈ (0,+∞) \
{θ0}, since 1 is an eigenvalue only for θ = 0 and θ = θ0. Then we obtain (P1).

Because λ1(0) = 1 and λ1 is a simple eigenvalue it follows that θ = 0 is a simple
eigenvalue of L by the Corollary 3.1. This fact shows (P2) and as a consequence the
theorem.

Remark 4.2. The Fourier transform in Theorem 4.1 needs to be evaluated in the
minimal period of ϕc (see section 6).

5. Stability of periodic travelling-wave solutions. In this section we are
interested in applying the theory in section 4 to obtain the stability of specific periodic
travelling waves associated with the KdV, mKdV, and BO equations. Our approach
to obtain condition (P0) in (1.10) will be based on the Poisson summation theorem
and the implicit function theorem. This new approach, in the periodic context, will
give a simple way to calculate condition (P3) in (1.10). We start with the definition
of stability.

Definition 5.1. Let ϕ be a periodic travelling-wave solution with period 2L
of (1.6), and consider τrϕ(x) = ϕ(x + r), x ∈ R, and r ∈ R. We define the set

Ωϕ ⊂ H
m2
2

2L , the orbit generated by ϕ, as

Ωϕ = {g; g = τrϕ for some r ∈ R}.
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And, for any η > 0, define the set Uη ⊂ H
m2
2

2L by

Uη =

{
f ; inf

g∈Ωϕ

||f − g||
H

m2
2

2L

< η

}
.

With this terminology, we say that ϕ is (orbitally) stable in H
m2
2

2L by the flow
generated by (1.3) if the following hold:

(i) There is s0 such that Hs0
2L ⊆ H

m2
2

2L and the initial value problem associated
with (1.3) is globally well-posed in Hs0

2L (see Theorems 2.2 and 2.3).
(ii) For every ε > 0, there is δ > 0 such that, for all u0 ∈ Uδ ∩Hs0

2L, the solution
u of (1.3) with u(0, x) = u0(x) satisfies u(t) ∈ Uε for all t > 0.

The proof of the following general stability theorem can be shown by using the
techniques in Grillakis, Shatah, and Strauss [27] (see also Angulo [6]).

Theorem 5.1. Let ϕc be a periodic travelling-wave solution of (1.6), and suppose
that part (i) of the definition of stability holds. Suppose also that the operator L defined
previously in (1.7) has properties (P1) and (P2) in (1.10). Choose χ ∈ L2

2L such that
Lχ = ϕc, and define I = (χ, ϕc)L2

2L
. If I < 0, then ϕc is stable.

Remark 5.1. In our cases the function χ in Theorem 5.1 satisfies that χ = − d
dcϕc.

Then, we need to verify properties (P0) and (P3) in (1.10).

5.1. Stability of periodic travelling-wave solutions for the BO equation.
This section is concerned with the stability theory of periodic travelling-wave solutions
to the BO equation found initially by Benjamin in [13]. Next, we will present an
interesting method for obtaining an explicit solution to the BO equation in (3.1), by
using the Poisson summation theorem. In fact, consider the following equation:

Hφ′
ω + ωφω − 1

2
φ2
ω = 0.

This equation determines solitary travelling-wave solutions to the BO equation on R

in the form

φω(x) =
4ω

1 + ω2x2
, ω > 0.

Its Fourier transform is given by

φ̂ω

R

(x) = 4πe
−2π
ω |x|.

Then, by the Poisson summation theorem, we obtain that

ψω(x) ≡
+∞∑

n=−∞
φω(x + 2Ln) =

2π

L

+∞∑
n=−∞

e
−π|n|
ωL e

πinx
L

=
2π

L

+∞∑
n=0

εne
−πn
ωL cos

(nπx
L

)
=

2π

L
Re

[
coth

(
π

2ωL
+

iπx

2L

)]

=
2π

L

(
senh

(
π
ωL

)
cosh

(
π
ωL

)
− cos

(
πx
L

)
)
,

(5.1)

where

εn =

{
1 if n = 0,

2 if n = 1, 2, 3, . . . .
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Let ϕc, c > 0, be a smooth periodic solution of the first equation in (3.1). Thus,
ϕc can be expressed as a Fourier series

ϕc(x) =

+∞∑
n=−∞

ane
inπx

L .(5.2)

Substituting the expression above into the BO equation in (3.1), we get

[
π|n|
L

+ c

]
an =

1

2

+∞∑
m=−∞

an−mam.

Next, from (5.1) we consider an ≡ 2π
L e−γ|n|, n ∈ Z, γ ∈ R. Substituting an into

the last identity we have

+∞∑
m=−∞

an−mam =
4π2

L2
e−γ|n|

[
|n| + 1 + 2

+∞∑
k=1

e−2γk

]
=

4π2

L2
e−γ|n|(|n| + cothγ).

Then, we conclude that

c +
π|n|
L

=
2π

L
· 1

2
(|n| + cothγ).(5.3)

We denote γ = π
ωL and consider c > π

L . Then, if we choose ω = ω(c) > 0 such
that tanh(γ) = π

cL , we obtain from (5.3) that ψω(c) = ϕc (hence, ϕc is given by
(5.1)). Therefore, we obtain that ϕc has the form in (1.13) with γ > 0 satisfying
tanh(γ) = π

cL .

Thus, from (5.1) we have that ϕc > 0, and γ := γ(c) = tanh−1
(

π
cL

)
being a

differentiable function for c > π
L , it follows that

c ∈
(π
L
,+∞

)

→ ϕc ∈ Hn

2L

is a smooth curve of periodic travelling-wave solutions for the BO equation for all
n ∈ N. Then, by defining χ in Theorem 5.1 as χ = − d

dcϕc, we obtain from the first
equation in (3.1) that Lχ = ϕc. Then I = (χ, ϕc)L2

2L
becomes

I = −1

2

d

dc
||ϕc||2L2

2L
.(5.4)

We will show that I < 0. Indeed, from (5.2) and (5.1) we get

ϕc(x) =
2π

L

+∞∑
n=−∞

e−γ|n|e
πinx

L ;(5.5)

then, from the Parseval theorem we conclude that

(5.6)

I = −1

2

d

dc
||ϕc||2L2

2L
= −1

2

d

dc
||ϕ̂c||2�2 · 2L = −1

2

d

dc

(
4π2

L2

∞∑
n=−∞

e−2γ|n|

)
· 2L

= − 4π3

c2L3

(
1

1 −
(

π
cL

)2
)( ∞∑

n=−∞
|n|e−2γ|n|

)
· 2L < 0.
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Finally, we will verify that conditions (P1) and (P2) are true for the operator

LBO = H∂x + c− ϕc.

Let ϕ̂c(n) = 2π
L e−γ|n| be the Fourier coefficients of ϕc. In Albert [2] it has already

been seen that the function f(x) = e−γ|x| belongs to the PF (2) class in the continuous
case, and so ϕ̂c is in the PF (2) class in the sense of Definition 4.1. Hence, we obtain

from Theorem 2.3 the stability of the periodic solutions (1.13) in H
1
2

2L by the periodic
flow of the BO equation.

5.1.1. Stability of the constant solutions. To complete the investigation
about periodic travelling-wave solutions for the BO equation, we will study the sta-
bility of the constant solutions. Hence, if ϕc(x) ≡ τ is a constant solution to the BO
equation, we have ϕc ≡ 2c and ϕc ≡ 0 as solutions. We consider only the first case.
The next result will resume our purpose.

Proposition 5.1. Let L > 0 and c > 0 be given. Consider ψ0 ≡ 2c to be a

nontrivial constant solution of (3.1). Then, ψ0 is stable in H
1
2

2L([−L,L]), provided
c < π

L .
Proof. The proof of this proposition follows from standard ideas (see [10], [15])

and from the following nonlocal Poincaré–Wirtinger-type inequality: for f ∈ H
1
2

2L such

that
∫ L

−L
f(x)dx = 0, we have

∫ L

−L
[D

1
2 f(x)]2dx ≥ π

L

∫ L

−L
f2(x)dx, where D = H∂x

(see the appendix for a proof of this inequality).

5.2. Stability of periodic travelling-wave solutions for the mKdV equa-
tion. Next, we will establish the existence of a smooth curve of periodic travelling-
wave solutions for the mKdV equation

ut + 3u2ux + uxxx = 0,(5.7)

of the form u(x, t) = ϕ(x− ct) := ϕc(ξ), where ξ = x− ct, c ∈ R, and is of period L.
The equation which determines the periodic travelling-wave solutions is

ϕc
′′ + ϕ3

c − cϕc = 0.(5.8)

Next, we obtain an explicit solution for (5.8) using the Poisson summation theorem.
It considers for ω > 0 the solitary wave solutions for the mKdV equation on R:

φω(x) =
√

2ω sech(
√
ωx), x ∈ R.

Its Fourier transform is φ̂ω(x) =
√

2πsech( πx
2
√
ω
), where ω > 0, and it will be chosen

later. From the Poisson summation theorem we obtain the following periodic function
of period L:

ψω(ξ) =

√
2π

L

∞∑
n=0

εnsech

(
πn

2
√
ωL

)
cos

(
2πnξ

L

)
,(5.9)

where

εn =

{
1, n = 0,

2, n = 1, 2, 3 . . . .
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On the other hand, it considers the Fourier expansion of the Jacobi elliptic function
dnoidal, dn, of period L (see [19], [35], [42]),

2K

L
dn

(
2Kξ

L
; k

)
=

π

L
+

4π

L

+∞∑
n=1

qn

1 + q2n
cos

(
2nπξ

L

)
,

where K = K(k) is the complete elliptic integral of the first kind and q = e(−πK′
K ),

which is called the “nome.” Here, K ′(k) = K(
√

1 − k2). We can conclude that

qn

1 + q2n
=

1

2
sech

(
nπK ′

K

)
.

Therefore,

2K

L
dn

(
2Kξ

L
; k

)
=

π

L
+

2π

L

+∞∑
n=1

sech

(
nπK ′

K

)
cos

(
2nπξ

L

)
.

Because of the shape of the series that determines ψω given above (see [35]), let
ϕc(ξ) = ηdn( ηξ√

2
; k) be a periodic solution of period L for (5.8), with η > 0 and

k ∈ (0, 1) fixed. Then, the following identities should be satisfied:

c =
η2

2
(1 + k′2) and η =

2
√

2K(k)

L
(5.10)

with k′2 = 1−k2. Thus, for k ∈ (0, 1) we should have that η ∈ (
√
c,
√

2c) and from the

asymptotic properties of K that c > 2π2

L2 . Next, for k ∈ (0, 1) fixed, η is immediately
defined from (5.10), and so

c =
4K2(k)

L2
(2 − k2) >

2π2

L2
(5.11)

since k → K2(k)(2 − k2) is a strictly increasing function. Therefore, with k ∈ (0, 1)
and c defined in (5.11) we define ω = ω(c) as

ω =
c

16(2 − k2)K ′2(k)
.

Therefore, from (5.9) it follows that ψω(c) = ϕc is a solution of (5.8).
Next, it is necessary to build a smooth curve, c → ϕc, of dnoidal wave solutions.

Initially, we obtain the following a priori estimate for the fundamental period of ϕc.
Namely,

Tϕc
(η) =

2K(k(η))√
c

√
2 − k2 >

√
2π√
c
,(5.12)

where k2(η) = 2 − 2c
η2 . In fact, for η →

√
c it follows that k → 0+ and thus Tϕc(η) →

π
√

2√
c

. For η →
√

2c we have k → 1− and therefore Tϕc
(η) → +∞. But, η 
→ Tϕc

(η)

being a strictly increasing function (see Theorem 2.1 in Angulo [9]) we get (5.12).
Remark 5.2. The function ϕc obtained previously, that is,

ϕc(ξ) = ηdn

(
η√
2
ξ; k

)
,(5.13)
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is a positive function and has been built by the periodization of the solitary wave
solution associated with (5.7). Thus, it is natural to ask if we can again obtain
this solitary wave. Indeed, this fact can be determined by (5.13), since for η →√

2c we have k → 1− and then dn(u; 1−) = sech(u). Hence we have formally that
ϕc(ξ) =

√
2c sech(

√
cξ). The other limit case, that is, η →

√
c, we have k → 0+

and so dn(u; 0+) = 1; then we get ϕc(ξ) =
√
c, the nontrivial constant solutions for

the mKdV.

Now, we construct a family of dnoidal waves solutions with period L. Let c > 0

such that
√
c > π

√
2

L . Since η ∈ (
√
c,
√

2c) 
→ Tϕc
(η) is a strictly increasing mapping,

it follows from (5.12) and from Theorem 2.1 in Angulo [9] that there is a unique
η ≡ η(c) ∈ (

√
c,
√

2c) such that the fundamental period of the dnoidal wave ϕc will
be Tϕc(η(c)) = L. Moreover, we have c ∈

(
2π2/L2,+∞

)
→ ϕc ∈ Hn

per([0, L]) is a

smooth curve, c ∈
(
2π2/L2,+∞

)
→ η = η(c) is a strictly increasing function, and its

derivative with respect to the velocity c is given by

dη

dc
=

η

2c
+

k2k′2η3(2 − k2)K√
c3((2 − k2)E − 2(1 − k2)K)

.

The next result gives us a relation between the velocity of the solitary and periodic
waves associated with the mKdV, and it will be useful later.

Theorem 5.2. We consider the mapping ω :
(
2π2/L2,+∞

)

→ R, given by

ω(c) = c/(16(2 − k2)K ′2(k));(5.14)

then dω
dc > 0.

Proof. Indeed, dω
dc = [4(2−k2)K ′2+8K ′cdkdc (kK ′−(2−k2)dK

′

dk )]/[16(2 − k2)2K ′4].

Since dK′

dk = −(E
′−k2K′

kk′2 ) < 0, it suffices to show that dk
dc > 0. So, since

dk

dc
=

2

η3

(
2c

dη

dc
− η

)
,

we need to verify the sign of the expression 2cdηdc − η. Next, we calculate the exact

value of dη
dc . In fact,

dη

dc
=

η

2c
+

k2k′2η3(2 − k2)K√
c3((2 − k2)E − 2(1 − k2)K)︸ ︷︷ ︸

A

.

Thus, 2cdηdc − η = 2cA and therefore dk
dc > 0. This fact completes the proof of the

theorem.

Next, we will show that ϕ̂c > 0 and K = ϕ̂2
c belongs to PF (2) discrete. It is

easy to see that ϕ̂c > 0 because of the form of the Fourier coefficients of ϕc given
by (5.9). Moreover, ϕ̂c ∈ PF (2) discrete because the function f(x) = μsech(νx)
belongs to PF (2) continuous (see [2]). So, since the convolution of even sequences
in PF (2) discrete is a sequence in PF (2) discrete (see [32]) we can conclude that

K = ϕ̂2
c ∈ PF (2) discrete. Now, by choosing χ = − d

dcϕc we have that Lχ = ϕc.

Then, by the Parseval theorem, I = − 1
2

d
dc‖ϕc‖2

L2
per

= −L
2

d
dc‖ϕ̂c‖2

�2 . Since ‖ϕ̂c‖2
�2 =
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2 π2

L2

∑+∞
n=−∞ sech2( πn√

ω(c)L
), we have that

d

dc
‖ϕ̂c‖2

�2 =
C1(L)√
ω(c)3

dω

dc

+∞∑
n=−∞

sech2

(
πn√
ω(c)L

)
ntgh

(
πn√
ω(c)L

)
.

Since (n tgh( πn√
ω(c)L

))n∈Z is a positive sequence we have from Theorem 5.2 that

d
dc‖ϕ̂c‖2

�2 > 0. Thus, we obtain that the dnoidal wave ϕc in (5.14) is stable in
H1

per([0, L]) by the flow of the mKdV.

5.3. Stability of periodic travelling-wave solutions for the KdV equa-
tion. Now, we apply the results obtained previously to the proof of the stability of
periodic travelling-wave solutions of cnoidal type associated with the KdV equation
and satisfying

ϕ′′
c +

1

2
ϕ2
c − cϕc = 0.(5.15)

We consider the solitary wave solutions φω(x) = 3ωsech2(
√
ωx
2 ), whose Fourier

transform is given by φ̂ω(x) = 12πx

senh
(

πx√
ω

) ; then from the Poisson summation theorem

we consider

ψω(ξ) =
12
√
ω

L
+

12π

L2

∑
n 
=0

ncsch

(
πn√
ωL

)
e

2πinξ
L .(5.16)

Since ω is arbitrary, consider ω := ω(k) such that
√

ω(k) = K(k)
K(k′)L , k ∈ (0, 1),

k′2 = 1 − k2. Then, we obtain

ψω(k)(ξ) =
12
√
ω

L
+

24π

L2

+∞∑
n=1

ncsch

(
πnK ′

K

)
cos

(
2πnξ

L

)
.(5.17)

Now, we invoke the Fourier expansion of dn2 (see [19], [42]), that is,

K2

(
dn2

(
2Kξ

L
; k

)
− E

K

)
= 2π

+∞∑
n=1

nqn

1 − q2n
cos

(
2πnξ

L

)
,

where q = e−(πK′
K ). We can conclude that

qn

1 − q2n
=

1

2
csch

(
nπK ′

K

)
.

Then, we get from (5.17)

ψω(k)(ξ) =
12
√

ω(k)

L
+

24K2

L2

(
dn2

(
2Kξ

L
; k

)
− E

K

)
(5.18)

for k ∈ (0, 1).
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Next, because of the equality (5.18), we consider ϕc(ξ) = a+b
(
dn2(dx; k) − E

K

)
a

periodic travelling-wave solution for (5.15) of period L. Then, the following nonlinear
system is obtained:⎧⎪⎪⎨

⎪⎪⎩
b2

2
− 6d2b = 0, 4bd2(1 + k′2) + ab− b2

E

K
− cb = 0,

a2

2
− abE

K
+

b2

2

(
E

K

)2

− ac− cb
E

K
− 2bd2k′2 = 0.

(5.19)

Since ϕc is periodic of period L it follows that d = 2K(k)
L . Then, from the first equation

of the system above we have that b = 48K2

L2 . Substituting those values at the second
equation we get

c =
16K

L2

[
(1 + k′2)K − 3E

]
+ a.(5.20)

From the third equation in (5.19) and the value of c in (5.20) we have the quadratic
equation in terms of a,

(5.21)

a2 +
32K

L2

[
(1 + k′2)K − 3E

]
a− (1 + k′2)1536K3E

L4
+

768K4k′2

L4
+

2304K2E2

L4
= 0,

whose positive solution is

a = −16K

L2

[
(1 + k′2)K − 3E

]
+

16K2

L2

√
1 − k2 + k4.

Thus, the value of c is c = 16K2

L2

√
1 − k2 + k4. Hence, for k ∈ (0, 1) we have that

c ∈ ( 4π2

L2 ,+∞). Therefore, writing ϕc in a convenient form, in terms of cn2, we obtain

ϕc(ξ) =
16K2

L2

[√
1 − k2 + k4 + 1 − 2k2

]
+

48K2k2

L2
cn2

(
2K

L
ξ; k

)
.

We can see that this formula is the same that was obtained by Angulo in [7] and it
can be rewritten as

ϕc(ξ) = β2 + (β3 − β2)cn
2

(√
β3 − β1

12
ξ; k

)
,(5.22)

where

β2 =
16K2

L2

[√
1 − k2 + k4 + 1 − 2k2

]
, β3 =

16K2

L2

[√
1 − k2 + k4 + 1 + k2

]
,

and β1 is such that

β3 − β1 =
48K2

L2
.

By making a similar analysis such as in the case of the mKdV equation, we
can obtain a smooth curve of positive cnoidal waves with the form in (5.22), c ∈
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Fig. 1. Graphic of the function a(k) with period L = 1.

( 4π2

L2 ,+∞) 
→ ϕc ∈ Hn
per([0, L]), such that k := k(c) is a strictly increasing smooth

function (see [7]) for all n ∈ N. Moreover, we can determine that for k ∈ (0, 1)

there is a unique c ∈ ( 4π2

L2 ,+∞) such that k(c) = k. Therefore, the function ω(k)
defined above can be expressed as a function of c, ω = ω(k(c)), and it is a strictly

increasing function (it will be seen later). Then, since K(k)
K(k′) ∈ (0,+∞) it follows

that for c ∈ ( 4π2

L2 ,+∞) we obtain ω(k(c)) ∈ (0,+∞). Therefore, the mapping c ∈
( 4π2

L2 ,+∞) 
→ ψω(k(c)) ∈ Hn
per([0, L]) is a smooth curve for all n ∈ N. Next, we note

that 2ψω(k(c))(ξ) − ϕc(ξ) =
24
√

ω(k(c))

L − a(k(c)), where for k = k(c)

a(k) =
16K2

L2

[√
1 − k2 + k4 + 2 − k2 + 3

E

K

]
.

Thus, for s(k(c)) ≡ a(k(c)) − 24
√

ω(k(c))

L , we can write ϕc(ξ) ≡ s(k(c)) + ψω(k(c))(ξ).
Therefore, we obtain immediately that the Fourier coefficients of ϕc are

ϕ̂c(n) =

⎧⎪⎪⎨
⎪⎪⎩

a(k), n = 0,

12π

L2
ncsch

(
πn√
ω(k)L

)
, n �= 0.

Remark 5.3. After some calculations, we can obtain that s(k) is a positive func-
tion defined in (0, 1). Making use of Maple, we can also determine that s(k) does not
have any root on the extremes of the interval (0, 1). We can also determine that the
function a(k) is a positive strictly increasing function (see Figure 1).

Since s(k) > 0 and the function f : R → R defined by f(x) = 12π
L2 xcsch( πx√

ωL
),

belongs to PF (2) in the continuous case, we can use Lemma 4.1 for obtaining that
ϕ̂c belongs to the PF (2) discrete case. Indeed, since

a(k) >
24
√
ω(k)

L
>

12
√

ω(k)

L
= f(0) > f(x), x �= 0,

we can redefine f by a smooth function h : R → R such that h(0) = a(k), h(x) ≡ f(x)
on (−∞,−1]∪ [1,+∞) and on the interval (−1, 1) we “complete” f in a differentiable
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way, such that h belongs to PF (2) continuous. Therefore, the sequence to be obtained
(if we look only at the set of integers numbers) will be h(n) = ϕ̂c(n).

Next, let χ = − d
dcϕc such that Lχ = ϕc. Then by the Parseval theorem, it follows

that I = −L
2

d
dc

(
‖ϕ̂c‖2

�2

)
. Hence,

d

dc
‖ϕ̂c‖2

L2
per

= C1a(k)
da

dk

dk

dc

+
C2√
ω(k)3

dω

dk

dk

dc

+∞∑
n=−∞
n�=0

n3csch2

(
πn

L
√
ω(k)

)
coth

(
πn

L
√
ω(k)

)
︸ ︷︷ ︸

bn

,

where C1 := C1(L), C2 := C2(L) > 0. Next, we need to show only that the quantities
da
dk and dω

dk are positive because k := k(c) is a strictly increasing function and (bn)n∈Z

is obviously a positive sequence. Hence, we have

dω

dk
= 2

K
(

dK
dk K

′ −K dK′

dk

)
K ′3 .

Since dK
dk > 0 and dK′

dk < 0 we get that dω
dk > 0. By making use of a similar argument,

we can also show that da
dk > 0 because we have that

a(k) =
16K(k)2

L2

[√
1 − k2 + k4 + 2 − k2

]
+ 48

E(k)K(k)

L2
.

Therefore, I < 0 and the positive cnoidal waves ϕc are stable in H1
per([0, L]) by the

periodic flow of the KdV equation.

6. Comments. In this section we make some basic remarks about the results
contained in the body of this paper.

6.1. General perturbations. In contrast to the case of solitary waves for which
the natural class of disturbance in the stability problem is that of localized distur-
bances, for periodic waves there are several classes of disturbance for which stability
needs to be addressed. Here we consider periodic perturbations with the same fun-
damental period of the periodic travelling waves. For disturbance, for example, with
a double period, stability results remain open in the context of KdV-type equations.
If we consider the KdV equation, our stability result in H1

per([0, L]) was based on the

spectral structure of the operator Lcn = − d2

dx2 +c−ϕc, with ϕc defined in (5.22). Now,
if we consider this operator with domain H2

per([0, 2L]), then the number of negative

eigenvalues will be exactly 3 (see [10]). Moreover, since the function d
dc

∫ L

−L
ϕ2
c(x)dx

is even positive, the abstract setting of Grillakis, Shatah, and Strauss in [27] and [28]
cannot be applied. We note that in the case of the focusing Schrödinger equation

iut + uxx + |u|2u = 0,

Angulo in [9] showed an instability result for dnoidal waves solutions when the class
of periodic disturbance is two times the minimal period of the periodic travelling wave
in question (see also Gallay and Hărăguş [24], [25] for recent new results of stability
for periodic travelling waves of Schrödinger equations).
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6.2. Property PF (2) discrete. We consider the BO equation (but we can do
an analogous analysis with the other two equations); then we have seen throughout
this paper that the spectral properties of the operator L = H∂x+c−ϕc were obtained
from the fact that the Fourier coefficients of the periodic travelling-wave solution given
by (1.13) are in PF (2). The Poisson summation theorem was used to find such a wave
with a minimal period 2L. Moreover, the Fourier coefficients were calculated with
this period. If we double the period, that is, if we consider L with domain D(L) =

H1
4L, the property PF (2) is not satisfied to K̃ = ϕ̂c

(4L)
, where ϕ̂c

(4L)
denotes the

periodic Fourier transform of ϕc but with period 4L. Indeed, we consider the Fourier

expansion in the form ϕc(x) =
∑+∞

n=0 ϕ̂c
(4L)

(n) cos
(
nπx
2L

)
. Since ϕc(0) = ϕc(2L),∑+∞

n=0 ϕ̂c
(4L)

(n)(cos(nπ) − 1) = 0. Thus, −2
∑

n=2k+1
k∈N

ϕ̂c
(4L)

(n) = 0. Therefore,

K̃ = ϕ̂c
(4L)

cannot belong to PF (2). Then, we cannot affirm anything about the
stability of the wave ϕc when this case is considered. So, Theorem 4.1 cannot be
applied here.

In Theorem 4.1, the Fourier transform needs to be evaluated in the minimal period
for the solution ϕc. In fact, let L be this minimal period, and we evaluate the Fourier
transform of ϕc as being of period 2L; then

ϕ̂c(k) =
1

2L

∫ L

−L

ϕc(x)e−
ikπx

L dx =
1

2L

∫ L

−L

ϕc(x + L)e−
ikπx

L dx

=
1

2L

∫ 2L

0

ϕc(y)e
− ikπy

L eiπkdx = (−1)kϕ̂c(k).

Then, for k being odd we have ϕ̂c(k) = 0. Thus, we cannot apply our theory if the
minimal period is not fixed.

6.3. Positivity of the periodic travelling waves. Another fact that deserves
a special mention is about the condition that the solution ϕc in Theorem 4.1 needs
to be a positive solution. Indeed, the classical Fourier theorem (see [30]) told us that
this is necessary. Suppose without loss of generality that ϕc(0) = 0. Then, ϕc being

smooth it follows that ϕp
c(0) =

∑+∞
n=−∞ ϕ̂p

c(n) = 0. In other words some Fourier
coefficient of ϕp

c must be negative.

6.4. Stability and instability of periodic travelling waves for the critical
KdV and NLS. In a forthcoming paper [11] we apply the theory in section 4 to
obtain the stability/instability of a special family of periodic travelling-wave solutions
for the critical KdV equation

ut + 5u4ux + uxxx = 0

and for the critical nonlinear Schrödinger (NLS) equation

iut + uxx + |u|4u = 0.

7. Appendix.

7.1. Jacobi elliptic functions. We establish some basic properties of Jacobian
elliptic integrals (see [18] and [19]). The normal elliptic integral of the first kind is∫ y

0

dt√
(1 − t2)(1 − k2t2)

=

∫ ϕ

0

dθ√
1 − k2 sin2 θ

≡ F (ϕ, k),
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where y = sinϕ, whereas the normal elliptic integral of the second kind is∫ y

0

√
1 − k2t2

1 − t2
dt =

∫ ϕ

0

√
1 − k2 sin2 θdθ ≡ E(ϕ, k).

The number k is called the modulus and belongs to the interval (0, 1). The number
k′ =

√
1 − k2 is called the complementary modulus. The parameter ϕ is called the

argument of the normal elliptic integrals. It is usually understood that 0 ≤ y ≤ 1 or
0 ≤ ϕ ≤ π

2 . For y = 1, the integrals above are said to be complete. In this case, one
writes ∫ 1

0

dt√
(1 − t2)(1 − k2t2)

=

∫ π
2

0

dθ√
1 − k2 sin2 θ

≡ F
(π

2
, k
)
≡ K(k) ≡ K

and ∫ 1

0

√
1 − k2t2

1 − t2
dt =

∫ π
2

0

√
1 − k2 sin2 θdθ ≡ E

(π
2
, k
)
≡ E(k) ≡ E.

Clearly, we have K(0) = E(0) = π
2 , while E(1) = 1 and K(1) = +∞. For

k ∈ (0, 1), dK
dk > 0, d2K

dk2 > 0, dE
dk < 0, d2E

dk2 < 0, and E(k) < K(k). Moreover,
E(k) + K(k) and E(k)K(k) are strictly increasing functions for every k ∈ (0, 1).
Next, we have some derivatives of the complete elliptical integrals K and E used in
this work,

dK

dk
=

E − k′2K

kk′2
,

dE

dk
=

E −K

k
.

The Jacobian elliptic functions are usually defined as follows. It considers the elliptic
integral

u(y1; k) ≡ u =

∫ y1

0

dt√
(1 − t2)(1 − k2t2)

=

∫ ϕ

0

dθ√
1 − k2 sin2 θ

≡ F (ϕ, k),

which is a strictly increasing function of the variable y1. Its inverse function is written
y1 = sinϕ ≡ sn(u; k), or briefly y1 = snu when it is not necessary to emphasize the
modulus k. The other two basic elliptic functions, the cnoidal and dnoidal functions,
are defined in terms of sn by

cn(u; k) =
√

1 − y2
1 =

√
1 − sn2(u; k), dn(u; k) =

√
1 − k2y2

1 =
√

1 − k2sn2(u; k).

Note that these functions are normalized by the requirements sn(0; k) = 0, cn(0; k) =
1, and dn(0; k) = 1. The functions cn(·; k) and dn(·; k) are even functions. These
functions are periodic with sn(u+ 4K(k); k) = sn(u; k), cn(u+ 4K(k)); k) = cn(u; k),
dn(u + 2K(k); k) = dn(u; k). Moreover, we have the relations sn2u + cn2u = 1,
k2sn2u + dn2u = 1, k′2sn2u + cn2u = dn2u, sn(u + 2K; k) = −sn(u; k), cn(u +
4K; k) = −cn(u; k). We also have the following explicit values: sn(0) = 0, cn(0) = 1,
sn(K) = 0, cn(K) = 0 and the asymptotic behaviors sn(u; 0) = sinu, cn(u; 0) = cosu,
sn(u; 1) = tanhu, cn(u; 1) = sechu. Finally, the formulas

∂

∂u
snu = cnudnu,

∂

∂u
cnu = −snudnu,

∂

∂u
dnu = −k2cnusnu

are straightforwardly deduced from the foregoing material.
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7.2. A nonlocal Poincaré–Wirtinger inequality. The following inequality

was used in Proposition 5.1. Suppose f ∈ H
1
2

2L such that
∫ L

−L
f(x)dx = 0; then for

D = H∂x ∫ L

−L

[D
1
2 f ]2dx ≥ π

L

∫ L

−L

f2dx.

Proof. Let f be in P, and consider the Fourier expansion of f given by

f(x) =

+∞∑
n=−∞

ane
inπx

L =

+∞∑
n=−∞

f̂(n)e
inπx

L ,

where f̂(n) = 1
2L

∫ L

−L
f(x)e−

inπx
L dx, with f̂(0) = 0. Then, H∂xf(x) = π

L

∑+∞
n=−∞

an|n|e
inπx

L . From the Parseval theorem we obtain

∫ L

−L

fH∂xfdx = 2L

+∞∑
n=−∞

π

L
|an|2|n| = 2L

∑
n 
=0

π

L
|an|2|n|

and ∫ L

−L

f2dx = 2L
∑
n 
=0

|an|2.

Therefore,

∫ L

−L

fH∂xfdx = 2L
∑
n 
=0

π

L
|an|2|n| ≥

π

L

∫ L

−L

f2dx.

So, using density arguments, we can show that the inequality above occurs for f ∈
H

1
2

2L. This completes the proof of the inequality.
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[29] E. L. Ince, The periodic Lamé functions, Proc. Roy. Soc. Edinburgh, 60 (1940), pp. 47–63.
[30] R. J. Iorio, Jr., and V. M. V. Iorio, Fourier Analysis and Partial Differential Equations,

Cambridge Stud. Adv. Math. 70, Cambridge University Press, Cambridge, UK, 2001.
[31] S. Karlin, The existence of eigenvalues for integral operators, Trans. Amer. Math. Soc., 113

(1964), pp. 1–17.
[32] S. Karlin Total Positivity, Stanford University Press, Stanford, CA, 1968.
[33] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, Berlin, 1976.
[34] D. J. Korteweg and G. de Vries, On the change of form of long wave advancing in a

rectangular canal, and on a nem type of long stationary waves, Philos. Mag., 39 (1895),
pp. 422–443.

[35] W. Magnus and E. Oberhettinger, Formulas and Theorems for the Special Functions of
Mathematical Physics, Springer, New York, 1986.

[36] W. Magnus and S. Winkler, Hill’s Equation, Tracts in Pure and Appl. Math. 20, Wiley, New
York, 1976.

[37] H. P. McKean, Stability for the Korteweg-de Vries equation, Comm. Pure Appl. Math., 30
(1997), pp. 347–353.

[38] H. P. McKean and H. Dym, Fourier Series and Integrals, Academic Press, New York, London,
1972.

[39] L. Molinet, Global well-posedness in L2 for the periodic Benjamin-Ono equation, Amer. J.
Math., 130 (2008), pp. 635–683.



STABILITY OF PERIODIC TRAVELLING-WAVE SOLUTIONS 1151

[40] L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the
circle, Math. Ann., 337 (2007), pp. 353–383.

[41] L. Molinet and F. Ribaud, Well-Posedness in H1 for the (Generalized) Benjamin-Ono Equa-
tion on the Circle, preprint, 2006.

[42] F. Oberhettinger, Fourier Expansions: A Collection of Formulas, Academic Press, New
York, London, 1973.

[43] H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), pp. 1082–
1091.

[44] A. R. Osborne, M. Serio, L. Bergamasco, and L. Cavaleri, Solitons, cnoidal waves and
nonlinear interactions in shallow-water ocean surface waves, Phys. D, 123 (1998), pp. 64–
81.

[45] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Uni-
versity Press, Princeton, NJ, 1970.

[46] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton
University Press, Princeton, NJ, 1970.

[47] J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), pp. 1–48.
[48] M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising

in long wave propagation, Comm. Partial Differential Equations, 12 (1987), pp. 1133–1173.
[49] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equa-

tions, Comm. Pure Appl. Math., 39 (1986), pp. 51–67.



SIAM J. MATH. ANAL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 1152–1200

INHOMOGENEOUS BOUNDARY VALUE PROBLEMS FOR
COMPRESSIBLE NAVIER–STOKES EQUATIONS:

WELL-POSEDNESS AND SENSITIVITY ANALYSIS∗

P. I. PLOTNIKOV† , E. V. RUBAN† , AND J. SOKOLOWSKI‡

Abstract. In this paper compressible, stationary Navier–Stokes equations are considered. A
framework for analysis of such equations is established. In particular, the well-posedness for in-
homogeneous boundary value problems of elliptic-hyperbolic type is shown. Analysis is performed
for small perturbations of the so-called approximate solutions that take form (1.12). The approx-
imate solutions are determined from Stokes problem (1.11). The small perturbations are given by
solutions to (1.13). The uniqueness of solutions for problem (1.13) is proved, and, in addition, the
differentiability of solutions with respect to the coefficients of differential operators is shown. The
results on the well-posedness of nonlinear problems are interesting on their own and are used to
obtain the shape differentiability of the drag functional for incompressible Navier–Stokes equations.
The shape gradient of the drag functional is derived in the classical and useful for computations
form; an appropriate adjoint state is introduced to this end. The material derivatives of solutions
to the Navier–Stokes equations are given by smooth functions; however, the shape differentiability
is shown in a weak norm. The method of analysis proposed in this paper is general and can be used
to establish the well-posedness for distributed and boundary control problems as well as for inverse
problems in the case of the state equations in the form of compressible Navier–Stokes equations. The
differentiability of solutions to the Navier–Stokes equations with respect to the data leads to the first
order necessary conditions for a broad class of optimization problems.
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1. Introduction. Shape optimization for compressible Navier–Stokes equations
is important for applications [27] and is investigated from a numerical point of view;
however, the mathematical analysis of such problems is not available in the existing
literature. One of the reasons is the lack of existence results for inhomogeneous
boundary value problems for such equations.

The results established in this paper lead in particular to the first order optimality
conditions for a class of shape optimization problems for compressible Navier–Stokes
equations.

1.1. Problem formulation. In this paper we prove the well-posedness and
perform the sensitivity analysis for inhomogeneous boundary value problems for the
compressible Navier–Stokes equations. We restrict ourselves to the case of a spe-
cific shape optimization problem for stationary motion of viscous compressible non–
heat-conducting isentropic gas. However, the technique of modelling and analysis
presented here is general and can be used for a broad class of optimization problems
for nonlinear elliptic-hyperbolic equations. The sensitivity analysis is the necessary
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step for numerical methods of solution for optimization problems. In general the
mathematical analysis of optimization problems includes the following steps, with the
mathematical proofs of the required facts:

• existence of solutions,
• uniqueness and optimality conditions,
• numerical method of solution.

The existence of an optimal shape for the drag minimization is shown in [40] under
assumptions that are compared to the assumptions in the present paper. Here we
present the necessary mathematical tools required for the second step of analysis, i.e.,
the derivation of an optimality system. In particular, we prove the shape differen-
tiability of solutions to (1.9) and provide the classical representation of the shape
derivatives of integral shape functionals in terms of an appropriate adjoint state.

We consider in detail all questions on the existence, uniqueness, and shape dif-
ferentiability of solutions to stationary boundary value problems for compressible
Navier–Stokes equations. Such boundary value problems can be regarded as the
mathematical models of viscous gas flow around a body tested in the wind tunnel.
We assume that the viscous gas occupies the double-connected domain Ω = B\S,
where B ⊂ R

3 is a hold-all domain with the smooth boundary Σ = ∂B, and S ⊂ B
is a compact obstacle. Furthermore, we assume that the velocity of the gas coincides
with a given vector field U ∈ C∞(R3)3 on the surface Σ. In this framework, the
boundary of the flow domain Ω is divided into three subsets, inlet Σin, outgoing set
Σout, and characteristic set Σ0, which are defined by the equalities

(1.1) Σin = {x ∈ Σ : U · n < 0}, Σout = {x ∈ Σ : U · n > 0},

Σ0 = {x ∈ ∂Ω : U · n = 0}, where n stands for the unit outward normal to ∂Ω =
Σ∪ ∂S. In turn the compact Γ = Σ0 ∩Σ splits the surface Σ into three disjoint parts
Σ = Σin ∪ Σout ∪ Γ. The problem is to find the velocity field u and the gas density �
satisfying the following equations along with the boundary conditions:

Δu + λ∇ div u = R�u · ∇u +
R

ε2
∇p(�) in Ω,(1.2a)

div(�u) = 0 in Ω,(1.2b)

u = U on Σ, u = 0 on ∂S,(1.2c)

� = �0 on Σin,(1.2d)

where the pressure p = p(�) is a smooth, strictly monotone function of the density, ε
is the Mach number, R is the Reynolds number, λ is the viscosity ratio, and �0 is a
positive constant.

For the derivation of equations (1.2) we refer to [22]. The general theory of
compressible Navier–Stokes equations is covered by the monographs [11], [25], and
[33]. In particular, the main results on the existence of global weak solutions for
stationary problems with the zero velocity boundary conditions were established in
[25] and sharpened in [33]. See also [14], [38], [39] for generalizations.

There are numerous papers dealing with the zero velocity boundary value problem
for steady compressible Navier–Stokes equations in the context of small data. We
recall only that there are three different approaches to this problem proposed in [2],
[35], and [30], [32], respectively. The basic results on the local existence and uniqueness
of strong solutions are assembled in [33]. For an interesting overview see [36].

The inhomogeneous boundary problems were studied in papers [20] and [21],
where the local existence and uniqueness results were obtained in the two-dimensional
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case under the assumption that the velocity u is close to a given constant vector. The
question of the existence of strong solutions to boundary value problems in three
spatial dimensions with nonzero velocity boundary data in smooth domains is still an
open problem. There are difficulties including the problems of the total mass control
and the singularities developed by solutions at the manifold Σin ∩ Σ0 ∪ Σout. In this
paper we prove the local existence and uniqueness of strong solutions to problem
(1.2) in fractional Sobolev spaces, under the assumption that the given vector field
U satisfies the emergent vector field conditions (H1)–(H3) on Γ. It seems that a
condition of this type is necessary for the continuity of mass density �.

Shape optimization problems. Among many shape optimization problems for
Navier–Stokes equations, we could list the drag minimization problem, which is inves-
tigated in this paper and in [37], [38], [39], [40]. It is important to note that the drag
from one side depends on the shape of the obstacle, and from the other side on the
design of its surface structure as well as on the quality of its surface. The problem
of the drag reduction includes the optimal design of the shape of the obstacle and
control of the flow near its surface. The last question was investigated in paper [17],
which also contains an overview of the problem.

Another problem of practical interest concerns the optimal shape of tunnels [27].
In the specific problem the required mass distribution on the outlet of the tunnel is
given. The associated shape optimization problem can be formulated as follows. De-
termine an admissible domain such that the mass distribution at the inlet is given, the
velocity field is prescribed on the boundary of the domain, and the mass distribution
at the outlet is as close as possible to a given function. Inlet and outlet subsets are de-
fined by the vector field U which serves as the inhomogeneous boundary condition for
the law of momentum conservation in the form of a Navier–Stokes stationary system.
The shape optimization problem as it is formulated in [27] enters into our framework,
and the results on shape sensitivity analysis can be applied to solve the problem.
Another class of problems which can be investigated using the tools proposed in the
paper are optimal control problems, e.g., with the boundary controls. These topics
are, however, beyond the scope of the paper, and we present the drag minimization
problem as an example to the general theory.

Drag minimization. One of the main applications of the theory of compressible
viscous flows is the optimal shape design in aerodynamics. The classical sample is
the problem of the minimization of the drag of airfoil travelling in atmosphere with
uniform speed U∞. Recall that in our framework the hydrodynamical force acting on
the body S is defined by the formula [41]

J(S) = −
∫
∂S

(
∇u + (∇u)∗ + (λ− 1) div uI − R

ε2
pI

)
· ndS.

In a frame attached to the moving body the drag is the component of J parallel to
U∞,

(1.3) JD(S) = U∞ · J(S),

and the lift is the component of J in the direction orthogonal to U∞. For the fixed
data, the drag can be regarded as a functional depending on the shape of the obstacle
S. The drag minimization and the lift maximization are between shape optimization
problems of some practical importance. The questions of the domain dependence of
solutions to nonstationary compressible Navier–Stokes equations and of the solvability
of the drag optimization problem were considered in papers [12], [13]. The solvability
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of the drag minimization problem for stationary equations (1.2) is shown in [37], [40].
For incompressible Navier–Stokes equations, the existence of material derivatives of
solutions and the formula for the shape derivative of the drag functional and adjoint
state were obtained in [4], [5], and [42]; see also [43] and [44] for some generalizations.
The growing literature on numerical and applied aspects of the problem is nicely
surveyed in [18] and [27]. To the best of our knowledge, the mathematical sensitivity
analysis for the compressible Navier–Stokes equations has not been studied yet. We
derive the formula for the shape derivatives of the drag functional which can be used,
in particular, for the explicit formulation of optimality conditions. In order to define
the shape derivatives of the shape functional we combine the material derivatives of
the solutions to the governing PDEs with an appropriate adjoint state according to
the same scheme as is proposed, e.g., in [42] for steady incompressible equations.

We start with a description of our framework for shape sensitivity analysis, or
more generally, for well-posedness of compressible Navier–Stokes equations. To this
end we choose the vector field T ∈ C2(R3)3 vanishing in the vicinity of Σ and define
the mapping

(1.4) y = x + εT(x),

which describes the perturbation of the shape of the obstacle. We refer the reader
to [45] for more general framework and results in shape optimization and to [28]
for shape calculus in the framework of fluid-structure interaction. For small ε, the
mapping x → y diffeomorphically takes the flow region Ω onto Ωε = B \ Sε, where
the perturbed obstacle Sε = y(S). Let (ūε, �̄ε) be solutions to problem (1.2) in Ωε.
After substituting (ūε, �̄ε) into the formula for J, the drag becomes the function of
the parameter ε. Our aim is, in fact, to prove that this function is well defined and
differentiable at ε = 0. This leads to the first order shape sensitivity analysis for
solutions to compressible Navier–Stokes equations. It is convenient to reduce such
an analysis to the analysis of dependence of solutions with respect to the coefficients
of the governing equations. To this end, we introduce the functions uε(x) and �ε(x)
defined in the unperturbed domain Ω by the formulae

uε(x) = Nūε(x + εT(x)), �ε(x) = �̄ε(x + εT(x)),

where

(1.5) N(x) = det (I + εT′(x))(I + εT′(x))−1

is the adjugate matrix of the Jacobi matrix I + εT′. Furthermore, we also use the
notation g(x) =

√
det N. It is easy to see that the matrices N(x) depend analytically

upon the small parameter ε and

(1.6) N = I + εD(x) + ε2D1(ε, x),

where D = div TI − T′. Calculations show that, for uε, �ε, the following boundary
value problem is obtained:

Δuε + ∇
(
λg

−1 div uε −
R

ε2
p(�ε)

)
= A(uε) + RB(�ε,uε,uε) in Ω,(1.7a)

div
(
�εuε

)
= 0 in Ω,(1.7b)

uε = U on Σ, uε = 0 on ∂S,(1.7c)

�ε = �0 on Σin.(1.7d)
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Here the linear operator A and the nonlinear mapping B are defined in terms of N:

A(u) = Δu − (N∗)−1 div
(
g
−1NN∗∇(N−1u)

)
,

B(�,u,w) = �(N∗)−1
(
u∇
(
N−1w

))
.

(1.8)

For the derivation of these equations, see Appendix C.

The specific structure of the matrix N does not play any particular role in the
further analysis. Therefore, we consider a general problem of the existence, unique-
ness, and dependence on coefficients of the solutions to equations (1.7) under the
assumption that N is a given matrix-valued function which is close, in an appropri-
ate norm, to the identity mapping I and coincides with I in the vicinity of Σ. By
abuse of notation, we write simply u and �, instead of uε and �ε, when studying the
well-posedness and dependence on N. Before formulation of main results we write the
governing equation in more transparent form using the change of unknown functions
proposed in [35], [15]. To do so we introduce the effective viscous pressure

q =
R

ε2
p(�) − λg

−1 div u

and rewrite equations (1.7) in the equivalent form

Δu −∇q = A(u) + RB(�,u,u) in Ω,(1.9a)

div u = gσ0p(�) −
gq

λ
in Ω,(1.9b)

u · ∇� + gσ0p(�) � =
gq

λ
� in Ω,(1.9c)

u = U on Σ, u = 0 on ∂S,(1.9d)

� = �0 on Σin,(1.9e)

where σ0 = R/(λε2). In the new variables (u, q, �) the expression for the force J reads

(1.10) J = −
∫

Ω

[
g
−1
(
N∗∇(N−1u)+∇(N−1u)∗N−div u

)
− q−R�u⊗u

]
N∗∇η dx,

where η ∈ C∞(Ω) is an arbitrary function, which is equal to 1 in an open neighborhood
of the obstacle S and 0 in a vicinity of Σ. The value of J is independent of the choice
of the function η.

We assume that λ 
 1 and R � 1, which corresponds to almost incompressible
flow with low Reynolds number. In such a case, the approximate solutions to problem
(1.9) can be chosen in the form (�0,u0, q0), where �0 is a constant in boundary
condition (1.9e), and (u0, q0) is a solution to the boundary value problem for the
Stokes equations,

Δu0 −∇q0 = 0, div u0 = 0 in Ω,(1.11)

u0 = U on Σ, u0 = 0 on ∂S, Πq0 = q0.

In our notation Π is the projector:

Πu = u− 1

meas Ω

∫
Ω

u dx.
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Equations (1.11) can be obtained as the limit of equations (1.9) for the passage λ → ∞,
R → 0. It follows from the standard elliptic theory that, for the boundary ∂Ω ∈ C∞,
we have (u0, q0) ∈ C∞(Ω). We look for solutions to problem (1.9) in the form

(1.12) u = u0 + u, � = �0 + ϕ, q = q0 + λσ0p(�0) + π + λm,

with the unknowns functions ϑ = (u, π, ϕ) and the unknown constant m. Substituting
(1.12) into (1.9) we obtain the following boundary problem for ϑ:

Δu −∇π = A(u) + RB(�,u,u) in Ω,

div u = g

(
σ

�0
ϕ− Ψ[ϑ] −m

)
in Ω,

u · ∇ϕ + σϕ = Ψ1[ϑ] + mg� in Ω,

u = 0 on ∂Ω, ϕ = 0 on Σin, Ππ = π,

(1.13a)

where

Ψ1[ϑ] = g

(
�Ψ[ϑ] − σ

�0
ϕ2

)
+ σϕ(1 − g), Ψ[ϑ] =

q0 + π

λ
− σ

p′(�0)�0
H(ϕ),

σ = σ0p
′(�0)�0, H(ϕ) = p(�0 + ϕ) − p(�0) − p′(�0)ϕ,

and the vector field u and the function � are given by (1.12). Finally, we specify the
constant m. In our framework, in contrast to the case of the homogeneous boundary
problem, the solution to such a problem is not trivial. Note that, since divu is of
the null mean value, the right-hand side of (1.13a)3 must satisfy the compatibility
condition

m

∫
Ω

g dx =

∫
Ω

g

(
σ

�0
ϕ− Ψ[ϑ]

)
dx,

which formally determines m. This choice of m leads to essential mathematical dif-
ficulties. To make this issue clear note that in the simplest case g = 1 we have
m = �−1

0 σ(I − Π)ϕ + O(|ϑ|2, λ−1), and the principal linear part of the governing
equations (1.13a) becomes⎛

⎝ Δ −∇ 0
div 0 − σ

�0

0 0 u∇ + σ

⎞
⎠
⎛
⎝ u

π
ϕ

⎞
⎠+

⎛
⎝ 0

m
−m�0

⎞
⎠ ∼

⎛
⎝ Δu −∇π

div u − σ
�0

Πϕ

u∇ϕ + σΠϕ

⎞
⎠ .

Hence, the question of solvability of the linearized equations derived for (1.13) can be
reduced to the question of solvability of the boundary value problem for the nonlocal
transport equation

u∇ϕ + σΠϕ = f,

which is very difficult because of the loss of maximum principle. In fact, this question
is concerned with the problem of the control of the total gas mass in compressible
flows. Recall that the absence of the mass control is the main obstacle for proving
the global solvability of inhomogeneous boundary problems for compressible Navier–
Stokes equations; we refer to [25] for discussion. In order to cope with this difficulty we
write the compatibility condition in a sophisticated form, which allows us to control
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Fig. 1. Flow domain Ω with an obstacle S.

the total mass of the gas. To this end we introduce the auxiliary function ζ satisfying
the equations

(1.13b) −div(uζ) + σζ = σg in Ω, ζ = 0 on Σout,

and fix the constant m as follows:

(1.13c) m = κ

∫
Ω

(�−1
0 Ψ1[ϑ]ζ − gΨ[ϑ]) dx, κ =

(∫
Ω

g(1 − ζ − �−1
0 ζϕ) dx

)−1

.

In this way the auxiliary function ζ becomes an integral part of the solution to problem
(1.13). Now our aim is to prove the existence and uniqueness of solutions to problem
(1.13) and investigate the dependence of the solutions on matrices N. Before the
presentation of the main results we introduce some notation and formulate preliminary
results.

Geometrical conditions on the flow region. We assume that a surface Σ = Σin ∪
Σout ∪Γ and a given vector field U satisfy the following conditions, referred to as the
emergent vector field conditions.

Condition 1.1. The set Γ is a closed C2+α one-dimensional manifold. More-
over, there is a positive constant c such that

(1.14) U · ∇(U · n) > c > 0 on Γ.

These conditions have a simple geometric interpretation, that U ·n vanishes only
up to the first order at Γ, and U is transversal to Γ; furthermore, for each point
P ∈ Γ, the vector U(P ) points to the part of Σ where U is an exterior vector field
(see Figure 1). Note that the emergent vector field condition plays an important role
in the theory of the classical oblique derivative problem; see [16]. In the context of
our problem it is equivalent to the following conditions:

(H1) The boundary of Ω belongs to class C2+α, α ∈ (0, 1). For each point P ∈ Γ
there exist the local Cartesian coordinates (x1, x2, x3) with the origin at P
such that in the new coordinates U(P ) = (U, 0, 0) with U = |U(P )|, and



INHOMOGENEOUS BOUNDARY VALUE PROBLEMS 1159

n(P ) = (0, 0,−1). Moreover, there is a neighborhood O = [−k, k]2 × [−t, t]
of P such that the intersections Σ∩O and Γ∩O are defined by the equations

F0(x) ≡ x3 − F (x1, x2) = 0, ∇F0(x) · U(x) = 0,

and Ω∩O is the epigraph {F0 > 0}∩O. The function F satisfies the conditions

(1.15) ‖F‖C2([−k,k]2) ≤ K, F (0, 0) = 0, ∇F (0, 0) = 0,

where the constants k, t < 1 and K > 1 depend only on the curvature of Σ
and are independent of the point P .

(H2) For a suitable choice of the constant k, with k independent of P ∈ Γ, the
manifold Γ ∩ O admits the parameterization

(1.16) x = x0(x2) :=
(
Υ(x2), x2, F (Υ(x2), x2)

)
such that Υ(0) = 0 and ‖Υ‖C2([−k,k]) ≤ CΓ, where the constant CΓ > 1
depends only on Σ and U.

(H3) There are positive constants N± independent of P such that for x ∈ Σ given
by the condition F0(x1, x2, x3) = x3 − F (x1, x2) = 0 we have

N−(x1 − Υ(x2)
)
≤ −∇F0(x) · U(x) ≤ N+

(
x1 − Υ(x2)

)
for x1 > Υ(x2),

(1.17)

−N−(x1 − Υ(x2)
)
≤ ∇F0(x) · U(x) ≤ −N+

(
x1 − Υ(x2)

)
for x1 < Υ(x2).

Function spaces. In this paragraph we assemble some technical results which are
used throughout the paper. Function spaces play a central role, and we recall some
notation, fundamental definitions, and properties, which can be found in [1] and [6].
For the convenience of the reader we collect in Appendix B the basic facts from the
theory of interpolation spaces. For our applications we need the results in three spatial
dimensions; however, the results are presented for the dimension d ≥ 2.

Let Ω be the whole space R
d or a bounded domain in R

d with the boundary
∂Ω of class C1. For an integer l ≥ 0 and for an exponent r ∈ [1,∞), we denote by
W l,r(Ω) the Sobolev space endowed with the norm ‖u‖W l,r(Ω) = sup|α|≤l ‖∂αu‖Lr(Ω).
For real 0 < s < 1, the fractional Sobolev space W s,r(Ω) is obtained by the real
interpolation method (see [46] for the proofs) between Lr(Ω) and W 1,r(Ω) and consists
of all measurable functions with the finite norm

‖u‖W s,r(Ω) = ‖u‖Lr(Ω) + |u|s,r,Ω,

where

|u|rs,r,Ω =

∫
Ω×Ω

|x− y|−d−rs|u(x) − u(y)|r dxdy.(1.18)

In the general case, the Sobolev space W l+s,r(Ω) is defined as the space of measurable
functions with the finite norm ‖u‖W l+s,r(Ω) = sup|α|≤l ‖∂αu‖W s,r(Ω). For 0 < s < 1,

the Sobolev space W s,r(Ω) is, in fact [6], the interpolation space [Lr(Ω),W 1,r(Ω)]s,r.

Furthermore, the notation W l,r
0 (Ω), with an integer l, stands for the closed sub-

space of the space W l,r(Ω) of all functions u ∈ Lr(Ω) which being extended by zero
outside of Ω belong to W l,r(Rd).



1160 P. I. PLOTNIKOV, E. V. RUBAN, AND J. SOKOLOWSKI

Denote by W0,r
0 (Ω) and W1,r

0 (Ω) the subspaces of Lr(Rd) and W 1,r(Rd), respec-
tively, of all functions vanishing outside of Ω. Obviously W1,r

0 (Ω) and W 1,r
0 (Ω) are

isomorphic topologically and algebraically and we can identify them. However, we
need the interpolation spaces Ws,r

0 (Ω) for nonintegers, in particular, for s = 1/r.
Definition 1.2. For all 0 < s ≤ 1 and 1 < r < ∞, we denote by Ws,r

0 (Ω) the
interpolation space [W0,r

0 (Ω),W1,r
0 (Ω)]s,r endowed with one of the equivalent norms

(6.1) and (6.3) defined by the interpolation method.
It follows from the definition of interpolation spaces (see Appendix B) that

Ws,r
0 (Ω) ⊂ W s,r(Rd) and, for all u ∈ Ws,r

0 (Ω),

(1.19) ‖u‖W s,r(Rd) ≤ c(r, s)‖u‖Ws,r
0 (Ω), u = 0 outside Ω.

In other words, Ws,r
0 (Ω) consists of all elements u ∈ W s,r(Ω) such that the extension

u of u by 0 outside of Ω has the finite [W0,r
0 (Ω),W1,r

0 (Ω)]s,r-norm. We identify u and

u for the elements u ∈ Ws,r
0 (Ω). With this identification it follows that W 1,r

0 (Ω) ⊂
Ws,r

0 (Ω) and the space C∞
0 (Ω) is dense in Ws,r

0 (Ω). It is worthy to note that for
0 < s < 1 and for 1 < r < ∞, the function u belongs to the space W s,r(Rd) if
and only if u ∈ W s,r(Ω) and dist (x, ∂Ω)−su ∈ Lr(Ω). We also point out that the
interpolation space Ws,r

0 (Ω) coincides with the Sobolev space W s,r
0 (Ω) for s �= 1/r.

Recall that the standard space W s,r
0 (Ω) is the completion of C∞

0 (Ω) in the W s,r(Ω)-
norm.

Embedding theorems. For sr > d and 0 ≤ α < s−r/d, the embedding W s,r(Ω) ↪→
Cα(Ω) is continuous and compact. In particular, for sr > d, the Sobolev space
W s,r(Ω) is a commutative Banach algebra; i.e., for all u, v ∈ W s,r(Ω),

(1.20) ‖uv‖W s,r(Ω) ≤ c(r, s)‖u‖W s,r(Ω)‖v‖W s,r(Ω).

If sr < d and t−1 = r−1 −d−1s, then the embedding W s,r(Ω) ↪→ Lt(Ω) is continuous,
[1, Thm. 7.57]. We also have [1, Thm. 7.58], for α < s, (s − α)r < d and β−1 =
r−1 − d−1(s− α),

(1.21) ‖u‖Wα,β(Ω) ≤ c(r, s, α, β,Ω)‖u‖W s,r(Ω).

It follows from (1.19) that all the embedding inequalities remain true for the elements
of the interpolation space Ws,r

0 (Ω).
Duality. We define

(1.22) 〈u, v〉 =

∫
Ω

u v dx

for any functions such that the right-hand side makes sense. For r ∈ (1,∞), each
element v ∈ Lr′(Ω), r′ = r/(r− 1), determines the functional Lv of (Ws,r

0 (Ω))′ by the

identity Lv(u) = 〈u, v〉. We introduce the (−s, r′)-norm of an element v ∈ Lr′(Ω) to
be by definition the norm of the functional Lv, that is

(1.23) ‖v‖W−s,r′ (Ω) = sup
u∈Ws,r

0 (Ω)
‖u‖Ws,r

0 (Ω)=1

|〈u, v〉|.

We let W−s,r′(Ω) denote the completion of the space Lr′(Ω) with respect to the
(−s, r′)-norm. For an integer s, W−s,r′(Ω) is topologically and algebraically isomor-
phic to (W s,r

0 (Ω))′. Moreover, we can identify W−s,r′(Ω) with the interpolation space
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[Lr′(Ω),W−1,r′

0 (Ω)]s,r; see [6] and Appendix B. With this denotation we have the
duality principle

(1.24) ‖u‖Ws,r
0 (Ω) = sup

v∈C∞
0 (Ω)

‖v‖W−s,r′ (Ω)
=1

|
〈
u, v
〉
|.

With applications to the theory of Navier–Stokes equations in mind, we introduce
the smaller dual space defined as follows. We identify the function v ∈ Lr′(Ω) with
the functional Lv ∈ (W s,r(Ω))′ and denote by W

−s,r′(Ω) the completion of Lr′(Ω) in
the norm

(1.25) ‖v‖
W−s,r′ (Ω) := sup

u∈W s,r(Ω)
‖u‖Ws,r(Ω)=1

|
〈
u, v
〉
|.

In the sense of this identification the space C∞
0 (Ω) is dense in the interpolation space

W
−s,r(Ω). It follows immediately from the definition that

W
−s,r′(Ω) ⊂ (W s,r(Ω))′ ⊂ W−s,r′(Ω).

For an arbitrary bounded domain Ω ⊂ R
3 with a Lipschitz boundary, we introduce

the Banach spaces

Xs,r = W s,r(Ω) ∩W 1,2(Ω), Y s,r = W s+1,r(Ω) ∩W 2,2(Ω),

Zs,r = Ws−1,r(Ω) ∩ L2(Ω)

equipped with the norms

‖u‖Xs,r = ‖u‖W s,r(Ω) + ‖u‖W 1,2(Ω), ‖u‖Y s,r = ‖u‖W 1+s,r(Ω) + ‖u‖W 2,2(Ω),

‖u‖Zs,r = ‖u‖Ws−1,r(Ω) + ‖u‖L2(Ω).

It can be easily seen that the embeddings Y s,r ↪→ Xs,r ↪→ Zs,r are compact and, for
sr > 3, each of the spaces Xs,r and Y s,r is a commutative Banach algebra.

Stokes equations. The following lemma is a straightforward consequence of clas-
sical results on solvability of the first boundary value problem for Stokes equations
(see [9]) and the interpolation theory.

Lemma 1.3. Let Ω ⊂ R
3 be a bounded domain with ∂Ω ∈ C2 and (F,G) ∈

Ws−1,r(Ω) ×W s,r(Ω) (0 ≤ s ≤ 1, 1 < r < ∞). Then the boundary value problem

Δu −∇π = F, div u = ΠG in Ω,

u = 0 on ∂Ω, Ππ = π,
(1.26)

has a unique solution (u, π) ∈ W s+1,r(Ω) ×W s,r(Ω) such that

(1.27) ‖u‖W s+1,r(Ω) + ‖π‖W s,r(Ω) ≤ c(Ω, r, s)(‖F‖Ws−1,r(Ω) + ‖G‖W s,r(Ω)).

In particular, we have

‖u‖Y s,r + ‖π‖Xs,r ≤ c(Ω, r, s)(‖F‖Zs,r + ‖G‖Xs,r ).

Proof. The proof is in Appendix B.
Note that the lemma works for singular values s = 1/r + integer. But in this

case the traces of solutions at the boundary are not defined.
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1.2. Results. Transport equations. Today there exists a complete theory of
generalized solutions to the class of hyperbolic-elliptic equations developed in [10]
and [34] under the assumptions that the equations have C1 coefficients and satisfy
the maximum principle. The questions on smoothness properties of solutions are more
difficult. We recall the classical results of [19], [34], related to the case of Σin∩Σout = ∅.
The particular case, with Σin = Σout = ∅, in the Sobolev spaces is covered in the
papers [3] and [30], [31]. The case of the nonempty interface Γ = Σin ∩ Σout is still
weakly investigated. The theory of boundary value problems for transport equations
is an integral part of the theory of multicomponents and inhomogeneous flows. In
this context this problem has been considered by many authors; see [24] and [29] for
discussion.

In general the existence of strong solutions to inhomogeneous boundary value
problems for transport equations is still an open problem. The following theorem,
which is used throughout this paper, partially fills this gap. Let us consider the
following boundary value problems for linear transport equations:

Lϕ := u∇ϕ + σϕ = f in Ω, ϕ = 0 on Σin,(1.28)

L∗ϕ∗ := −div(ϕ∗u) + σϕ∗ = f in Ω, ϕ∗ = 0 on Σout.(1.29)

The bounded functions ϕ, ϕ∗ are called the generalized solutions to problems (1.28),
(1.29), respectively, if the integral identities

(1.30)

∫
Ω

(ϕL∗ζ∗ − fζ∗) dx = 0,

∫
Ω

(ϕ∗Lζ − fζ) dx = 0

hold true for all test functions ζ∗, ζ ∈ C(Ω)∩W 1,1(Ω), respectively, such that ζ∗ = 0
on Σout and ζ = 0 on Σin.

Theorem 1.4. Assume that Σ and U satisfy conditions (H1)–(H3), the expo-
nents s, r satisfy the inequalities

(1.31) 1/2 < s ≤ 1, 1 < r < 3/(2s− 1),

and the vector field u belongs to the class C1(Ω) and satisfies the boundary condition

(1.32) u = U on Σ, u = 0 on ∂S.

Then there are positive constants σ∗ and δ∗ depending only on Σ, U, s, r, and
‖u‖C1(Ω) such that the following hold:

(i) For any σ > σ∗ and f ∈ W s,r(Ω) ∩ L∞(Ω), problem (1.28) has a unique
solution ϕ ∈ W s,r(Ω) ∩ L∞(Ω) satisfying the inequalities

‖ϕ‖W s,r(Ω) ≤ C‖f‖W s,r(Ω), ‖ϕ‖L∞(Ω) ≤ σ−1‖f‖L∞(Ω).(1.33)

(ii) If, in addition, ‖div u‖W s,r(Ω) + ‖div u‖L∞(Ω) ≤ δ∗, problem (1.29) has a
unique solution ϕ∗ ∈ W s,r(Ω) ∩ L∞(Ω), which admits the estimates

‖ϕ∗‖W s,r(Ω) ≤ C‖f‖W s,r(Ω), ‖ϕ∗‖L∞(Ω) ≤ (σ − δ∗)−1‖f‖L∞(Ω).(1.34)

The constant C depends only on ‖u‖C1(Ω), r, s σ, U, and Ω.
Restriction s ≥ 1/2 in condition (1.31) is not essential and can be removed.

But it plays an important role in the proof of Lemma 1.7 and the main theorem,
Theorem 1.9. On the other hand, the inequality r < 3/(2s − 1) is crucial for the
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control of singularities of solutions at the characteristic manifold Γ. It is connected
with the behavior of U in the vicinity of Γ and does not depend on the dimension
of the ambient space. Note also that solution is strong for s = 1, but not continuous
since W 1,3(Ω) is not embedded in C(Ω). On the other hand, sr → ∞ as s → 1/2
and solution is continuous for s close to 1/2. In order to obtain continuous strong
solutions we have to consider the problem in the scale of spaces Xs,r

Since for sr > 3, the embeddings Xs,r ↪→ C(Ω), Y s,r ↪→ C1(Ω) are bounded, we
have the following result on solvability of problems (1.28), (1.29) in space Xs,r.

Corollary 1.5. Assume that sr > 3 and the vector field u has the representation
u = u0+u, where u0 ∈ C∞(Ω)3 is a solution to problem (1.11). Then there exist τ∗ ∈
(0, 1] and σ∗, depending only on Σ,u0, and s, r, such that, for all u with ‖u‖Y s,r ≤ τ∗,
σ > σ∗, and f ∈ Xs,r, each of problems (1.28) and (1.29) has a unique solution
satisfying the inequalities

(1.35) ‖ϕ‖Xs,r ≤ C‖f‖Xs,r , ‖ϕ∗‖Xs,r ≤ C‖f‖Xs,r .

Existence and uniqueness theory. The second main result of this paper concerns
the existence and local uniqueness of solutions to problem (1.13). Denote by E the
closed subspace of the Banach space Y s,r(Ω)3 ×Xs,r(Ω)2 in the form

(1.36) E = {ϑ = (u, π, ϕ) : u = 0 on ∂Ω, ϕ = 0 on Σin, Ππ = π },

and denote by Bτ ⊂ E the closed ball of radius τ centered at 0. Next, note that, for
sr > 3, elements of the ball Bτ satisfy the inequality

(1.37) ‖u‖C1(Ω) + ‖π‖C(Ω) + ‖ϕ‖C(Ω) ≤ ce(r, s,Ω)‖ϑ‖E ≤ ceτ,

where the norm in E is defined by

‖ϑ‖E = ‖u‖Y s,r(Ω) + ‖π‖Xs,r(Ω) + ‖ϕ‖Xs,r(Ω).

Theorem 1.6. Assume that the surface Σ and given vector field U satisfy con-
ditions (H1)–(H3). Furthermore, let σ∗, τ∗ be constants given by Corollary 1.5, and
let positive numbers r, s, σ satisfy the inequalities

(1.38) 1/2 < s ≤ 1, 1 < r < 3/(2s− 1), sr > 3, σ > σ∗.

Then there exists τ0 ∈ (0, τ∗], depending only on U,Ω, r, s, σ, such that, for all

(1.39) τ ∈ (0, τ0], λ−1, R ∈ (0, τ2], ‖N − I‖C2(Ω) ≤ τ2,

problem (1.13), with u0 given by (1.11), has a unique solution ϑ ∈ Bτ . Moreover, the
auxiliary function ζ and the constants κ,m admit the estimates

(1.40) ‖ζ‖Xs,r + |κ| ≤ c, |m| ≤ cτ < 1,

where the constant c depends only on U,Ω, r, s, and σ.
Material derivatives of solutions. Theorem 1.6 guarantees the existence and

uniqueness of solutions to problem (1.13) for all N close to the identity matrix I.
The totality of such solutions can be regarded as the mapping from N to the solution
to Navier–Stokes equations. The natural question is the smoothness properties of this
mapping, in particular, its differentiability. With application to shape optimization
problems in mind, we consider the particular case where the matrices N depend on
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the small parameter ε and have representation (1.6). We assume that C1-norms of
the matrix-valued functions D and D1(ε) in (1.6) have a majorant independent of ε.
By virtue of Theorem 1.6, there are the positive constants ε0 and τ such that, for all
sufficiently small R, λ−1 and ε ∈ [0, ε0], problem (1.13) with N = N(ε) has a unique
solution ϑ(ε) = (u(ε), π(ε), ϕ(ε)), ζ(ε),m(ε), which admits the estimate

(1.41) ‖ϑ(ε)‖E + |m(ε)| ≤ cτ, ‖ζ(ε)‖Xs,r ≤ c,

where the constant c is independent of ε, and the Banach space E is defined by
(1.36). Denote the solution (ϑ(0),m(0), ζ(0)) for ε = 0 by (ϑ,m, ζ), and define the
finite differences with respect to ε,

(wε, ωε, ψε) = ε−1(ϑ− ϑ(ε)), ξε = ε−1(ζ − ζ(ε)), nε = ε−1(m−m(ε)).

Formal calculations show that the limit (w, ω, ψ, ξ, n) = limε→0(wε, ωε, ψε, ξε, nε) is
a solution to linearized equations

Δw −∇ω = RC0(w, ψ) + D0(D) in Ω,

div w = b021 ψ − b022 ω + b023 n + b020 d in Ω,

u∇ψ + σψ = −w · ∇ϕ + b011 ψ + b012 ω + b013 n + b010 d in Ω,

−div(uξ) + σξ = div(ζw) + σd in Ω,

w = 0 on ∂Ω, ψ = 0 on Σin, ξ = 0 on Σout,

ω − Πω = 0, n = κ

∫
Ω

(
b031 ψ + b032 ω + b034 ξ + b030 d) dx,

(1.42)

where d = 1/2 Tr D and the variable coefficients b0ij and the operators C0, D0, are
defined by the formulae

b011 = Ψ[ϑ] − �H ′(ϕ) + m− 2σ

�0
ϕ, b012 = λ−1�, b013 = �,

b010 = �Ψ[ϑ] − σ

�0
ϕ2 − σϕ + m�, b021 =

σ

�0
ψ0 + H ′(ϕ),

b022 = −λ−1, b023 = −1, b020 = σϕ�−1
0 − Ψ[ϑ] −m,(1.43)

b031 = �−1
0 ζ

(
Ψ[ϑ] − �H ′(ϕ) − 2σ

�0
ϕ

)
−H ′(ϕ) + m�−1

0 ζ,

b032 = (λ�0)
−1�ζb012 + λ−1, b034 = �−1

0 Ψ1[ϑ] + m(1 + �−1
0 ϕ),

b030 = �−1
0 ζ(Ψ1[ϑ] −m�) + Ψ[ϑ] −m(1 − ζ − �−1

0 ζϕ),

C0(ψ,w) = Rψu∇u + R�w∇u + R�u∇w,(1.44)

D0(D) = Ru∇(Du) + RD∗(u∇u)(1.45)

+ div

(
(D + D∗)∇u − 1

2
Tr D∇u

)
− D∗Δu − Δ(Du).

The justification of the formal procedure meets the serious problems, since the smooth-
ness of solutions to problem (1.13) is not sufficient for the well-posedness of problem
(1.42) in the standard weak formulation. In order to cope with this difficulty we define
very weak solutions to problem (1.42). The construction of such solutions is based on
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the following lemma, and the proof is given in Appendix A. The lemma is given in
R

d, for our application d = 3.
Lemma 1.7. Let Ω ⊂ R

d be a bounded domain with the Lipschitz boundary, let
exponents s and r satisfy the inequalities sr > d, 1/2 ≤ s ≤ 1, and ϕ, ς ∈ W s,r(Ω) ∩
W 1,2(Ω), w ∈ W1−s,r′

0 (Ω) ∩W 1,2
0 (Ω). Then there is a constant c depending only on

s, r, and Ω, such that the trilinear form

B(w, ϕ, ς) = −
∫

Ω

ςw · ∇ϕdx

satisfies the inequality

(1.46) |B(w, ϕ, ς)| ≤ c‖w‖W1−s,r′
0 (Ω)

‖ϕ‖W s,r(Ω)‖ς‖W s,r(Ω)

and can be continuously extended to B : W1−s,r′

0 (Ω)d ×W s,r(Ω)2 �→ R. In particular,
we have ς∇ϕ ∈ Ws−1,r(Ω) and ‖ς∇ϕ‖W 1−s,r(Ω) ≤ c‖ϕ‖W s,r(Ω)‖ς‖W s,r(Ω).

Definition 1.8. The vector field w ∈ W1−s,r′

0 (Ω)3, functionals (ω, ψ, ξ) ∈
W

−s,r′(Ω)3, and constant n are said to be a weak solution to problem (1.42) if 〈ω, 1〉 =
0 and the identity∫

Ω

w
(
H −R�∇u · h + R�∇h∗u

)
dx− B(w, ϕ, ς) − B(w, υ, ζ)

+
〈
ω,G− b012ς − b022g − κb032

〉
+
〈
ψ, F − b011ς − b021g − κb031 −Ru · ∇u · h

〉
+
〈
ξ,M − κb034

〉
+ n
(
1 −
〈
1, b013ς

〉)
(1.47)

=
〈
d, b010ς + b020g + κb030 + συ

〉
+
〈
D0,h

〉
holds true for all (H, G, F,M) ∈ (C∞(Ω))6 such that G = ΠG. Here d = 1/2 Tr D,
and the test functions h, g, ς, υ are defined by the solutions to adjoint problems

(1.48) Δh −∇g = H, div h = G, L∗ς = F, Lυ = M in Ω,

h = 0 on ∂Ω, Πg = g, ς = 0 on Σout, υ = 0 on Σin.(1.49)

We are now in a position to formulate the third main result of this paper.
Theorem 1.9. Under the above assumptions,

wε → w weakly in W1−s,r′

0 (Ω), nε → n in R,

ψε → ψ, ωε → ω, ξε → ξ (∗)-weakly in W
−s,r′(Ω) as ε → 0,

(1.50)

where the limits, vector field w, functionals ψ, ω, ξ, and the constant n are given by
the weak solution to problem (1.42).

Note that the matrix N(ε) defined by equalities (1.5) meets all requirements of
Theorem 1.9, and in the special case we have in representation (1.6)

(1.51) D(x) = div T(x) I − T′(x).

Therefore, Theorem 1.9, combined with formulae (1.3) and (1.10), implies the ex-
istence of the shape derivative for the drag functional at ε = 0. Straightforward
calculations lead to the following result.
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Theorem 1.10. Under the assumptions of Theorem 1.9, there exists the shape
derivative

d

dε
JD(Sε)

∣∣∣
ε=0

= Le(T) + Lu(w, ω, ψ),

where the linear forms Le and Lu are defined by the equalities

Le(T) =

∫
Ω

div T(∇u + ∇u∗ − div uI)∇ηU∞ dx

−
∫

Ω

[
∇u + ∇u∗ − div u − qI −R�u ⊗ u

]
D∇η · U∞ dx

−
∫

Ω

[
D∗∇u + ∇u∗D −∇(Du) −∇(Du)∗

]
∇η · U∞ dx

and

Lu(w, ω, ψ) =

∫
Ω

w
[
ΔηU∞ + R�(u · ∇η)U∞ + R�(u · U∞)∇η

]
dx

+
〈
ω,∇η · U∞

〉
+ R
〈
ψ, (u · ∇η)(u · U∞)

〉
.

While Le depends directly on the vector field T, the linear form Lu depends on
the weak solution (w, ψ, ω) to problem (1.42), and thus depends on the direction T
in a very implicit manner, which is inconvenient for applications. In order to cope
with this difficulty, we define the adjoint state Y = (h, g, ς, υ, l)
 given as a solution
to the linear equation

(1.52) LY − UY − VY = Θ,

supplemented with boundary conditions (1.49). Here the operators L, U, V and the
vector field Θ are defined by

L =

⎛
⎜⎜⎜⎜⎝

Δ −∇ 0 0 0
div 0 0 0 0
0 0 L∗ 0 0
0 0 0 L 0
0 0 −B13 0 1

⎞
⎟⎟⎟⎟⎠ , U =

⎛
⎜⎜⎜⎜⎝

0 0 −∇ϕ −ζ∇ 0
0 0 Π12 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

V =

⎛
⎜⎜⎜⎜⎝

R�(∇u − u∇) 0 0 0 0
0 −λ−1Π 0 0 κΠb032

Ru · ∇u b021 b011 0 κb031
0 0 0 0 κb034
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

Θ = (ΔηU∞ + R�(∇η ⊗ U∞ + U∞ ⊗∇η)u, Π(∇η · U∞), R(u∇η)(uU∞), 0, 0) ,

Π2i(·) = Π(b02i(·)), B13(·) =
〈
1, b013(·)

〉
.

The following theorem guarantees the existence of the adjoint state and gives the
expression of the shape derivative for the drag functional in terms of the vector field
T.

Theorem 1.11. Let a given solution ϑ ∈ Bτ , (ζ,m) ∈ Xs,r × R, to problem
(1.13) meet all requirements of Theorem 1.6. Then there exists positive constant τ1
(depending only on U, Ω, and r, s) such that if τ ∈ (0, τ1] and R, λ−1 ≤ τ2

1 , then
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there exists a unique solution Y ∈ (Y s,r)3 × (Xs,r)3 × R to problem (1.52), (1.49).
The form Lu has the representation

(1.53) Lu(w, ψ, ω) =

∫
Ω

[
div T

(
b010ς + b020g + συ + κb030

)
+ D0(div T − T′)h

]
dx,

where the coefficients b0ij and the operator D0 are defined by formulae (1.43) and
(1.45).

Method and structure of the paper. The following aspects of our method deserve
a brief description:

• extended form (1.13) of the governing equations which allows us to cope with
the mass control problem;

• the splitting of the boundary value problem for the transport equation into
two parts: the local problem in the vicinity of inlet, and the global problem
with the modified vector field ũ and the empty inlet Σ̃in;

• the estimates of solutions to the model problem (4.19) in the fractional
Sobolev spaces, which cannot be obtained by the interpolation method;

• the very weak formulation of linearized equations introduced to assure the
existence of material derivatives.

Now we can explain the organization of this paper. Section 2 is devoted to the proof
of Theorem 1.6. First of all, we establish the existence of solutions to problem (1.13)
using the Schauder fixed point theorem. Next we consider the linear equations for
the difference of two solutions (ui, ϕi), i = 1, 2, corresponding to arbitrary matrix-
valued functions Ni. Using Theorem 1.4 we deduce the weak formulation of the
boundary value problem for linearized equations. The main result of this section is
Theorem 2.3, which shows that solutions of the linearized problem are stable with
respect to perturbations of data in the dual Sobolev space. This result implies the
local uniqueness of solutions to problem (1.13). In section 3 we exploit Theorem 2.3 to
prove the existence of the material derivative of solutions. The last section is devoted
to the proof of Theorem 1.4.

2. Existence and uniqueness of local solutions. Proof of Theorem 1.6.

2.1. Existence theory. In this paragraph we establish the local solvability of
problem (1.13) and prove the first part of Theorem 1.6. In our notation, c denotes
generic constants, which are different in different places and depend only on Ω, U,
σ, and r, s. The proof is based on the following lemma which furnishes the regularity
properties of composed functions. Let us consider functions u, v : Ω �→ BK , where
BK = {x : |x| ≤ K} ⊂ R

3 is the ball of radius K centered at 0.
Lemma 2.1. Assume that u, v ∈ Xs,r, s ∈ (0, 1], sr > 3, and f ∈ C3(Ω × BK).

Then we have

‖f(·, u)‖Xs,r ≤ c(r, s)‖f‖C1(Ω×BK(0))(1 + ‖u‖Xs,r ),(2.1)

‖f(·, v) − f(·, u)‖Xs,r ≤ c(r, s)‖f‖C2(Ω×BK)(1 + ‖u‖Xs,r + ‖v‖Xs,r )‖u− v‖Xs,r .(2.2)

Proof. In order to prove (2.1) it suffices to note that

|f(x, u(x)) − f(y, u(y))|r ≤ c(r)‖f‖rC1(Ω×BK)(|x− y|r + |u(x) − u(y)|r),

which, in view of the inequality∫
Ω×Ω

|x− y|r−3−rs dxdy ≤ c(r, s),
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yields

|f(·, u)|s,r,Ω ≤ c(r, s)‖f‖C1(Ω×BK(0))(1 + |u|s,r,Ω).

On the other hand, we have

‖∇f(·, u)‖L2(Ω) ≤ ‖f‖C1(Ω×BK(0))‖∇u‖L2(Ω).

Combining obtained inequalities we get (2.1). It remains to note that (2.2) follows
from (2.1) and the Hadamard formula for the first order expansion of f.

Fix sufficiently small positive τ such that

(2.3) ceτ < δ∗,

where δ∗ is the constant determined in Corollary 1.5 and ce is the constant from
inequality (1.37). By virtue of Corollary 1.5, there is σ∗, depending only on Ω, U,
and r, s, such that, for all ϑ ∈ Bτ and σ > σ∗, problems (1.28) and (1.29) have
solutions satisfying inequalities (1.35). Finally, fix an arbitrary σ > σ∗.

We solve problem (1.13) by an application of the Schauder fixed point theorem in
the following framework. Choose an arbitrary element ϑ ∈ Bτ . As mentioned above,
the problem

(2.4) u · ∇ϕ1 + σϕ1 = Ψ1[ϑ] + mg� in Ω, ϕ1 = 0 on Σin,

has a unique solution satisfying the inequality

(2.5) ‖ϕ1‖Xs,r ≤ c(Ω, U, σ, r, s)(‖Ψ1[ϑ]‖Xs,r + |m|).

Next, define u1 and π1 to be the solutions of the boundary value problem for the
Stokes equations

Δu1 −∇π1 = A(u) + RB(�,u,u) ≡ F [ϑ] in Ω,

�0 div u1 = Π(gσϕ1 − g�0Ψ[ϑ] − gm�0) in Ω,

u1 = 0 on ∂Ω, π1 − Ππ1 = 0,

(2.6)

where m is given by (1.13c). By Lemma 1.3, this problem admits a unique solution
such that

(2.7) ‖u1‖Y s,r + ‖π1‖Xs,r ≤ c(‖F [ϑ]‖Zs,r + |Ψ[ϑ]|Xs,r + ‖ϕ1‖Xs,r + |m|).

Equations (2.4), (2.6), (1.13c) define the mapping Ξ : ϑ → ϑ1 = (u1, π1, ϕ1). We claim
that for a suitable choice of the constant τ , Ξ is a weakly continuous automorphism
of the ball Bτ . We begin with the estimates for nonlinear operators present in (2.4).
Fix an arbitrary ϑ ∈ Bτ . Applying inequality (2.2) from Lemma 2.1 to the function
H which is a part of Ψ[ϑ], we obtain ‖H(ϕ)‖Xs,r ≤ cτ2, which leads to the estimate

(2.8) ‖Ψ[ϑ]‖Xs,r ≤ c

λ
(‖q0‖C1(Ω) + ‖π‖Xs,r ) + cτ2 ≤ c

λ
+ cτ2 ≤ cτ2.

Since, under assumptions of Theorem 1.6, Xs,r(Ω) is a Banach algebra and ‖�‖Xs,r ≤
c + ‖ϕ‖Xs,r ≤ const, we conclude from this and (2.5) that

(2.9) ‖ϕ1‖Xs,r ≤ c/λ + cτ2 + c|m| ≤ cτ2 + c|m|.
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In order to estimate the right-hand side of the first equation in (2.6) we introduce the
vector function z = (u,∇u, π, ϕ) and proceed as follows. It can be easily seen that
‖z‖Xs,r ≤ ‖ϑ‖E ≤ τ and |z| ≤ cτ . Recall that the operator B constitutes a cubic
polynomial of u and �. By Lemma 2.1, we have

(2.10) R‖B(�,u,u)‖Xs,r ≤ cR(1 + ‖�‖Xs,r + ‖z‖Xs,r ) ≤ cτ2(1 + τ) in Bτ .

Next note that

‖A(u)‖Zs,r ≤ c(‖g − 1‖C2(Ω) + ‖N − I‖C2(Ω))(1 + ‖u‖Y s,r ) ≤ cτ2‖u‖Y s,r ,

which along with (1.39) and (2.10) implies

(2.11) ‖F [ϑ]‖Zs,r ≤ cτ2(1 + τ) in Bτ .

Combining inequalities (2.8) and (2.9) we get the estimate

‖σϕ1 + Ψ[ϑ]‖Xs,r ≤ cτ2.

From this, (2.11), (2.7), and Lemma 1.3 we finally obtain

(2.12) ‖u1‖Y s,r + |π1|Xs,r ≤ cτ2 + c|m|.

It remains to estimate m. Recall that the vector field u and parameter σ meet
all requirements of Corollary 1.5. Therefore, problem (1.13b) has a unique solution
ζ ∈ W s,r(Ω) for all s, r satisfying (1.38). In particular, inequalities (1.35) yield the
estimate ‖ζ‖Xs,r ≤ c. Since, by virtue of (1.38), the pair s = 2/3, r = 6 is admissible
and the embedding W 2/3,6(Ω) ↪→ C1/6(Ω) is bounded, estimates (1.33) and (1.34) for
rs > 3 yield

(2.13) ‖ζ‖C1/6(Ω) + ‖ζ‖W 1,2(Ω) ≤ C(U,Ω, σ).

Recalling that div u = div u, we obtain |div u| ≤ ceτ. From this, the inequality
|g| ≤ 1 + cτ2, and the maximum principle (1.34), we conclude that

(2.14) ‖ζ‖C(Ω) ≤ (1 + cτ2)(1 − σ−1cτ)−1 ≤ (1 − cτ)−1,

which leads to the following estimate:

|1 − ζ| ≤ cτ(1 − cτ)−1.

Now we can estimate the right-hand side of (1.13c). Rewrite the first integral in the
form ∫

Ω

g(1 − ζ − �−1
0 ζϕ) dx =

∫
Ω

(1 − ζ)+ dx +

∫
Ω

(g − 1)(1 − ζ − �−1
0 ζϕ) dx

−
∫

Ω

((1 − ζ)− + �−1
0 ζϕ) dx.

We have

|(g − 1)(1 − ζ − �−1
0 ζϕ)| ≤ cτ2, |(1 − ζ)− + �−1

0 ζϕ)| ≤ ceτ + cτ(1 − cτ)−1.



1170 P. I. PLOTNIKOV, E. V. RUBAN, AND J. SOKOLOWSKI

On the other hand, we have ‖(1− ζ)+‖C1/6(Ω) ≤ c(U,Ω, σ) and (1− ζ)+ = 1 on Σout.
Hence ∫

Ω

(1 − ζ)+ dx > κ(U,Ω, σ) > 0.

Thus, we get

κ
−1 ≥ κ

(
1 − cκ−1τ(1 − cτ)−1

)
.

In particular, there is a positive τ0 depending only on U, Ω, and σ, such that

|κ| ≤ c for all τ ≤ τ0.

Repeating these arguments and using inequalities (2.8), (1.13c), we arrive at |m| ≤
cτ2. Combining this estimate with (2.9) and (2.12), we finally obtain ‖ϑ1‖Xs,r ≤ cτ2.
Choose sufficiently small τ0 = τ0(U,Ω, σ) such that cτ2

0 < τ0. Thus, for all τ ≤ τ0,
Ξ maps the ball Bτ into itself. Let us show that Ξ is weakly continuous. Choose an
arbitrary sequence ϑn ∈ Bτ such that ϑn = (un, πn, ϕn) converges weakly in E to
some ϑ. Since the ball Bτ is closed and convex, ϑ belongs to Bτ . Let us consider the
corresponding sequences of the elements ϑ1,n = Ξ(ϑn) ∈ Bτ and functions ζn. There
are subsequences {ϑ1,j} ⊂ {ϑ1,n} and {ζj} ⊂ {ζn} such that ϑ1,j converges weakly
in E to some element ϑ1 ∈ Bτ and ζj converges weakly in Xs,r to some function
ζ ∈ Xs,r. Since the embedding E ↪→ C(Ω)5 is compact, we have ϑn → ϑ, ϑ1j → ϑ1

in C(Ω)5, and

∇ζj ⇀ ∇ζ weakly in L2(Ω), ζj → ζ in C(Ω).

Substituting ϑj and ϑ1,j into equations (2.4), (2.6), (1.13c) and letting j → ∞,
we obtain that the limits ϑ and ϑ1 also satisfy (2.4), (2.6), (1.13c). Thus, we get
ϑ1 = Ξ(ϑ). Since for given ϑ, a solution to equations (2.4), (2.6) is unique, we
conclude from this that all weakly convergent subsequences of ϑ1,n have the unique
limit ϑ1. Therefore, the whole sequence ϑ1,n = Ξ(ϑn) converges weakly to Ξ(ϑ).
Hence the mapping Ξ : Bτ �→ Bτ is weakly continuous, and, by virtue of the Schauder
fixed point theory, there is ϑ ∈ B(τ) such that ϑ = Ξ(ϑ).

It remains to prove that ϑ is given by a solution to problem (1.13a). For ϑ1 = ϑ,
the only difference between problems (1.13a) and (2.6), (1.13c) is the presence of the
projector Π in the right-hand side of (2.6). Hence, it suffices to show that

(2.15) Π(�−1
0 gσϕ− gΨ[ϑ] − gm) = �−1

0 gσϕ− gΨ[ϑ] − gm.

To this end we note that ϕ is a generalized solution to the transport equation

u · ∇ϕ + σϕ = Ψ1[ϑ] + mg�.

Using ζ as a test function and recalling the integral identity (1.30) we obtain

σ

∫
Ω

ϕg dx =

∫
Ω

ζ(Ψ1[ϑ] + mg�) dx.

On the other hand, equality (1.13c) reads∫
Ω

ζ(�−1
0 Ψ1[ϑ] + mg(1 + ϕ�−1

0 )) dx =

∫
Ω

(gΨ[ϑ] + gm) dx.
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Combining these equalities and noting that 1 + �−1
0 ϕ = �/�0, we obtain∫

Ω

(
gσ

�0
ϕ− gΨ[ϑ] −mg

)
dx = 0

which yields (2.15), and the proof of Theorem 1.6 is completed.

2.2. Uniqueness and stability. In this paragraph we prove that, under the
assumptions of Theorem 1.6, a solution to problem (1.13) is unique, and we investigate
in detail the dependence of the solution on the matrix function N.

Weak formulation of linearized equations. Assume that matrices Ni, i = 1, 2,
satisfy conditions of Theorem 1.6, and denote by (ϑi, ζi,mi) ∈ E×Xs,r ×R, i = 1, 2,
the corresponding solutions to problem (1.13). Recall that the solutions (ϑi, ζi,mi),
together with the constants κi, satisfy the inequalities

(2.16) |mi| + ‖ϑi‖E ≤ cτ, |κi| + ‖ζi‖Xs,r ≤ c,

where the constant c depends only on U,Ω, r, s, and σ. We denote ui = u0 + ui,
i = 1, 2, the solutions to (1.9) for Ni, i = 1, 2. Now set

d = g1 − g2 ≡
√

det N1 −
√

det N2,

w = u1 − u2, ω = π1 − π2, ψ = ϕ1 − ϕ2, , ξ = ζ1 − ζ2, n = m1 −m2.

It follows from (1.13) that

u1∇ψ + σψ = −w · ∇ϕ2 + b11ψ + b12ω + b13n + b10d in Ω,

Δw −∇ω = A1(w) + RC1(ψ,w) + D in Ω,

div w = b21ψ + b22ω + b23n + b20d in Ω,

−div(u1ξ) + σξ = div(ζ2w) + σd in Ω,

w = 0 on ∂Ω, ψ = 0 on Σin, ξ = 0 on Σout,

ω − Πω = 0, n = κ

∫
Ω

(
b31ψ + b32ω + b34ξ + b30d

)
dx.

(2.17)

Here the coefficients are given by the formula

b11 = σ(1 − g2) + g2Ψ[ϑ1] − g2�2Φ1(ϕ1, ϕ2) + g2m2 −
σg2

�0
(ϕ1 + ϕ2),

b12 = λ−1�2g2, b13 = g2�1, b10 = �1Ψ[ϑ1] −
σ

�0
ϕ2

1 − σϕ1 + m1�1,

b21 = g2

(
σ

�0
+ Φ1(ϕ1, ϕ2)

)
, b22 = −g2/λ,

b23 = −g2, b20 = σϕ1�
−1
0 − Ψ[ϑ1] −m2,(2.18)

b31 = �−1
0 ζ1

(
σ(1 − g2) + g2Ψ[ϑ1] − g2�2Φ1(ϕ1, ϕ2)

− g2σ

�0
(ϕ1 + ϕ2)

)
− g2Φ1(ϕ1, ϕ2) + m2g1�

−1
0 ζ2,

b32 = �−1
0 ζ1b12 − b22, b34 = �−1

0 Ψ1[ϑ2] + m2g1(1 + �−1
0 ϕ1),

b30 = �−1
0 ζ1(b10 −m1�1) + Ψ[ϑ1] −m2(1 − ζ2 − �−1

0 ζ2ϕ2),

Φ1(ϕ1, ϕ2) = (p′(�0)�0)
−1σ

∫ 1

0

H ′(ϕ1s + ϕ2(1 − s)) ds,
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and the operators C1 and D are defined by the equalities

C(w) = B1(ψ,u1,u1) + B1(�2,w,u1) + B1(�2,u2,w),

D = A1(u2) − A2(u2) + R(B1(�2,u2,u2) − B2(�2,u2,u2)),

where A i and B i are given by (1.8) with Ni instead of N.
We consider D and d as given functions and equality (2.17) as the system of

equations and boundary conditions for unknowns w, ψ, ξ, and n. The next step is
crucial for further analysis. We replace equations (2.17) by an integral identity, which
leads to the notion of a very weak solution to problem (2.17). To this end choose an
arbitrary function (H, G, F,M) ∈ C∞(Ω)6 such that G − ΠG = 0, and consider the
auxiliary boundary value problems

(2.19) L∗ς = F, Lυ = M in Ω, ς = 0 on Σout, υ = 0 on Σin.

Δh −∇g = H, div h = ΠG in Ω, h = 0 on ∂Ω, Πg = g.(2.20)

Since, under the assumptions of Theorem 1.6, u and σ meet all requirements of
Corollary 1.5, each of problems (2.19) has a unique solution such that

(2.21) ‖ς‖W s,r(Ω) ≤ c‖F‖W s,r(Ω), ‖υ‖W s,r(Ω) ≤ c‖M‖W s,r(Ω),

where c depends only on U, Ω, r, s, and σ. On the other hand, by virtue of Lemma
1.3, problem (2.20) has a unique solution satisfying the inequality

‖h‖W 1+s,r(Ω) + ‖g‖W s,r(Ω) ≤ c‖H‖W 1+s,r(Ω) + c‖G‖W s,r(Ω).(2.22)

Recall that w ∈ W 2,2(Ω)3∩C1(Ω)3 vanishes on ∂Ω, and (ω, ψ, ξ) ∈ W 1,2(Ω)3∩C(Ω)3.
Multiplying both sides of the first equation in system (2.17) by ς, both sides of the
fourth equation in (2.17) by υ, integrating the results over Ω, and using the Green
formula for the Stokes equations, we obtain the system of integral equalities∫

Ω

ψF dx =

∫
Ω

(−w · ∇ϕ2 + b11ψ + b12ω + b13n + b10d)ς dx,∫
Ω

wH dx +

∫
Ω

ωGdx =

∫
Ω

(
b21ψ + b22ω + b23n + b20d

)
g dx

+

∫
Ω

(A1(w) + RC(w, ψ) + D)h dx,

∫
Ω

ξM dx =

∫
Ω

(div(ζ2w) + σd)υ dx.

(2.23)

Next, since div(�2u2) = 0, we have

∫
Ω

(B1(�2,w,u1) + B1(�2,u2,w)) · h dx

=

∫
Ω

�2w ·
(
∇(N−1

1 u1) · (N−1
1 h) − (N−1

1 )∗∇(N−1
1 h)∗u2

)
dx.

On the other hand, integration by parts gives∫
Ω

div(ζ2w)υ dx = −
∫

Ω

ζ2w∇υ dx.
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Using these identities and recalling the duality pairing, we can collect relations (2.23),
together with the expression for n, in one integral identity∫

Ω

w
(
H −R�2∇(N−1

1 u1) · (N−1
1 h) + R�2(N

−1
1 )∗∇(N−1

1 h)∗u2

)
dx

−B(w, ϕ2, ς) − B(w, υ, ζ2) − A1(w,h) +
〈
ω,G− b12ς − b22g − κb32

〉
(2.24)

+
〈
ψ, F − b11ς − b21g − κb31 −Ru1 · ∇(N−1

1 u1) · N−1
1 h
〉

+
〈
ξ,M − κb34

〉
+ n− n

〈
1, b13ς + b23g

〉
=
〈
d, b10ς + b20g + κb30 + συ

〉
+
〈
D ,W

〉
.

Here, the trilinear form B and the bilinear form A1 are defined by the equalities

B(w, ϕ2, ς) = −
∫

Ω

ςw · ∇ϕ2 dx, A1(w,h) =

∫
Ω

A1(w) · h dx.

Note that relations (2.24) are well defined for all w ∈ W1−s,r′

0 (Ω) and ψ, ξ ∈ W
−s,r′(Ω).

It is obviously true for all terms, with the possible exception of A1 and B. Well-
posedness of the form B follows from Lemma 1.7. The well-posedness of the form A1

results from the following lemma; the proof is given in Appendix A.

Lemma 2.2. Let sr > 3, 1/2 ≤ s ≤ 1, and w ∈ W1−s,r′

0 (Ω) ∩ W 1,2
0 (Ω), h ∈

W 1+s,r(Ω), and N1 satisfy (1.39). Then there is a constant c depending only on s, r,
and Ω such that

(2.25) |A1(w,h)| ≤ cτ2‖w‖W1−s,r′
0 (Ω)

‖h‖W 1+s,r(Ω).

Consequently, the form A1 can be continuously extended to A1 : W1−s,r′

0 (Ω)3×W 1+s,r

(Ω)3 �→ R.

Thus, relations (2.24) are well defined for all (w, ψ, ω, ξ) ∈ W1−s,r′

0 (Ω)3 ×
W

−s,r′(Ω)3. Equalities (2.24) along with (2.19), (2.20) are called the very weak formu-
lation of problem (2.17). The natural question is the uniqueness of solutions to such
weak formulation. The following theorem, which is the main result of this section,
guarantees the uniqueness of very weak solutions for sufficiently small τ .

Theorem 2.3. Let s, r, and σ satisfy condition (1.38), parameters λ,R and
matrices Ni, i = 1, 2, satisfy conditions (1.39), and constants τ meet all requirements
of Theorem 1.6. Also let the solutions (ϑi, ζi,mi), i = 1, 2, to problem (1.13) with
the matrices Ni, i = 1, 2, belong to Bτ × Xs,r × R. Furthermore, assume that, for
any (H, G, F,M) ∈ C∞(Ω)6 and for (ς, υ,h, g) satisfying (2.19)–(2.20), the elements

(w, ω, ψ, ξ) ∈ W1−s,r′

0 (Ω)3 × W
−s,r′(Ω)3 and the constant n satisfy identity (2.24).

Then there are constants c, τ1 depending only on s, r, σ, and Ω, U such that, for
τ ∈ (0, τ1], we have

(2.26) ‖w‖W1−s,r′
0 (Ω)

+ ‖ω‖
W−s,r′ (Ω) + ‖ψ‖

W−s,r′ (Ω) + ‖ξ‖
W−s,r′ (Ω) + |n|

≤ c(‖D‖L1(Ω) + ‖d‖
W−s,r′ (Ω)).

Proof. The proof is based upon two auxiliary lemmas; the first lemma establishes
the bounds for coefficients of problem (2.17).

Lemma 2.4. Under the assumptions of Theorem 2.3, all the coefficients of identity
(2.24) satisfy the inequalities ‖bij‖Xs,r ≤ c; furthermore

‖b12‖Xs,r + ‖b22‖Xs,r + ‖b11‖Xs,r + ‖b10‖Xs,r + ‖b20‖Xs,r ≤ cτ,

‖b31‖Xs,r + ‖b32‖Xs,r + ‖b34‖Xs,r ≤ cτ.
(2.27)

Proof. The proof follows from Lemma 2.1 combined with formula (2.18).
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In order to formulate the second auxiliary result we introduce the following de-
notations:

I1 =
〈
ψ, b11ς

〉
+
〈
ω, b12ς

〉
+
〈
d, b10ς

〉
, I2 =

〈
ψ, b21g

〉
+
〈
ω, b22g

〉
+
〈
d, b20g

〉
,

I3 = κ
(〈
ψ, b31〉 +

〈
ω, b32

〉
+
〈
ξ, b34

〉
+
〈
d, b30

〉)
, I4 =

〈
ψ,u2∇(N1u1) · N−1

1 h
〉
,

I5 =

∫
Ω

�2w ·
(
∇(N−1

1 u1) · (N−1
1 h) − (N−1

1 )∗∇(N−1
1 h)∗u2

)
dx,

G = ‖w‖W1−s,r′
0 (Ω)

+ ‖ψ‖
W−s,r′ (Ω) + ‖ω‖

W−s,r′ (Ω) + ‖ξ‖
W−s,r′ (Ω),

Q = ‖H‖Ws−1,r(Ω) + ‖G‖W s,r(Ω) + ‖F‖W s,r(Ω) + ‖M‖W s,r(Ω).

Lemma 2.5. Under the assumptions of Theorem 2.3, there is a constant c, de-
pending only on U, Ω, s, r, and σ, such that

I1 ≤ cτQ
[
G + ‖d‖

W−s,r′ (Ω)

]
,(2.28)

I2 ≤ cQ
[
τG + ‖ψ‖

W−s,r′ (Ω) + ‖d‖
W−s,r′ (Ω)

]
,(2.29)

I3 ≤ cτ
[
G + ‖d‖

W−s,r′ (Ω)

]
, I4 + I5 ≤ cQG.(2.30)

Proof. We have〈
ψ, b11ς

〉
+
〈
ω, b12ς

〉
+
〈
d, b10ς

〉
≤ ‖b11ς‖W s,r(Ω)‖ψ‖W−s,r′ (Ω)

+ ‖b12ς‖W s,r(Ω)‖ω‖W−s,r′ (Ω) + ‖b10ς‖W s,r(Ω)‖d‖W−s,r′ (Ω).

Recall that, for rs > 3, W s,r(Ω) is a Banach algebra. From this, estimate (2.21), and
inequalities (2.27), we obtain

‖b11ς‖W s,r(Ω)‖ψ‖W−s,r′ (Ω) + ‖b12ς‖W s,r(Ω)‖ω‖W−s,r′ (Ω) + ‖b10ς‖W s,r(Ω)‖d‖W−s,r′ (Ω)

≤ c‖ς‖W s,r(Ω)(‖b11‖W s,r(Ω)‖ψ‖W−s,r′ (Ω) + ‖b12‖W s,r(Ω)‖ω‖W−s,r′ (Ω)

+ ‖b10‖W s,r(Ω)‖d‖W−s,r′ (Ω))

≤ cτ‖F‖W s,r(Ω)(‖ψ‖W−s,r′ (Ω) + ‖ω‖
W−s,r′ (Ω) + ‖d‖

W−s,r′ (Ω)),

which gives (2.28). Repeating these arguments and using inequality (2.21), we obtain
the estimates for I2 and I3. Next we have

‖u2 · ∇(N−1
1 u1) · N−1

1 h‖W s,r(Ω) ≤ c‖u2‖W s,r(Ω)‖u1‖W 1+s,r(Ω)‖h‖W 1+s,r(Ω)

≤ c‖H‖W 1+s,r(Ω),

which gives the estimate for I4. Since the embeddings W s,r(Ω) ↪→ C(Ω), W 1+s,r(Ω) ↪→
C1(Ω) are bounded and ‖N±1‖C1(Ω) ≤ c, we have

�2|∇(N−1
1 u1)||N−1

1 h| + �2|(N−1
1 u2)||∇(N−1

1 h)| ≤ c‖h‖W 1+s,r(Ω),

which leads to the inequality

I5 ≤ c‖h‖W 1+s,r(Ω)‖w‖L1(Ω) ≤ c(‖H‖Ws−1,r(Ω) + ‖G‖W s,r(Ω))‖w‖W1−s,r′ (Ω),

and the proof of Lemma 2.5 is completed.
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Let us return to the proof of Theorem 2.3. It follows from the duality principle
that the theorem is proved provided we show that, under the assumptions of Theorem
1.6, the following inequality holds:

sup
Q(H,G,F,M)=1

(〈
w,H

〉
+
〈
ω,G

〉
+
〈
ψ, F

〉
+
〈
ξ,M

〉)
+ |n|

≤ cτ
(
G
(
w, ω, ψ, ξ

)
+ |n|

)
+ c
(
‖D‖L1(Ω) + ‖d‖

W−s,r′ (Ω)

)
,(2.31)

where the constant c depends only on Ω,U and r, s, σ. Therefore, our task is to
estimate step by step all terms in the left-hand side of (2.31). We begin with an
estimate for the term 〈ψ, F 〉. To this end, take H = h = 0, G = g = 0, M = υ = 0,
and rewrite identity (2.24) in the form〈

ψ, F
〉

= B(w, ϕ2, ς) + I1 + I3 + n
〈
1, b13ς

〉
− n.

By virtue of Lemma 1.7 and estimate (2.22), we have

(2.32) B(w, ϕ2, ς) ≤ cτ‖w‖W1−s,r′
0 (Ω)

‖ς‖W s,r(Ω) ≤ cτ‖w‖W 1−s,r′ (Ω)‖F‖W s,r(Ω).

On the other hand, Lemma 2.4 and inequality (2.21) yield |
〈
1, b13ς

〉
| ≤ c‖F‖W s,r(Ω).

From this and (2.28), (2.30) we finally obtain

(2.33)
〈
ψ, F

〉
≤ |n| + c‖F‖W s,r(Ω)

[
τG + ‖d‖

W−s,r′ (Ω) + |n|
]
.

Moreover, by virtue of the duality principle

‖ψ‖
W−s,r′ (Ω) = sup

‖F‖Ws,r(Ω)=1

∣∣〈ψ, F〉∣∣,
we have the following estimate for ψ:

(2.34) ‖ψ‖
W−s,r′ (Ω) ≤ cτG + c‖d‖

W−s,r′ (Ω) + c|n|.

Let us estimate w and ω. Substituting F = ς = 0 and M = υ = 0 into (2.24) we
obtain〈

w,H
〉

+
〈
ω,G

〉
= A1(w,h) + I2 + I3 + RI4 + RI5 + n

〈
1, b23g

〉
− n +

〈
D ,h

〉
.

By virtue of Lemma 2.2 and (2.22), the first term in the right-hand side is bounded:

|A1(w,h)| ≤ cτ2(‖H‖Ws−1,r(Ω) + ‖G‖W s,r(Ω))‖w‖W1−s,r′
0 (Ω)

.

Next we have

|n
〈
1, b23g

〉
| ≤ c(‖H‖Ws−1,r(Ω) + ‖G‖W s,r(Ω))|n|.

Obviously

|
〈
D ,W

〉
| ≤ c‖D‖L1(Ω)‖h‖C(Ω) ≤ c(‖H‖Ws−1,r(Ω) + ‖G‖W s,r(Ω))‖D‖L1(Ω).

These inequalities together with estimates (2.29)–(2.30) and inequality R ≤ τ2 imply〈
w,H

〉
+
〈
ω,G

〉
≤ |n| + cτQG

+ cQ
(
‖ψ‖

W−s,r′ (Ω) + |n| + ‖d‖
W−s,r′ (Ω) + ‖D‖L1(Ω)

)
.
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Combining this result with (2.34), we obtain〈
w,H

〉
+
〈
ω,G

〉
≤ |n| + cτQG + cQ

(
|n| + ‖d‖

W−s,r′ (Ω) + ‖D‖L1(Ω)

)
,(2.35)

where Q = Q(H, G, 0, 0). For G = 0 and by the duality principle

‖w‖W1−s,r′
0 (Ω)

= sup
‖H‖Ws−1,r(Ω)=1

〈
H,w

〉
,

we conclude that

(2.36) ‖w‖W1−s,r′
0 (Ω)

≤ |n| + cτG + c
(
|n| + ‖d‖

W−s,r′ (Ω) + ‖D‖L1(Ω)

)
.

Next, substituting H = h = 0, G = g = F = ς = 0 into identity (2.24), we arrive at〈
ξ,M

〉
= B(w, ζ2, υ) + I3 + σ

〈
d, υ
〉
− n.

Lemma 1.7 and (2.21) give the estimate for the first term:

|B(w, ζ2, υ)| ≤ c‖w‖W1−s,r′
0 (Ω)

‖υ‖W s,r(Ω) ≤ c‖w‖W1−s,r′
0 (Ω)

‖M‖W s,r(Ω).

From this and estimates (2.30), (2.21), we obtain〈
ξ,M

〉
≤ cτQG + cQ(‖w‖W1−s,r′

0 (Ω)
+ ‖d‖

W−s,r′ (Ω)) + |n|.

Combining this result with inequality (2.36), we arrive at

(2.37)
〈
ξ,M

〉
≤ cQ(τG + |n| + ‖d‖

W−s,r′ (Ω) + ‖D‖L1(Ω)) + c|n|.

Finally, choosing all test functions in (2.24) equal to 0, we obtain n = I3, which
together with (2.30) yields

(2.38) |n| ≤ cτQ(G + ‖d‖
W−s,r′ (Ω)).

From (2.33), (2.35), (2.37), combined with (2.38), it follows (2.31), and the proof of
Theorem 2.3 is completed.

Uniqueness of solutions. The important consequence of Theorem 2.3 is the fol-
lowing result on uniqueness of solutions to problem (1.13).

Proposition 2.6. Under the assumptions of Theorem 1.6, there exists a positive
τ0 such that, for all τ ∈ (0, τ0], problem (1.13) admits a unique solution in the ball Bτ .

Proof. If for some N the problem has two distinct solutions (ϑi, ζi,mi), i = 1, 2,
with ϑi ∈ Bτ , then the corresponding finite differences of the solutions w, ψ, ω, and
ξ meet all requirements of Theorem 2.3 with d = 0 and D = 0. Therefore, in view of
(2.26) all the elements w, ψ, ω, and ξ are equal to 0, which completes the proof.

3. Proofs of Theorems 1.9 and 1.11.
Proof of Theorem 1.9. Let us consider a family of matrices N(ε) having represen-

tation (1.6) and the sequence of corresponding solutions (ϑ(ε), ζ(ε),m(ε)) to problem
(1.13), where ϑ(ε) = (u(ε), π(ε), ϕ(ε)). By virtue of (1.41), we can assume that, pos-
sibly after passing to a subsequence, the sequence (ϑ(ε), ζ(ε),m(ε)) converges weakly
in (Y s,r)3 × (Xs,r)3 × R to some element (ϑ, ζ,m), which satisfies equations (1.13)
with N = I and meets all requirements of Theorem 1.6. Since the solution (ϑ, ζ,m)
to problem (1.13) is unique, the limit is independent of the choice of a subsequence,
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and the whole sequence converges to the limit (ϑ, ζ,m). It follows from (2.17) that

the differences ϑ − ϑ(ε), ζ − ζ(ε), m − m(ε) satisfy (2.17), with the coefficients b
(ε)
ij

and the operator Dε given by formula (2.18) with

N1 = I,N2 = N(ε), (ϑ1, ζ1,m1) = (ϑ, ζ,m), (ϑ2, ζ2,m2) = (ϑ(ε), ζ(ε),m(ε)).

In particular, the operator Dε is defined by the equality

Dε = R�(ε)
(
u(ε)∇u(ε) − (N(ε)∗)−1

(
u(ε)∇

(
N(ε)−1u(ε)

)))
+ (N(ε)∗)−1 div

(
g
−1(ε)N(ε)N(ε)∗∇(N(ε)−1u(ε))

)
− Δu(ε)

and admits the representation Dε = εD0(d,D)+ε2D1(ε), where D0 is given by (1.45).
Moreover, since the norms ‖�(ε)‖C(Ω) and ‖u(ε)‖W 2,2(Ω) are uniformly bounded, we
have

(3.1) ‖D1(ε)‖L2(Ω) ≤ c(U,Ω, σ).

Next note that g(ε) admits the decomposition g(ε) = 1 + εd + ε2d1(ε), where d =
Tr D and the reminder d1(ε) is uniformly bounded in C1(Ω). Proceeding as in the
previous section and recalling the equalities A1 = A1 = 0, we conclude that the finite
differences

(wε, ωε, ψε) = ε−1(ϑ− ϑ(ε)), ξε = ε−1(ζ − ζ(ε)), nε = ε−1(m−m(ε))

satisfy the integral identity∫
Ω

wε

(
H − �(ε)∇u · h + R�(ε)∇h∗u(ε)

)
dx

−B(wε, ϕ(ε), ς) − B(wε, υ, ζ(ε)) +
〈
ωε, G− b

(ε)
12 ς − b

(ε)
22 g − κb

(ε)
32

〉
(3.2)

+
〈
ψε, F − b

(ε)
11 ς − b

(ε)
21 g − κb

(ε)
31 −Ru · ∇u · h

〉
+
〈
ξε,M − κb

(ε)
34

〉
+ nε

−nε

〈
1, b

(ε)
13 ς + b

(ε)
23 g
〉

=
〈
d + εd1(ε), b

(ε)
10 ς + b

(ε)
20 g + κb

(ε)
30 + συ

〉
+
〈
D0 + εD1(ε),h

〉
,

along with the orthogonality conditions
〈
ωε, 1

〉
= 0. Here (H, G, F,M) are arbitrary

smooth functions such that G = ΠG, and the test functions ς, υ, g, and h are
defined by equations (2.19), (2.20); therefore, the test functions are independent of
ε. Recall that the elements ϑ1 = ϑ and ϑ2 = ϑ(ε) belong to the ball Bτ and meet
all requirements of Theorem 2.3. Hence, there exists τ1 > 0, depending only on Ω,U
and s, r, σ, such that the conditions

λ−1, R ≤ τ2, ‖N(ε) − I‖C1(Ω) ≤ τ2, 0 < τ ≤ τ1,

imply

‖wε‖W1−s,r′
0 (Ω)

+ ‖ωε‖W−s,r′ (Ω) + ‖ψε‖W−s,r′ (Ω) + ‖ξε‖W−s,r′ (Ω) + |nε|

≤ c(‖D0 + εD1‖L1(Ω) + ‖d + εd1‖C2(Ω)) ≤ c.

Therefore, after possibly passing to a subsequence, we can assume that the sequence

wε converges to w weakly in W1−s,r′

0 (Ω), and (ωε, ψε, ξε) converge to (ω, ψ, ξ) (∗)-
weakly in W

−s,r′(Ω) as ε → 0.
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Next, choose s′ > s satisfying conditions (1.38). By virtue of Theorem 1.6, there
exists τ ′0 > 0 (depending only on Ω, U, r, s, σ) such that, for all τ ∈ (0, τ ′0], the
functions (ϑ(ε), ζ(ε)) are bounded in (Y s′,r)3 × (Xs′,r)3. It follows from this that the
family u(ε) = u0 + u(ε) converges to u strongly in Y s,r, and (ϕ(ε), π(ε), ζ(ε)) con-
verges to (ϕ, π, ζ) strongly in Xs,r. Therefore, by virtue of Lemma 2.1, the sequence

b
(ε)
ij converges strongly in Xs,r to b0ij . Hence, we can pass to the limit in (3.2). It is

easy to see that the limits, the vector field w, and the functionals ψ, ω, ξ are given by a
unique weak solution to problem (1.42) and, in addition, meet all requirements of Def-
inition 1.8. It remains to note that, by virtue of Theorem 2.3, the limit is independent
of the choice of a subsequence, which completes the proof of Theorem 1.9.

Proof of Theorem 1.11. Assume that r, s, σ, and τ satisfy inequalities (1.31),
(1.38), and that ϑ = (u, π, ϕ) ∈ Bτ is a solution to problem (1.13) given by Theo-
rem 1.6. Denote by Y s,r

0 the subspace of the space Y s,r of all functions vanishing on
∂Ω, by Xs,r

in and Xs,r
out the subspaces of Xs,r which consist of all functions vanishing on

Σin and Σout, respectively, and by Xs,r
Π the subspace of all function in Xs,r having the

zero mean value. Introduce the Banach spaces E = (Y s,r
0 )3 ×Xs,r

Π ×Xs,r
out ×Xs,r

in × R

and F = (Zs,r)3 ×Xs,r
Π × (Xs,r)2 × R. Our first task is to show that, for all Θ ∈ F ,

problem (1.52), (1.49) has a unique solution Y ∈ E . We begin with the observation
that, by virtue of Lemma 1.3, the Stokes operator has the bounded inverse(

Δ −∇
div 0

)−1

: (Zs,r)3 ×Xs,r
Π → (Y s,r

0 )3 ×Xs,r
Π .

On the other hand, by virtue of Corollary 1.5, the operators L and L∗ from (1.48)
have the bounded inverses L−1 : Xs,r → Xs,r

in , (L∗)−1 : Xs,r → Xs,r
out. Therefore,

there exists the bounded operator⎛
⎝ L∗ 0 0

0 L 0
−B1,3 0 1

⎞
⎠

−1

: (Xs,r)2 × R → Xs,r
out ×Xs,r

in × R.

It follows from this that, for all Θ ∈ F , the equation LY = Θ has a unique solution
satisfying boundary conditions (1.49) and the inequality ‖Y‖E ≤ c‖Θ‖F , where the
constant c is independent of τ . Let us consider the operators U. By virtue of Lemma
1.7, we have

‖ς∇ϕ‖Ws−1,r(Ω) ≤ cτ‖ς‖Xs,r .

It is easy to see that

‖ς∇ϕ‖L2(Ω) ≤ c‖ς‖Xs,r‖∇ϕ‖L2(Ω) ≤ c‖ς‖Xs,r‖ϕ‖Xs,r ≤ cτ‖ς‖Xs,r .

Combining the obtained estimates we get the inequality ‖ς∇ϕ‖Zs,r ≤ cτ‖ς‖Xs,r . Rep-
etition of these arguments gives the inequality ‖ζ∇υ‖Zs,r ≤ c‖υ‖Xs,r . Since the norms
‖b0ij‖Xs,r are uniformly bounded, we conclude from this that ‖UY‖F ≤ c‖Y ‖E . Fi-
nally, let us consider the operator V. Since the space Xs,r is the commutative Banach
algebra and ∇u ∈ Xs,r, we have

‖Ru∇uh‖Xs,r ≤ cτ2‖h‖Xs,r , ‖R�(∇u + u∇)h‖Xs,r ≤ cτ2‖h‖Y s,r .

On the other hand, by virtue of Lemma 2.1 and (1.43), the coefficients b0ij in the
expression for V satisfy the inequalities

‖b012‖Xs,r + ‖b011‖Xs,r + ‖b031‖Xs,r + ‖b032‖Xs,r + ‖b034‖Xs,r ≤ cτ,
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which yield the estimate‖VY‖F ≤ cτ‖Y ‖E . Thus we get that the diagonal matrix
operator L has the bounded inverse, U is the bounded upper triangular (with respect
to L) matrix operator, and V is the small bounded operator. Hence, for all sufficiently
small τ the operator L − U − V : E → F has the bounded inverse, which implies the
existence of an adjoint state satisfying (1.52) and boundary conditions (1.49).

It remains to prove identity (1.53). Fix the adjoint state Y = (h, g, ς, υ, l), and
set

H = Δh −∇g, G = div h, F = L∗ς, M = Lυ.

It follows from (1.52) that

H −R�(∇u − u∇)h + ς∇ϕ + ζ∇υ = ΔηU∞ + R�
(
(u∇η)U∞ + (uU∞)∇η

)
,

G− Π(b021ς + b022g − κb032l) = Π(∇ηU∞),(3.3)

F −Ru∇uh − b012g − b011ς − κb031l = (u∇η)(uU∞), M = κb034l.

By virtue of Theorem 1.9, the material derivative (w, ω, ψ, ξ, n) satisfies the integral
identities (1.47). On the other hand, (F,H, G,M) together with the components of
the adjoint state Y can be regarded as a collection of test functions for this identity.
Substituting these test functions into (1.47), using equalities (3.3), and recalling the
identity 〈ω, 1〉 = 0, we obtain

Lu(w, ω, ψ) + κ(l − 1)
(〈

ψ, b031
〉

+
〈
ω, b032

〉
+
〈
ξ, b034

〉)
+n− n

〈
1, b013ς

〉
=
〈
d, b010ς + b020g + κb030 + συ

〉
+
〈
D0,W

〉
.

It follows from (1.52) that l =
〈
1, b013ς

〉
, which leads to

Lu(w, ω, ψ) + κ(l − 1)
(
κ
(〈
ψ, b031

〉
+
〈
ω, b032

〉
+
〈
ξ, b034

〉)
− n
)

=
〈
d, b010ς + b020g + κb030 + συ

〉
+
〈
D0,W

〉
.

(3.4)

Next note that the identities (1.42) imply the following expression for the constant n:

n = κ
(〈
ψ, b031

〉
+
〈
ω, b032

〉
+
〈
ξ, b034

〉
+
〈
d, b030

〉)
.

Substituting this equality into (3.4) and noting that d = Tr D, we obtain (1.53),
which completes the proof.

4. Proof of Theorem 1.4. Our strategy is the following. First we use the
classical method of characteristics (see [8] for instance) to show that in the vicinity
of each point P ∈ Σin ∪Γ there exist normal coordinates (y1, y2, y3) such that u∇x =
e1∇y. Hence the problem of existence of solutions to the transport equation in the
neighborhood of Σin∩Γ is reduced to a boundary value problem for the model equation
∂y1ϕ+σϕ = f in a parabolic domain. Next we prove that the boundary value problem
for the model equation admits a unique solution in fractional Sobolev space, which
leads to the existence and uniqueness of solutions in the neighborhood of the inlet set.
Using the existence of a local solution we can reduce problem (1.28) to a boundary
value problem for the modified equation, which does not require any boundary data.
Application of well-known results on solvability of elliptic-hyperbolic equations in the
case Γ = ∅ finally gives the existence and uniqueness of solutions to problems (1.28)
and (1.29).
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First we introduce some notation which will be used throughout this section. For
any a > 0 we denote by Qa the cube [−a, a]3 and by Q+

a the slab [−a, a]2 × [0, a] in
the space of points y = (y1, y2, y3) ∈ R

3. We will write Y instead of (y2, y3) so that
y = (y1, Y ).

Definition 4.1. A standard parabolic neighborhood associated with the constant
c0 is a compact subset of the slab Q+

a , defined by the inequalities

(4.1) Pa = {y = (y1, Y ) ∈ Q+
a : a−(Y ) ≤ y1 ≤ a+(Y )},

where a± : [−a, a] × [0, a] �→ R are continuous, piecewise C1-functions satisfying the
inequalities

−a ≤ a−(Y ) ≤ 0 ≤ a+(Y ) ≤ a,

−c0
√
y3 ≤ a−(Y ) ≤ a+(Y ) ≤ c0

√
y3,

|∂y2a
±(Y )| ≤ c0, |∂y3a

±(Y )| ≤ c0/
√
y3.

(4.2)

Set Qin = {Y : a−(Y ) > −a} and Qout = {Y : a+(Y ) < a}. Denote by Σy
in and Σy

out

the surfaces determined by the relations

Σy
in = {y : Y ∈ Qin, y1 = a−(Y )},

Σy
out = {y : Y ∈ Qout, y1 = a+(Y )}.

It is clear that ∂Pa = (∂Qa ∩ ∂Pa) ∪ Σy
in ∪ Σy

out.
Lemma 4.2. Assume that the C2-manifold Σ = ∂B and the vector field U ∈

C2(Σ)3 satisfy conditions (H1)–(H3). Let u ∈ C1(R3)3 be a compactly supported
vector field such that

u = U on Σ, u = 0 on S.

Denote M = ‖u‖C1(R3). Then there are positive constants a, c, C, ρc, and Rc,
depending only on M , ∂Ω, and U, with the following properties:

(P1) For any point P ∈ Γ there exists a mapping y → x(y) which takes diffeo-
morphically the cube Qa onto a neighborhood OP of P and satisfies the equation

(4.3) ∂y1x(y) = u(x(y)) in Qa

and the inequalities

(4.4) ‖x‖C1(Qa) + ‖x−1‖C1(OP ) ≤ C, |x(y)| ≤ C|y|.

(P2) There is a standard parabolic neighborhood Pa associated with the constant
c such that

(4.5) x(Pa) = OP ∪ Ω, x(Σy
in) = Σin ∩ OP , x(Σy

out) = Σout ∩ OP .

(P3) Denote by Ga ⊂ Pa the domain

(4.6) Ga = {y = (y1, Y ) ∈ Pa : Y ∈ Qin},

and by BP (ρ) the ball |x− P | ≤ ρ. Then we have the inclusions

(4.7) BP (ρc) ∩ Ω ⊂ x(Ga) ⊂ OP ∩ Ω ⊂ BP (Rc) ∩ Ω.
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Proof. We start with the proof of (P1). Recall condition (H1) and fix the
standard Cartesian coordinate system (x1, x2, x3) associated with the point P ∈ Γ.
Let us consider the Cauchy problem.

∂y1x = u(x(y)) in Qa,

x1(y) = Υ(y2), x2(y) = y2 for y1 = 0,

x3 = F (Υ(y2), y2) + y3 for y1 = 0.

(4.8)

Without any loss of generality we can assume that 0 < a < k < 1. For any such a,
problem (4.8) has a unique solution of class C1(Qa). Denote by F(y) = Dyx(y) the
Jacobian matrix function. The calculations show that

F0 := F(y)
∣∣∣
y1=0

=

⎛
⎝ u1 Υ′(y2) 0

u2 1 0
u3 ∂y2F (Υ(y2), y2) 1

⎞
⎠ , F(0) =

⎛
⎝ U Υ′(0) 0

0 1 0
0 0 1

⎞
⎠ ,

which implies

(4.9) ‖F(0)±1‖ ≤ C/3, ‖F0(y) − F(0)‖ ≤ ca,

where the constants C, c are independent of a.
Differentiation of (4.8) leads to the ordinary differential equation for F

∂y1F = Dyu(x)F, F

∣∣∣
y1=0

= F0.

From this we get

∂y1‖F − F0‖ ≤ M(‖F − F0‖ + ‖F0‖),

and hence ‖F − F0‖ ≤ c(M)‖F0‖a. Combining this result with (4.9) we finally arrive
at

(4.10) ‖F(y) − F(0)‖ ≤ ca.

This inequality along with the implicit function theorem implies the existence of a > 0,
depending only on M and Ω, such that the mapping x = x(y) takes diffeomorphically
the cube Qa onto some neighborhood of the point P and satisfies inequalities (4.4).

Let us turn to the proof of (P2). We begin with the observation that the manifold
x−1(∂Ω ∩ O) is defined by the equation

Φ0(y) := x3(y) − F (x1(y), x2(y)) = 0, y ∈ Qa.

Let us show that Φ0 is strictly monotone in y3 and has the opposite signs on the faces
y3 = ±a. To this end note that the formula for F(0) along with (4.10) implies the
estimates

|∂y3x3(y) − 1| + |∂y3x1(y)| + |∂y3x2(y)| ≤ ca in Qa.

Thus, we get

1 − ca ≤ ∂y3Φ0(y) = ∂y3x3(y) − ∂xiF (x1, x2)∂y3xi(y) ≤ 1 + ca.

It follows from (4.10) that, for y3 = 0, we have |x3(y)| ≤ ca|y|, which along with (4.4)
yields the estimate

|Φ0(y)| ≤ |x3(y)| + |F (x(y))| ≤ ca|y| + KC|y|2 ≤ ca2 for y3 = 0.
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Hence there is a positive a, depending only on M and Ω, such that the inequalities

1/2 ≤ ∂y3
Φ0(y) ≤ 2, ±Φ0(y1, y2,±a) > 0

hold true for all y ∈ Qa. Therefore, the equation Φ0(y) = 0 has a unique solution
y3 = Φ(y1, y2) in the cube Qa. Moreover, the function Φ ∈ C1([−a, a]2) vanishes for
y1 = y3 = 0. Thus, we get

Pa := x−1(O ∩ Ω) = {Φ(y1, y2) < y3 < a, |y1|, |y2| ≤ a}.

Note that |u(x(y)) − Ue1| ≤ M |x(y)| ≤ Ca. Therefore, we can choose a = a(M,Ω)
such that 2U/3 ≤ u1 ≤ 4U/3 and C|u2| ≤ U/3 in Qa. Recall that x1(y) − Υ(x2(y))
vanishes at the plane y1 = 0 and

∂y1

[
x1(y) − g(x2(y))

]
= u1(y) − Υ′(x2(y))u2(y).

We obtain from this that, for a suitable choice of a,

(4.11) |y1|U/3 ≤
∣∣x1(y) − Υ(x2(y))

∣∣ ≤ |y1|5U/3 for y ∈ Qa.

Equations (4.8) imply the identity

∂y1Φ0(y) ≡ ∇F0(x(y)) · u(x(y)) = ∇F0(x(y)) · U(x(y)) for Φ0(y) = 0.

Combining this result with (1.17) and (4.11), we obtain the estimates

|y1|N−U/3 ≤ |∂y1Φ0(y)| ≤ |y1|N+U5/3,

which along with the identity

∂y1Φ = −∂y1
Φ0(∂y3

Φ0)
−1

yield the inequalities

−c < ∂y1
Φ(y1, y2) ≤ cy1 for − a < y1 < 0,

cy1 < ∂y1
Φ(y1, y2) ≤ c for 0 < y1 < a,

|∂y2Φ(y1, y2) ≤ c, 0 ≤ Φ(y1, y2) ≤ cy2
1 .

(4.12)

It is clear that for sufficiently small a, depending only on U and Ω, the functions
Φ±(y2) = Φ(±a, y2) admit the estimates ca2 ≤ Φ±(y2) < a. Set

Qin = {Y ∈ [−a, a] × [0, a] : 0 < y3 < Φ−(y2)},
Qout = {Y :∈ [−a, a] × [0, a] : 0 < y3 < Φ+(y2)}.

It follows from (4.12) that for every Y ∈ Qin ( Y ∈ Qout) the equation y3 = Φ(y1, y2)
has a unique solution a−(Y ) < 0 (a+(Y ) > 0). We adopt the convention that a±(Y ) =
±a for y3 > Φ±(y2). It remains to note that, by virtue of (4.12), the functions a±

meet all requirements of Lemma 4.2.
The next lemma shows the existence of the normal coordinates in the vicinity of

points of the inlet Σin.
Lemma 4.3. Let vector fields u and U meet all requirements of Lemma 4.2 and

Un = −U(P ) · n > N > 0. Then there is b > 0, depending only on N , Σ, and
M = ‖u‖C1(Ω), with the following properties. There exists a mapping y → x(y),
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which takes diffeomorphically the cube Qb = [−b, b]3 onto a neighborhood OP of P
and satisfies the equations

(4.13) ∂y3
x(y) = u(x(y)) in Qb, x(y1, y2, 0) ∈ Σ ∩ OP for |y2| ≤ a,

and the inequalities

(4.14) ‖x‖C1(Qb) + ‖x−1‖C1(OP ) ≤ CM,N , |x(y)| ≤ CM |y|,

where CM,N = 3(1 + N−1)(M2 + 2)1/2. The inclusions

(4.15) BP (ρi) ∩ Ω ⊂ x(Qb ∩ {y3 > 0}) ⊂ BP (Ri) ∩ Ω

hold true for ρi = C−1
M,Nb and Ri = CM,Nb.

Proof. The proof simulates the proof of Lemma 4.2. Choose the local Cartesian
coordinates (x1, x2, x3) centered at P such that in new coordinates n(P ) = e3. By
the smoothness of Σ, there is a neighborhood O = [−k, k]2 × [−t, t] such that the
manifold Σ ∩ O is defined by the equation

x3 = F (x1, x2), F (0, 0) = 0, |∇F (x1, x2)| ≤ K(|x1| + |x2|).

The constants k, t, and K depend only on Σ. Let us consider the initial value problem

(4.16) ∂y3
x = u(x(y)) in Qa, x

∣∣∣
y3=0

= (y1, y2, F (y1, y2)).

Without any loss of generality we can assume that 0 < b < k < 1. It follows from
(H1) that for any such b problem (4.16) has a unique solution of class C1(Qb). Next
note that for y3 = 0 we have

(4.17) |x(y)| ≤ (K + 1)|y|, |u(x(y)) − u(0)| ≤ M(K + 1)|y|.

Denote by F(y) = Dyx(y). The calculations show that

F0 := F(y)
∣∣∣
y3=0

=

⎛
⎝ 1 0 u1

0 1 u2

0 0 u3

⎞
⎠, F(0) =

⎛
⎝ 1 0 u1(P )

0 1 u2(P )
0 0 Un

⎞
⎠,

which along with (4.17) implies

(4.18) ‖F(0)±1‖ ≤ CM,N/3, ‖F0(y) − F(0)‖ ≤ cb.

Next, differentiation of (4.16) with respect to y leads to the equation

∂y1F = Dyu(x)F, F

∣∣∣
y3=0

= F0.

Arguing as in the proof of Lemma 4.2 we obtain ‖F − F0‖ ≤ c(M)‖F0‖b. Combining
this result with (4.18), we finally arrive at ‖F(y) − F(0)‖ ≤ cb. From this and the
implicit function theorem we conclude that there is positive b, depending only on M
and Σ, such that the mapping x = x(y) takes diffeomorphically the cube Qb onto
some neighborhood of the point P and satisfies inequalities (4.14). Inclusions (4.15)
easily follow from (4.14).



1184 P. I. PLOTNIKOV, E. V. RUBAN, AND J. SOKOLOWSKI

Model equation. Let us consider the following boundary value problem in standard
parabolic neighborhood Pa:

(4.19) ∂y1
ϕ(y) + σϕ(y) = f(y) in Pa, ϕ(y) = 0 for y1 = a−(y2, y3).

Lemma 4.4. Assume that

(4.20) 1/2 < s ≤ 1 and 1 < r < 3/(2s− 1).

Then for any f ∈ W s,r(Qa)∩L∞(Qφ
a), problem (4.19) has a unique solution satisfying

the inequalities

‖ϕ‖W s,r(Pa) ≤ c(r, s)
(
a4/r−s‖f‖L∞(Pa) + a1/r‖f‖W s,r(Pa)

)
,

‖ϕ‖L∞(Qφ
a) ≤ σ−1‖f‖L∞(Qφ

a).
(4.21)

Proof. It suffices to prove the lemma for s < 1. For every y, z ∈ R
3, we denote by

Y = (y2, y3), Z = (z2, z3), respectively. Obviously, we have

(4.22) ϕ(y) =

∫ y1

a−(Y )

eσ(x1−y1)f(x1, Y ) dx1 and σ‖ϕ‖C(Pa) ≤ ‖f‖C(Pa).

Therefore, it suffices to estimate the seminorm |ϕ|s,r,Pa
. Choose an arbitrary y, z ∈

Pa. Without any loss of generality we can assume that a−(Z) ≤ a−(Y ). The identity

ϕ(z) − ϕ(y) = ϕ(z1, Z) − ϕ(y1, Z) +

∫ a−(Y )

a−(Z)

eσ(x1−y1)f(x1, Z) dx1

+

∫ y1

a−(Y )

eσ(x1−y1)(f(x1, Z) − f(x1, Y )) dx1

implies the estimate

|ϕ(z)−ϕ(y)| ≤ ‖f‖L∞(Pa)(2|y1−z1|+|a−(Y )−a−(Z)|)+
∫ a

−a

|(f(x1, Z)−f(x1, Y ))| dx1,

which along with the inequality(∫ a

−a

|(f(x1, Z) − f(x1, Y ))| dx1

)r

≤ ar−1

∫ a

−a

|(f(x1, Z) − f(x1, Y ))|r dx1

leads to the estimate

(4.23) |ϕ|rs,r,Pa
≤ 2‖f‖rC(Pa)(I1 + I2) + a(r−1)I3.

Here we denote

I1 =

∫
Qa×Qa

|y1 − z1|r
|x− y|3+rs

dxdy, I2 =

∫
Pa×Pa

|a−(Y ) − a−(Z)|r
|x− y|3+rs

dxdy,

I3 =

∫
[−a,a]4

∫ a

−a

|f(x1, Y ) − f(x1, Z)|r
|x− y|3+rs

dxdy dx1.
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Let us estimate the terms Ij , i = 1, 2, 3. We begin with the observation that∫
[−a,a]2

dZ

|x− y|3+rs
=

1

|y1 − z1|3+rs

∫
[−a,a]2

dZ

(|Y − Z|2/|y1 − z1|2 + 1)(3+rs)/2

≤ 1

|y1 − z1|1+rs

∫
R2

dZ

(|Z|2 + 1)(3+rs)/2
≤ c

|y1 − z1|1+rs
,

and hence ∫
[−a,a]4

dY dZ

|x− y|3+rs
≤ ca2

|y1 − z1|1+rs
.

From this we obtain

(4.24) I1 ≤ ca2

∫ a

−a

(∫ a

−a

|y1 − z1|r(1−s)−1 dz1

)
dy1 ≤ c(r, s)a3+r(1−s).

In order to estimate I2, note that, by Lemma 4.2,

|a−(Y ) − a−(Z)| ≤ c|Y − Z|1/2, |a−(Y ) − a−(Z)| ≤ c|Y − Z|
(

1
√
y3

+
1

√
z3

)
.

Next, it follows from the assumptions of the lemma that there is λ ∈ (0, 1) such that

(4.25) λ < 3/r, 0 < (1 + λ)/2 − s < 1/r.

Noting that

|a−(Y ) − a−(Z)| ≤ c|Y − Z|(1+λ)/2((y3)
−λ/2 + (z3)

−λ/2),

we obtain

I2 ≤ c

∫
Pa

(y3)
−rλ/2

(∫
Qa

|Y − Z|r(1+λ)/2

|x− y|3+rs
dz

)
dy

+ c

∫
Pa

(z3)
−rλ/2

(∫
Qa

|Y − Z|r(1+λ)/2

|x− y|3+rs
dy

)
dz

≤ 2c

∫
Pa

(y3)
−rλ/2

(∫
Qa

|Y − Z|r(1+λ)/2

|x− y|3+rs
dz

)
dy.

Next, inequalities (4.25) imply

∫
Qa

|Y − Z|r(1+λ)/2

|x− y|3+rs
dz

≤
∫ a

−a

|y1 − z1|−3−rs

(∫
R2

|Y − Z|r(1+λ)/2

(|Y − Z|2|y1 − z1|−2 + 1)(3+rs)/2
dZ

)

≤
∫ a

−a

|y1 − z1|−rs−1+r(1+λ)/2dz1

∫
R2

|Z|r(1+λ)/2

(1 + |Z|2)(3+rs)/2
dZ

≤ c(r, s)

∫ a

−a

|y1 − z1|r(1+λ)/2−rs−1dz1 ≤ c(r, s).
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From this and Lemma 4.2 we conclude that

I2 ≤ c(r, s)

∫
Pa

(y3)
−rλ/2 dy

≤ c(r, s)

∫
[−a,a]2

(∫
cy2

1≤y3≤a

(y3)
−rλ/2 dy3

)
dy1dy2(4.26)

≤ ac(r, s)

∫ a

−a

|y1|2−rλ dy1 ≤ ac(r, s).

The remaining part of the proof is based on the following proposition.
Proposition 4.5. Let f ∈ W s,r(Qa) and sr > 1. Then f has an extension f̄

onto R
3, which vanishes outside the set Q3a and satisfies

(4.27) ‖f̄‖W s,r ≤ ca(3−rs)/r‖f‖L∞(Qa) + |f |s,r,Qa .

Proof. Define an extension of f onto the slab [−3a, 3a] × [−a, a]2 by the formula

f(x±) = f(x) for x ∈ Qa, where x± = (±(2a− x1), x2, x3).

It easily follows from the definition of the seminorm | · |r,s,Ω that

‖f‖W s,r([−3a,3a]×[−a,a]2) ≤ 3‖f‖Lr(Qa) + 6|f |s,r,Qa ≤ 6‖f‖W s,r(Qa).

Proceeding in the same way as before, first we can extend f onto the plate [−3a, 3a]2×
[−a, a] and then over the cube Q3a. Obviously, the extended function, still denoted
by f , satisfies the inequalities

(4.28) ‖f‖W s,r(Q3a) ≤ 216‖f‖W s,r(Qa), ‖f‖C(Q3a) ≤ ‖f‖C(Qa).

Next choose μ ∈ C∞(R3) such that 0 ≤ μ ≤ 1, μ = 1 in Q1, and μ = 0 outside of
Q22. Set f̄ = fμa, where μa(x) = μ(x/a). Next, the interpolation inequality along
with the estimate |∇μa| ≤ ca−1 implies

‖μa‖W s,r(R3) ≤ ‖μa‖1−s
Lr(R3)‖μa‖sW 1,r(R3) ≤ ca3(1−s)/ra(3−r)s/r = ca(3−rs)/r.

From this and the obvious inequality ‖μaf‖W s,r(R3) ≤ ‖f‖L∞(Q3a)‖μa‖W s,r(R3) +
‖f‖W s,r(Q3a) we conclude that

‖μaf‖W s,r(R3) ≤ ca(3−rs)/r‖f‖L∞(Qa) + ‖f‖W s,r(Qa).

Hence f̄ = μaf satisfies (4.27), and the proposition follows.
Let us return to the proof of Lemma 4.4. We have

I3 =

∫
[−a,a]4

∫ a

−a

|Z − Y |−3−rs(|z1 − y1|2|Z − Y |−2 + 1)−(3+rs)/2

× |f(x1, Z) − f(x1, Y )|r dxdydx1 ≤ ca

∫
R

(|t|2 + 1)−(3+rs)/2dt

×
∫

[−a,a]5
|Z − Y |−2−rs|f(x1, Z) − f(x1, Y )|r dXdY dx1

= ca

∫ a

−a

|f(x1, ·)|rr,s,[−a,a]2 dx1,
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which yields

(4.29) I3 ≤ ca‖f‖rLr(−a,a;W s,r([−a,a]2) ≤ ca‖f̄‖rLr(R;W s,r(R2)).

Recall that, for s = 0, 1, the embedding operator W s,r(R3) ↪→ Lr(R;W s,r(R2)) is
bounded. By virtue of Lemma B.1, this results holds true for all s ∈ [0, 1], which
along with Proposition 4.5 and inequality (4.29) implies

I3 ≤ ca4−rs‖f‖rL∞(Qa) + a(|f |s,r,Qa)r.

Combining this result with (4.24), (4.26), since 3 + r(1 − s) ≥ 4 − rs, we finally
obtain

‖f‖rL∞(Qa)(I1 + I2) + I3 ≤ ca4−sr‖f‖rL∞(Qa) + ca|f |rs,r,Qa
.

Substituting this inequality into (4.23) gives (4.21), and the lemma follows.
Let us consider the following boundary value problem in the slab Q+

a = [−a, a]2×
[0, a]:

(4.30) ∂y3
ϕ(y) + σϕ(y) = f(y) in Q+

a , ϕ(y) = 0 for y3 = 0.

Lemma 4.6. Problem (4.30) has a unique solution satisfying the inequality

(4.31) ‖ϕ‖W s,r(Q+
a ) ≤ c(r, s)

(
a4/r−s‖f‖L∞(Q+

a ) + a1/r‖f‖W s,r(Q+
a )

)
.

Proof. The proof of Lemma 4.4 can also be used in this case.
Local existence results. It follows from the assumptions of Theorem 1.4 that the

vector field u and the manifold Σ satisfy all assumptions of Lemma 4.2. Therefore,
there exist positive numbers a, ρc, and Rc, depending only on Σ and ‖u‖C1(Ω), such
that for all P ∈ Γ, the canonical diffeomorphism x : Qa �→ OP is well defined and
meets all requirements of Lemma 4.2. Fix an arbitrary point P ∈ Γ and consider the
boundary value problem

(4.32) u · ∇ϕ + σϕ = f in OP , ϕ = 0 on Σin ∩ OP .

Lemma 4.7. Suppose that the exponents s, r satisfy condition (1.31). Then, for
any f ∈ C1(Ω), problem (4.32) has a unique solution satisfying the inequalities

|ϕ|s,r,BP (ρc) ≤ c(‖f‖C(BP (Rc)) + |f |s,r,BP (Rc)), ‖ϕ‖C(BP (ρc)) ≤ σ−1‖f‖C(BP (Rc)),

(4.33)

where the constant c depends only on Σ, M , σ, s, r and the constant ρc is determined
by Lemma 4.2.

Proof. We transform (4.33) using the normal coordinates (y1, y2, y3) given by
Lemma 4.2. Set ϕ(y) = ϕ(x(y)) and f(y) = f(x(y)). Next note that (4.3) implies the
identity u∇xϕ = ∂y1ϕ(y). Therefore the function ϕ(y) satisfies the following equation
along with the boundary conditions:

(4.34) ∂y1ϕ + σϕ = f in Qa ∩ {y3 > Φ}, ϕ = 0 for y3 = Φ(y1, y2), y1 < 0.

It follows from Lemma 4.4 that problem (4.34) has a unique solution ϕ ∈ W s,r(Ga)
satisfying the inequality

(4.35) |ϕ|s,r,Ga ≤ c(‖f‖C(Qa) + |f |s,r,Qa), ‖ϕ‖C(Ga) ≤ σ−1‖f‖C(Qa),
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where the domain Ga is defined by (4.6). It remains to note that, by estimate (4.4),
the mappings x±1 are uniformly Lipschitz, which along with inclusions (4.7) implies
the estimates

|ϕ|s,r,BP (ρc) ≤ c|ϕ|s,r,Ga
, |f |s,r,Qa

≤ c|f |s,r,BP (Rc).

Combining these results with (4.35) we finally obtain (4.33) and the lemma follows.
In order to formulate the similar result for interior points of the inlet Σin we

introduce the set

(4.36) Σ′
in =

{
x ∈ Σin : dist (x,Γ) ≥ ρc/3},

where the constant ρc is given by Lemma 4.2. It is clear that

inf
P∈Σ′

in

U(P ) · n(P ) ≥ N > 0,

where the constant N depends only on M and Σ. It follows from Lemma 4.3 that
there are positive numbers b, ρi, and Ri such that for each P ∈ Σ′

in, the canonical
diffeomorphism x : Qb �→ OP is well defined and satisfies the hypotheses of Lemma
4.3. The following lemma gives the local existence and uniqueness of solutions to the
boundary value problem

(4.37) u · ∇ϕ + σϕ = f in OP , ϕ = 0 on Σin ∩ OP .

Lemma 4.8. Suppose that the exponents s, r satisfy condition (1.38). Then, for
any f ∈ C1(Ω) and P ∈ Σ′

in, problem (4.32) has a unique solution satisfying the
inequalities

|ϕ|s,r,BP (ρi) ≤ c(‖f‖C(BP (Ri)) + |f |s,r,BP (Ri)),

‖ϕ‖C(BP (R)) ≤ σ−1‖f‖C(BP (Ri)),
(4.38)

where c depends on Σ, M , σ, and exponents s, r.
Proof. Using the normal coordinates given by Lemma 4.3 we rewrite (4.37) in the

form

∂y3ϕ + σϕ = f in Qb, ϕ = 0 for y3 = 0.

Applying Lemma 4.4 and arguing as in the proof of Lemma 4.7 we obtain (4.38).
Existence of solutions near inlet. The next step is based on the well-known geo-

metric lemma (see [21, Chap. 3]).
Lemma 4.9. Suppose that a given set A ⊂ R

d is covered by balls such that each
point x ∈ A is the center of a certain ball Bx(r(x)) of radius r(x). If sup r(x) < ∞,
then from the system of the balls {Bx(r(x))} it is possible to select a countable system
Bxk

(r(xk)) covering the entire set A and having multiplicity not greater than a certain
number n(d) depending only on the dimension d.

The following lemma gives the dependence of the multiplicity of radii of the
covering balls.

Lemma 4.10. Assume that a collection of balls Bxk
(r) ⊂ R

3 of constant radius
r has the multiplicity nr. Then the multiplicity of the collections of the balls Bxk

(R),
r < R, is bounded by the constant 27(R/r)3nr.

Proof. Let nR be a multiplicity of the system {Bxk
(R)}. This means that at

least nR balls, say Bx1(R), . . . , BxnR
(R), have the common point P . In particular, we
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have Bxi
(r) ⊂ BP (3R) for all i ≤ nR. Introduce the counting function ι(x) for the

collection of balls Bxi
(r), defined by

ι(x) = card{i : x ∈ Bxi(r), 1 ≤ i ≤ nr}.

Note that ι(x) ≤ nr. We have

4π

3
nRr

3 =

nR∑
i=1

meas Bxi
(r) =

∫
∪iBxi

(r)

ι(x) dx ≤ nr

∫
∪iBxi

(r)

dx ≤ 4π

3
(3R)3nr,

and the lemma follows.
We are now in a position to prove the local existence and uniqueness of a solution

to the first boundary value problem for the transport equation in the neighborhood
of the inlet Σin. Let Ωt be the t-neighborhood of the set Σin,

Ωt = {x ∈ Ω : dist (x,Σin) < t}.

Lemma 4.11. Let t = min{ρc/2, ρi/2} and T = max{Rc, Ri}, where the constants
ρα, Rα are defined by Lemmas 4.2 and 4.3. Then there exists a constant C, depending
only on M , Σ, and σ, such that, for any f ∈ C1(Ω), the boundary value problem

(4.39) u · ∇ϕ + σϕ = f in Ωt, ϕ = 0 on Σin

has a unique solution satisfying the inequalities

|ϕ|s,r,Ωt ≤ C(‖f‖C(ΩT ) + |f |s,r,ΩT
), ‖ϕ‖C(Ωt) ≤ σ−1‖f‖C(ΩT ).(4.40)

Proof. It follows from Lemma 4.9 that there is a covering of the characteristic
manifold Γ by the finite collection of balls BPi

(ρc/4), 1 ≤ i ≤ m, Pi ∈ Γ, of the
multiplicity n. The cardinality m of this collection does not exceed 4n(ρc)

−1L, where
L is the length of Γ. Obviously, the balls BPi(ρc) cover the set

VΓ = {x ∈ Ω : dist (x,Γ) < ρc/2}.

By virtue of Lemma 4.7, in each such ball the solution to problem (4.39) satisfies
inequalities (4.33), which leads to the estimate

(4.41) |ϕ|rs,r,VΓ
≤
∑
i

|ϕ|rs,r,BPi
(ρc)

≤ c
∑
i

‖f‖rC(BPi
(Rc))

+ c
∑
i

|f |rs,r,BPi
(Rc)

,

where c depends only on M , Σ, and σ. By Lemma 4.10, the multiplicity of the
system of balls BPi(Rc) is bounded from above by 123(Rc/ρc)

3, which along with the
inclusion ∪iBPi(Rc) ⊂ ΩT yields

m∑
i=1

|f |rs,r,BPi
(Rc)

≤ 123(Rc/ρc)
3|f |rs,r,ΩT

.

Obviously we have∑
i

‖f‖rC(BPi
(Rc))

≤ m‖f‖rC(ΩT ) ≤ 4n(ρc)
−1L‖f‖rC(ΩT ).
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Combining these results with (4.41) we obtain the estimates for the solution to prob-
lem (4.39) in the neighborhood of the characteristic manifold Γ,

(4.42) |ϕ|s,r,VΓ
≤ c‖f‖C(ΩT ) + c|f |s,r,ΩT

.

Our next task is to obtain the similar estimate in the neighborhood of the compact
Σ′

in ⊂ Σin. To this end, we introduce the set

Vin = {x ∈ Ω : dist (x,Σ′
in) < ρi/2},

where Σ′
in is given by (4.36). By virtue of Lemma 4.9, there exists the finite collection

of balls BPk
(ρi/4), 1 ≤ k ≤ m, Pk ∈ Σ′

in, of the multiplicity n which covers Σ′
in.

Obviously m ≤ 16n(ρi)
−2meas Σin, and the balls BPk

(ρi) cover the set Vin. From this
and Lemma 4.8 we conclude that

|ϕ|rs,r,Vin
≤
∑
k

|ϕ|rs,r,BPk
(ρi)

≤ c
∑
k

‖f‖rC(BPk
(Ri))

+ c
∑
k

|f |rs,r,BPk
(Ri)

.

By virtue of Lemma 4.10, the multiplicity of the system of balls BPi(Ri) is not greater
than 123(Ri/ρi)

3, which yields∑
i

|f |rs,r,BPi
(Ri)

≤ 123(Ri/ρi)
3|f |rs,r,ΩT

.

Obviously we have∑
k

‖f‖rC(BPk
(Ri))

≤ m‖f‖rC(ΩT ) ≤ 16n(ρk)
−2meas Σin‖f‖rC(ΩT ).

Thus we get

(4.43) |ϕ|s,r,Vin
≤ c‖f‖C(ΩT ) + c|f |s,r,ΩT

.

Since VΓ and Vin cover Ωt, this inequality along with inequality (4.42) yields (4.40),
and the lemma follows.

Partition of unity. Let us turn to the analysis of the general problem

(4.44) Lϕ := u · ∇ϕ + σϕ = f in Ω, ϕ = 0 on Σin.

The next step is based on the theory of partial differential equations with nonnegative
characteristic form. The following lemma is a particular case of general results of
Oleinik and Radkevich; we refer to Theorems 1.5.1 and 1.6.2 in [34].

Lemma 4.12. Assume that Ω is a bounded domain of the class C2, the vector field
u belongs to the class C1(Ω)3, and σ − div u(x) > δ > 0. Then, for any f ∈ L∞(Ω),
problem (1.28) has a unique solution such that ‖ϕ‖L∞(Ω) ≤ δ−1‖f‖L∞ . Moreover,
this solution is continuous at the interior points of Σin and vanishes on Σin. If, in
addition, Γ = cl (Σout ∩ Σ0) ∩ cl Σin is a smooth one-dimensional manifold, then a
bounded generalized solution to problem (4.44) is unique.

The question of smoothness of solutions to boundary value problems for transport
equations is more complicated. All known results [19], [34] are related to the case of
Γ = ∅. The following lemma is a consequence of Theorem 1.8.1 in the monograph
[34].

Lemma 4.13. Assume that Ω is a bounded domain of the class C2 and Σout = ∅.
Furthermore, let the following conditions hold.
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(1) The vector field u and the function f belong to the class C1(R3).

(2) There is Ω′ � Ω such that the inequality

σ − sup
Ω′

⎧⎨
⎩|div u| − 1

2
sup
i

∑
j �=i

∣∣∣∣ ∂ui

∂xj

∣∣∣∣− 1

2
sup
j

∑
j �=i

∣∣∣∣∂uj

∂xi

∣∣∣∣
⎫⎬
⎭ > 0

is fulfilled. Then a weak solution to problem (1.28) satisfies the Lipschitz condition in
Ω.

Using these results we can construct a strong solution to problem (1.28). Recall
that by Lemma 4.11, for any f ∈ C1(Ω), problem (4.44) has a unique strong solution
defined in neighborhood Ωt of the inlet Σin. On the other hand, Lemma 4.12 guaran-
tees the existence and uniqueness of a bounded weak solution to problem (4.44). The
following lemma shows that both solutions coincide in Ωt.

Lemma 4.14. Under the assumptions of Theorem 1.4 and Lemma 4.11, each
bounded generalized solution to problem (4.44) coincides in Ωt with the local solu-
tion ϕt.

Proof. Let ϕ ∈ L∞(Ω) be a weak solution to problem (4.44). Recall that each
point P ∈ Γ has a canonical neighborhood OP := x(Qa), where canonical diffeomor-
phism x : Qa �→ OP is defined by Lemma 4.2. Choose an arbitrary function ζ ∈ C1(Ω)
vanishing on Σin and outside of OP and set

ϕ(y) = ϕ(x(y)), f(y) = f(x(y)), ζ(y) = ζ(x(y)), y ∈ Qa ∩ {y3 > Φ}.

By the definition of a weak solution to the transport equation we have∫
OP∩Ω

(
σϕζ − ϕ div(ζu) − fζ) dx = 0.

Direct calculations lead to the identity divx(ζu) = det F−1 divy(ζdet F F−1u), in
which the notation F stands for the Jacobi matrix F = Dyx(y). On the other hand,
(4.3) implies the equality F−1u = e1. From this we conclude that

∫
Qa∩{y3>Φ}

((
det F ζ

)(
σϕ− f

)
− ϕ

∂

∂y1
(det F ζ)

)
dy = 0.

Recall that, by Lemma 4.2, ∂y1F is continuous and det F is strictly positive in the
cube Qa. Setting ξ = det Fζ we conclude that the integral identity

∫
Qa∩{y3>Φ}

(
ξ
(
σϕ− f

)
− ϕ

∂ξ

∂y1

)
dy = 0

holds true for all functions ξ ∈ C0(Qa) having continuous derivative ∂y1ζ ∈ C(Qa)
and vanishing for y3 = Φ(y1, y2), y1 < 0. Since f is continuously differentiable, ϕ
belongs to the class C1

loc(Qa ∩ {y3 > Φ}) and satisfies (4.34). On the other hand, ϕt

also satisfies (4.34). Obviously, all solutions to problem (4.34) coincide in the domain
Ga, and hence ϕt = ϕ in this domain. Recalling that BP (ρc) ⊂ x(Ga) we obtain that
ϕt = ϕ in the ball BP (ρc). The same arguments show that, for any P ∈ Σ′

in, the
function ϕt is equal to ϕ in the ball BP (ρi). It remains to note that the balls BP (ρc)
and BP (ρi) cover Ωt, and the lemma follows.
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Furthermore, we split the weak solution ϕ ∈ L∞(Ω) to problem (4.44) into two
parts, namely, the local solution ϕt and the remainder vanishing near the inlet. To
this end fix a function Λ ∈ C∞(R) such that

(4.45) 0 ≤ Λ′ ≤ 3, Λ(u) = 0 for u ≤ 1 and Λ(u) = 1 for u ≥ 3/2,

and introduce the one-parametric family of smooth functions

(4.46) χt(x) =
1

t3

∫
R3

Θ

(
2(x− y)

t

)
Λ

(
dist (y,Σin)

t

)
dy,

where Θ ∈ C∞(R3) is a standard mollifying kernel supported in the unit ball. It
follows that

χt(x) = 0 for dist (x,Σin) ≤ t/2, χt(x) = 1 for dist (x,Σin) ≥ 2t,

|∂lχt(x)| ≤ �(l)t−l for all l ≥ 0,
(4.47)

where �(l) is a constant. Now fix a number t = t(Σ,M) satisfying all assumptions of
Lemma 4.11 and set

(4.48) ϕ(x) = (1 − χt/2(x))ϕt(x) + φ(x).

By virtue of (4.47) and Lemma 4.14, the function φ ∈ L∞(Ω) vanishes in Ωt/2 and in
a weak sense satisfies the equations

u∇φ + σφ = χt/2f + ϕtu∇χt/2 =: F in Ω, φ = 0 on Σin.

Next introduce a new vector field ũ(x) = χt/8(x)u(x). It easy to see that χt/8 = 1
on the support of φ, and hence the function φ is also a weak solution to the modified
transport equation

(4.49) L̃φ := ũ∇φ + σφ = F in Ω.

The advantage of such an approach is that the topology of integral lines of the mod-
ified vector field ũ drastically differs from the topology of integral lines of u. The
corresponding inlet, outgoing set, and characteristic set have the other structure and
Σ̃in = ∅. In particular, (4.49) does not require boundary conditions. Finally note that
the C1-norm of the modified vector fields has the majorant

(4.50) ‖ũ‖C1(Ω) ≤ M(1 + 16�(1)t−1),

where �(1) is a constant from (4.47). The following lemma constitutes the existence
and uniqueness of solutions to the modified equation.

Lemma 4.15. Suppose that

(4.51) σ > σ∗(M,Σ) = 4M(1 + 16�(1)t−1) + 1, M = ‖u‖C1(Ω),

and 0 ≤ s ≤ 1, r > 1. Then, for any F ∈ W s,r(Ω)∩L∞(Ω), (4.49) has a unique weak
solution φ ∈ W s,r(Ω) ∩ L∞(Ω) such that

(4.52) ‖φ‖W s,r(Ω) ≤ c‖F‖W s,r(Ω), ‖φ‖L∞(Ω) ≤ σ−1‖F‖L∞(Ω),

where c depends only on r.
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Proof. Without any loss of generality we can assume that F ∈ C1(Ω). By virtue
of (4.50) and (4.51), the vector field ũ and σ meet all requirements of Lemma 4.13.
Hence (4.49) has a unique solution φ ∈ W 1,∞(Ω). For i = 1, 2, 3 and τ > 0, define
the finite difference operator

δiτφ =
1

τ

(
φ(x + τei) − φ(x)

)
.

It is easy to see that

(4.53) ũ∇δiτφ + σδiτφ = δiτF − δiτ ũ∇φ(x + τei) in Ω ∩ (Ω − τei).

Next introduce the function η ∈ C∞(R) such that η′ ≥ 0, η(u) = 0 for u ≤ 1, and
η(u) = 1 for u ≥ 1, and set ηh(x) = η

(
dist (x, ∂Ω)/h

)
. Since Σ̃in = ∅, the inequality

(4.54) lim sup
h→0

∫
Ω

gũ · ∇ηh(x) dx ≤ 0

holds true for all nonnegative functions g ∈ L∞(Ω). Choosing h > τ , multiplying
both sides of (4.53) by ηh|δiτφ|r−2δiτφ, and integrating the result over Ω∩ (Ω− τei),
we obtain∫

Ω∩(Ω−τei)

ηh|δiτφ|r
(
σ − 1

r
div ũ

)
dx−

∫
Ω∩(Ω−τei)

|δiτφ|rũ∇ηh dx

=

∫
Ω∩(Ω−τei)

(
δiτF − δiτ ũ∇φ(x + τei)

)
ηh|δiτφ|r−2δiτφdx.

Letting τ → 0 and then h → 0 and using inequality (4.54), we obtain

(4.55)

∫
Ω

|∂xiφ|r
(
σ − 1

r
div ũ

)
dx ≤

∫
Ω

(
∂xiF − ∂xi ũ∇φ

)
|∂xiφ|r−2∂xiφdx.

Next note that ∑
i

∂xi ũ∇φ
∣∣∂xi

φ|r−2∂xi
φ ≤ 3‖ũ‖C1(Ω)

∑
i

|∂xi
φ|r.

On the other hand, since 1/r + 3 ≤ 4, inequalities (4.50) and (4.51) imply

σ −
(

1

r
+ 3

)
‖ũ‖C1(Ω) ≥ σ − 4M(1 + 16�(1)t−1) ≥ 1.

From this we conclude that

∑
i

∫
Ω

|∂xi
φ|r dx ≤

∑
i

∫
Ω

|∂xi
φ|r−1|∂xi

F | dx

≤
(∑

i

∫
Ω

|∂xi
φ|r/(r−1) dx

)(r−1)/r (∑
i

∫
Ω

|∂xi
F |r dx

)1/r

,

which leads to the estimate

(4.56) ‖∇φ‖Lr(Ω) ≤ c(r)‖∇F‖Lr(Ω).
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Next, multiplying both sides of (4.49) by |φ|r−2ηh and integrating the result over Ω,
we get the identity∫

Ω

(
σ − 1

r
div ũ

)
ηh|φ|r dx−

∫
Ω

|φ|rũ∇ηh dx =

∫
Ω

Fηh|φ|r−2φdx.

The passage h → 0 gives the inequality∫
Ω

(
σ − 1

r
div ũ

)
|φ|r dx ≤

∫
Ω

|F ||φ|r−1 dx.

Recalling that σ − 1/r div ũ ≥ 1, we finally obtain

(4.57) ‖φ‖Lr(Ω) ≤ c(r)‖F‖Lr(Ω).

Inequalities (4.56) and (4.57) imply estimate (4.52) for s = 0, 1. Hence the linear

operator L̃
−1

: F �→ φ is continuous in the Banach spaces W 0,r(Ω) and W 1,r(Ω),
and its norm does not exceed c(r). Recall that W s,r(Ω) is the interpolation space
[Lr(Ω),W 1,r(Ω)]s,r. From this and Lemma B.1 we conclude that inequality (4.52) is
fulfilled for all s ∈ [0, 1], which completes the proof.

Proof of Theorem 1.4. We begin with the proof of statement (i). Fix σ > σ∗, where
the constant σ∗ depends only on Σ, U, and ‖u‖C1(Ω) and is defined by (4.51). Without
any loss of generality we can assume that f ∈ C1(Ω). The existence and uniqueness
of a weak bounded solution for σ > σ∗ follows from Lemma 4.12. Moreover, by virtue
of Lemma 4.12, such a solution satisfies the second inequality in (1.33). Therefore, it
suffices to prove estimate (1.33) for ‖ϕ‖W s,r(Ω). Since W s,r(Ω)∩L∞(Ω) is the Banach
algebra, representation (4.48) together with inequality (4.47) implies

(4.58) ‖ϕ‖W s,r(Ω) ≤ c(1 + t−1)(‖ϕt‖W s,r(Ωt) + ‖ϕt‖L∞(Ωt)) + c‖φ‖W s,r(Ω).

On the other hand, Lemma 4.15 along with (4.49) yields

‖φ‖W s,r(Ω) ≤ c‖F‖W s,r(Ω) ≤ c‖χt/2f‖W s,r(Ω) + ‖ϕtu∇χt/2‖W s,r(Ω).

The first term in the right-hand side is bounded:

‖χt/2f‖W s,r(Ω) ≤ c(1 + t−1)(‖f‖W s,r(Ω) + ‖ϕt‖L∞(Ω)).

In order to estimate the second term we note that, by virtue of (4.47), ‖u∇χt/2‖C1(Ω) ≤
cM(1 + t−2), which gives

‖ϕtu∇χt/2‖W s,r(Ω) ≤ cM(1 + t−2)(‖ϕt‖W s,r(Ωt) + ‖ϕt‖L∞(Ωt)).

Substituting the obtained estimates into (4.58) we arrive at the inequality

‖ϕ‖W s,r(Ω) ≤ c(M +1)(1+ t−2)
(
‖ϕt‖W s,r(Ω) +‖ϕt‖L∞(Ωt) +‖f‖W s,r(Ωt) +‖f‖L∞(Ω)

)
,

which along with (4.40) leads to the estimate (1.33). In order to prove statement (ii)
of Theorem 1.4, we note that the adjoint equation can be written in the form

−u∇ϕ∗ + σϕ∗ = f + ϕ∗ div u.



INHOMOGENEOUS BOUNDARY VALUE PROBLEMS 1195

Since

‖div uϕ∗‖W s,r(Ω) ≤ c
(
‖div u‖W s,r(Ω) + ‖div u‖C(Ω)

)
‖ϕ∗‖W s,r(Ω),

we have

‖div uϕ∗‖W s,r(Ω) + ‖div uϕ∗‖C(Ω) ≤ δ(‖ϕ∗‖W s,r(Ω) + ‖ϕ∗‖C(Ω)),

and the needed result follows from (i) and the contraction mapping principle.

Appendix A. Proof of Lemmas 1.7 and 2.2.
Proof of Lemma 1.7. Since ∂Ω belongs to the class C1, functions ϕ, ς have the

extensions ϕ, ς ∈ W s,r(Ω) ∩ W 1,2(Ω) such that ϕ, ς are compactly supported in R
d

and

‖ϕ‖W s,r(Rd) ≤ c‖ϕ‖W s,r(Ω), ‖ς‖W s,r(Rd) ≤ c‖ς‖W s,r(Ω).

By virtue of Definition 1.2 and inequality (1.19), function w has the extension by 0
outside Ω, denoted by w, such that

‖w‖W 1−s,r′ (Rd) ≤ c‖w‖W1−s,r′
0 (Ω)

.

Obviously we have

B(w, ϕ, ς) = −
∫

Rd

w · ∇ϕ ς dx.

The following multiplicative inequality is due to Maz’ya [26]. For all s1 > 0, r1 > 1,
and r1s1 < d,

(5.1) ‖uv‖W s1,r1 (Rd) ≤ c(r1, s1, d)(‖v‖W s1,d/s1 (Rd) + ‖v‖L∞(Rd))‖u‖W s1,r1 (Rd).

By virtue of (5.1), we have

‖w ς‖W 1−s,r′ (Rd) ≤ c‖w‖W 1−s,r′ (Rd)

(
‖ς‖W 1−s,d/(1−s)(Rd) + ‖ς‖L∞(Rd)

)
.

On the other hand, since r−1 − (s − (1 − s))/d ≤ (1 − s)/d for sr > d, embedding
inequality (1.21) yields

‖ς‖W 1−s,d/(1−s)(Rd) ≤ c‖ς‖W s,r(Rd), ‖ς‖L∞(Rd) ≤ c‖ς‖W s,r(Rd).

Thus we get

‖w ς‖W 1−s,r′ (Rd) ≤ c‖w‖W 1−s,r′ (Rd)‖ς‖W s,r(Rd).

Next note that the operator ∇ : W 1,r(Rd) �→ W 0,r(Rd), ∇ : W 0,r(Rd) �→ W−1,r(Rd)
is continuous. By virtue of the basic property of interpolation spaces, the operator
∇ : W s,r(Rd) �→ W s−1,r(Rd) is continuous for all s ∈ [0, 1]. In particular we have
‖∇ϕ‖W s−1,r(Rd) ≤ c‖ϕ‖W s,r(Rd). Since ϕ and w ς are compactly supported in R

d, the
duality principle implies∫

Rd

w ς∇ϕdx ≤ c‖w ς‖W 1−s,r′ (Rd)‖∇ϕ‖W s−1,r(Rd)

≤ c‖w‖W 1−s,r′ (Rd)‖ς‖W s,r(Rd)‖ϕ‖W s,r(Rd),

which completes the proof.
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Proof of Lemma 2.2. By virtue of (1.19), the extension w satisfies the inequalities

‖w‖W 1−s,r′ (R3) ≤ c‖w‖W1−s,r′
0 (Ω)

, ‖w‖W 1,2(R3) ≤ c‖w‖W 1,2(Ω).

On the other hand, the vector field h has a compactly supported extension h : R
3 →

R
3 such that ‖h‖W 1+s,r(R3) ≤ c‖h‖W 1+s,r(Ω); however, this extension does not vanish

outside Ω. Substituting the expression for A into the formula for A and integrating
by parts, we conclude that A(w,h) equals∫

R3

g
−1
(
∇
(
((N∗

1)
−1 − I)w

)
:
(
N1N

∗
1∇(N−1

1

∗
h))

+∇w :
(
N1N

∗
1∇(N−1

1

∗
h) − g∇h

))
dx.

Since ‖N±1
1 − I‖C2(Ω) ≤ cτ2, we have

‖((N∗
1)

−1 − I)w‖W 1−s,r′ (R3) ≤ cτ2‖w‖W 1−s,r′ (R3),

‖g−1(N1N
∗
1∇(N−1

1

∗
h)) −∇h‖W s,r(R3) ≤ cτ2‖h‖W 1+s,r(R3).

Application of the duality arguments, similar to that in the proof of Lemma 1.7,
completes the proof.

Appendix B. Interpolation. In this section we recall some results from the
interpolation theory; see [6] for the proofs. Let A0 and A1 be Banach spaces. For
t > 0 introduce two nonnegative functions K : A0 + A1 �→ R and J : A0 ∩ A1 �→ R

defined by

K(t, u,A0, A1) = inf
u=u0+u1
ui∈Ai

‖u0‖A0 + t‖u1‖A1 ,

J(t, u,A0, A1) = max{‖u‖A0
, t‖u‖A1

}.

For each s ∈ (0, 1), 1 < r < ∞, the K-interpolation space [A0, A1]s,r,K consists of all
elements u ∈ A0 + A1 having the finite norm

(6.1) ‖u‖[A0,A1]s,r,K =

(∫ ∞

0

t−1−srK(t, u,A0, A1)
r dt

)1/r

.

On the other hand, J-interpolation space [A0, A1]s,r,J consists of all elements u ∈
A0 + A1 which admit the representation

(6.2) u =

∫ ∞

0

v(t)

t
dt, v(t) ∈ A1 ∩A0 for t ∈ (0,∞),

and have the finite norm

(6.3) ‖u‖[A0,A1]s,r,J = inf
v(t)

(∫ ∞

0

t−1−srJ(t, v(t), A0, A1)
r dt

)1/r

< ∞,

where the infimum is taken over the set of all v(t) satisfying (6.2). The first main
result of interpolation theory reads as follows: For all s ∈ (0, 1) and r ∈ (1,∞) the
spaces [A0, A1]s,r,K and [A0, A1]s,r,J are isomorphic topologically and algebraically.
Hence the introduced norms are equivalent, and we can omit indices J and K. The
following simple properties of interpolation spaces directly follow from definitions.
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(1) If A1 ⊂ A0 is dense in A0, then [A0, A1]s,r ⊂ A0 is dense in A0.

(2) If Ãi, i = 0, 1, are closed subspaces of Ai, then [Ã0, Ã1]s,r ⊂ [A0, A1]s,r and
‖u‖[A0,A1]s,r ≤ ‖u‖[Ã0,Ã1]s,r

. One of the important results of the interpolation theory
is the following representation for the interpolation of dual spaces. Let Ai be Banach
spaces such that A1∩A0 is dense in A0+A1. Then the Banach spaces [(A0)

′, (A1)
′]s,r′

and ([A0, A1]s,r)
′ are isomorphic topologically and algebraically. Hence the spaces can

be identified with equivalent norms.

In particular, if A1 ⊂ A0, A
′
0 ⊂ A′

1 are dense in A0 and A′
1, respectively, then

([A0, A1]s,r)
′ is the completion of A′

0 in the ([A0, A1]s,r)
′-norm.

The following lemma is the central result of the interpolation theory.

Lemma B.1. Let Ai, Bi, i = 0, 1, be Banach spaces, and let T : Ai �→ Bi

be a bounded linear operator. Then, for all s ∈ (0, 1) and r ∈ (1,∞), the operator
T : [A0, A1]s,r �→ [B0, B1]s,r is bounded and

‖T‖L([A0,A1]s,r,[X0,Y1]s,r) ≤ ‖T‖sL(A0,B0)
‖T‖1−s

L(A1,B1)
.

Now we show that all basic properties of spaces Ws,r
0 determined by Definition

1.2 easily follow from previously mentioned results of the interpolation theory. Let
Ω be a bounded domain with a boundary of the class C1 or Ω = R

d. It is well
known (see [46]) that, for all s ∈ (0, 1) and r ∈ (1,∞), the Sobolev space W s,r(Ω) =
[Lr(Ω),W 1,r(Ω)]s,r. Since W0,r(Ω) and W1,r

0 (Ω) are closed subspaces of W 0,r(Rd)
and W 1,r(Rd), respectively, the interpolating space Ws,r

0 determined by Definition
1.2 satisfies inequality (1.19).

Next note that, by virtue of pairing (1.22), the space Lr′(Ω) can be identified with
(W0,r

0 )′, which is dense in W−1,r(Ω) = (W1,r
0 (Ω))′. Therefore, the space (Ws,r

0 )′ is the

completion of Lr′(Ω) in the norm of (Ws,r
0 (Ω))′, which is exactly equal to the norm

of W−s,r′(Ω). Hence (Hs,r
0 (Ω))′ = W−s,r′(Ω), which leads to the duality principle

(1.24).

Proof of Lemma 1.3. Finally we show that Lemma 1.3 is a straightforward con-
sequence of classical results on solvability of the first boundary value problem for the
Stokes equations. Note that, by virtue of Theorem 6.1 in [9], for any F ∈ Hs−1,r(Ω)
and G ∈ Hs,r(Ω) with s = 0, 1, problem (1.26) has a unique solution u, π satisfying
inequality

‖u‖Hs+1,r(Ω) + ‖π‖Hs,r(Ω) ≤ c(Ω, r, s)(‖F‖Hs−1,r(Ω) + ‖G‖Hs,r(Ω)).

Thus the relation (F,G) �→ (u, π) determines the linear operator T : Hs−1,r(Ω) ×
Hs,r(Ω) �→ Hs+1,r(Ω) ×Hs,r(Ω). Therefore, Lemma 1.3 is a consequence of Lemma
B.1.

Appendix C. Change of variables. In this section we derive the equations
(1.7). We will write u(y) and �(y), y ∈ Ω, and set

y = x + εT(x), M(x) = I + εT′(x), ũ(x) = u(y(x)), �ε(x) = �(y(x)).

Thus we get uε = N ũ. The Jacobi matrix M is connected with the matrix N by the
relations

(7.1) det M = (det N)1/2 ≡ g, M = gN−1.
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For any function φ ∈ C1(Ω) we have ∇yφ = (M∗)−1∇xφ̃ , where φ̃(x) = φ(y(x)). It
follows from this that the identities∫

Ω̃

(divyu)(y(x)) φ̃(x) det M dx =

∫
Ω

(divyu)(y)φ(y)det dy = −
∫

Ω

u · ∇yφdy

= −
∫

Ω̃

ũ · (M∗)−1∇xφ̃(x) det M dx =

∫
Ω̃

divx

(
(det M)M−1ũ

)
φ̃(x) dx

hold true for all φ ∈ C∞
0 (Ω). On the other hand, by virtue of (7.1) we have

(det M)M−1ũ = uε(x). This leads to the equalities

(divyu)(y(x)) = g
−1divx

(
Nũ(x)

)
≡ g

−1divxuε(x),

divy(�u)(y(x)) = g
−1divx(�εuε),

(7.2)

which imply the modified mass balance equation (1.7b). From (7.2) and the identity
(M∗)−1 = g−1N∗ we obtain

(7.3) ∇
(
λdivu − R

ε2
p(�)

)
= g

−1N∗∇
(
λg

−1 div uε −
R

ε2
p(�ε)

)
.

Combining (7.2) with the identity Δ = div∇ we obtain

Δu(y) = g
−1 div

(
N(M∗)−1∇ũ

)
= g

−1 div
(
g
−1NN∗∇(N−1uε)

)
= g

−1N∗ (Δuε − A(uε)) .
(7.4)

Next note that the components (u∇u)i of the vector u∇u satisfy the equalities

(u∇u)i = u · ∇yui = ũ ·
(
(M∗)−1∇ũi

)
= g

−1Nũ · ∇ũi = g
−1uε · ∇

(
N−1uε

)
i
.

This gives

(7.5) �u∇u = g−1N∗B(�ε,uε,uε).

Substituting (7.3)–(7.5) into mass balance equation (1.2a) and multiplying both sides
of the resulting equality by g(N∗)−1, we obtain modified equation (1.7a).
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[16] L. Hörmander, Pseudo-differential operators and non-elliptic boundary value problems, Ann.
of Math. (2), 83 (1966), pp. 129–209.

[17] W. Jager and A. Mikelic, Couette flow over a rough boundary and drag reduction, Comm.
Math. Phys., 232 (2003), pp. 429–455.

[18] B. Kawohl, O. Pironneau, L. Tartar, and J. Zolesio, Optimal Shape Design, Lecture Notes
in Math. 1740, Springer-Verlag, Berlin, 2000.

[19] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm.
Pure Appl. Math., 20 (1967), pp. 797–872.

[20] J. R. Kweon and R. B. Kellogg, Compressible Navier–Stokes equations in a bounded domain
with inflow boundary condition, SIAM J. Math. Anal., 28 (1997), pp. 94–108.

[21] J. R. Kweon and R. B. Kellogg, Regularity of solutions to the Navier–Stokes equations for
compressible barotropic flows on a polygon, Arch. Ration. Mech. Anal., 163 (2000), pp.
36–64.

[22] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6, Fluid Mechanics,
Pergamon Press, Oxford, UK, 1987.

[23] N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin, Heidelberg,
New York, 1972.

[24] P. L. Lions, Mathematical Topics in Fluid Dynamics, Volume 1, Incompressible Models,
Clarendon Press, Oxford, UK, 1996.

[25] P. L. Lions, Mathematical Topics in Fluid Dynamics, Volume 2, Compressible Models,
Clarendon Press, Oxford, UK, 1998.

[26] V. G. Maz’ya and T. O. Shaposhnikova, Multipliers in Spaces of Differential Functions,
Leningrad University, Leningrad, 1986.

[27] B. Mohammadi and O. Pironneau, Shape optimization in fluid mechanics, in Annual Review
of Fluid Mechanics, Annu. Rev. Fluid Mech. 36, Annual Reviews, Palo Alto, CA, 2004,
pp. 255–279.

[28] M. Moubachir and J.-P. Zolesio, Moving Shape Analysis And Control: Applications to Fluid
Structure Interactions, Chapman & Hall/CRC, Boca Raton, FL, 2006.

[29] A. Noiri, F. Poupaund, and Y. Demay, An existence theorem for the multi-fluid Stokes
problem, Quart. Appl. Math., 55 (1997), pp. 421–435.

[30] A. Novotny, About steady transport equation. I. Lp-approach in domains with smooth bound-
aries, Comment. Math. Univ. Carolin., 37 (1996), pp. 43–89.

[31] A. Novotny, About steady transport equation. II. Schauder estimates in domains with smooth
boundaries, Portugal. Math., 54 (1997), pp. 317–333.
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Abstract. We prove the existence of a quasi-static evolution for a model in strain gradient
plasticity proposed by Gurtin and Anand concerning isotropic, plastically irrotational materials under
small deformations. This is done by means of the energetic approach to rate-independent evolution
problems. Finally we study the asymptotic behavior of the evolution as the strain gradient length
scales tend to zero recovering in the limit a quasi-static evolution in perfect plasticity.
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1. Introduction. Since the early attempts of Aifantis [3], strain gradient plas-
ticity models have been proposed in order to capture phenomenologically size effects
in metals such as strengthening and strain hardening. These effects, which take place
approximately at the scale of 500 nm–50 μm, cannot be modeled by conventional
theories of plasticity. This fact led to the development of continuum theories of plas-
ticity that incorporate size dependence by accounting for strain gradients, namely,
the gradient of plastic strains. Following the classical papers by Nye [30] and by
Ashby [4, 5], strain gradients induce geometrically necessary dislocations, and these
dislocations together with statistically stored dislocations are mainly responsible for
size effects.

Several strain gradient theories, different from one another, have been recently
proposed by different authors [1, 7, 10, 11, 14, 15, 16, 17, 18, 20, 12, 21]. In this paper
we focus on the theory proposed by Gurtin and Anand [19]. In the context of small
deformations, and in the absence of plastic rotation, the strain gradient dependence
enters the model via a microstress associated to the gradient of the plastic strain and
by a free energy dependent of the macroscopic Burgers tensor.

Let Ω ⊆ R
3 be the reference configuration of the body. The strain (Eu)ij :=

(∂iuj + ∂jui)/2 of the displacement u : Ω → R
3 is decomposed as usual in the form

(1.1) Eu = Ee + Ep,

where Ee ∈M3×3
sym is the elastic strain while Ep is referred to as the plastic strain. It

is assumed that Ep has zero trace; i.e., Ep belongs to the space of deviatoric matrices
M3×3

D . Besides the usual Cauchy stress T, which satisfies the classical macroscopic
force balance, the stress configuration of the system is described by a second order
tensor Tp and a third order tensor K

p which satisfy the equilibrium condition

(1.2) TD = Tp − divK
p.
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Here TD denotes the deviatoric part of T, i.e., TD := T − 1
3 tr(T)Id. The triple

(T,Tp,Kp) furnishes the internal power expenditure within a subbody B ⊆ Ω by
means of the relation

Wint(B) =
∫
B

(T : Ėe + Tp : Ėp + K
p : ∇Ėp) dx,

where Ėe and Ėp derive from a virtual velocity (u̇, Ėe, Ėp) of the system. So Tp and
K

p are stresses conjugated to the plastic strain and its gradient, K
p being a higher-

order stress since it is conjugated to the gradient of the plastic strain. The balance
equations for T, Tp, and K

p follow by equating the internal power expenditure to
the power expenditure associated to the external loads. This entails also boundary
conditions for the normal components of T and K

p which are connected to the imposed
traction and microtractions on parts of the boundary (see section 3 for details).

The free energy of the system is a function of the elastic strain Ee and of the
macroscopic Burgers tensor G = curlEp. In the separable quadratic isotropic case, it
assumes the form

(1.3) ψ = μ|Ee
D|2 +

1
2
k|trEe|2 +

μL2

2
|curlEp|2,

where μ and k are the elastic shear and bulk moduli and L is an energetic length scale.
The presence of curlEp inside the free energy accounts for the incompatibility of the
tensor field Ep, and so it is connected to the presence of geometrically necessary
dislocations in Ω. By means of ψ, the energetic third order tensor K

p
en is defined

as the symmetric-deviatoric part (in the first two subscripts) of ∂ψ
∂G . This entails a

decomposition of K
p into dissipative and energetic parts K

p
diss and K

p
en, respectively,

with

K
p = K

p
diss + K

p
en.

Let Ω be subject to body forces f(t) and to traction forces g(t) on a part ∂NΩ of its
boundary, with t ∈ [0, T ]. Let ∂Ω be microtraction-free; i.e., null power expenditure at
the boundary occurs (see section 3 for details). Let us assume that a displacement w(t)
is imposed on ∂DΩ := ∂Ω\∂NΩ. The laws governing the evolution (u(t),Ee(t),Ep(t))
of the system are obtained by the thermodynamical requirement

ψ̇(B) ≤ Wint(B),

where ψ(B) is the free energy of the subbody B obtained by integrating (1.3) over B
and ψ̇(B) denotes its time derivative. In order to match such an inequality, Gurtin
and Anand propose a flow rule involving Ėp(t), ∇Ėp(t), Tp(t), K

p
diss(t), a dissipative

length scale l > 0, and a hardening internal variable. This law reduces to the usual
flow rules of classical plasticity when the length scales l and L are set to zero. In the
rate-independent regime, and neglecting the hardening internal variable, it takes the
form

(1.4) Tp(t, x) = SY
Ėp(t, x)
dp(t, x)

, K
p
diss(t, x) = SY

l2∇Ėp(t, x)
dp(t, x)

.

Here Ėp(t, x) and ∇Ėp(t, x) denote the time derivative of Ep(t, x) and ∇Ep(t, x),
respectively, SY is the yield strength, and

dp(t, x) :=
√
|Ėp(t, x)|2 + l2|∇Ėp(t, x)|2
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is an effective flow rate. The stresses Tp(t) and K
p
diss(t) satisfy the stress constraint

(1.5)
√
|Tp(x)|2 + l−2|Kp

diss(x)|2 ≤ SY ,

and (1.4) is valid when relation (1.5) holds with equality; (Ėp(t),∇Ėp(t)) = (0, 0)
otherwise. Notice that, by setting l = L = 0, we have K

p = 0 and Tp = TD and (1.4)
reduces to the usual flow rule of the von Mises type.

The aim of the paper is to provide an existence result of an evolution for the
Gurtin–Anand model in the rate-independent case without hardening. The case with
positive hardening has been considered recently by Reddy, Ebobisse, and McBride
[31]. Adopting a primal formulation, they study the problem by means of variational
inequalities in abstract Hilbert spaces. In the case without hardening, coercivity
estimates fail, and the use of the abstract setting is no longer possible. This fact
reflects what happens also at the level of classical plasticity, where perfect plasticity
deserves an “ad hoc” treatment (see [32, 8]).

Inspired by the recent paper of Dal Maso, DeSimone, and Mora [8] concerning
perfect plasticity, we recast the problem of the evolution for the Gurtin–Anand model
in the framework of the energetic approach to rate-independent processes developed
in [24, 25, 27, 28, 29].

Let us consider Ω ⊆ R
N open, bounded, and with a Lipschitz boundary (N ≥ 2).

By means of variational arguments, we first construct a discretized-in-time evolution
(uk,i,Ee

k,i,E
p
k,i) relative to the nodes tik of a subdivision 0 = t0k < t1k < · · · < tkk = T

of the time interval [0, T ] with step T/k.
In order to enforce variationally the stress constraint (1.5), we consider the func-

tion

Ep �→ SY

∫
Ω

√
|Ep|2 + l2|∇Ep|2 dx.

Since this map has linear growth in ∇Ep, in order to perform direct minimization,
we are naturally led to consider Ep as a function of bounded variation BV (Ω; MN×N

D )
and to relax the functional to the form

H(Ep) := SY

∫
Ω

√
|Ep|2 + l2|∇Ep|2 dx+ lSY |DsEp|(Ω),

where DsEp denotes the singular part of the derivative of Ep.
The minimization problem that we consider in order to construct (uk,i+1,Ee

k,i+1,
Ep

k,i+1) relative to the boundary displacementw(ti+1
k ) once constructed (uk,i,Ee

k,i,E
p
k,i)

is the following:

(1.6) min
(u,Ee,Ep)∈A(w(ti+1

k ))
Q1(Ee) + Q2(curlEp) − 〈L

(
ti+1
k

)
, u〉 + H

(
Ep − Ep

k,i

)
.

Here A(w(ti+1
k )) is the class of admissible configurations for w(ti+1

k ),

Q1(Ee) :=
∫

Ω

(
μ|Ee

D|2 +
1
2
k|trEe|2

)
dx, Q2(curlEp) :=

μL2

2

∫
Ω

|curlEp|2 dx,

〈L(t), u〉 :=
∫

Ω

f(t) · u dx+
∫

∂NΩ

g(t) · u dHN−1,

where HN−1 denotes the (N − 1)-dimensional Hausdorff measure.
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In order to have a well-defined energy in (1.6), it suffices that the elastic strain
Ee and the Burgers tensor curlEp belong to the space of square integrable functions.
As a consequence, the class A(tik) turns out to be defined as the triples (u,Ee,Ep),
with

u ∈W 1, N
N−1
(
Ω; R

N
)
, Ee ∈ L2

(
Ω; MN×N

sym

)
,

Ep ∈ BV
(
Ω; MN×N

D

)
, curlEp ∈ L2

(
Ω; MN×N

)
,

which satisfy the boundary condition u = w(tik) on ∂DΩ, and such that the compati-
bility condition (1.1) holds. Notice that the requirement u ∈ W 1, N

N−1 (Ω; R
N ) follows

by (1.1) and by the assumptions on Ee and Ep in view of Korn’s inequality. We
assume that f(t) ∈ LN (Ω; R

N ) and g(t) ∈ LN(∂NΩ; R
N ) so that the work L(t) of

external forces turns out to be well-defined. The displacement on ∂DΩ is assumed to
be given by the trace of a map in W 1,2(Ω; R

N ).
The minimum problem (1.6) admits solutions in A(w(tik)) provided that the ex-

ternal loads satisfy a suitable safe load condition (see (4.13)–(4.14)) which appears
also in the study of evolutions in perfect plasticity. This condition entails some coer-
civity in BV for Ep from the interaction between H(Ep −Ep

k,i−1) and the linear term
〈L(tik), u〉. The existence of a solution for (1.6) follows by applying the direct method
of the calculus of variations (Lemma 6.1).

The continuous-in-time evolution is obtained by interpolating the discrete evolu-
tion (uk,i,Ee

k,i,E
p
k,i) and sending k → +∞ (section 7). If w ∈ AC(0, T ;W 1,2(Ω; R

N )),
f ∈ AC(0, T ;LN(Ω; R

N )), g ∈ AC(0, T ;L∞(∂NΩ; R
N )), and the safe load condition

on f, g holds uniformly in time, we prove the convergence towards a quasi-static evo-
lution t �→ (u(t),Ee(t),Ep(t)) ∈ A(w(t)) which is absolutely continuous in time and
which satisfies the following two conditions:

(a) Global minimality: For every (v, e,p) ∈ A(w(t))

(1.7) Q1(Ee(t)) + Q2(curlEp(t)) − 〈L(t), u(t)〉
≤ Q1(e) + Q2(curlp) − 〈L(t), v〉 + H(p − Ep(t));

(b) Energy balance:

(1.8) E(t) + DH(Ep; 0, t) = E(0) +
∫ t

0

∫
Ω

T(τ) : Eẇ(τ) dx dτ

−
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ,

where T(t) is the Cauchy stress tensor, E(t) := Q1(Ee(t)) + Q2(curlEp(t)) −
〈L(t), u(t)〉, L̇(t) is associated to ḟ(t), ġ(t), and DH(Ep; 0, t) defined as

DH(Ep; a, b) := sup

⎧⎨⎩
k∑

j=1

H (Ep(tj) − Ep(tj−1)) : a = t0 < t1 < · · · < tk = b

⎫⎬⎭
has the role of a dissipation function.

We refer to an evolution satisfying (a) and (b) as a quasi-static evolution for the
Gurtin–Anand model (Definition 5.1).
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The analysis of the global minimality condition (1.7) leads to the existence of
stresses Tp(t), K

p(t), and S
p(t) which together with the Cauchy stress T(t) satisfy

the balance of internal and external powers in Ω

(1.9)
∫

Ω

T(t) : e dx+
∫

Ω

Tp(t) : p dx+
∫

Ω

K
p(t) : ∇p dx+ 〈Sp(t), Dsp〉 = 〈L(t), v〉

for every virtual velocity (v, e,p) ∈ A(0) (Lemma 8.1). Notice that a new higher-
order stress S

p(t) conjugated to DsEp appears from our approach: This is somehow
natural since DsEp is treated at the same level of ∇Ep. The balance (1.9) entails the
usual balance equation for the Cauchy stress (Proposition 8.2), the balance equation
(1.2), the stress constraint (1.5), and the confinement ‖S

p(t)‖ ≤ lSY for the singular
stress S

p(t) (Proposition 8.3).
The flow rule (1.4) follows from the analysis of the energy balance equality (1.8)

(Proposition 8.10). It is also supplemented by a weak flow rule for the singular stress
S

p(t) (Proposition 8.9).
Concerning the uniqueness of the evolution, it turns out that the maps t �→ Ee(t)

and t �→ curlEp(t) are uniquely determined by the initial conditions (Proposition 8.8).
As for the maps t �→ u(t) and t �→ Ep(t), we suspect that nonuniqueness can occur
as in the case of standard perfect plasticity (see [32, section 2.1]), even if we do not
have at the moment an explicit counterexample.

In section 9, we study the asymptotic behavior of a quasi-static evolution for the
Gurtin–Anand model when the length scales l and L vanish. As noted previously,
by setting l and L equal to zero, the model reduces to the classical model of perfect
plasticity of von Mises. Under a suitable assumption on the initial configuration,
we prove (Theorem 9.2) that the quasi-static evolution for the Gurtin–Anand model
converges in a suitable sense to the evolution for elastic-perfectly plastic bodies in the
framework proposed by Dal Maso, DeSimone, and Mora [8]. The main difficulty we
have to handle is the change in the mathematical setting of the problem, especially
concerning the plastic strain. While in the strain gradient context Ep is a BV function,
in [8] it is modeled simply as a Radon measure.

The paper is organized as follows. In section 2 we fix the notation and recall
some basic tools we need from the theory of BV functions. In section 3 we give a
brief sketch of the Gurtin–Anand model, while in section 4 we settle the mathematical
framework that we adopt in the analysis. The main results are stated in section 5.
The existence of a quasi-static evolution is obtained in section 7 after exploiting the
convergence of the discrete evolution constructed in section 6. Section 8 is devoted to
the proof of the balance equations and the flow rule. Finally section 9 contains the
asymptotic analysis as the strain gradient effects vanish.

2. Notation and preliminaries. In this section we recall some basic definitions
and results employed in the rest of the paper.

Matrices. We will denote by MN×N the space of N × N matrices A = (aij),
with aij ∈ R endowed with the scalar product

(2.1) A : B :=
∑
i,j

aijbij .

The norm of A induced by the scalar product (2.1) is denoted by |A|.
We will denote by MN×N

sym the subspace of symmetric matrices and by MN×N
D the

subspace of MN×N
sym of matrices A with zero trace, that is, such that trA :=

∑
i aii = 0.
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Given A ∈ MN×N
sym , we denote by AD its projection on MN×N

D , i.e.,

(2.2) AD := A − 1
N

(trA)Id,

where Id is the identity matrix.
The symmetrized gradient of an R

N -valued function u(x) is defined as

Eu :=
∇u + ∇uT

2
,

where (∇u)ij = ∂ui

∂xj
is the gradient of u and ∇uT denotes its transpose.

The gradient, the divergence, and the curl of a MN×N -valued function A(x) =
(aij(x)) are defined as

(∇A)ijk :=
∂aij

∂xk
, (divA)i :=

∑
j

∂aij

∂xj
, (curlA)ij :=

∑
p,q

εipq
∂ajq

∂xp
,

respectively, where εipq are the standard permutation symbols.
We will indicate by MN×N×N the space of third order tensors A = (aijk) with

scalar product

A : B :=
∑
i,j,k

aijkbijk,

and |A| will denote the induced norm of A.
We say that A = (aijk) ∈ MN×N×N is symmetric-deviatoric in its first two

subscripts if

aijk = ajik and
∑

p

appk = 0.

We write A ∈ MN×N×N
D .

The divergence of a MN×N×N -valued function A(x) = (aijk(x)) is given by

(divA)ij :=
∑

k

∂aijk

∂xk
.

Functional spaces and measures. Given A ⊆ R
N open and 1 ≤ p < +∞,

we will denote by Lp(A; R
M ) the space of p-summable functions on A with values in

R
M and by W 1,p(A; R

M ) the usual Sobolev space of functions in Lp(A; R
M ) whose

derivatives in the sense of distributions belong to Lp. Finally, Mb(A; R
M ) will denote

the space of R
M -valued Radon measures on A, and for every μ ∈ Mb(A; R

M ) we will
indicate by |μ|(A) its total mass. We set ‖μ‖Mb(A;RM ) := |μ|(A). We refer the reader
to [9] for the main properties concerning Sobolev spaces and Radon measures.

Let us recall some results from the theory of BV functions. We refer the reader
to [2] for an exhaustive treatment of the subject.

We say that u ∈ BV (A; R
M ) if u ∈ L1(A; R

M ), and its distributional derivative
Du is a vector-valued Radon measure on A. BV (A; R

M ) is a Banach space with
respect to the norm

‖u‖BV (A;RM ) := ‖u‖L1(A;RM ) + |Du|(A).
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We will denote by Dsu the singular part of Du with respect to the Lebesgue measure
LN and by ∇u the density of its absolutely continuous part.

We will say that a sequence (un)n∈N in BV (A; R
M ) converges weakly* in

BV (A; R
M ) to u ∈ BV (A; R

M ) if

un → u strongly in L1(A; R
M ),(2.3)

Dun
∗
⇀ Du weakly* in Mb(A; R

M ).

The following compactness result holds: If A is open bounded and with a Lipschitz
boundary, every bounded sequence in BV (A; R

M ) admits a subsequence converging
weakly* in BV (A; R

M ).
Finally we will use throughout the paper the following embedding property of

BV : If A is bounded and with a Lipschitz boundary, then BV (A; R
M ) is continuously

embedded into Lq(A; R
M ) for every 1 ≤ q ≤ N

N−1 , the embedding being compact for
every 1 ≤ q < N

N−1 .

One-dimensional AC and BV functions with values in Banach spaces.
Let X be a reflexive Banach space or the dual of a separable Banach space. We denote
by BV (a, b;X) and AC(a, b;X) the space of functions of bounded variation and the
space of absolutely continuous functions from [a, b] to X , respectively. We refer the
reader to [6] for the main properties of these spaces. We recall that the variation of
f ∈ BV (a, b;X) is defined as

(2.4) V(f ; a, b) := sup

⎧⎨⎩
k∑

j=1

‖f(tj) − f(tj−1)‖X : a = t0 < t1 < · · · < tk = b

⎫⎬⎭ .
If X is reflexive and f ∈ AC(a, b;X), then the time derivative ḟ(t) exists for a.e.

t ∈ [a, b]. If X is the dual of a separable Banach space (and this is interesting when
we consider the plastic strains), the time derivative ḟ(t) exists as a weak∗ limit of
difference quotients for a.e. t ∈ [a, b] (see [8, Theorem 7.1]).

We will often use the following generalization of Helly’s theorem [8, Lemma 7.2]
(see also [23, Theorem 3.2]): If X is the dual of a separable Banach space and (fk)k∈N a
sequence in BV (a, b;X) with V(fk; a, b) and ‖fk(a)‖X uniformly bounded, then there
exist f ∈ BV (a, b;X) and a subsequence (fkj )j∈N such that fkj (t) ∗

⇀ f(t) weakly* in
X for every t ∈ [a, b].

3. The Gurtin–Anand model. In this section we quickly describe the Gurtin–
Anand model [19] in strain gradient plasticity which describes the behavior of isotropic,
plastically irrotational materials under small deformations. We present the rate-
independent case in which the internal hardening variable is neglected.

Let Ω ⊆ R
N be the reference configuration of the body. The starting point of

the theory is, as usual, the additive decomposition of the displacement strain Eu =
(∇u+ ∇uT )/2 into elastic and plastic parts

(3.1) Eu = Ee + Ep.

The symmetric matrices Ee and Ep are referred to as the elastic strain and the plastic
strain, respectively. The plastic part Ep is supposed to be unable to sustain volumetric
changes, so that

trEp = 0;

that is, Ep ∈ MN×N
D .
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Stresses and balance equations. Given a subbody B ⊆ Ω, besides the usual
Cauchy stress T ∈ MN×N

sym conjugate to Ee, the analysis of its equilibrium involves also
stresses Tp ∈ MN×N

D and K
p ∈ MN×N×N

D conjugate to Ep and ∇Ep, respectively.
Given the rate-like kinematical descriptors (u̇, Ėe, Ėp), the power expenditure within
B is given by

Wint(B) =
∫
B

(T : Ėe + Tp : Ėp + K
p : ∇Ėp) dx.

Wint(B) is balanced by the power expenditure of external forces

Wext(B) =
∫

∂B
(t(ν) · u̇+ K(ν) : Ėp) dA+

∫
B
f · u̇ dV,

where f is the external body force and t(ν) is the boundary traction (ν is the outward
normal to B) which are associated as usual to u̇, while K(ν) ∈ MN×N

D is a micro-
traction associated to the plastic strain rate Ėp. The balance of power expenditures
(that is, Wint(B) = Wext(B) for every subbody B) leads to the equalities t(ν) = Tν
and K(ν) = K

pν for the traction and microtraction and to the equilibrium equations

−divT = f and Tp = TD + divK
p in Ω,

where TD is the deviatoric part of T as defined in (2.2). These equations are supple-
mented by boundary conditions for T and K

p. If traction forces g are present on a
part ∂NΩ of the boundary of Ω, we have as usual

Tν = g on ∂NΩ.

Concerning K
p, assuming null microscopic power expenditure at the boundary (see

[19, section 8]), we are led to the condition

K
pν = 0 on ∂Ω.

The free energy. The free energy ψ is assumed to depend on Ee and curlEp:
In the quadratic separable case ψ has the form

(3.2) ψ =
1
2

CEe : Ee +
μL2

2
|curlEp|2,

where C is the elastic tensor

(3.3) CEe := 2μEe
D + k(trEe)I,

with μ and k the elastic shear and bulk moduli, respectively. The constant L > 0 is
an energetic length scale. The energetic higher-order stress tensor K

p
en is then defined

so that the identity

(3.4) μL2curlEp : curlA = K
p
en : ∇A

holds for every MN×N -valued function A. In components we have

(3.5) (Kp
en)jqp := μL2

[
∂Ep

jq

∂xp
− 1

2

(
∂Ep

jp

∂xq
+
∂Ep

qp

∂xj

)
+

1
N
δjq

∑
r

∂Ep
rp

∂xr

]
,

where δjq is the usual Krönecker symbol. The stress K
p is then additively decomposed

in the following way:

K
p = K

p
diss + K

p
en.
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Admissibility of the stresses and the flow rule. Neglecting the hardening
internal variable, i.e., if we are in the case without hardening nor softening, the
admissibility for the stresses involved in the description of the behavior of Ω reads

(3.6)
√
|Tp(x)|2 + l−2|Kp

diss(x)|2 ≤ SY ,

where l > 0 is a dissipative length scale and SY is a yield constant.
Assume now that body and traction forces vary with time, i.e., f = f(t) and

g = g(t). The flow rule which drives the system requires that if (Tp(t, x),Kp
diss(t, x))

is at the yield surface (that is, (3.6) holds with equality), then

(3.7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Tp(t, x) = SY

Ėp(t, x)√
|Ėp(t, x)|2 + l2|∇Ėp(t, x)|2

,

K
p
diss(t, x) = SY

l2∇Ėp(t, x)√
|Ėp(t, x)|2 + l2|∇Ėp(t, x)|2

.

Here Ėp(t, x) and ∇Ėp(t, x) denote the time derivative of Ep(t, x) and ∇Ep(t, x),
respectively. If (Tp(t, x),Kp

diss(t, x)) is well inside the yield surface, then no plastic
phenomenon occurs, i.e., (Ėp,∇Ėp) = (0, 0). The flow rule (3.7) is a generalization of
the von Mises flow rule in perfect plasticity (set l = L = 0, and note that Tp = TD).
It moreover implies that ∫

B
ψ̇ dV ≤ Wext(B).

The previous inequality reflects the thermodynamical requirement that the increase
in free energy of B is less than or equal to the power expended on B.

4. Functional setting. In this section we state the precise mathematical frame-
work that we adopt to study quasi-static evolutions for the Gurtin–Anand model.

The reference configuration. Let the reference configuration be given by Ω ⊆
R

N , N ≥ 2, a bounded open set with a Lipschitz boundary. Let ∂Ω be partitioned
into two open (in the relative topology) disjoint sets ∂DΩ and ∂NΩ with the same
boundary Γ such that HN−2(Γ) < +∞.

Admissible configurations. Let the prescribed boundary displacement on ∂DΩ
be given by (the trace of) a Sobolev function w ∈ W 1,2(Ω; R

N ). By an admissible
configuration relative to the boundary datum w, we will understand a triple (u,Ee,Ep)
such that

(4.1) u ∈ W 1, N
N−1 (Ω; R

N ), Ee ∈ L2(Ω; MN×N
sym ), Ep ∈ BV (Ω; MN×N

D ),

with

(4.2) u = w on ∂DΩ,

(4.3) Eu = Ee + Ep,

and

(4.4) curlEp ∈ L2(Ω; MN×N ).
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Equality (4.2) is intended in the sense of traces. Notice that, by the embedding proper-
ties of BV , (4.3) entails Eu ∈ L

N
N−1 (Ω; MN×N

sym ); the requirement u ∈W 1, N
N−1 (Ω; R

N )
is then consistent with the regularity implied by Korn’s inequality in view of the
boundary condition (4.2). Let us denote by A(w) the family of admissible configura-
tions for the boundary datum w, i.e.,

(4.5) A(w) := {(u,Ee,Ep) such that (4.1)–(4.4) are satisfied} .

Notice that A(w) 
= ∅ since (w,Ew, 0) ∈ A(w): Moreover A(w) contains the triples
(v,Ev, 0), with v ∈W 1,2(Ω; R

N ) and v = w on ∂DΩ, so that elastic deformations are
admissible (and this motivates the choice w ∈W 1,2(Ω; R

N )).

The free energy. The free energy of the configuration (u,Ee,Ep) ∈ A(w) is
given according to (3.2) by

Ψ(Ee, curlEp) := Q1(Ee) + Q2(curlEp),

where

(4.6) Q1(Ee) :=
1
2

∫
Ω

CEe : Ee dx

and

(4.7) Q2(curlEp) :=
1
2
μL2

∫
Ω

|curlEp|2 dx.

Here C denotes the elasticity tensor (3.3), and μ > 0 is the elastic shear modulus: We
assume also that k > 0, so that there exist 0 < αC ≤ βC < +∞ such that for every
A ∈ MN×N

sym we have

(4.8) αC|A|2 ≤ CA : A ≤ βC|A|2.

The yield function H. In order to get variationally the constraint for the
stresses conjugated to the plastic variables according to (3.6), we are led to consider
the yield function

(4.9) H(Ep) := SY

∫
Ω

√
|Ep|2 + l2|∇Ep|2 dx + lSY |DsEp|(Ω)

defined for every Ep ∈ BV (Ω; MN×N
D ). Simple arguments on subadditive and posi-

tively one-homogeneous functions on measures (see [13]) show that H is the relaxation
under the L1-norm of the map

Ep �→ SY

∫
Ω

√
|Ep|2 + l2|∇Ep|2 dx

defined for a regular plastic strain Ep, which is connected to the effective flow rate
proposed by Gurtin and Anand (see [19, section 6.3]). As a consequence, H turns out
to be naturally involved in an analysis which employs direct methods of the calculus
of variations.

We will often use the lower semicontinuity of H along weakly* converging se-
quences, which is a direct consequence of the relaxation process through which H is
obtained.
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Lemma 4.1. Let (Ep
n)n∈N be a sequence in BV (Ω; MN×N

D ) such that

Ep
n

∗
⇀ Ep weakly* in BV

(
Ω; MN×N

D

)
for some Ep ∈ BV (Ω; MN×N

D ). Then we have

H(Ep) ≤ lim inf
n→+∞

H(Ep
n).

Prescribed boundary displacements and body/traction forces. We as-
sume that the prescribed boundary displacement on ∂DΩ is given by (the trace of)
a function w(t, x) which is absolutely continuous in time with values in the Sobolev
space W 1,2(Ω; R

N ), i.e.,

(4.10) w ∈ AC
(
0, T ;W 1,2(Ω; R

N
)
).

Moreover we assume that the prescribed body forces in Ω and traction forces on ∂NΩ
are given by

(4.11) f ∈ AC(0, T ;LN(Ω; R
N )) and g ∈ AC(0, T ;LN(∂NΩ; R

N )).

For every t ∈ [0, T ] let us consider L(t) : W 1, N
N−1 (Ω; R

N ) → R given by

(4.12) 〈L(t), u〉 :=
∫

Ω

f(t) · u dx+
∫

∂NΩ

g(t) · u dHN−1.

Here HN−1 denotes the (N−1)-dimensional Hausdorff measure, which is a generaliza-
tion to arbitrary sets of the usual surface measure (see [9]). By means of the Sobolev
embedding theorem it is easily seen that L(t) is a continuous linear functional on
W 1, N

N−1 (Ω; R
N ).

Throughout the paper we will assume that the prescribed body and traction forces
satisfy the following uniform safe load condition: We assume that for every t ∈ [0, T ]
there exists ρ(t) ∈ LN(Ω; MN×N

sym ) such that

(4.13)

{
−divρ(t) = f(t) in Ω,
ρ(t)ν = g(t) on ∂NΩ

and there exists α > 0 such that for every A ∈ MN×N
D , with |A| ≤ α, we have

(4.14) |A + ρD(t)| ≤ SY a.e. in Ω.

Moreover we assume that t �→ ρ(t) and t �→ ρD(t) are absolutely continuous from [0, T ]
to L2(Ω; MN×N

sym ) and L∞(Ω; MN×N
D ), respectively. Notice that the trace condition in

(4.13) is well-defined in the dual of the traces on ∂NΩ of W 1, N
N−1 (Ω; R

N ) since ρ is
an LN -field with divergence in LN . Moreover, for every (u,Ee,Ep) ∈ A(w) we have
the following representation formula for L(t) (here we use HN−2(Γ) < +∞):

(4.15) 〈L(t), u〉 = −〈ρ(t)ν, w〉∂DΩ +
∫

Ω

ρ(t) : Ee dx+
∫

Ω

ρD(t) : Ep dx,

where the first term on the right-hand side should be interpreted as the pairing be-
tween H−1/2(∂DΩ; R

N ) and H1/2(∂DΩ; R
N).
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Remark 4.2. Notice that for L(t) to be well-defined in the dual of W 1, N
N−1 (Ω; R

N )
it suffices to require f(t) ∈ LN/2(Ω; R

N ) (assume that N ≥ 3, the case N = 2 being
different in view of Sobolev embedding). But in view of the safe load condition (4.13)–
(4.14), ρ(t) would be only an element of LN/2 with divergence in LN/2, so that its
normal trace would be defined in the dual of the traces on ∂Ω of W 1, N

N−2 (Ω; R
N ).

Then the representation formula (4.15) would no longer be well-defined (since w ∈
W 1,2(Ω; R

N )).
As a consequence of the safe load condition, we have the following coercivity

estimate for H.
Lemma 4.3. For every Ep ∈ BV (Ω; MN×N

D ) we have

(4.16)
H(Ep) −

∫
Ω

ρD(t) : Ep dx ≥ α

2
‖Ep‖L1(Ω;MN×N

D )

+ min
{
l
α

2
, lSY

}
‖DEp‖Mb(Ω;MN×N×N

D ).

In particular there exists αl > 0 such that

(4.17) H(Ep) −
∫

Ω

ρD(t) : Ep dx ≥ αl‖Ep‖BV (Ω;MN×N
D ).

Proof. Notice that by Hölder inequality we have

SY

∫
Ω

√
|Ep|2 + l2|∇Ep|2 dx ≥ sup

(τ1,τ2)∈K

∫
Ω

[τ1 : Ep + τ2 : ∇Ep] dx,

where

K :=
{

(τ1, τ2) ∈ L∞ (Ω; MN×N
D

)
× L∞ (Ω; MN×N×N

D

)
:√

|τ1|2 + l−2|τ2|2 ≤ SY a.e. in Ω
}
.

We deduce that for every (τ1, τ2) ∈ K

H(Ep) −
∫

Ω

ρD(t) : Ep dx ≥
∫

Ω

[(τ1 − ρD(t)) : Ep + τ2 : ∇Ep] dx+ lSY |DsEp|(Ω),

so that in view of (4.14) we get

H(Ep) −
∫

Ω

ρD(t) : Ep dx ≥
∫

Ω

[τ̃1 : Ep + τ̃2 : ∇Ep] dx+ lSY |DsEp|(Ω)

for every ‖τ̃1‖L∞(Ω;MN×N
D ) ≤

α
2 and ‖τ̃2‖L∞(Ω;MN×N×N

D ) ≤ lα2 . We conclude that

H(Ep) −
∫

Ω

ρD(t) : Ep dx

≥ α

2
‖Ep‖L1(Ω;MN×N

D ) + l
α

2
‖∇Ep‖L1(Ω;MN×N×N

D ) + lSY |DsEp|(Ω),

so that (4.16) holds. Inequality (4.17) follows by choosing αl := min{α
2 , l

α
2 , lSY }.

Remark 4.4. As mentioned in the introduction, the safe load condition entails
in view of Lemma 4.3 some coercivity in BV for Ep in the step-by-step minimization
problems which we use in section 6 in order to construct a quasi-static evolution (see
Lemma 6.1). Those problems contain two terms (dissipation and work of external
loads) which have linear growth and which can compete, leading, in general, to a loss
of compactness: This cannot happen if a safe load condition is assumed.
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5. The main results. Let T > 0, and let w, f , and g be the prescribed bound-
ary displacements, body forces, and traction forces according to (4.10) and (4.11),
respectively. We assume that f and g satisfy the uniform safe load condition (4.13)–
(4.14).

We will denote by ẇ(t), ḟ(t), and ġ(t) the derivative at time t ∈ [0, T ] of w, f , and
g, respectively. Notice that these derivatives exist for a.e. t ∈ [0, T ] since the maps
are absolutely continuous with values in a reflexive Banach space. We will denote by
L̇(t) the external work associated to ḟ(t) and ġ(t).

Given H as in (4.9), the H-variation on [a, b] ⊆ [0, T ] of t �→ Ep(t) is defined as

(5.1)

DH(Ep; a, b)

:= sup

⎧⎨⎩
k∑

j=1

H (Ep(tj) − Ep(tj−1)) : a = t0 < t1 < · · · < tk = b

⎫⎬⎭ .
The notion of quasi-static evolution for the Gurtin–Anand model is the following.
Definition 5.1 (quasi-static evolution). A map

t �→ (u(t),Ee(t),Ep(t))

from [0, T ] to W 1, N
N−1 (Ω; R

N )×L2(Ω; MN×N
sym )×BV (Ω; MN×N

D ) is a quasi-static evo-
lution for the Gurtin–Anand model if for every t ∈ [0, T ] we have (u(t),Ee(t),Ep(t)) ∈
A(w(t)) and the following two conditions hold:

(a) Global stability: For every (v, e,p) ∈ A(w(t))

(5.2) Q1(Ee(t)) + Q2(curlEp(t)) − 〈L(t), u(t)〉
≤ Q1(e) + Q2(curlp) − 〈L(t), v〉 + H(p − Ep(t));

(b) Energy balance: The function t �→ Ep(t) has bounded variation from [0, T ] to
BV (Ω; MN×N

D ) and

(5.3) E(t) + DH(Ep; 0, t) = E(0) +
∫ t

0

∫
Ω

T(τ) : Eẇ(τ) dx dτ

−
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ,

where T(t) := CEe(t),

(5.4) E(t) := Q1(Ee(t)) + Q2(curlEp(t)) − 〈L(t), u(t)〉,

and DH(Ep; 0, t) is defined in (5.1).
Our first main result is the following existence theorem.
Theorem 5.2. Let (u0,Ee

0,E
p
0) ∈ A(w(0)) satisfy the global stability condition

Q1(Ee
0) + Q2(curlEp

0) − 〈L(0), u0〉 ≤ Q1(e) + Q2(curlp) − 〈L(0), v〉 + H(p− Ep
0)

for every (v, e,p) ∈ A(w(0)). Then there exists a quasi-static evolution t �→ (u(t),
Ee(t),Ep(t)) such that (u(0),Ee(0),Ep(0)) = (u0,Ee

0,E
p
0).

Theorem 5.2 will be proved in section 7 by exploiting the convergence of a discrete-
in-time evolution constructed through variational arguments in section 6.

Our second main result shows that a quasi-static evolution satisfies the required
constitutive equations, balance equations, and the flow rule of the Gurtin–Anand
model.
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Theorem 5.3. Let t �→ (u(t),Ee(t),Ep(t)) be a quasi-static evolution for the
Gurtin–Anand model. Then the maps t �→ u(t), t �→ Ee(t), t �→ Ep(t), t �→ curlEp(t)
are absolutely continuous from [0, T ] to W 1, N

N−1 (Ω; R
N ), L2(Ω; MN×N

sym ), BV (Ω; MN×N
D )

and L2(Ω; MN×N), respectively. Moreover the maps t→ Ee(t) and t �→ curlEp(t) are
uniquely determined by the initial conditions. Finally the following facts hold for every
t ∈ [0, T ].

(a) Cauchy stress: T(t) = CEe(t) satisfies the following balance equation:

(5.5)

{
−divT(t) = f(t) in Ω,
T(t)ν = g(t) on ∂NΩ.

(b) Stresses conjugated to the plastic variables: There exist Tp(t) ∈
L∞(Ω; MN×N

D ), K
p(t) ∈ L2(Ω; MN×N×N

D ), K
p
diss(t) ∈ L∞(Ω; MN×N×N

D ), and
S

p(t) ∈ (Mb(Ω; MN×N×N
D ))∗ such that, by defining K

p
en(t) as in (3.5) starting

from Ep(t) and setting TD(t) := (T(t))D, we have

K
p(t) = K

p
en(t) + K

p
diss(t) in Ω,

(5.6)

{
Tp(t) = TD(t) + divK

p(t) in Ω,
K

p(t)ν = 0 on ∂Ω,

(5.7)
√
|Tp(t)|2 + l−2|Kp

diss(t)|2 ≤ SY a.e. in Ω,

‖S
p(t)‖(Mb(M

N×N×N
D ))∗ ≤ lSY ,

and for every (v, e,p) ∈ A(0)∫
Ω

T(t) : e dx+
∫

Ω

Tp(t) : p dx+
∫

Ω

K
p(t) : ∇p dx+ 〈Sp(t), Dsp〉 = 〈L(t), v〉.

(c) The flow rule: If Ėp(t) exists, and x ∈ Ω is a Lebesgue point for Ėp(t),
∇Ėp(t), Tp(t), and K

p
diss(t), the flow rule (3.7) is satisfied.

Notice that the normal trace which appears in (5.5) is well-defined in
H−1/2(∂Ω; R

N ) since T(t) is an L2-field with divergence in L2. Similarly, the normal
trace in (5.6) is well-defined in H−1/2(∂Ω; R

N×N ) because K
p(t) is an L2-field (by

the definition of K
p
en(t) and by the constraint (5.7) for K

p
diss(t)) with divergence in L2

(by the balance equation (5.6) and by the constraint (5.7) for Tp(t)).
In section 9 we will analyze the behavior of a quasi-static evolution as the length

scales l and L go to zero, i.e., when the strain gradient effects vanish. We will prove
(Theorem 9.2) that the quasi-static evolution converges to an evolution for perfect
plasticity according to the framework recently proposed by Dal Maso, DeSimone, and
Mora in [8].

6. The discrete-in-time evolution. In this section we construct a discretized-
in-time evolution for the Gurtin–Anand model employing a step-by-step minimization
procedure. The convergence of this approximated evolution to a quasi-static evolution
for the Gurtin–Anand model as the time step discretization goes to zero will be proved
in the next section.

Let k ∈ N, k ≥ 1, and let us set tik := i
kT for every i = 0, 1, . . . , k. Let us set

uk,0 := u0, Ee
k,0 := Ee

0, Ep
k,0 := Ep

0 ,
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where (u0,Ee
0,E

p
0) ∈ A(w(0)) is the initial configuration of the system given by The-

orem 5.2.
Supposing to have constructed (uk,i,Ee

k,i,E
p
k,i) ∈ A(w(tik)), let (uk,i+1,Ee

k,i+1,

Ep
k,i+1) ∈ A(w(ti+1

k )) (i = 0, . . . , k − 1) be a solution of the following minimization
problem:

(6.1) min
(u,Ee,Ep)∈A(w(ti+1

k ))
Q1(Ee) + Q2(curlEp) − 〈L(ti+1

k ), u〉 + H(Ep − Ep
k,i).

The existence of a solution for problem (6.1) is established in the following lemma.
Lemma 6.1. Problem (6.1) admits a solution.
Proof. The result follows by applying the direct method of the calculus of varia-

tions. In fact, let

(un,Ee
n,E

p
n) ∈ A(w(ti+1

k ))

be a minimizing sequence for (6.1). By comparison with (w(ti+1
k ),Ew(ti+1

k ), 0) we get

Q1(Ee
n) + Q2(curlEp

n) − 〈L
(
ti+1
k

)
, un〉 + H(Ep

n − Ep
k,i)

≤ Q1(Ew(ti+1
k )) − 〈L(ti+1

k ), w(ti+1
k )〉 + H(Ep

k,i) := C.

By the representation formula (4.15) for L(ti+1
k ) we deduce that

Q1(Ee
n) −

∫
Ω

ρ(ti+1
k ) : Ee

n dx+ Q2(curlEp
n)

+ H(Ep
n − Ep

k,i) −
∫

Ω

ρD(ti+1
k ) : (Ep

n − Ep
k,i) dx

≤ C +
∫

Ω

ρD(ti+1
k ) : Ep

k,i dx− 〈ρ(ti+1
k )ν, w(ti+1

k )〉∂DΩ.

By the coercivity of Q1 and Q2 in L2 and by (4.17) we get

‖Ee
n‖2

L2(Ω;MN×N
sym ) + ‖curlEp

n‖2
L2(Ω;MN×N ) + ‖Ep

n − Ep
k,i‖BV (Ω;MN×N

D ) ≤ C1

for some C1 > 0. Up to a subsequence we may assume that

Ee
n ⇀ Ee weakly in L2

(
Ω; MN×N

sym

)
and

Ep
n

∗
⇀ Ep weakly* in BV

(
Ω; MN×N

D

)
.

As a consequence we get curlEp ∈ L2(Ω; MN×N ) and that

curlEp
n ⇀ curlEp weakly in L2

(
Ω; MN×N

)
.

By the compatibility Eun = Ee
n + Ep

n and by the embedding BV (Ω; MN×N
D ) ↪→

L
N

N−1 (Ω; MN×N
D ), we get that (Eun)n∈N is bounded in L

N
N−1 (Ω; MN×N

sym ). In view of
the boundary condition un = wk,i+1 on ∂DΩ, Korn’s inequality implies that (un)n∈N

is bounded in W 1, N
N−1 (Ω; R

N ). Up to a further subsequence we can thus suppose that

un ⇀ u weakly in W 1, N
N−1
(
Ω; R

N
)
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for some u ∈ W 1, N
N−1 (Ω; R

N ), with u = w(ti+1
k ) on ∂DΩ. We clearly have (u,Ee,Ep) ∈

A(w(ti+1
k )), and by lower semicontinuity (Q1 and Q2 are quadratic, L(ti+1

k ) is linear,
and H is lower semicontinuous by Lemma 4.1), we deduce that

Q1(Ee) + Q2(curlEp) − 〈L(ti+1
k ), u〉 + H(Ep − Ep

k,i)

≤ lim inf
n→+∞

[
Q1(Ee

n) + Q2(curlEp
n) − 〈L

(
ti+1
k

)
, un〉 + H(Ep

n − Ep
k,i)
]
.

We conclude that (u,Ee,Ep) is a minimizer for problem (6.1), so that the proof is
concluded.

The discretized-in-time evolution is obtained by interpolating the data obtained
by the minimization procedure described above. Let us set for tik ≤ t < ti+1

k

wk(t) := w(tik) and Lk(t) := L(tik).

We collect the main properties of the discretized-in-time evolution (essential for the
passage to the limit as the time step discretization goes to zero) in the following
proposition.

Proposition 6.2. There exists a map t �→ (uk(t),Ee
k(t),Ep

k(t)), with t ∈ [0, T ],
such that (uk(0),Ee

k(0),Ep
k(0)) = (u0,Ee

0,E
p
0) and such that the following facts hold.

(a) (uk(t),Ee
k(t),Ep

k(t)) ∈ A(wk(t)) for every t ∈ [0, T ], and for every (v, e,p) ∈
A(wk(t)) we have

(6.2) Q1(Ee
k(t)) + Q2(curlEp

k(t)) − 〈Lk(t), uk(t)〉
≤ Q1(e) + Q2(curlp) − 〈Lk(t), v〉 + H(Ep

k(t) − p).

(b) By setting

Ek(t) := Q1(Ee
k(t)) + Q2(curlEp

k(t)) − 〈Lk(t), uk(t)〉,

we have for every tik ≤ t < ti+1
k

(6.3) Ek(t) + DH(Ep
k; 0, t) ≤ Q1(Ee

0) + Q2(curlEp
0) − 〈L(0), u0〉

+
∫ ti

k

0

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ −

∫ ti
k

0

〈L̇(τ), uk(τ)〉 dτ

−
∫ ti

k

0

〈Lk(τ), ẇ(τ)〉 dτ + ek,

where ek → 0 as k → +∞ and DH is defined in (5.1).
(c) There exists a constant C independent of k ∈ N and t ∈ [0, T ] such that

(6.4) ‖uk(t)‖
W

1, N
N−1 (Ω;RN )

+ ‖Ee
k(t)‖L2(Ω;MN×N

sym )

+ ‖curlEp
k(t)‖L2(Ω;MN×N) + V (Ep

k; 0, t) ≤ C,

where V(Ep
k; 0, t) is the total variation of Ep

k on [0, t] defined in (2.4) (with
the choice X = BV (Ω; MN×N

D )).
Proof. For every tik ≤ t < ti+1

k let us set

uk(t) := uk,i, Ee
k(t) := Ee

k,i, and Ep
k(t) := Ep

k,i,
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where (uk,j ,Ee
k,j ,E

p
k,j) ∈ A(w(tjk)) is a solution of the minimization problem (6.1).

The minimality property (6.2) follows immediately by the subadditivity of H.
Let us prove (6.3). By construction, by comparing (uk,j ,Ee

k,j ,E
p
k,j) with

(uk,j−1 + w(tjk) − w(tj−1
k ),Ee

k,j−1 + Ew(tjk) − Ew(tj−1
k ),Ep

k,j−1) ∈ A(w(tjk)),

we get

(6.5) Q1(Ee
k,j) + Q2(curlEp

k,j) + H(Ee
k,j − Ee

k,j−1) − 〈L(tjk), uk,j〉
≤ Q1(Ee

k,j−1 + Ew(tjk) − Ew(tj−1
k )) + Q2(curlEp

k,j−1)

− 〈L(tjk), uk,j−1 + w(tjk) − w(tj−1
k )〉

= Q1(Ee
k,j−1) + Q2(curlEp

k,j−1) − 〈L(tj−1
k ), uk,j−1〉 +

∫ tj
k

tj−1
k

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ

−
∫ tj

k

tj−1
k

〈L̇(τ), uk(τ)〉 dτ −
∫ tj

k

tj−1
k

〈Lk(τ), ẇ(τ)〉 dτ + δk,j ,

where

δk,j := Q1(Ew(tjk) − Ew(tj−1
k )) − 〈L(tjk) − L(tj−1

k ), w(tjk) − w(tj−1
k )〉.

By summing up from j = 1 to j = i we get

Ek(t) + DH(Ep
k; 0, t) ≤ Ek(0) +

∫ ti
k

0

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ

−
∫ ti

k

0

〈L̇(τ), uk(τ)〉 dτ −
∫ ti

k

0

〈Lk(τ), ẇ(τ)〉 dτ +
i∑

j=1

δk,j .

Since

δk,j ≤ βC

k

∫ tj
k

tj−1
k

‖Eẇ(τ)‖2
L2(Ω;MN×N

sym ) dτ

+ sup
j

∥∥∥L(tjk) − L(tj−1
k )
∥∥∥(

W
1, N

N−1 (Ω;RN )
)∗ ∫ tj

k

tj−1
k

‖ẇ(τ)‖
W

1, N
N−1 (Ω;RN )

dτ,

by setting ek :=
∑k

j=1 δk,j , we get ek → 0 as k → +∞. Since

Ek(0) = Q1(Ee
0) + Q2(curlEp

0) − 〈L(0), u0〉,

inequality (6.3) follows.
Let us prove (6.4). By using the safe load condition on fand g, by (4.15) we can

rewrite the first inequality of (6.5) in the following form:

Q1(Ee
k,j) −

∫
Ω

ρ(tjk) : Ee
k,j dx+ Q2(curlEp

k,j) + H(Ee
k,j −Ee

k,j−1) −
∫

Ω

ρD(tjk) : Ep
k,j dx

≤ Q1(Ee
k,j−1 + Ew(tjk) − Ew(tj−1

k )) + Q2(curlEp
k,j−1)

−
∫

Ω

ρ(tjk) : Ee
k,j−1 dx−

∫
Ω

ρD(tjk) : Ep
k,j−1 dx,
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so that

Q1(Ee
k,j) −

∫
Ω

ρ(tjk) : Ee
k,j dx+ Q2(curlEp

k,j) + H(Ee
k,j − Ee

k,j−1)

−
∫

Ω

ρD(tjk) : (Ep
k,j − Ep

k,j−1) dx ≤ Q1(Ee
k,j−1) −

∫
Ω

ρ(tj−1
k ) : Ee

k,j−1 dx

+ Q2(curlEp
k,j−1) +

∫ tj
k

tj−1
k

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ

−
∫ tj

k

tj−1
k

∫
Ω

ρ̇(τ) : Ee
k(τ) dx dτ + δ̃k,j ,

where

δ̃k,j := Q1(Ew(tjk) − Ew(tj−1
k )) ≤ βC

k

∫ tj
k

tj−1
k

‖Eẇ(τ)‖2
L2(Ω;MN×N

sym )
dτ.

By summing up from 0 to i we have

Q1(Ee
k,i) −

∫
Ω

ρ(tik) : (Ee
k,i − Ew(tik)) dx+ Q2(curlEp

k,i)

+
i∑

j=0

[
H(Ee

k,j − Ee
k,j−1) −

∫
Ω

ρD(tjk) : (Ep
k,j − Ep

k,j−1) dx
]

≤ Q1(Ee
k,0) −

∫
Ω

ρ(0) : (Ee
k,0 − Ewk,0) dx+ Q2(curlEp

k,0)

+
∫ ti

k

0

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ −

∫ ti
k

0

∫
Ω

ρ̇(τ) : (Ee
k(τ) − Ewk(τ)) dx dτ + ẽk,

where ẽk :=
∑k

j=0 δ̃k,j → 0 as k → +∞. Since by (4.17) we have

i∑
j=0

[
H(Ee

k,j − Ee
k,j−1) −

∫
Ω

ρD(tjk) : (Ep
k,j − Ep

k,j−1) dx
]

≥ αl

i∑
j=0

‖Ee
k,j − Ee

k,j−1‖BV (Ω;MN×N
D ),

we deduce that

(6.6) Q1(Ee
k(t)) −

∫
Ω

ρ(tik) : (Ee
k(t) − Ewk(t)) dx + Q2(curlEp

k(t)) + αlV(Ee
k; 0, t)

≤ C1 +
∫ ti

k

0

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ −

∫ ti
k

0

∫
Ω

ρ̇(τ) : (Ee
k(τ) − Ewk(τ)) dx dτ

for some C1 > 0 independent of k and t. Since Q1(Ee
k(t)) is quadratic, we get that

‖Ee
k(t)‖L2 is uniformly bounded in k and t. Hence from (6.6) we deduce also that

‖curlEp
k(t)‖L2 and V(Ep

k; 0, t) are uniformly bounded with respect to k and t. Since
uk(t) = wk(t) on ∂DΩ, by Korn’s inequality we have also that uk(t) is uniformly
bounded in W 1, N

N−1 (Ω; R
N ) with respect to k and t. The proof of (6.4) is thus

concluded.
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7. Existence of a quasi-static evolution and approximation results. In
this section we prove that the discrete evolution t �→ (uk(t),Ee

k(t),Ep
k(t)) given by

Proposition 6.2 admits a subsequence converging (in a suitable sense) to a quasi-
static evolution for the Gurtin–Anand model. This will be done in Lemmas 7.1, 7.2,
and 7.3. Theorem 5.2 will thus follow by combining these lemmas.

Lemma 7.1. There exists a subsequence t �→ (ukj (t),Ee
kj

(t),Ep
kj

(t)) of the dis-
crete evolution t �→ (uk(t),Ee

k(t),Ep
k(t)) and a map t �→ (u(t),Ee(t),Ep(t)) with

(u(0),Ee(0),Ep(0)) = (u0,Ee
0,E

p
0) such that for every t ∈ [0, T ]

(u(t),Ee(t),Ep(t)) ∈ A(w(t)),

(7.1) ukj (t) ⇀ u(t) weakly in W 1, N
N−1 (Ω; R

N ),

(7.2) Ee
kj

(t) ⇀ Ee(t) weakly in L2(Ω; MN×N
sym ),

(7.3) Ep
kj

(t) ∗
⇀ Ep(t) weakly* in BV (Ω; MN×N

D ),

and

(7.4) curlEp
kj

(t) ⇀ curlEp(t) weakly in L2(Ω; MN×N ).

Moreover, t �→ Ep(t) has bounded variation, and there exists C > 0 such that for
every t ∈ [0, T ]

(7.5) ‖u(t)‖
W

1, N
N−1 (Ω;RN )

+ ‖Ee(t)‖L2(Ω;MN×N
sym )

+ ‖curlEp(t)‖L2(Ω;MN×N ) + V(Ep; 0, t) ≤ C.

Finally for every t ∈ [0, T ] and for every (v, e,p) ∈ A(w(t)) the following global
stability condition holds:

(7.6) Q1(Ee(t)) + Q2(curlEp(t)) − 〈L(t), u(t)〉
≤ Q1(e) + Q2(curlp) − 〈L(t), v〉 + H(p − Ep(t)).

Proof. By Proposition 6.2 we have

(7.7) ‖uk(t)‖
W

1, N
N−1 (Ω;RN )

+ ‖Ee
k(t)‖L2(Ω;MN×N

sym )

+ ‖curlEp
k(t)‖L2(Ω;MN×N) + V (Ep

k; 0, t) ≤ C

for some C independent of k and t. Since Ep
k(0) = Ep

0 and V(Ep
k; 0, T ) ≤ C, the

existence of Ep ∈ BV (0, T ;BV (Ω; MN×N
D )) and of a subsequence t �→ (ukj (t),Ee

kj
(t),

Ep
kj

(t)) such that (7.3) holds follows by applying the generalized version of Helly’s
theorem proved in [8, Lemma 7.2] (notice that BV can be seen as the dual of a
separable Banach space in such a way that the associated convergence with respect
to the weak∗ topology is precisely the weak∗ convergence defined in (2.3)).

Since weak∗ convergence in BV implies strong convergence in L1, by (7.7) we
deduce that curlEp(t) ∈ L2(Ω; MN×N) and that (7.4) holds.

Let us fix t ∈ [0, T ]. In view of the coercivity estimate (7.7), we may assume that
there exist ũ ∈ W 1, N

N−1 (Ω; R
N ), Ẽe ∈ L2(Ω; MN×N

sym ), and a further subsequence kjh

(depending a priori on t) such that

ukjh
(t) ⇀ ũ weakly in W 1, N

N−1 (Ω; R
N )
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and

(7.8) Ee
kjh

(t) ⇀ Ẽe weakly in L2(Ω; MN×N
sym ).

It follows easily that (ũ, Ẽe,Ep(t)) ∈ A(w(t)). We claim that for every (v, e,p) ∈
A(w(t)) we have

(7.9) Q1(Ẽe) + Q2(curlEp(t)) − 〈L(t), ũ〉
≤ Q1(e) + Q2(curlp) − 〈L(t), v〉 + H(p − Ep(t)).

Notice that, in view of (7.9), it turns out that ũ and Ẽe are uniquely determined
by Ep(t). In fact, the pair (ũ, Ẽe) minimizes the convex functional (v, e) �→ Q1(e) −
〈L(t), v〉 on the convex set K := {(v, e) : (v, e,Ep(t)) ∈ A(w(t))}. Since the functional
is strictly convex in e, Ẽe is uniquely determined, and so is ũ in view of Korn’s
inequality. By setting u(t) := ũ and Ee(t) := Ẽe, we get that (7.1) and (7.2) hold
(without passing to a further subsequence).

In view of (7.7) we deduce that (7.5) holds. Finally, the global stability is given
precisely by (7.9).

In order to conclude the proof, we need to prove claim (7.9). Let us set

vh := v−ũ+ukjh
(t), eh := e−Ẽe+Ee

kjh
(t), and ph := p−Ep(t)+Ep

kjh
(t).

We have (vh, eh,ph) ∈ A(wkjh
(t)). By (6.2) we have

Q1(Ee
kjh

(t)) + Q2(curlEp
kjh

(t)) − 〈Lkjh
(t), ukjh

(t)〉

≤ Q1(eh) + Q2(curlph) − 〈Lkjh
(t), vh〉 + H(ph − Ep

kjh
(t))

= Q1(e − Ẽe + Ee
kjh

(t)) + Q2(curlp − curlEp(t) + curlEp
kjh

(t))

− 〈Lkjh
(t), v − ũ+ ukjh

(t)〉 + H(p − Ep(t)),

so that we get

0 ≤ Q1(e − Ẽe) +
∫

Ω

C(e − Ẽe) : Ee
kjh

(t) dx

+ Q2(curlp− curlEp(t)) + μL2

∫
Ω

(curlp− curlEp(t)) : curlEp
kjh

(t) dx

− 〈Lkjh
(t), v − ũ〉 + H(p − Ep(t)).

By letting h→ +∞, in view of (7.8), (7.3), and (7.4) and since t �→ L(t) is absolutely
continuous with values in (W 1, N

N−1 (Ω; R
N ))∗, we obtain

0 ≤ Q1(e − Ẽe) +
∫

Ω

C(e − Ẽe) : Ẽe dx

+ Q2(curlp− curlEp(t)) + μL2

∫
Ω

(curlp− curlEp(t)) : curlEp(t) dx

− 〈L(t), v − ũ〉 + H(p − Ep(t)).

By adding to both sides the term Q1(Ẽe) + Q2(curlEp(t)) − 〈L(t), ũ〉, we obtain
precisely (7.9), so that the proof is concluded.
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We have the following estimate from above for the total energy.
Lemma 7.2. Let t �→ (u(t),Ee(t),Ep(t)) be the evolution given by Lemma 7.1.

Then for every t ∈ [0, T ] we have

(7.10) E(t) + DH(Ep; 0, t) ≤ Q1(Ee
0) + Q2(curlEp

0) − 〈L(0), u0〉

+
∫ t

0

∫
Ω

CEe(τ) : Eẇ(τ) dx dτ −
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ,

where E(t) and DH(Ep; 0, t) are defined in (5.4) and (5.1), respectively.
Proof. Let us fix t ∈ [0, T ]. By (6.3) we have

(7.11) Ek(t) + DH(Ep
k; 0, t) ≤ Q1(Ee

0) + Q2(curlEp
0) − 〈L(0), u0〉

+
∫ ti

k

0

∫
Ω

CEe
k(τ) : Eẇ(τ) dx dτ −

∫ ti
k

0

〈L̇(τ), uk(τ)〉 dτ

−
∫ ti

k

0

〈Lk(τ), ẇ(τ)〉 dτ + ek,

where ek → 0 as k → +∞. In view of (7.2), (7.4), and (7.1) and since Lk(t) → L(t)
strongly in (W 1, N

N−1 (Ω; R
N ))∗, we get by lower semicontinuity

E(t) ≤ lim inf
j→+∞

Ekj (t).

Moreover, by (7.3) and the lower semicontinuity of H with respect to the weak∗

convergence in BV , the very definition of DH implies that

DH (Ep; 0, t) ≤ lim inf
j→+∞

DH(Ep
kj

; 0, t).

By Lebesgue dominated convergence we get as k → +∞

∫ ti
kj

0

∫
Ω

CEe
kj

(τ) : Eẇ(τ) dx dτ −
∫ ti

kj

0

〈L̇(τ), ukj (τ)〉 dτ −
∫ ti

kj

0

〈Lkj (τ), ẇ(τ)〉 dτ

→
∫ t

0

∫
Ω

CEe(τ) : Eẇ(τ) dx dτ −
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ.

Then (7.10) follows passing to the limit in (7.11).
The following estimate from below for the total energy holds.
Lemma 7.3. Let t �→ (u(t),Ee(t),Ep(t)) be the evolution given by Lemma 7.1.

Then for every t ∈ [0, T ] we have

(7.12) E(t) + DH(Ep; 0, t) ≥ Q1 (Ee
0) + Q2 (curlEp

0) − 〈L(0), u0〉

+
∫ t

0

∫
Ω

CEe(τ) : Eẇ(τ) dx dτ −
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ,

where E(t) and DH(Ep; 0, t) are defined in (5.4) and (5.1), respectively.
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Proof. Let t ∈ [0, T ], h ≥ 1, and let us set sj
h := j

h t for j = 0, 1, . . . h. By the
global stability condition (7.6), by comparing (u(sj

h),Ee(sj
h),Ep(sj

h)) with(
u(sj+1

h ) − w(sj+1
h ) + w(sj

h),

Ee(sj+1
h ) − Ew(sj+1

h ) + Ew(sj
h),Ep(sj+1

h )
)
∈ A(w(sj

h)),

we get

Q1(Ee(sj+1
h ) − Ew(sj+1

h ) + Ew(sj
h)) + Q2(curlEp(sj+1

h ))

− 〈L(sj
h), u(sj+1

h ) − w(sj+1
h ) + w(sj

h)〉 + H(Ep(sj+1
h ) − Ep(sj

h))

≥ Q1(Ee(sj
h)) + Q2(curlEp(sj

h)) − 〈L(sj
h), u(sj

h)〉,

which can be rewritten in the following form:

(7.13) Q1

(
Ee
(
sj+1

h

))
+ Q2

(
curlEp

(
sj+1

h

))
− 〈L

(
sj+1

h

)
, u
(
sj+1

h

)
〉

+H
(
Ep
(
sj+1

h

)
− Ep

(
sj

h

))
≥ Q1

(
Ee
(
sj

h

))
+Q2

(
curlEp

(
sj

h

))
−〈L

(
sj

h

)
, u
(
sj

h

)
〉

+
∫ sj+1

h

sj
h

∫
Ω

CEe
h(s) : Eẇ(s) dx ds−

∫ sj+1
h

sj
h

〈L̇(s), ūh(s)〉 ds−
∫ sj+1

h

sj
h

〈Lh(s), ẇ(s)〉 ds+δ̄h,j ,

where for sj
h < s ≤ sj+1

h we set

uh(s) := u(sj+1
h ), Ee

h(s) := Ee(sj+1
h ), Ep

h(s) := Ep(sj+1
h ), Lh(s) := L(sj+1

h ),

and

δ̄h,j := −Q1(Ew(sj+1
h ) − Ew(sj

h)) − 〈L(sj+1
h ) − L(sj

h), w(sj+1
h ) − w(sj

h)〉.

By summing up in (7.13) from 0 to h− 1 we get

Q1(Ee(t)) + Q2(curlEp(t)) − 〈L(t), u(t)〉 +
h−1∑
j=0

H(Ep(sj+1
h ) − Ep(sj

h))

≥ Q1(Ee
0) + Q2(curlEp

0) − 〈L(0), u0〉

+
∫ t

0

∫
Ω

CEe
h(s) : Eẇ(s) dx ds−

∫ t

0

〈L̇(s), uh(s)〉 ds−
∫ t

0

〈Lh(s), ẇ(s)〉 ds+ ēh,

where ēh → 0 as h→ +∞. By the very definition of DH we get

(7.14) E(t) + DH(Ep; 0, t) ≥ Q1(Ee
0) + Q2(curlEp

0) − 〈L(0), u0〉

+
∫ t

0

∫
Ω

CEe
h(s) : Eẇ(s) dx ds −

∫ t

0

〈L̇(s), uh(s)〉 ds

−
∫ t

0

〈Lh(s), ẇ(s)〉 ds+ ēh.

Since Ep ∈ BV (0, T ;BV (Ω; MN×N
D )), we have that Ep(t) is continuous in time

with respect to the strong topology in BV (Ω; MN×N
D ) up to a countable set in [0, T ].

Let s ∈ [0, T ] be a continuity point of Ep, and let sn → s. Then

(7.15) Ee(sn) ⇀ Ee(s) weakly in L2(Ω; MN×N
sym )
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and

(7.16) u(sn) ⇀ u(s) weakly in W 1, N
N−1 (Ω; R

N ).

In fact up to a subsequence we have that

Ee(sn) ⇀ Ẽe weakly in L2(Ω; MN×N
sym )

and

u(sn) ⇀ ũ weakly in W 1, N
N−1 (Ω; R

N ),

with (ũ, Ẽe,Ep(s)) ∈ A(w(s)). Given (v, e,Ep(s)) ∈ A(w(s)), by the global stability
condition (7.6), comparing (u(sn),Ee(sn),Ep(sn)) with (v−w(s)+w(sn), e−Ew(s)+
Ew(sn),Ep(s)), and taking into account the continuity of H with respect to the
BV -norm, we obtain that (ũ, Ẽe) is a minimizer of the convex functional (v, e) �→
Q1(e) − 〈L(s), v〉 on the convex set K := {(v, e) : (v, e,Ep(s)) ∈ A(w(s))}. By the
uniqueness of the minimizer, we have that ũ = u(s) and Ẽe = Ee(s), so that (7.15)
and (7.16) follow.

By (7.15) and (7.16) we have that for a.e. every s ∈ [0, t]

(7.17) Ee
h(s) ⇀ Ee(s) weakly in L2(Ω; MN×N

sym )

and

(7.18) uh(s) ⇀ u(s) weakly in W 1, N
N−1 (Ω; R

N ).

By taking into account that for every s ∈ [0, T ]

Lh(s) → L(s) strongly in
(
W 1, N

N−1
(
Ω; R

N
))∗

,

in view of (7.17) and (7.18), passing to the limit in (7.14) we get by dominated
convergence (take into account (7.5)) that (7.12) follows.

We are in a position to prove Theorem 5.2. Indeed, the evolution t �→ (u(t),Ee(t),
Ep(t)) given by Lemma 7.1 is a quasi-static evolution for the Gurtin–Anand model
because it satisfies the global stability condition in view of (7.6), and it satisfies the
energy balance because of (7.10) and (7.12).

The convergence of the discrete-in-time evolution to the continuous one can be
improved in the following way.

Proposition 7.4. Let t �→ (u(t),Ee(t),Ep(t)) be the quasi-static evolution for
the Gurtin–Anand model given by Lemma 7.1. Then for every t ∈ [0, T ] we have for
j → +∞

(7.19) Ekj (t) → E(t)

and

(7.20) DH(Ep
kj

; 0, t) → DH(Ep; 0, t).

In particular we get that

Ee
kj

(t) → Ee(t) strongly in L2(Ω; MN×N
sym ),(7.21)

curlEp
kj

(t) → curlEp(t) strongly in L2(Ω; MN×N),(7.22)
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so that for every t ∈ [0, T ]

(7.23) Q1(Ee
kj

(t)) → Q1(Ee(t)), Q2(curlEp
kj

(t)) → Q2(curlEp(t))

and

(7.24) 〈Lkj (t), ukj (t)〉 → 〈L(t), u(t)〉.
Proof. Notice that by lower semicontinuity we have for every t ∈ [0, T ]

(7.25) E(t) ≤ lim inf
j→+∞

Ekj (t).

Moreover, by the lower semicontinuity of H with respect to the weak∗ convergence,
and by the very definition of DH, we deduce that for every t ∈ [0, T ]

(7.26) DH(Ep; 0, t) ≤ lim inf
j→+∞

DH(Ep
kj

; 0, t).

By (6.3) and (7.12) we get that

E(t) + DH(Ep; 0, t) ≤ lim inf
j→+∞

(Ekj (t) + DH(Ep
kj

; 0, t))

≤ lim sup
j→+∞

(
Ekj (t) + DH

(
Ep

kj
; 0, t
))

≤ lim sup
j→+∞

[
Q1(Ee

0) + Q2(curlEp
0) − 〈L(0), u0〉 +

∫ ti
kj

0

∫
Ω

CEe
kj

(τ) : Eẇ(τ) dx dτ

−
∫ ti

kj

0

〈L̇(τ), ukj (τ)〉 dτ −
∫ ti

kj

0

〈Lkj (τ), ẇ(τ)〉 dτ + ekj

]

= Q1(Ee
0) + Q2(curlEp

0) − 〈L(0), u0〉 +
∫ t

0

∫
Ω

CEe(τ) : Eẇ(τ) dx dτ

−
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ ≤ E(t) + DH(Ep; 0, t).

We conclude that for every t ∈ [0, T ]

lim
j→+∞

(Ekj (t) + DH(Ep
kj

; 0, t)) = E(t) + DH(Ep; 0, t).

From (7.25) and (7.26) we deduce that (7.19) and (7.20) hold. Since by lower semi-
continuity

Q1(Ee(t)) ≤ lim inf
j→+∞

Q1(Ee
kj

(t)) and Q2(curlEp(t)) ≤ lim inf
j→+∞

Q2(curlEp
kj

(t)),

while

〈Lkj (t), ukj (t)〉 → 〈L(t), u(t)〉,
from (7.19) we deduce that (7.23) and (7.24) hold. In particular (7.21) and (7.22)
follow, and the proof is concluded.

Remark 7.5 (convergence for the elastic and the “energetic” plastic strains).
Since the maps t �→ Ee(t) and t �→ curlEp(t) turn out to be uniquely determined by
the initial conditions (see Proposition 8.8), we infer that

Ee
k(t) → Ee(t) strongly in L2(Ω; MN×N

sym ),

curlEp
k(t) → curlEp(t) strongly in L2(Ω; MN×N )

without passing to a subsequence (kj)j∈N.
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8. Balance equations and the flow rule. This section is devoted to the proof
of Theorem 5.3; that is, we prove that a quasi-static evolution t �→ (u(t),Ee(t),Ep(t))
for the Gurtin–Anand model satisfies the prescribed regularity and uniqueness prop-
erties, the balance equations, and the flow rule.

We need the following lemma.
Lemma 8.1. For every t ∈ [0, T ] there exist Tp(t) ∈ L∞(Ω; MN×N

D ), K
p
diss(t) ∈

L∞(Ω; MN×N×N
D ), and S

p(t) ∈ (Mb(Ω; MN×N×N
D ))∗ such that for every (A,B,L) ∈

L1(Ω; MN×N
D ) × L1(Ω; MN×N×N

D ) ×Mb(Ω; MN×N×N
D )

(8.1)
∣∣∣∣∫

Ω

Tp(t) : A dx+
∫

Ω

K
p
diss(t) : B dx+ 〈Sp(t),L〉

∣∣∣∣
≤ SY

∫
Ω

√
|A|2 + l2|B|2 dx+ lSY |L|(Ω)

and such that for every (v, e,p) ∈ A(0)

(8.2)
∫

Ω

T(t) : e dx+ μL2

∫
Ω

curlEp(t) : curlp dx− 〈L(t), v〉

= −
∫

Ω

Tp(t) : p dx−
∫

Ω

K
p
diss(t) : ∇p dx− 〈Sp(t), Dsp〉.

In particular, by setting K
p(t) := K

p
en(t) + K

p
diss(t), with K

p
en(t) defined in (3.4)–(3.5)

starting from Ep(t), for every (v, e,p) ∈ A(0) the following identity holds:

(8.3)
∫

Ω

T(t) : e dx+
∫

Ω

Tp(t) : p dx+
∫

Ω

K
p(t) : ∇p dx+ 〈Sp(t), Dsp〉 = 〈L(t), v〉.

Proof. Let us fix t ∈ [0, T ]. From the global stability condition (5.2), for every
(v, e,p) ∈ A(0) and ε ∈ R we get

Q1(Ee(t)) + Q2(curlEp(t)) − 〈L(t), u(t)〉
≤ Q1(Ee(t) + εe) + Q2(curlEp(t) + εcurlp) − 〈L(t), u(t) + εv〉 + H(εp)

so that

Q1(Ee(t) + εe) + Q2(curlEp(t) + εcurlp) − ε〈L(t), v〉 + H(εp)
≥ Q1(Ee(t)) + Q2(curlEp(t)).

By taking the left and right derivative for ε = 0 we get∫
Ω

CEe(t) : e dx+ μL2

∫
Ω

curlEp(t) : curlp dx− 〈L(t), v〉 + H(p) ≥ 0

and ∫
Ω

CEe(t) : e dx+ μL2

∫
Ω

curlEp(t) : curlp dx− 〈L(t), v〉 − H(−p) ≤ 0

so that, since T(t) := CEe(t),∣∣∣∣∫
Ω

T(t) : e dx+ μL2

∫
Ω

curlEp(t) : curlp dx− 〈L(t), v〉
∣∣∣∣ ≤ H(p).
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The previous inequality shows that the linear functional on A(0)

(v, e,p) �→
∫

Ω

CEe(t) : e dx+ μL2

∫
Ω

curlEp(t) : curlp dx− 〈L(t), v〉

depends indeed only on p.
Let X ⊆ L1(Ω; MN×N

D )×L1(Ω; MN×N×N
D )×Mb(Ω; MN×N×N

D ) be the linear sub-
space generated by {(p,∇p, Dsp) : (v, e,p) ∈ A(0) for some v ∈W 1, N

N−1 (Ω; R
N ), e ∈

L2(Ω; MN×N
sym )}. By applying the Hahn–Banach theorem we deduce that the linear

functional

(8.4) ϕ(p,∇p, Dsp) :=
∫

Ω

T(t) : e dx+ μL2

∫
Ω

curlEp(t) : curlp dx− 〈L(t), v〉

on the linear space X can be extended in a continuous way to the entire space
L1(Ω; MN×N

D ) × L1(Ω; MN×N×N
D ) ×Mb(Ω; MN×N×N

D ) in such a way that

(8.5) |ϕ(A,B,L)| ≤ SY

∫
Ω

√
|A|2 + l2|B|2 dx+ lSY |L|(Ω)

for every (A,B,L) ∈ L1(Ω; MN×N
D )×L1(Ω; MN×N×N

D )×Mb(Ω; MN×N×N
D ). By repre-

senting ϕ, in view of (8.5) and (8.4), we obtain that there exist Tp(t) ∈ L∞(Ω; MN×N
D ),

K
p
diss(t) ∈ L∞(Ω; MN×N×N

D ), and S
p(t) ∈ (Mb(Ω; MN×N×N

D ))∗ such that (8.1) and
(8.2) hold. Finally, (8.3) follows by (8.2) in view of the very definition of K

p
en(t).

The following proposition concerns the balance equation for the Cauchy stress.
Proposition 8.2 (balance equations for the Cauchy stress). For every t ∈ [0, T ]

we have

(8.6)

{
−divT(t) = f(t) in Ω,
T(t)ν = g(t) on ∂NΩ.

Proof. Let v ∈ C∞(Ω,RN ) such that v = 0 on ∂DΩ. By choosing (v,Ev, 0) ∈ A(0)
in (8.3) we deduce that

(8.7)
∫

Ω

T(t) : Ev dx = 〈L(t), v〉.

Then clearly −divT(t) = f(t) in the sense of distributions in Ω. Since T(t) ∈
L2(Ω; MN×N

sym ) and its divergence belongs in particular to L2(Ω; R
N ), we have that

the normal trace of T(t) on ∂Ω is well defined as an element of H−1/2(∂Ω; R
N ). By

integrating by parts in (8.7) we get immediately the second relation of (8.6).
Concerning the stresses conjugated to the plastic variables, the following result

holds.
Proposition 8.3 (stresses conjugated to the plastic variables). For every t ∈

[0, T ] let Tp(t), K
p
diss(t), K

p(t), and S
p(t) be as in Lemma 8.1. Then

(8.8)

{
Tp(t) = TD(t) + divK

p(t) in Ω,
K

p(t)ν = 0 on ∂Ω,

where TD(t) := (T(t))D denotes the deviatoric part of the Cauchy stress.
Moreover, the stresses Tp(t) and K

p
diss(t) satisfy the constraint

(8.9)
√
|Tp(t, x)|2 + l−2|Kp

diss(t, x)|2 ≤ SY for a.e. x ∈ Ω,
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while the stress S
p(t) satisfies

(8.10) ‖S
p(t)‖(Mb(M

N×N×N
D ))∗ ≤ lSY .

Proof. The stress constraints (8.9) and (8.10) follow by choosing (A,B, 0) and
(0, 0,L), respectively, in (8.1).

Let us come to (8.8). Let p ∈ C∞(Ω,MN×N
D ), so that in particular (0,−p,p) ∈

A(0). Then (8.3) yields

−
∫

Ω

T(t) : p dx+
∫

Ω

Tp(t) : p dx+
∫

Ω

K
p(t) : ∇p dx = 0.

Since p takes values in the space of deviatoric matrices, we can replace T(t) by TD(t)
so that we obtain

(8.11)
∫

Ω

(Tp(t) − TD(t)) : p dx+
∫

Ω

K
p(t) : ∇p dx = 0.

We conclude that the first relation of (8.8) holds. As a consequence, in view of
(8.9) and the definition of K

p
en(t), we have K

p(t) ∈ L2(Ω; MN×N×N
D ) with divergence

in L2(Ω; MN×N
D ), so that its normal trace on ∂Ω is well defined as an element of

H−1/2(∂Ω; R
N×N). By integrating by parts in (8.11) we obtain also the second rela-

tion of (8.8), and the proof is concluded.
Remark 8.4. Note that relation (8.3) represents the balance of internal and ex-

ternal power expenditures on the whole body Ω (see section 3). Due to our variational
approach which requires Ep(t) ∈ BV (Ω; MN×N

D ) so that DEp(t) has also a singular
part, a stress S

p(t) associated to DsEp(t) appears in the balance. In order to get
a balance equation for a subbody B ⊂⊂ Ω with a sufficiently smooth boundary, we
can reason as follows. Let us assume to be in the physical case N = 3. As a conse-
quence, admissible displacements v turn out to belong to L3(Ω; R

3). Let us assume
for simplicity that (v, e,p) ∈ A(0) is such that p belongs also to L2(Ω;M3×3

D ), and
let ϕ ∈ C∞

c (Ω). By (8.3) we can write

(8.12)∫
Ω

T(t) : (ϕe) dx +
∫

Ω

Tp(t) : (ϕp) dx+
∫

Ω

K
p(t) : (ϕ∇p) dx + 〈Sp(t), ϕDsp〉

=
∫

Ω

T(t) : (ϕe + v �∇ϕ) dx+
∫

Ω

Tp(t) : (ϕp) dx +
∫

Ω

K
p(t) : ∇(ϕp) dx

+ 〈Sp(t), Ds(ϕp)〉 −
∫

Ω

T(t) : (v �∇ϕ) dx −
∫

Ω

K
p(t) : (p⊗∇ϕ) dx

= 〈L(t), ϕv〉 −
∫

Ω

T(t) : (v �∇ϕ) dx −
∫

Ω

K
p(t) : (p ⊗∇ϕ) dx,

where the last equality follows since (ϕv, ϕe + v � ∇ϕ,ϕp) ∈ A(0) (we use p ∈
L2(Ω;M3×3

D ) to ensure that curl(ϕp) ∈ L2(Ω;M3×3)). Here (v � ∇ϕ)i,j = (vi∂jϕ +
vj∂iϕ)/2. As a consequence we have that the distribution

ϕ �→ −
∫

Ω

T(t) : (v �∇ϕ) dx −
∫

Ω

K
p(t) : (p ⊗∇ϕ) dx

turns out to be a measure μ ∈ Mb(Ω). Moreover, by considering the measure η ∈
Mb(Ω; R

3) given by∫
Ω

ψ dη :=
∫

Ω

T(t) : (v � ψ) dx +
∫

Ω

K
p(t) : (p ⊗ ψ) dx, ψ ∈ C∞

c

(
Ω; R

3
)
,
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we get immediately that divη = μ. According to [22], for every subset B ⊂⊂ Ω with a
sufficiently smooth boundary we have that η admits normal trace η · ν on ∂B defined
as an element of the dual of C1(∂B), in such a way that the following Gauss–Green
formula holds: ∫

B
d(divη) = 〈η · ν, 1∂B〉.

Let us denote formally η·ν by [T(t)ν ·v+K
p(t)ν : p], and let [Kp(t) : ∇p+S

p(t) : Dsp]
be the measure such that∫

Ω

ϕd[Kp(t) : ∇p + S
p(t) : Dsp] =

∫
Ω

K
p(t) : (ϕ∇p) dx + 〈Sp(t), ϕDsp〉.

By (8.12) we can write by choosing ϕ = 1B

(8.13)
∫
B
T(t) : e dx+

∫
B

Tp(t) : p dx+ [Kp(t) : ∇p + S
p(t) : Dsp](B)

=
∫
B
f(t) · v dx+ 〈[T(t)ν · v + K

p(t)ν : p], 1∂B〉,

which is a weak form for the balance of power expenditures for the subbody B relative
to the virtual velocity (v, e,p) ∈ A(0).

The AC regularity in time for the quasi-static evolution is proved in the following
proposition. The proof relies heavily on [8, Theorem 5.2]. We exploit the calculations
in our context since we aim to understand the precise dependence on the material
length scales l and L of the norms involved in the statement (in view of the convergence
result of section 9, where we let L, l→ 0).

Proposition 8.5. The maps t �→ u(t), t �→ Ee(t), t �→ Ep(t), and t �→ curlEp(t)
are absolutely continuous from [0, T ] to W 1, N

N−1 (Ω; R
N ), L2(Ω; MN×N

sym ), BV (Ω; MN×N
D ),

and L2(Ω; MN×N ), respectively. Moreover, for a.e. t ∈ [0, T ] we have

‖u̇(t)‖
W

1, N
N−1

≤ C1(w, ρ, α,C, l)[‖ρ̇(t)‖L2 + ‖ρ̇D(t)‖L∞ + ‖Eẇ(t)‖L2 ],(8.14)

‖Ėe(t)‖L2 ≤ C2(w, ρ, α,C)[‖ρ̇(t)‖L2 + ‖ρ̇D(t)‖L∞ + ‖Eẇ(t)‖L2 ],(8.15)

‖Ėp(t)‖BV ≤ C3(w, ρ, α,C, l)[‖ρ̇(t)‖L2 + ‖ρ̇D(t)‖L∞ + ‖Eẇ(t)‖L2 ],(8.16)

‖curlĖp(t)‖L2 ≤ C4(w, ρ, α,C, L)[‖ρ̇(t)‖L2 + ‖ρ̇D(t)‖L∞ + ‖Eẇ(t)‖L2 ],(8.17)

where ρ and α appear in the uniform safe load condition (4.13)–(4.14).
Finally, we have that t �→ u(t) and t �→ Ep(t) are absolutely continuous from

[0, T ] to BD(Ω) and L1(Ω; MN×N
D ), respectively (see section 9 for the definition of the

space BD) and for a.e. t ∈ [0, T ]

‖u̇(t)‖BD ≤ C5(w, ρ, α,C)[‖ρ̇(t)‖L2 + ‖ρ̇D(t)‖L∞ + ‖Eẇ(t)‖L2 ],(8.18)

‖Ėp(t)‖L1 ≤ C6(w, ρ, α,C)[‖ρ̇(t)‖L2 + ‖ρ̇D(t)‖L∞ + ‖Eẇ(t)‖L2 ].(8.19)
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Proof. Let t1, t2 ∈ [0, T ], with t1 < t2. Since by the very definition of DH we have
DH(Ep; t1, t2) ≥ H(Ep(t2) − Ep(t1)), by the energy balance (5.3) we may write

(8.20) Q1(Ee(t2)) −Q1(Ee(t1)) + Q2(curlEp(t2)) −Q2(curlEp(t1))
+ H(Ep(t2) − Ep(t1)) − 〈L(t2), u(t2)〉 + 〈L(t1), u(t1)〉

≤
∫ t2

t1

∫
Ω

T(τ) : Eẇ(τ) dx dτ −
∫ t2

t1

〈L̇(τ), u(τ)〉 dτ −
∫ t2

t1

〈L(τ), ẇ(τ)〉 dτ.

Let us consider (v, e,p) ∈ A(0) such that

v := u(t2) − u(t1) − (w(t2) − w(t1)), e := Ee(t2) − Ee(t1) − (Ew(t2) − Ew(t1)),

and p := Ep(t2) − Ep(t1). By combining (8.1) and (8.2), we deduce that

(8.21) −
∫

Ω

T(t1) : (Ee(t2) − Ee(t1) − (Ew(t2) − Ew(t1))) dx

− μL2

∫
Ω

curlEp(t1) : (curlEp(t2) − curlEp(t1)) dx

+ 〈L(t1), u(t2) − u(t1) − (w(t2) − w(t1))〉 ≤ H(Ep(t2) − Ep(t1)).

By inserting (8.21) into (8.20) and taking into account (4.15), we obtain

Q1(Ee(t2) − Ee(t1)) + Q2(curlEp(t2) − curlEp(t1))

≤
∫ t2

t1

∫
Ω

T(τ) : Eẇ(τ) dx dτ −
∫ t2

t1

〈L̇(τ), u(τ)〉 dτ −
∫ t2

t1

〈L(τ), ẇ(τ)〉 dτ

+ 〈L(t2) − L(t1), u(t2)〉 −
∫

Ω

T(t1) : (Ew(t2) − Ew(t1)) dx

+ 〈L(t1), w(t2) − w(t1)〉

=
∫ t2

t1

∫
Ω

(T(τ) − T(t1)) : Eẇ(τ) dx dτ −
∫ t2

t1

〈L̇(τ), u(τ) − u(t2)〉 dτ

−
∫ t2

t1

〈L(τ) − L(t1), ẇ(τ)〉 dτ

=
∫ t2

t1

∫
Ω

(T(τ) − T(t1)) : Eẇ(τ) dx dτ −
∫ t2

t1

∫
Ω

ρ̇(τ) : (Ee(τ) − Ee(t2)) dx dτ

−
∫ t2

t1

∫
Ω

ρ̇D(τ) : (Ep(τ) − Ep(t2)) dx dτ −
∫ t2

t1

∫
Ω

(ρ(τ) − ρ(t1)) : Eẇ(τ) dx dτ.

By the coercivity estimate (4.8) for the elasticity tensor C we deduce that

(8.22) αC‖Ee(t2) − Ee(t1)‖2
L2 +

μL2

2
‖curlEp(t2) − curlEp(t1)‖2

L2

≤ βC

∫ t2

t1

‖Ee(τ) − Ee(t1)‖L2‖Eẇ(τ)‖L2 dτ +
∫ t2

t1

‖ρ̇‖L2‖Ee(τ) − Ee(t2)‖L2 dτ

+
∫ t2

t1

‖ρ̇D(τ)‖L∞‖Ep(τ) − Ep(t2)‖L1 dτ +
∫ t2

t1

‖ρ(τ) − ρ(t1)‖L2‖Eẇ(τ)‖L2 dτ.
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By (4.16) we have for t1 ≤ s ≤ t2

(8.23)
α

2
‖Ep(t2) − Ep(s)‖L1 + αl‖DEp(t2) −DEp(s)‖Mb

≤ H (Ep(t2) − Ep(s)) −
∫

Ω

ρD(t2) : (Ep(t2) − Ep(s)) dx,

where αl := min{lα2 , lSY }. By combining (8.23) and (8.20) with t1 = s and using
(4.15), we obtain

(8.24)
α

2
‖Ep(t2) − Ep(s)‖L1 + αl‖DEp(t2) −DEp(s)‖Mb

≤ Q1(Ee(s)) −Q1(Ee(t2)) + Q2(curlEp(s)) −Q2(curlEp(t2))

+ 〈L(t2), u(t2)〉 − 〈L(s), u(s)〉 +
∫ t2

s

∫
Ω

T(τ) : Eẇ(τ) dx dτ

−
∫ t2

s

〈L̇(τ), u(τ)〉 dτ −
∫ t2

s

〈L(τ), ẇ(τ)〉 dτ

−
∫

Ω

ρD(t2)(Ep(t2) − Ep(s)) dx

≤ Q1(Ee(s)) −Q1(Ee(t2)) + Q2(curlEp(s)) −Q2(curlEp(t2))

+
∫

Ω

ρ(t2) : (Ee(t2) − Ee(s)) dx +
∫

Ω

(ρ(t2) − ρ(s)) : Ee(s) dx

+
∫

Ω

(ρD(t2) − ρD(s)) : Ep(s) dx

−
∫ t2

s

∫
Ω

{ρ̇(τ) : Ee(τ) + ρ̇D(τ) : Ep(τ) − (T(τ) − ρ(τ)) : Eẇ(τ)} dx dτ.

Notice that

sup
τ

‖ρ(τ)‖L2 , sup
τ

‖ρD(τ)‖L∞ ,

and

sup
τ

‖Ee(τ)‖L2 , sup
τ

‖Ep(τ)‖L1 , sup
τ

‖curlEp(τ)‖L2

are finite (in fact t �→ Ep(t) has bounded variation, while for Ee(t) and curlEp(t) we
can use the energy balance (5.3)). From (8.24) we obtain for every t1 ≤ s ≤ t2

(8.25)
α

2
‖Ep(t2) − Ep(s)‖L1 + αl‖DEp(t2) −DEp(s)‖Mb

≤ C1

(
‖Ee(t2) − Ee(s)‖L2 +

√
μ

2
L‖curlEp(t2) − curlEp(s)‖L2

+
∫ t2

s

ψ(τ) dτ
)
,

where

(8.26) ψ(τ) := ‖ρ̇(τ)‖L2 + ‖ρ̇D(τ)‖L∞ + ‖Eẇ(τ)‖L2
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and C1 depends on ρ, supτ ‖Ee(τ)‖L2 , supτ ‖Ep(τ)‖L1 , supτ L‖curlEp(τ)‖L2 , and the
elasticity tensor C. By (8.22) we conclude that

αC‖Ee(t2) − Ee(t1)‖2
L2 +

μL2

2
‖curlEp(t2) − curlEp(t1)‖2

L2

≤ C2

(
‖Ee(t2) − Ee(t1)‖L2 +

√
μ

2
L‖curlEp(t2) − curlEp(t1)‖L2

)∫ t2

t1

ψ(τ) dτ

+ C2

∫ t2

t1

ψ(τ)
(
‖Ee(τ) − Ee(t1)‖L2 +

√
μ

2
L‖curlEp(τ) − curlEp(t1)‖L2

)
dτ

+ C2

(∫ t2

t1

ψ(τ) dτ
)2

,

where C2 depends also on α. By Cauchy’s inequality we obtain

‖Ee(t2) − Ee(t1)‖2
L2 +

μL2

2
‖curlEp(t2) − curlEp(t1)‖2

L2

≤ C3

∫ t2

t1

ψ(τ)
(
‖Ee(τ) − Ee(t1)‖L2 +

√
μ

2
L‖curlEp(τ) − curlEp(t1)‖L2

)
dτ

+ C3

(∫ t2

t1

ψ(τ) dτ
)2

.

By means of a Gronwall-type lemma [8, Lemma 5.3] we get in particular that

(8.27) ‖Ee(t2) − Ee(t1)‖L2 +
√
μ

2
L‖curlEp(t2) − curlEp(t1)‖L2 ≤ C4

∫ t2

t1

ψ(τ) dτ,

where C4 depends on ρ, α, supτ ‖Ee(τ)‖L2 , supτ ‖Ep(τ)‖L1 , supτ L‖curlEp(τ)‖L2 ,
and the elasticity tensor C. As a consequence we get that t �→ Ee(t) and t �→
curlEp(t) are absolutely continuous from [0, T ] to L2(Ω; MN×N

sym ) and L2(Ω; MN×N ),
respectively. By (8.25), we get that t �→ Ep(t) is absolutely continuous from [0, T ] to
BV (Ω; MN×N

D ).
Let us now come to the proof of (8.14)–(8.17). By the energy balance (5.3), and

by the very definition of H, we deduce that

‖Ep(t)‖L1 ≤ C5

(
1 +
∫ t

0

(1 + ψ(τ))‖Ee(τ)‖L2 dτ +
∫ t

0

(1 + ψ(τ))‖Ep(τ)‖L1 dτ

)
,

where ψ is as in (8.26) and C5 depends only on the initial conditions and on w, ρ, α,
and C. By means of the classical Gronwall lemma and taking the sup in t, we obtain

sup
t∈[0,T ]

‖Ep(t)‖L1 ≤ C6

(
1 + sup

t∈[0,T ]

‖Ee(t)‖L2

)
.

By the energy balance (5.3) we conclude that supt∈[0,T ] ‖Ee(t)‖L2 is bounded uni-
formly independently of l and L, so that the same holds for supt∈[0,T ] ‖Ep(t)‖L1 and
supt∈[0,T ] L‖curlEp(t)‖L2 . By (8.27) we conclude that (8.15) and (8.17) hold. Inequal-
ities (8.16) and (8.19) follow by (8.25). Finally the absolute continuity of t �→ u(t)
from [0, T ] to W 1, N

N−1 (Ω; R
N ) and inequality (8.14) follow from the compatibility con-

dition Eu(t) := Ee(t) + Ep(t) and Korn’s inequality. Inequality (8.18) follows in a
similar way.
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Remark 8.6. Notice that the constants C1, . . . , C6 of Proposition 8.5 depend also
on the initial condition (u0,Ee

0,E
p
0). More precisely, from the previous proof it can

be evicted that they depend on |E(0)| and ‖Ep
0‖L1(Ω;MN×N

D ).
In order to prove the uniqueness result and the flow rule, we need the following

lemma.
Lemma 8.7. For a.e. t ∈ [0, T ] such that u̇(t), Ėe(t), Ėp(t), and ẇ(t) exist, we

have

(8.28) H(Ėp(t)) = −
∫

Ω

T(t) : (Ėe(t) − Eẇ(t)) dx− μL2

∫
Ω

curlEp(t) : curlĖp(t) dx

+ 〈L(t), u̇(t) − ẇ(t)〉

and

(8.29) H(Ėp(t)) =
∫

Ω

Tp(t) : Ėp(t) dx+
∫

Ω

K
p
diss(t) : ∇Ėp(t) dx+ 〈Sp(t), DsĖp(t)〉.

Proof. Since by Proposition 8.5 the map t �→ Ep(t) is absolutely continuous from
[0, T ] to BV (Ω; MN×N

D ), by [8, Theorem 7.1] we obtain

DH(Ep; 0, t) =
∫ t

0

H(Ėp(τ)) dτ.

Then by differentiating the energy balance equation (5.3) we obtain for a.e. t ∈ [0, T ]∫
Ω

T(t) : Ėe(t) dx+ μL2

∫
Ω

curlEp(t) : curlĖp(t) dx

− 〈L̇(t), u(t)〉 − 〈L(t), u̇(t)〉 + H(Ėp(t))

=
∫

Ω

T(t) : Eẇ(t) dx − 〈L̇(t), u(t)〉 − 〈L(t), ẇ(t)〉

so that (8.28) follows. Since (u̇(t) − ẇ(t), Ėe(t) − Eẇ(t), Ėp(t)) ∈ A(0), by (8.2) we
get that (8.29) holds.

Let us now prove the uniqueness result concerning the elastic strain Ee(t) and
the “energetic plastic strain” curlEp(t).

Proposition 8.8. The maps t �→ Ee(t) and t �→ curlEp(t) are uniquely deter-
mined by the initial condition (u0,Ee

0,E
p
0).

Proof. Let t �→ (ũ(t), Ẽe(t), Ẽp(t)) be another quasi-static evolution associated to
the same initial condition (u0,Ee

0,E
p
0). Let T̃p(t), K̃p(t), and S̃p(t) be the associated

stresses according to Lemma 8.1 and Proposition 8.3. By (8.28), (8.1), and (8.2) we
have for a.e. t ∈ [0, T ]

−
∫

Ω

T(t) : (Ėe(t) − Eẇ(t)) dx − μL2

∫
Ω

curlEp(t) : curlĖp(t) dx

+ 〈L(t), u̇(t) − ẇ(t)〉 = H(Ėp(t))

≥
∫

Ω

T̃p(t) : Ėp(t) dx +
∫

Ω

K̃
p
diss(t) : ∇Ėp(t) dx + 〈S̃p(t), DsĖp(t)〉

= −
∫

Ω

T̃(t) : (Ėe(t) − Eẇ(t)) dx − μL2

∫
Ω

curlẼp(t) : curlĖp(t) dx

+ 〈L(t), u̇(t) − ẇ(t)〉.
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We obtain∫
Ω

[
T(t) − T̃(t)

]
:
[
Ėe(t) − Eẇ(t)

]
dx+μL2

∫
Ω

[
curlEp(t) − curlẼp(t)

]
: curlĖp(t) dx≤ 0.

Similarly we obtain∫
Ω

[
T̃(t) − T(t)

]
:
[ ˙̃Ee(t) − Eẇ(t)

]
dx+μL2

∫
Ω

[
curlẼp(t) − curlEp(t)

]
: curl ˙̃Ep(t) dx ≤ 0.

By summing the two inequalities we get∫
Ω

[
T(t) − T̃(t)

]
:
[
Ėe(t) − ˙̃Ee(t)

]
dx

+ μL2

∫
Ω

[
curlEp(t) − curlẼp(t)

]
:
[
curlĖp(t) − curl ˙̃Ep(t)

]
dx ≤ 0,

so that for a.e. t ∈ [0, T ] we have

d

dt

(∫
Ω

C

[
Ee(t) − Ẽe(t)

]
:
[
Ee(t) − Ẽe(t)

]
dx

+μL2

∫
Ω

|curlEp(t) − curlẼp(t)|2 dx
)

≤ 0.

Since we have Ẽe(0) = Ee
0 = Ee(0) and curlẼp(0) = curlEp

0 = curlEp(0), the previous
inequality and the absolute continuity of the maps involved yield that Ee(t) = Ẽe(t)
and curlẼp(t) = curlEp(t) for every t ∈ [0, T ], so that the proof is concluded.

We are now in a position to prove the flow rule for the Gurtin–Anand model. Let
us start with the following weak form.

Proposition 8.9 (weak form of the flow rule). For a.e. t ∈ [0, T ] the following
facts hold.

(a) For every (A,B) ∈ L∞(Ω; MN×N
D ) × L∞(Ω; MN×N×N

D ) such that√
|A(x)|2 + l−2|B(x)|2 ≤ SY for a.e. x ∈ Ω, we have

(8.30)
∫

Ω

(Tp(t) − A) : Ėp(t) dx +
∫

Ω

(Kp
diss(t) − B) : ∇Ėp(t) dx ≥ 0.

(b) For every L ∈ (Mb(Ω; MN×N×N
D )∗ with ‖L‖(Mb(Ω;MN×N×N

D ))∗ ≤ lSY we have

(8.31) 〈Sp(t) − L, DsĖp(t)〉 ≥ 0.

Proof. Recall that for a.e. t ∈ [0, T ]

H(Ėp(t)) = F(Ėp(t),∇Ėp(t), DsĖp(t))

:= SY

∫
Ω

√
|Ėp|2 + l2|∇Ėp|2 dx+ lSY |DsĖp|(Ω).

Since F : L1(Ω; MN×N
D ) × L1(Ω; MN×N×N

D ) × Mb(Ω; MN×N×N
D ) → [0,+∞[ is con-

tinuous (with respect to the strong norm), we have F(Ėp(t),∇Ėp(t), DsĖp(t)) =
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F∗∗(Ėp(t),∇Ėp(t), DsĖp(t)), where ∗ denotes the Fenchel transformation. Moreover,
we have that F∗ is the indicator function of the set

K :=
{

(A,B,L) ∈ L∞ (Ω; MN×N
D

)
× L∞ (Ω; MN×N×N

D

)
×
(
Mb

(
Ω; MN×N×N

D

))∗
:√

|A|2 + l−2|B|2 ≤ SY a.e. in Ω and ‖L‖M∗
b
≤ lSY

}
.

As a consequence, by (8.29) we deduce that for every (A,B,L) ∈ K we have∫
Ω

(Tp(t) − A) : Ėp(t) dx +
∫

Ω

(Kp
diss(t) − B) : ∇Ėp(t) dx + 〈Sp(t) − L, DsĖp(t)〉 ≥ 0.

By choosing L = S
p(t), which is possible in view of the constraint (8.10), we obtain

(8.30). Inequality (8.31) follows by choosing A = Tp(t) and B = K
p
diss(t).

Let us now prove that the weak flow rule (8.30) for the stresses Tp(t) and K
p
diss(t)

reduces under suitable regularity assumptions to the usual flow rule given by Gurtin
and Anand.

Proposition 8.10 (flow rule). Let t ∈ [0, T ] be such that Ėp(t) exists, and let
x ∈ Ω be a Lebesgue point for Tp(t), K

p
diss(t), Ėp(t), and ∇Ėp(t). Then if√

|Tp(t, x)|2 + l−2|Kp
diss(t, x)|2 < SY ,

we have

(8.32) (Ėp(t, x),∇Ėp(t, x)) = (0, 0),

while if √
|Tp(t, x)|2 + l−2|Kp

diss(t, x)|2 = SY ,

we have

(8.33)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Tp(t, x) = SY

Ėp(t, x)√
|Ėp(t, x)|2 + l2|∇Ėp(t, x)|2

,

K
p
diss(t, x) = SY

l2∇Ėp(t, x)√
|Ėp(t, x)|2 + l2|∇Ėp(t, x)|2

.

Proof. Let K be the convex set defined as

K :=
{

(A,B) ∈ MN×N
D × MN×N×N

D :
√
|A|2 + l−2|B|2 ≤ SY

}
.

Let πK denote the projection onto K, and let π1
K and π2

K be its components. Let
(A,B) ∈ K, ε > 0, and let us set

Cε
A,B := (Tp(t) + ε(A − Tp(t, x)),Kp

diss(t) + ε(B − K
p
diss(t, x)))

∈ L∞ (Ω; MN×N
D

)
× L∞ (Ω; MN×N×N

D

)
.

For every r > 0 let us set

F :=

{
π1

K

(
Cε
A,B

)
in B(x, r),

Tp(t) outside B(x, r)
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and

G :=

{
π2

K

(
Cε
A,B

)
in B(x, r),

K
p
diss(t) outside B(x, r).

Since (F,G) are admissible for the weak flow rule (8.30), we obtain

1
rN

[∫
B(x,r)

(Tp(t) − F) : Ėp(t) dx+
∫

B(x,r)

(Kp
diss(t) − G) : ∇Ėp(t) dx

]
≥ 0.

Since πK is a Lipschitz mapping, we have that x is also a Lebesgue point for πK(Cε
A,B)

with Lebesgue value

πK(Tp(t, x) + ε(A − Tp(t, x)),Kp
diss(t, x) + ε(B − K

p
diss(t, x))).

By sending r → 0 and considering 0 < ε < 1, in view of the convexity of K, we obtain

(A − Tp(t, x)) : Ėp(t, x) + (B − K
p
diss(t, x)) : ∇Ėp(t, x) ≤ 0.

Since the previous inequality holds for every (A,B) ∈ K, we deduce that (Ėp(t, x),
∇Ėp(t, x)) belongs to the normal cone to K at (Tp(t, x),Kp

diss(t, x)). In particular, if
(Tp(t, x),Kp

diss(t, x)) ∈ intK, we get that (8.32) holds, while if (Tp(t, x),Kp
diss(t, x)) ∈

∂K, (8.33) follows.
Remark 8.11. Notice that, in view of the presence of a singular part for DEp(t)

and of its associated stress, plasticity can develop at a point x ∈ Ω also when
‖S

p‖Mb(Ω;MN×N×N
D ) = lSY and

√
|Tp(t, x)|2 + l−2|Kp

diss(t, x)|2 < SY .

9. Asymptotic analysis as l → 0 and L → 0. In this section we want to
understand the behavior of a quasi-static evolution for the Gurtin–Anand model as
the length scales l and L vanish. Our goal is to prove that the quasi-static evolution
converges in a suitable sense to an evolution for perfect plasticity. The result is
somehow natural, since the strain gradient effects vanish.

More precisely, we prove under suitable assumptions the convergence to a quasi-
static evolution for linearly elastic-perfectly plastic bodies recently proposed by Dal
Maso, DeSimone, and Mora [8]. The main mathematical problem that we have to
face in order to prove such a convergence is that the functional setting of the problem
changes, in particular for what concerns the plastic strains. In fact in the strain
gradient context, the plastic strain is a BV function (since its gradient enters in the
equations), while in [8] it is modeled only as a Radon measure in Ω ∪ ∂DΩ. Similar
problems occur for the displacements, in view of the compatibility condition.

In section 9.1 we briefly recall the model for quasi-static evolution in perfect plas-
ticity recently proposed in [8]. Section 9.2 is devoted to the proof of the convergence
result (Theorem 9.2).

9.1. The Dal Maso–DeSimone–Mora model for perfect plasticity. Let us
briefly recall the model for quasi-static evolution in perfect plasticity recently proposed
in [8]. We formulate the results in the particular form that we need for our asymptotic
problem, using the notation of the previous sections.

Let Ω ⊆ R
N (N ≥ 2) be open bounded, let ∂DΩ and ∂NΩ have the same boundary

Γ (relative to ∂Ω), and let us assume that

(9.1) ∂Ω and Γ are of class C2.
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Given w ∈ W 1,2(Ω; R
N ), the class of admissible configurations for the boundary

datum w is given by

App(w) :=
{

(u,Ee,Ep) ∈ BD(Ω) × L2(Ω; MN×N
sym ) ×Mb(Ω ∪ ∂DΩ; MN×N

D ) :

Eu = Ee + Ep in Ω,Ep = (w − u) � ν dHN−1 on ∂DΩ
}
.

Here BD(Ω) denotes the space of functions with bounded deformation on Ω:

BD(Ω) :=
{
u ∈ L1(Ω; R

N ) : Eu ∈ Mb(Ω; MN×N
sym )

}
,

which is a Banach space with respect to the norm

‖u‖BD(Ω) := ‖u‖L1(Ω;RN ) + ‖Eu‖Mb(Ω;MN×N
sym ).

We refer the reader to [33] for the main properties of BD(Ω). The term (w − u) on
∂DΩ is intended in the sense of traces. Finally the subscripts “ pp” stand for “perfect
plasticity.”

Given Ep ∈ Mb(Ω ∪ ∂DΩ; MN×N
D ), we set

Hpp(Ep) := SY |Ep|(Ω ∪ ∂DΩ),

while for Ee ∈ L2(Ω; MN×N
sym ), we consider Q1(Ee) as defined in (4.6).

Let t ∈ [0, T ], and let the boundary displacement be given by

(9.2) w ∈ AC(0, T ;W 1,2(Ω; R
N )).

Let the body and traction forces be given by

(9.3) f ∈ AC(0, T ;LN(Ω; R
N )) and g ∈ AC(0, T ;L∞(∂NΩ; R

N )),

respectively, and let us denote by L(t) the associated work as in (4.12). Let us assume
that f and g satisfy the uniform safe load condition (4.13)–(4.14). We can simply
suppose as in [8] that t �→ ρ(t) is absolutely continuous from [0, T ] to L2(Ω; MN×N

sym ),
since in view of the regularity of Ω we get ρ(t) ∈ LN (Ω; MN×N

sym ) by the embedding
result [22, Proposition 2.5].

Given an initial configuration

(u0,Ee
0,E

p
0) ∈ App(w(0)),

a quasi-static evolution t �→ (u(t),Ee(t),Ep(t)) in the sense of Dal Maso–DeSimone–
Mora [8] is a map from [0, T ] to BD(Ω)×L2(Ω; MN×N

sym )×Mb(Ω∪∂DΩ; MN×N
D ) with

(u(0),Ee(0),Ep(0)) = (u0,Ee
0,E

p
0) and such that for every t ∈ [0, T ] the following

facts hold:
(a) (u(t),Ee(t),Ep(t)) ∈ App(w(t));
(b) Global stability: For every (v, e,p) ∈ A(w(t))

Q1(Ee(t)) − 〈L(t), u(t)〉 ≤ Q1(e) − 〈L(t), v〉 + Hpp(p− Ep(t));

(b) Energy balance: The function t �→ Ep(t) has a bounded variation from [0, T ]
to Mb(Ω ∪ ∂DΩ; MN×N

D ) and

Epp(t) + Dpp(Ep; 0, t) = Epp(0) +
∫ t

0

∫
Ω

T(τ) : Eẇ(τ) dx dτ

−
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ,
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where T(t) := CEe(t),

Epp(t) := Q1(Ee(t)) − 〈L(t), u(t)〉

and Dpp(Ep; 0, t) := SY V(Ep; 0, t).
In order to prove the convergence result of the next section, we need to recall the
pairing between stress and strain which gives a useful representation of the work
L(t) similar to (4.15). Following [8, section 2], for every t ∈ [0, T ] and for every
(v, e,p) ∈ A(w(t)) it is possible to define the measure [ρD(t) : p] ∈ Mb(Ω ∪ ∂DΩ)
such that

(9.4) 〈L(t), v〉 = −〈ρ(t)ν, w(t)〉∂DΩ +
∫

Ω

ρ(t) : e dx+ [ρD(t) : p](Ω ∪ ∂DΩ)

and such that for every ϕ ∈ C1(Ω)

(9.5)
∫

Ω∪∂DΩ

ϕd[ρD(t) : p] = 〈L(t), ϕv〉 + 〈ρ(t)ν, ϕw(t)〉∂DΩ

−
∫

Ω

ρ(t) : ϕe dx−
∫

Ω

ρ(t) : [∇ϕ� v] dx.

A similar pairing [ρ̇D(t) : p] ∈ Mb(Ω ∪ ∂DΩ) can also be defined (for a.e. t ∈ [0, T ]),
so that (9.4) and (9.5) hold with ρ̇D(t), ρ̇(t), and L̇(t) in place of ρD(t), ρ(t), and
L(t).

9.2. The convergence result as l, L → 0. Let Ω ⊆ R
N satisfy (9.1), and

let w, f , and g be as in (9.2) and (9.3): Notice that these data are admissible for an
evolution for the Gurtin and Anand model. Let us assume that f and g satisfy the
uniform safe load condition (4.13)–(4.14).

Let us consider ln → 0 and Ln → 0, and let us denote by

t �→ (un(t),Ee
n(t),Ep

n(t))

a quasi-static evolution for the Gurtin–Anand model relative to the data w, f , and g
and the material length scales l = ln and L = Ln. Let us denote by Qn

2 , Hn, and En

the energies corresponding to Q2, H, and E , respectively.
Let us assume that the initial configuration (un(0),Ee

n(0),Ep
n(0)) is such that

there exist u0 ∈ BD(Ω), Ee
0 ∈ L2(Ω; MN×N

sym ), and Ep
0 ∈ Mb(Ω; MN×N

D ) with

(9.6) un(0) ∗
⇀ u0 weakly* in BD(Ω),

(9.7) Ee
n(0) ⇀ Ee

0 weakly in L2(Ω; MN×N
sym ),

and

(9.8) Ep
n(0) ∗

⇀ Ep
0 weakly* in Mb(Ω; MN×N

D ).

Recall that weak∗ convergence in BD(Ω) is given by weak convergence in L1 for
the functions and weak∗ convergence in the sense of measures for the symmetrized
gradients.

Let us assume moreover that convergence for the initial free energies holds, that
is,

(9.9) Q1(Ee
n(0)) + Qn

2 (curlEp
n(0)) → Q1(Ee

0).

We have the following compactness result.
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Lemma 9.1. Let us assume that (un(0),Ee
n(0),Ep

n(0)) satisfy (9.6)–(9.9). There
exist

u ∈ AC(0, T ;BD(Ω)), Ee ∈ AC(0, T ;L2(Ω; MN×N
sym )),

and

Ep ∈ AC(0, T ;Mb(Ω ∪ ∂DΩ; MN×N
D ))

such that, up to a subsequence, for every t ∈ [0, T ]

(9.10) un(t) ∗
⇀ u(t) weakly* in BD(Ω),

(9.11) Ee
n(t) ⇀ Ee(t) weakly in L2(Ω; MN×N

sym ),

and, by setting Ep
n(t) = 0 on ∂DΩ,

(9.12) Ep
n(t) ∗

⇀ Ep(t) weakly* in Mb(Ω ∪ ∂DΩ; MN×N
D ).

Moreover for every t ∈ [0, T ]

(9.13) (u(t),Ee(t),Ep(t)) ∈ App(w(t)).

Proof. Let B be an open ball in R
N such that Ω ⊆ B, and let us set Ω̃ := B\∂NΩ.

For every t ∈ [0, T ] let us consider ũn(t) ∈ W 1, N
N−1 (Ω̃; R

N ), Ẽe
n(t) ∈ L2(Ω̃; MN×N

sym ),
and Ẽp

n(t) ∈ BV (Ω̃; MN×N
D ) defined as

ũn(t) :=

{
un(t) in Ω,
w(t) in Ω̃ \ Ω,

Ẽe
n(t) :=

{
Ee

n(t) in Ω,
Ew(t) in Ω̃ \ Ω,

and

Ẽp
n(t) :=

{
Ep

n(t) in Ω,
0 in Ω̃ \ Ω.

By (9.6), (9.8), and (9.9) and in view of Remark 8.6 and Proposition 8.5, we deduce
that t �→ ũn(t), as a map from [0, T ] to BD(Ω̃), has a variation which is uniformly
bounded independently on n. More precisely, the sequence (un)n∈N is equiabsolutely
continuous. The same holds for t �→ Ẽe

n(t) and t �→ Ẽp
n(t) considered as maps from

[0, T ] to L2(Ω̃; MN×N
sym ) and L1(Ω̃; MN×N

D ), respectively.
Recall that BD(Ω̃) can be seen as a dual space, with associated weak∗ convergence

given precisely by the weak∗ convergence in BD previously defined.
Then by considering BD(Ω̃) as a dual space and L1(Ω̃; MN×N

D ) as a subspace of
Mb(Ω̃; MN×N

D ), we may apply the generalized version of Helly’s theorem [8, Lemma
7.2] to obtain

ũ ∈ AC(0, T ;BD(Ω̃)), Ẽe ∈ AC(0, T ;L2(Ω̃; MN×N
sym )),
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and

Ẽp ∈ AC(0, T ;Mb(Ω̃; MN×N
D ))

such that, up to a subsequence, for every t ∈ [0, T ]

(9.14) ũn(t) ∗
⇀ ũ(t) weakly* in BD(Ω̃),

(9.15) Ẽe
n(t) ⇀ Ẽe(t) weakly in L2(Ω̃; MN×N

sym ),

and

(9.16) Ẽp
n(t) ∗

⇀ Ẽp(t) weakly* in Mb(Ω̃; MN×N
D ).

We have clearly that for every t ∈ [0, T ]

ũ(t) = w(t), Ẽe(t) = Ew(t), Ẽp(t) = 0 on Ω̃ \ Ω.

Let us denote by u(t) and Ee(t) the restrictions of ũ(t) and Ẽe(t) to Ω, respectively,
and let Ep(t) denote the restriction of Ẽp(t) to Ω ∪ ∂DΩ.

Relations (9.10) and (9.11) follow directly from (9.14) and (9.15). By (9.16), and
by taking into account that Ẽp

n(t) = 0 outside Ω, we obtain (9.12).
From the compatibility condition

Ẽun(t) = Ẽe
n(t) + Ẽp

n(t),

we deduce that in the limit we have

Ẽu(t) = Ẽe(t) + Ẽp(t)

so that

Ep(t) ∂DΩ = Ẽp(t) ∂DΩ = (w(t) − u(t)) � ν dHN−1 ∂DΩ,

where u(t) is intended in the sense of traces on ∂DΩ. We deduce that (9.13) holds,
and the proof is concluded.

The main theorem of the section is the following asymptotic result.
Theorem 9.2. Let t �→ (ul,L(t),Ee

l,L(t),Ep
l,L(t)) be a quasi-static evolution for

the Gurtin–Anand model such that the initial configuration satisfies conditions (9.6)–
(9.9) for l, L → 0. Then for every ln → 0 and Ln → 0, there exist a subsequence
(lnj , Lnj )j∈N and a quasi-static evolution t �→ (u(t),Ee(t),Ep(t)) for perfect plasticity
in the sense of [8] such that by setting

uj := ulnj
,Lnj

, Ee
j := Ee

lnj
,Lnj

, Ep
j := Ep

lnj
,Lnj

for every t ∈ [0, T ] we have

(9.17) uj(t) ∗
⇀ u(t) weakly* in BD(Ω),

(9.18) Ee
j(t) → Ee(t) strongly in L2(Ω; MN×N

sym ),

and

(9.19) Ep
j (t) ∗

⇀ Ep(t) weakly* in Mb(Ω ∪ ∂DΩ; MN×N
D ).
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In particular for every t ∈ [0, T ]

(9.20) Q1(Ee
j(t)) → Q1(Ee(t)) and Qnj

2 (curlEp
j (t)) → 0,

so that convergence for the free energy holds.
Proof. We divide the proof into three steps.
Step 1: Compactness and admissibility. By Lemma 9.1 there exist a subsequence

nj ,

u ∈ AC(0, T ;BD(Ω)), Ee ∈ AC(0, T ;L2(Ω; MN×N
sym )),

and

Ep ∈ AC(0, T ;Mb(Ω ∪ ∂DΩ; MN×N
D ))

such that by setting uj := unj , Ee
j := Ee

nj
, and Ep

j := Ep
nj

, for every t ∈ [0, T ]
relations (9.17) and (9.19) hold,

(9.21) Ee
j(t) ⇀ Ee(t) weakly in L2(Ω; MN×N

sym ),

and (u(t),Ee(t),Ep(t)) ∈ App(w(t)), so that the triple (u(t),Ee(t),Ep(t)) is admis-
sible. Finally, from the energy balance (5.3), and by the assumptions for t = 0, we
deduce that for every t ∈ [0, T ]

(9.22) Qnj

2 (curlEp
j (t)) ≤ C

for some constant C independent of j and t.
Step 2: Global stability. Let us fix t ∈ [0, T ]. In order to prove that

(u(t),Ee(t),Ep(t)) ∈ App(w(t)) satisfies the global stability condition

(9.23) Q1(Ee(t)) − 〈L(t), u(t)〉 ≤ Q1(e) − 〈L(t), v〉 + Hpp(p − Ep(t))

for every (v, e,p) ∈ App(w(t)), in view of [8, Theorem 3.6] it suffices to prove that
the Cauchy stress T(t) = CEe(t) satisfies the equilibrium conditions

(9.24)

{
−divT(t) = f(t) in Ω,
T(t)ν = g(t) on ∂NΩ

and the constraint

(9.25) |TD(t, x)| ≤ SY for a.e. x ∈ Ω,

where TD(t) := (T(t))D .
Equation (9.24) follows from the equilibrium equation for the Cauchy stress

Tj(t) = CEe
j(t) given by (8.6) in view of the weak convergence of Tj(t) to T(t)

which comes from (9.21).
In order to prove (9.25), let us consider the corresponding constraint in the strain

gradient context given by (8.9). Let K
p
diss,j(t), K

p
en,j(t), K

p
j (t) = K

p
diss,j(t) + K

p
en,j(t)

and Tp
j (t) be the stresses associated to (uj(t),Ee

j(t),Ep
j (t)). Notice that, in view of

(3.5) and of (9.22), we get

(9.26) K
p
en,j(t) → 0 strongly in L2(Ω; MN×N×N

D ).
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Moreover by (8.8) and (8.9) we have

(9.27) Tp
j (t) = (Tj(t))D + divK

p
j (t),

and √
|Tp

j (t, x)|2 + l−2
nj |Kp

diss,j(t, x)|2 ≤ SY for a.e. x ∈ Ω.

In particular we have that (Tp
j (t))j∈N is uniformly bounded in L∞(Ω; MN×N

D ) and

K
p
diss,j(t) → 0 strongly in L∞(Ω; MN×N×N

D ).

By (9.26) we conclude that K
p
j (t) → 0 strongly in L2(Ω; MN×N×N

D ). Notice that from
(9.27) we deduce that divK

p
j (t) is bounded in L2(Ω; MN×N

D ). We obtain

divK
p
j (t) ⇀ 0 weakly in L2(Ω; MN×N

D )

so that in view of (9.27) and (9.21)

(9.28) Tp
j (t) ⇀ TD(t) weakly in L2(Ω; MN×N

D ).

Since Tp
j (t) ∈ K := {A ∈ L2(Ω; MN×N

D ) : |A| ≤ SY a.e. in Ω}, and K is closed in the
weak topology of L2(Ω; MN×N

D ), by (9.28) we deduce that (9.25) holds. Hence (9.23)
follows, and Step 2 is concluded.

Step 3: Energy balance and conclusion. Since t �→ uj(t) is absolutely continuous
from [0, T ] to W 1, N

N−1 (Ω; R
N ), by integrating by parts we can write the energy balance

(5.3) in the following form:

(9.29) Q1(Ee
j(t)) + Qnj

2 (curlEp
j (t)) + DHnj

(Ep
j ; 0, t) −

∫ t

0

〈L(τ), u̇j(τ)〉 dτ

= Q1(Ee
j(0)) + Qnj

2 (curlEp
j (0)) +

∫ t

0

∫
Ω

Tj(τ) : Eẇ(τ) dx dτ

−
∫ t

0

〈L(τ), ẇ(τ)〉 dτ.

We claim that for every t ∈ [0, T ]

(9.30)

lim inf
j→+∞

[
DHnj

(Ep
j ; 0, t) −

∫ t

0

〈L(τ), u̇j(τ)〉 dτ
]
≥ DHpp(Ep; 0, t) −

∫ t

0

〈L(τ), u̇(τ)〉 dτ

= DHpp(Ep; 0, t) − 〈L(t), u(t)〉 + 〈L(0), u(0)〉 +
∫ t

0

〈L̇(τ), u(τ)〉 dτ.

By passing to the limit in (9.29), by (9.21), (9.9), and (9.30) we get for every
t ∈ [0, T ]

Q1(Ee(t)) − 〈L(t), u(t)〉 + DHpp(Ep; 0, t) ≤ Q1(Ee(0)) − 〈L(0), u(0)〉

+
∫ t

0

∫
Ω

T(τ) : Eẇ(τ) dx dτ −
∫ t

0

〈L̇(τ), u(τ)〉 dτ −
∫ t

0

〈L(τ), ẇ(τ)〉 dτ.
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In view of the global stability condition (9.23), by [8, Theorem 4.7] we have that also
the opposite inequality holds, so that the energy balance follows. From the previous
steps, we conclude that t �→ (u(t),Ee(t),Ep(t)) is a quasi-static evolution according
to Dal Maso, DeSimone, and Mora [8].

By (9.29), (9.30), and the energy balance, we deduce that for every t ∈ [0, T ] we
have

Q1(Ee
j(t)) → Q1(Ee(t)) and Qnj

2 (curlEp
j (t)) → 0

so that (9.20) holds. In view of (9.21), we conclude that (9.18) follows.
Let us prove claim (9.30). Recall that by [8, Theorem 7.1] we have the following

representation of the dissipation:

DHnj
(Ep

j ; 0, t) =
∫ t

0

Hnj (Ėp
j (τ)) dτ.

From the representation (4.15) we get

(9.31)

DHnj
(Ep

j ; 0, t) −
∫ t

0

〈L(τ), u̇j(τ)〉 dτ =
∫ t

0

[
Hnj (Ėp

j (τ)) −
∫

Ω

ρD(τ) : Ėp
j (τ) dx

]
dτ

−
∫ t

0

∫
Ω

ρ(τ) : Ėe
j(τ) dx dτ +

∫ t

0

〈ρ(τ)ν, ẇ(τ)〉∂DΩ dτ.

Moreover for every 0 ≤ τ ≤ t

Hnj (Ėp
j (τ)) −

∫
Ω

ρD(τ) : Ėp
j (τ) dx ≥

∫
Ω

[
SY |Ėp

j (τ)| − ρD(τ) : Ėp
j (τ)
]
dx,

and the integrand of the right-hand side is positive in view of the safe load condition
(4.14). Let ϕ ∈ C1(Ω), with 0 ≤ ϕ ≤ 1 and ϕ = 0 near ∂NΩ. By applying again the
representation result [8, Theorem 7.1] for the dissipation DHpp we conclude that

(9.32) lim inf
j→+∞

∫ t

0

[
Hnj (Ėp

j (τ)) −
∫

Ω

ρD(τ) : Ėp
j (τ) dx

]
≥ lim inf

j→+∞

∫ t

0

∫
Ω

[
SY |Ėp

j (τ)| − ρD(τ) : Ėp
j (τ)
]
dx dτ

≥ lim inf
j→+∞

∫ t

0

∫
Ω

[
SY |ϕĖp

j (τ)| − ρD(τ) : ϕĖp
j (τ)
]
dx dτ

= lim inf
j→+∞

[
DHpp(ϕEp

j ; 0, t) −
∫ t

0

∫
Ω

ρD(τ) : ϕĖp
j (τ) dx dτ

]
.

By the very definition of DHpp and by (9.19), it is easy to see that

(9.33) lim inf
j→+∞

DHpp(ϕEp
j ; 0, t) ≥ DHpp(ϕEp; 0, t).

On the other hand, the absolute continuity of t �→ Ep
j (t) implies that

(9.34)
∫ t

0

∫
Ω

ρD(τ) : ϕĖp
j (τ) dx dτ =

∫
Ω

ρD(t) : ϕEp
j (t) dx−

∫
Ω

ρD(0) : ϕEp
j (0) dx

−
∫ t

0

∫
Ω

ρ̇D(τ) : ϕEp
j (τ) dx dτ.
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By integrating by parts, for a.e. τ ∈ [0, t] we have∫
Ω

ρ̇D(τ) : ϕEp
j (τ) dx = 〈L̇(τ), ϕuj(τ)〉 + 〈ρ̇(τ)ν, w(τ)〉∂DΩ

−
∫

Ω

ρ̇(τ) : ϕEe
j(τ) dx −

∫
Ω

ρ̇(τ) : [∇ϕ� uj(τ)] dx.

In view of the embedding result [22, Proposition 2.5], we get ρ̇(τ) ∈ LN (Ω; MN×N
sym )

for a.e. τ ∈ [0, t]. By (9.21) and (9.17), and since ϕ = 0 near ∂NΩ, we deduce for a.e.
τ ∈ [0, t] that

(9.35) lim
j→+∞

∫
Ω

ρ̇D(τ) : ϕEp
j (τ) dx = 〈L̇(τ), ϕu(τ)〉 + 〈ρ̇(τ)ν, w(τ)〉∂DΩ

−
∫

Ω

ρ̇(τ) : ϕEe(τ) dx −
∫

Ω

ρ̇(τ) : [∇ϕ� u(τ)] dx

=
∫

Ω∪∂DΩ

ϕd[ρ̇D(τ) : Ep(τ)],

where [ρ̇D(τ) : Ep(τ)] is the measure defined in the previous subsection, and the last
equality follows by (9.5) (with ρ̇D in place of ρD). Similarly we obtain

(9.36) lim
j→+∞

∫
Ω

ρD(t) : ϕEp
j (t) dx =

∫
Ω∪∂DΩ

ϕd[ρD(t) : Ep(t)]

and

(9.37) lim
j→+∞

∫
Ω

ρD(0) : ϕEp
j (0) dx =

∫
Ω∪∂DΩ

ϕd[ρD(0) : Ep(0)].

By letting ϕ→ 1Ω∪∂DΩ we obtain from (9.32), (9.33), (9.34), and (9.35)–(9.37)

(9.38) lim inf
j→+∞

∫ t

0

[
Hnj (Ėp

j (τ)) −
∫

Ω

ρD(τ) : Ėp
j (τ) dx

]
≥ DHpp(Ep; 0, t)

− [ρD(t) : Ep(t)](Ω) + [ρD(0) : Ep(0)](Ω ∪ ∂DΩ) +
∫ t

0

[ρ̇D(τ) : Ep(τ)](Ω ∪ ∂DΩ) dτ

= DHpp(Ep; 0, t) −
∫ t

0

[ρD(τ) : Ėp(τ)](Ω ∪ ∂DΩ) dτ.

In conclusion, by passing to the limit in (9.31), by (9.38) and (9.21) we get

lim inf
j→+∞

[
DHnj

(Ep
j ; 0, t) −

∫ t

0

〈L(τ), u̇j(τ)〉 dτ
]

≥ DHpp(Ep; 0, t) −
∫ t

0

[ρD(τ) : Ėp(τ)](Ω ∪ ∂DΩ) dτ −
∫ t

0

∫
Ω

ρ(τ) : Ėe(τ) dx dτ

+
∫ t

0

〈ρ(τ)ν, ẇ(τ)〉∂DΩ dτ = DHpp(Ep; 0, t) −
∫ t

0

〈L(τ), u̇(τ)〉 dτ,

where the last equality comes from the integration by parts (9.4). We deduce that
claim (9.30) holds, and the proof is concluded.
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Remark 9.3. It is interesting to compare our result with the abstract conver-
gence result recently proposed by Mielke, Roub́ıček, and Stefanelli [26] concerning
the asymptotic behavior of quasi-static evolutions with Γ-converging energies and
dissipations. Their framework cannot be easily adapted to our context since the total
energy and the dissipation functional do not satisfy trivially a sort of Γ-liminf inequal-
ity. This is due to the fact that we skip from a BV to a Radon-measure setting for
the plastic strain, so that concentration at the boundary ∂DΩ can occur, and this has
to be taken into account for the dissipation Hpp and the work of the external loads.
The safe load condition is the key point to rearrange the terms in order to work out
suitable lower semicontinuity inequalities (see the arguments of Step 3) which are
essential for the study of the asymptotics of the problem.
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ON THE NEW MULTISCALE RODLIKE MODEL OF POLYMERIC
FLUIDS∗
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Abstract. This paper is concerned with the well-posedness for the new rigid rodlike model
in a polymeric fluid recently proposed by W.N. E and P.W. Zhang [Meth. Appl. Anal., 13 (2006),
pp. 181–198]. The constitutive relations considered in this work are motivated by the kinetic theory.
The micro equations involve five independent spatial variables (degrees of freedom): two in the
configuration domain and three in the macro flow domain. We obtain the local existence of solutions
with large initial data and also global existence of solutions with small Deborah and Reynolds
constants in periodic domains.

Key words. polymeric fluid, rodlike model, kinetic theory, global existence
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1. Introduction. The Doi kinetic theory for spatially homogeneous flow of rod-
like molecules has successfully described the properties of liquid crystal polymers in
a solvent [6]. One of the simplest models of polymeric fluids described by the Doi
theory is the rigid rodlike model, which takes into account the macro and micro
behavior of the dilute or solute polymers—the effects of flow, Brownian motion, and
intermolecular forces on the molecular orientation distribution (see [6, 10, 11, 16, 17,
23]). However, it does not include the so-called distortional elasticity. The Doi theory
is valid only in the limit of spatial homogeneity. For small molecule liquid crystals,
distortional elasticity has been formulated in the limit of weak distribution as Frank
elasticity. This is one ingredient of the Leslie–Ericken theory. Several attempts have
been made to find a theory which encompasses both the molecular visco-elasticity
and the distortional elasticity. Marrucci and Greco [18] made a molecular theory of
distortional elasticity. They proposed a nonlocal mean field nematic potential for
LCPs (liquid crystal polymers), which accounts for spatial variations of the molecular
orientation distribution. Tsuji and Rey [21, 22] add distortional elasticity to the
rodlike model of the Doi theory but did not give a stress tensor. Edwards and Beris
[2] give an ad hoc generalization of the Frank elasticity in tensorial form. Ericksen
[9] allowed the order parameter to be a variable but still required the orientation
distribution to be uniaxial. An extension of Kuzuu and Doi [13] theory to flowing
systems of nonhomogeneous liquid crystalline polymers is made by Wang [25], in
which the author models the LCP molecules as spheroids of equal shape and size.
He derives an intermolecular potential which could be considered as an extension of
Marrucci–Greco potential.
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All these approaches are phonomenological in nature. They invariably contain a
large number of unknown parameters which in general cannot be determined ratio-
nally. Another drawback of the phonomenological theories is the lack of consistency
with existing theories and among themselves. Then E and Zhang [8] developed a new
model for nonhomogeneous flows of liquid crystalline polymers with a few adjustable
parameters that could model a variety of configurations of polymeric liquid crystal
molecules. This new model is a combination of macroscopic partial differential equa-
tions and microscopic Fokker–Planck equations. In this model, the function ψ(x,m, t)
describes the distribution of an identical rigid rodlike molecule at (x, t) with the ori-
entation m. Denoting the velocity and pressure of the fluid by u and p, the new
multiscale rodlike model can be expressed as

∂ψ

∂t
+ ∇ · (uψ) =

1
kBT

∇ ·
{
[D‖mm +D⊥(I − mm)] · (ψ∇μ)

}
+

Dr

kBT
R · (ψRμ) −R · (m × κ · mψ), m ∈ S

2,(1.1)

where kB is Boltzmann constant and T is the absolute temperature, D‖ ≥ 0 and
D⊥ ≥ 0 are translational diffusion coefficients parallel and normal to the orientation of
the LCP molecule, Dr = ξr

kBT is the rotary diffusivity and ξr is the friction coefficient,
∇ is the gradient operator with respect to the spatial variables x, R = m× ∂

∂m is the
rotational gradient operator, and S

2 is the unit sphere in R
3. The symbol μ denotes

the chemical potential

μ = lnψ + Ū ,(1.2)

and Ū represents the excluded-volume potential [6, 11]

Ū(x,m, t) = kBTα

∫
Ω

∫
|m′|=1

B(x,x′,m,m′)ψ(x′,m′, t)dm′dx′.(1.3)

The function B in (1.3) is the interactional factor among rods. Here α denotes the
intensity between particles. Now we choose B(x,x′,m,m′) = 1

ε3χ(x−x′

ε )|m × m′|2,
where χ(x) is the smooth kernel; e.g., χ(x) = C exp(1/(|x|2 − 1)) as |x| < 1, and
χ(x) = 0 as |x| ≥ 1, where C is a constant such that

∫
|x|≤1 χ(x)dx = 1. κ = (∇u)T

is the velocity gradient tensor.
Let L0 be the typical size of the flow region, V0 be the typical velocity scale, and

T0 = L0

V0
be a typical convective time scale. Further De is an important parameter

called the Deborah number:

(1.4) De =
ξr

kBT
L0

V0

=
ξrV0

kBTL0
.

It is the ratio of the orientational diffusion time scale of the rods (which is the relevant
relaxation time scale) and the convective time scale of the fluid. Set

ε =
L

L0
,(1.5)
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where L is the length of the rods. Thus the nondimensional kinetic equation is

∂ψ

∂t
+ ∇ · (uψ) =

ε2

De
∇ ·

{
[D∗

‖mm +D∗
⊥(I − mm)] · (ψ∇μ)

}
+

1
De

R · (ψRμ) −R · (m × κ ·mψ), m ∈ S
2,(1.6)

μ = lnψ + U,(1.7)

U(x,m, t) = α

∫
Ω

∫
|m′|=1

B(x,x′,m,m′)ψ(x′,m′, t)dm′dx′.(1.8)

The velocity field satisfies the Navier–Stokes-like equation

ρ(ut + (u · ∇)u) + ∇p = ∇ · τ + F,(1.9)
∇ · u = 0.(1.10)

In the LCP system, the extra stress τ is given by two parts, the viscous stress τs and
the elastic stress τe, namely

τ = τs + τe.(1.11)

The viscous stress comes from two sources, one from the solvent and the other from
the constrain of rods derived in [6],

τs = 2ηsD +
1
2
ξrD : 〈mmmm〉,

where D = 1
2 (κ + κT ) = 1

2 (∇u + (∇u)T ) is the strain rate tensor, ηs is the solvent
viscosity, and 〈(·)〉 denotes averaging with respect to the distribution ψ; i.e., 〈(g)〉 =∫
|m|=1 gψdm. The elastic stress is derived through a generalized virtual work principle

[6]. The detail can be found in [8]. Now we cite the result from [8],

τe = −〈(m ×Rμ)m〉.(1.12)

Meanwhile the body force can also be identified as

F = −〈∇μ〉.(1.13)

Now let ηp = ξr, η = ηs +ηp, γ = ηs

η , and Re denotes the Reynolds number. Then
the nondimensional Navier–Stokes-like equation

ut + (u · ∇)u + ∇p =
γ

Re
�u +

1 − γ

2Re
∇ · (D : 〈mmmm〉)

+
1 − γ

ReDe
(∇ · τe + F) for x ∈ Ω(1.14)

∇ · u = 0, for x ∈ Ω.(1.15)

In this work we mainly investigate the well-posedness of this new multiscale rodlike
polymeric model. Moreover, in most cases [6] D∗

‖/D
∗
⊥ ≈ 2, so we can set D∗

⊥ = 1 and
D∗

‖ = 2 for simple and without the lost of generality. Then (1.6) can be written as

∂ψ

∂t
+ ∇ · (uψ) =

ε2

De
∇ · [(I + mm)(ψ∇μ)]

+
1
De

R · (ψRμ) −R · (m × κ · mψ), m ∈ S
2.(1.16)

We can verify this system (1.14)–(1.16) satisfies the energy identity in the following
way.
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Multiplying u to (1.14) and integrating it over Ω yields

1
2
d

dt

∫
Ω

|u|2dx +
∫

Ω

[
γ

De
|∇u|2 +

1 − γ

2Re
〈(mm : D)2〉

]
dx

=
1 − γ

ReDe

∫
Ω

[−τe : ∇u + F · u] dx

=
1 − γ

ReDe

∫
Ω

[〈(m ×Rμ)m〉 : ∇u− 〈∇μ〉 · u] dx

=
1 − γ

ReDe

∫
Ω

∫
|m|=1

[(m ×Rμ)mψ : ∇u − ψ∇μ · u] dmdx.(1.17)

Multiplying μ to (1.16) as well as integrating over in Ω and the unit sphere yields∫
Ω

∫
|m|=1

∂ψ

∂t
μ dmdx +

∫
Ω

[
ε2

De
〈∇μ · (I + mm)∇μ〉 +

1
De

〈Rμ · Rμ〉
]
dx

=
∫

Ω

∫
|m|=1

m × κ · mψ · Rμ dmdx +
∫

Ω

∫
|m|=1

uψ · ∇μ dmdx.(1.18)

Additionally, we can calculate
(1.19)

d

dt

∫
Ω

∫
|m|=1

[
ψ lnψ +

1
2
ψU

]
dmdx

=
∫

Ω

∫
|m|=1

[
∂ψ

∂t
lnψ +

∂ψ

∂t
+

1
2
∂ψ

∂t
U +

1
2
ψ
∂U

∂t

]
dmdx

=
∫

Ω

∫
|m|=1

[
∂ψ

∂t
(lnψ + U) +

1
2

(
ψ
∂U

∂t
− ∂ψ

∂t
U

)]
dmdx

=
∫

Ω

∫
|m|=1

∂ψ

∂t
μ dmdx.

Combining (1.17)–(1.19), we obtain that the system (1.14)–(1.18) satisfies the energy
law:

d

dt

[
1
2

∫
Ω

|u|2dx +
1 − γ

ReDe
E(ψ)

]
= −

∫
Ω

[
γ

De
|∇u|2 +

1 − γ

2Re
〈(mm : D)2〉

]
dx

− 1 − γ

ReDe

∫
Ω

[
ε2

De
〈∇μ · (I + mm)∇μ〉 +

1
De

〈Rμ · Rμ〉
]
dx,(1.20)

where E(ψ) is a nonlocal intermolecular potential given by

E(ψ) =
∫

Ω

∫
|m|=1

ψ(x,m, t) lnψ(x,m, t) +
1
2
U(x,m, t)ψ(x,m, t)dmdx.(1.21)

By the same way one can see that the original system (1.6)–(1.15) also satisfies
the energy law like the form (1.20). Comparing to the Doi model of rodlike polymeric
fluid [6], this new model is based on the more rational assumption that the particle
distribution function (pdf) ψ is possibly different in the macro variable x. When the
pdf is the same at every point x in the domain Ω, this model is similar to the Doi
model. Here the other important difference is the excluded-volume potential (1.3) if we
choose B = |m×m′|2 or B = |m×m′| in (1.3), which is the well-known Maier–Saupe
or Onsager potential [6]. Now in [8] E and Zhang have proved that the inhomogeneous
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property reduces to the Ericksen–Leslie theory in the limit of small Debroah num-
ber. Recently numerical simulation results [26, 27] have shown that this model can
really describe the anisotropic long-range elasticity of polymeric molecules, and the
microstructure and defect dynamics of LCP solution. Moreover they have reported in
[26] that there are seven in-plane flow modes in plane Couette flow described by this
new model. Four of them have also been reported by Rey and Tsuji [22], and the other
three modes are new complicated in-plane modes with inner defects. Furthermore,
some significant scaling properties were verified in [26], such as the tumbling period
is proportional to the inverse of the shear rate. In plane Poiseuille flow, different
local states, such as flow-aligning, tumbling, or wagging, arise in different flow region.
There are also some related numerical analysis results for special cases of this model
of (1.14)–(1.16), e.g., [3] and references therein. These numerical results require a de-
tailed well-posedness analysis for the system (1.14)–(1.16). This is the main objective
of the present work. These related problems for the macroscopic nonlinear elasticity
and viscoelasticity cases were recently studied by Sideris and Thomases [23] and Lin,
Liu, and Zhang [16]. For the micro-macro model with dumbbell type of potential
there are lots of works, e.g., [7, 15, 17] and references therein. In [28], we gave the
globally classical existence theory and a numerical analysis for the Dirichlet initial
boundary problem of the system (1.14)–(1.16) in a simple case, the 1+1-dimensional
case, and the pressure-driven channel flow. More precisely, it is assumed that the
rodlike particles rotate in shear plane. That work is a first step towards the better
understanding for currently more sophisticated models (1.14)–(1.16).

In this paper we consider the system (1.14)–(1.16) with the initial data

u(x, 0) = u0, ψ(x,m, 0) = ψ0(x,m).(1.22)

We denote the space of functions by Hi(Ω), i ∈ N, which are in Hi
loc(R

3) (i.e., u|Ω
for every open bounded set Ω) and which are periodic with period Ω: u(xj + Lej) =
u(xj), ψ(xj + Lej) = ψ(xj), j = 1, 2, 3. It is easy to see that ψ is also periodic with
respect to the variable m since m ∈ S

2. Denote

Hi
d(Ω) = closure of V in Hi(Ω), where V = C∞

0 (Ω) ∩ {u : div u = 0}.
We can see that Hi

d(Ω) is a Sobolev space. Moreover, we define the space

H l(Ω,Xk) =

⎧⎨⎩ψ :

∣∣∣∣∣∣
l∑

j=0

k∑
i=0

∫
Ω

∫
|m|=1

|∇jRiψ(x,m, t)|2dmdx <∞

⎫⎬⎭ ,(1.23)

with the natural topology of a Banach space. Now we state our main results:
Theorem 1.1 (local existence). Assume the following conditions hold:

(A1) u0 ∈ H3
d(Ω), div u0 = 0 u0 is periodic,

(A2) ψ0 ∈ ∩i+j=3H
i(Ω,Xj) and is periodic in x. Moreover, ψ0 ≥ 0, and∫

Ω

∫
|m|=1

ψ0(x,m)dmdx = 1.

If ‖u0‖2
H3

d
(Ω) + ‖ψ0‖2

∩i+j=3Hi(Ω,Xj)
is bounded, then there exists T ′ > 0 such that

the problem (1.14)–(1.16) with (1.22) exists a solution (u, ψ), which possesses the
regularity

u ∈ L∞([0, T ′);H3
d(Ω)) ∩ L2([0, T );H4

d(Ω));(1.24)
ψ ∈ L∞([0, T ′);∩i+j=3H

i(Ω,Xj)) ∩ L2([0, T ′);∩i+j=4H
i(Ω,Xj)),(1.25)

with redefined a set of measure zero if necessary.
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Theorem 1.2 (global existence). Assume (A1) and (A2) and

‖u0‖2
H3

d(Ω)) + ‖ψ0‖2
H3(Ω,X0)∩H2(Ω,X1)

≤ B,

where B is a positive constant, then problem (1.14)–(1.16) with (1.22) exists a global
solution (u, ψ), which possesses as the following regularity

u ∈ L∞([0,∞);H3
d(Ω)),(1.26)

ψ ∈ L∞([0,∞);H3(Ω,X0) ∩H2(Ω,X1)),(1.27)

and

‖u‖2
L∞([0,∞);H3

d(Ω)) + ‖ψ‖2
L∞([0,∞);H3(Ω,X0)∩H2(Ω,X1))

≤ B

provided that

Re < γ/C2, and De < ε2/C2;

here C2 is a positive constant depending on n and the domain Ω.
Remark 1.1. From the proof of Theorem 1.2 in section 4 we see that C2 is a large

positive constant. Thus Theorem 1.2 requires the Deborah and Reynolds numbers to
be small enough.

Remark 1.2. From the proof of Theorem 1.1 we can also obtain the “global” result
for the two-dimensional system. That is, for given T > 0, there exists a solution under
the conditions of Theorem 1.1,

u ∈ L∞([0, T ];H3
d(Ω)) ∩ L2([0, T );H4

d(Ω));(1.28)
ψ ∈ L∞([0, T ];∩i+j=3H

i(Ω,Xj)) ∩ L2([0, T ′);∩i+j=4H
i(Ω,Xj)).(1.29)

But the bound of this solution depends on T .
These results are similar to that of the Navier–Stokes of traditional models of

complex fluids in the case of the spatially periodic solutions [5, 24] for n = 3. However,
in contrast to traditional models of complex fluids [5, 24] which express polymer stress
τ using empirical constitutive relations; τ in (1.11) expresses the polymer stress in
terms of the microscopic conformations of the polymers. So the model considered
in this work is closer to the original system for polymeric fluids in kinetic theory of
polymers. But, on the other hand, it causes the difficulty of well-posedness analysis
and numerical simulation since we have to study the configuration equation (1.16)
which involves five spatial freedom variables, two of them are in the configuration
domain and the others are in the macro flow domain. We utilized the properties of the
Laplace–Bertrami operator on compact Riemannian manifold to obtain the existence
and the preservation of the positivity of the solution to the linearized equation of
(1.16). Then the regularity of the solution was strengthened by the energy estimates
method. Thus, in virtue of the properties of the distribution function ψ, we can obtain
the regularity of the stress τ . Then it is finished by the local well-posedness analysis of
the rigid rodlike model by utilizing the Galerkin approximation and energy methods.
However, we specially point out that the nonlinear stress (1.11) and the nonlinear
body force (1.13) concerned with the solution of the micro-scale model (1.16) let us
only obtain the global solution for small Deborah and Reynolds numbers in virtue of
the method which we choose in this paper.

The paper is organized as follows. In section 2, we give the iterative scheme of the
system to obtain the existence of the local solution and the scheme alternates between
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solving an equation of the same type as encountered in incompressible elasticity and
solving a linear diffusion equation. Section 3 is devoted to giving the detailed proof of
the main lemmas. We will investigate the global existence of the solution in section
4. In this paper C denotes different constant depending only on γ,De,Re,Ω, and ε
if there are no special notations. Some times we denote Hp

d (Ω), Lp(Ω) by Hp, Lp for
brevity.

2. Local solution. In this section we will construct an iterative scheme of the
system (1.14)–(1.16) with (1.22) and with which we can obtain the existence of the
local solution.

Motivated by the approach [12, 20], we construct an iterative scheme of the system
(1.14)–(1.16) with (1.22). Given an iteration ψl we determine ul+1 by solving the
equations

ul+1
t + (ul+1 · ∇)ul+1 + ∇pl+1

=
γ

Re
Δul+1 +

1 − γ

2Re
∇ · (D : 〈mmmm〉)l+1 +

1 − γ

ReDe
(∇ · τ l

e + F l),(2.1)

∇ · ul+1 = 0(2.2)

with the initial condition ul+1(x, 0) = u0(x), where

(D : 〈mmmm〉)l+1 = Dl+1
ks 〈mimjmkms〉l,(2.3)

〈mimjmkms〉l =
∫
|m|=1

mimjmkmsψ
l(x,m, t)dm,(2.4)

(τ l
e) = −〈(m ×Rμl)m〉l,(2.5)
μl = lnψl + U l,(2.6)

U l = α

∫
Ω

∫
|m′|=1

B(x,x′;m,m′)ψl(x′,m′, t)dm′dx′,(2.7)

κl+1 = (∇ul+1)T , F l = −〈∇μl〉.(2.8)

Meanwhile, for given ul, we determine ψl from the following initial value problem:

∂ψl

∂t
+ ∇ · (ulψl) =

ε2

De
[∇ · (I + mm)∇ψl + ∇ · (I + mm)(ψl∇U l)]

+
1
De

[R · Rψl + R · (ψlRU l)] −R · (m × κl · mψl),(2.9)

ψl(x,m, 0) = ψ0(x,m).(2.10)

Our eventual task is to show that the mapping M : ul 
→ ul+1 has a fixed point in
an appropriate complete space of functions. The fixed point of the mapping is the
solution we seek.

We will consider the mapping M in the function space S(M,T ), which is defined
as a set of all functions u : Ω × [0, T ] → R

n(n = 2, 3) with the following properties:

u ∈ L∞([0, T ];H3
d(Ω)) ∩ L2([0, T ];H4

d(Ω)),(2.11)
‖u‖2

L∞([0,T ];H3
d(Ω)) + ‖u‖2

L2([0,T ];H4
d(Ω)) ≤M.(2.12)

On S(M,T ), we define the metric

d(u1,u2) =‖u1 − u2‖L∞([0,T ];H3
d(Ω)) + ‖u1 − u2‖L2([0,T ];H4

d(Ω)).(2.13)
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It is easy to verify that S(M,T ) is complete with the associated metric, and also it
is nonempty for large M , as evidenced in [19]. The properties of the mapping M is
established by proving the next three lemmas.

Lemma 2.1. Assume that the following bounds hold:

‖ψl‖L∞([0,T ];H3(Ω,X0))∩L2([0,T ];H4(Ω,X0)) ≤ K.(2.14)

Then there exists T ′ > 0 such that (2.1)–(2.8) exists a local solution

ul+1 ∈ L∞([0, T ′];H3
d(Ω)) ∩ L2([0, T ′];H4

d(Ω))(2.15)

and

‖ul+1‖2
L∞([0,T ′];H3

d(Ω)) + ‖ul+1‖2
L2([0,T ′];H4

d(Ω)) ≤ φ1(T ′,K),(2.16)

where if setting f = 1−γ
ReDe (∇ · τ l

e + F l),

φ1(T,K) = [‖u0‖2
H3

d(Ω) + C‖f‖2
L2([0,T ],H2(Ω)) + C(K)]eCK2T+CK4T

+ ‖u0‖2
H3

d
(Ω) + C‖f‖2

L2([0,T ],H2(Ω)) + C(K)T.(2.17)

Lemma 2.2.

τ l
e ∈ L2([0, T ];H3(Ω)), and F l ∈ L2([0, T ];H2(Ω))(2.18)

and

‖τ l
e‖L2([0,T ];H3(Ω)) ≤ C‖ψl‖L2([0,T ];H3(Ω,X0)),(2.19)

‖F l‖L2([0,T ];H2(Ω)) ≤ C‖ψl‖L2([0,T ];H3(Ω,X0))(2.20)

provided that ψl ∈ L2([0, T ];H3(Ω,X0)).
Lemma 2.3. Given ul ∈ S(M,T ), there exists a unique solution of (2.9)–(2.10)

which has the regularity

ψl ∈ L∞([0, T ];∩i+j=3H
i(Ω,Xj)) ∩ L2([0, T ];∩i+j=4H

i(Ω,Xj)),(2.21)

and

‖ψl‖2
L2([0,T ],∩i+j=3Hi(Ω,Xj))

≤ ‖ψ0‖2
∩i+j=3Hi(Ω,Xj)

(CT + CTM) · eCT+CMT .(2.22)

By combining Lemmas 2.1–2.3, it follows easily that the map M : S(M,T ′) −→
S(M,T ′) is a compact operator if M is chosen sufficiently large and T ′ is chosen
sufficiently small. In fact, by using (2.22), we know

‖ψ‖2
L2([0,T ],H3(Ω,X0))

≤ ‖ψ0‖2
H3(Ω,X0))

(CT + CMT )eCT+CMT .

Thus

‖f‖L2([0,T ],H2(Ω)) ≤ C‖∇ · τ l
e + F l‖L2([0,T ],H2(Ω)) ≤ C‖ψ‖L2([0,T ],H3(Ω,X0)).

Then, from (2.17), we have

‖ul+1‖2
L∞([0,T ′];H3

d(Ω)) + ‖ul+1‖2
L2([0,T ′];H4

d(Ω))

≤ [‖u0‖2
H3

d(Ω) + ‖ψ0‖2
H3(Ω,X0)

(CT + CMT )eCT+CMT + C(K)]eCK2T+CK4T

+ ‖u0‖2
H3

d
(Ω) + ‖ψ0‖2

H3(Ω,X0)
(CT + CMT )eCT+CMT + C(K)T.
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Now we choose

M ≥ 6‖u0‖2
H3(Ω) + 2C(K)(2 + T0) + 12CT0‖ψ0‖2

H3(Ω,X0))
,(2.23)

T ′ ≤ T0 � min

{
ln 2

C(1 +M)
,

ln 2
C(K2 +K4)

,
1

12C‖ψ0‖2
H3(Ω,X0))

}
.(2.24)

Then eCT ′+CMT ′ ≤ 2, eCK2T ′+CK4T ′ ≤ 2, and

C‖ψ0‖2
H3(Ω,X0)

eCT ′+CMT ′
MT ′[1 + eCK2T ′+CK4T ′

] ≤ M

2
,

‖u0‖2
H3(Ω)(1 + eCK2T ′+CK4T ′

) + C(K)[T ′ + eCK2T ′+CK4T ′
]

+ C‖ψ0‖2
H3(Ω,X0)

eCT ′+CMT ′
MT ′[1 + eCK2T ′+CK4T ′

]T ′ ≤ M

2
.

Thus we have (2.12).
Since S(M,T ′) is clearly a closed, convex subset of L2([0, T ], H4

d(Ω)) and is also
compact, by the fixed point theorem of Leray and Schauder [14], the conclusion of
Theorem 1.1 can be obtained.

3. Proof of lemmas.

3.1. Estimates of u. In this section we will give the proof of Lemma 2.1. Let
ul+1 = w, q = pl+1), and the fourth order tensor

A(x, t) = (aijks), where aijks(x, t) =
∫
|m|=1

mimjmkmsψ
l(x,m, t)dm.(3.1)

(2.1) can be rewritten as

wt + (w · ∇)w + ∇q =
γ

Re
�w + f

+
1 − γ

2Re
∇ · [D : A(x, t)] ,(3.2)

∇ · w = 0,(3.3)

where f = 1−γ
ReDe (∇ · τ l

e + F l). In the following we solve this problem to obtain
the existence and uniqueness of the solution by using the Galerkin approximation
similar to solving the standard Navier–Stokes equation [5, 24]. The difference here is
the appearance of the term 1−γ

2Re∇ · [D : A(x, t)]. We can see that it is a good term
when we give a priori estimates because we will obtain − 1−γ

2Re

∫
Ω〈(D : mm)2〉dx while

multiplying w to (3.2) and integrating it in Ω. The high derivatives estimates are
obtained similarly. Thus we will obtain the result in Lemma 2.1 provided that

f ∈ L2([0, T ];H2(Ω)),(3.4)
A ∈ L∞([0, T ], H3(Ω)) ∩ L2([0, T ], H4(Ω)).(3.5)

The regularity of f and A can be easily obtained from the estimates of τe and F in
section 3.2 and ones of ψ in section 3.3, respectively. Why we need conditions (3.4)
and (3.5), for the aim of self-contained, will be answered in the outline of the proof
to Lemma 2.1 when n = 2 and n = 3 in the appendix. We also refer the readers to
[5, 24] for further details.
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3.2. Estimates of τe and F .

Proof of Lemma 2.2. From the definition of τe, it is straightforward to obtain
its estimates from the assumption of ψ. In fact,

τe = −
∫
|m|=1

(m ×Rμ)mψdm

= −
∫
|m|=1

[
m ×

(
1
ψ
Rψ + RU

)]
mψdm

= −
∫
|m|=1

(m ×Rψ)mdm −
∫
|m|=1

(m ×RU)mψdm

= −I + 3
∫
|m|=1

mmψdm−
∫
|m|=1

(m ×RU)mψdm,

where we used the property of operators R and
∫
|m|=1 · dm (p. 293 in [6]),

∫
|m|=1

G(m)R[F (m)]dm = −
∫
|m|=1

F (m)R[G(m)]dm.(3.6)

From the definition (2.7) of U ,

U = α

∫
Ω

∫
|m′|=1

1
ε3
χ

(
x − x′

ε

)
|m × m′|2ψl(x′,m′, t)dm′dx′

= α

∫
Ω

∫
|m′|=1

1
ε3
χ

(
x − x′

ε

)
ψl(x′,m′, t)dm′dx′

−αmm :
∫

Ω

∫
|m′|=1

1
ε3
χ

(
x − x′

ε

)
m′m′ψl(x′,m′, t)dm′dx′;(3.7)

here ε > 0 is in (1.5) and χ(x) is a smooth kernel, and we can see that U ∈ C∞(Ω×S
2).

But the bounds of the derivatives of U with respect to x and m depend on ε, denoted
by C(ε).

Therefore

‖τe‖2
L2(Ω) ≤ C(1 + ‖ψ‖2

L2(Ω,X0)
)(3.8)

since ψ ∈ L2([0, T ], H3(Ω,X0)). Higher derivatives can be obtained similarly. Thus
(2.19) is obtained. By the same way we can obtain

F = 〈∇μ〉 =
∫
|m|=1

(∇ψ + ψ∇U)dm ∈ L2([0, T ];H2(Ω))(3.9)

since ψ ∈ L2([0, T ], H3(Ω,X0)). Hence (2.20) is obtained by using (3.9).

3.3. Estimates of ψ. In this section we first review some results about the
Laplace–Beltrami operator on a compact Riemannian manifold which will be utilized
to show the existence of the solution of (2.9)–(2.10). Then we will give the regularity
estimates of the solution to (2.9)–(2.10).
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3.3.1. Review about the Laplace–Beltrami operator. We recall some
known results about the Laplace–Beltrami operator on a compact Riemannian man-
ifold (Mn, g); see (section 4 of Chap. 4) of [1] and [14].

Lemma 3.1. Let v(Q, t) be a continuous function on Mn × [0, t0]. Assume v ≥ 0
on Mn × {0} and ∂Mn × [0, t0]. Moreover, it satisfies

∂v/∂t ≥ �Mnv + bi(Q, t)∂iv + c(Q, t)v(3.10)

with the bi, c bounded. Then we have always v ≥ 0.
Proof. This lemma can be proved similar to the proof of the maximum principle

in p. 130 of [1]. Let Cm = maxMn×R+ |c(Q, t)| and w = e−(Cm+1)tv. Then w and v
have the same sign. Since

∂w/∂t = e−(Cm+1)t[∂v/∂t− (Cm + 1)v],

we have

∂w/∂t ≥ �Mnw + bi(Q, t)∂iw + [c(Q, t) − Cm − 1]w.(3.11)

Assume w is negative somewhere and let (Q, t) be a point where w achieves its min-
imum. Then �Mnw ≥ 0, ∂iw = 0, and ∂w/∂t ≤ 0. Thus (3.11) implies w(Q, t) ≥ 0,
which yields a contradiction.

Lemma 3.2. For every g ∈ L∞([0, t0], Lp(Mn)), there exists a unique

v ∈W 1,∞([0, t0],W 2,p(Mn))

satisfying

∂vi/∂t = �Mnv
i + ai

j∂iv
j + bijv

j + gi,(3.12)

for 1 ≤ α ≤ k and v(P, 0) ≡ 0, P ∈ Mn, where vi(i = 1, 2, · · · , k) are k unknown
functions in Mn× [0,∞) and gi(i = 1, 2, · · · , k) are k given functions on Mn× [0,∞).
The coefficients ai

j and bij are supposed to be smooth.
Remark 3.1. In fact, the condition on the coefficients ai

j and bij in the above
lemma can be weakened to be bounded in L∞([0, t0]×Mn). The proof is analogous.

3.3.2. Estimate of ψ.

Proof of Lemma 2.3. In this section we simply denote

φ(x,m, t) = ψl(x,m, t) W = U l.(3.13)

Then (2.9)–(2.10) can be rewritten as

∂φ

∂t
+ ul · ∇φ =

ε2

De
[∇ · (I + mm)∇φ+ ∇ · (I + mm)(φ∇W )]

+
1
De

[R · Rφ+ R · (φRW )] −R · (m × κ · mφ),(3.14)

φ(x,m, 0) = ψ0(x,m).(3.15)

Here we still denote (∇ul(x, t))T by κ. Equation (3.14) is a nonlinear differential-
integral equation. We first linearize (3.14) replacing W by U l−1 and obtaining the
solution of this linear equation with the initial data (3.15). If now we transform
the Cartessian coordinates m to the local coordinates (θ, ϕ) of the unit sphere S

2 in
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R
3 by m1(θ, ϕ) = sin θ cosϕ, m2(θ, ϕ) = sin θ sinϕ, and m3 = cosϕ, the operator

R · R is the Laplace–Beltrami operator on the unit sphere [4]. Thus the operator
ε2

De� + 1
DeR · R is also the Laplace–Beltrami operator. Moreover, the coefficients

of (3.14) are all bounded and smooth when κ is bounded, which is obtained from
u ∈ L∞([0, T ];H3

d(Ω)). Therefore we can utilize the above lemmas to show the exis-
tence and nonnegativeness of the solution to the linearized equation when the initial
data is nonnegative. In fact, using Lemma 3.2 and Remark 3.1 for v = φ − ψ0,
we obtain that (3.14)–(3.15) possesses a unique global solution v ∈ W 1,∞([0, T ],
H2(Ω,X0) ∩ H1(Ω,X1) ∩ L2(Ω,X2)). Therefore, ψl ∈ W 1,∞([0, T ];H2(Ω,X0) ∩
H1(Ω,X1) ∩ L2(Ω,X2)) for given T > 0. Now the coefficient of φ is ε2

De∇ · (I +
mm)∇W + 1

DeR · RW −R · (m × κ · m) and it is bounded since ψl−1 ∈ L∞([0, T ];
∩i+j=3H

i(Ω,Xj)) and ul ∈ L∞([0, T ];H3
d(Ω)). Then it follows that the positivity is

preserved by Lemma 3.1, and by integrating both sides of (3.14) we find that∫
Ω

∫
|m|=1

φ(x,m, t)dmdx =
∫

Ω

∫
|m|=1

φ(x,m, 0)dmdx = 1 for all t.

We can obtain the solution of (3.14) with (3.15) from the solution of the linearized
equation to construct a suitable Sobolev space and use the Schauder fixed point
theorem in the standard argument. So here we omit the detail.

Next we will further prove the regularity of the solution ψl(x,m, t) if the initial
data is more regular.

I. The estimate of φ. Multiplying φ to (3.14) and integrating on S
2 with respect

to m and in Ω with respect to x yields

1
2
d

dt

∫
Ω

∫
|m|=1

|φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇φ|2 + |m · ∇φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|Rφ|2dmdx

= − ε2

De

∫
Ω

∫
|m|=1

(I + mm)φ∇W · ∇φdmdx − 1
De

∫
Ω

∫
|m|=1

φRW · Rφdmdx

+
∫

Ω

∫
|m|=1

m × κ ·mφ · Rφdmdx,

where we used the periodic condition. Thus we can obtain the estimate,

d

dt

∫
Ω

∫
|m|=1

|φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇φ|2 + |m · ∇φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|Rφ|2dmdx

≤ C

∫
Ω

∫
|m|=1

|φ|2dmdx + C|κ|
∫

Ω

∫
|m|=1

|φ|2dmdx,(3.16)

where we used the fact that |κ| is also bounded in Ω × [0, T ] redefined by a set of
measure zero from (3.7) since ul ∈ L∞([0, T ];H3(Ω)) and |∇W |, |RW | are bounded
by C(ε). Therefore from (3.16) we obtain

sup
t∈[0,T ]

∫
Ω

∫
|m|=1

|φ|2dmdx ≤ ‖ψ0‖2
L2(Ω,X0)

eCT+CMT � N1,(3.17)
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and

ε2

De

∫ T

0

∫
Ω

∫
|m|=1

(|∇φ|2 + |m · ∇φ|2)dmdxdt +
1
De

∫ T

0

∫
Ω

∫
|m|=1

|Rφ|2dmdxdt

≤ CN1T + CMN1T � N2.(3.18)

This shows that

φ ∈ L∞([0, T ];L2(Ω,X0)) ∩ L2([0, T ];L2(Ω,X1)) ∩ L2([0, T ];H1(Ω,X0))

provided that ψ0 ∈ L2(Ω,X0) and ul ∈ S(M,T ).

II. The estimate of Rφ,∇φ. Applying the operator R to (3.14) and multi-
plying Rφ to (3.14) and integrating on S

2 with respect to m and in Ω with respect
to x, respectively, yields

1
2
d

dt

∫
Ω

∫
|m|=1

|Rφ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇Rφ|2 + |m · ∇Rφ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|R · Rφ|2dmdx

= − ε2

De

∫
Ω

∫
|m|=1

{R · (I + mm) · ∇φ · ∇Rφ −∇ · [(I + mm)(φ∇W )]R · Rφ}dmdx

+
1
De

∫
Ω

∫
|m|=1

R · (φRW )R · Rφdmdx +
∫

Ω

∫
|m|=1

R · (m × κ · mφ)R · Rφdmdx.

Thus, by using |∇W |, |∇2W |, |∇RW |, |RW |, |R2W | are bounded for all x ∈ Ω and
m ∈ S

2, and |κ| is bounded by redefined in a set of measure zero, we have

d

dt

∫
Ω

∫
|m|=1

|Rφ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇Rφ|2 + |m · ∇Rφ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|R · Rφ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|Rφ|2 + |∇xφ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|Rφ|2 + |φ|2)dmdx.(3.19)

Similarly, differentiating (3.14) with respect to x, then multiplying ∇φ and integrating
it, we obtain

d

dt

∫
Ω

∫
|m|=1

|∇φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|�φ|2 + |m · ∇2φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|∇Rφ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|∇φ|2 + |Rφ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|∇φ|2 + |φ|2)dmdx.(3.20)
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Here we used that |∇W |, |∇2W |, |RW |, |R2W | and κ are bounded. Combination of
(3.16), (3.19), and (3.20) and application of the Grownwall inequality yields

sup
t∈[0,T ]

∫
Ω

∫
|m|=1

(|∇φ|2 + |Rφ|2 + |φ|2)dmdx

≤
∫

Ω

∫
|m|=1

(|∇ψ0|2 + |Rψ0|2 + |ψ0|2)dmdx eCT+CM � N3,

ε2

De

∫ T

0

∫
Ω

∫
|m|=1

(|∇φ|2 + |�φ|2 + |∇Rφ|2)dmdxdt

+
1
De

∫ T

0

∫
Ω

∫
|m|=1

|∇Rφ|2 + |R · Rφ|2dmdxdt ≤ CN3T + CMN3T.

This shows that

φ ∈ L∞([0, t];∩i+j=1,i,j≥0H
i(Ω,Xj)) and

φ ∈ L2([0, t];∩i+j=2,i,j≥0H
i(Ω,Xj))(3.21)

provided that ψ0 ∈ ∩i+j=1,i,j≥0H
i(Ω,Xj).

III. The estimate of R2φ,∇2φ, and ∇Rφ. Similar to that in section II, we
can obtain the following estimates:

d

dt

∫
Ω

∫
|m|=1

|∇Rφ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|�Rφ|2 + |m · ∇2Rφ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|∇R · Rφ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|∇Rφ|2 + |∇2
xφ|2 + |∇φ|2 + |Rφ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|R2φ|2 + |Rφ|2 + |φ|2)dmdx,(3.22)

d

dt

∫
Ω

∫
|m|=1

|R2φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇R · Rφ|2 + |m · ∇R2φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|R(R · Rφ)|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|R2φ|2 + |Rφ|2 + |∇φ|2 + |∇Rφ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|R2φ|2 + |Rφ|2 + |φ|2)dmdx,(3.23)
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d

dt

∫
Ω

∫
|m|=1

|∇2φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇�φ|2 + |m · ∇3φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|R�xφ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|∇2φ|2 + |∇φ|2 + |Rφ|2 + |∇Rφ|2 + |φ|2)dmdx

+ C|∇κ|
∫

Ω

∫
|m|=1

(|Rφ|2 + |∇φ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|∇Rφ|2 + |∇φ|2)dmdx.(3.24)

Combining the above estimates and applying the Gronwall inequality with |∇κ| ∈
L2([0, T ], H4(Ω)), we can obtain

‖φ‖2
L∞([0,t];∩i+j=2,i,j≥0Hi(Ω,Xj))

≤ ‖ψ0‖2
∩i+j=2,i,j≥0Hi(Ω,Xj)

eCT+CMT � N4,

‖φ‖2
L2([0,t];∩i+j=3,i,j≥0Hi(Ω,Xj))

≤ CN4T + CMN4T.

This implies that

φ ∈ L∞([0, t];∩i+j=2,i,j≥0H
i(Ω,Xj)) and

φ ∈ L2([0, t];∩i+j=3,i,j≥0H
i(Ω,Xj))(3.25)

provided that ψ0 ∈ ∩i+j=2,i,j≥0H
i(Ω,Xj).

IV. The estimate of Ri∇jφ(i + j = 3). Analogously to that in section III,
we can obtain the following estimates:

d

dt

∫
Ω

∫
|m|=1

|R3φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇R3φ|2 + |m · ∇R3φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|R4φ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|R3φ|2 + |R2φ|2 + |Rφ|2 + |φ|2

+ |∇R2φ|2 + |∇Rφ|2 + |∇φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|R3φ|2 + |R2φ|2 + |Rφ|2 + |φ|2)dmdx,(3.26)

d

dt

∫
Ω

∫
|m|=1

|∇R2φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇2R2φ|2 + |m · ∇2R2φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|R3∇φ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|∇2Rφ|2 + |∇2φ|2 + |∇R2φ|2 + |∇Rφ|2

+ |∇φ|2 + |R2φ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

|∇φ|2dmdx + C|∇κ|
∫

Ω

∫
|m|=1

|φ|2dmdx,(3.27)
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d

dt

∫
Ω

∫
|m|=1

|∇2Rφ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇3Rφ|2 + |m · ∇3Rφ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|∇2R2φ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|∇3φ|2 + |∇2Rφ|2 + |∇Rφ|2 + |Rφ|2

+ |∇2φ|2 + |∇φ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

(|∇φ|2 + |∇Rφ|2 + |∇2Rφ|2 + |∇R2φ|2)dmdx

+ C|∇κ|
∫

Ω

∫
|m|=1

(|R2φ|2 + |∇Rφ|2 + |Rφ|2 + |φ|2)dmdx,(3.28)

d

dt

∫
Ω

∫
|m|=1

|∇3φ|2dmdx +
ε2

De

∫
Ω

∫
|m|=1

(|∇4φ|2 + |m · ∇4φ|2)dmdx

+
1
De

∫
Ω

∫
|m|=1

|∇3Rφ|2dmdx

≤ C

∫
Ω

∫
|m|=1

(|∇3φ|2 + |∇2φ|2 + |∇φ|2 + |φ|2)dmdx

+ C|κ|
∫

Ω

∫
|m|=1

|∇3φ|2dmdx + C|∇κ|
∫

Ω

∫
|m|=1

|∇2φ|2dmdx

+ C‖φ‖2
X0

∫
Ω

|∇3κ|2dx + C‖∇3κ‖2
L2

∫
Ω

∫
|m|=1

(|∇2φ|2 + |∇φ|2)dmdx

+ C‖∇2κ‖2
L2

∫
Ω

∫
|m|=1

(|∇φ|2 + |φ|2)dmdx.(3.29)

In the last estimate we used the following estimates:∫
Ω

[
|∇2κ|

∫
|m|=1

|∇φ||∇3Rφ|dm
]
dx

≤
∫

Ω

|∇2κ|‖∇φ‖L2(S2)‖∇3Rφ‖L2(S2)dx

≤ ‖∇2κ‖L3(Ω)‖‖∇φ‖L2(S2)‖L6(Ω)‖‖∇3Rφ‖L2(S2)‖L2(Ω)

≤ ‖∇2κ‖
H

1
2 (Ω)

‖‖∇φ‖L2(S2)‖H1(Ω)‖‖∇3Rφ‖L2(S2)‖L2(Ω)

≤ ‖∇2κ‖H4(Ω)‖φ‖H2(Ω,X0)‖‖∇3Rφ‖L2(S2)‖L2(Ω)

≤ 1
De

‖∇3Rφ‖2
L2(Ω,X0)

+ C(De)‖u‖2
H4(Ω)‖φ‖2

H2(Ω,X0)
.(3.30)

Combining the above estimates and applying the Gronwall inequality by using
u ∈ L2([0, T ], H4(Ω)), we can obtain

‖φ‖L∞([0,t];∩i+j=3,i,j≥0Hi(Ω,Xj)) ≤ ‖ψ0‖∩i+j=3,i,j≥0Hi(Ω,Xj)e
CT+CMT � N6,

‖φ‖L2([0,t];∩i+j=4,i,j≥0Hi(Ω,Xj)) ≤ CN6T + CMN6T.

This implies that

φ ∈ L∞([0, t];∩i+j=3,i,j≥0H
i(Ω,Xj)) and

φ ∈ L2([0, t];∩i+j=4,i,j≥0H
i(Ω,Xj))(3.31)

provided that ψ0 ∈ ∩i+j=3,i,j≥0H
i(Ω,Xj).
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Up to now, we have completed the proof of Lemma 2.3.

4. Global solution. In this section, we will show that the local solution obtained
in Theorem 1.1 is actually defined for t ∈ R

+ if the Deborah and Reynolds numbers
are small enough. To this end we derive some a priori bounds, satisfied by that
solution. Notably, C1 in this section denotes different constants depending only on n
and Ω.

4.1. Some a priori estimates. Recall that the local solution (u, ψ) obtained
in Theorem 1.1 satisfies (1.24) and (1.25) together with (1.14) and (1.16). Now we
give the detail of a priori estimates for the case n = 3. For n = 2, it can be similarly
obtained.

For (1.14), the inequality (A.36) in the appendix implies that there exists constant
C such that
(4.1)

1
2
d

dt
‖u‖2

H3
d

+
(
γ

Re
− 5ε− 6ε

11

)
‖u‖2

H4 ≤ 5ε
11

‖ψ‖2
H4(Ω,X0)

+
C1

ε
[‖u‖14

H1 + ‖u‖4
H1

+ ‖u‖24
H2 + ‖ψ‖20

H1(Ω,X0)
+ ‖ψ‖24

H2(Ω,X0)
+ ‖ψ‖8

H3(Ω,X0)
+ ‖ψ‖2

H3(Ω,X0)
], (n = 3).

Here in the left side of the above inequality we omit the term 1−γ
2Re

∫
Ω
〈|mm : ∇3D|2〉dx

since it is positive. The main difficulty to obtain (4.1) is to estimate

∫
Ω

∣∣∣∣∣∇3

(
D :

∫
|m|=1

mmmm∇ψdm
)
∇4u

∣∣∣∣∣ dx.
Now we will use the following inequalities:∫

Ω

|∇2D
∫
|m|=1

mmmm∇ψdm∇4u|dx

≤ C1‖∇4u‖L2‖∇2D‖L3‖∇ψ‖L6(Ω,X0)

≤ C1‖u‖H4‖∇2D‖
H

1
2
‖∇ψ‖H1(Ω,X0)

≤ C1‖u‖H4‖u‖
H3+ 1

2
‖ψ‖H2(Ω,X0)

≤ C1‖u‖H4‖u‖
5
6

H4‖u‖
1
6

H1‖ψ‖H2(Ω,X0)

≤ ε‖u‖2
H4 +

C1

ε
‖u‖2

H1‖ψ‖12
H2(Ω,X0)

,(4.2)

where ε is a positive constant and will be chosen later. Here we used the Hölder
inequality (

∫
Ω
|abc|dx ≤ ‖a‖L2‖a‖L3‖c‖L6), Sobolev embedding theorems (H1(Ω) ⊂

L6(Ω), H1/2(Ω) ⊂ L3(Ω) for n = 3), the interpolation inequality (‖u‖
H3+ 1

2
≤ C1‖u‖

5
6

H4

‖u‖
1
6

H1), and Young’s inequality (ab ≤ εa12/11 + 1
ε b

12), respectively. Similarly, we have

∫
Ω

|∇D
∫
|m|=1

mmmm∇2ψdm∇4u|dx

≤ ε‖u‖2
H4 +

C1

ε
‖u‖2

H1‖ψ‖4
H3(Ω,X0)

.
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Further, a different estimate from the above two is∫
Ω

|D
∫
|m|=1

mmmm∇3ψdm∇4u|dx

≤ C1‖∇4u‖L2‖D‖L6‖∇3ψ‖L3(Ω,X0)

≤ C1‖u‖H4‖D‖H1‖∇3ψ‖
H

1
2 (Ω,X0)

≤ C1‖u‖H4‖u‖H2‖ψ‖
1
6

H1(Ω,X0)
‖ψ‖

5
6

H4(Ω,X0)

≤ ε
[
‖u‖H4‖ψ‖

5
6

H4(Ω,X0)

] 12
11

+
C1

ε
‖u‖12

H2‖ψ‖10
H1(Ω,X0)

≤ ε
[
‖u‖

12
11

H4‖ψ‖
10
11

H4(Ω,X0)

]
+
C1

ε
‖u‖12

H2‖ψ‖10
H1(Ω,X0)

≤ 6ε
11

‖u‖2
H4 +

5ε
11

‖ψ‖2
H4(Ω,X0)

+
C1

ε
‖u‖12

H2‖ψ‖10
H1(Ω,X0)

.(4.3)

For the convect term we used the same estimate in [24]∫
|(u · ∇)u�3u|dx ≤ ε‖u‖2

H4 +
C1

ε
‖u‖14

H1 ,

and by using the results of Lemma 2.2 we have∫
Ω

|∇3τe∇4u|dx ≤ ε‖u‖2
H4 +

C1

ε
‖τe‖2

H3 ≤ ε‖u‖2
H4 +

C1

ε
‖ψ‖2

H3(Ω,X0)
,∫

Ω

|∇2F∇4u|dx ≤ ε‖u‖2
H4 +

C1

ε
‖F‖2

H2 ≤ ε‖u‖2
H4 +

C1

ε
‖ψ‖2

H3(Ω,X0)
.

Combination of all yields (4.1). For the equation of ψ, we can obtain the following
estimates:

1
2
d

dt
‖ψ‖2

H3(Ω,X0) +
(
ε2

De
− 5ε− ε

11

)
‖ψ‖2

H4(Ω,X0)
+

(
1
De

− 5ε
11

)
‖ψ‖2

H3(Ω,X1)

≤ 5ε
11

‖u‖2
H4 +

C1

ε
[‖u‖4

H3 + ‖u‖24
H2 + ‖u‖4

H2 + ‖ψ‖4
H3(Ω,X0)

+ ‖ψ‖4
H1(Ω,X0)

+ ‖ψ‖24
H1(Ω,X1)

+ ‖ψ‖4
H2(Ω,X1)

+ ‖ψ‖2
H3(Ω,X0)

].(4.4)

Here the difficulties are the estimates to the nonlinear terms u·∇ψ and R·(m×κ·mψ)
in the equation. To overcome them we use the following inequalities similar to (4.2):∫

Ω

∫
|m|=1

|∇2u∇ψ∇4ψ|dmdx ≤ ε‖ψ‖2
H4(Ω,X0)

+
C1

ε
‖u‖2

H3‖ψ‖2
H2(Ω,X0)

,∫
Ω

∫
|m|=1

|∇u∇2ψ∇4ψdmdx ≤ ε‖ψ‖2
H4(Ω,X0)

+
C1

ε
‖u‖2

H2‖ψ‖2
H3(Ω,X0)

,∫
Ω

∫
|m|=1

|u∇3ψ∇4ψdmdx ≤ ε‖ψ‖2
H4(Ω,X0)

+
C1

ε
‖u‖12

H1‖ψ‖2
H1(Ω,X0)

.

For the other term
∫
Ω

∫
|m|=1

|∇2R · (m × κ · mψ)∇4ψ|dmdx, we used the estimates
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obtained similar to (4.3):∫
Ω

∫
|m|=1

|∇2κRψ∇4ψ|dmdx

≤ 6ε
11

‖ψ‖2
H4(Ω,X0)

+
5ε
11

‖u‖2
H4 +

C1

ε
‖u‖2

H1‖ψ‖12
H1(Ω,X1)

,∫
Ω

∫
|m|=1

|κ∇2Rψ∇4ψ|dmdx

≤ 6ε
11

‖ψ‖2
H4(Ω,X0)

+
5ε
11

‖ψ‖2
H3(Ω,X1)

+
C1

ε
‖u‖12

H2‖ψ‖2
H1(Ω,X1)

,∫
Ω

∫
|m|=1

|∇κ∇Rψ∇4ψ|dmdx ≤ ε‖ψ‖2
H4(Ω,X0)

+
C1

ε
‖u‖2

H3‖ψ‖2
H2(Ω,X1)

.

Now from (4.4), we see that it is necessary to estimate ‖ψ‖2
H2(Ω,X1)

. But it is not
difficult to obtain the following inequality in the similar way with the estimate (4.4).

1
2
d

dt
‖ψ‖2

H2(Ω,X1)
+

(
ε2

De
− 4ε

)
‖ψ‖2

H3(Ω,X1)
+

1
De

‖ψ‖2
H2(Ω,X2)

≤ C1

ε

[
‖u‖4

H3 + ‖u‖
16
3

H2 + ‖u‖16
H1 + ‖ψ‖4

H1(Ω,X1)
+ ‖ψ‖8

H1(Ω,X1)
+ ‖ψ‖2

H2(Ω,X1)

]
.(4.5)

For the case n = 2, we can obtain a priori estimates by using similar approaches,
and we omit the details and give the results directly as follows:

1
2
d

dt
‖u‖2

H3
d

+
(
γ

Re
− 5ε− 9ε

16

)
‖u‖2

H4 ≤ 7ε
16

‖ψ‖2
H4(Ω,X0)

+
C1

ε
[‖u‖4

H1 + ‖u‖18
H2

+ ‖ψ‖18
H2(Ω,X0)

+ ‖ψ‖
9
2

H3(Ω,X0)], (n = 2).(4.6)

The a priori estimates for ψ are

1
2
d

dt
‖ψ‖2

H3(Ω,X0) +
(
ε2

De
− 5ε− 9ε

16

)
‖ψ‖2

H4(Ω,X0)
+

(
1
De

− 4ε
13

)
‖ψ‖2

H3(Ω,X1)

≤ 7ε
16

‖u‖2
H4 +

C1

ε
[‖u‖4

H3 + ‖u‖4
H1 + ‖u‖8

H1 + ‖u‖18
H1

+ ‖ψ‖4
H1(Ω,X1)

+ ‖ψ‖18
H1(Ω,X1)

+ ‖ψ‖4
H3(Ω,X0)

].(4.7)

4.2. Global existence. In this subsection we will give the proof of Theorem
1.2. Let

Y (t) = ‖u‖2
H3(Ω) + ‖ψ‖2

H3(Ω,X0)
+ ‖ψ‖2

H2(Ω,X1)
.(4.8)

Combining the above estimates (4.1), (4.4), and (4.5) we have

1
2
d

dt
Y (t) +

( γ

Re
− 6ε

)
‖u‖2

H4

+
(
ε2

De
− 5ε− 6ε

11

)
‖ψ‖2

H4(Ω,X0)
+

(
1
De

− 5ε
11

)
‖ψ‖2

H3(Ω,X1)

+
(
ε2

De
− 4ε

)
‖ψ‖2

H3(Ω,X1)
+

1
De

‖ψ‖2
H2(Ω,X2)

≤ C1

ε
(Y 12 + Y 10 + Y 7 + Y 4 + Y 2 + Y ).(4.9)
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Now we choose

ε = min
{

γ

7Re
,
ε2

7De

}
, and β =

C1

ε
.(4.10)

Since Y (t) ≤ ‖u‖2
H4 + ‖ψ‖2

H4(Ω,X0)
+ ‖ψ‖2

H3(Ω,X1)
, (4.9) implies

Y ′(t) + 2εY (t) ≤ 2β(Y 12 + Y 10 + Y 7 + Y 4 + Y 2 + Y ).(4.11)

Lemma 4.1. Let Y be a nonnegative, absolutely continuous function satisfying
inequality (4.11). Let B be a positive constant and 0 < B < B0, where B0 is the
unique positive solution of

B11 +B9 +B6 +B3 +B + 1 − ε

2β
= 0.(4.12)

If Y (0) ≤ B, then Y (t) is bounded by B for all t ≥ 0.
Proof. We will prove it by contradiction. Suppose that there exists a t such that

Y (t) > B, and define t∗ = inf{t ∈ R
+, Y (t) > B}, then Y (t∗) = B and Y ′(t∗) ≥ 0.

However from (4.11) and the hypothesis made on B we deduce

Y ′(t∗) ≤ −2εY (t∗) + 2β[Y 11(t∗) + Y 9(t∗) + Y 7(t∗) + Y 4(t∗) + Y 2(t∗) + Y (t∗)]

≤ −2εB + 2Bβ
ε

2β
= −εB < 0,

which contradicts the above statement. Therefore Y (t) ≤ B for all t ∈ R
+.

Proof of Theorem 1.2. We have seen in subsection 4.1 that a specific norm of the
local solution obtained in Theorem 1.1 satisfies an inequality with the form (4.11),
where C1 depends on the domain Ω and n while ε depends on γ,Re, ε2, De from
(4.10). Lemma 4.1 shows that there exists a constant B0, depending on initial data
such that

Y (t) ≤ B, for t ∈ R
+, if Y (0) ≤ B < B0.

But B0 is the unique positive solution of (4.12). From (4.12), we can easily see that
(4.12) possesses a unique positive solution if and only if

1 − ε

2β
< 0,(4.13)

which implies from (4.10) that

Re <
γ

7
√

2C1

and De <
ε2

7
√

2C1

.(4.14)

This completes the proof of Theorem 1.2 for n = 3.
Denoting

Z(t) = ‖u‖2
H3(Ω) + ‖ψ‖2

H3(Ω,X0)
,

the addition of (4.6) and (4.7) yields

1
2
d

dt
Z(t) +

( γ

Re
− 6ε

)
‖u‖2

H4

+
(
ε2

De
− 6ε

)
‖ψ‖2

H4(Ω,X0)
+

(
1
De

− 4ε
13

)
‖ψ‖2

H3(Ω,X1)

≤ C1

ε
(Z9 + Y 4 + Y 9/4 + Y 2) for n = 2.(4.15)

By the same way the result of Theorem 1.2 for n = 2 can be obtained.
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Appendix A. Proof of Lemma 2.1. Now we solve (3.2)–(3.3) with the initial
value u(x, 0) = u0 by using the Galerkin approximation. Let V be the space of all
divergence-free vector in H1(Ω), and let {ωi|i ∈ N} be a basis for V . We seek an
approximation to w of the form

wN (x, t) = ΣN
n=1ρ

n(t)ωn(x).(A.1)

The function wN satisfies, instead of (3.2) and (3.3),

wN
t + (wN · ∇)wN =

γ

Re
�wN + f

+
1 − γ

2Re
∇ ·

[
DN : A(x, t)

]
,(A.2)

wN (x, 0) = PNu0(x),(A.3)

where PN is the orthogonal projector in H1
d onto WN = Span{ωi, i = 1, · · · , N}. The

existence and uniqueness of a solution wN to (A.2)–(A.3) with periodic boundary
conditions defined on some interval (0, TN), TN > 0, is clear; in fact, the following
estimate shows that TN = T for n = 2 and TN suitably small for n = 3.

Multiplying wN to (A.2) and integrating it, we get

1
2
d

dt
‖wN‖2

L2 +
γ

Re
‖∇wN‖2

L2 +
1 − γ

2Re

∫
Ω

〈|DN : mm|2〉dx

≤ γ

2Re
‖wN‖2

L2 +
Re

2γ
‖f‖2

H−1 .(A.4)

This implies that

d

dt
‖wN‖2

L2 +
γ

Re
‖∇wN‖2

L2 ≤ Re

γ
‖f‖2

H−1 .(A.5)

It shows that ∫ T

0

‖∇wN (t)‖2
L2dt ≤ K1,(A.6)

where

K1 = K1

(
u0, f,

γ

Re
, T

)
=
Re

γ

(
‖u0‖2

L2 +
Re

γ

∫ T

0

‖f(t)‖2
H−1dt

)
.(A.7)

For 0 < s < T , by (A.5),

‖wN (s)‖2
L2 ≤ K2,(A.8)

where

K2 = K2

(
u0, f,

γ

Re
, T

)
=

γ

Re
K1.(A.9)

Multiplying �wN by (A.2) and integrating it, we get

1
2
d

dt
‖∇wN‖2

L2 +
γ

Re
‖∇2wN‖2

L2 +
1 − γ

2Re

∫
Ω

〈|∇DN : mm|2〉dx

≤ 1
4
γ

Re
‖∇wN‖2

L2 +
Re

γ
‖f‖2

L2

+
∫

|(wN · ∇)wN�wN |dx +
1 − γ

2Re

∫
|DN∇A�wN |dx.(A.10)
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Now the following a priori of
∫
|(wN · ∇)wN�wN |dx are different, depending on the

dimension. We use the relation [24]∫
|(w · ∇)w�w|dx ≤ C‖w‖1/2

L2 ‖�w‖3/2
L2 ‖∇w‖L2 , (n = 2),(A.11) ∫

|(w · ∇)w�w|dx ≤ C‖w‖1/4
L2 ‖�w‖7/4

L2 ‖∇w‖L2 , (n = 3),(A.12)

and the estimates∫
|DN∇A�wN |dx ≤ C‖�wN‖4/3

L2 ‖∇2A‖L2‖∇wN‖2/3
L2 , (n = 2),(A.13) ∫

|DN∇A�wN |dx ≤ C‖�wN‖3/2
L2 ‖∇2A‖L2‖∇wN‖1/2

L2 , (n = 3).(A.14)

By Young’s inequality (A.10) implies

d

dt
‖∇wN‖2

L2 +
1
2
γ

Re
‖ΔwN‖2

L2 ≤ 2Re
γ

‖f‖2
L2

+ C‖wN‖2
L2‖∇wN‖4

L2 + C‖∇2A‖4
L2‖∇wN‖2

L2, (n = 2),(A.15)
d

dt
‖∇wN‖2

L2 +
3
2
γ

Re
‖ΔwN‖2

L2 ≤ 2Re
γ

‖f‖2
L2

+ C‖wN‖2
L2‖∇wN‖8

L2 + C‖∇2A‖4
L2‖∇wN‖2

L2, (n = 3).(A.16)

Since ψl ∈ L∞([0, T ], H3(Ω,X0)), we can obtain

|∇A(x, t)| ∈ L∞([0, T ];H2(Ω)).(A.17)

Then by the same way as the a priori estimate of Theorem 3.2 in [24] we can get for
n = 2 in virtue of (2.14) and (3.1)

sup
t∈[0,T ]

‖∇wN‖2
L2 ≤ K3,(A.18)

where

K3 = K3

(
u0, f,

γ

Re
, T

)
=

(
‖u0‖2

H1 + C

∫ T

0

‖f(t)‖2
L2dt

)
exp(CK1K2 + CK3T ).

And ∫ T

0

‖�wN‖2
L2dt ≤ K4,(A.19)

where

K4 = K4(u0, f,
γ

Re
, T ) = Cγ

(
‖u0‖2

H1 + C

∫ T

0

‖f(t)‖2
L2dt+ CK2K

2
3T + CK3K3T

)
.

For n = 3, we will estimate in the following from (A.16). Let y(t) = ‖∇wN‖2
L2 +

1, a(t) = C‖wN‖2
L2 , b(t) = C‖∇2A‖4

L2 , and c(t) = 2Re
γ ‖f‖2

L2. Then from (A.16), we
have the inequality

dy

dt
≤ [a(t) + b(t) + c(t)]y4,(A.20)
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and ∫ T

0

[a(t) + b(t) + c(t)]dt ≤ T (CK2 + CK6 + CK2),(A.21)

where we used the condition of (2.14) and the estimate (3.8) and above estimates.
Then they imply that for t ∈ [0, T ] and T < 1/[(CK2 + CK4 + Re

γ K
2)y3(0)] � T0

y(t) ≤ y(0)
3

√
1 − (CK2 + CK4 + Re

γ K
2)y3(0)T

� K5.(A.22)

Therefore, when T < T0, we have

sup
s∈[0,T ]

‖∇wN‖2
L2 ≤ K5(A.23)

and ∫ T

0

‖�wN‖2
L2dt ≤ K6,(A.24)

where

K6 = K6(u0, f,
γ

Re
, T ) = C

(
‖u0‖2

H1 + C

∫ T

0

‖f(t)‖2
L2dt+ CK1K

4
5T + CK4K5T

)
.

Multiplying �2wN by (A.2) and integrating it, we get

1
2
d

dt
‖∇2wN‖2

L2 +
γ

Re
‖∇3wN‖2

L2 +
1 − γ

4Re

∫
Ω

〈|∇2DN : mm|2〉dx

≤ 1
4
γ

Re
‖∇�wN‖2

L2 + C‖∇f‖2
L2

+
1 − γ

2Re

∫
[|DN∇2A∇�wN | + |∇DN∇A∇�wN |]dx

+
∫

|(wN · ∇)wN�2wN |dx.(A.25)

In the following we will estimate (A.25). In virtue of the inequality (p. 31 [24])∫
|(wN · ∇)wN�rwN |dx ≤ 1

4
γ

Re
‖wN‖2

Hr+1 + C‖wN‖2r
H1 (n = 2),(A.26) ∫

|(wN · ∇)wN�rwN |dx ≤ 1
4
γ

Re
‖wN‖2

Hr+1 + C‖wN‖4r+2
H1 (n = 3).(A.27)

And the estimates∫
|DN∇2A∇3wN |dx ≤ C‖∇3wN‖L2‖∇A‖1/3

L2 ‖∇3A‖2/3
L2 ‖∇2wN‖L2 , (n = 2),∫

|DN∇2A∇3wN |dx ≤ C‖∇3wN‖L2‖∇A‖1/4
L2 ‖∇3A‖3/4

L2 ‖∇2wN‖L2 , (n = 3),∫
|∇DN∇A∇3wN |dx ≤ C‖∇3wN‖5/3

L2 ‖∇2A‖L2‖∇wN‖1/3
L2 , (n = 2),∫

|∇DN∇A∇3wN |dx ≤ C‖∇3wN‖7/4
L2 ‖∇2A‖L2‖∇wN‖1/4

L2 . (n = 3).
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Thus, we have

d

dt
‖wN‖2

H2 +
1
2
γ

Re
‖wN‖2

H3 ≤ C‖wN‖4
H1 +

Re

γ
‖f‖2

H1

+ C‖A‖2/3
H1 ‖A‖4/3

H3 ‖wN‖2
H2 + C‖A‖6

H2‖wN‖2
H2 , (n = 2),(A.28)

d

dt
‖wN‖2

H2 +
1
2
γ

Re
‖wN‖2

H3 ≤ C‖wN‖10
H1 +

Re

γ
‖f‖2

H1

+ C‖A‖1/2
H1 ‖A‖3/2

H3 ‖wN‖3/2
H2 + C‖A‖8

H2‖wN‖2
H1 , (n = 3).(A.29)

Similarly we can obtain the following estimates: for n = 2,
(A.30)
sup

t∈[0,T ]

‖wN (t)‖2
H2 ≤ [CK2

2T+CKK2T+C‖f‖2
L2(0,T ;H1)+‖u0‖2

H2 ]eCK2T+CK6T � K7,

and ∫ T

0

‖wN (t)‖2
H3dt ≤ K8,(A.31)

where

K8 = C
(
CK2

3T + C‖f‖2
L2(0,T ;H1) + ‖u0‖2

H2 + CK2K7K1T + CK6K7T
)
.

While for n = 3,

sup
t∈[0,T ]

‖wN (t)‖2
H2 ≤ K9,(A.32)

where

K9 =
[
CK5

5T + CK8K1 +
Re

γ
‖f‖2

L2(0,T ;H1) + ‖u0‖2
H2

]
eCK2T .

Further, we have ∫ T

0

‖wN (t)‖2
H3dt ≤ K10,(A.33)

where

K10 = C
(
CK5

5T + C‖f‖2
L2(0,T ;H1) + ‖u0‖2

H2 + CK8K1T + CK2K9T
)
.

This shows for T given,

wN ∈ L∞([0, T ];H2(Ω)) ∩ L2([0, T ];H3(Ω))(A.34)

provided that f ∈ L2([0, T ];H1(Ω)) and A ∈ L∞([0, T ];H3(Ω)) ∩ L2([0, T ];H4(Ω)).
Similarly we can obtain the estimates

d

dt
‖wN‖2

H3 +
1
2
γ

Re
‖wN‖2

H4 ≤ C‖wN‖6
H1 +

Re

γ
‖f‖2

H2

+ C‖A‖9
H2‖wN‖2

H1 + C‖A‖4
H3‖wN‖2

H1

+ C‖A‖4/9
H1 ‖A‖14/9

H4 ‖wN‖2
H2 , (n = 2),(A.35)

d

dt
‖wN‖2

H3 +
1
2
γ

Re
‖wN‖2

H4 ≤ C‖wN‖14
H1 +

Re

γ
‖f‖2

H2

+ C‖A‖12
H2‖wN‖2

H1 + C‖A‖4
H3‖wN‖2

H1

+ C‖A‖1/3
H1 ‖A‖5/3

H4 ‖wN‖2
H2 , (n = 3).(A.36)
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From (A.35), for n = 2 we have

sup
t∈[0,T ]

‖wN (t)‖2
H3 ≤ K11,(A.37)

where

K11 =
[
‖u0‖2

H3 +
Re

γ
‖f‖2

L2(0,T ;H2) + CK3
3T + CK4K1 + CK9K1

]
eCK4T .

Furthermore, we have ∫ T

0

‖wN (t)‖2
H4dt ≤ K12,(A.38)

where

K12 = C
(
‖u0‖2

H3 + C‖f‖2
L2(0,T ;H2) + CK3

3T + CK4K1T + CK2K11T + CK2K7T
)
.

Thus we know that φ1(K,T ) = K12 +K11 for n = 2.
From (A.36), for n = 3 we have

sup
t∈[0,T ]

‖wN (t)‖2
H3 ≤ K13,(A.39)

where

K13 = [‖u0‖2
H3 + C‖f‖2

L2(0,T ;H2) + CK7
3T + CK12K3T + CK4K3T ]eCK2T .

Moreover, ∫ T

0

‖wN (t)‖2
H4dt ≤ K14,(A.40)

where

K14 = C
(
‖u0‖2

H3 + C‖f‖2
L2(0,T ;H2) + CK7

3T + CK12K3T + CK4K3T + CK2K13T
)
.

Thus we know that φ1(K,T ) = K14 +K13 for n = 3.
Therefore, this implies that for T given,

wN ∈ L∞([0, T ];H3(Ω)) ∩ L2([0, T ];H4(Ω))(A.41)

provided that f ∈ L2([0, T ];H2(Ω)) and A ∈ L∞([0, T ], H3(Ω)) ∩ L2([0, T ], H4(Ω)).
Passing N → ∞, we can obtain the estimate (2.16).
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A DESCRIPTION OF SEISMIC ACOUSTIC WAVE PROPAGATION
IN POROUS MEDIA VIA HOMOGENIZATION∗

ANVARBEK MEIRMANOV†

Abstract. We consider a linear system of differential equations describing the joint motion of an
elastic porous body and a fluid occupying the porous space. A rigorous justification is performed for
the homogenization procedures under various conditions imposed on the physical parameters as the
dimensionless size of the pores tends to zero, while the porous body is geometrically periodic and the
process’s characteristic time is sufficiently small. Such models describe the propagation of seismic
acoustic waves. In the present paper, we derive the homogenized equations, which are different
types of nonstandard wave equations depending on the relations between the physical parameters.
The proofs are based on Nguetseng’s two-scale convergence method of homogenization in periodic
structures.

Key words. Stokes equations, Lamé’s equations, wave equation, two-scale convergence, homog-
enization of periodic structures
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1. Introduction. In the present paper, we deal with a problem of joint motion
of a deformable solid (the elastic skeleton) perforated by a system of channels or
pores (the pore space) and a fluid occupying the pore space. In a domain Ω ⊂ R3, the
dimensionless displacement vector w of the continuum medium in the dimensionless
variables

x′ = Lx, t′ = τt, w′ =
L2

gτ2
w, ρ′s = ρ0ρs, ρ′f = ρ0ρf , F ′ = gF

satisfies the differential equation

(1.1) ρ̄
∂2w

∂t2
= divP + ρ̄F ,

where

P = χ̄P f + (1 − χ̄)P s,(1.2)

P f = αμD

(
x,
∂w

∂t

)
−
(
pf − ανdiv

∂w

∂t

)
I,(1.3)

P s = αλD(x,w) + αη(divw)I,(1.4)
pf + χ̄αpdivw = 0.(1.5)

Hereafter, we use the notation

D(x,u) = (1/2)
(
∇xu+ (∇xu)T

)
, ρ̄ = χ̄ρf + (1 − χ̄)ρs,
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where I is the unit tensor, the given function χ̄(x) is the characteristic function of the
pore space, the given function F (x, t) is the dimensionless vector of distributed mass
forces, P f is the liquid stress tensor, P s is the stress tensor in the solid skeleton, and
pf is the liquid pressure.

Equations (1.1)–(1.5) mean that the displacement vector w satisfies the Stokes
equations in the pore space Ωf and the Lamé equations in the solid skeleton Ωs.

On the “solid skeleton–pore space” common boundary Γ, the displacement vector
w and the liquid pressure pf satisfy the usual continuity condition

(1.6) [w](x0, t) = 0, x0 ∈ Γ, t ≥ 0,

and the momentum conservation law in the form

(1.7) [P · n](x0, t) = 0, x0 ∈ Γ, t ≥ 0,

where n(x0) is the unit normal to the boundary at the point x0 ∈ Γ and

[ϕ](x0, t) = ϕ(s)(x0, t) − ϕ(f)(x0, t),
ϕ(s)(x0, t) = lim

x → x0
x ∈ Ωs

ϕ(x, t), ϕ(f)(x0, t) = lim
x → x0
x ∈ Ωf

ϕ(x, t).

The problem is endowed with the homogeneous initial and boundary conditions

(1.8) w(x, 0) = 0,
∂w

∂t
(x, 0) = 0, x ∈ Ω,

(1.9) w(x, t) = 0, x ∈ S = ∂Ω, t ≥ 0.

The dimensionless constants αi (i = τ, ν, . . .) are defined by the formulas

αμ =
2μτ
L2ρ0

, αλ =
2λτ2

L2ρ0
, αν =

ντ

L2ρ0
,

αp = ρfc
2
f

τ2

L2
, αη =

ητ2

L2ρ0
= ρsc

2
s

τ2

L2
,

where μ is the fluid viscosity, ν is the bulk fluid viscosity, λ and η are elastic Lamé’s
constants, cf is the speed of sound in fluids, cs is the speed of sound in solids, L
is the characteristic size of the domain under study, τ is the characteristic time of
the process, ρf and ρs are the respective mean dimensionless densities of the liquid
and solid phases correlated with the mean density of water ρ0, and g is the value of
acceleration due to gravity.

The corresponding mathematical model described by system (1.1)–(1.9) is com-
monly used (see [2], [9]) and contains a natural small parameter ε, which is the pore
characteristic size l divided by the characteristic size L of the entire porous body:

ε =
l

L
.

Our aim is to derive all possible limiting regimes (the homogenized equations) as
ε↘ 0. Such an approximation significantly simplifies the original problem and at the
same time preserves all of its main features. But even this approach is too difficult
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to be realized, and some additional simplifying assumptions are necessary. In terms
of geometrical properties of the medium, it is most expedient to simplify the problem
by postulating that the porous structure is periodic.

We impose the following constraints.
Assumption 1.

(1) The domain Ω = (0, 1)3 is a periodic repetition of an elementary cell Y ε = εY ,
where Y = (0, 1)3 and the quantity 1/ε is an integer so that Ω always contains an
integer number of elementary cells Y ε.

(2) Let Ys be the “solid part” of Y , and let the “liquid part” Yf of Y be its open
complement. We write γ = ∂Yf ∩ ∂Ys and assume that γ is a Lipschitz continuous
surface.

(3) The pore space Ωε
f is a periodic repetition of the elementary cell εYf , and the

solid skeleton Ωε
s is a periodic repetition of the elementary cell εYs. The Lipschitz

continuous boundary Γε = ∂Ωε
s ∩ ∂Ωε

f is a periodic repetition in Ω of the boundary
εγ.

(4) The “solid skeleton” Ωε
s and the “pore space” Ωε

f are connected domains.
Here the essential assumptions are those last three on the geometry of the ele-

mentary cells Ys and Yf and the domains Ωε
s and Ωε

f . As for the first assumption, we
take the simplest structure of Ω (namely, the cube) just to simplify the procedure.
In principle, for the domain Ω we can choose any bounded domain with a Lipschitz
continuous boundary S = ∂Ω.

Under these assumptions, we have

χ̄(x) = χε(x) = χ
(x
ε

)
,

ρ̄ = ρε(x) = χε(x)ρf + (1 − χε(x))ρs,

where χ(y) is the characteristic function of Yf in Y .
We assume that all dimensionless parameters depend on the small parameter ε

and the (finite or infinite) limits exist:

lim
ε↘0

αμ(ε) = μ0, lim
ε↘0

αλ(ε) = λ0, lim
ε↘0

αν(ε) = ν0,

lim
ε↘0

αη(ε) = η0, lim
ε↘0

αp(ε) = p∗,

lim
ε↘0

αμ

ε2
= μ1, lim

ε↘0

αλ

ε2
= λ1.

The first research aiming to find the limiting regimes in the case where the skele-
ton was an absolutely rigid body was carried out by Sanchez-Palencia and Tartar.
Sanchez-Palencia [9, sect. 7.2] formally obtained Darcy’s law of filtration using the
method of two-scale asymptotic expansions, and Tartar [9, Appendix] rigorously jus-
tified the homogenization procedure. Using the same method of two-scale expansions,
Burridge and Keller [2] formally derived a system of Biot’s equations from problem
(1.1)–(1.9) in the case where the parameter αμ was of order ε2 and the rest of the
coefficients were fixed independent of ε. Under the same assumptions as in [2], a rig-
orous justification of Biot’s model was given by Nguetseng [8] and later by Clopeaut
et al. [3]. The most general case of problem (1.1)–(1.9) where

μ0, λ
−1
0 , ν0, p

−1
∗ , η−1

0 <∞
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was studied in [6].
All these authors used Nguetseng’s two-scale convergence method [7, 5].
In the present paper, we use the same method to investigate all possible limiting

regimes in problem (1.1)–(1.9) in the cases where

ν0, p∗, η0 <∞; μ0 = λ0 = 0, 0 < p∗, η0.

These cases correspond to the seismic acoustic wave propagation, where all the
processes on distances of tens of thousands of meters (L ↗ ∞) come to an end in
several seconds (τ ↘ 0).

We show that the homogenized equations are different types of nonstandard wave
equations for a two- or one-velocity continuum (Theorem 2.2).

This is a very interesting fact: initially a one-velocity continuum becomes a two-
velocity continuum after the homogenization procedure, which appears to be the result
of different smoothness of the solution in the solid and liquid components:∫

Ω

αμ(ε)χε|∇wε|2dx ≤ C0,

∫
Ω

αλ(ε)(1 − χε)|∇wε|2dx ≤ C0,

where C0 is a constant independent of the small parameter ε. To preserve the best
properties of the solution, we must use the well-known extension lemma [1, 4] and
extend the solution from the solid part to the liquid part and conversely. At this stage,
the criteria μ1 and λ1 become crucial. Namely, let wε

f (wε
s) be an extension of the

liquid (solid) displacements to the solid (liquid) part, and let μ1 = λ1 = ∞. Then the
limiting (homogenized) system describes the one-velocity continuum. This is because
of the fact that each of the sequences {wε}, {wε

f}, and {wε
s} two-scale converges

to a function independent of the fast variable. This statement easily follows from
Nguetseng’s theorem.

If μ1 < ∞ and λ1 = ∞ or μ1 = ∞ and λ1 < ∞, then the homogenized systems
describe the two-velocity continuum.

Finally, we note that, in practice, to solve a real physical problem in, for example,
acoustics, one does not want to carry out the limiting procedure but, instead, wants
to find a simple and reliable mathematical model describing the process. But there
is only one exact (sufficiently reliable) mathematical model (1.1)–(1.9) with given
physical constants (densities, viscosities, etc.), the characteristic size L of the physical
domain under study, and the characteristic time τ of the physical process. The small
parameter ε and the dimensionless quantities αμ, αλ, αp, . . . are functions of them.
Changing the values of L and τ within some reasonable limits, one may find some
rules for the behavior of the dimensionless quantities as the small parameter tends
to zero. All possible limits of these quantities are described by conditions on μ0,
λ0, μ1, . . . and, as was mentioned above, each homogenized system corresponds to
a given combination of them. Thus, for a given physical situation, there exists a
combination of dimensionless criteria, which would suggest the choice of the form of
the homogenized system for obtaining the exact mathematical model. Therefore, to
find all possible homogenized systems is very important from both mathematical and
practical standpoints.

2. Main results. There are various equivalent (in the sense of distributions)
forms of representation of (1.1) and boundary conditions (1.6)–(1.7). In what follows,
it is convenient to write them in the form of the integral identities.
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We say that four functions
(
wε, pε

f , p
ε
s, q

ε
)

are a generalized solution of problem
(1.1)–(1.9) if they satisfy the regularity conditions

(2.1) wε, ∇wε, pε
f , p

ε
s, q

ε ∈ L2(ΩT )

in the domain ΩT = Ω× (0, T ), boundary condition (1.9) in the trace sense, (1.5) and
the equations

(2.2) pε
s + (1 − χε)αηdivwε = 0,

(2.3) qε = pε
f +

αν

αp

∂pε
f

∂t

a.e. in ΩT , and, finally, the integral identity∫
ΩT

(
ρεwε · ∂

2ϕ

∂t2
− χεαμD(x,wε) : D

(
x,
∂ϕ

∂t

)
− ρεF ·ϕ

+ {(1 − χε)αλD(x,wε) − (qε + pε
s)I} : D(x,ϕ)

)
dxdt = 0

⎫⎪⎪⎬⎪⎪⎭(2.4)

for all smooth vector-functionsϕ = ϕ(x, t) such that ϕ|∂Ω = ϕ|t=T = ∂ϕ/∂t|t=T = 0.
In this definition, we changed the form of representation of the stress tensor P in

the integral identity (2.4) by introducing two new unknown functions, qε and pε
s, which

in a certain sense have the meaning of pressure. In what follows, we call functions
qε and pε

s the liquid and the solid pressure, respectively, and regard (2.3) as the
state equation and equations (1.5) and (2.2) as the continuity equations. This special
choice of the continuity and state equations simplifies the use of the homogenization
procedure.

In (2.4), by A : B we denote the convolution (or, equivalently, the inner tensor
product) of two second-rank tensors along the both indices, i.e., A : B = tr (B∗ ◦A) =∑3

i,j=1 AijBji.
Theorems 2.1–2.2 are the main results of the paper.
Theorem 2.1. Let F be bounded in L2(Ω). Then for all ε > 0 on an arbitrary

time interval [0, T ], there exists a unique generalized solution of problem (1.1)–(1.9)
and

(2.5) max
0≤t≤T

∥∥∥∥∣∣∣∣∂wε

∂t

∣∣∣∣+
√
αμχ

ε|∇wε| + (1 − χε)
√
αλ|∇wε|

∥∥∥∥
2,Ω

(t) ≤ C0,

(2.6) ‖qε‖2,ΩT + ‖pε
f‖2,ΩT + ‖pε

s‖2,ΩT ≤ C0,

where C0 is independent of the small parameter ε.
Theorem 2.2. Assume that the hypotheses in Theorem 2.1 hold. Then there

exists a subsequence of small parameters {ε > 0} and functions wε
f , w

ε
s ∈ L∞(0, T ;

W 1
2 (Ω)) such that

wε
f = wε in Ωε

f × (0, T ), wε
s = wε in Ωε

s × (0, T ),

and the sequences {pε
f}, {qε}, {pε

s}, {wε}, {χεwε}, {(1 − χε)wε}, {wε
f}, and {wε

s}
converge as ε↘ 0 weakly in L2(ΩT ) to the functions pf , q, ps, w, wf , ws, wf , and
ws, respectively.
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(I) If μ1 = λ1 = ∞, then wf = ws = w and, in ΩT , the functions w, pf , q, and
ps satisfy the system of acoustic equations

(2.7) ρ̂
∂2w

∂t2
= − 1

m
∇q + ρ̂F ,

(2.8)
1
p∗
pf +

1
η0
ps + divw = 0,

(2.9) q = pf +
ν0
p∗

∂pf

∂t
,

1
m
q =

1
1 −m

ps,

the homogeneous initial conditions

(2.10) w(x, 0) =
∂w

∂t
(x, 0) = 0, x ∈ Ω,

and the homogeneous boundary condition

(2.11) w(x, t) · n(x) = 0, x ∈ S, t > 0,

where ρ̂ = mρf + (1 −m)ρs is the average density of the mixture and m =
∫

Y
χdy is

the porosity.
(II) If μ1 = ∞ and λ1 < ∞, then, in ΩT , the functions wf = mwf , ws, pf , q,

and ps satisfy the system of acoustic equations consisting of the state equations (2.9)
and the momentum balance equation

(2.12) ρfm
∂2wf

∂t2
+ ρs

∂2ws

∂t2
= − 1

m
∇q + ρ̂F

for the liquid component, the continuity equation

(2.13)
1
p∗
pf +

1
η0
ps +mdivwf + divws = 0,

and the relation

(2.14)
∂ws

∂t
= (1 −m)

∂wf

∂t
+
∫ t

0

Bs
1(t− τ) · zs(x, τ)dτ,

where

zs(x, t) = − 1
m
∇q(x, t) + ρsF (x, t) − ρs

∂2wf

∂t2
(x, t),

in the case of λ1 > 0 or the momentum balance equation in the form

(2.15) ρs
∂2ws

∂t2
= ρsB

s
2 · ∂

2wf

∂t2
+ ((1 −m)I −Bs

2) ·
(
− 1
m
∇q + ρsF

)
in the case of λ1 = 0 for the solid component. Problem (2.9), (2.12)–(2.15) is supple-
mented with the homogeneous initial conditions (2.10) for displacements in the liquid
and the solid components and the homogeneous boundary condition (2.11) for the dis-
placements w = mwf +ws.
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In (2.14)–(2.15), the matrices Bs
1(t) and Bs

2 are defined below by formulas (5.37)
and (5.39), where the matrix ((1 − m)I − Bs

2) is symmetric and strictly positively
definite.

(III) If μ1 < ∞ and λ1 = ∞, then, in ΩT , the functions wf , ws = (1 −m)ws,
pf , q, and ps satisfy the system of acoustic equations consisting of the state equations
(2.9) and the momentum balance equation

(2.16) ρf
∂2wf

∂t2
+ ρs(1 −m)

∂2ws

∂t2
= − 1

m
∇q + ρ̂F

for the solid component, the continuity equation

(2.17)
1
p∗
pf +

1
η0
ps + divwf + (1 −m)divws = 0,

and the relation

(2.18)
∂wf

∂t
= m

∂ws

∂t
+
∫ t

0

Bf
1 (t− τ) · zf (x, τ)dτ,

where

zf (x, t) = − 1
m
∇q(x, t) + ρfF (x, t) − ρf

∂2ws

∂t2
(x, t),

in the case of μ1 > 0 or the momentum balance equation in the form

(2.19) ρf
∂2wf

∂t2
= ρfB

f
2 · ∂

2ws

∂t2
+ (mI −Bf

2 ) ·
(
− 1
m
∇q + ρfF

)
in the case of μ1 = 0 for the liquid component. Problem (2.9), (2.16)–(2.19) is supple-
mented with homogeneous initial conditions (2.10) for displacements in the liquid and
solid components and the homogeneous boundary condition (2.11) for the displace-
ments w = wf + (1 −m)ws.

In (2.18)–(2.19), the matrices Bf
1 (t) and Bf

2 are given below by formulas (5.44)–
(5.45), where the matrix (mI −Bf

2 ) is symmetric and strictly positively definite.
(IV) If μ1 < ∞ and λ1 <∞, then, in ΩT , the functions w, pf , q, and ps satisfy

the system of acoustic equations consisting of the continuity and state equations (2.8)
and (2.9) and the relation

(2.20)
∂w

∂t
=
∫ t

0

B(t− τ) · ∇q(x, τ)dτ + f(x, t),

where B(t) and f(x, t) are given below by (5.58) and (5.59).
Problem (2.8), (2.9), (2.20) is supplemented with homogeneous initial and bound-

ary conditions (2.10) and (2.11).
As was mentioned above, even in the most simple case (I) with ν0 = 0, Theo-

rem 2.2 gives the standard wave equation for the solid pressure ps but with a com-
pletely new speed of sound in the mixture, which includes the porosity, densities, and
speeds of sound in the solid and liquid components.

In the next simple case (IV) with ν0 = 0, Theorem 2.2 gives a new wave equation
for the solid pressure in the form

(2.21)
∂ps

∂t
=
∫ t

0

div
(
B̃(t− τ) · ∇ps(x, τ)

)
dτ.
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Here B̃(0) = c2I, where the time derivative of the matrix B̃(t) is generally unbounded
at t = 0. This equation has no simple solutions like traveling waves and requires a
special analysis even for the smooth matrix B̃(t).

The rest of the homogenized models described by Theorem 2.2 are much more
complicated than the model (2.21). This is natural, because one cannot expect that
a simple model gives an “accurate” approximation of the very complicated original
model (1.1)–(1.9).

3. Preliminaries.

3.1. Two-scale convergence. The justification of Theorem 2.2 is based on a
systematic use of the two-scale convergence method, which was proposed by Nguetseng
[7] and has been recently used in a wide range of homogenization problems (see, for
example, the survey [5]).

Definition 3.1. A sequence {wε} ⊂ L2(ΩT ) is said to be two-scale convergent
to the limit W ∈ L2(ΩT × Y ) if and only if the limiting relation

(3.1) lim
ε↘0

∫
ΩT

wε(x, t)σ
(
x, t,

x

ε

)
dxdt =

∫
ΩT

∫
Y

W (x, t,y)σ(x, t,y)dydxdt

holds for any function σ = σ(x, t,y) ∈ C∞(ΩT × Y ) one-periodic in y and finite in
ΩT .

The existence and the main properties of weakly convergent sequences are estab-
lished by the following fundamental theorem [7, 5].

Theorem 3.2 (Nguetseng’s theorem). 1. Any sequence bounded in L2(ΩT )
contains a subsequence two-scale convergent to some limit W ∈ L2(ΩT × Y ).

2. Let the sequences {wε} and {ε∇xw
ε} be bounded in L2(ΩT ). Then there

exists a function W = W (x, t,y) one-periodic in y and a subsequence {wε} such that
W, ∇yW ∈ L2(ΩT ×Y ), and the subsequences {wε} and {ε∇xw

ε} two-scale converge
to W and ∇yW , respectively.

Corollary 3.3. Let σ ∈ L2(Y ) and σε(x) = σ(x/ε). Assume that a sequence
{wε} ⊂ L2(ΩT ) two-scale converges to W ∈ L2(ΩT × Y ). Then the sequence {σεwε}
two-scale converges to the function σW .

3.2. An extension lemma. A typical difficulty in homogenization problems
like problem (1.1)–(1.7) arises in passing to the limit as ε ↘ 0 because of the fact
that the bounds on the displacement gradient ∇wε may be different in the liquid
and solid components. The classical approach to overcoming this difficulty consists in
constructing an extension of the displacement field defined merely on Ωs or Ωf to the
whole Ω. The following lemma is valid due to the well-known results from [1, 4, 8].
We formulate it in the form convenient for us.

Lemma 3.4. Suppose that Assumption 1 on the geometry of the periodic structure
is satisfied and wε ∈

◦
W 1

2 (Ω). Then there exist functions wε
f , w

ε
s ∈ W 1

2 (Ω) such that
their respective restrictions on the subdomains Ωε

f and Ωε
s coincide with wε, i.e.,

(3.2) χε(x)(wε
f (x) −wε(x)) = 0, (1 − χε(x))(wε

s(x) −wε(x)) = 0, x ∈ Ω,

and, in addition, the estimate

(3.3) ‖wε
i ‖2,Ω ≤ C‖wε‖2,Ωε

i
, ‖D(x,wε

i )‖2,Ω ≤ C‖D(x,wε)‖2,Ωε
i
, i = f, s,

holds true, where the constant C depends only on the geometry of Y and is independent
of ε.
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3.3. Some notation. Further we denote the following:
(1)

〈Φ〉Y =
∫

Y

Φdy, 〈Φ〉Yf
=
∫

Y

χΦdy, 〈Φ〉Ys =
∫

Y

(1 − χ)Φdy.

(2) If a and b are two vectors, then the matrix a ⊗ b is defined by the formula

(a ⊗ b) · c = a(b · c)

for any vector c.

4. Proof of Theorem 2.1. Estimates (2.5)–(2.6) follow from the energy equal-
ity in the form

d

dt

{∫
Ω

ρε

(
∂wε

∂t

)2

+ αλ

∫
Ω

(1 − χε)D(x,wε) : D(x,wε)dx

+αp

∫
Ω

χε(divwε)2dx + αη

∫
Ω

(1 − χε)(divwε)2dx

}
+ αν

∫
Ω

χε

(
div

∂wε

∂t

)2

dx

+ αμ

∫
Ω

χεD

(
x,
∂wε

∂t

)
: D
(
x,
∂wε

∂t

)
dx =

∫
Ω

ρε ∂F

∂t
· ∂w

ε

∂t
dx(4.1)

if we use Hölder, Gronwall, and Korn inequalities and extension Lemma 3.4. In
turn, the energy equality (4.1) follows from (1.1) if we express the stress tensor P
and the liquid pressure pf using state equations (1.2)–(1.4) and continuity equation
(1.5), multiply the result by ∂wε/∂t, and integrate by parts. Note that all terms on
the “solid skeleton–pore space” interface Γε disappear due to boundary conditions
(1.6)–(1.7).

The same estimates (2.5)–(2.6) guarantee the existence and uniqueness of the
generalized solution for problem (1.1)–(1.9).

5. Proof of Theorem 2.2.

5.1. Weak and two-scale limits of sequences of displacements and pres-
sures. First, we use Lemma 3.4 and conclude that there are functions wε

f , w
ε
s ∈

L∞(0, T ;W 1
2 (Ω)) such that

wε
f = wε in Ωε

f × (0, T ), wε
s = wε in Ωε

s × (0, T ).

By Theorem 2.1, the sequences {pε
f}, {qε}, {pε

s}, {wε}, {wε
f}, {√αμ∇wε

f}, {wε
s},

and {√αλ∇wε
s} are bounded in L2(ΩT ). Hence there exists a subsequence of small

parameters {ε > 0} and functions pf , q, ps, w, wf , and ws such that

(5.1) pε
f ⇀ pf , qε ⇀ q, pε

s ⇀ ps, wε ⇀ w, wε
f ⇀ wf , wε

s ⇀ ws

weakly in L2(ΩT ) as ε↘ 0.
Note also that

(5.2) (1 − χε)αλD(x,wε
s) → 0, χεαμD(x,wε

f ) → 0

strongly in L2(ΩT ) as ε↘ 0.
Relabeling if necessary, we assume that the sequences themselves converge.
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By Nguetseng’s theorem, there exist functions Pf (x, t,y), Ps(x, t,y), Q(x, t,y),
W (x, t,y), W f (x, t,y), and W s(x, t,y) that are one-periodic in y and satisfy the
condition that the sequences {pε

f}, {pε
s}, {qε}, {wε}, {wε

f}, and {wε
s} two-scale con-

verge to Pf (x, t,y), Ps(x, t,y), Q(x, t,y), W (x, t,y), W f (x, t,y), and W s(x, t,y),
respectively.

Lemma 5.1. If μ1 = ∞ (λ1 = ∞), thenW f (x, t,y) = wf (x, t), χ(y)W (x, t,y) =
χ(y)wf (x, t), andwf = 〈W 〉Yf

= mwf

(
W s(x, t,y) = ws(x, t), (1−χ(y))W (x, t,y)

= (1 − χ(y))ws(x, t) and ws = 〈W 〉Ys = (1 −m)ws

)
.

Proof. Suppose that μ1 = ∞, and let Ψ(x, t,y) be an arbitrary smooth scalar
function periodic in y. The sequence {σε

ij}, where

σε
ij =

∫
Ω

√
αλ

∂wε
f,i

∂xj
(x, t)Ψ(x, t,x/ε)dx, wε

f = (wε
f,1, w

ε
f,2, w

ε
f,3),

is uniformly bounded in ε. Therefore,∫
Ω

ε
∂wε

f,i

∂xj
(x, t)Ψ(x, t,x/ε)dx =

ε
√
αλ
σε

ij → 0

as ε↘ 0, which is equivalent to∫
Ω

∫
Y

Wf,i(x, t,y)
∂Ψ
∂yj

(x, t,y)dxdy = 0, W f = (Wf,1,Wf,2,Wf,3),

or W f (x, t,y) = wf (x, t). Therefore taking the two-scale limit as ε ↘ 0 in the
relation χε(wε −wε

f ) = 0, we arrive at

χ(y)W (x, t,y) = χ(y)wf .

5.2. Micro- and macroscopic equations. We start the proof of the theorem
from the macro- and microscopic equations related to the continuity equations.

Lemma 5.2. For almost all x ∈ Ω and y ∈ Y , the weak and two-scale limits of
the sequences {pε

f}, {pε
s}, {qε}, {wε}, {wε

f}, and {wε
s} satisfy the relations

Q = qχ/m, Pf = pfχ/m, Ps = ps(1 − χ)/(1 −m), Q = P + ν0p
−1
∗ ∂P/∂t;(5.3)

q/m = ps/(1 −m), q = pf + ν0p
−1
∗ ∂pf/∂t;(5.4)

pf/p∗ + ps/η0 + divw = 0;(5.5)
w(x, t) · n(x) = 0, x ∈ S, t > 0;(5.6)

divyW = 0;(5.7)
W = χW f + (1 − χ)W s.(5.8)

Proof. In order to prove (5.3), into (2.4) we substitute the test function ψε =
εψ (x, t,x/ε), where ψ(x, t,y) is an arbitrary one-periodic function of y that is finite
on Yf (or finite on Ys or finite on Y ). Passing to the limit as ε↘ 0, we obtain

(5.9) ∇yQ = 0, y ∈ Yf ; ∇yPs = 0, y ∈ Ys; ∇y(Q + Ps) = 0, y ∈ Y.

Next, fulfilling the two-scale passage to the limit in the state equation (2.3) and
in the relations

(1 − χε)qε = 0, χεpε
s = 0
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we arrive at the last equation in (5.3) and the relations

(1 − χ)Q = 0, χPs = 0,

which together with the first two equations in (5.9) prove the first three equations in
(5.3).

The second equation in (5.4) is the result of integration of the last equation in
(5.3) over the domain Yf .

The first relation in (5.4) follows from (5.3) and the last equation in (5.9): the
sequence {(qε + pε

s)} two-scale converges to (Q+ Ps) = (q + ps).
Equations (5.5)–(5.7) appear as a result of the two-scale passage to the limit in

(1.5) and (2.2) with the proper test functions being involved. Thus, for example, (5.5)
and (5.6) arise if we consider the linear combination of (1.5) and (2.2)

(5.10)
1
αp
pε

f +
1
αη
pε

s + divwε = 0,

multiply it by an arbitrary function independent of the “fast” variable x/ε, and then
pass to the limit as ε↘ 0. To prove (5.7), it suffices to consider the two-scale limiting
relations in (5.10) as ε ↘ 0 with the test functions εψ (x/ε)h(x, t), where ψ and h
are arbitrary smooth functions.

To prove (5.8), it suffices to consider the two-scale limiting relations in

wε = χεwε
f + (1 − χε)wε

s.

Lemma 5.3. For almost all (x, t) ∈ ΩT , the relation

(5.11) ρf
∂2wf

∂t2
+ ρs

∂2ws

∂t2
= − 1

m
∇q + ρ̂F

holds true.
Proof. Substituting a test function of the form ψ = ψ(x, t) into integral identity

(2.4) and passing to the limit as ε↘ 0, we arrive at (5.11).
Lemma 5.4. Let μ1 = ∞ and λ1 < ∞. Then, in Ys, the functions W s =

(1 − χ)W , wf , and q satisfy the microscopic relations

(5.12) ρs
∂2W s

∂t2
= λ1�yW

s −∇yR
s − 1

m
∇q + ρsF , y ∈ Ys,

(5.13) W s = wf , y ∈ γ,

in the case λ1 > 0 or the microscopic relations

(5.14) ρs
∂2W s

∂t2
= −∇yR

s − 1
m
∇q + ρsF , y ∈ Ys,

(5.15) (W s −wf ) · n = 0, y ∈ γ,

in the case λ1 = 0.
The problem is endowed with the homogeneous initial data

(5.16) W s(y, 0) =
∂W s

∂t
(y, 0) = 0, y ∈ Ys.
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In (5.15) n is the unit normal to γ.
Proof. The differential equations (5.12) and (5.14) follow as ε ↘ 0 from integral

equality (2.4) with the test function ψ = ϕ(xε−1) · h(x, t), where ϕ is solenoidal and
finite in Ys.

The boundary condition (5.13) is a consequence of the two-scale convergence of
the sequence {√αλ∇xw

ε} to the function
√
λ1∇yW (x, t,y). By this convergence, the

function ∇yW (x, t,y) is L2-integrable in Y . The boundary condition (5.15) follows
from (5.7)–(5.8) and the relation W f = wf .

In the same way, one can prove the following lemma.
Lemma 5.5. Let μ1 < ∞ and λ1 = ∞. Then, in Yf , the functions W f = χW ,

ws, and q satisfy the microscopic relations

(5.17) ρf
∂2W f

∂t2
= μ1�y

∂W f

∂t
−∇yR

f − 1
m
∇q + ρfF , y ∈ Yf ,

(5.18) W f = ws, y ∈ γ,

in the case μ1 > 0 or the microscopic relations

(5.19) ρf
∂2W f

∂t2
= −∇yR

f − 1
m
∇q + ρfF , y ∈ Yf ,

(5.20) (W f −ws) · n = 0, y ∈ γ,

in the case μ1 = 0. The problem is endowed with the homogeneous initial data

(5.21) W f (y, 0) =
∂W f

∂t
(y, 0) = 0, y ∈ Yf .

Lemma 5.6. Let μ1 < ∞, λ1 < ∞, and ρ̃ = ρfχ + ρs(1 − χ). Then, in Y , the
functions W and q satisfy the microscopic equation

(5.22)
ρ̃∂2W /∂t2 + 1/m∇q − ρ̃F

= divy{μ1χD(y, ∂W /∂t) + λ1(1 − χ)D(y,W ) −RI}

}
and the homogeneous initial data

(5.23) W (y, 0) =
∂W

∂t
(y, 0) = 0, y ∈ Y.

In the proof of the last lemma, we additionally use Nguetseng’s theorem, which
states that the sequence {εD(x,wε)} two-scale converges to the function D(y,W ).

5.3. Homogenized equations. Lemmas 5.2 and 5.3 imply the following lemma.
Lemma 5.7. Let μ1 = λ1 = ∞. Then wf = ws = w and, in ΩT , the functions

w, pf , q, and ps satisfy the system of acoustic equations

(5.24) ρ̂
∂2w

∂t2
= − 1

m
∇q + ρ̂F ,

(5.25)
1
p∗
pf +

1
η0
ps + divw = 0,
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(5.26) q = pf +
ν0
p∗

∂pf

∂t
,

1
m
q =

1
1 −m

ps,

the homogeneous initial conditions

(5.27) w(x, 0) =
∂w

∂t
(x, 0) = 0, x ∈ Ω,

and the homogeneous boundary condition

(5.28) w(x, t) · n(x) = 0, x ∈ S, t > 0.

Lemma 5.8. Let μ1 = ∞ and λ1 < ∞. Then, in ΩT , the functions wf , ws,
pf , q, and ps satisfy the system of acoustic equations consisting of the state equations
(5.26), the momentum balance equation for the liquid component

(5.29) ρfm
∂2wf

∂t2
+ ρs

∂2ws

∂t2
= − 1

m
∇q + ρ̂F ,

the continuity equation

(5.30)
1
p∗
pf +

1
η0
ps +mdivwf + divws = 0,

and the relation

(5.31)
∂ws

∂t
= (1 −m)

∂wf

∂t
+
∫ t

0

Bs
1(t− τ) · zs(x, τ)dτ,

where

zs(x, t) = − 1
m
∇q(x, t) + ρsF (x, t) − ρs

∂2wf

∂t2
(x, t),

in the case of λ1 > 0 or the momentum balance equation for the solid component in
the form

(5.32) ρs
∂2ws

∂t2
= ρsB

s
2 · ∂

2wf

∂t2
+ ((1 −m)I −Bs

2) ·
(
− 1
m
∇q + ρsF

)
in the case of λ1 = 0. Problem (5.26), (5.29)–(5.32) is supplemented by homogeneous
initial conditions (5.27) for displacements in the liquid and solid components and the
homogeneous boundary condition (5.28) for the displacements w = mwf +ws.

In (5.31)–(5.32), the matrices Bs
1(t) and Bs

2 are defined by formulas (5.37) and
(5.39), where the matrix ((1 −m)I −Bs

2) is symmetric and strictly positive definite.
Proof. Equation (5.29) follows directly from (5.11). The continuity equation

(5.30) follows from (5.5) if we take into account that

w = mwf +ws.

To find the last two equations (5.31) and (5.32), we just have to solve the system
of microscopic equations (5.7), (5.12)–(5.16) and use the formula

ws = 〈W 〉Ys .

There are two different cases.
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(a) If λ1 > 0, then the solution of the system of microscopic equations (5.7),
(5.12), and (5.13) supplemented with the homogeneous initial data (5.16) is given by
the formulas

W s =
∫ t

0

(
v(x, τ) +

3∑
i=1

W s,i(y, t− τ)zs
i (x, τ)

)
dτ,

Rs =
∫ t

0

3∑
i=1

Rs,i(y, t− τ)zs
i (x, τ)dτ, zs =

(
zs
1, z

s
2, z

s
3

)
,

and the functions W s,i(y, t) and Rs,i(y, t) are defined by virtue of the periodic initial
boundary value problem

(5.33) ρs
∂2W s,i

∂t2
− λ1�W s,i + ∇Rs,i = 0, y ∈ Ys, t > 0,

(5.34) divyW
s,i = 0, y ∈ Ys, t > 0,

(5.35) W s,i = 0, y ∈ γ, t > 0,

(5.36) W s,i(y, 0) = 0, ρs
∂W s,i

∂t
(y, 0) = ei, y ∈ Ys.

In (5.36), ei is the standard Cartesian basis vector.
Therefore,

(5.37) Bs
1(t) =

〈
3∑

i=1

∂W s,i

∂t

〉
Ys

(t) ⊗ ei.

Note that (5.33) is understood in the sense of distributions and the function Bs
1(t)

has no time derivative at t = 0.
(b) If λ1 = 0, then in solving the system (5.7), (5.14), (5.15), and (5.16), we

first find the pressure Rs(x, t,y) by solving the Neumann problem for the Laplace
equation in Ys in the form

Rs(x, t,y) =
3∑

i=1

Rs,i(y)zs
i (x, t),

where Rs,i(y) is the solution of the problem

(5.38) �yRs,i = 0, y ∈ Ys; ∇yRs,i · n = n · ei, y ∈ γ; 〈Rs,i〉Ys = 0.

Formula (5.32) is the result of integration of (5.14) over the domain Ys and

(5.39) Bs
2 =

3∑
i=1

〈∇Rs,i〉Ys ⊗ ei,
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where the matrix B = ((1 −m)I −Bs
2) is symmetric and strictly positive definite. In

fact, let R̃ =
∑3

i=1Rs,iξi for any unit vector ξ = (ξ1, ξ2, ξ3). Then

(B · ξ) · ξ = 〈(ξ −∇R̃)2〉Yf

and (B ·ξ)·ξ = 0 if and only if R̃ is a linear function in y. On the other hand, it follows
from the assumption about the geometry of the domain Ys that all linear periodic
functions on Ys are constant. Finally, the normalization condition 〈Rs,i〉Ys = 0 yields
that R̃ = 0. However, this is impossible, because the functions Rs,i are linearly
independent.

Lemma 5.9. Let μ1 < ∞ and λ1 = ∞. Then, in ΩT , the functions wf , ws,
pf , q, and ps satisfy the system of acoustic equations consisting of the state equations
(5.26), the momentum balance equation for the solid component

(5.40) ρf
∂2wf

∂t2
+ ρs(1 −m)

∂2ws

∂t2
= − 1

m
∇q + ρ̂F ,

the continuity equation

(5.41)
1
p∗
pf +

1
η0
ps + divwf + (1 −m)divws = 0,

and the relation

(5.42)
∂wf

∂t
= m

∂ws

∂t
+
∫ t

0

Bf
1 (t− τ) · zf (x, τ)dτ,

where

zf (x, t) = − 1
m
∇q(x, t) + ρfF (x, t) − ρf

∂2ws

∂t2
(x, t),

in the case of μ1 > 0 or the momentum balance equation for the liquid component in
the form

(5.43) ρf
∂2wf

∂t2
= ρfB

f
2 · ∂

2ws

∂t2
+ (mI −Bf

2 ) ·
(
− 1
m
∇q + ρfF

)
in the case of μ1 = 0. Problem (5.26), (5.40)–(5.43) is supplemented with the homoge-
neous initial conditions (5.27) for displacements in the liquid and solid components and
the homogeneous boundary condition (5.28) for the displacements w = wf +(1−m)ws.

In (5.42)–(5.43), the matrices Bf
1 (t) and Bf

2 are given below by formulas (5.44)–
(5.45), where the matrix (mI −Bf

2 ) is symmetric and strictly positive definite.
Proof. The proof of this lemma repeats that of the previous lemma. Here we have

to solve the system of microscopic equations (5.7), (5.17)–(5.21) and use the formula

wf = 〈W 〉Yf
.

Thus,

(5.44) Bf
1 (t) =

〈
3∑

i=1

∂W f,i

∂t

〉
Yf

(t) ⊗ ei,
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(5.45) Bf
2 =

3∑
i=1

〈∇Rf,i〉Yf
⊗ ei,

where the functions W f,i(y, t) solve the periodic initial boundary value problem

(5.46) ρf
∂2W f,i

∂t2
− μ1�

∂W f,i

∂t
+ ∇Rf,i = 0, y ∈ Yf , t > 0,

(5.47) divyW
f,i = 0, y ∈ Yf , t > 0,

(5.48) W f,i = 0, y ∈ γ, t > 0,

(5.49) W f,i(y, 0) = 0, ρf
∂W f,i

∂t
(y, 0) = ei, y ∈ Yf ,

and the functions Rf,i(y) solve the periodic boundary value problem

(5.50) �yRf,i = 0, y ∈ Yf ; ∇yRf,i · n = n · ei, y ∈ γ; 〈Rf,i〉Yf
= 0.

Note that, as before, the matrix (mI − Bf
2 ) is symmetric and strictly positive defi-

nite.
The proof of Theorem 2.2 is completed by the following lemma.
Lemma 5.10. Let μ1 < ∞ and λ1 < ∞. Then, in ΩT , the functions w, pf , q,

and ps satisfy the system of acoustic equations consisting of the continuity and state
equations (5.25) and (5.26) and the relation

(5.51)
∂w

∂t
=
∫ t

0

B(t− τ) · ∇q(x, τ)dτ + f (x, t),

where B(t) and f (x, t) are given below by (5.58) and (5.59).
Problem (5.25), (5.26), (5.51) is supplemented with the homogeneous initial and

boundary conditions (5.27) and (5.28).
Proof. To derive the momentum conservation law (5.51), we must solve the system

of microscopic equations (5.7), (5.22) with the initial conditions (5.23) and use the
formula

w = 〈W 〉Y .

Let

W =
∫ t

0

3∑
i=1

{
W q,i(y, t− τ)

∂q

∂xi
(x, τ) +W F,i(y, t− τ)Fi(x, τ)

}
dτ,

R =
∫ t

0

3∑
i=1

{
Rq,i(y, t− τ)

∂q

∂xi
(x, τ) +RF,i(y, t− τ)Fi(x, τ)

}
dτ,

where F =
∑3

i=1 Fiei.
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Then the pair {W , R} is a solution of system (5.7), (5.22) and (5.23) if and only
if the functions {W q,i(y, t), Rq,i(y, t)} and {WF,i(y, t), RF,i(y, t)} are periodic in y
solutions of the equations

(5.52) divy

{
μ1χD

(
y,
∂W q,i

∂t

)
+ λ1(1 − χ)D(y,W q,i) −Rq,iI

}
= ρ̃

∂2W q,i

∂t2
,

(5.53) divyW
q,i = 0,

(5.54) divy

{
μ1χD

(
y,
∂WF,i

∂t

)
+ λ1(1 − χ)D(y,W F,i) −RF,iI

}
= ρ̃

∂2W F,i

∂t2
,

(5.55) divyW
F,i = 0

in the domain Y for t > 0 and satisfy the initial conditions

(5.56) W q,i(y, 0) = 0, ρ̃
∂W q,i

∂t
(y, 0) = − 1

m
ei, x ∈ Y,

(5.57) W F,i(y, 0) = 0,
∂W F,i

∂t
(y, 0) = ei, x ∈ Y.

Here ei is the standard Cartesian basis vector.
Therefore,

(5.58) B(t) =
3∑

i=1

〈
∂W q,i

∂t
(y, t)

〉
Y

⊗ ei,

(5.59) f(x, t) =
∫ t

0

3∑
i=1

〈
∂W F,i

∂t
(y, t− τ)

〉
Y

Fi(x, τ)dτ.

The solvability and uniqueness of problems (5.52), (5.53), (5.56) and (5.54), (5.55),
(5.57) follow directly from the energy identity

1
2

∫
Y

(
ρ̃

(
∂W j,i

∂t
(y, t)

)2

+ λ1D
(
y,W j,i(y, t)

)
: D
(
y,W j,i(y, t)

))
dy

+
∫ t

0

∫
Y

μ1D

(
y,
∂W j,i

∂τ
(y, τ)

)
: D
(
y,
∂W j,i

∂τ
(y, τ)

)
dydτ =

1
2
βj

for i = 1, 2, 3 and j = q, F .
Here

βq =
〈

1
ρ̃

〉
Y

, βF = 〈ρ̃〉Y .

As before, equations (5.51) are understood in the sense of distributions and the func-
tion B(t) has no time derivative at t = 0.
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BOUNDARY BEHAVIOR OF SOLUTIONS OF A CLASS OF
GENUINELY NONLINEAR HYPERBOLIC SYSTEMS∗

JULIAN GEVIRTZ†

Abstract. We study the set of boundary singularities of arbitrary classical solutions of genuinely
nonlinear 2 × 2 planar hyperbolic systems of the form DkRk = 0, where Dk denotes differentiation
in the direction eiθk(R1,R2), k = 1, 2, and where the defining functions θk satisfy (i) θ2 = θ1 + π

2
,

and (ii) A ≤ | ∂θk(R)
∂Rk

| ≤ B, for all R ∈ R2, k = 1, 2, for some positive constants A,B. We show

that for any system of this kind there is a τ < 1 such that for any locally Lipschitz solution R in
a smoothly bounded domain G, the set of points of ∂G at which R fails to have a nontangential
limit has Hausdorff dimension at most τ , and, on the other hand, for any such system for which the
θk ∈ C∞(R2), we construct a C∞ solution R on a half-plane H for which the set of points of ∂H

at which R fails to have a nontangential limit has positive Hausdorff dimension. These results are
immediately applicable to constant principal strain mappings, which are defined in terms of a system
of this kind for which θ1 is a linear function of R1 and R2.

Key words. boundary behavior, constant principal strain mapping, genuinely nonlinear hyper-
bolic system, Hausdorff dimension, nontangential limit
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1. Introduction. For hyperbolic systems in two independent variables x and t,
most often associated with space and time, one usually studies the Cauchy problem,
in which one seeks a solution u(x, t), t ≥ 0, for which u(x, 0) coincides with a given
u0(x), the questions considered including well-posedness, global existence, blow-up,
and behavior of solutions as t→ ∞. In the nonlinear case, discussion is often limited
to initial data with a small range, and, even for such data, generalized solutions must
be considered.

In this paper we concern ourselves with the following inverse question for a certain
family of genuinely nonlinear 2 × 2 hyperbolic systems: What can be said about
the boundary values of an arbitrary classical solution in a plane domain G? Here
“classical” can be taken to mean C∞, although the treatment we give will be valid
for locally Lipschitz solutions. In the first place, we are interested in systems whose
formulation imposes no a priori limit on the range of characteristic directions, that
is, systems such that for a characteristic given parametrically by z(s), arg{z′(s)} can
potentially cover all of R, in contrast to what is implicitly the case in the standard
space-time context. Second, we are interested in statements valid for all classical
solutions rather than ones known to arise from some form of initial value problem.
Because of this generality, even in geometrically simple domains such as disks or half-
planes characteristics can be quite contorted curves. Although the specific focus of
this paper is the size of the set of boundary points at which classical solutions can
fail to have nontangential limits, it would be reasonable to investigate other aspects
of their behavior and that of the associated characteristics. In any event, given the
nonstandard nature of the boundary value question and of several of the issues that
arise in dealing with it, we shall begin with a somewhat detailed discussion of a system
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electronically November 5, 2008.
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for which it is physically meaningful, namely the system which describes smooth
planar mappings with constant principal stretches (cps-mappings), about which we
have previously written [ChG], [G1], [G2], [G3], [G4], [G5]. It is in fact the study
of the boundary behavior of such mappings that is the main goal of this paper, and
we have chosen to work in a wider context only because it is possible to do so with
little additional effort, and because this broader approach suggests some interesting
questions.

A cps-mapping with principal stretch factors m1 �= m2 is a mapping f : G → C

with locally Lipschitz continuous Jacobian

Jf = T (−φ)σ(m1,m2)T (θ),

where

T (θ) =

[
cos θ sin θ

− sin θ cos θ

]
and σ(m1,m2) =

[
m1 0
0 m2

]
.

As is explained in the cited references, apart from regularity considerations, functions
θ and φ will correspond to such a mapping on a simply connected domain G if and
only if they satisfy the autonomous quasi-linear hyperbolic system

(1.1) D1(m1θ −m2φ) = 0, D2(m2θ −m1φ) = 0,

where

D1u = (cos θ)ux + (sin θ)uy and D2u = (− sin θ)ux + (cos θ)uy.

The characteristics of a solution are the integral curves of the fields eiθ and ieiθ.
It turns out that a net N made up of two mutually orthogonal families of curves
covering a simply connected G is the net of characteristics of a cps-mapping if and
only if for any two curves C1, C2 belonging to one of the families of N the change
in the inclination of the tangent is the same along all subarcs of curves of the other
family which join C1 to C2. Nets with this property are known as Hencky–Prandtl
nets. (See [CS], [G3], [Hem], [Hen], [Hi], [Pr].) The theory of cps-mappings we have
developed is based on direct application of (1.1) together with this Hencky–Prandtl
(HP) property and the equations

(1.2) D2D1θ = [D1θ]2 and D1D2θ = −[D2θ]2,

which are also effectively equivalent to (1.1) and which are very special cases of equa-
tions derived by Lax [L] in the context of considerably more general genuinely non-
linear 2 × 2 hyperbolic systems in the plane and used by him in connection with the
inevitability of singularity formation. The blow-up equations (1.2) imply that if a
characteristic C has curvature κ0 at p, then the orthogonal characteristic arc emanat-
ing from p towards the concave side of C can have length at most 1

κ0
, that is, that

the boundary of G must be encountered after moving at most a distance of 1
κ0

along
this orthogonal characteristic. A characteristic length bound of this kind is a sine qua
non for the theory we are developing and plays a fundamental role in all that is to
follow.

When regarded as deformations with constant principal strains, cps-mappings are
of concrete interest as models in a number of physically interesting contexts (see [Y]).
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Consider, for example, a thin liquid film on a plane surface which upon solidification
takes on a rectangular cryptocrystalline structure; that is, at each point a suitably
oriented minute square of the original liquid becomes a rectangular crystal whose side
lengths are constant multiples of the side length of the square. In this light global
geometric results for cps-mappings tell one about the extent to which the shape of
the original film can change as a result of such solidification and about how matter is
moved around in the process, and statements about the existence of boundary limits
of θ (and, in light of (1.1), of φ, and consequently of the Jacobian of the mapping) tell
one to what extent the cryptocrystalline structure is present at the very edge of the
solidified lamina. Applied to the system (1.1) the main result of this paper says that
there is some number τ < 1 such that if G is smoothly bounded, then θ and φ can fail
to have nontangential limits on a set S ⊂ ∂G of Hausdorff dimension at most τ . On
the other hand, the construction of section 5 shows that the set of boundary points
at which θ does not have nontangential limits can in fact have positive Hausdorff
dimension.

Beyond their immediate physical significance, cps-mappings constitute a particu-
larly important and tractable class of planar quasi-isometric mappings, for which we
believe they will ultimately be shown to display extremal behavior for many of the as
yet unsolved distortion questions (see [J1], [J2]). In this direction a very significant
inroad was made a few years ago by Gutlyanskii and Martio [GM], who showed that
the spiral mappings given by

g(reiψ) = rei(ψ+ψ0
log r
log ρ )

are extremal for the problem of determining for given ρ > 1 and ψ0 > 0 the smallest
ratio m1

m2
> 1, such that there is a quasi-isometric mapping f of the annulus 1 < |z| < ρ

onto itself with stretching bounds m1, m2 which satisfies the boundary conditions

f(z) = z and f(ρz) = ρeiψ0z for |z| = 1.

It is in fact not hard to see that g is indeed a cps-mapping of the entire punctured
plane C\{0} with

m1 =
√
a2 + 4 + a

2
and m2 =

√
a2 + 4 − a

2
,

where a = ψ0

log ρ . We call these spiral mappings because the corresponding inclination
functions are of the form

(1.3) θ(reiψ) = ψ + α,

where tanα = m2, which is to say that the characteristics form two mutually orthog-
onal families of logarithmic spirals, all members of each of which are rotations of each
other.

We now describe the class of 2 × 2 systems for which we treat the boundary
limit question. Let θk = θk(R1, R2), k = 1, 2. For given R1(x, y), R2(x, y) and any
u = u(x, y) we write

(1.4) Dku = cos θk(R1(x, y), R2(x, y))
∂u

∂x
+ sin θk(R1(x, y), R2(x, y))

∂u

∂y
.

It is well known that in general an autonomous 2 × 2 quasi-linear homogeneous hy-
perbolic system for unknown functions f and g is formally equivalent to a system of
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the form

DkRk = 0, k = 1, 2,

with appropriate inclination functions θk(R1, R2). The relationship between the Rie-
mann invariants R1, R2 and f , g is of the form Rk(x, y) = Fk(f(x, y), g(x, y)).
Henceforth we write Θ = (θ1, θ2) and use the term system to mean a C∞ mapping
Θ : R

2 → R
2, although the smoothness requirement could be weakened substantially.

Obviously, a solution of the system Θ in a domain G of the plane is then a pair of func-
tions R1(x, y), R2(x, y) for which Rk is constant on each integral curve (henceforth
referred to as a k-characteristic) of the field eiθk(R1(x,y),R2(x,y)), k = 1, 2. A system
is said to be genuinely nonlinear if the derivatives ∂θk

∂Rk
, k = 1, 2, never vanish. It is

clear that the system (1.1) for the θ and φ associated with cps-mappings is already in
Riemann invariant form with Ri = miθ−mjφ, so that in this case the two inclination
functions are given by

(1.5) θ1 = θ =
m1R1 −m2R2

m2
1 −m2

2

and θ2 = θ +
π

2
.

(Here we have used the convention, in force throughout this paper, to the effect that
{i, j} = {1, 2}.) This system is obviously genuinely nonlinear and in fact is the
simplest possible such system in that the two families of characteristics are mutually
orthogonal and Θ is a linear function of R = (R1, R2). We now define the family of
systems with which we work.

Definition 1.1. A normal system is a system Θ for which
(i) θ2 = θ1 + π

2 and
(ii) there are constants A, B > 0 such that A ≤ | ∂θk

∂Rk
| ≤ B for all R ∈ R

2.
The only hyperbolic systems with which we deal will be normal systems, for which

we use the symbol θ to denote θ1. We shall show that for any normal system Θ there
is a τ = τ(Θ) < 1 such that for any smoothly bounded G ⊂ C and any solution R
of Θ on G the set of points of ∂G at which R does not have a nontangential limit
has Hausdorff dimension at most τ . This will follow as an immediate consequence
(Corollary 4.3) of our principal result, Main Theorem 2.2, which deals with boundary
singularities of a class of functions effectively more general than the class of solutions
of normal systems. An outline of the proof, which is actually made simpler by this
somewhat greater generality, is given early in section 2, just after the statement of the
main theorem. Furthermore, in section 5 we shall show that for any such Θ there is
a C∞solution R in the upper half-plane H for which the set of points of ∂H at which
R does not have nontangential limits has positive Hausdorff dimension.

2. Quasi-HP functions, the characteristic length bound, and related
matters. Let G ⊂ C be a domain. If θ is a locally Lipschitz function on G, the
integral curves of the fields eiθ(z) and ieiθ(z) will be called the 1- and 2-characteristics
of θ, respectively. The term full characteristic will refer to the complete integral curve,
and we will use the term half-characteristic to refer to either of the two arcs into which
a full characteristic is divided by one of its points. (Characteristics which are closed
curves will not arise in this paper since we are dealing with single-valued functions θ.)
As indicated in the introduction we will use the convention {i, j} = {1, 2} throughout.
Arcs of k-characteristics will be called k-arcs, or, less specifically, characteristic arcs.
With reference to a given θ, a characteristic arc joining points a, b ∈ D will be denoted
by ab and we shall use the abbreviation

Δθ(ab) = θ(b) − θ(a).
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A domain Q ⊂ G will be said to be a positively (negatively) oriented characteris-
tic quadrilateral of θ, and we write Q = abcd, if ∂Q is a Jordan curve lying in G
containing four points a, b, d, c which occur in that order when ∂Q is traversed in
the positive (negative) sense and such that ab and cd are i-arcs and ac and bd are
j-arcs. We say that ab and cd are translates of each other with respect to or along any
j-characteristic passing through ab. For a curve parameterized by z = z(s), α < s < β,
we use the terms “to the right of C” and “to the left of C” in the obvious sense, so
that, for example, if C is a characteristic arc and p ∈ C, we describe an orthogonal
characteristic arc or a half-characteristic as emanating from p to the right or left of C.

We shall denote the 2-dimensional measure of X ⊂ C by μ(X) and the 1-
dimensional measure of a set A by λ(A). The parameter s will always refer to arc
length. We use the notation N(a, r) = {z : |z − a| < r} and denote the line segment
joining a to b by ab. The overline will also be used to denote closure, but this should
cause no confusion. For X,Y ⊂ C, dist(X,Y ) = inf{|y − x| : x ∈ X, y ∈ Y }, and for
a ∈ C, dist(a,X) = dist({a}, X).

Definition 2.1. Let K ≥ 1. A locally Lipschitz function θ on a domain G will
be said to be a K-quasi-HP function or to have the K-quasi-HP property if for any
characteristic quadrilateral abcd ⊂ G there holds

(2.1)
1
K

|Δθ(ac)| ≤ |Δθ(bd)| ≤ K|Δθ(ac)|.

The net consisting of all of the full 1- and 2-characteristics of a K-quasi-HP function
will be called a K-quasi-HP net.

A simple continuity argument shows that this definition implies that the Δθ(ac)
and Δθ(bd) in (2.1) must in fact have the same sign (unless both vanish). It is also
obvious that a 1-quasi-HP net is an HP net. Note that while the HP property is a local
condition that implies its global counterpart, this is not the case for the K-quasi-HP
property when K > 1. The net of characteristics of any locally Lipschitz solution to
a normal system Θ is a K-quasi-HP net, where K = K(Θ). Indeed, if A and B are
as in Definition 1.1, then it is clear that we can take K(Θ) = B/A.

We can now state our main theorem.
Main Theorem 2.2. There is a number τ = τ(K) < 1 with the property that if

θ is any K-quasi-HP function on a Jordan domain G with C2 boundary, then the set
of points of ∂G at which θ fails to have a nontangential limit has Hausdorff dimension
at most τ .

Because the proof of this theorem, to be given in section 4, is quite involved and
depends on the prior development of a considerable amount of machinery in this and
the following section, we shall briefly explain here how it proceeds. As we shall show
(see Proposition 3.29) for any point p ∈ ∂G at which θ does not have a nontangential
limit either there is a nontrivial fan of characteristics emanating from p or, for k = 1
or 2, every neighborhood of p completely contains a full k-characteristic of θ; in the
latter case we say that p is a k-singularity. Since, as will be apparent, any quasi-
HP function can have at most a countable number of fans (see Proposition 3.24), we
need only show that the Hausdorff dimension, dim(S), of the set S of k-singularities
satisfies dim(S) ≤ τ < 1. For this to be the case it is enough that there be some
δ = δ(K) > 0 such that any almost straight arc A ⊂ ∂G has a subarc of length at
least δλ(A) which has at most a countable set of k-singularities of θ. If for some θ
there were no such δ, then for any N there would have to be an almost straight arc
A ⊂ ∂G such that there is an N -element set SN of k-singularities of θ which are
essentially uniformly distributed along A. For sufficiently large N , starting with a
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set of N small k-characteristics, one very close to each of the points of SN , we show
that there must be a k-characteristic C (where the term “k-characteristic” is used
here in an appropriate sense—see the discussion of extended characteristics between
Propositions 3.13 and 3.14) whose endpoints lie on A and are at least δ′λ(A) apart
(where δ′ > 0 depends solely onK) and which is tangent to A at a point m ∈ A, where
m is appropriately bounded away from the endpoints of C. We then use this to obtain
a subarc A′ of A which contains m, whose length is bounded below by δ′′λ(A), where
δ′′, like δ′, depends only on K, and on which θ can have at most a countable number
of k-singularities (see Proposition 3.33), thereby arriving at the desired contradiction.
A good measure of the complexity of the proof lies in establishing the existence of
the extended characteristic C, which is carried out in section 4, but which depends
on properties of the net of extended characteristics of quasi-HP functions developed
in section 3. We begin with the following proposition, which is immediate.

Proposition 2.3 (invariance of K). Let θ be a K-quasi-HP function on G, and
a, b ∈ C with a �= 0. Then θ(az + b)− arg a is a K-quasi-HP function on 1

a (G− b).
The next proposition is a special case of [G1, Lemma 2]; a somewhat simpler

proof than the one given there is included for the sake of completeness. A function θ
is said to be a locally L-Lipschitz function on G if each point of G has a neighborhood
in which θ satisfies a Lipschitz condition with constant L.

Proposition 2.4. Let G be a simply connected domain, and let θ be a locally
L-Lipschitz function on G. Let Q = abcd ⊂ G be a positively oriented characteristic
quadrilateral such that |b− a| = l, |c− a| = ε ≤ l, and dist(Q, ∂G) = η > 0. There is
some l = l(L, η) > 0 such that

(2.2) |d− c| = l − εΔθ(ab) +O(ε2 + l3) for l ≤ l,

where the constant implied by the big-O depends only on L and η.
Proof. In what follows, when we say that some quantity is big-O of some expres-

sion, we mean that this is so for all l less than some positive number which depends
only on L and η, and that the constant corresponding to the big-O depends only on
L and η. Let ab and cd be i-arcs. Without loss of generality we can assume that
a = 0 and b = l. Let π

2 + α and π
2 + β be the inclinations of the tangents to the j-

characteristics at a and b, respectively, and let π
2 +α′ = arg{c−a}, π

2 +β′ = arg{d−b}.
Clearly, α, β, α′, and β′ are all O(l) and β−α = Δθ(ab). It easily follows from the Lip-
schitz condition that α′ = α+O(ε). We have d = εieiα′

+teiγ , where t = |d−c| = O(l)
and γ = O(l). We also have d = l + sieiβ′

, where s = O(l). Just as α′ = α + O(ε),
one sees that β′ = β +O(s). From the two expressions for d we have that

εieiα′
+ teiγ = l + sieiβ′

,

so that considering real and imaginary parts we have

(2.3) −ε sinα′ + t cos γ = l− s sinβ′

and

ε cosα′ + t sin γ = s cosβ′.

The latter equation implies that

s(1 +O(l2)) = ε(1 +O(l2)) +O(l2),
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so that s = ε+O(l2). Thus, since β′ = β +O(s), we have

(2.4) β′ = β +O(ε+ l2).

From (2.3) it now follows that

t(1 +O(l2)) = l + ε sinα′ − s sinβ′

= l + ε(α′ +O(l3)) − (ε+O(l2))(β′ +O(l3)),

so that from the fact that α′ = α+O(ε) and (2.4) it follows that

|d− c| = t = l + ε(α′ − β′) +O(l3)

= l + ε(α+O(ε)) − ε(β +O(ε + l2)) +O(l3)

= l − ε(β − α) +O(ε2 + l3).

Since β − α = Δθ(ab), we are done.
Henceforth we use the notation Df(s) to denote f ′(s).
Proposition 2.5 (length change estimate). Let θ be a K-quasi-HP function on

G, and let Q = abcd be a positively oriented characteristic quadrilateral. Let z(s),
0 ≤ s ≤ α, with z(0) = a, be an arc length parameterization of ab, and for each
s ∈ [0, α] let E(s) = z(s)w(s) denote the translate of ca which contains z(s). If
Dθ(z(s0)) = κ0 for s0 ∈ (0, α) and λ(E(s0)) = λ0, then for any δ > 0 there is a τ > 0
such that for all s ∈ [0, α] with |z(s) − z(s0)| < τ ,

|w(s) − w(s0)| = |z(s) − z(s0)|(1 − Pλ0κ0 +R),

where 1
K+δ ≤ P ≤ K + δ, and |R| ≤ δ.

Proof. By replacing G with an appropriate subdomain which contains Q, we can
assume that θ is L-Lipschitz on G for some L. Let

ψ0 = ψ0(s) = θ(z(s)) − θ(z(s0)).

For notational convenience we assume that s > s0, the opposite case being effectively
the same. Let u0(σ), 0 ≤ σ ≤ λ0, be the arc length parameterization of E(s0) with
u0(0) = z(s0). For each σ ∈ [0, λ0], let u(σ) be the point of E(s) joined to u0(σ) by
an i-arc. Let M(s) and m(s) denote the maximum and minimum of |u(σ) − u0(σ)|
for 0 ≤ σ ≤ λ0. Obviously, M(s) → 0 as s→ 0. Let τ be so small that

(2.5) M(τ) < l(L, dist(Q, ∂G)),

where l is as in Proposition 2.4. For μ ∈ (0, 1] let τ0 ≤ τ be such that

(2.6) |ψ0(s) − κ0|z(s) − z(s0)|| < μ(|κ0| + 1)|z(s) − z(s0)| for |s− s0| < τ0.

We can define an increasing sequence of numbers in [0, λ0] as follows. Let σ0 = 0,
and let σk+1 be the first number in [σk, λ0] (as long as there is one) for which εk =
|u0(σk+1) − u(σk)| = μlk, where lk = |u0(σk) − u(σk)|. By (2.6) we have

(2.7) |ψ0 − κ0l0| < μ(|κ0| + 1)l0.
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Bearing in mind that by the K-quasi-HP property Δθ(u0(σk)u(σk)) = Pkψ0, where
Pk is between 1

K and K, we may apply Proposition 2.4 (in light of (2.5)) to conclude
that

(2.8) lk+1 = lk − μlkPkψ0 +O((μ2 + lk)l2k).

We continue defining σk+1 until we come to k = N , for which |u0(σN )−w(s0)| <
μlN . Such an N exists, and indeed (N + 1)μm(s) ≤ λ0. We denote by T ≥ 1 the
constant of the big-O in (2.8). Note that, by the preceding proposition, T depends
only on L and dist(Q, ∂G)), and so is independent of the value of μ we ultimately
decide to work with.

We now restrict μ to satisfy

(2.9) 0 < μ ≤ μ1 =
1

T (1 + Λ0)Λ0
≤ 1,

where

Λ0 = 1 +K(|κ0| + 2)λ0.

Note that μ1 depends only on K, κ0, λ0, and T . We show that for l0 ≤ τ1 =
min{τ0, μ2} we have lk ≤ Λ0l0 for all k. Assume inductively that lj ≤ Λ0l0, 0 ≤ j ≤ k.
We now use the facts that Pk ≤ K, and Σμlj = Σεj ≤ λ0, and that |ψ0| ≤ (|κ0|+1)l0
in light of (2.9) and (2.7). It follows from (2.8) that

lk+1 = l0 +
k∑

j=0

lj+1 − lj = l0 +
k∑

j=0

(−μljPjψ0 +O((μ2 + lj)l2j ))

≤ l0 +K|ψ0|λ0 + T

k∑
j=0

(μ2 + lj)l2j ≤ l0(1 +K(|κ0| + 1)λ0) +
k∑

j=0

T (μ2 + lj)l2j .

However,

k∑
j=0

T (μ2 + lj)l2 ≤ T

k∑
j=0

(μ2 + Λ0l0)
εj
μ
lj ≤ T

(μ2 + Λ0l0)Λ0l0λ0

μ

≤ T
(μ2 + Λ0μ

2)Λ0l0λ0

μ
≤ Tμ(1 + Λ0)Λ0l0λ0.(2.10)

But by (2.9) this last expression is at most l0λ0 ≤ Kl0λ0, so that

lk+1 ≤ l0(1 +K(|κ0| + 1)λ0) +Kl0λ0 = Λ0l0,

so that indeed lk ≤ Λ0l0, for all k and all l0 ≤ τ , provided only that μ satisfies (2.9)
and l0 ≤ τ1. Since M(s) → 0 as s→ 0, there is a τ2 = τ2(μ) ≤ τ1 such that

(2.11) (1 − μ)λ0 ≤
N−1∑
k=0

εk ≤ λ0 for l0 ≤ τ2.

Assume the sequence of σk stops at k = N . Then |w(s0) − u(σN )| < μlN ≤ μΛ0l0,
and, since we are assuming l0 = |z(s)− z(s0)| < τ2 ≤ μ2, Proposition 2.4 implies that

||w(s) − w(s0)| − lN | ≤ μΛ0l0Kψ0 + T (μ2Λ2
0l

2
0 + Λ3

0l
3
0).
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From this it is easy to see that there is some μ ≤ μ1, which depends only on K, κ0,
λ0, and T , such that

(2.12) ||w(s) − w(s0)| − lN | ≤ μl0.

As previously,

lN − l0 =
N−1∑
k=0

lk+1 − lk = −
N−1∑
k=0

(μlkPkψ0 + O((μ2 + lk)l2k)).

By (2.10), the sum of the big-O terms of the immediately preceding displayed line is
bounded above by Λ1μl0, where Λ1 = T (1 + Λ0)Λ0. For ψ0 ≥ 0 it follows from this
together with (2.11) and (2.12) that

|w(s) − w(s0)| − l0 = lN − l0 + (|w(s) − w(s0)| − lN )

≥ −
N−1∑
k=0

Kμlkψ0 − (Λ1 + 1)μl0 ≥ −Kψ0λ0 − (Λ1 + 1)μl0.

But since by (2.7), ψ0 ≤ (κ0 + (|κ0|+ 1)μ)l0, it follows that |w(s)−w(s0)| − l0 ≥ Al0,
where

A = −Kλ0κ0 − μ(Kλ0(|κ0| + 1) + Λ1 + 1).

Since (2.7) also implies that ψ0 ≥ (κ0 − (|κ0| + 1)μ)l0, in an analogous manner one
sees that for ψ0 ≥ 0

|w(s) − w(s0)| − l0 ≤ −
N−1∑
k=0

μlkψ0

K
+ (Λ1 + 1)μl0

≤
(
− 1
K

(1 − μ)λ0(κ0 − μ(|κ0| + 1) + (Λ1 + 1)μ
)
l0,

so that |w(s) − w(s0)| − l0 ≤ Bl0, where

B = − 1
K
λ0κ0 + μ

(
1
K
λ0κ0 +

(1 − μ)
K

(|κ0| + 1) + Λ1 + 1
)
.

By considering separately the cases κ0 = 0 and κ0 �= 0 we obtain the desired conclusion
when ψ0 ≥ 0 with an appropriate μ = μ(K,κ0, λ0, T, δ). The case ψ0 ≤ 0 is the same
apart from straightforward reversal of inequalities.

Let φ be a real-valued function defined on (α, β), and let s0 ∈ (α, β). We denote
by D−φ(s0) and D+φ(s0) the lower and upper limits of φ(s)−φ(s0)

s−s0
as s → s0. The

remaining three propositions of this section all follow easily from Proposition 2.5
together with elementary measure theory.

Proposition 2.6 (curvature-characteristic length bound). Let z = z(s), α <
s < β, be an i-characteristic of a K-quasi-HP function θ on G, and let J be the
j-half-characteristic emanating from z(s0) to the left of C and joining it to ∂G. Then
D+θ(z(s0)) ≤ K

λ(J) .
In particular this says that if C is an i-arc whose curvature κ(p) at p exists, then

the j-half-characteristic emanating from p towards the concave side of C (that is, to
the left or right of C according as κ(p) > 0 or κ(p) < 0) has length at most K

κ(p) .
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Proposition 2.7 (length monotonicity). Let abcd be a positively oriented charac-
teristic quadrilateral of a quasi-HP function θ on G. Let z = z(s), α ≤ s ≤ β, z(α) =
a, parameterize ab. Let E be a λ-measurable subset of ab such that Dθ(z(s)) ≤ 0 at
all points of E. (That is, ab is nonconcave towards the inside of abcd at all points of
E.) If E′ is the set of points of cd which are joined to points of E by translates of ac,
then λ(E′) ≥ λ(E).

In section 4 we shall make use of the following two lower bounds for the area of
certain regions made up of families of characteristic arcs of a K-quasi-HP function θ;
the constants η and η′ which appear in them depend solely on K.

Proposition 2.8 (area bounds). If C is the interior of an i-arc of a K-quasi-HP
function θ, and for each w ∈ C, C′(w) is a j-arc of C containing w and of length at
least λj such that U = ∪{C′(w) : w ∈ C} is open, then

(i) μ(U) ≥ ηλ(C)λj , and
(ii) μ(U) ≥ η′λ2

j |Δθ(C)|.

3. Extended characteristics and regular and singular boundary behav-
ior. Our approach to boundary behavior requires the examination of curves which are
in effect characteristics whose interiors (i.e., sets of nonendpoints) contain boundary
points; the subtleties that arise in this connection require careful discussion. Hereafter
the symbol G will denote the family of all Jordan domains G ⊂ C for which ∂G is a C2

curve, and G(ρ) ⊂ G will denote the family of all G ∈ G such that for each p ∈ ∂G the
interior of one of the circles of radius ρ tangent to ∂G at p is contained in G and that
of the other such circle is contained in C\G. Obviously, for G ∈ G(ρ) the unsigned
curvature of ∂G is everywhere bounded by 1

ρ , and G = ∪{G(ρ) : ρ > 0}. Furthermore,
HP(G,K) will denote the family of K-quasi-HP functions on G. Although sometimes
the hypotheses of the propositions of this section do not state so explicitly, they al-
ways deal with G ∈ G and θ ∈ HP(G,K). (Although the results of this paper apply
to unbounded and multiply connected domains as well, the proof of the main theorem
itself will entail only consideration of Jordan domains, and in fact we will be able to
work largely with Jordan domains of the kind we call “characteristic subdomains,”
as defined below.) By an arc C we shall henceforth mean a continuous one-to-one
mapping z = z(t) of a closed interval [α, β] into the closure G of G, and z((α, β)) will
be referred to as the interior of C. As in section 2, when an arc is considered to be
oriented, we use the term “to (towards) the right (left) of C” to refer to the part of
C (immediately) to the right (left) of C, and the term full characteristic will refer to
a complete integral curve of θ or θ + π

2 in G. The following proposition was proved
in [G5, Proposition 2.8] for HP nets. Although the proof is virtually the same in the
present more general context we include it here for the sake of completeness.

Proposition 3.1. Let C be a full characteristic of a quasi-HP function in G
parameterized by z = z(s), s ∈ (α, β). Then lims→β z(s) exists and belongs to ∂G.

Proof. Clearly, the conclusion holds if β �= ∞, so that we assume β = ∞. First
of all, we show that dist(z(s), ∂G) → 0 as s → ∞. If this were not true, then there
would be a z0 ∈ G and an ε > 0 such that for some sequence {si} tending to ∞,
z(si) → z0, but z([si, si+1]) ∩ ∂N(z0, ε) �= ∅. But from this it would follow that
some orthogonal characteristic crosses C twice, an impossible occurrence in light of
the simple connectivity of G. We can now show that, in fact, z(s) → b ∈ ∂G as
s → ∞. If this is not so, the foregoing then implies that there is an arc E of ∂G,
λ(E) > 0, each point of which is an accumulation point of Cγ = {z(s) : s > γ}
for each γ ∈ (α,∞). Since G is bounded and β = ∞, C cannot be a straight line,
so that from the characteristic length bound it follows that there is an orthogonal
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half-characteristic C′ of finite length which joins some z(σ) to a point e ∈ ∂G. Since
C cannot cross C′ twice in G, Cσ ⊂ G\C′. Let z1, z2 be distinct points of E\{e}.
For each δ > 0, Cσ has a subarc pp′ ⊂ N(∂G, δ)\C′, with p, p′ ∈ N(z1, δ) and a point
p′′ ∈ pp′ ∩ N(z2, δ). For obvious topological reasons, for each sufficiently small δ,
there must be a point q on pp′ which is joined to a point in N(z1, δ) by an orthogonal
characteristic arc B of length at least |z1 − z2|−2δ such that the curvature of C at q
exists and tends to infinity as δ → 0 and C is concave towards the side from which B
emanates. But this clearly violates the characteristic length bound (Proposition 2.6),
as indicated in the sentence immediately following it.

Definition 3.2. An arc C for which z(α), z(β) ∈ ∂G and for which z((α, β)) ⊂
G and is a full i-characteristic will be called an elementary i-characteristic.

In other words, an elementary characteristic is a full characteristic together with
its endpoints, which are well defined by the preceding proposition. Note that for
each p ∈ ∂G, {p} is a trivial elementary i-characteristic. Subarcs of elementary
i-characteristics will be called i-characteristic arcs (or simply i-arcs, for short).

Lemma 3.3. Let G ∈ G. Then there exists a number B′ = B′(G) ∈ (0, 1] with the
following property. Let a, b ∈ ∂G. Let C1 and C2 be the two closed arcs into which
∂G is divided by a and b. (If a = b, C1 = {a} and C2 = ∂G.) Then

dist(z, C1) + dist(z, C2) ≥ B′dist(z, {a, b}) for all z ∈ G.

Proof. This is self-evident.
Proposition 3.4 (bounded length of characteristics). Let G ∈ G. There is

some M = M(G,K) such that λ(C) ≤M for all elementary characteristics C of any
θ ∈ HP(G,K).

Proof. Let θ be a K-quasi-HP function on G, and let C be an elementary i-
characteristic of θ. We regard C as being oriented and let A = C ∩ ∂G (A, being
the set of endpoints of C, has at most two points). Let d0 = diam(G), and let
d = sup{dist(z,A) : z ∈ C} ≤ d0. Clearly,

(3.1) μ({z ∈ G : dist(z,A) ≤ 8r}) ≤ Br2,

where B = 128π. For k ≥ 0, let

Gk =
{
z ∈ G :

d

2k
≤ dist(z,A) ≤ d

2k−1

}
and

Ck = C ∩Gk,

so that C ∩ G = ∪{Ck : k ≥ 1}. For each nonendpoint p of C, let J(p) denote the
elementary j-characteristic containing p. Obviously, J(p) ∩ J(p′) ∩ G = ∅ for p �= p′.
For k ≥ 1 and p ∈ Ck let l(p) and r(p) be the first points encountered when moving
along J(p) from p to the left and right of C, respectively, which are not in the interior
of Gk−1 ∪Gk ∪Gk+1. Each q ∈ {l(p), r(p)} is either on ∂G or is in G and satisfies one
of dist(q, A) = d

2k+1 or dist(q, A) = d
2k−2 . Say q /∈ ∂G and dist(q, A) = d

2k+1 . Then
|p− q| ≥ d

2k+1 , since otherwise dist(p,A) ≤ |p− q|+dist(q, A) < d
2k , which contradicts

the fact that p ∈ Ck. If q /∈ ∂G and dist(q, A) = d
2k−2 , then |p − q| ≥ d

2k+1 since
otherwise

dist(p,A) ≥ dist(q, A) − |p− q| > d

2k−2
− d

2k+1
>

d

2k−1
,
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which is inconsistent with p ∈ Ck. Thus |p−q| ≥ d
2k+1 if q /∈ ∂G. Hence, if at least one

of l(p), r(p) is not in ∂G, we have for the open subarc J1(p) of J(p) with endpoints
l(p), r(p) that λ(J1(p)) ≥ d

2k+1 . If, on the contrary, {l(p), r(p)} ⊂ ∂G, then it follows
from the preceding lemma that

λ(J1(p)) ≥ |l(p) − p|+|p− r(p)| ≥ B′d

2k
>

B′d

2k+1
,

so that this bound holds in all cases for p ∈ Ck since B′ ≤ 1. Since J1(p)\{l(p), r(p)} ⊂
Gk−1 ∪Gk ∪Gk+1 for p ∈ Ck, it follows from (3.1) that

B

(
d

2k+1

)2

≥ μ

({
z ∈ G :

d

2k+1
≤ dist(z, ∂G) ≤ d

2k−2

})
= μ(Gk−1 ∪Gk ∪Gk+1)

≥ μ(∪{J1(p) : p ∈ Ck}) ≥ ηλ(Ck)
B′d

2k+1
,

by Proposition 2.8(i). From this we have that λ(Ck) ≤ Bd
ηB′2k+1 . But since C = ∪{Ck :

k ≥ 1}, we conclude that λ(C) ≤ Bd
2B′η ≤ Bd0

2B′η . Since B = 128π and B′ and d0 depend
only on G, and η depends only on K, we are done.

Definition 3.5. An elementary characteristic C, one of whose endpoints is
p ∈ ∂G, is said to exit G at p. If C is parameterized by z = z(s), 0 ≤ s ≤ L, and
lims→0 θ(z(s)) exists, then C is said to exit regularly at z(0); otherwise it is said to
exit singularly.

Proposition 3.6. Let G ∈ G and θ ∈ HP(G,K). Let C = ab ⊂ G be a closed
i-arc of θ, and let E be an arc joining a and b in G such that E ∩ C = {a, b}. Then
diam(C) ≤ 5λ(E).

Proof. Let D be the interior of the simple closed curve C ∪E. Obviously, D ⊂ G.
Let p ∈ C and q ∈ E satisfy

|p− q| = sup{|z − w| : z ∈ C and w ∈ E}.

Let C′ be the elementary j-characteristic containing p. Since a j-characteristic can
have at most one point in common with an i-characteristic, there is a point q′ ∈ E such
that C′ contains a subarc J = pq′ whose interior lies in D. Let diam(C) = |z1 − z2|,
where z1, z2 ∈ C. Then

diam(C) = |z1 − z2| ≤ |z1 − a|+|a− b|+|b− z2| ≤ 2|p− q|+λ(E),

since |z1 − a|, |b − z2| ≤ |p− q|. But

|p− q| ≤ |p− q′|+|q′ − q| ≤ λ(J) + λ(E),

so that

diam(C) ≤ 2λ(J) + 3λ(E).

Let J be parameterized by w(s), 0 ≤ s ≤ l, with w(0) = p. Let I+ and I− be the set
s ∈ (0, l) at which Dθ(w(s)) ≥ 0 and Dθ(w(s)) ≤ 0, respectively. For s ∈ I+ (s ∈ I−)
let E+ (E−) be the set of points of E joined to w(s) by an i-arc emanating to the
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right (left) of J . It follows by a simple argument based on Proposition 2.7 (length
monotonicity) that λ(I+) ≤ λ(E+) and λ(I−) ≤ λ(E−). But then

λ(J) ≤ λ(I+) + λ(I−) ≤ λ(E+) + λ(E−) ≤ λ(E),

from which the desired bound follows immediately.
Proposition 3.7. Let p ∈ ∂G and q1, q2 ∈ G, and let C1 = pq1 and C2 = pq2

be arcs of distinct elementary i-characteristics of a K-quasi-HP function θ on G with
endpoint p in common. Let J ⊂ G be a j-characteristic arc joining a point c1 of C1∩G
to a point c2 of C2∩G, so that C1, C2, and J form the three sides of a “characteristic
triangle” T . Let P ⊂ J denote the set of points at which J is not strictly concave
towards the inside of T . Then λ(P ) = 0.

Proof. Suppose not. Then, since the elementary i-characteristic passing through
any point of J must exit at p, after replacing the original J by an appropriate subarc
and changing C1 and C2 accordingly, we can assume that λ(P ∩J) = ε > 0, λ(N) < ε

8 ,
and λ(θ(J) < 1

100K , where N = J\P . Let Ck be parameterized by zk(s), 0 ≤
s ≤ λk, with z(0) = p. Let {k, l} = {1, 2}. Let Jk(s) denote the j-arc joining
zk(s) to a point wk(s) ∈ Cl ∩ G. Note that we know only that Jk(s) is defined for
s ≤ λk sufficiently near λk. It follows from length monotonicity (Proposition 2.7)
that λ(Jk(s)) ≥ λ(Pk(s)) ≥ ε, where Pk(s) is the set of points of Jk(s) joined to
points of P by an i-arc. By the quasi-HP property λ(θ(Jk(s))) < 1

100 , so that Jk(s)
is almost straight and in particular the distance between its endpoints is at least
1
2λ(Jk(s)) ≥ 1

2λ(Pk(s)) ≥ ε
2 . Let ξk be the infimum of all s for which Jk(s) is defined.

Since the distance between the endpoints of Jk(s) is at least ε
2 , it is clear that at

least one of ξ1, ξ2 must be positive, and for definiteness we assume that ξ1 > 0. For
σ ∈ (ξ1, λ1] let J1(σ) be parameterized by ζ(s, σ), 0 ≤ s ≤ λ(J1(σ)), with ζ(0, σ) ∈ C1.
It is clear that there are δ, T > 0 such that

(3.2) dist(ζ(s, σ), C1 ∪C2) ≥ Ts for s ∈ (0, δ), σ ∈ (ξ1, λ1].

From the fact that a j-arc can intersect an i-arc at most once in G it easily follows
that for each point z ∈ C1 ∩G there is a δ1 = δ1(z) such that

(3.3) |z − ζ(s, σ)| ≥ δ1 for s ∈ [δ, λ(J1(σ))], σ ∈ (ξ1, λ1].

From (3.2) and (3.3) together with the fact that for σ ∈ (ξ1, λ1], J1(σ) = J2(σ′)
for some σ′ ∈ (ξ2, λ2] it follows that as σ → ξ1, J1(σ) tends to an arc J0 which
contains p, which joins z1(ξ1) to the point z2(ξ2) of C2, and the distance between
whose endpoints is at least ε

2 . Furthermore, either J0 consists of a j-arc joining z1(ξ1)
to p or (in the case that ξ2 > 0) it consists of such an arc together with another
j-arc joining p to z2(ξ2). One of the endpoints of J0, which we henceforth call q, is
at a distance of at least ε

4 from p. By renaming, if necessary, we can assume that
q = z1(ξ1) ∈ C1. Let J ′

0 be the subarc of J0 which joins q to p. Let A denote the arc
pq of C1. Then J ′

0 and A form the two sides of a “characteristic bilateral” B. Let P ′
0

be the subset of points of J ′
0 which correspond to (i.e., are joined by i-arcs to) points

of P (that is, P ′
0 is, apart from a set of linear measure 0, the set of points at which J0

is nonconcave towards the inside of B), and let N ′
0 ⊂ J ′

0 be the subset corresponding
to N . Since, by length monotonicity, λ(N ′

0) ≤ λ(N) ≤ ε
8 , it follows that

(3.4) λ(P ′
0) ≥ λ(J ′

0) − λ(N ′
0) ≥

ε

4
− ε

8
=
ε

8
.
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Let J ′
0 be parameterized by z0(s), 0 ≤ s ≤ λ(J ′

0), with z0(0) = p, and for s ∈ (0, λ(J ′
0))

let A(s) be the part of the elementary i-characteristic through z0(s) in B, so that
A(s) joins z0(s) to p (since its interior can cross neither A nor J ′

0). It follows from
Proposition 3.6 that diam(A(s)) → 0 as s → 0. Let qp′ be an arc of A for which
λ(θ(qp′)) < 1

100K . Since λ(θ(W )) < 1
100 for any translate W of either J ′

0 or qp′ by the
quasi-HP property, it follows that one can translate qp′ in B all the way down J ′

0\{p}
from q without meeting the boundary of B, since for simple geometric reasons all
these translates, being essentially perpendicular to the virtually straight arc J ′

0, must
stay away from p. If A′(s) denotes the translate of qp′ with initial point z0(s), then
A′(s) ⊂ A(s), and therefore diam(A′(s)) → 0 as s → λ(J ′

0). This means that each
point z ∈ qp′ is joined to p in B by a j-arc J ′′(z) such that if P ′′(z) is the set of points
of J ′′(z) joined to points of P by i arcs in T , then by (3.4) and length monotonicity
λ(P ′′(z)) ≥ ε

8 and by the quasi-HP property λ(θ(J ′′(z))) < 1
100 , so that

(3.5) |z − p| ≥ ε

16
.

We can now repeat this process starting with J ′′(p′) instead of J ′
0 = J ′′(q) and

continue doing so to obtain in the end J ′′(z) for all z ∈ A\{p}. However, by the
argument we just gave we now have (3.5) for all z ∈ A, which is absurd since p is an
endpoint of A. Therefore λ(P ) = 0.

Proposition 3.8. The two endpoints of a nontrivial elementary characteristic
of a quasi-HP function on G must be different.

Proof. This follows easily from Proposition 3.6.
Proposition 3.9. Two elementary i-characteristics of a quasi-HP function on

G with the same endpoints must be identical.
Proof. Assume to the contrary that points p1 �= p2 of ∂G are joined by dis-

tinct elementary i-characteristics C1 and C2. It follows from Proposition 3.8 that
the elementary i-characteristic through any point of the simply connected domain D
bounded by C1 ∪ C2 must also have endpoints p1 and p2. But then it follows easily
from Proposition 3.7 that all j-characteristic arcs in D are straight line segments. But
this contradicts Proposition 3.7.

Proposition 3.10. Two different elementary characteristics of a quasi-HP func-
tion on G which both exit G regularly at p ∈ G cannot be tangent to each other there.

Proof. The proof is an easy consequence of Proposition 3.7 and the quasi-HP
property.

Definition 3.11. Let θ be a quasi-HP function on G, and let C0 be an elementary
i-characteristic of θ with endpoints a, b ∈ ∂G. Let B be one of the boundary arcs of
∂G with endpoints a, b. Then the subdomain D of G for which ∂D = C0 ∪B will be
called an i-characteristic subdomain.

When we wish to indicate the elementary i-characteristic involved, we will denote
the i-characteristic subdomain by (D,C0). The arc B = ∂D − C0 ⊂ ∂G, called the
bottom of (D,C0) and denoted by bot(D), will be considered to have the order “<”
corresponding to the positive orientation of ∂D. We shall freely use interval notation
as well as the terms “to the right of,” “to the left of,” “between,” etc., when dealing
with bot(D). Furthermore, if ab is an elementary i-characteristic joining points a,
b of bot(D), it will be understood that a ≤ b, unless otherwise indicated. When
dealing with a characteristic subdomain (D,C0), we shall work with the class I(D) of
nontrivial elementary i-characteristics C which join points p, q of bot(D). Note that
C0 ∈ I(D). If C = pq ∈ I(D), then “above” C refers to the part of D not in the closed
region bounded by C ∪ [p, q]. If F ⊂ D is a compact set for which F ∩bot(D) �= ∅, we
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say that an elementary i-characteristic E = pq ∈ I(D) envelopes F , and write F 
 E,
if F is contained in the closed set bounded by the simple closed curve [p, q] ∪ pq. We
deal only with sets F for which each component of F has points in bot(D). For two
such sets F1, F2 ⊂ D we say that F1 precedes F2 and write F1 ≤ F2 if for all f1, f2
with fk ∈ Fk ∩bot(D), k = 1, 2, there holds f1 ≤ f2. It is clear that if C1, C2 ∈ I(D),
then one of the following is true: C1 
 C2, C2 
 C1, C1 ≤ C2, or C2 ≤ C1. The first
and second of these possibilities include the case C1 = C2.

In what follows, L(G, p, d) will denote the segment pq of length d which is or-
thogonal to ∂G at p, which emanates from p into G and which is oriented from p
to q.

Proposition 3.12. There are a positive absolute constant ω0 = ω0 < 1 and a
positive constant ω1 = ω1(K, ρ) with the following property. Let G ∈ G(ρ), p ∈ ∂G,
and θ ∈ HP(G,K). Let C, parameterized by z(s), 0 ≤ s ≤ λ(C), be an arc of an
i-characteristic the distance between whose endpoints is at least ρ, for which

(3.6) C ∩ L(G, p, ω0ρ) = {z(0)},

which emanates to the right (left) of L(G, p, ω0ρ) and for which each j-half-character-
istic emanating to the left (right) of C has length at least ρ. Let ∂G be parameterized
by w(s), 0 ≤ s < λ(∂G), with w(0) = p and | arg{z′(0)} − arg{w′(0)}| ≤ π

2 . Then

arg{z′(0)} ≥ arg{w′(0)} − ω1

√
|z(0) − p|

if C emanates to the right of L(G, p, ξ0), and

arg{z′(0)} ≥ arg{w′(0)} + ω1

√
|z(0) − p|

if C emanates to the left of L(G, p, ω0).
Proof. Clearly, it is enough to handle the case in which C emanates to the right

of L(G, p, ρ). Without loss of generality we can assume that p = 0 = arg{w′(0)},
so that in particular D = N(−ρi, ρ) ⊂ C\G and ∂N(−ρi, ρ) is tangent to ∂G at 0.
Let d = |z(0) − p| and let Rd = {di + te−iα : t ≥ 0}, α = α(d) ∈ (0, π

2 ) be the ray
emanating to the right of L(G, 0, ρ) from the point di ∈ L(G, 0, ρ) which is tangent to
∂D, and let the point of tangency be zd. Then α = cos−1( ρ

ρ+d ), so that α is bounded

below and above by
√

1 − ρ
ρ+d and 2

√
1 − ρ

ρ+d , respectively. Thus

(3.7) 2
√
d/ρ ≥ α ≥

√
d/ρ

2
for d ≤ ρ.

Let Td be the curvilinear triangle bounded by L(G, 0, d), the line segment [di, zd] and
the (shorter) arc of ∂D with endpoints 0, zd. Then in light of (3.7) it is easy to see
that

(3.8) diam(Td) ≤ ρα+ d ≤ 2ρ
√
d/ρ+ d = 2

√
ρd+ d for d ≤ ρ,

so that

(3.9) diam(Td) < ρ for d ≤ ρ

16
.

Now assume that C is as in the hypothesis with z(0) = di, where d ≤ ρ
16 , and that

−β = arg{z′(0)} ≤ −Nα.
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Here N > 1 is a number yet to be determined. Since, by (3.9), diam(C) ≥ ρ >
diam(Td), and since obvious angle considerations imply that C enters Td at di, in light
of assumption (3.6), C must exit Td at a point of the segment [di, zd]. Say s0 is the
smallest value of s for which z(s) ∈ [di, zd]. Then obviously θ([0, s0]) ⊃ [−β,−α], so
that [0, s0] has a subinterval [s1, s2] for which θ([s1, s2]) = [−β,−α]. Since β−α ≤ π

2 ,
and since the length of a curve given by y = f(x), x1 ≤ x ≤ x2 for which |f ′(x)| ≤ 1
is at most

√
2|x2 − x1|, it follows that

s2 − s1 = λ(z([s1, s2]) ≤
√

2|z(s2) − z(s1)|

< 2diam(Td) ≤ 2(2
√
ρd+ d),

by (3.8). Thus by the mean value theorem there must be some s0 ∈ [s1, s2] for which

(3.10) D+θ(z(s0)) ≥
(N − 1)α

2(2
√
ρd+ d)

.

But the curvature bound (Proposition 2.6) together with the hypothesis regarding
the j-characteristics implies that D+θ(z(s0)) ≤ K

ρ , so that in light of (3.10) and the
lower bound in (3.7) we have

ρ(N − 1)
√
d/ρ

8
√
ρd+ 4d

≤ K.

But the left-hand side of this inequality is (N − 1)/(8 + 4
√
d/ρ), which is bounded

below by N−1
9 for d ≤ ρ

16 , so that we have a contradiction for N = 9K + 2. Thus if
d ≤ ρ

16 , we must have

arg{z′(0)} ≥ −2
9K + 2
√
ρ

√
d ≥ −22K

√
d

√
ρ

,

in light of the upper bound in (3.7) and the fact that K ≥ 1. Thus we have proved
the proposition with ω0 = 1

16 and ω1 = 22K√
ρ .

Proposition 3.13. There are positive constants ξ0 = ξ0(K, ρ) and ξ1 = ξ1(K, ρ)
with the following properties. Let G ∈ G(ρ), θ ∈ HP(G,K), and let C = ab be an
elementary i-characteristic, with corresponding characteristic subdomain (D,C). Let
C and A = bot(D) be given by z(s), 0 ≤ s ≤ λ(C), and w(s), 0 ≤ s ≤ λ(A),
respectively, with z(0) = w(0) = a, a being the leftmost point of bot(D). Then, for
each p = w(σ0) ∈ A for which dist(p, ∂G\A) ≥ ρ, the segment L(G, p, ξ0) contains at
most one point of C, and if there is such a point z(s), there holds

(3.11) | arg{z′(s)} − arg{w′(σ0)}| ≤ ξ1
√
|z(s) − p|.

Proof. Without loss of generality we may assume that p = 0 = arg{w′(σ0)}. Let
ω0 and ω1 be as in the preceding proposition. Let L(ε) = L(G, p, ε). We assume
for the moment that z(s) ∈ L(ω0

ρ
2 ) is the only point of C on this segment. Since

immediately to the left of C there are points in the complement of D and the interior
of the segment L(|z(s)|) lies in D, it is clear that if we write arg{z′(s0)} = eiτ , with
−π < τ ≤ π, then |τ | ≤ π

2 . Let E be either of the two subarcs of C, one of whose
endpoints is z(s) and the other of which is a point q ∈ G for which |z(s) − q| = ρ

2 . It
follows from the preceding proposition that if ω1(K, ρ

2 )
√
|z(s)| ≤ π

4 , then C cannot
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be tangent to L(ω0
ρ
2 ). Thus, of the two arcs E, one moves to the right of L(ω0

ρ
2 ) as

we move along it away from z(s) and the other moves to the left. But then by the
preceding proposition we have (3.11) with

(3.12) ξ1 = ω1

(
K,

ρ

2

)
for any z(s) for which

|z(s)| ≤ min
{
ω0
ρ

2
,

(
π

4ω1(K, ρ/2)

)2}
.

Let

(3.13) ξ0 = min
{
ω0

ρ

10
,

(
π

4ω1(K, ρ/2)

)2

,
πρ

21K

}
.

Assume ε ≤ ξ0 and that L(ε) contains at least two points of C. Then there are s′,
s′′ ∈ (0, λ(C)), s′ < s′′, such that the interior of L(min{|z(s′)|, |z(s′′)|}) contains no
point of C (and is therefore contained in D) and z(s′)z(s′′) ∩ L(ε) = {z(s′), z(s′′)}.
By Proposition 3.6, diam(z(s′)z(s′′)) ≤ 5ε < ω0

ρ
2 . There are the following two cases.

(i) |z(s′)| < |z(s′′)|. In this case, simple topological arguments show that z(s′)
z(s′′) must lie to the right of L(ε). Also, by the foregoing and our definition of ξ0,
one easily has

| arg{z′(s′)} − arg{w′(σ0)}| ≤
π

4
.

But then since C crosses L(ε) again at z(s′′), we must have that for some t′ < t′′ in
(s′, s′′), arg{z′(t′′)} − arg{z′(t′)} ≥ π

2 − π
4 = π

4 , so that by mean value considerations
as in the proof of the preceding proposition together with the curvature bound we see
that there must be a point σ′ ∈ (t′, t′′) at such that

K

ρ/2
≥ d arg{z′(s)}

ds
|s=σ′ ≥ π/4

2diam(z(s′)z(s′′))
≥ π

10ε
≥ π

10ξ0
,

which implies that ξ0 ≥ πρ
20K , a contradiction, since ξ0 ≤ πρ

21K .
(ii) |z(s′)| > |z(s′′)|. In this case, simple topological arguments show that z(s′)

z(s′′) must lie to the left of L(ε), and we proceed analogously to the way we did in
case (i).
Thus, for ε ≤ ξ0, L(ε) can contain at most one point of C. This completes the proof
of the proposition with ξ1 and ξ0 as defined in (3.12) and (3.13), respectively.

We now extend the notion of characteristic to include certain arcs whose interiors
contain points of ∂G. Although what follows does not give the most exhaustive exten-
sion possible, it is sufficient for our present needs. Let (D0, C0) be an i-characteristic
subdomain of G, and consider a monotone decreasing sequence {Ck = akbk : k ≥ 0} in
I(D0). In other words, ak ≤ ak+1 < bk+1 ≤ bk, k ≥ 0, so that the arcs Ak = [ak, bk]
of bot(D0) = A0 are nested. Let Dk ⊂ D0 be the i-characteristic subdomain bounded
by Ck ∪Ak, so that Dk ⊃ Dk+1, k ≥ 0. We regard Ck as being oriented from ak to bk.
Let ak → a and bk → b. We define C to be the set of limits of sequences {zl}, where
zl ∈ Ckl

, kl → ∞. Any such C will be called an extended characteristic with endpoints
a and b. An extended characteristic consisting of a single point p ∈ ∂G will be called



1308 JULIAN GEVIRTZ

trivial. The following proposition, in the statement and proof of which the notation is
the same as that of the immediately preceding sentences, contains the basic properties
of extended characteristics. Note that M(G,K) is, as in Proposition 3.4, an upper
bound on the length of elementary characteristics of K-quasi-HP functions on G.

Proposition 3.14. Let C be an extended characteristic with endpoints a and b.
If a = b, then C = {a}. Otherwise, C is a simple arc joining a to b and λ(C) ≤
M(G,K). If C is parameterized by z(s), 0 ≤ s ≤ λ(C), with z(0) = a, then C ∩∂G ⊂
[a, b] and for points of C ∩ [a, b] the order with respect to A0 = bot(D0) coincides with
the order with respect to s. Furthermore, the function z is continuously differentiable
on (0, λ(C)), and, for t ∈ (0, λ(C)), z(t) is joined to a point of ∂G\(a, b) by a unique
j-characteristic arc J(t) emanating to the left of C and

(3.14) D+ arg{z′(t)} ≤ K

λ(J(t))
.

Proof. We begin by observing that

(3.15) A0 ∩ C ⊂ [a, b].

To see this, note that for each w ∈ A0\[a, b] there is an n for which w /∈ An. Since
Cn ∩ A0 = {an, bn}, w is not in Cn either, and therefore w /∈ Dn. But then, by the
monotonicity of {Dk},

dist(w,Ck) ≥ dist(w,Dk) ≥ dist(w,Dn) > 0 for k ≥ n,

from which the desired conclusion follows at once. From (3.15) it follows immediately
that C ∩ ∂G ⊂ [a, b].

Next we note that if a = b, then Proposition 3.6 implies that diam(Ck) → 0, so
that C = {a}. For the remainder of the proof we therefore assume that a < b.

By this assumption and Proposition 3.4 on the boundedness of the lengths of
characteristics there exist l1 and l2 such that 0 < l1 ≤ λ(Ck) ≤ l2 < ∞. Let Ck be
parameterized by z = zk(s), 0 ≤ s ≤ λ(Ck). Let 0 < ε < |b− a|/3, and let n0 be such
that

|ak − a|, |bk − b| < ε for k ≥ n0.

For k ≥ n0 let

αk = sup{s : zk(s) ∈ ∂N(a, ε)}

and

βk = inf{s : zk(s) ∈ ∂N(b, ε)},

and let Ek = Ek(ε) = zk([αk, βk]). Then

(3.16) δ = inf{dist(Ek, ∂G\Ak) : k ≥ n0} > 0,

since otherwise there would be a point of C in A0\[a, b], in contradiction of (3.15).
For k ≥ n0 and s ∈ [αk, βk], let Jk(s) denote the j-half-characteristic emanating to
the left of Ck and joining zk(s) to a point wk(s) of ∂G\Ak. In light of (3.16),

(3.17) λ(Jk(s)) ≥ δ > 0 for k ≥ n0, s ∈ [αk, βk].
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This means that for each ε > 0 we have an upper bound on the curvature to the left
of Ek. More precisely, the curvature bound implies that

(3.18) D+θ(zk(s)) ≤ K

λ(Jk(s))
≤ K

δ
for k ≥ n0, s ∈ [αk, βk].

In addition, the curvature bound trivially implies that

(3.19) D−θ(zk(s)) ≥ − K

dist(zk(s), ∂G)
.

There is a neighborhood U of ∂G such that for each z ∈ U there is a unique p(z) ∈ ∂G
for which |z−p(z)| = min{dist(z, ζ) : ζ ∈ ∂G} and for which p is continuous. For q in
∂G, let eiφ(q) be the positively oriented unit tangent to ∂G at q, so that, in U , eiφ(p(z))

is continuous. It follows from (3.18) and Proposition 3.13 that there is a Λ = Λ(ε)
such that

(3.20) |z′k(s) − eiφ(p(zk(s)))| ≤ Λ
√
|zk(s) − p(zk(s))| for k ≥ n0, s ∈ [αk, βk].

Bounds (3.18), (3.19), and (3.20) imply that the family {z′k(s)} is uniformly bounded
and equicontinuous (that is, there is a single modulus of continuity valid for all z′k(s),
k ≥ n0, on the respective [αk, βk]). From this it follows that there are α, β, and
a sequence {kl} such that αkl

→ α and βkl
→ β and zkl

(s) → zε(s) uniformly (in
the obvious sense), where zε is continuously differentiable and parameterizes an arc
C(ε) which joins a point of ∂N(a, ε) to a point of ∂N(b, ε) in the part of D0 lying
outside of both these circles. The arc C(ε) is simple, since otherwise there would be
some q ∈ (a, b)\N({a, b}, ε) such that for arbitrarily small τ > 0, L(G, q, τ) intersects
some Ek more than once, which would contradict Proposition 3.13. Clearly, λ(C(ε)) ≤
M(G,K). The nested nature of theDk then implies that (at least for sufficiently small
ε) the entire sequence converges to C(ε). Also, it is clear that C(ε′) is an extension
of C(ε) for ε′ < ε. We have that C = ∪{C(ε) : ε > 0}, since diam(zk([0, αk])) and
diam(zk([βk, λ(Ck)])) tend to 0 uniformly in k as ε→ 0 by Proposition 3.6. It follows
from C = ∪{C(ε) : ε > 0} that λ(C) ≤ M(G,K) and that C is a simple arc with
endpoints a, b, and furthermore that C is parameterized by a function z(s) which is
continuously differentiable on (0, λ(C)). That the two possible orderings of the points
of C ∩ [a, b] coincide follows from the fact that C is a simple arc and (3.15).

The existence and uniqueness of J(t) is trivial when z(t) ∈ G. When z(t) ∈
(a, b) the existence of J(t) follows from a straightforward compactness argument. In
light of (3.20), for such t, any corresponding J(t) must be orthogonal to ∂G at z(t),
so that the uniqueness of J(t) follows from Proposition 3.10. Bound (3.14) follows
from (3.18).

We will refer to an extended characteristic C joining a, b ∈ ∂G as ab; points
of ab ∩ ∂G will be called contact points, and contact points other than a and b will
be called proper contact points. It is clear that θ can be continuously extended to
G ∪ (ab\{a, b}). For what is to follow it is important to understand that if (D0, C0)
is an i-characteristic subdomain, then, in addition to the extended characteristics
constructed above, D0 might contain extended characteristics C′ joining points a′ < b′

arising from a sequence of i-characteristic subdomains {(D′
k, C

′
k)}, where C′

k = a′kb
′
k

with a′k+1 ≤ a′k < b′k ≤ b′k+1 (where the order is with respect to A0 = bot(D0),
as above). Here the C′

k are contained in D0, but the other part of the boundary
of D′

k is ∂G\(a′k, b′k) (where here again the interval notation refers to the order on
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A0 = bot(D0)). Note that if for such an extended characteristic C′, C′ ∩ ∂G has
points other than a′ and b′ (that is, if C′ is not simply an elementary characteristic),
then the contact points will not occur monotonically with respect to the order on A0

when C′ is traversed from a′ to b′. With respect to the characteristic subdomain D0

the extended characteristics C constructed originally will be referred to as monotone,
and this other kind of extended characteristic C′ with proper contact points will be
said to be nonmonotone. We consider that an extended characteristic ab exits G at
all of its contact points, and we use the terms “exits regularly” and “exits singularly”
at a or b in the obvious fashion. Clearly, ab exits regularly at its proper contact
points.

Proposition 3.15. Let C be an elementary i-characteristic exiting at p and
parameterized by z(s), 0 ≤ s ≤ L, with z(0) = p. Let φ(s) = arg{z′(s)}, and
assume that lims→0 φ(s) does not exist. For s ∈ (0, L) let E(s) be the elementary
j-characteristic containing z(s), and for ε, T > 0 let P (ε, T ) = {s < ε : φ′(s) ≥ T }
and N(ε, T ) = {s < ε : φ′(s) ≤ −T }. Then, for all ε, T > 0, P (ε, T ) and N(ε, T )
have positive measure and diam(E(s)) → 0 as s→ 0. Furthermore, none of the E(s)
exits at p.

Proof. Assume to the contrary that λ(P (ε, T )) > 0 for some ε0, T0 > 0, λ(P
(ε0, T0)) = 0, so that φ′(s) ≤ T0 a.e. on (0, ε0]. Then φ = φ+ +φ− on (0, ε0], where φ+

is Lipschitz continuous and nondecreasing and φ− is continuous and nonincreasing.
From this in turn it follows that either φ− has a finite limit as s→ 0 or it tends to ∞
as s→ 0, so that in fact the latter is the case since C exits singularly. But this means
that C spirals around p, which is clearly impossible. Thus P (ε, T ) must have positive
measure for all ε, T > 0. One sees similarly that N(ε, T ) has positive measure. That
diam(E(s)) → 0 follows immediately from the characteristic length bound. To see
that the last sentence of the statement is true, assume to the contrary that E(σ) joins
z(σ) to p. Then, since distinct j-characteristics have no common point in G and can
only cross C at one point in G, E(s) exits at p for 0 < s ≤ σ. But this is impossible
in light of Proposition 3.7 and the fact that both P (ε, 1) and N(ε, 1) have positive
measure.

Let (D,C0) be a characteristic subdomain of G, and let F ⊂ D ∪ bot(D) be a
compact set for which F ∩ bot(D) �= ∅. The family C(F ) = {C ∈ I(D) : F 
 C} is
clearly linearly ordered with respect to the relation 
. From this it easily follows that
there is a unique monotone extended i-characteristic E0 = ab for which F ∩bot(D) ⊂
[a, b] and E0 
 C for all C ∈ C(F ).

Notation 3.16. This monotone extended i-characteristic E0 will be denoted by
minD(F ).

In the statement and proof of the following proposition all order relations are
with respect to (D,C0).

Proposition 3.17 (structure of minD(A∪B)). Let (D,C0) be an i-characteristic
subdomain of G. Let a1 < a2 < b1 < b2 be such that a1a2 = A and b1b2 = B belong
to I(D), and let U = minD(A ∪B) = ef , e < f . Then either

(i) U has a contact point between A and B,
or ef ∈ C(A ∪ B) and there is a nonmonotone extended i-characteristic ab with
e ≤ a ≤ b ≤ f and at least one of the following happens:

(ii) ea contains a subarc L ∈ I(D) for which A 
 L 
 U , but B 
 L does not
hold.

(iii) bf contains a subarc L ∈ I(D) for which B 
 L 
 U , but A 
 L does not
hold.

Proof. It follows from the hypotheses that e < f (i.e., that e �= f). We show that
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if (i) does not hold, then at least one of (ii) or (iii) does. Let

e′ = sup{z : z ∈ bot(D) ∩ min
D

(A ∪B), z ≤ a1}

and

f ′ = inf{z : z ∈ bot(D) ∩ min
D

(A ∪B), z ≥ b2}.

Since (i) does not hold it is easy to see that the subarc e′f ′ of ef is a member of
C(A∪B), so that in fact e′f ′ = ef . Obviously, ef ∩ (A∪B) ⊂ {e, f}, since otherwise
ef would have to be A or B. Let w0 be any point of ef other than e or f , and consider
a small j-arc E whose initial point is w0, which extends to the right of ef (that is,
into the simply connected domain bounded by ef ∪ [e, f ]) and which is disjoint from
A ∪ B. Let E be parameterized by z = w(s), 0 ≤ s ≤ λ0, with w(λ0) = w0, and let
C(s) denote the elementary i-characteristic through w(s). Note that

(3.21) C(s1) 
 C(s2) for s1 ≤ s2.

Let the left and right endpoints of C(s) be l(s) and r(s). By the minimality
of ef it must be that for no s ∈ (0, λ0) can we have both l(s) ≤ a1 and r(s) ≥
b2. From (3.21) it therefore follows that either for all s ∈ (0, λ0), l(s) > a1, or
for all s ∈ (0, λ0), r(s) < b2. Assume the latter occurs. Then in fact r(s) ≤ b1 for
all s ∈ (0, λ0), since otherwise C(s) would cross B in D, which is impossible since
they are distinct elementary i-characteristics. Consider the i-characteristic subdomain
(D′, C(0)) bounded by C(0) and ∂G\(l(0), r(0)). If we take any sequence {sk} in
(0, λ0) which tends monotonically to λ0, and consider the corresponding sequence of
elementary i-characteristics Ck = C(sk) in D′, it is clear that they will give rise to
an extended i-characteristic C′ = ab (with, as always, a < b with respect to the order
for bot(D)), which is nonmonotone with respect to the characteristic subdomain D,
which contains ef as a subarc and for which b ≤ b1. Clearly, bf ∩ ef = {f}, so that
bf 
 ef . If we let

c′ = sup{z : z ∈ bot(D) ∩ bf, z ≤ b1}

and

c′′ = inf{z : z ∈ bot(D) ∩ bf, z ≥ b2},

then L = c′c′′ ∈ I(D), so that from the minimality of ef it follows that c′ ≥ a2 and
we have conclusion (iii). In exactly the same manner one obtains conclusion (ii) in
the case that s ∈ (0, λ0), l(s) > a1 for all s ∈ (0, λ0).

Comment 3.18. It is to be noted that case (ii) of the conclusion of the pre-
ceding proposition does not exclude the possibility that the nonmonotone extended
i-characteristic ab also contains a subarc L′ ∈ I(D) for which B 
 L′ 
 U , that
is, that cases (ii) and (iii) occur simultaneously. Nor does the conclusion preclude ab
having many proper contact points on either or both sides of A. Similar comments
apply to case (iii). In case (i), ef has to have at least one proper contact point between
A and B, but it could have many such points as well as proper contact points to the
left of A or the right of B.

Definition 3.19. A point p ∈ ∂G is called a regular boundary point of θ if θ(z)
has a nontangential limit as z → p; otherwise it is called a singular boundary point.
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Proposition 3.20. If p ∈ ∂G is a regular boundary point, then there must be
at least one elementary characteristic which exits at p and which makes an angle
φ ∈ (0, π) with ∂G at p.

Proof. This follows immediately from the Peano existence theorem for (local)
solutions of the initial value problem y′ = F (x, y), y(x0) = y0 when F is continuous
in a neighborhood of (x0, y0).

Definition 3.21. Let p ∈ ∂G be a singular boundary point of θ. If there is a
nontrivial elementary characteristic exiting regularly (singularly) at p, then θ is said to
have a singularity of type 0 ( singularity of type 1) at p. If θ has no nontrivial exiting
elementary characteristic at p, then θ is said to have a singularity of type 2 at p.

The following proposition is needed to make use of fans of characteristics in what
is to follow.

Proposition 3.22. Let C1 = pq1 and C2 = pq2 be distinct nontrivial elementary
i-characteristics. Let A be the arc of ∂G joining q1 and q2 which does not contain p,
and let T denote the interior of the curvilinear triangle bounded by C1∪C2∪A. Then
one of the following must happen:

(i) There is some d > 0 such that for all z ∈ N(p, d) ∩ T the elementary i-
characteristic through z exits at p.

(ii) p is a proper contact point of some extended characteristic C.
Proof. Let W be the set of all z ∈ T for which the elementary i-characteristic

C(z) through z does not exit at p. For z ∈ W , C(z) has no points in common
with either C1\{q1} or C2\{q2}, so that both endpoints of C(z) lie on A. For each
z ∈ W , let D(z) denote the interior of the domain bounded by C(z) and the arc of
A whose endpoints are those of C(z). For w1, w2 ∈ T , C(w1) ∩ T and C(w2) ∩ T
are either identical or disjoint, so that for w1, w2 ∈ W , D(w1) and D(w2) are either
nested or disjoint. Let ξ = 1

2dist(p,A) > 0. If z ∈ N(p, ξ
2 ) ∩W , then it follows from

Proposition 2.8(i) that μ(D(z)) ≥ ηξ2 since λ(C(z) ∩ N(p, ξ)) ≥ ξ and each of the
j-arcs joining a point of C(z) ∩ N(p, ξ) to A in D(z) has length at least ξ. Thus if
z1, . . . , zn ∈ N(p, ξ

2 ) ∩ W are such that the corresponding D(zk) are disjoint, then
n ≤ μ(G)

ηξ2 . If (i) is not true, a pigeonhole (area exhaustion) argument then shows that
there is a sequence {zk : k ≥ 1} of points of W tending to p such that {D(zk)} is
an increasing sequence. But our extended characteristic construction then gives us
a monotone extended characteristic C (with respect to the characteristic subdomain
bounded by C(z1) and the complement in ∂G of the subarc of A joining the endpoints
of C(z1)) for which p ∈ C. But the endpoints of C are in A since those of all the
D(zk) are in A, so that p is a proper contact point of C. Thus C satisfies (ii).

Definition 3.23 (i-fan). A solution θ is said to have an i-fan at p ∈ ∂G if p is
not a proper contact point of an extended characteristic and there is more than one
elementary i-characteristic of θ exiting at p. In this case the family of all elementary
i-characteristics exiting at p is denoted by Fi(p). The point p is referred to as the
vertex of the fan.

Proposition 3.22 implies that if C1 and C2 are distinct elementary i-characteristics
in Fi(p), then there is a d > 0 such that all points of N(p, d) between them belong
to members of Fi(p), so that the interior of ∪{C : C ∈ Fi(p)} is nonempty. Fur-
thermore, it follows from Proposition 3.7 that the j-characteristic through any point
in the interior of ∪{C : C ∈ Fi(p)} is strictly concave towards the side facing p.
These two facts in turn imply that if there are i-fans at p1 �= p2, then the interiors of
∪{C : C ∈ Fi(pk)}, k = 1, 2, must be disjoint. Since μ(∪{C : C ∈ Fi(p)}) > 0, we
have the following.
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Proposition 3.24. The set of points which are the vertices of i-fans is at most
countable.

Proposition 3.25. Let there be a regularly exiting extended characteristic and
no fan at p. Then p is a regular point. Moreover, if θ is the inclination function
of a locally Lipschitz solution in G of a normal system, then the corresponding R =
(R1, R2) has a nontangential limit at p.

Proof. Let F be an extended i-characteristic which exits regularly at p. Without
loss of generality we can assume that the positive direction along ∂G at p is that of
the positive real axis. Let C be a nontrivial arc of F parameterized by z = z(s),
0 ≤ s ≤ L, with z(0) = p. Again, without loss of generality we can assume that
γ = arg{z′(s)} = θ(z(s)). We consider the following three possibilities separately.

(i) γ ∈ (0, π
2 )∪(π

2 , π). In this case we can assume that C is an arc of an elementary
i-characteristic exiting at p. To be specific, we assume that γ ∈ (0, π

2 ). Let q be an
interior point of C. For any ε > 0 there exist nontrivial j-characteristic arcs E+ =
E+(ε) and E− = E−(ε) emanating from q to the right and left of C, respectively,
such that λ(θ(E+ ∪E−)) < ε. Since there is no fan at p, none of the j-characteristics
through any point of E+ ∪E− other than q exits at p. Let C(ε) be an initial segment
of C such that λ(θ(C\{p})) < ε. Let α < γ; we show that θ(z) → γ as z → p between
C and the ray arg{z} = α. It is easy to see that some initial segment of this ray
(that is, the portion of the ray contained in N(p, ξ) for some ξ > 0) is covered by
a collection Q(ε) of characteristic quadrilaterals Q, one of whose i-sides is a subarc
of C(ε) and one of whose j-sides is a translate of an initial subarc of E+(ε). The
quasi-HP property then implies that there is a δ = δ(ε) such that if |z − p| < δ and
z is between C and the ray arg{z} = α, then |θ(z) − γ| < 2Kε. Since ε is arbitrary,
θ(z) → γ as z → p between C and the ray. It is also clear that for sufficiently small ε
the translate of E− down to p is a nontrivial initial arc of a j-characteristic C′ which
exits regularly at p and which forms with ∂G an acute angle of size π

2 − γ. What we
have shown in regard to C now implies that if β < π

2 − γ, then θ(z) + π
2 → γ + π

2 as
z → p between C′ and the ray arg{z} = π − β, so that θ(z) → γ as z → p in that
curvilinear sector. Finally, it is easy to see that θ(z) → γ as z → p between C and
C′. Since α < γ and β < π

2 − γ are arbitrary, we have the desired regularity at p.
The case γ ∈ (π

2 , π) is handled in the same manner apart from minor changes of a
notational nature. In the case that θ arises from the solution of a normal system it
is clear from (ii) of Definition 1.1 that both Ri(z) and Rj(z) have limits as z → p in
the sector α < arg{z} < β, so that the second conclusion is valid in this case.

(ii) γ = π
2 . Here again we can take C to be an arc of an elementary i-characteristic

exiting at p and proceed as in case (i). For any α < π
2 it follows as in case (i) that

θ(z) → γ as z → p between C and the ray arg{z} = α. Again it is immediate that
the same holds in the curvilinear sector between C and the ray arg{z} = π − α. The
second conclusion is likewise immediate.

(iii) γ ∈ {0, π}. We deal with the case γ = 0, the case γ = π being essentially
the same. Here we can define E−(ε) as in case (i), but because there is no fan at
p the translate of E−(ε) down to p is a nontrivial arc of a j-characteristic which is
orthogonal to ∂G at p. This puts us in case (ii), so we are done.

Definition 3.26. A singular point p ∈ ∂G is called an i-singularity if every
neighborhood of p contains a nontrivial elementary i-characteristic.

The following is an immediate consequence of Proposition 3.15.
Proposition 3.27. If the elementary j-characteristic C exits singularly at p,

then p is an i-singularity.
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Proposition 3.28. A singularity of type 2 is an i-singularity for i = 1 and 2.
Proof. Let C be any elementary i-characteristic, and let D be the characteristic

subdomain bounded by C and the arc of ∂G containing p. Let E = ef = minD({p}).
If E = p, we are done, so that E = ef is a nontrivial extended characteristic. If
p ∈ E, Proposition 3.25 implies that (i) p ∈ {e, f}, since extended characteristics exit
regularly at their proper contact points. If p /∈ E, the minimality of E implies that
(ii) E is an elementary i-characteristic. We deal with possibility (i) first. Let E be
parameterized by z(s), 0 ≤ s ≤ l, with z(0) = p. Since p is a singularity of type 2,
for no σ > 0 is it true that z((0, σ)) ⊂ G. On the other hand, it follows from the
regularity of ∂G and Proposition 3.25 that for no σ > 0 is it true that z((0, σ)) ⊂ ∂G.
It is then clear that E contains a sequence {Ck} of subarcs which are elementary
i-characteristics for which diam(Ck) and dist(Ck, p) tend to 0 as k → ∞, so that p
is indeed an i-singularity. We finish by showing that possibility (ii) cannot occur; to
do so we proceed as in the proof of Proposition 3.17. Let w0 be any point of E other
than e or f , and consider a small j-arc J ⊂ G, which extends from w0 to the right
of E (i.e., into D). Let J be parameterized by w(s), 0 ≤ s ≤ λ0, with w(λ0) = w0,
and let C(s) = l(s)r(s) be the elementary i-characteristic through w(s). As in the
the proof of Proposition 3.17, it follows from the minimality of E that either l(s) > p
for all s ∈ (0, λ0) or r(s) < p for all s ∈ (0, λ0). Assume, for definiteness, that the
latter occurs. By considering what happens as s → 0 we obtain, as in that proof, a
nonmonotone extended i-characteristic ab (with a < b with respect to the order on
bot(D)) which contains ef as a proper subarc, for which b < p and for which bf 
 ef .
But p /∈ bf by hypothesis, so that bf must have a subarc gh which is an elementary
i-characteristic for which g < p < h, which contradicts the minimality of E.

The following is an immediate consequence of Propositions 3.25, 3.27, and 3.28
and Definitions 3.21 and 3.26.

Proposition 3.29. If p ∈ ∂G is a singular point, then one of the following must
be the case:

(i) p is a type 0 singularity and therefore is the vertex of a fan.
(ii) p is a type 1 singularity and therefore is a k-singularity for k = 1 or 2.
(iii) p is a type 2 singularity and therefore is a k-singularity for k = 1 and 2.
Comment 3.30. The proof of Main Theorem 2.2 in the following section is based

on showing that the set of i-singularities at which there is no fan has α-dimensional
Hausdorff measure 0 for some α < 1.

Proposition 3.31 (type 1 singularities with fans). Let C be a subarc of an
elementary i-characteristic which joins p ∈ ∂G to q ∈ G and which is parameterized
by z(s), 0 ≤ s ≤ l, with z(0) = p. Assume that for some η < π

2

(3.22) φ+ η ≤ arg{z′(s)} ≤ φ+ π − η for 0 < s ≤ l,

where φ is the argument of the positive tangent to ∂G at p. If lims→0 arg{z′(s)} does
not exist, then C belongs to a nontrivial i-fan with vertex p.

Proof. For 0 < ξ < π, let R(p, ξ) denote the (open) ray

R(p, ξ) = {z : arg{z − p} = ξ}.

Without loss of generality we can assume that φ = 0. It follows immediately from
hypothesis (3.22) that C lies in the sector {z : η ≤ arg{z−p} ≤ π−η}. The hypothesis
that lims→0 arg{z′(s)} does not exist implies that there is some δ, 0 < δ ≤ η

K+1 , such
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that for arbitrarily small σ1 > σ2 > 0

(3.23) | arg{z′(σ1)} − arg{z′(σ2)}| ≥ 2δ.

For 0 < s ≤ l, let F (s) = a(s)b(s) be the elementary j-characteristic through z(s).
It follows from the last sentence of Proposition 3.15 that a(l) �= p �= b(l). Let D be
the j-characteristic subdomain bounded by F (l) and the arc of ∂G joining a(l) to b(l)
and containing p. Clearly, F (s) ∩C ∩G = {z(s)}, and a(s) is nonincreasing and b(s)
is nondecreasing with respect to the order on bot(D). Since, by Proposition 3.15,
diam(F (s)) → 0 as s→ 0, by replacing C by a sufficiently short initial subarc we can
assume that

(3.24) R(p, ξ) ∩ ∂D ⊂ F (l),
δ

2
≤ ξ ≤ π − δ

2
.

Now consider any pair of numbers σ1 �= σ2 in (0, l) for which (3.23) holds. Obvi-
ously, for at least one of them, call it σ, there must hold | arg{z′(σ)} − π

2 | ≥ δ. Then
F (σ) must have a subarc W = uv such that λ(θ(W )) = δ and z(σ) ∈ {u, v}. To see
this, say, for example, that arg{z′(σ)} ≤ π

2 − δ. If, along the arc of F (σ) emanating
to the left of C, the argument of the tangent were always within δ of its argument at
z(σ), then F (σ) would never cross R(p, π − δ), and it would therefore not be able to
exit D. An analogous argument may be used in the case that arg{z′(σ)} ≥ π

2 + δ.
From this it follows that there is a sequence sk → 0 of such numbers σ for all

of which the corresponding j-arc Wk = ukvk lies on one side of C or the other. To
be specific, say uk = z(sk) and Wk lies to the right of C. It follows from the quasi-
HP property that if W ′ = z(s)v is any translate of Wk along C in the direction of
increasing s, then

δ/K ≤ λ(θ(W ′)) ≤ Kδ.

From this and the fact that δ ≤ η
K+1 it follows in turn that for s > sk, along any

i-characteristic arc whose initial point is in Wk and which is parallel to the subarc
z(sk)z(s) of C, the inclination of the tangent is in the interval

[η −Kδ, π − η +Kδ] ⊂ [(K + 1)δ −Kδ, π − (K + 1)δ +Kδ] = [δ, π − δ].

For each k let

Sk = {R(z, ξ) : z ∈Wk and ξ ∈ [δ, π − δ]}.

Now diam(Wk) ≤ diam(F (sk)) and the latter tends to 0 as k → ∞, so that in light
of (3.24) by eliminating a finite number of elements of {sk} and renaming we can
assume that all the R(z, ξ) in each of the Sk meet ∂D a point of F before exiting G.
From this it follows that the translates of z(sk)z(l) along Wk all lie in G. This means
that for any s ∈ [sk, l] the complete translate of Wk along C from z(sk) up to z(s)
belongs to G. For the translate Tk of Wk up to z(l) we have that z(l) ∈ Tk ⊂ F (l),
and by the quasi-HP property λ(θ(Tk)) ≥ δ/K. This bound implies that there is a
positive lower bound on the length of the Tk. Thus ∩{Tk : k ≥ 1} = T is a nontrivial
arc of F (l), one of whose endpoints is z(l). However, the translate of T down to z(sk)
is contained in Wk ⊂ F (sk). Since dist(F (s), {p}) → 0 as s → 0, it follows that all
i-characteristics through T exit at p, and this establishes the existence of the desired
fan.
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We need the following elementary lemma.
Lemma 3.32. Let f be a bounded measurable function on [0, T ] such that∫ T

0 f(x)dx = A > 0. Then for any ρ ∈ [0, 1
2 )

λ({ξ : f(ξ) ≥ ρ
A

T
and

∫ ξ

0

f(x) dx ≥ ρA}) > 0.

Proof. Let f(x) ≤ M a.e. on [0, T ], and let Q = {ξ : f(ξ) ≥ ρA
T }. Obviously,

λ(Q) > 0. Let Q∗ be the set of density points of Q, so that λ(Q∗) = λ(Q) > 0. Let
ξ0 = sup{ξ : ξ ∈ Q∗}. If the set Q∗ ∩ {ξ :

∫ ξ

0
f(x) dx ≥ ρA} had measure 0, then for

each δ > 0 there would be a point ξ ∈ (ξ0 − δ, ξ0) for which
∫ ξ

0 f(x) dx < ρA, so that

A =
∫ ξ

0

f(x)dx+
∫ ξ0

ξ

f(x)dx +
∫ T

ξ0

f(x)dx < ρA+ δM + (T − ξ0)
ρA

T

< 2ρA+ δM < A,

for δ sufficiently small, so that λ(Q∗ ∩{ξ :
∫ ξ

0 f(x) dx ≥ ρA}) must be positive.
The following proposition plays a fundamental role in the proof of Main Theo-

rem 2.2.
Proposition 3.33 (essentially singularity-free boundary arcs). There is a func-

tion η = η(K, ρ) < ρ with the following property. Let G ∈ G(ρ), and let θ ∈ HP(G,K).
Let C be an extended i-characteristic of θ with proper contact point p ∈ ∂G. Let
E = pp′ be the elementary j-characteristic orthogonal to ∂G at p, and let D be the
j-characteristic subdomain of G bounded by E and an arc A of ∂G. Let b ∈ A ∩ C
be the endpoint of C on A, and let F be the subarc [b, p′] of A. If dist(p, F ) ≥ ρ,
then the subarc [p, p′′] of A with |p′′ − p| = η has at most countably many boundary
singularities of θ.

Proof. Without loss of generality we may assume that p = 0, that the positively
oriented tangent to ∂G at p has the direction of the positive real axis, and that A
extends to the right of p. Let C be parameterized by z(s) = x(s)+iy(s), with z(0) = p.
We shall introduce positive constants, which will depend only on K and ρ. In most
cases these constants will be denoted by the same symbol B, but the use of a single
symbol to denote different constants will not cause confusion or be misleading since
any statement in which B plays a role will be valid if B is taken to be any suitably
large number and since this convention is used only finitely many times. The symbol
B1, on the other hand, will refer to a specific constant, which again depends only on
K and ρ and which will have the same value every time it is used.

If we give A in nonparametric form by y = g(x), then

(3.25) |g(x)| ≤ x2

ρ
and |g′(x)| ≤ 2x

ρ
for 0 ≤ x ≤ 1

10ρ
.

Clearly, Proposition 3.12 holds for extended characteristics with the obvious wording
changes. Any j-arc emanating to the left of C from any point z of the subarc pb
of C will exit G at a point of F , so that the length of any such j-arc is a least
ρ − |p − z|. Since dist(z(s), ∂G) ≤ |z(s)| ≤ |s|, it follows from Proposition 3.12 that
| arg{z′(s)}| ≤ 1

2 for 0 ≤ s ≤ 1
B , so that for these values of s we have

1
B

≤ x′(s) ≤ 1 and |y′(s)| ≤ 1,
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and we can represent C nonparametrically by y = f(x), where f(x(s)) = y(s). For
0 ≤ s ≤ 1

B we have

|f ′(x(s))| = | tan(arg{z′(s)})| ≤ 2| arg{z′(s)}| ≤ B
√

dist(z(s), A)

≤ B
√

|z(s) − x(s)| + dist(x(s), A) ≤ B
√
f(x(s)) + x(s)2,

where the second inequality follows from Proposition 3.12 and the fourth inequality
follows from the first bound of (3.25) in the form dist(x(s), A)) ≤ (x(s))2

ρ . Thus there
is a B1 ≥ 1 such that

(3.26) |f ′(x)| ≤ B1

√
|f(x)| + x2 and |f(x)| ≤ B1x for 0 ≤ x ≤ 1

B1
.

For 0 ≤ x ≤ 1
B1

we then have the following. In the first place,

|f ′(x)| ≤ B1

√
B1x+ x2 ≤ 21/2B

3/2
1 x1/2,

so that in fact |f(x)| ≤ 2
321/2B

3/2
1 x

3
2 < B

3/2
1 x

3
2 . Repeating this argument we have

that |f ′(x)| ≤ 21/2B
7/4
1 x

3
4 , so that in fact |f(x)| ≤ 4

721/2B
7
4
1 x

7
4 < B

7
4
1 x

7
4 , so that

|f ′(x)| ≤ 21/2B
15
8

1 x
7
8 , and so on. Thus, in fact,

(3.27) |f(x)| ≤ B2
1x

2 for 0 ≤ x ≤ 1
B1

and

(3.28) |f ′(x)| ≤
√

2B2
1x for 0 ≤ x ≤ 1

B1
.

Before proceeding we remind the reader that each time the symbol B appears, it
may have a value larger than it did at its previous appearance. For any t ∈ [0, 1

2B ], let
J(t) be the j-half-characteristic emanating to the right of C (that is, downwards) from
t+ if(t) = α(t) and joining it to a point of A. Note that J(t) will reduce to a single
point if α(t) ∈ A. Let J(t) be given parametrically by ζt(s) with ζt(0) = α(t). Let t0 =
x2

0. Then, by (3.25) and (3.27), |f(t0)− g(t0)| ≤ Bx4
0 for 0 < x0 ≤ 1

B . For notational
convenience we can assume without loss of generality that arg{z′(s)} = θ(z(s)). We
show that, with an appropriately large value of B, 0 < x0 ≤ 1

B implies that

(3.29) |θ(ζt0 (s1)) − θ(ζt0 (0))| ≤ x0 =
√
t0

for every ζt0(s1) ∈ J(t0). If this were not true, there would be an s1 ∈ (0, λ(J(t0)))
such that |θ(ζt0 (s1)) − θ(ζt0 (0))| = x0. Let s2 be the smallest number in [0, s1] for
which |θ(ζt0(s2)) − θ(ζt0(0))| = x0, so that

(3.30) λ(θ(ζt0 ([0, s2]))) ≤ 2x0.

By increasing B if necessary, t0 = x2
0 <

1
B2 will be so small that

(3.31) s2 ≤ 2|f(t0) − g(t0)| ≤ Bx4
0.

By the preceding lemma (with ρ = 1
3 , T = s2, A = x0) it then follows that there is

an s3 ∈ (0, s2) for which

|Dθ(ζt0 (s3))| ≥
x0

3s2
≥ 1
Bx3

0
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and

(3.32) |θ(ζt0 (s3)) − θ(ζt0 (0))| ≥ x0

3
,

where the expressions inside the absolute values on the left-hand side of these last two
bounds have the same sign. Let R be the i-half-characteristic through ζt0(s3) emanat-
ing from J(t) towards its concave side (that is, to the left of J(t0) if d arg{ζ′t0(s)}/ds
is positive at s3 and to the right if it is negative). It follows from the characteristic
length bound (Proposition 2.5) that

(3.33) λ(R) ≤ Bx3
0.

We concentrate on the case that R emanates to the left of J(t0); the opposite case is
much easier to handle, as we indicate below. By (3.27), (3.31), and (3.33), R exits G
at a point g(β) with

β ≤ t0 + |f(t0)|+|ζt0(0) − ζt0(s3)| + λ(R)

≤ x2
0 +O(x3

0) ≤ 2x2
0 for x0 ≤ 1

B
.(3.34)

For t ≥ t0 let J(t) be the j-arc joining α(t) ∈ C to a point r(t) ∈ R, so that
J(t0) = ζt0([0, s3]). Obviously, J(t) is not defined for all t ∈ [t0, 1

2B1
], but, for any t

for which it is defined, J(t0) and J(t) are the j-sides of a characteristic quadrilateral
Q(t), whose i-sides are the arc α(t0)α(t) of C and the arc ζt0(s3)r(t) of R. From the
K-quasi-HP property and (3.30) it follows that

(3.35) λ(θ(J(t))) ≤ Kλ(θ(J(t0))) ≤ Kλ(θ(ζt0 ([0, s2]))) ≤ 2Kx0,

and by (3.28)

(3.36) λ(θ(ζt0 (s3)r(t))) ≤ Kλ(θ(α(t0)α(t))) ≤ 2K tan−1(Bt) ≤ Bt.

But for any t ≤ 10x2
0 for which J(t) is defined, we have from (3.25) and (3.28) that

|θ(ζt(s))| ≤ θ(α(t)) + 2Kx0 ≤ tan−1(Bt) + 2Kx0

≤ 20Bx2
0 + 2Kx0 ≤ 1

100

for x0 ≤ 1
B . From this together with (3.34) it is clear that g(β) is the endpoint of J(t1)

for some t1 ∈ [x2
0, 10x2

0]. It follows from the quasi-HP property that R, when oriented
from ζt0(s3) to r(t1), has a well-defined (one-sided) tangent, whose argument we de-
note by φ0. But then we have from (3.28), (3.32), (3.36), and the quasi-HP property
that

φ0 ≥ x0

3
− |θ(α(t0))|−Bt1 ≥ x0

2
− θ(α(x2

0)) − 10Bx2
0 ≥ x0

3
−Bx2

0,

so that

(3.37) φ0 ≥ x0

4
,

for x0 ≤ 1
B . By (3.25) and (3.24)

| tan−1(g′(β))| ≤ |g′(β)| ≤ 2β
ρ

≤ 4
ρ
x2

0 for x0 ≤ 1
B
.
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Taking into account the direction from which R crosses A at g(β), one sees that
φ0 ≤ | tan−1(g′(β))|, which is a contradiction for x0 < min{ 1

B ,
ρ
17}. If R emanates

to the right of J(t0), we get the same contradiction more easily because in that case
we move back along C towards p and there are smaller bounds throughout. This
establishes (3.29) for x0 ≤ 1

B (with, of course, an appropriately large B).
Thus, for

√
t ≤ 1

B , λ(θ(J(t))) ≤
√
t. From this together with (3.27) it follows

that

(3.38) |θ(z)| ≤
√
t+Bt ≤ 1

100
for z ∈ Jt, 0 < t <

1
B
.

Finally, after increasing B if necessary, we have | tan−1(g′(t))| ≤ 1
100 for |t| ≤ 1

B .
Let lt = λ(Jt), and let q(t) = ζt(lt) ∈ A. We now show that {q(t) : 0 ≤ t ≤ 1

B } is an
arc of A, for which we have to only show that q(t) is continuous on (0, 1

B ). Clearly,
we have from (3.38)

(3.39)
∣∣∣∣ arg

{
∂ζt(s)
∂s

}
+
π

2

∣∣∣∣ ≤ 1
100

for t ≤ 1
B

and 0 ≤ s ≤ λ(t).

If lt0 = 0, then what we have already shown implies that lt → 0 as t → t0, from
which it immediately follows that q(t) → q(t0) as t → t0. Thus consider a fixed t0
for which lt0 > 0. Let δ > 0 be small, and let s ∈ (lt0 − δ, lt0). Let the elementary
i-characteristic through ζt0(s) be parameterized by z = ws(σ) with ws(0) = ζt0(s). It
is clear that there is some δ′ ∈ (0, δ] such that for all σ ∈ [−δ′, δ′], ws(σ) ∈ J(t(σ))
(where t(σ) is some continuous function of σ) and |θ(ws(σ))− θ(ws(0))| ≤ 1

100 . Then
it is clear from (3.39) that for |σ| ≤ δ′, J(t(σ)) intersects A at a point within 2δ of
q(t0). The desired continuity follows immediately since there is a positive δ′′ such
that for |t− t0| < δ′′, J(t) intersects ws((−δ′, δ′)).

From this and (3.38) it follows that, in fact, for 0 < t < 1
B , |θ(z)| ≤ 2

√
t for z in the

domain bounded by Jt and the arcs of C and A with endpoints p and q(t). The desired
conclusion now follows immediately from Propositions 3.24, 3.25, and 3.31.

We end this section with a technical proposition to be used in the proof of the
main theorem given in section 4. The numbers η = η(K) and η′ = η′(K) arising here
are those of Proposition 2.8.

Proposition 3.34 (trapped area bound). There is a positive number η1 =
η1(K) ≤ min{1, η(K)} with the following property. Let (D,V ) be an i-characteristic
subdomain. Let U = u1u2 ∈ I(D) be an elementary i-characteristic such that |p−q| ≥
ξ for any p, q ∈ bot(D) for which [u1, u2] ⊂ [p, q]. Assume, furthermore, that U is
a subarc of an extended characteristic lying in D of which u ∈ {u1, u2} is a proper
contact point. Let U ′ ⊂ D be an elementary j-characteristic lying between U and V
whose endpoints are u, u′, with u′ < u1 or u′ > u2 according as u = u1 or u = u2,
respectively (in other words, u lies between u′ and the other endpoint of U). If, in
addition, |Δθ(U ′)| ≥ π

4 , then the area of the subdomain D′ of D between U and V is
bounded below by η1ξ2.

Proof. For definiteness we assume that u = u1, so that u′ < u1. Let V = v1v2.
Let U ′ be parameterized by w = w(s), 0 ≤ s ≤ L, with w(0) = u1, and for s ∈
[0, L) denote by U(s) 
 V the elementary i-characteristic containing w(s), so that in
particular U(0) = U . One of the endpoints a(s) of U(s) lies below U ′, and the other
endpoint b(s) is in [v1, v2]\(u1, u2). There are the following two possibilities.

Case A. The point b(s) ≥ u2 (i.e., lies to the right of u2) for 0 ≤ s < L. In this
case U 
 U(s), and consequently λ(U(s)) ≥ ξ, for all s ∈ [0, L), so that by second
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area bound (Proposition 2.8(ii)) the area of ∪{U(s) : 0 < s < L} ⊂ D′ is at least
η′ π

4 ξ
2.
Case B. There is some s ∈ (0, L) for which b(s) ≤ u1. Since b(0) = u2, there

is a decreasing sequence {sk} tending to some σ ∈ [0, L) such that b(σ) ≥ u2, but
b(sk) ≤ u1 for k ≥ 1. But then there is a nonmonotone (with respect to D) extended
i-characteristic C joining a0 = limk→∞ a(sk) to a point b0 = limk→∞ b(sk) ≤ a0 ≤ u1

for which b(σ) is a proper contact point. Then C has subarcs U(σ) = a(σ)b(σ)
and W = de, which are elementary i-characteristics and for which U(σ) 
 W and
U(σ) ∩W ⊂ {b(σ)}, and where d ∈ [v1, u′], e ∈ [b(σ), v2]. Since we therefore have
[u1, u2] ⊂ [d, e], we conclude that λ(W ) ≥ |e − d| ≥ ξ. Regard W as oriented from
e to d and consider the subarc W ′ of W of length ξ

2 which starts at e, and for each
p ∈ W ′ consider the j-arc J(p) emanating to the left of W and which joins p to a
point q(p) ∈ bot(D). Because J(p) cannot intersect C at any interior point of C other
than p, we have d ≤ q(p) ≤ u1. Since the length of any curve joining e to a point to
the left of u1 must be at least ξ, it follows that λ(J(p)) ≥ ξ

2 . The first area bound
(Proposition 2.8(i)) then implies that

μ

(⋃
{J(p) : p ∈ W ′}

)
≥ η

ξ2

4
.

The conclusions of Cases A and B together imply that the area between U and V is
at least min{η ξ2

4 , η
′ π
4 ξ

2} = η1ξ
2, where η1 = min{ η

4 ,
π
4 η

′}.

4. Proof of Main Theorem 2.2. The main ingredients in the proof are Propo-
sition 3.33 about essentially singularity-free boundary arcs, Proposition 3.29, Propo-
sition 3.17 regarding the structure of minD(A ∪ B), and the trapped area bound
(Proposition 3.34). We also use the preservation of quasi-HP conditions under linear
changes of variable, which allows one to normalize the arc one is working with to have
any convenient length. In reference to a quasi-HP function θ on G ∈ G, we will say
that E ⊂ ∂G is essentially i-singularity free (abbreviated ESF-i) if it has at most
countably many i-singularities of θ. As is explained in detail in the final paragraph
of the proof, it is enough to prove that there is a number τ = τ(K) < 1 such that on
any suitably small boundary arc the set of all i-singularities has Hausdorff dimension
at most τ . In the treatment of such arcs there is considerable freedom in the choice
of the various explicitly given numerical constants that we use, and for the most part
they are far bigger (or smaller) than necessary and have most often been chosen either
for the sake of convenience or to avoid the necessity of going into careful geometric
arguments. In the same vein, many of the bounds we give are far from being sharp, so
that, if we state that the value of some expression is bounded below by 1, it may be
clear that it is in fact bounded below by a considerably larger number. Furthermore,
in some instances we use symbols to denote numerical constants which could without
much effort be determined explicitly.

Let G ∈ G(ρ), so that the unsigned curvature of ∂G is everywhere at most 1
ρ . For

p ∈ ∂G let w(p) = eiφ(p) be the unit tangent to ∂G (with positive orientation) at p.
Let δ be any positive for which

(1) δ ≤ ρ
10000 .

This implies in addition that
(2) on any arc B of ∂G of length 100δ, λ(w(B)) < 1

100 , and that
(3) for any point p ∈ ∂G and any r ≤ 20δ, ∂N(p, r) meets ∂G in two points, so

that for such r, N(p, r) ∩G is essentially a semidisk.
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The corners of ∂N(p, 9δ) ∩ G can be replaced by circular arcs of radius δ
90 and then

smoothed at the joins to form a C2 curve which is the boundary of a subdomain

Σ = Σ(p, δ) ⊂ N(p, 10δ) ∩G

of G with the following properties:
(1a) Σ ∈ G( δ

100 ).
(2a) The arc N(p, 4δ)∩ ∂Σ, to be referred to as the bottom of Σ, and which is an

arc of ∂G, has unsigned curvature bounded above by 1
10000δ .

(3a) μ(Σ) ≤ 200δ2.
Now consider the X = X(p) = 1

δ (Σ(p, δ) − p) which has the following properties:
(1b) X ∈ G( 1

100 ).
(2b) B = N(p, 4) ∩ ∂X , to be referred as the bottom of X , is a C2 arc on which

the unsigned curvature is bounded above by 1
10000 .

(3b) μ(X) ≤ 200.
Note that what we call the bottom B of X is very close to a straight line segment

of length 8 centered at the “midpoint” p of what is close to being the straight portion
of the boundary of a semidisk of radius 9. Note also that by Proposition 2.3, θ(p+δz)
is a K-quasi-HP function on this X(p). A domain X having these three properties
will be called a normalized domain.

Until the end of the proof of the main theorem we work exclusively with quasi-HP
functions θ defined on a normalized domain X . It is clear from property (1b) that
there is a universal constant γ0 ∈ (0, 1) such that for any such X

(4.1) |z1 − z2| ≥ γ0distarc(z1, z2) for z1, z2 ∈ ∂X,

where distarc(z1, z2) denotes the length of the shorter arc of ∂X with endpoints z1, z2.
We shall prove the following proposition from which, as we will subsequently show,
the main theorem follows almost immediately. We stress that for an arc F of the
bottom of X , diam(F ) is the distance between its endpoints.

Proposition 4.1. There is a constant Δ0 = Δ0(K) > 0 such that if θ is a
K-quasi-HP function on a normalized domain X, then the bottom of X has an ESF-i
arc of diameter at least Δ0.

Proof. It is clear from Proposition 2.3 that we can assume that p = 0 and that
w(p) = 1. We establish the desired conclusion as follows (once again, the constants
chosen are unnecessarily big or small). Let H0 be an integer for which

H0 ≥ max
{

106

γ2
0η1

, 10000
}
,

and let

ε0 = η

(
K,

γ0

10H0

)
,

where η1 = η1(K) is the constant of the trapped area bound (Proposition 3.34) and
η is the constant of Proposition 3.33 about essentially singularity-free boundary arcs;
H0, η1, and ε0 depend solely on K. In particular we have

ε0 ≤ γ0

10H0
<

1
10H0

≤ 1
105

.
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Our strategy will be to show that there is some constant γ1 = γ1(K) such that
the assumption that

(4.2) the bottom B of X has no ESF-i arc of diameter ε0

leads to the conclusion that the bottom of X has an ESF-i arc of diameter ε0
106 or

one of diameter γ1, so that B has an ESF-i arc of diameter Δ0 = min{ ε0
106 , γ1}. This

underlying assumption (4.2) will be in force throughout and will be used many times.
The proof the existence of such a Δ0 is divided into three steps.
Step 1. There is an elementary i-characteristic C0 = ab which has the following

properties:
(i) |b− a| ≥ 1.
(ii) At least one of a, b lies in B.
Comment 4.2. We emphasize the words “at least one” since, were we able to

say “both endpoints lie in B,” we would be much closer to finishing the proof of the
theorem; in effect we could go directly to Step 3. After completing Step 1 we will use
it to show that there must in fact be a subarc J of B, for which diam(J) is bounded
below by some universal constant c and whose endpoints are joined by an elementary
i-characteristic; we accomplish this in Step 2 with c = 1

40 .
We begin the proof of Step 1 by noting that by (4.2) there is an i-singularity on

B within ε0 of the left endpoint of B, so that there is an elementary i-characteristic
C′

0 which joins two points of B, both of which are within 2ε0 of the left endpoint of
B. We work with the right half BR of B; the endpoints of BR are 0 and a point d to
the right of 0, with |d| = 4. In light of our assumption (4.2), it follows that there are
two elementary i-arcs F1 = a1a2 and F2 = b1b2 joining points of BR such that

|a1 − a2|, |b1 − b2| <
1
H0

and

1
H0

< dist(F1, 0), dist(F2, d) <
2
H0

.

Consider the characteristic subdomain (D,C′
0) for which bot(D) contains the ∂X\B,

so that the only part of X not in D is the union of C′
0 and the interior of the (small)

subdomain bounded by C′
0 and the arc of B which joins its endpoints. For the rest

of this step all order related statements refer to the order on bot(D). We apply
Proposition 3.17 to minD(F1 ∪ F2) with A = F1 and B = F2 and examine in turn
each of the three cases of its conclusion.

Case (i). If there were a contact point p of minD(F1 ∪F2) between F1 and F2 for
which

dist(F1, p), dist(F2, p) >
1
H0

,

then Proposition 3.33 would imply that there is an ESF-i subarc of BR of diameter
ε0, contrary to (4.2). Thus, for every contact point p of minD(F1 ∪ F2) between F1

and F2, one of

dist(F1, p) ≤
1
H0

or dist(F2, p) ≤
1
H0
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must hold. Say for definiteness that the former holds for some contact point p between
F1 and F2, and let a be the rightmost such point. Then it is clear that minD(F1∪F2)
has an elementary subcharacteristic C0 joining a ∈ B to a point b ∈ bot(D), where b
is either between F1 and F2 but within 1

H0
of F2 or to the right of F2 (with respect

to the order on bot(D)). In either event, |b − a| ≥ 1. The case dist(F2, p) ≤ 1
H0

is
handled similarly.

For the other two cases we let a, b, e, f , U , and L be as in the conclusion of
Proposition 3.17. Furthermore, let the left and right endpoints of C′

0 be l and r (with
respect to the order on bot(D), so that since bot(D) is very close to a segment of R,
l lies to the right of r in the usual sense).

Case (ii). Let α and β be the left and right endpoints of L. If |β − α| ≥ 1, then
we can take L for C0 since α is to the left of F1 and therefore is in B. Thus we may
assume that |β−α| < 1. Starting at a and traversing ∂X in the negative direction the
indicated points occur in the following order: a, β, a2, a1, α, e, l, r, f , b (with some
equalities possible). If |e − f | < 1, then the arc eα joins e, α ∈ B and |e − α| ≥ 2.
It is then easy to see that either eα has a proper contact point g for which |g − e|,
|g − α| > 1

H0
, which (in light of Proposition 3.33) would violate (4.2), or eα has a

subarc C0 which is an elementary i-characteristic with the desired properties. Thus
we need only consider what happens if |e− f | ≥ 1. But in this case C0 = ef has the
desired properties since it is an elementary i-characteristic and e ∈ B.

Case (iii). Here we assume that we are not simultaneously in Case (ii), since
were that so we would be done. The point b is obviously between F1 and F2, but,
since we are not in Case (ii), a is between l and F1. Let L = pq, with p < q. If
|b− p| ≥ 1

H0
, then, again by Proposition 3.33, B would have an ESF-i arc of diameter

ε0 contradicting (4.2). Thus we can assume that |b− p| < 1
H0

. If |p− q| < 1, then we
will have |b − a| > 1 and we can take for C0 any elementary i-characteristic closely
approximating the extended characteristic ab (recall the construction of extended
characteristics in section 3), since its endpoints can be made arbitrarily close to a and
b, and consequently can be chosen to lie in B. On the other hand, if the distance
between p and q is at least 1, then we can take C0 to be the elementary i-characteristic
pq, since p ∈ B. Thus we are done with Step 1.

Step 1 implies that there is a subarc P of ∂X and an elementary i-characteristic
C0 = ab with b− a ≥ 1 joining the two endpoints of P such that P contains a subarc
I of B, the distance between whose endpoints is at least 1 and one of whose endpoints
is an endpoint of C0. To be specific we assume that the left endpoint of I is the one I
has in common with C0. We shall henceforth work with the characteristic subdomain
(D0, C0) bounded by P ∪ C0, so that in particular all order related statements will
refer to the order on bot(D0) = P , unless otherwise indicated. We give P the usual
arc length parameterization z = z(s), 0 ≤ s ≤ L, with increasing s corresponding to
the positive orientation on ∂X and such that z(0) is the left endpoint of I. Obviously,
z([0, 1]) ⊂ I. By the bound of 1

10000 on the unsigned curvature of B it is clear that

(4.3) |z(s2) − z(s1)| ≥
9
10

|s2 − s1| for z(s1), z(s2) ∈ I.

(Obviously, a constant considerably closer to 1 than 9
10 would also work here.) We

also observe that for α, β ∈ bot(D0)

(4.4) |β − α| ≥ γ0 min{1, λ([α′, β′])} for all [α′, β′] ⊂ [α, β].

This follows from (4.1) and the fact that one of the arcs of ∂X joining α to β contains
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[α′, β′] and the other contains the endpoints of C0, the distance between which is at
least 1. It is also easy to see that

(4.5) dist(z(0), P\B) ≥ 1.

Step 2. There is a subarc J = pq of I with |q − p| ≥ 1
40 such that p and q are

joined by an elementary i-characteristic in D0.
To establish this we again use an argument based on the case that results when

Proposition 3.17 is applied. However, for this step this proposition must be ap-
plied, in conjunction with the trapped area bound (Propositions 3.34), in a sequential
manner. By our underlying assumption (4.2) there are elementary i-characteristics
A1, . . . , AH0 ∈ I(D0) for which the arc Ik ⊂ I ⊂ bot(D0) joining the endpoints of Ak

lies in the middle third of z([k−1
H0

, k
H0

]) (i.e., lies in z([k− 2
3

H0
,

k− 1
3

H0
])), 1 ≤ k ≤ H0. Note

that by (4.3)

(4.6) dist(Ik1 , Ik2) ≥
9

10H0

(
|k2 − k1| −

1
3

)
.

Assume inductively that we have elementary i-characteristics Ck, 0 ≤ k ≤ t, such
that Ck envelopes only Al(k), Al(k)+1, . . . , Ar(k), but none of the other An, such that

C0 � C1 � · · · � Ct,

1 = l(0) ≤ l(1) ≤ · · · ≤ l(t) < r(t) ≤ r(t− 1) ≤ · · · ≤ r(0) = H0

and such that r(k) − l(k) is strictly decreasing and satisfies

(4.7) r(k) − l(k) ≥ H0

3
, 0 ≤ k ≤ t.

We apply Proposition 3.17 with A = Al(t) andB = Ar(t) to analyze C = minD0(Al(t)∪
Ar(t)) and consider separately each of the three cases in the conclusion of that propo-
sition. More specifically, we will show three things: first, that if Case (iii) does not
occur, either we will have obtained the desired J (and will therefore stop) or we will
be able to produce Ct+1 with

(4.8) r(t + 1) − l(t+ 1) = r(t) − l(t) − 1;

second, that when Case (iii) occurs we have the desired J ; and third, that Case (iii)
will have to occur long before (4.7) can be violated.

Case (i). There can be no contact points of C between Al(t)+1 and Ar(t)−1, since,
were there to be such a point p, the distance from p to each of the endpoints of C would,
by (4.6), have to be at least 9

10H0
(2
3 ) > 1

10H0
, so that we can apply Proposition 3.33

to conclude that there is an ESF-i arc of diameter ε0 on B, which contradicts (4.2).
If there is a contact point of C between Ar(t)−1 and Ar(t), we will have obtained the
desired conclusion because in that case C would have to have a subarc E which is an
elementary i-characteristic with left endpoint to the left of Al(t)+1 and right endpoint
between Ar(t)−1 and Ar(t), so we stop the process here, Step 2 having been established
with J = E in light of (4.7). If there is no contact point of C between Ar(t)−1 and
Ar(t), then there is a contact point of C between Al(t) and Al(t)+1 and C has a subarc
Ct+1 which is an elementary characteristic whose left endpoint is between Al(t) and
Al(t)+1 and whose right endpoint lies to the right of Ar(t). We have l(t+ 1) = l(t)+ 1
and r(t + 1) = r(t), so that (4.8) holds.
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For the other two cases we use the notation of Proposition 3.17, namely L, U , ef ,
and ab, where ef = U = C = minD0(Al(t) ∪Ar(t)).

Case (ii) but not Case (iii). Because we are not in Case (iii), b lies to the right of
Ar(t). We have that a is between Al(t) and Al(t)+1, since otherwise |e−a| ≥ 9

10H0
(2
3 ) >

1
10H0

, by (4.6), and then, since [e, a] ⊂ [e, b],

|e− b| ≥ γ0 min{1, λ([e, a])} ≥ γ0 min{1, |e− a|} > γ0

10H0

by (4.4), so that by Proposition 3.33 applied to the contact point e there is an ESF-i
arc of diameter ε0 on B, which contradicts (4.2). From the definition of extended
characteristics it follows that there are elementary i-characteristics U ′ = a′b′ 
 U
with a′ and b′ arbitrarily close to a and b, respectively. The point a′ can therefore be
taken to lie between Al(t) and Al(t)+1, and b′ can be taken to lie to the right of Ar(t).
In this case we let Ct+1 be any such U ′ and set l(t+ 1) = l(t)+ 1 and r(t+ 1) = r(t),
so that we again have (4.8).

Case (iii). We will show that the first time this case occurs we will have obtained
the desired conclusion of Step 2. Thus we assume that when we apply Proposition 3.17
to produce C = minD0(Al(t) ∪Ar(t)) we are in Case (iii). Now we can only say that a
lies somewhere to the right of the left endpoint of Ct and that f lies somewhere to the
right of Ar(t), but, since we cannot use Proposition 3.33 to any effect (because f is not
necessarily in B), we cannot conclude, in analogy with the preceding case, that b lies
between Ar(t)−1 and Ar(t). If f ∈ B, then by (4.3) and (4.7) it follows that |f−e| ≥ 1

6 .
On the other hand, if f /∈ B, then since f ∈ P , (4.5) implies that |f − z(0)| ≥ 1.
Since by (4.7), |e − z(0)| < 7

10 , we have that |f − e| ≥ 3
10 . Therefore, no matter

what, |f − e| ≥ 1
6 . Let D′ be the subdomain of D0 bounded by ab ∪ [a, b]. It follows

immediately from (4.3) that λ([a, b]) ≤ 10
9 |b − a|. From the definition of extended

characteristics it follows that for any ε > 0 there are elementary i-characteristics E
inside D′, joining points of a′, b′ ∈ [a, b] and containing points e′ and f ′ which are
within ε of a, b, e, f , respectively. But it follows from Proposition 3.6 that

1
6
− 2ε ≤ |f ′ − e′| ≤ diam(e′f ′) ≤ diam(a′b′) ≤ 5λ([a′, b′]) ≤ 50

9
|b′ − a′|,

so that with ε appropriately small we see that |b′ − a′| > 1
40 . But taking ε sufficiently

small, the corresponding E will serve as the desired J .
Thus either we stop at t with the desired J or go on to t+ 1, the latter occurring

only if we are in Case (i) or if we are in Case (ii) but not Case (iii). We now show
that we must actually arrive at Case (iii) long before (4.7) can be violated. Say that
we have arrived at t = T < H0

3 . Let T ′ = [T
2 ]. At least one of the following two things

must have occurred:
(A) At least T ′ of the times that we passed from t to t + 1 we will have done so

because we are in Case (i) and there is a proper contact point pt of minD0(Al(t)∪Ar(t))
between Al(t) and Al(t)+1 and pt is the left endpoint of Ct+1.

(B) At least T ′ of the times that we passed from t to t + 1 we will have done so
because we are in Case (ii) but not Case (iii).

We deal with possibility (A) first. Say k1 < k2 are two values of t for which we are
in Case (i). Let C′ be the elementary j-characteristic, one of whose endpoints is pk2 .
Let its second endpoint be p′. If C′ were to cross Ck1+1, then, since a j-characteristic
can have at most one point in common with an i-characteristic, the other endpoint of
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C′ would lie to the left of Al(k1) or to the right of Ar(k1), and the distance between its
endpoints would, by (4.6), have to be at least 9

10H0
(2
3 ) > 1

2H0
. However (as we have

seen happen before), by (4.7) together with Proposition 3.33, B would then have an
ESF-i arc of diameter ε0, contradicting (4.2). Thus C′ does not cross Ck1+1, so that
p′ ∈ bot(D0). If α, β are points of bot(D0) with α lying to the left of Ck2+1 and β to
its right, then λ(αβ) ≥ 1

4 since T < H0

3 , so that by (4.4)

(4.9) |β − α| ≥ γ0

4
.

If p′ lies to the right of Ck2+1, then each point of Ck2+1 ∩ X is joined to a point
in bot(D0) to the right of Ck2+1 by a j-half-characteristic lying between Ck2+1 and
C′ 
 Ck1+1. Then a simple argument (which was used in the proof of Proposition 3.34)
based on Proposition 2.8(i) and the fact that for each point of the first half of Ck2+1,
which has length at least γ0

8 , the corresponding j-half-characteristic has length at
least γ0

8 shows that the area between Ck2+1 and Ck1+1 must be at least η(γ0

8 )2 =
ηγ2

0

64 ≥ η1γ2
0

64 . If, on the other hand, p′ < pk2 , then |Δθ(C′)| ≥ π
4 . Also, as we just saw,

(4.9) holds for all α, β ∈ bot(D0) with α lying to the left of Ck2+1 and β to its right.
Thus by the trapped area bound (Proposition 3.34) it follows that the area between
Ck2+1 and Ck1+1 is at least η1γ2

0

16 >
η1γ2

0

64 , so that this lower bound holds no matter

which side of Ck2+1 the point p′ lies on. But then (T ′−1)η1γ2
0

64 ≤ μ(X) ≤ 200, so that
T ′ ≤ 12800

γ2
0η1

+ 1. This in turn means that T ≤ 30000
γ2
0η1

< H0

10 (since γ0 and η1 are both in
(0, 1)).

Possibility (B) is handled in a similar manner. Say k1 < k2 are two values of
t for which we are in Case (ii) but not in Case (iii) when passing from Ct to Ct+1.
From the construction of Ck1+1 we have that U = minD0(Al(k1) ∪ Ar(k1)) = u1u2

is a subarc of a nonmonotone extended i-characteristic W which has another subarc
S which is also an elementary i-characteristic for which S 
 U and Al(k1) 
 S. It
follows in addition from that construction that S precedes Ck1+1 
 U , so that in
particular S precedes Ak for all k ≥ l(k1)+1. There is an elementary j-characteristic
S′ which joins u1 to a point u′ ∈ [u1, u2]. It follows immediately from (4.7) and (4.4)
that |u2 − u1| ≥ γ0

4 . We claim that S′ ∩ D0 ∩ Ck2+1 = ∅. To see this, assume to
the contrary that z ∈ S′ ∩ D0 ∩ Ck2+1. It then follows from (4.4) and (4.6) that
|u′−u1| ≥ 9γ0

10H0
(2
3 ) > γ0

2H0
, so that by Proposition 3.33, B would have an ESF-i arc of

diameter a least ε0 in contradiction to our underlying assumption (4.2). Now we apply
the trapped area bound to the i-characteristic subdomain (D1, Ck2+1), where D1 is
bounded by the curve made up of Ck2+1 together with ∂X\(α1, α2), where α1 < α2

are the endpoints of Ck2+1 (that is, D1 is the part of X that remains when the part of
D0 on and below Ck2+1 is removed). In particular S′\{u1, u

′} ⊂ D1 and U ∈ I(D1).
It is also clear from (4.7) and (4.4) that (4.9) holds for α and β in bot(D1) on opposite
sides of Ck1+1. For the same reason that S′ ∩D0 ∩ Ck2+1 = ∅, we have that u′ must
lie between u and α1 with respect to the order on bot(D0). This means that both
endpoints of S′ are in B, so that we clearly have Δθ(S′) ≥ π

4 . It also means that
with respect to the order on bot(D1), u1 lies between u′ and u2. We can now apply
the trapped area proposition (with (D1, Ck2+1) playing the role of (D,V )) to deduce
that the area between U and Ck2+1 is bounded below by η1γ2

0

16 , so that this same lower
bound holds for the area between Ck1 and Ck2+1. If the values of t in question are
t1 < t2 < · · · < tT ′ , and if Rk is the region between Ctk

and Ctk+1+1, then R1, R3, . . .
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are disjoint, so that (
T ′ − 2

2

)
η1γ

2
0

16
≤ μ(X) ≤ 200,

and therefore T ′ ≤ 6400
γ2
0η1

+ 2. Thus, as in the case that (A) holds, we again have

T < H0

10 . This concludes the proof of Step 2.
Step 3. Now we work with the J = pq ⊂ I, with |q − p| ≥ 1

40 , whose endpoints
are joined by a C = pq ∈ I(D0). Clearly, there are two points a1, a2 ∈ J such that if
we consider Xk = Σ(ak,

1
106 ), k = 1, 2, where the Σ (as defined in the third paragraph

of this section) are with respect to the normalized domain X with which we are now
working, then

106(Xk − ak) is a normalized domain, k = 1, 2,
dist(Xk, {p, q}} ≥ 1

500 , k = 1, 2,
dist(X1, X2) ≥ 1

500 , and
the bottoms of X1 and X2 are in J .

By what we have shown it then follows that either the bottom one of X1 or X2 has
an ESF-i of length ε0

106 , in which case we have reached the desired conclusion, or for
both k = 1 and k = 2 the bottom of Xk has a subarc pkqk, with

(4.10) |qk − pk| ≥
1

4 · 107

whose endpoints are joined by an elementary i-characteristic Ck. In this latter case,
since C joins the endpoints of J , Ck 
 C, k = 1, 2, we can apply Proposition 3.17
to maxD′(C1 ∪ C2), where D′ is the characteristic subdomain bounded by C ∪ [p, q].
But in light of the above conditions satisfied by the Xk and (4.10), and since all
contact points of maxD′(C1 ∪C2) are in J , Proposition 3.33 immediately implies that
there is a γ1 = γ1(K) for which J has an ESF-i arc of J of diameter γ1. Thus we
have proved that the bottom of a normalized domain has an ESF-i arc of length
Δ0 = min{ ε0

106 , γ1}.
Proof of the main theorem. It follows from the opening discussion and the

proposition we have just proved that there are δ0 = δ0(G), α0 = α0(K) ∈ (0, 1)
such that any arc B of ∂G of diameter at most δ0 has an ESF-i subarc B′, for
which diam(B′) > α0diam(B). It is then clear that there are numbers ξ0 = ξ0(K),
τ0 = τ0(K), both in (0, 1), such that every arc B with diam(B) ≤ δ0 has two disjoint
subarcs B1 and B2 for which

(diam(B1))τ0 + (diam(B2))τ0 < ξ0(diam(B))τ0 ,

diam(B1), diam(B2) < (1 − α0)diam(B),

B\(B1 ∪B2) is ESF-i.

Let diam(B) ≤ δ0. We start with two such arcs B1 and B2 corresponding to B, then
we apply the same fact to each of these to get four arcs of diameter l1, . . . , l4 < (1−α0)2

for which
∑
lτ0

k < ξ20δ
τ0
0 , and such that the complement of their union is ESF-i, then

we do so again to get eight arcs of length at most (1−α0)3 for which the corresponding∑
lτ0

k is less than ξ30δ
τ0
0 and for which the complement of their union is ESF-i, and

so on. At the nth stage we have 2n arcs B(n)
k for which

∑
k(diam(B(n)

k ))τ0 < ξn
0 δ

τ0
0 ,

which tends to 0, and for which B\(∪kB
(n)
k ) is ESF-i. At this stage the diameter of
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the largest of the 2n arcs is at most (1 − α0)n. But then B is the union of a set of
τ0-dimensional Hausdorff measure 0 and a set that has at most countably many i-
singularities. In light of Proposition 3.29 and the fact that there are at most countably
many vertices of fans on ∂G (Proposition 3.24) it follows that the set of singularities
on B, and therefore the set of singularities on all of ∂G, has Hausdorff dimension at
most τ0. This finishes the proof of the main theorem.

Corollary 4.3. Let Θ be a normal system. Then there is a τ = τ(Θ) < 1 such
that for any smoothly bounded G ⊂ C and any locally Lipschitz solution R of Θ on G
the set of points of ∂G at which R does not have a nontangential limit has Hausdorff
dimension at most τ .

Proof. This is an immediate consequence of the main theorem and Propositions
3.20 and 3.25.

5. Construction of solutions with singularity sets of positive Hausdorff
dimension. Although we have chosen to carry out our construction in H to avoid
cumbersome arguments, suitable, largely straightforward changes will allow an anal-
ogous procedure to be carried out in any smoothly bounded domain. Throughout
this section Θ will denote any fixed normal system. We begin with a brief discussion
of characteristic initial value problems for Θ since our construction largely proceeds
by joining together solutions of appropriate instances of such problems in domains
sharing a boundary characteristic.

Let Ck be C∞ curves parameterized by zk(s), 0 ≤ s ≤ lk, k = 1, 2, for which
zi(0) = zj(0) and for which z′i(0) and z′j(0) are mutually orthogonal. (In fact lk can
be infinite, as is the case, for example, when Ck is a ray.) We want to construct a
solution of the normal system Θ for which Ck is an k-characteristic arc, k = 1, 2. From
the definition of normal system, for any ρ1 there is a discrete set of values ρ2 such
that eiθ(ρ1,ρ2) and ieiθ(ρ1,ρ2) are tangent at z1(0) to C1 and C2, respectively. Given
any such admissible corner value ρ = (ρ1, ρ2) there are unique continuous functions
Rk(s) such that eiθ(ρ1,R2(s)) and ieiθ(R1(s),ρ2) are tangent to C1 and C2 at the points
z1(s) and z2(s), respectively. For t = (t1, t2) we define

R(t) = (R1(t2), R2(t1)), 0 ≤ tk ≤ lk, k = 1, 2,

and

θ(t) = θ(R1(t2), R2(t1)), 0 ≤ tk ≤ lk, k = 1, 2.

We seek ζ : [0, l1] × [0, l2] → C, where ζ(t) = ξ(t) + iη(t), for which eiθ(t) and ieiθ(t)

are tangent to the curves ζ([0, l1], t2) and ζ(t1, [0, l2]), respectively, at the point ζ(t)
and which satisfies the initial conditions

(5.1) ζ(t1, 0) = z1(t1) and ζ(t2, 0) = z2(t2).

The tangency condition can be written as the linear hyperbolic system

(5.2) cos θ
∂η

∂t1
− sin θ

∂ξ

∂t1
= 0, sin θ

∂η

∂t2
+ cos θ

∂ξ

∂t2
= 0.

The problem (5.2) with initial conditions (5.1) is well posed and has a C∞ solu-
tion θ for any C∞ initial curves C1 and C2. First consider the case in which the
ζ(t) = ζ(C1, C2, ρ, t) determined in this manner has an everywhere nonzero Jacobian
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determinant and is globally one-to-one. We then have a solution to the system Θ in
ζ([0, l1] × [0, l2]), which is a characteristic quadrilateral, given by

(5.3) R(ζ(t)) = R(t).

We refer to this solution as R(C1, C2, ρ, z) and to the characteristic quadrilateral in
which it is defined as Q(C1, C2, ρ). Even if ζ is not one-to-one on [0, l1]× [0, l2], then
(5.3) gives a multivalued solution of Θ on any domain ζ(E), provided that ζ is a
local diffeomorphism on E. Let i and j be such that arg{z′j(0)} = arg{z′i(0)} + π

2 .
It is a well-known property of the characteristic initial value problem for genuinely
nonlinear systems that if d arg{z′

i(t)}
dt ≤ 0 on [0, li] and

d arg{z′
j(s)}

ds ≥ 0 on [0, lj ], then
ζ will be locally diffeomorphic on [0, l1] × [0, l2]. This is simply a reflection of the
fact that, in light of the quasi-HP nature of the the associated inclination function
and the length monotonicity property (Proposition 2.7), under these hypotheses the
curvature of j-characteristics will not blow up as one moves along i-characteristics
away from the convex side of a j-characteristic C, and analogously when the roles of
i and j are interchanged. We note that this property holds in the particular case in
which one of the initial characteristics is a line segment or ray. We also note that it
holds even if one or both of the initial curves is not a simple arc, so that ζ will be a
local homeomorphism if, for example, one of these curves is a circle covered several
times.

We next need to discuss briefly the smooth adjunction of line segments and circles
to C∞ curves in a specific, constructive fashion; this is another essential element of the
construction process. Let C be a C∞ curve parameterized by Z(s), 0 ≤ s ≤ l+ δ. We
want to perform the adjunction with no change in Z on [0, l]. Let κ0 be any number.
It is clear that there is an operator F (Z, l, δ, κ0, τ) such that w = F (Z, l, δ, κ0, τ) ∈
C∞([0,∞)) has the following properties:

(i) w(s) = Z(s), 0 ≤ s ≤ l.
(ii) If w′(s) = eiφ(s), then φ(s) = (s− l − δ)κ0 + τ , s ≥ l + δ.

It is clear how this can be done. Indeed, if Z ′(s) = eiα(s) on [0, l + δ], we let β(s) be
the continuous function which coincides with α(s) on [0, l + δ/3], which is given by
(s − l − δ)κ0 + τ for s ≥ l + 2δ/3 and is linear on [l + δ/3, l + 2δ/3]. We let σ be a
specific nonnegative C∞ function on R with support in (−1, 1) and

∫∞
−∞ σ(s)ds = 1

and then convolve β(s) with 10
δ σ(10s

δ ). The desired w = F (Z, l, δ, κ0, τ) is defined
by with w′(s) = eiβ(s), w(0) = Z(0). We note that if C is convex to the right (left)
and κ0, τ − κ0δ/3 − α(l + δ/3) ≥ 0 (≤ 0), then the curve given by F (Z, l, δ, κ0, τ) is
concave towards the same side as C.

We now introduce notation and terminology to be used in our construction. We
denote by CL the family of C∞ arcs with initial and terminal straight subarcs. Let
S(ε) denote the class of C∞ curves parameterized by z = z(s), 0 ≤ s ≤ L, with the
following properties:

(i) �{z(0)} = �{z(L)} = −ε.
(ii) arg{z′(0)} = π

2 + ε and arg{z′(L)} = −(π
2 + ε).

(iii) d arg{z′(s)}
ds ≤ 0, 0 ≤ s ≤ L.

(iv) C ⊂ N(∂N(0, 1) ∩ H, 2ε).
(v) C ∈ CL.

For t > 0 and α ∈ R we denote {tS + α : S ∈ S(ε)} by S(ε, t, α). If C is any
arc joining a < b in H, B(C) will denote the set whose boundary is C ∪ [a, b]. For
two such arcs C1, C2 with C1 ⊂ B(C2) we denote the closure of B(C2)\B(C1) by
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E(C1, C2). In what follows we will often deal with a C∞ solution R defined only in
a neighborhood in B(C) of C, where C is an i-arc of R (by which we mean that R
can be extended to a C∞ solution in a two-sided neighborhood of C and that C is an
i-arc of this extension). In this case we shall call C a one-sided characteristic of R.
An i-characteristic C of a solution R will be said to satisfy the orthogonal segment
condition (OSC) if the j-characteristics passing through each point c ∈ C all contain
a straight line subarc containing c in its interior; obviously, it is enough for a single
point c ∈ C to have this property for the OSC to hold. We extend the use of the term
OSC in the obvious manner to apply to one-sided characteristics. If D is a domain
separated into two subdomains D1 and D2 by an arc C, and R(1) and R(2) are C∞

solutions in these domains, respectively, for which C is a one-sided i-characteristic
satisfying the OSC, then together R(1) and R(2) give a C∞ solution in all of D. Our
construction uses this simple fact, which allows for the smooth pasting together of
solutions of characteristic initial value problems in contiguous domains.

Next we discuss a specific class of characteristic initial value problems in which
one of the initial characteristics is a ray. Let C be parameterized by z(s) satisfying

(5.4) D arg{z′(s)} ≤ 0, 0 ≤ s ≤ L, with �{z(0)}, �{z(L)} < 0,

and

(5.5) arg{z′(0)} ≥ π

2
+ ε and arg{z′(L)} ≤ −

(
π

2
+ ε

)
,

and consider the solution of the initial characteristic value problem where Ci = C
and Cj is a ray orthogonal to C at z(0) and emanating to the left of C. Then the
j-characteristics of any corresponding solution are all rays orthogonal to Ci and the
i-characteristics are the orthogonal trajectories of this family of rays, and in fact are
the curves C(r), r > 0, parameterized by z(t)+rz′(t)i, 0 ≤ t ≤ L. As r tends to ∞ the
C(r) tend to arcs of a circle of radius r and radian measure arg{z′(0)} − arg{z′(L)}.

We next construct two special C∞ arcs Ui, where it is understood that the ε
referred to below is some sufficiently small positive number. The arc U1, parameterized
by u1(s), 0 ≤ s ≤ λ1 will have the following properties:

(i) D arg{u′1(s)} ≤ 0, 0 ≤ s ≤ λ1.
(ii) �{u1(0)} = −ε and u1(λ1) ∈ R.
(iii) U1 ∈ CL.
(iv) u′1(0) = ei( π

2 +ε).
(v) u′1(s) = e−iπ/4, λ1 − d ≤ s ≤ λ1 for some d > 0.
(vi) U1 ∩N(0, 2) = ∅.
(vii) Let any C′ be any curve in S(ε), and let α = α(C) be such that the initial

point of C = C′ + α ∈ S(ε, 1, α) is p = −1 − εi. Let ρ ∈ R
2 be such that ieiθ(ρ)

is tangent to C at its left endpoint p. Then there is a solution to the system Θ in
E(C) = E(C ∩ H, U1 ∩ H) for which R(p) = ρ, for which C is a 2-characteristic and
U1 is an 1-characteristic, and for which both C and U1 satisfy the OSC.

We stress that the idea is that for the appropriate translate C of any C′ ∈ S(ε)
and any admissible value ρ of R at the initial point (i.e., left endpoint) cl of C we
have a solution in the domain E(C ∩H, U1∩H). If we can construct such a curve, it is
obvious that it will have a right-hand counterpart U2, having properties corresponding
to (i)–(vii). In regard to (v), U2 will terminate in a line segment of slope π

4 at its
left end. In regard to (vii), U2 and C will be 2- and 1-characteristics, respectively,
and the initial value ρ will be the value of R at the left endpoint of C, which in any
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case determines its value at the right endpoint of C since the total curvature of C is
exactly π + 2ε. For lack of a better term we shall refer to U1 and U2 as universal 1-
and 2-arcs for the system Θ. It is clear that translates Ui + α, α ∈ R of Ui have an
analogous universal property.

We show that such a U1 exists, the existence of U2 being identical apart from
trivial details. Let A ≤ | ∂θ

∂Rk
| ≤ B on R

2 (as in the definition of normal system), so
that the net of characteristics of any solution of the system Θ in a domain G is a
K-quasi-HP net on G with K = B

A . Let W be any C∞ arc parameterized by w(s),
0 ≤ s ≤ L, for which D arg{w′(s)} ≤ 0 and which has total curvature −Δ < 0. Let
V ∈ CL be parameterized by v(s), 0 ≤ s ≤ 1, with v(0) = w(0), v′(0) = iw′(0), for
which 0 ≥ D arg{v′(s)} ≥ −δ. One easily show that for any admissible corner value ρ
the characteristic coordinate mapping ζ(V,W, ρ, t) is a local diffeomorphism on all of
the corresponding characteristic coordinate rectangles S = [0, 1] × [0, L] for all such
W , provided that δK(L + KΔ) < 1. To do so, one simply subdivides S into small
subrectangles and solves the corresponding initial value problem piece by piece, the
key point being that the length change estimate (Proposition 2.5) implies that no
blow-up will occur (that is, the Jacobian determinant will never vanish). Indeed, in
light of the convexity of W the lengths of its translates increase, while in light of the
concavity of V the lengths of its translates decrease. The characteristic length bound
as applied to the translates of W shows that they all have length at most L+KΔ, so
that by the characteristic length bound the lengths of the translates of V will remain
bounded away from 0 if δK(L + KΔ) < 1. We start with W = W0, V = V0 and
inductively define ρk+1 to be the value of R(Vk,Wk, ρk, ζ(Vk,Wk, ρk, (1, 0))), that is,
the value of R(Vk,Wk, ρk, p), where p is the the final endpoint of Vk, and we define
Wk+1 to be the final translate of Wk along Vk to the end of Vk, that is, Wk+1 =
ζ(Vk,Wk, ρk, (1, [0, Lk])), where Lk = λ(Wk). By the foregoing Lk+1 ≤ Lk + KΔ,
and the total curvature of Vk can be any −δk, for which 0 ≤ δk ≤ 1

2K(Lk+KΔ) . We
obviously have Lk ≤ L0 + kKΔ, so that the only restriction on δk is 0 ≤ δk ≤

1
2K(L0+(k+1)KΔ) , this upper bound obviously being the general term of a divergent
series for Δ > 0. Let ε = 1

100 , so that if W0 = C, where C is the appropriate translate
of any element of S(ε) as indicated in (vii), then π − 1

10 ≤ λ(W0) ≤ π + 1
10 and

Δ = π + ε. Clearly, there is some positive integer M such that for some sufficiently
small η ∈ (0, π

4 ) there is a curve V , the union of V0, . . . , VM , parameterized by v(s),
0 ≤ s ≤ M , such that V terminates in a straight line segment whose initial point is
in H and whose slope is − tan η. We note that by reducing the size of ε if necessary,
we can assume that the first subarc V0 of V ⊂ V 1 intersects R at a point v0(s) for
which arg{v′1(s)} ∈ (−π,−π + δ0) ⊂ (−π,− 3π

4 ). In addition, we can allow the length
of the final straight segment of V to be as large as we want, so that we can take
the imaginary part of the terminal point of V to be −ε. We emphasize that V is
independent of W0. We next extend V at its right end by smoothly adjoining a ray
with slope exactly −π

4 (by means of F (v, λ(V ) − ε
2 ,

ε
2 , 0,−

π
4 ), as described above,

where v(s) parameterizes V ); this extended curve will be called V 1. We now consider
the characteristic initial value problem with V 1 as the 1-arc and, as the 2-arc, a
segment A of length r orthogonal to it at its initial point and emanating to the left
of V 1. Because V 1 satisfies the OSC, the solution so generated will be C∞ in the
domain made up of E(C ∩H, V 1 ∩H) together with translates of A around V 1. Note
that the corresponding solution is constant in the quarter-plane made up of all the
translates of A emanating from points on the ray in which V 1 ends. From this it is
clear that for r = λ(A) sufficiently large, an appropriate subarc of the translate V 1(r)
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of V 1 to the outer endpoint of A has properties (i), (v), (vi), and (vii). Properties (ii),
(iii), and (iv) can be achieved in the following manner. First, we take r so large that
at the left intersection point of V 1(r) with R the angle formed by V 1(r) is within ε

4 of
π
2 . Then we remove the arc of V 1(r) joining its initial point to a point with imaginary
part between − ε

2 and 0 and at which the direction of the tangent vector is within ε
2

of π
2 . Finally, we can use the operator F to smoothly adjoin an arc to the remaining

part of V 1(r) in such a way that (ii), (iii), and (iv) hold. The resulting curve is our
U1. Note that in (vii) we do not require the solution to bear any particular relation
to the part of U1 that lies in the lower half-plane.

The left and right endpoints of U1 will be called e1 and m1; the left and right
endpoints of U2 will be called m2 and e2 (m for middle and e for end, for reasons to be
made clear momentarily). It is clear that U1 depends solely on Θ and the parameter
ε and that once these have been fixed, the solution R generated in E(C) depends on
C but that its values on U1 depend only on ρ = R(cl), cl being the left endpoint of
C; analogous statements hold for U2. For ρ ∈ R

2 we denote by fk(ρ) the value of this
solution R at mk. We also observe that in the case of U1 we always have

(5.6) θ(f1(ρ)) − θ(ρ) = θ(m1) − θ(cl) = −
(

5π
4

+ ε

)
.

As indicated above, in the case of U2 we still take as ρ the value of R at the left
endpoint cl of the initial curve C used in the above construction which, as we have
pointed out, uniquely determines the value of R at the right endpoint of C since the
total curvature of all arcs in the family S(ε) is π + 2ε. Here we have that

(5.7) θ(f2(ρ)) − θ(ρ) = θ(m2) − θ(cl) = −(π + 2ε) +
(

5π
4

+ ε

)
=
π

4
− ε.

The fk are continuous functions of ρ and there is a number B0 (that depends only on
the bounds on the ∂θ

∂Rk
associated with Θ) such that

(5.8) ‖fk(ρ) − ρ‖ ≤ B0, ρ ∈ R
2, k = 1, 2,

where the norm is just the Euclidean norm in R
2 (actually, any norm will do).

Both the continuity and the bound come from the simple observation that on any
i-characteristic, Ri is constant and Rj is a Lipschitz continuous function of the tan-
gent inclination (with the Lipschitz constant depending solely on the system Θ).

For our next step we consider translates U ′
1 = U1 −m1 and U ′

2 = U2 −m2 which
have the common point 0. Note that U ′

1 and U ′
2 are orthogonal to each other at

0 and so can be used as initial curves for a characteristic initial value problem, U ′
k

being a k-arc. For ε sufficiently small (so that U1 and U2 are virtually orthogonal
to the horizontal line �{z} = −ε at e1 and e2, respectively) convexity considerations
easily show that for any admissible corner value ρ = R(0) the mapping ζ(U ′

1, U
′
2, ρ, t)

is one-to-one on the corresponding characteristic coordinate rectangle. To see that
this is indeed the case, note that since the change in θ from the left end of U ′

1 to
the right end of U ′

2 is −(3π
2 + 2ε) (that is, the change in θ along U ′

1 + the change in
θ along U ′

2, both from left to right, is −(3π
2 + 2ε)), the total change along the top

two sides of the characteristic quadrilateral is also −(3π
2 + 2ε). The resulting solution

Rρ(z) = R(U ′
1, U

′
2, ρ, z) and the quadrilateral Qρ = Q(U ′

1, U
′
2, ρ) itself depend solely

on ρ = R(0). Note also that because U ′
1, U

′
2 ∈ CL, the other two sides of Qρ also

belong to CL.
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Next we next show how we can produce curves Xk ∈ S(ε, tk, αk), such that
B(Xk ∩ H) ⊃ Qρ ∩ H, and a solution in B(Xk ∩ H)\(Qρ ∩ H) which gives a C∞

extension of Rρ for which Xk is a one-sided k-arc which satisfies the OSC. We show
how to get X2, the case of X1 being identical apart from obvious details.

First, we extend U ′
2 on the right by continuously adjoining a circle of radius ε

10
lying in the open lower half-plane by using F (u2−m2, λ(U2)−δ, δ, 10

ε ,−(π
2 +ε)), where

u2 parameterizes U2 from left to right (i.e., with u2(0) = m2) and where δ is so small
that u2([λ(U2)−δ, λ(U2)]) is a line segment. This in turn allows us to extend the other
2-side of Qρ rightwards and eventually downwards (in light of the quasi-HP property)
until it gets to a point p for which �{p} = − ε

2 ; call this extended 2-side T . The
corresponding solution is defined in the simply covered domain E = E(U ′

1 ∪ U ′
2, T

′),
where T ′ is the subarc of T which joins a point of R to the left of U ′

1 to a point of R

to the right of U ′
2. This means that if we change T below R to form a new curve T2,

which we subsequently use as the 2-arc for a characteristic initial value problem with a
straight initial 1-arc outside of E, then the solution is compatible with the restriction
to E of the solution we have so far. Using an appropriate instance of the operator F ,
we obtain an extension T2 of T by smoothly adjoining to T at its right end a segment in
such a way that the argument of the tangent at the right endpoint of T2 is less than or
equal to −(π/2+ε). Obviously, T2 ∈ CL. It is also clear from the construction that T2

depends solely on ρ = R(0) and that all derivatives of its arc length parameterization
depend continuously on ρ. This outside curve T2 clearly satisfies the hypotheses (5.4)
and (5.5) of the straight line characteristic initial value construction. Using a straight
1-arc of length r0 we therefore obtain an “almost circular” 2-arc S parallel T2 which
is contained in N(0, (1 + ε/2)r0)\(0, (1 − ε/2)r0). Let q1 < q2 be the points of S ∩ R.
By choosing r0 sufficiently large we can be certain that the interior angles of this
S at q1 and q2 are within ε

2 of π
2 . Simple curvature considerations show that there

is a single, sufficiently large value of r0 that works for all admissible corner values
ρ = R(0). Let p1, p2 ∈ T2 lie on the straight 1-characteristics which terminate at q1
and q2, respectively. It is clear that for the solution our process has generated, R(p1)
and R(p2) are continuous functions of ρ which, moreover, satisfy bounds of the form
(5.8) (with fk(ρ) replaced by R(pk) and with an appropriate B0). The solution is
defined and C∞ in the part of H between U ′

1 ∪ U ′
2 and S, and S is a 2-characteristic

arc satisfying the OSC. Finally, we smoothly alter S below R to obtain an S′ such
that for appropriate ξ = ξ(ρ), the arc X2 = ξS′ belongs to S(ε). If xl is the left
endpoint of X2, then g2(ρ) = R(xl) is a continuous function of ρ, and similarly for the
value g1(ρ) of R at the left endpoint of the analogously constructed X1. Here again
one easily sees that in the case of X2

(5.9) θ(g2(ρ)) − θ(ρ) =
3π
4

+ ε− π

2
=
π

4
+ ε

and in the case of X1 that

(5.10) θ(g1(ρ)) − θ(ρ) =
3π
4

+ ε.

Let U = U ′
1 ∪ U ′

2. By the universal property of U ′
1, for appropriate t(2) and α(2)

we can use t(2)X2 + α(2) as the 2-arc under U ′
1 (see property (vii) in the discussion

of the universal arcs given above), and similarly we can use some t(1)X1 +α(1) as the
1-arc under U2. These t(k)Xk + α(k) in turn come from t(k)U + α(k). If we perform
the construction of Xk using the value ρ(k) of R at the center α(k) of t(k)U + α(k),
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then the value of R at the left endpoint of Xk is gk(ρ(k)), so that the value of the
solution R (corresponding to property (vii) of universal arcs) in the part of the B(U ′

j)
between t(i)U +α(i) and U ′

j at 0 is fj(gi(ρ(i))). We claim that there is a ρ(i) for which
fj(gi(ρ(i))) is any given admissible corner value ρ0 for the characteristic initial value
problem with 1- and 2-arcs U1 and U2. To see that such a ρ(i) exists in the case that
i = 2, j = 1, for example, note that from (5.6) and (5.9) we have that

θ(f1(g2(ρ(2)))) − θ(ρ(2)) = θ(f1(g2(ρ(2)))) − θ(g2(ρ(2))) + θ(g2(ρ(2))) − θ(ρ(2))

= −
(

5π
4

+ ε

)
+
π

4
+ ε = −π.

Thus, given ρ0, the point ρ(2) must lie on the curve

(5.11) θ(R) = θ(ρ0) + π

in the R-plane. The level curves θ(R) = θ0 in the R-plane are the graphs Ri =
hi,θ0(Rj) of monotone functions, for which h′i,θ0

are uniformly bounded and uniformly
bounded away from 0. Thus as ρ(2) moves along the curve (5.11) it follows from the
continuity of f1 and g2 and the bound (5.8) and the corresponding bound for the gk

that f1(g2(ρ(2))) traces out the entire curve θ(R) = θ(ρ0), so that there is indeed a
(unique) ρ(1,2) for which f1(g2(ρ(2))) = ρ0. The case of f2(g1(ρ(1))) = ρ0 is handled
in the same manner, using (5.7) and (5.10) instead of (5.6) and (5.9).

It is now clear that we can iterate this construction to produce a solution R∗ =
(R∗

1, R
∗
2) in B(U ′

1∩H)∪B(U ′
2∩H), and, in fact, a solution in all of H, by appropriately

extending the solution we have in X1 (or in X2, for that matter). More specifically,
the solution in B(U ′

1 ∩ H) ∪B(U ′
2 ∩ H) is obtained by placing a suitable similar copy

of the form tU +α under each of U ′
k in the way described and then under each of the

corresponding tU ′
k +α smaller similar copies of the form tU +α (with a smaller value

of t, of course). At the nth stage (where we regard the initial U as corresponding to
the 0th stage) we have 2n disjoint similar copies U (n)

l , 1 ≤ l ≤ 2n, of U . Let I(n)
l be

the interval of R joining the left and right endpoints of U (n)
l ∩ H. It is an immediate

consequence of the shape of the U ′
k that (once ε has been fixed) there is a constant

δ1 = δ1(Θ) > 0 such that for all points p ∈ I
(n)
l

λ(θ(R∗({z : δ1 < arg{z − p} < π − δ1, z ∈ U
(n)
l ∩ H}))) ≥ δ1.

Since, on U ′
i , θ and Rj are bi-Lipschitz functions of each other, it follows that there

are r1 = r1(Θ), δ2 = δ2(Θ) > 0 such that for all p ∈ I
(n)
l the range of R∗

k in

N(rn
1 , p) ∩ {z : δ1 < arg{z − p} < π − δ1}

is an interval of length at least δ2, k = 1, 2. Let M (n) = ∪{I(n)
l : 1 ≤ l ≤ 2n}. Then

M = ∩{M (n) : n ≥ 1} consists entirely of boundary singularities of the solution R∗

that we have constructed. To those who have read about Cantor sets it is probably
obvious that M has positive Hausdorff dimension, but for completeness we include an
appropriately modified version of the argument given by Falconer [F] for the classical
excluded middle third case.

First of all, it is clear from the self-similar nature of the construction that there
is a number γ ∈ (0, 1) such that the minimum distance between the 2n intervals
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making up the set M (n) is bounded below by γn. We show that the τ -dimensional
Hausdorff measure of M is positive, where τ is defined by

γτ =
1
2
.

Let {Gk} be an open cover ofM , which we can assume to be finite since M is compact.
Let max{diam(Gk)} < 1. For each k there is a nonnegative integer l = l(k) such that

γl+1 ≤ diam(Gk) < γl.

From the definition of γ it follows that such a Gk can have a nonempty intersection
with at most one of the intervals that make up M (l). Consequently, for p ≥ l(k) at
most 2p−l(k) of the intervals making up M (p) can have a nonempty intersection with
such a Gk. For each p ≥ l = l(k) we therefore have

2p−l =
2p

2l
=

2p(γl+1)τ

2lγτlγτ
≤ 2p(diam(Gk))τ

(2γτ )lγτ
.

Let p be so large that min{diam(Gk)} ≥ γp+1, so that p ≥ l(k) for all k. Since there
are 2p intervals in M (p), if we denote by Nk the number of intervals touched by Gk,
then

2p ≤
∑

k

Nk ≤
∑

k

2p(diam(Gk))τ

(2γτ)l(k)γτ
=
∑

k

2p(diam(Gk))τ

γτ
,

so that ∑
k

(diam(Gk))τ ≥ γτ =
1
2
.

This means that the τ -dimensional Hausdorff measure of M is at least 1
2 , so that M

has Hausdorff dimension at least τ .

6. A few concluding remarks. We briefly discuss some of the issues and prob-
lems suggested by the foregoing. In the first place, it would be interesting to determine
whether Corollary 4.3 is true for genuinely nonlinear systems (see the definitions of the
terms “system” and “genuinely nonlinear” between relations (1.4) and (1.5)) which
are not necessarily normal. Probably, though, some hypothesis in the spirit of (ii) of
Definition 1.1 as well as some bound like

ε < |θ1(R) − θ2(R)| < π − ε for all R ∈ R
2

is necessary, so that, using the approach of section 5, or otherwise, one might try to
construct a solution of a 2×2 genuinely nonlinear hyperbolic system not satisfying one
or the other or both of these conditions and which has a set of boundary singularities
of Hausdorff dimension 1. In a wider context one can ask if Corollary 4.3 has any
counterparts for an appropriate class of sufficiently nonlinear n×n planar hyperbolic
systems. In reference to normal systems, our analysis leaves open the question of
whether in a half-plane H, for example, there can be a solution for which the set of
boundary singularities of type 1 has positive Hausdorff dimension. Corresponding to
such a solution there would have to be set A ⊂ ∂G of positive Hausdorff dimension
such that for each a ∈ A there is a characteristic Ca exiting at a but for which
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hypothesis (3.22) of Proposition 3.31 does not hold. Also open is the question of
whether the word “nontangential” is necessary in the conclusion of Main Theorem 2.2.

As we shall show elsewhere, the ideas of section 5 can be used to construct in
an arbitrary Jordan domain cps-mappings with arbitrary (distinct) principal stretch
factors which have infinitely many isolated singularities, and in fact these singularities
can be of spiral type (see [G3] for the classification of isolated singularities of cps-
mappings). This raises the question of how such singularities can be distributed, and
in this regard we conjecture that there is some absolute constant γ > 1 such that
if {an} is the sequence of isolated singularities of any cps-mapping in any smoothly
bounded Jordan domain for which {dist(an, ∂G)} is nonincreasing, then

(6.1)
∑

n

dist(an, ∂D)γn <∞.

Note that this was shown with γ = 1 in [G3, Corollary 4.1]. More generally, there are
other 2 × 2 genuinely nonlinear systems for which there exist corresponding unam-
biguously defined nets of characteristics which have isolated singularities, and for any
such system one could attempt to obtain a classification of such singularities along
the lines of [G3] and seek a bound of type (6.1) on their density.
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ASYMPTOTIC STABILITY OF ASCENDING SOLITARY MAGMA
WAVES∗
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Abstract. Coherent structures, such as solitary waves, appear in many physical problems,
including fluid mechanics, optics, quantum physics, and plasma physics. A less studied setting is
found in geophysics, where highly viscous fluids couple to evolving material parameters, modeling
partially molten rock, magma, in the Earth’s interior. Solitary waves are also found here, but the
equations lack useful mathematical structures such as an inverse scattering transform or even a
variational formulation. A common question in all of these applications is whether or not these
structures are stable to perturbation. We prove that the solitary waves in this earth science setting
are asymptotically stable and accomplish this without any preexisting Lyapunov stability. This holds
true for a family of equations, extending beyond the physical parameter space. Furthermore, this
extends existing results on well-posedness to data in a neighborhood of the solitary waves.
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1. Introduction. Coherent structures, such as solitary waves, appear in many
physical problems, including fluid mechanics, optics, quantum physics, and plasma
physics. A less studied setting is found in geophysics, where highly viscous fluids
couple to evolving material parameters, modeling partially molten rock, magma, in the
Earth’s interior. Solitary waves are also found here, but the equations lack the useful
structures such as an inverse scattering transform or even a variational formulation.

A important question in all of these applications is whether or not the coherent
structures are stable to perturbation. We prove that the solitary waves in this earth
science setting are asymptotically stable and accomplish this without any preexisting
Lyapunov stability.

1.1. Magma: Porous flow in a viscously deformable media. Models of
magma in the Earth’s interior couple Stokes flow of the viscous melt to the slow,
creeping deformation of the porous rock. These force-balance equations couple to
transport equations for the volume fraction of melt, the porosity. Formulations
may be found in [5, 20, 35, 36, 41]. Nonlinearity appears in fluxes and through
the material properties, the permeability and viscosity of the porous, deformable
rock, which depend nonlinearly on the porosity. Consequently, such models are
known, from computations, to feature localization and generate coherent structures;
see [1, 2, 3, 15, 35, 36, 41, 42, 43, 44, 51]. The physical assumptions and their impli-
cations will be discussed in a forthcoming review article [39].

Under certain assumptions (small fluid fraction, absence of large-scale shear, no
melting, etc.), such a system reduces to a single scalar equation for the porosity’s
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Fig. 1. Solitary waves colliding and propagating in an experiment with honey. From Figure 1
of [37]. Reprinted by permission from Macmillan Publishers Ltd.

evolution [2, 3, 41, 42]. The d-dimensional equation is

(1.1) ∂tφ+ ∂z (φn) −∇ ·
[
φn∇
(
φ−m∂tφ

)]
= 0, x ∈ R

d, t > 0,

with the boundary conditions that φ(x, t) → 1 as |x| → ∞. ∇ = (∂x, ∂y, ∂z) for
d = 3 and ∇ = (∂x, ∂z) for d = 2. The nonlinearity n comes from the relationship
between the permeability, K, and the porosity of the rock, K ∝ φn. m relates to the
bulk viscosity, ζ, to the porosity of the rock, ζ ∝ φ−m. In the physical regime, these
exponents have values 2 ≤ n ≤ 3 and 0 ≤ m ≤ 1 [12, 13, 20, 31, 35, 36, 45, 46, 52].

Equation (1.1) appears elsewhere in earth science as a model for convective mantle
plumes. Manifesting themselves as hot spots at the surface, these plumes transport
warm buoyant material. Examples include the Hawaiian Island chain and Iceland.
Modeled as the flow of a viscous fluid up a conduit embedded in a higher viscosity
medium, an equation of the form (1.1) was derived in [24]. There, the equation is one-
dimensional (d = 1), the exponents are (n,m) = (2, 1), and the dependent variable φ
is the cross-sectional area of the pipe.

Numerical simulations of (1.1) in one, two, and three dimensions were performed
in [2, 3, 35, 36, 51], where stable, radially symmetric, solitary traveling waves were
observed. In [23], it was shown that in one dimension, solitary waves, Uc(x − ct),
in excess of the reference state, φ ≡ 1, exist for n > 1. In the context of conduit
flow, discussed in the preceding paragraph, analogue experiments using viscous syrups
appear in [24, 37, 49]; robust solitary waves appeared as predicted; see Figure 1.

1.2. Stability of solitary waves. We consider (1.1) in one dimension,

(1.2) ∂tφ+ ∂x (φn) − ∂x

[
φn∂x

(
φ−m∂tφ

)]
= 0, lim

|x|→∞
φ(x, t) = 1,

where the z coordinate has been relabeled x. A cursory explanation for the solitary
waves’ stability may be found in [50]. Under a small amplitude scaling, (1.2) is, to
leading order, governed by the Korteweg–de Vries (KdV) equation. Since KdV solitons
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(a) (b)

Fig. 2. The largest solitary wave in (a) travels faster than smaller solitary waves and dispersive
waves behind it. In the frame of this wave, the rest of the solution appears to move leftward, as in
(b).

are stable, on a timescale for which KdV approximates (1.2) its solitary waves should
also be stable.

Based on observations of numerical experiments, we expect a slightly perturbed
solitary wave to evolve into another wave with similar amplitude and phase. It will be
accompanied by some small amplitude dispersive waves and, perhaps, another solitary
wave of smaller amplitude. The leading wave will outrun these other disturbances,
cease interacting with them, and stabilize.

Some intuition for this stability may be found in two properties. First, taller
solitary waves travel with greater speed, c, than smaller ones. In the frame of the
largest solitary wave, y = x − ct, the other waves travel leftward. Second, in the
frame of the leading solitary wave, small perturbations of the reference state, φ(x, t) =
1 + ψ(x− ct, t) and |ψ| 	 1, evolve under the linear flow

∂tψ − c∂yψ + n∂yψ − ∂2
y∂tψ + c∂3

yψ = 0.

The dispersion relation and group velocity are

ω(k) =
nk

1 + k2
− ck, ω′(k) = n

1 − k2

(1 + k2)2
− c.

Since the solitary waves of (1.2) that we study travel with speed c > n > 1, both
phase and group velocities are negative for all k. Therefore, small dispersive waves
also travel leftward. These two mechanisms are diagrammed in Figure 2, and we will
exploit them to prove the main theorems.

As the system is conservative, perturbations, such as a small solitary wave, will
not vanish in a translation invariant norm. A suitable norm will register leftward
motion as decay. We will use exponentially weighted norms, in the frame of the
leading solitary wave. These norms are defined in section 1.4.

Several paths to proving stability are available. One method is to seek constants
of motion that can be combined into a metric centered at the solitary wave. Since
the metric is time independent, if the perturbation is initially small, it will remain
so. This elegant method relies on the calculus of variations, and for equations such
as KdV and nonlinear Schrödinger (NLS) it may be used to prove orbital stability
[4, 8, 47, 48]. A solitary wave, Uc, is said to be orbitally stable if for data sufficiently
close to it

inf
y∈R

‖u(t) − Uc(· + y)‖X < δ for all t
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for some δ > 0 and an appropriate norm ‖·‖X . Typically, the norm is equivalent to
L2(R) or H1(R).

However, in general, (1.2) lacks a sufficient number of conservation laws for this
approach. Indeed, in [3], the authors searched for an additional conservation law, in
hopes of proving orbital stability [7]. There are many such equations, including some
of the Boussinesq systems [29] and many of the “compacton” equations [32], which also
lack such structure, yet appear, in numerical experiments, to possess stable solitary
waves. Note that when n + m = 0, (1.2) is Hamiltonian, and we have investigated
this, proving orbital stability in [40]. We wish to consider the general case, which
includes the physically interesting cases (n,m) = (2, 1) and (3, 0).

Another approach to stability is to linearize the problem ut = N(u, ux, uxx, . . . )
about a solitary wave and establish linear stability. Then one seeks a way to pertur-
batively “boost” this to prove stability for the nonlinear flow. This may rely on direct
spectral analysis of the linearized evolution operator. We employ this method, follow-
ing the work of Pego and Weinstein [28, 29] and Miller and Weinstein [21]. Through
this, we prove that the solitary waves are asymptotically stable, our main result. By
this we mean that in an appropriate norm, ‖·‖Y ,

‖u(t) − Uc‖Y → 0 as t→ +∞

for data sufficiently close to Uc.
We note that another method recently appeared in the work of Martel and Merle

[19]. Without linearizing, the authors employ a virial inequality to directly prove
asymptotic stability of generalized KdV solitary waves in H1

loc(R).
Our problem is an example of an equation for which one can prove asymptotic

stability in the absence of orbital stability. Upon reflection, it is clear that the asymp-
totic stability of generalized KdV and Benjamin–Bona–Mahony (BBM) solitary waves
could have been proven without using the orbital stability results.

1.3. Main results and outline. The main results are as follows.
Theorem 1.1. There exists c� > n such that for all c0 ∈ (n, c�], if φc0(x − θ0)

is a solitary wave solution of (1.2), then there exist constants K∗ > 0, ε∗ > 0, and
a > 0, such that for ε ≤ ε∗, if

‖v0‖H1 + ‖eaxv0‖H1 ≤ ε,

then
(a) (1.2) has a solution with data φ0(x) = φc0(x+ θ0) + v0(x) for all time;
(b) there exist c∞, θ∞, K∗, and κ > 0 such that

‖φ(·, t) − φc∞(· − c∞t+ θ∞)‖H1 ≤ K∗ε,(1.3)

‖eax [φ(· + c∞t− θ∞, t) − φc∞(·)]‖H1 ≤ K∗εe
−κt,(1.4)

|c∞ − c0| + |θ∞ − θ0| ≤ K∗ε.(1.5)

Corollary 1.2. Let n + m = 0. If ∂cN [φc] > 0, N defined in (2.8), then
Theorem 1.1 holds for all c > c�, except for a discrete set with no accumulation
point.

Remark 1.3. For general n > 1, Theorem 1.1 is limited to c ≤ c� because we are
only able to rigorously treat the spectrum of a linear operator perturbatively. This
can be extended by a numerical computation of the spectrum. See sections 3.3–3.4.
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The feature of (1.2) that allows us to prove nonlinear stability from the linear
stability is a nonnegative invariant, denoted N [φ], and defined in (2.8). The Taylor
expansion of N about a solitary wave is

N [φc + v] = N [φc] + 〈δN [φc], v〉 +
〈
δ2N [φc]v, v

〉
+O
(
‖v‖3

H1

)
.

The first variation does not vanish and the second variation is not a positive definite
quadratic form. However, in the frame of the solitary wave, the perturbation v is
migrating to −∞. Therefore

〈δN [φc], v〉 → 0 as t→ +∞.

The second variation may be decomposed as δ2N [φc] = P +Q, P a positive quadratic
form and Q = Q(x) a localized function. Then since the perturbation moves leftward

〈Pv, v〉 ≥ κ2 〈v, v〉 ,

〈Qv, v〉 → 0 as t→ +∞.

Asymptotically,

‖v‖H1 ≤ KΔN , ΔN = |N [φc + v] −N [φc]|,

giving a Lyapunov-type bound on the perturbation. Control of ΔN is essential in
using this estimate to prove nonlinear stability. Though we rely on the invariance of
N , if ΔN were merely bounded in terms of the data, it would be sufficient.

However, more is needed to formalize this into a proof, notably a sense in which
the perturbation recedes from the solitary wave. This is accomplished by analyzing
the spectrum of the linearized evolution operator in a weighted space, in which the
perturbation will decay.

The plan of the proof is as follows:
(I) In section 2 we review properties of (1.2) and establish regularity properties

of the solitary waves.
(II) In section 3, we prove that the linearized operator, Aa, has the property that

there exists ε > 0 such that

σ (Aa) ∩ {�λ ≥ −ε} = {0}

and zero is an eigenvalue of algebraic multiplicity two.
(III) In section 4, we prove

‖w(t)‖H1 = ‖eAatw0‖H1 ≤ Ke−bt‖w0‖H1

for appropriate w0, K, and b positive constants.
(IV) In section 5, we make several estimates, including a formalization of the Lya-

punov bound. We also formulate equations for the speed and phase parame-
ters of the solitary wave (c(t), θ(t)), coupling them to the infinite-dimensional
system for the perturbation.

(V) In section 6, we prove the main results, asymptotic stability and global exis-
tence of data near a solitary wave solution.

Some remarks are made in section 7, and additional details are located in the appen-
dices.
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1.4. Notation. Generic constants will typically be denoted by the capital letters
K, M , and N , sometimes with tildes, overlines, or primes. Subscripts, such as Mγ ,
may appear in order to indicate that M depends on γ. We avoid using C as a generic
constant, as c appears throughout the paper as the speed parameter, and an operator
C(λ) appears in section 3.

Functions will typically live in spaces Hk(R) = W 1,k(R), k a nonnegative integer,
the spaces of square integrable functions with square integrable (weak) derivatives up
to order k. We will frequently omit writing R. The Lp(R) spaces will also appear, in
particular L2 and L∞. While we write ‖f‖Hk for the norm of a function in Hk, we
only write ‖f‖p for the norm of a function in Lp.

We will be interested in functions in the exponentially weighted space,

Hk
a =
{
u : eaxu(x) ∈ Hk

}
for k = 0, 1, 2, . . . , and a > 0 with associated norm

‖u‖Hk
a

= ‖eaxu‖Hk .

We also define the norm

‖f‖H1∩H1
a
≡ ‖f‖H1 + ‖f‖H1

a
.

The exponential weight will always be a positive number; we will often omit the
assumption a > 0 in statements.

Frequently, we will have an operator T defined on a weighted space, Hk
a , but wish

to make computations in the unweighted space. To T we associate Ta = eaxTe−ax,
an operator on Hk. For the differentiation operator, ∂x �→ Da = ∂x − a.

2. Preliminaries.

2.1. Properties of the equation in a weighted space. Much of the analysis
involves studying (1.2) in an exponentially weighted space. We therefore state the
following extension of the well-posedness results obtained in [38] for Hk spaces.

Theorem 2.1 (local existence in time and continuous dependence upon data).
Given 0 < a < 1, let φ0(x) satisfy

‖φ0 − 1‖H1∩H1
a
≤ R <∞,(2.1)

inf
x
φ0(x) ≥ α0 > 0,(2.2)

inf
x
φ0(x)m − a2φ0(x)n ≥ β0 > 0.(2.3)

Then there exist Tlocal > 0 and φ(x, t) − 1 ∈ C1([0, Tlocal), H1 ∩ H1
a), a solution of

(1.2) with data φ0, satisfying

‖φ(·, t) − 1‖H1∩H1
a
≤ 2R,(2.4)

inf
x
φ(x, t) ≥ 1

2
α0,(2.5)

inf
x
φ(x, t)m − a2φ(x, t)n ≥ 1

2
β0(2.6)

for t < Tlocal.
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Moreover, there is a maximal time of existence Tmax, such that if Tmax <∞, then

(2.7) lim
t→Tmax

‖φ(·, t) − 1‖H1∩H1
a

+
∥∥∥∥ 1
φ(·, t)

∥∥∥∥
∞

+
∥∥∥∥ 1
φ(·, t)m − a2φ(·, t)n

∥∥∥∥
∞

= ∞.

Remark 2.2. When a = 0, (2.3) is unnecessary; this case was treated in [38]. The
importance of this condition for a > 0 will be discussed in section 2.3.

Theorem 2.3. Given 0 < a < 1, let φ(j) − 1 ∈ C1([0, T ];H1 ∩H1
a), j = 1, 2, be

two solutions of (1.2) such that

‖φ(j)(·, t) − 1‖H1∩H1
a
≤ R <∞,

inf
x
φ(j)(x, t) ≥ α0 > 0,

inf
x

(φ(x, t)(j))m − a2(φ(x, t)(j))n ≥ β0 > 0.

There exists a constant K = K(R,α0, β0, a), such that

‖φ(1)(·, t) − φ(2)(·, t)‖H1∩H1
a
≤ eKt‖φ(1)

0 − φ
(2)
0 ‖H1∩H1

a
for t ≤ T .

Additionally, (1.2) possesses the conservation law

(2.8)

N [φ] =

⎧⎪⎪⎨⎪⎪⎩
∫ (

1
2φ

−2mφ2
x + φ log (φ) − φ+ 1

)
dx if n+m = 1,∫ (

1
2φ

−2mφ2
x + φ− 1 − log (φ)

)
dx if n+m = 2,∫ (

1
2φ

−2mφ2
x + φ2−n−m−1+(n+m−2)(φ−1)

(n+m−1)(n+m−2)

)
dx for all other n and m.

N is well defined for φ bounded from below away from zero and ‖φ − 1‖H1 < ∞. It
is also locally convex about φ ≡ 1. See section 3 of [38] for details.

Remark 2.4. The physical significance of N remains elusive. In the Hamiltonian
case, n + m = 0, N revealed itself to be the generalized momentum of the equation
[40].

2.2. Solitary waves and their analytic properties. Let us review the prop-
erties of the solitary waves associated with (1.2). In particular, we identify their decay
and regularity properties and introduce the KdV scaling for later use.

Substituting the traveling wave ansatz, φc(x, t) = φc(x − ct), into (1.2) with
boundary conditions

(2.9) lim
y→±∞

φc(y) = 1, lim
y→±∞

∂j
yφc(y) = 0 for j = 1, 2, . . .

we have, after one integration,

(2.10) −c(φc − 1) + φn
c − 1 + cφn

c ∂y

(
φ−m

c ∂yφc

)
= 0.

Letting uc = 1 − φc, uc satisfies

(2.11) −cuc + (uc + 1)n − 1 + c (uc + 1)n
∂y

(
(uc + 1)−m

∂yuc

)
= 0.

Equation (2.10) may also be integrated up to a first order equation,

(2.12)
1
2
φ−2m

c (∂xφc)2 − F1(φc; c) = 0,
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after applying the boundary condition φc → 1 at ±∞. F1 depends on the particular
exponents:

(2.13) F1(x; c) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1−n−1
1−n +

(
1 − 1

c

)
x−n−1

n − 1
c log (x) if m = 1,

x− 1 −
(
1 − 1

c

)
log (x) − 1

c
xn−1

c if n+m = 1,

log (x) +
(
1 − 1

c

) (
1
x − 1

)
− 1

c
xn−1−1

n−1 if n+m = 2,
x2−n−m−1

2−n−m −
(
1 − 1

c

)
x1−n−m−1

1−n−m − 1
c

x1−m−1
1−m otherwise.

Using (2.12), an equivalent second order, self-adjoint equation for the solitary waves
is

F2(φc; c) = −∂2
xφc,(2.14)

F2(x; c) = xm−n
[
−(x− 1) + c−1 (xn − 1) − 2mxn−m−1F1(x; c)

]
.(2.15)

Let us introduce the KdV scaling. Define

(2.16) γ =

√
c− n

c
.

Applying the scalings,

(2.17) ξ = γ (x− ct) , uc(y) =
γ2

n− 1
U(ξ(y); γ),

(2.11) becomes

(2.18) −U +
1
2
U2 + ∂2

ξU = O(γ2).

Remark 2.5. The parameter γ, (2.16), will be used throughout the paper. Because
it uniquely maps c ∈ (n,∞) onto (0, 1), we will use c and γ interchangeably.

We summarize what is known about (2.11) and (2.18) in the following two results.
Theorem 2.6. For any c > n > 1, (2.11) has a unique positive, even solution uc,

going to zero at ±∞. In the KdV scaling, (2.18), U is real analytic in the arguments
(ξ, γ) ∈ R × [0, 1). When γ = 0

U(ξ; 0) = U�(ξ) = 3sech2

(
1
2
ξ

)
.

Furthermore, for γ in any compact subset of [0, 1)

∂j
ξU(ξ; γ)e±ξ (sign(ξ))j → Kj(γ) as ξ → ±∞ for j = 0, 1, 2.

Corollary 2.7. Given a compact interval [0, γ0] ⊂ [0, 1), there exists a constant
K such that for all γ ∈ [0, γ0],

|∂j
ξU(ξ; γ)| ≤ Ke−|ξ| for j = 0, 1, 2, −∞ < ξ <∞,(2.19)

|∂j
yuc(y)| ≤ K

γ2+j

n− 1
e−γ|y| for j = 0, 1, 2, −∞ < y <∞.(2.20)
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Proof. From [23], solitary waves exist, provided c > n > 1 andm ∈ R. Writing the
problem as a two-dimensional dynamical system, we may apply the stable manifold
theorem about the hyperbolic point (0, 0) to deduce the exponential decay, as in [29,
Theorem 2.1, Corollary 2.2].

Remark 2.8. When the parameter γ is small, φc is in the regime of small ampli-
tude, long waves, where KdV appears as the leading order equation in a perturbation
expansion of (1.2), as in [50].

Corollary 2.9. For each c > n > 1, the solitary wave solution, φc − 1, lies
in H∞(R). Furthermore, there exists σ0 > 0 such that the solitary wave φc may be
analytically continued off the real axis into the strip {z : |�z| < σ0}.

Proof. This is a consequence of Corollary 2.7 and [9, Corollary 4.1.6]; see Ap-
pendix A.1.

Corollary 2.10. Given a solitary wave φc, c > n, assume 0 < a < γ. Then
φc − 1 ∈ H∞

a .
Corollary 2.11. Let n > 1.
(a) The mapping c �→ φc − 1 is C1

(
(n,∞);H2

)
. In fact the mapping is analytic.

(b) The mapping c �→ φc−1 is analytic, and, for fixed x, c �→ φc(x) is an analytic
function of c.

(c) Given a < 1
2 , the mapping is also C1

((
n/(1 − 4a2),∞

)
;H2 ∩H2

a

)
.

Proof. All parts are proved using the implicit function theorem, applied to the
functional

F [c, u] = ∂2
xu+ F2(1 + u; c).

See Appendix A.2 for details and [6] for a statement and proof of the implicit function
theorem for analytic mappings.

2.3. Remarks and assumptions on the exponential weight. We see in
Theorem 2.1 and Corollary 2.11 that the particular exponential weight restricts what
data and which solitary waves will be permissible. For the solitary wave result, this
restriction comes from the decay rate associated with the speed; see Corollary 2.7.

In the case of the existence theorem, (1.2) may be written as

∂tφ = −
{
I − ∂x

[
φn∂x

(
φ−m·

)]}−1
∂x (φn)

= −φm
{
φ−m
[
I − ∂x

(
φn∂x

(
φ−m·

))]−1
}
∂x (φn)

= −φmH−1
φ ∂x(φn).

(2.21)

The operator Hφ is

(2.22) Hφ = φ(x)m − ∂x (φ(x)n∂x·) .

This is a bounded operator on L2 → H1, provided φ is continuous and bounded
from below away from zero. However, the exponential weight introduces a second
constraint. Consider solving Hφu = f , f ∈ L2

a, for u ∈ H1
a . Letting g = eaxf and

v = eaxu, this is equivalent to solving

[φm −Da (φnDa)] v = g, v ∈ H1.

Multiplying by v and integrating by parts,∫ (
φm − a2φn

)
v2 + φn (∂xv)2 dx =

∫
gvdx.
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A unique solution exists, provided a and φ satisfy infx φ(x)m − a2φ(x)n > 0; this is
condition (2.3).

We invert these restrictions; given a solitary wave of speed c, we will assume
that a is sufficiently small so that these, and other, properties hold. There are three
restrictions in what follows.

Let

(2.23) a1 =
1
3
γ(c).

φc − 1 will then be in H2
a1

and H2
2a1

, as will all solitary waves of nearby speed. Let

(2.24) a2 =
1
2

inf
x
φc(x)(m−n)/2.

Then for an a ≤ min {a1, a2}, φc will satisfy (2.3), with

inf
x
φc(x)m − a2φc(x)n ≥ 3

4
inf
x
φc(x)m > 0.

Hence, the solitary waves will live in a set on which the existence theorem applies.
Moreover, for all data φ0 sufficiently close to φc in the H1 norm, an analogous lower
bound will exist.

Remark 2.12. infx φc(x)(m−n)/2 is related to a physical length scale known as
the compaction length [20]. This length, δcomp., is given by

δcomp.(x) =
√
φ(x)n−m.

It measures the distances over which there will be geometrical rearrangement of the
material, appearing macroscopically as changes in φ, in response to viscous stresses.

The stipulation a < infx φ(x)(m−n)/2 may be interpreted as requiring the length
scale associated with the exponential weight, a−1, to never be smaller than this in-
trinsic, spatially varying length. However, we draw no physical conclusions from this
observation.

Finally, there is a constraints related to the essential spectrum of a linear operator,
discussed in section 3. Let

(2.25) a3 =

√
2c

n+ 2c+
√
n (n+ 8c)

√
c− n

c
.

This will ensure that for any a ≤ a3, the essential spectrum is located in a specific
part of the complex plane. Let

(2.26) a�(c) = min
{
a1(c), a2(c),

1
2
a3(c)
}
.

Then for any a ≤ a�(c), all of these properties will be satisfied for φ sufficiently close
in H1 to φc.

2.4. Ansatz and linearization. Given a perturbed solitary wave solution, φ,
of (1.2), assume that there exists decomposition of φ into a (time-dependent) solitary
wave of some speed c(t) and phase θ(t) and a perturbation, v; this decomposition’s
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existence will be proved in section 5.1. Transforming our coordinate system into the
frame of this modulating solitary wave,

y(x, t) = x−
∫ t

0

c(s)ds+ θ(t),(2.27)

φ(x, t) = φc(t)(y(x, t)) + v(y(x, t), t) = φc(y, t) + v(y, t).(2.28)

The perturbation, v, is governed by

(2.29) ∂tv = Acv − θ̇∂yv − ċ∂cφc − θ̇∂yφc + F1[v;φc],

where

Acv = φm
c H

−1
φc
∂yLcv,(2.30)

Lcv = −cφn
c ∂

2
y

(
φ−m

c v
)

+
[
c− nφ−1

c + cn(φ−1
c − 1)

]
v,(2.31)

and (B.6) gives the definition of F1[v;φc], composed of terms nonlinear in v. We make
two remarks about (2.29). First, the linear operator Ac is time dependent; c = c(t),
and we would prefer to work with a time-independent linear operator. Second, the
appearance of the term θ̇∂yv will prove problematic for studying the equation in H1.

The first problem is addressed by adding and subtracting Ac0 , and considering
the difference Ac −Ac0 as another perturbation of the linear flow. To remove the ∂yv
term, we introduce a renormalized time,

(2.32) τ = c0
−1

[∫ t

0

c(s)ds− θ(t)
]
.

The asymptotic stability proof of BBM required a similar transformation [21]. In
addition, the problem will be considered in the weighted space H1

a , with w(y, t) =
eayv(y, t). All together, we have the following.

Proposition 2.13 (perturbation equation). The perturbation to a solitary wave
of speed c0 associated with the ansatz in (2.28), v, and its weighted perturbation w =
eayv evolves according to the equations in t- and τ-time, respectively.

∂tv = Acv − θ̇∂yv − ċ∂cφc − θ̇∂yφc + F1[v;φc],(2.33)

∂tw = Ac,aw − θ̇ (∂y − a)w − eay
(
ċ∂cφc + θ̇∂yφc

)
+ G1[w, v;φc],(2.34)

∂τv = Ac0 −
c0

c− θ̇

(
c∂cφc + θ̇∂yφc

)
+ S[c0, c, θ̇]v +

c0

c− θ̇
F1[v;φc],(2.35)

∂τw = Ac0,aw − c0

c− θ̇
eay
(
ċ∂cφc + θ̇∂yφc

)
+ Sa[c0, c, θ̇]w +

c0

c− θ̇
G1[w, v;φc]

= Ac0,aw + G
[
w, v; c0, c, θ̇

]
.

(2.36)

The operator S and the terms F1 and G1 are given explicitly in Appendix B.
Proof. G1 is obtained from F1 by substituting e−ayw for one of the v’s; eayF1

[v;φc] = G1[eayv, v;φc]. The details appear in Appendix B.
Note: From here on, we assume c0 to be fixed and will suppress its appearance

in the linear operators Ac0 and Ac0,a.
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3. Spectral properties of the linearized operator. In this section we ana-
lyze the spectrum of A and Aa. We will use c in place of c0 and x in place of y as the
independent variable.

AY = λY,(3.1)

A =
{
I − ∂x

[
φn

c ∂x

(
φ−m

c ·
)]}−1

∂xLc,(3.2)

Lc = −cφn
c ∂

2
x

(
φ−m

c ·
)

+
[
c− nφ−1

c + cn
(
φ−1

c − 1
)]
,(3.3)

Aa = eaxAe−ax.(3.4)

Our goal is to prove that the linearized problem is asymptotically stable: ‖eAatw0‖H1 →
0 as t→ +∞. We will actually show something much stronger, that this convergence
to zero happens exponentially fast. Our strategy is that of Pego and Weinstein [28, 29]
and Miller and Weinstein [21]. We will

1. identify the essential spectrum of Aa by showing it to be a relatively compact
perturbation of a constant coefficient operator;

2. rule out the point spectrum (eigenvalues of finite multiplicity) of Aa for |λ|
sufficiently large via an operator estimate;

3. use the Evans function, an infinite-dimensional analogue of the characteristic
polynomial, to rule out nonzero point spectra of Aa in the set of “small” λ,
which will be compact;

4. show decay in time of the C0-semigroup eAat associated with Aa.
The spectral analysis is handled in this section, and the semigroup theory in the
following section.

The principle result of this section is as follows.
Theorem 3.1 (spectrum of linearized operator).
(a) Let a ∈ (0, a�(γ)]. The essential spectrum of Aa denoted by σess(Aa) is a

curve lying in the open left half-plane, with rightmost point −ω,

(3.5) −ω = max{�z|z ∈ σess(Aa)} < 0.

(b) There exist γ� ∈ (0, 1) and ϑ̂ > 0 such that for each γ ∈ (0, γ�] and a ∈
(γϑ̂, a�(γ)], there exists ε(γ, a) > 0 such that the only eigenvalue of Aa with
�λ ≥ −ε is λ = 0, and this is an eigenvalue of algebraic multiplicity two.

(c) In the Hamiltonian case, n+m = 0, part (b) may be extended for γ ∈ (γ�, 1)
to all but a discrete set with no accumulation point.

The spectrum is pictured in Figure 3.

3.1. Essential spectrum. We make use of the definition of the essential spec-
trum of an operator from [33, 34], which states that for a closed, densely defined
operator A on a Banach space X ,

(3.6) σess(A) =
⋂

C∈K(X)

σ(A+ C),

where K(X) denotes the set of compact operators on X . Other definitions are possible
and well known; see Chapter IX of [10] for a discussion of how these definitions relate
to one another.

σ(A)\σess(A) then consists of point spectra. This is so because, by Theorem 7.27
of [34], if λ is not in the essential spectrum, then λI −A is Fredholm with index zero.
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Fig. 3. The spectrum of the operator Aa. The only eigenvalue with �λ ≥ −ε is λ = 0.

Hence, it has a closed range and a finite kernel. Therefore, it must be an eigenvalue
of finite multiplicity.

To prove Theorem 3.1 (a), we expressAa as a perturbation of a constant coefficient
operator, A∞

a , obtained by setting φc(x) equal to its asymptotic state, 1:

(3.7) A∞
a = (I −D2

a)−1Da(−cD2
a + c− n).

The difference between Aa and A∞
a , given explicitly in (B.16), may be shown to

be an A∞
a -compact operator. Hence, Aa is a relatively compact perturbation of A∞

a

and

σess(Aa) = σess(A∞
a ).

Upon examination of the Fourier symbol of A∞
a , the essential spectrum of Aa is

(3.8) σess(Aa) =
{

(i�− a)(−c(i�− a)2 + c− n)
1 − (i�− a)2

, � ∈ R

}
and

−ω = max {�z|z ∈ σess(Aa)} = −ac+
an

1 − a2
< 0.

σess(Aa) lies in the open left half-plane if 0 < a < γ. This set is pictured in Figure 3.
In addition, for 0 < a ≤ a� < a3, a3 defined by (2.25), the spectrum moves

rightward as a → 0. This is because a3 is the value for which −ω is leftmost in C,
maximizing the rate of decay of eay as y → −∞.

3.2. Large eigenvalues. As in [21], we will study the eigenvalues of Aa by
considering separately a large |λ| regime and a small |λ| regime.
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Rewriting the linear operator Aa as

Aa = cφm
c Da

(
φ−m

c ·
)
− nφm

c H
−1
φc,aDa

(
φ−1

c ·
)

(3.9)

+ cmφm
c H

−1
φc,a

(
φ−1

c ∂yφc·
)

+ cnφm
c H

−1
φc,aDa

[(
φ−1

c − 1
)
·
]
,

we note that λ is an L2 eigenvalue of Aa if and only if it is also an L2 eigenvalue of
Ãa = φ−m

c Aaφ
m
c , given by

Ãa = cDa − nH−1
φc,aDa

(
φm−1

c ·
)

(3.10)

+ cmH−1
φc,a

(
φm−1

c ∂yφc·
)

+ cnH−1
φc,aDa

[
φm

c

(
φ−1

c − 1
)
·
]
.

We will rule out eigenvalues of Ãa, thus ruling them out for Aa. This is equivalent to
studying Aa in a space weighted by φ−m

c (x), a strictly positive, smooth, and bounded
function. Ãa is also a relatively compact perturbation of Ã∞

a = A∞
a ; they share the

same essential spectrum.
Let the operator C(λ) satisfy

C(λ) =
(
λI − Ã∞

a

)−1 (
Ãa − Ã∞

a

)
.

Proposition 3.2.

(a) The operator C(λ) is compact for λ not in σess. In particular, C(λ) is compact
for all λ with �λ > −ω.

(b) For any λ ∈ C \ σess(Aa), we have that λ is an eigenvalue of Aa if and only
if 1 ∈ σ(C(λ)).

(c) Let λ ∈ C \ σess(Aa). A sufficient condition for λ not to be an eigenvalue of
Aa is that ‖C(λ)‖ < 1, with norm either L2 or H1, depending on which space
is under consideration.

Proof. Using the equivalence of eigenvalues of Aa and Ãa, parts (b) and (c) will
follow once (a) is established; see [21]. The Fourier symbol of (λI − Ã∞

a )−1 is

1 − (ı�− a)2

λ(1 − (ı�− a)2) − (ı�− a)(−c(ı�− a)2 + c− n)
.

This operator is bounded for λ not in the essential spectrum. The difference, given
explicitly in (B.17), is a sum of Hilbert–Schmidt compact operators composed with
bounded operators on L2 → L2; hence C(λ) is compact on this space.

For C(λ) to be a compact operator on H1 → H1, it will be sufficient to prove
that

(I − ∂2
x)1/2C(λ)(I − ∂2

x)−1/2 = (λI − Ã∞
a )−1(I − ∂2

x)1/2(Ãa − Ã∞
a )(I − ∂2

x)−1/2

is compact on L2 → L2. (λI −A∞
a )−1 is still bounded, and by commuting operators,

it may be proven that (I − ∂2
x)1/2(Ãa − Ã∞

a )(I − ∂2
x)−1/2 is compact.

Proposition 3.3. Let δ ∈ (0, 1) be fixed.
(a) Let c� > n and

(3.11) ϑ̂ ∈
(

0, sup
c∈(n,c�]

a�(c)/γ(c)

)
.
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Then there exists M = M(c�, ϑ̂) > 0 such that for c ∈ (n, c�] and a ∈
(γ(c)ϑ̂, a�(c)], if

�λ ≥ −1
2
acγ2

and at least one of

|�λ| > cMγ3,

�λ > cMγ3

holds, then ‖C(λ)‖L2→L2 < 1 − δ.
(b) This result also holds for ‖C(λ)‖H1→H1 .
Proof. If M ≥ 1, then by the assumptions on �λ and �λ, λ is not in σess(Aa);

hence we may apply Proposition 3.2 (a) to conclude that C(λ) is a compact operator.
If the norm of C(λ) is less than one, part (c) of that proposition will imply it is not
an eigenvalue; we seek an M ≥ 1 for which ‖C(λ)‖ can be made sufficiently small.

Let γ0 = γ(c�). For all (γ, a) in {(γ, a) | γ ∈ [0, γ0], a ≤ a�(γ)}, there exist K1

and K2 such that

‖C(λ)‖L2→L2 ≤ ‖(λI −A∞
a )−1H−1

1,aDa‖L2→L2

(
cK1γ

2
)

+ ‖(λI −A∞
a )−1

H−1
1,a‖L2→L2

(
cK2γ

3
)
.

This comes from expanding the difference Ãa − Ã∞
a and commutating operators; see

(B.17). (λI −A∞
a )−1

H−1
1,aDa and (λI −A∞

a )−1
H−1

1,a are constant coefficient operators
and we will treat them in Fourier space.

Thus, if we can prove that, for λ satisfying the hypotheses,

sup
�∈R

∣∣∣∣∣∣ (ı�− a) cK1γ
2

λ
[
1 − (ı�− a)2

]
− (ı�− a)

[
−c (ı�− a)2 + cγ2

]
∣∣∣∣∣∣ < 1 − δ

2
,

sup
�∈R

∣∣∣∣∣∣ cK2γ
3

λ
[
1 − (ı�− a)2

]
− (ı�− a)

[
−c (ı�− a)2 + cγ2

]
∣∣∣∣∣∣ < 1 − δ

2
,

we will be done.
Introducing the scalings λ = cΛγ3, � = γξ, and a = γϑ, this is equivalent to

identifying M ≥ 1 such that when �Λ ≥ − 1
2ϑ and �Λ > M or |�Λ| > M then both

sup
ξ∈R

∣∣∣∣∣∣ (ıξ − ϑ)K1

Λ
[
1 − γ2 (ıξ − ϑ)2

]
− (ıξ − ϑ)

[
− (ıξ − ϑ)2 + 1

]
∣∣∣∣∣∣ < 1 − δ

2
,(3.12)

sup
ξ∈R

∣∣∣∣∣∣ K2

Λ
[
1 − γ2 (ıξ − ϑ)2

]
− (ıξ − ϑ)

[
− (ıξ − ϑ)2 + 1

]
∣∣∣∣∣∣ < 1 − δ

2
(3.13)

are satisfied. By our assumption on a, ϑ ∈ (ϑ̂, 1).
Squaring both sides, (3.12) and (3.13) may be rewritten as two polynomial in-

equalities, P1(�Λ,�Λ, ξ) > 0 and P2(�Λ,�Λ, ξ) > 0, respectively. We will show that
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for appropriately chosen Λ, the inequalities hold for all ξ. P1 and P2 are treated
similarly. We study P2:

P2(�Λ,�Λ, ξ) = α(�Λ)2 + β�Λ + η1(�Λ)2 + η2�Λ + η3,

α = γ2ξ4 + 2ξ2γ2(1 + γ2ϑ4) + (1 − γ2ϑ2)2,

β = −2ξ5γ2 − 2ξ3(1 + γ2(1 + 2ϑ2)) − 2ξ(1 + (−3 + γ2)ϑ2 + γ2ϑ4),

η1 = α,

η2 = 2ϑξ4γ2 + 2ϑξ2(3 + γ2(−1 + 2ϑ2)) + 2ϑ(1 − ϑ2)(1 − γ2ϑ2),

η3 = ξ6 + ϑ2(1 − ϑ2)2 + ξ4(2 + 3ϑ2) + ξ2(1 + 3ϑ4) −�2,

� = 2K2/(1 − δ).

Using analysis similar to that for P1 in [21], we first consider P2 as quadratic in �Λ.1

Examining its discriminant,

discriminant = γ4
[
−4ξ8

(
ϑ+ γ2�Λ

)2
+O(ξ6)

]
+ γ2
[
−24ϑ2ξ6 +O(ξ4)

]
− 36ξ4ϑ3 +O(ξ2).

If 0 ≥ �Λ ≥ −ϑ/2, then there exists M0 > 0 such that for all �Λ, γ ∈ [0, γ0],
ϑ ∈ (ϑ̂, 1), and |ξ| > M0 the discriminant is negative and P2 > 0. Furthermore,
since the coefficient α is always positive, there exists R1 > 0 such that P2 > 0 when
γ ∈ [0, γ0], |�Λ| > R1, 0 ≥ �Λ ≥ −ϑ/2, and |ξ| ≤M0.

For γ ∈ [0, γ0] and ϑ ∈ (ϑ̂, 1), both η1 and η2 are positive; if P2(�Λ,�Λ, ξ) > 0,
then P2(�Λ,�Λ +K, ξ) > 0 for any K > 0. Therefore, P2 > 0 for all ξ if γ ∈ [0, γ0],
|�Λ| > R1, and �Λ ≥ −ϑ/2. Also, P2 > 0 for |ξ| > M0 and all �Λ if �Λ ≥ −ϑ/2.

We must still treat the case of |�Λ| ≤ R1 and |ξ| ≤M0 simultaneously. Consider
P2 as quadratic in �Λ. η1 and η2 are positive for all ξ, and η3 is bounded from below.
Therefore there is some R2 > 0 such that P2 > 0 for all ξ if γ ∈ [0, γ0], |�Λ| ≤ R1,
and �Λ > R2. Thus, for any ϑ ∈ (ϑ̂, 1), γ0 ∈ [0, γ0], there exist R1 > 0 and R2 > 0
such that P2 > 0 for all ξ if

γ ∈ [0, γ0],

�Λ ≥ −ϑ/2,

|�Λ| ≤ R1 or �Λ > R2.

For C(λ) : H1 → H1, the proof is similar, with constants K̃1 and K̃2 in place of
K1 and K2.

1Though this proof largely follows that for the analogous proposition in [21], we have made two

modifications. The first is to introduce ϑ̂ > 0 in (3.11). Though this restriction may not be needed,
by placing a lower bound on ϑ, estimates are more obviously uniform in γ and ϑ. A second change
is to take �λ ≥ −ϑ/2 instead of �Λ ≥ −ϑ/(4γ2). Our condition is less sharp but, again, makes the
intermediary bounds clearly uniform in γ and ϑ.
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3.3. Small eigenvalues: The Evans function. In this section we rule out
eigenvalues of Aa in the set |λ| ≤ Mγ3. This is done using the Evans function,
an analytic function that vanishes at eigenvalues of Aa. The Evans function, D =
D(λ; γ), is constructed for the eigenvalue problem using particular solutions of an
associated dynamical system,

ẏ = B(x, λ, γ)y,(3.14)

y = O(eμ1x) as x→ +∞,(3.15)

and the adjoint system,

ż = −zB(x, λ, γ),(3.16)

z = O(eμ1x) as x→ −∞.(3.17)

μ1 will be the eigenvalue of smallest real part of B∞, the limit as x → ±∞ of B.
When certain conditions, described in Theorem 3.4, are met, the Evans function exists
and may be explicitly defined as

(3.18) D(λ; γ) = z(x;λ, γ) · y(x;λ, γ).

The idea is to measure the angle between the subspace of solutions decaying at
+∞ with the subspace decaying at −∞; hence the appearance of the dot product.
The Evans function has an equivalent formulation in terms of the determinant of the
fundamental solution of (3.14). For a more complete discussion of the Evans function,
see [27].

Theorem 3.4 (see [27, 29]). Let Ω be a simply connected subset of C
2. Suppose

that the system (3.14) satisfies the following hypotheses:
(i) B : R×Ω → C

n×n is continuous in (x, λ, γ) and analytic in (λ, γ) for fixed x.
(ii) B∞(λ, γ) = limx→±∞B(x, λ, γ) exists for all (λ, γ) ∈ Ω. The limit is attained

uniformly on compact subsets of Ω.
(iii) The integral ∫ ∞

−∞
‖B(x, λ, γ) −B∞(λ, γ)‖dx

converges for all (λ, γ) ∈ Ω and the convergence is uniform on compact subsets
of Ω.

(iv) For every (λ, γ) ∈ Ω, the matrix B∞(λ, γ) has a unique eigenvalue of smallest
real part, which is simple, denoted μ1.

Then D(λ; γ) is well defined and analytic on Ω, such that D(λ; γ) = 0 if and only
if 3.14 has a solution y(x) satisfying (3.15) and

(3.19) y(x) = o(eμ1x) as x→ −∞.

3.3.1. The KdV Evans function. In the case of the KdV equation, the eigen-
value problem may be scaled to

(3.20) ∂xLKdVY = ∂x

(
−∂2

xY + Y − 3sech2

(
1
2
x

)
Y

)
= ΛY.

Because the speed parameter has been scaled out, there is only one eigenvalue pa-
rameter, Λ.
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Making the identification

(3.21) y = (Y, ∂xY, LKdVY )T
,

we see that y satisfies the dynamical system

ẏ = BKdV(x,Λ)y,(3.22)

BKdV(x,Λ) =

⎛⎜⎝ 0 1 0

1 − 3sech
(

1
2x
)2 0 −1

Λ 0 0

⎞⎟⎠ .(3.23)

A complete description of the associated Evans may be found in [28]. We sum-
marize as follows.

Theorem 3.5 (the KdV Evans function).

(a) The Evans function DKdV(Λ) associated with (3.20) is given by

DKdV(Λ) =
(
μ1(Λ) + 1
μ1(Λ) − 1

)2

,

where μ1(Λ) denotes the root of μ3 − μ+ Λ = 0 of minimal real part.
(b) The domain of DKdV(Λ) is the slit complex plane

ΔKdV = C \
(
−∞,−

√
4
27

]
.

(c) The essential spectrum of AKdV : L2
a → L2

a is a curve contained entirely in the
domain {λ : �λ < −ε} for some ε > 0. Furthermore, if Δ+

KdV(a) denotes the
component of C\σess(AKdV) that contains the right half-plane, then DKdV(Λ)
has no zeros in Δ+

KdV(a) except for a zero of multiplicity two at Λ = 0.

3.3.2. The Evans function applied. The eigenvalue problem AY = λY ,

{I − ∂x[φn
c ∂x(φ−m

c ·)]}−1∂x{−cφn
c ∂

2
x(φ−m

c ·) + [c− nφ−1
c + cn(φ−1

c − 1)]}Y = λY,

is equivalent to

(3.24) ∂xLcY − λ
[
I − ∂x

(
φn

c ∂x

(
φ−m

c ·
))]

Y = 0.

Defining

(3.25) y =
(
φ−m

c Y, ∂x

(
φ−m

c Y
)
, LcY + λφn

c ∂x

(
φ−m

c Y
))T

,

y solves the dynamical system

ẏ = B(x, λ, c)y,(3.26)

B(x, λ, c) =

⎛⎜⎝ 0 1 0
c−1φm−n

c

[
c− nφ−1

c + cn
(
φ−1

c − 1
)]

λ/c −c−1φ−n
c

λφm
c 0 0

⎞⎟⎠ .(3.27)
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The matrix B may be decomposed as B = B∞(λ, c) +R(x, λ, c).

B∞(λ, c) =

⎛⎜⎝ 0 1 0
γ2 λ/c −c−1

λ 0 0

⎞⎟⎠ ,
(3.28)

R(x, λ, γ) =

⎛⎜⎝ 0 0 0
c−1φm−n

c

[
c− nφ−1

c + cn
(
φ−1

c − 1
)]

− γ2 0 −c−1 (φ−n
c − 1)

λ (φm
c − 1) 0 0

⎞⎟⎠ .
(3.29)

Also note that for the corresponding adjoint eigenvalue problem

(3.30) −L�
c∂xW − λ

[
I − φ−m

c ∂x (φn
c ∂x·)

]
W = 0

under the identifications

z = (−c∂x (φn
c ∂xW ) − λφn

c ∂xW, cφn
c ∂xW, W )(3.31)

z solves

(3.32) ż = −zB(x, λ, γ).

Theorem 3.6 (properties of the Evans function).

(a) The Evans function is defined and analytic on the set Ω ⊂ C
2,

(3.33) Ω = {(λ, γ) | γ ∈ (0, 1) and λ ∈ Ωγ}

with

(3.34) Ωγ = {λ | �λ > −λ0} \ (−λ0,−λcut(γ)] ,

where

λcut =

√
1
8

√
8c2 + 20cn− n2 − 8c

√
n2 + 8cn− n

√
n2 + 8cn

=
2

3
√

3
nγ3 +

8
9
√

3
nγ5 +O(γ7)(3.35)

and λ0 = n
√

27/16.
(b) Given (λ, γ) ∈ Ω and a ≤ a�(γ), if λ is to the right of σess(Aa), then the

following are equivalent:
• D(λ; γ) = 0.
• λ is an L2 eigenvalue of Aa.

(c) For such zeros of D, the algebraic multiplicity of λ as an eigenvalue of Aa is
equal to the order of λ as a zero of D(λ; γ).

(d) D(0; γ) = ∂λD(0; γ) = 0, and hence it is an eigenvalue of algebraic multiplic-
ity at least two.



1356 GIDEON SIMPSON AND MICHAEL I. WEINSTEIN

Remark 3.7. With this construction, for �λ < 0, λ ∈ Ωγ , the characteristic
polynomial, (3.36), not only has a unique root of minimal real part, but all roots have
distinct real part as well. This is stronger than is needed.

Remark 3.8. λcut is labeled as such because there is a branch cut in the Evans
function there.

Remark 3.9. The eigenvalue at the origin is related to the solitary waves being
a two-parameter (speed and phase) family of solutions of (1.2). The presence of the
corresponding bound states, explicitly given in Proposition 3.23, could lead to a weak
instability of algebraic growth in t. However, we will project out these modes by
allowing our leading order solitary wave to modulate its speed and phase.

Proof of Theorem 3.6. Part (a) requires the verification of the hypotheses of
Theorem 3.4 for this system. Applying the properties of the φc and Corollaries 2.9
and 2.11, and through examination of (3.27), B is clearly continuous in its three
arguments for λ ∈ C and c ≥ n. In addition, for fixed x, it will be analytic in (λ, c),
or, equivalently, (λ, γ). Thus property (i) of Theorem 3.4 holds.

By Corollary 2.7, the limiting matrix B∞ exists and B − B∞ is in L1. This will
be uniform on compact subsets of C × [0, 1), establishing properties (ii) and (iii) of
Theorem 3.4.

Lastly, we must verify the existence of μ1, the unique eigenvalue of minimal
real part. We divide this into two parts, �λ ≥ 0 and �λ < 0. The characteristic
polynomial, P(μ), of B∞ is

(3.36) cP(μ) = (λ− cμ)(1 − μ2) + nμ.

Following the analysis in section 2(c) of [27] for a similar polynomial in the case of
generalized BBM, one confirms that property (iv) holds for �λ ≥ 0 and all γ, and
hence the Evans function exists in {�λ ≥ 0} × [0, 1).

Using the analysis in [21] for Theorem 2.7 of the polynomial, one can conclude
the existence of some λ1 > 0 and identify Ω̃(γ), such that for all γ ∈ (0, 1), a unique
root of minimal real part exists for λ in the set

{λ : �λ < −λ1} \ (−λ1,−Ω̃(γ)].

Alternatively, we give a more precise analysis of (3.36) in Appendix C that yields
values of λ0 and Ω̃ given in the proposition. This concludes the proof of part (a).

To prove part (b), we need a lemma regarding the location of σess(Aa).
Lemma 3.10. Let γ ∈ (0, 1) and a ≤ a�(γ). Let Ω+ = Ω+(γ, a) denote the

component of C \ σess(Aa) containing the origin. Then for λ ∈ Ω+ ∩ Ωγ , the roots of
the characteristic polynomial satisfy the relation

(3.37) �μ1 < −a < �μj 	=1.

Proof. By inspection, if λ ∈ σess(Aa), there is a root μj of (3.36) with �μj = −a.
Conversely, if there is a root with real part −a, then λ is in the essential spectrum.
Hence the characteristic polynomial has a root with real part −a if and only if λ ∈
σess(Aa)

As noted in [27, section 2 (c)], for large |λ|, the roots of the characteristic poly-
nomial (3.36) are

−1 +O
(
|λ|−1
)
, 1 +O

(
|λ|−1
)
, λ/c+O

(
|λ|−1
)
.
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So for large λ in the right half-plane, (3.37) holds because a < 1. Now suppose for
some λ ∈ Ω+ ∩ Ωγ the inequality were false. Because the �μj depend continuously
on λ, equality would have to hold for some λ, but then it must be that λ ∈ σess(Aa),
which we have assumed is not the case.

We now prove part (b) of Theorem 3.6. If D(λ; γ) = 0, then there is a solution
to the ODE, ẏ = By, such that

y(x) = O(eμ1x) as x→ +∞ and y(x) = o(eμ1x) as x→ −∞.

Hence, by Part 1(d) of Proposition 1.6 of [27], for sufficiently small ε,

y(x) = O(eμ�x+ε|x|) as x→ −∞.

Letting W (x) = eaxφc(x)my1(x),

W (x) = O(e(μ�+a)x+ε|x|) as x→ −∞ and W (x) = O(e(μ1+a)x) as x→ +∞.

From (3.37), μ1 + a < 0 < μ� + a, so W will decay exponentially fast at ±∞. Hence
it is an L2 solution to the eigenvalue problem AaW = λW .

Conversely, if we have an L2 eigenfunction, then it must satisfy

W (x) = O(e(μ1+a)x) as x→ +∞ and W (x) = o(e(μ1+a)x) as x→ −∞.

Y (x) = e−axW (x) will then satisfy (3.24) in a classical sense, although it may not be
in L2. However it will satisfy the necessary decay estimates on y, constructed from
Y as in (3.25), such that D(λ; γ) = 0. This concludes the proof of part (b).

The proof of part (c) follows that of Lemma 2.9 from [28]. First, it is proved that
if, for a given γ, λ is a zero of order k of D(λ; γ), then λ is an L2 eigenvalue of Aa

of algebraic multiplicity at least k. It is then shown that it cannot have algebraic
multiplicity greater than k. We omit repeating these details. Part (d) is then a
consequence of (c) and the calculations in Appendix D that D(0; γ) = ∂λD(0; γ) = 0
for all γ.

Remark 3.11. For �λ ≤ 0 with D(λ; γ) = 0, it is likely, but not proved, that λ is
not an L2 eigenvalue of A.

3.3.3. The Evans function in the KdV scaling. We now introduce D�(Λ; γ),
the Evans function for (3.24) under the KdV scalings introduced in section 2.2:

(3.38) ξ = γx, λ = cΛγ3, φc(x) = 1 +
γ2

n− 1
U(ξ(x); γ).

The eigenvalue problem is now

∂ξLγY = ∂ξ

[
−
(

1 +
γ2

n− 1
U

)n

∂2
ξ

((
1 +

γ2

n− 1
U

)−m

·
)]

Y

+ ∂ξ

[(
1 +

γ2

n− 1
U

)−1

(1 − U)

]
Y

= Λ

[
I − γ2∂ξ

((
1 +

γ2

n− 1
U

)n

∂ξ

((
1 +

γ2

n− 1
U

)−m

·
))]

Y.

(3.39)

Recall that U = U(ξ; γ) is the solution of (2.18), and for γ = 0, U = U�, the KdV
soliton.
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We can construct a dynamical system formulation of (3.39), defining the vector
Y as

(3.40) Y =

⎛⎜⎜⎜⎜⎜⎜⎝

(
1 + γ2

n−1U
)−m

Y

∂ξ

[(
1 + γ2

n−1U
)−m

Y

]
LγY + γ2Λ

(
1 + γ2

n−1U
)n

∂ξ

[(
1 + γ2

n−1U
)−m

Y

]

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which satisfies

Ẏ = B�(ξ,Λ, γ)Y,(3.41)

B�(ξ,Λ, γ)

=

⎛⎜⎜⎜⎝
0 1 0(

1 + γ2

n−1U(ξ; γ)
)m−n−1

(1 − U(ξ; γ)) γ2Λ −
(

1 + γ2

n−1U(ξ; γ)
)−n

Λ
(

1 + γ2

n−1U(ξ; γ)
)m

0 0

⎞⎟⎟⎟⎠ .

(3.42)

As ξ → ∞, the matrix is

(3.43) B∞
� (Λ, γ) =

⎛⎜⎝0 1 0
1 γ2Λ −1
Λ 0 0

⎞⎟⎠ ,
which has the characteristic polynomial

(3.44) P�(ν; Λ, γ) = ν3 − γ2Λν2 − ν + Λ.

A few remarks about the scaled problem. The assumptions stated in Theorem 3.4
remain the same, except now the matrix under inspection is B�, with eigenvalue
parameters (Λ, γ). Y and y are related:

y(x) =

⎛⎜⎝ Y1(ξ(x))
γY2(ξ(x))
cγ2Y3(ξ(x))

⎞⎟⎠ .
At γ = 0, (3.39) is

∂ξL0Y = ∂ξ

[
−∂2

ξY + (1 − U�(ξ; 0)Y
]

= ΛY,

the KdV eigenvalue problem, (3.20), and

B�(ξ,Λ, 0) =

⎛⎜⎝ 0 1 0
1 − U�(ξ) 0 −1

Λ 0 0

⎞⎟⎠
is the matrix for the KdV dynamical system.
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Proposition 3.12 (scaled Evans function).

(a) D�(Λ; γ) is defined and analytic on the set Δ ⊂ C
2,

(3.45) Δ = {(Λ, γ) | γ ∈ [0, 1) and λ ∈ Δγ} ,

where, for γ > 0,

Δγ =
{

Λ | �Λ > − λ0

cγ3

}
\
(
− λ0

cγ3
,−λcut(γ)

cγ3

]

=

{
Λ | �Λ > −γ−3

√
27
16

+O(γ−1)

}

\
(
−γ−3

√
27
16

+O(γ−1),−
√

4
27

+O(γ2)

]
.

λ0 and Ω̃ are as defined by Theorem 3.6. When γ = 0,

Δ0 = ΔKdV = C \
(
−∞,−

√
4/27
]
.

(b) For fixed γ ∈ (0, 1) and Λ ∈ Δγ ,

D�(Λ; γ) = D(cΛγ3; γ).

(c) For Λ ∈ Δ0,

D�(Λ; 0) = DKdV(Λ).

Proof. The proof of these statements follows that of Proposition 2.8 in [21] and
Theorems 4.9–4.11 of [29].

Proof of part (a). For γ > 0, as in Theorem 3.6, we must identify a set in C
2

in which the hypotheses of Theorem 3.4 are valid. Parts (i)–(iii) are obvious as the
solitary wave U(ξ; γ) decays exponentially in ξ and, for fixed ξ, will be analytic in
γ. We are left to verify part (iv). The characteristic polynomial of B∞

� is (3.44). As
noted in [21], the roots of P� are related to those of P , (3.36), by

μ(λ, γ) = γν(Λ, γ).

So P� will have a unique root of minimal real part for a given Λ and γ when P has
such a unique root for λ = cΛγ3. Therefore, for γ ∈ (0, 1), if Λ is in the set

Δγ =
1
cγ3

Ωγ ,

(iv) will be satisfied. If γ = 0, (3.41) and (3.42) coincide with the KdV system, for
which Δ0 = C \ (−∞,−

√
4/27]. Clearly, as γ → 0, Δγ limits to Δ0.

Proof of part (b). From part (a), λ = cΛγ3 ∈ Ωγ and, by construction,

y1(x, λ, γ) ∼ eμ1x as x→ +∞,

Y1(ξ,Λ, γ) ∼ eν1ξ as ξ → +∞.
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At ξ = γx, μ1 = γν1, λ = cΛγ3, y1(x, λ, γ) = Y1(ξ,Λ, γ). Using the transmission
coefficient interpretation of the Evans function, we then have

y(x, λ, γ) ∼ D(λ; γ)eμ1x (1, μ1, λ/μ1)T as x→ −∞,

Y(ξ,Λ, γ) ∼ D�(Λ; γ)eν1ξ (1, ν1, Λ/ν1)T as ξ → −∞,

implying

D(cΛγ3; γ) = D�(Λ; γ).

Proof of part (c). Trivially, when γ = 0, this is the KdV Evans function problem
exactly.

Proposition 3.13. Let ε2 ∈ (0,
√

4/27) and M > 0. Set

O = {�Λ ≥ −ε2, |Λ| < M} .

Then for all γ sufficiently small, O ⊂ Δγ and

lim
γ→0

D�(Λ; γ) = D�(Λ; 0) = DKdV(Λ)

with uniform convergence for Λ ∈ O.
Proof. Clearly, for γ sufficiently close to zero, O ⊂ Δγ . Since O is compact and

D� is analytic in both arguments,

sup
Λ∈O

|D�(Λ; γ) −D�(Λ; 0)|

may be made arbitrary small by taking γ sufficiently close to zero.
Theorem 3.14. There exist γ� ∈ (0, 1) and ϑ̂ > 0 such that for all γ ∈ (0, γ�]

and a ∈ (γϑ̂, a�(γ)], there exists ε = ε(γ, a) > 0, such that
• the only eigenvalue of Aa with �λ ≥ −ε is λ = 0, with algebraic multiplicity

two;
• the only zero of D(λ; γ) with �λ ≥ −ε is λ = 0, a root of order two.

Proof. Adapting the proof of Theorem 2.1 in [21] we break a half-plane into two
parts: a bounded set about the origin and its unbounded complement. The operator
estimates from Proposition 3.3 will rule out eigenvalues in the unbounded part, and
the Evans function in the KdV scaling will control eigenvalues in the bounded part.

Let us apply Proposition 3.3 (a) with δ = 1/4, c� = 4n, and

ϑ̂ =
1
4

sup
c∈(n,c�]

a�(c)
γ(c)

.

Then there exists M > 0, such that for any c ∈ (n, 4n], a ∈ (γϑ̂, a�(γ)], and λ ∈ ΩU,

ΩU =
{
λ : �λ ≥ −1

2
acγ2, |λ| > cMγ3

}
,

‖C(λ)‖L2→L2 < 1. By Proposition 3.2 (c), such λ cannot be L2 eigenvalues of Aa.
Using this M , let ε2 = 1

4 and set

O = {Λ : �Λ ≥ −ε2, |Λ| ≤M} .
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Define

m = min{|DKdV(Λ)|min Λ ∈ ∂O}.

By Proposition 3.13, there exists a γ� ≤ 1/2 such that for all γ ∈ [0, γ�],

|D�(Λ; γ) −D�(Λ; 0)| = |D�(Λ; γ) −DKdV(Λ)| < m for all Λ ∈ ∂O.

By Theorem 3.5, the only root of DKdV in O is at Λ = 0, with multiplicity two.
Applying Rouché’s theorem (see, for example, [16, 17]), for all γ ∈ [0, γ�], D�(·, γ)
and DKdV have the same number of roots in O. By Proposition 3.12 (b), if γ ∈ (0, γ�]
and Λ ∈ O, D�(Λ; γ) = D(cΛγ3; γ); therefore on the set ΩB,

ΩB = cγ3O =
{
λ : �Λ ≥ −ε2cγ3, |λ| ≤ cMγ3

}
.

D(λ; γ) also has only two zeros. Theorem 3.6 (d) asserts that these two roots are
at the origin, corresponding to an eigenvalue of algebraic multiplicity two. By Theo-
rem 3.6 (b), Aa then has no nonzero L2 eigenvalues in ΩB.

Combining ΩU and ΩB, if we set

(3.46) ε(γ, a) = min
{

1
2
acγ2, ε2cγ

3,
1
2
ω,

1
2
λcut(γ),

1
2
λ0

}
,

then by Theorem 3.6 (b), λ = 0 is both the only eigenvalue of Aa and the only root
of D(λ; γ) with �λ ≥ −ε.

Corollary 3.15. For γ ∈ (0, γ�], ∂cN [φc] �= 0.
Proof. This is a consequence the preceding theorem and the relation ∂2

λD(0; γ) ∝
∂cN [φc]; see Appendix D.

3.4. The Evans function beyond the KdV scaling. For γ > γ�, one may
compute the Evans function numerically to assert that a given λ is not an eigenvalue.
Moreover, the winding number of the image of the Evans function evaluated on the
line �λ = −λ1 < 0 equals the number of zeros in the set �λ > −λ1. Therefore,
one might evaluate the Evans function on such a line and exam the plot, as we do in
Figures 4 and 5.

These plots indicate that λ = 0 is the only zero in the closed right half-plane for
the values of c, n, and m under consideration. Up to the acceptance of these numerics,
this extends Theorem 3.14. Note that we do not evaluate out to −λ1 +ı∞, but merely
compute at sufficiently large values of λ such that we are near the asymptotic value
of the Evans function. It may be proven that there exists D∞(γ) such that

lim
|λ|→∞,λ∈Ω

D(λ; γ) = D∞(γ).

A further numerical computation will reveal that this value is nonzero.
In the Hamiltonian case, n + m = 0, an analytical result is possible for γ > γ�.

The linearized operator, A, may be written as A = JcLc,

Jc = [I − ∂x (φn
c ∂x (φn

c ·))]
−1
∂x, J�

c = −Jc,(3.47)

Lc = −cφn
c ∂

2
x (φn

c ) +
(
c− nφ−1

c + cn
(
φ−1

c − 1
))
, L�

c = Lc.(3.48)

This structure permits an extension of Theorem 3.14 beyond the KdV regime, given
below in Theorem 3.21. However, this is absent for general n and m.
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Fig. 4. D(·; c = 4) evaluated on a portion of the strip �λ = −1/5. Since D(λ) = D(λ) we only
compute �λ > 0, and then reflect; this is the dashed curve. The curve wraps around the origin,
marked by x, twice. In this case, n = 3 and m = 0.

Fig. 5. D(·; c = 8) evaluated on a portion of the strip �λ = −1. Since D(λ) = D(λ) we only
compute �λ > 0, and then reflect; this is the dashed curve. The curve wraps around the origin,
marked by x, twice. In this case, n = 3 and m = 0.

Remark 3.16. This section is the only place where the analyticity of the Evans
function in the γ argument is used. In turn, this is the only place requiring analyticity
of φc in c from Corollary 2.11 (b). For the results in the preceding section, joint
continuity of D(λ; γ) in its two arguments is sufficient.

Lemma 3.17. In the Hamiltonian case, the following are equivalent for �λ ≥ 0,
a ≤ a�(γ):

• λ is an L2 eigenvalue of A.
• D(λ; γ) = 0.
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Proof. For �λ > 0, we know that μ� = min {�μ2,�μ3} > 0, so an eigenfunction,
having submaximal growth at −∞, must decay exponentially fast. This is very similar
to the relation in the case of the weighted operator from Theorem 3.6 (b).

For �λ = 0, the proof relies on the JL structure of the operator A. See the proof
of [27, Theorem 3.6].

Lemma 3.18. If λ is a nonzero purely imaginary eigenvalue, then ∂λD(λ; γ) �= 0.
Proof. The proof is by contradiction. Let Y+ be the corresponding eigenfunction,

AY + = λY +. It may be proven that the subspace Y = span{Y +, Y +} satisfies

〈Lcu, v〉 = 0 for all u, v ∈ Y.

As Y ∩ ker(Lc) = {0}, we may apply Lemma 3.3 of [27] to conclude dimY ≤ 1, a
contradiction. See Lemma 3.3 from [28] for details.

Lemma 3.19 (monotonicity of functional analytically confirmed for n = 2). In
the Hamiltonian case, assuming ∂cN [φc] �= 0 for all c, then for all c, there are no
eigenvalues with �λ > 0.

Proof. By Theorem 3.14, the result holds for c ≤ c�. We argue by contradiction
to extend it beyond c�. Assume for some γ0 > γ� that there exists λ0, �λ0 > 0,
such that D(λ0; γ0) = 0. If �λ0 �= 0, then D(λ0; γ0) = 0 and there would be two
eigenvalues in the right half-plane. But by Theorem 3.1 of [27], A = JcLc has no
more eigenvalues (counting multiplicity) with �λ > 0 than Lc does with �λ < 0. As
is discussed in [40], Lc has exactly one negative eigenvalue; this is a contradiction, so
λ0 is real.

Because the number of zeros in the right half-plane is at most one, counting
multiplicity, we know ∂λD(λ0; γ0) �= 0. Applying the implicit function theorem, we
get an analytic function, λ(γ), defined in a neighborhood of γ0, such that λ(γ0) = λ0

and D(λ(γ); γ) = 0.
Let O be the maximal domain of analyticity of λ(γ). In a sufficiently small

neighborhood of γ0, �λ(γ) > 0. For real-valued γ in this neighborhood, we must
have, by the above argument about complex-conjugates, that �λ(γ) = 0. Considering
the power series expansion of λ(γ), about γ0, λ(γ) will be real-valued for real-valued
γ ∈ O.

Let

γ1 = inf {γ ∈ (γ�/2, γ0) ∩ O | D(λ(γ); γ) = 0} .

For all γ ∈ [γ1, γ0], we must have λ(γ) > 0. Suppose this is not the case. Then, by
continuity, for some γ, we must have λ(γ) = 0. But this would imply that λ = 0 was
a root of multiplicity three, contradicting the assumption on N , which ensures it is a
root of multiplicity two.

λ(γ) may be analytically continued down till at least γ�/2. If not, then γ1 >
γ�/2 and ∂λD(λ(γ1); γ1) �= 0 since this root must be simple. Therefore we could
apply the implicit function theorem again and extend λ(γ) below γ1, contradicting
its minimality.

But then D(λ(γ�); γ�) = 0, and λ(γ�) > 0, contradicting Theorem 3.14.
Remark 3.20. An analogous result may be found in Theorem 3.4 [27] for gen-

eralized KdV and generalized BBM. However, the argument there is very different
because it may be proven that D(λ) → 1 as |λ| → ∞. This does not hold for the
Evans function associated with (1.2), due to the appearance of a nonlinearity in the
dispersive term.
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Theorem 3.21 (monotonicity of functional analytically confirmed for n = 2). In
the Hamiltonian case, assuming ∂cN [φc] �= 0 for all c, Theorem 3.14 may be extended
to all γ ∈ (γ�, 1), except for a discrete set whose only possible accumulation point is
γ = 1.

Proof. By Lemma 3.19, if Theorem 3.4 were false for some γ > γ�, it would be
due to a zero appearing on the imaginary axis. We will prove by contradiction that
the set

(3.49) E = {γ ∈ [0, 1) | there exists β > 0 such that D�(ıβ; γ) = 0}

has no accumulation points. We consider only positive β’s because if ıβ is a root, then
so is −ıβ. This follows the proofs of Theorem 3.6 of [28] and Theorem 2.1 of [21].

Assuming E has a limit point, there exists a sequence, γj ∈ E, γj → γ0 ∈ E as
j → ∞. Taking a subsequence if necessary, γj and γ0 are bounded away from γ = 1.
We will now rule out large eigenvalues, and then argue by contradiction to rule out
small eigenvalues.

Applying Proposition 3.3 to this range of γ values, there will exist M > 0, such
that the corresponding βj > 0 must satisfy βj ≤ M . Taking a subsequence if neces-
sary, βj → β0, β0 ≤M , D�(ıβj ; γj) = 0, and, by continuity, D�(ıβ0; γ0) = 0.

Note that β0 �= 0. Λ = 0 is always a root of order at least two. The assumption
∂cN [φc] ∝ ∂2

λD(0; γ) = (c2γ6)−1∂2
ΛD�(0; γ) �= 0 forces it to be a root of order exactly

two. But β0 = 0 would imply that it was a zero of at least four, a contradiction.
Applying Lemma 3.18, ∂ΛD�(ıβj ; γj) �= 0 and ∂ΛD�(ıβ0; γ0) �= 0. By the implicit

function theorem, there is an analytic function Λ0(γ) defined in a neighborhood of
γ0, such that Λ0(γ0) = ıβ0 and D�(Λ0(γ); γ) = 0. By considering the power series
expansion of Λ0(γ) about γ0, we see, by taking γj sufficiently close to γ0, that Λ0(γ)
is purely imaginary for real γ in its maximal domain of analyticity, O.

Let

γ1 = inf {γ ∈ [0, γ0) ∩ O | D�(Λ0(γ); γ) = 0} .

For all γ ∈ [γ1, γ0], we must have �Λ0(γ) > 0. If not, then by continuity there would
exist γ ∈ (γ1, γ0), for which Λ0(γ) = 0, yielding a contradiction as before.

Suppose γ1 > 0. �Λ0(γ1) > 0 because, if not, then by continuity there would
exist γ ∈ (γ1, γ0), for which Λ0(γ) = 0, leading to a contradiction again. Therefore, we
may be sure that ∂ΛD�(Λ0(γ1); γ1) �= 0. We may then apply the implicit function the-
orem, allowing us to continue Λ0 below γ1, another contradiction. Therefore γ1 = 0.
But then �Λ0(0) > 0 and 0 = D�(Λ0(0); 0) = DKdV(Λ0(0)), a contradiction.

Remark 3.22. This result is limited by our inability to analytically evaluate
the functional N [φc]. The authors were similarly stymied in [40], where the orbital
stability of the solitary waves relies on proving ∂cN [φc] > 0. Here, as there, one
may numerically evaluate the functional and observe its monotonicity in the speed
argument. See [40] for the case n = 2.

This result, along with (3.8) and Theorem 3.14, completes the proof of Theo-
rem 3.1.
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3.5. The generalized kernel.
Proposition 3.23. Let c > n, a ≤ a�(c) and assume ∂cN [φc] �= 0. Define

ξ̃1 = ∂xφc,

ξ̃2 = ∂cφc,

η̃1 = Θ
[
I − φ−m

c ∂x (φn
c ∂x·)

] ∫ x

−∞
(L�

c)−1 [
I − φ−m

c ∂x (φn
c ∂x·)

] ∫ x

−∞

∂xφc

φn+m
c

dx,

η̃2 = Θ
[
I − φ−m

c ∂x (φn
c ∂x·)

] ∫ x

−∞

∂xφc

φn+m
c

dx,

Θ = (∂cN [φc])−1
.

For j = 1, 2, set

ξj = eayξ̃j and ηj = e−ayη̃j .

Then {ξ1, ξ2} and {η1, η2} are biorthogonal bases for kerg(Aa) and kerg(A�
a), 〈ξi, ηj〉 =

δij. They satisfy the relations

Aaξ1 = 0, A�
aη2 = 0,

Aaξ2 = −ξ1, A�
aη1 = −η2.

Proof. It is easy to verify Aξ̃1 = 0, Aξ̃2 = −ξ1, and A�η̃2 = 0.

ker(L�
c) = span

{
φ−n−m

c ∂xφc

}
.

The kernel is orthogonal to η̃2 because η̃2 is an even function, while the kernel is odd.
Therefore, η̃1 is well defined and A�η̃1 = −η̃2.

4. Semigroup decay. The following result proves the convective stability of
solitary waves under the linearized flow. As we will do in section 6, this may be
employed to prove full nonlinear stability.

Theorem 4.1 (linearized stability). Assume γ ∈ (0, 1), a ≤ a�(γ), and there
exists ε > 0 such that λ = 0 is the only eigenvalue of Aa with �λ ≥ −ε. Then the
initial-value problem

wt = Aaw,

w(0) = w0 ∈ H1 ∩ kerg(A�
a)⊥

has a unique solution w(t) = eAatw0 ∈ C0([0,∞);H1) with

(4.1) ‖w(t)‖H1 ≤ Ce−bt‖w0‖H1

for some C > 0 and b > 0.
Remark 4.2. There exists a bmax > 0 such that (4.1) will hold for all b ∈ (0, bmax).

In particular, for γ ∈ (0, γ�] and a ∈ (γϑ̂, a�(γ)], bmax ≥ ε; see Theorem 3.1.
Proof of Theorem 4.1. This is based on a result due to Prüss [30].
Theorem 4.3. Let B be the infinitesimal generator of a C0-semigroup on a

Hilbert space Z. Let b > 0. If there exists M > 0 such that

‖(λI −B)−1‖Z→Z ≤M for all �λ > −b,

then ‖eBt‖Z→Z ≤ e−bt.
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Following the approach in [21] for Proposition 3.1, we first show that Aa is the
infinitesimal generator of a C0-semigroup on H1. Examining the Fourier symbol of
A∞

a , A∞
a is such a semigroup. As (B.16) shows, Aa − A∞

a is a bounded operator,
so we may apply Theorem 3.1.1 of [25], which states that bounded perturbations of
infinitesimal generators are also infinitesimal generators.

Consider the Hilbert space

Z = H1 ∩ kerg(A�
a)⊥

equipped with the H1 norm and the operator

B = Aa|Z

the restriction of Aa to Z. B inherits from Aa that it is the infinitesimal generator of
a C0-semigroup on Z. Also note that σ(B) = σ(Aa)\{0} by Theorem III-6.17 of [14].

Recall from Theorem 3.1 that σess(Aa) is contained in left half-plane, and all
points in σ(Aa) \σess(Aa) are eigenvalues of finite multiplicity. By the assumption on
the spectrum of Aa, the spectrum of B is contained in the open left half-plane.

We will now prove there exists a uniform bound on resolvent of B for �λ > −b
for some b > 0. For λ ∈ ρ(B),

(λI −B)−1 = (λI −Aa)−1 |Z ,

so

‖(λI −B)−1‖Z→Z ≤ ‖(λI −Aa)−1‖H1→H1 .

The resolvent of Aa may be written as

(λI −Aa)−1 = (I − C(λ))−1 (λI −A∞
a )−1

,

with C(λ) as defined in Proposition 3.2. Since �σess(Aa) ≤ −ω < 0, we must have
b < ω. Then, for �λ ≥ −b, the Fourier symbol of (λI −A∞

a )−1 is uniformly bounded,
so

‖(λI −A∞
a )−1‖H1→H1 ≤M ′ for some M ′ > 0.

By Proposition 3.3, for �λ ≥ −b ≥ − 1
2acγ

2, there exists R′ > 0 such that

‖(I − C(λ))−1‖H1→H1 ≤ 2 for |λ| > R′.

Therefore,

‖(λI −B)−1‖Z→Z ≤ ‖(λ−Aa)−1‖H1→H1 ≤ 2M ′ for �λ ≥ −b and |λ| > R′.

For |λ| ≤ R′ and �λ ≥ −ε, B has no eigenvalues. B is a closed operator, and
therefore (λI −B)−1 is holomorphic on this compact set (see Theorem III-6.7 of [14])
giving the bound

‖(λI −B)−1‖Z→Z ≤M ′′ for some M ′′ > 0.

Hence for all �λ ≥ −min{b, ε},

‖(λ−B)−1‖Z→Z ≤ max{2M ′,M ′′},

and we may apply Theorem 4.3.
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5. Prelude to nonlinear stability. We need three results about our system
before we can prove Theorem 1.1. First, we establish a criterion for when a decompo-
sition of φ into a modulating solitary wave and a perturbation is possible. Then we
derive equations for the evolution of the parameters associated with this modulating
solitary wave. Finally, we relate the H1 norm to the H1

a norm of the perturbation.

5.1. Local existence of decomposition and continuation principles. In
analyzing the weighted perturbation w, we wish to treat the nonlinear terms per-
turbatively, with the leading order behavior governed by the linear operator Aa. As
noted in Proposition 3.23, the operator has a two-dimensional kernel. To prevent
the appearance of secular terms, the perturbation must be orthogonal to kerg(A�

a);
this reveals how the decomposition of φ into a perturbation and a modulated solitary
wave, (2.28), occurs. This follows the strategy of [26] and [21].

Proposition 5.1. Let c0 > n, a ≤ a�(c0), and t1 > 0. Given δ1 > 0, there exists
δ0 > 0 such that for any φ− 1 ∈ C1([0, t1];H1 ∩H1

a) satisfying

(5.1) sup
t≤t1

‖ea(·+θ0)(φ(·, t) − φc0(· − c0t+ θ0))‖H1 ≤ δ0 for some θ0 ∈ R

there exists a unique mapping t �→ (θ(t), c(t)) in C1([0, t1]; R
2) such that

sup|θ(t) − θ0| + sup|θ̇(t)| + sup|c(t) − c0| + sup|ċ(t)| ≤ δ1, t ≤ t1,(5.2)

Tk[φ− 1, θ, c] =
〈
φ(x, t) − φc(t)(y), η̃j(y)

〉
= 0 for j = 1, 2 and t ∈ [0, t1],(5.3)

where y = x−
∫ t

0
c(s)ds+ θ(t).

The number δ0 may be chosen as a decreasing function of t1.
Proof. The proof is via the implicit function theorem. In this context, the Banach

spaces are C1([0, t1];H1
a) and C1([0, t1]; R

2), the latter space equipped with the norm

sup
t≤t1

|θ(t)| + sup
t≤t1

|θ̇(t)| + sup
t≤t1

|c(t)| + sup
t≤t1

|ċ(t)|.

The functional is

T = (T1, T2)T : C1([0, t1];H1
a) × C1([0, t1]; R

2) → C1([0, t1]; R
2),

and it is C1 in its arguments, permitting the use of the implicit function theorem.
Setting

U0 = (φc0(x− c0t) − 1, 0, c0)

we see T [U0] = 0. The Fréchet derivative at U0 is

DT [U0] (δφ, δθ, δc)

=

(〈
ea(x−c0t)δφ(x, t), η1(x− c0t)

〉
−
∫ 1

0 δc(s)ds+ δθ(t)〈
ea(x−c0t)δφ(x, t), η2(x− c0t)

〉
+ δc(t)

)
.

(5.4)

The derivative acting on the (θ, c) is
(

I −B
0 I

)
, (Bf)(t) =

∫ t

0 f(s)ds. This block operator
has a bounded inverse on C1([0, t1]; R

2) → C1([0, t1]; R
2). By the implicit function

theorem, there exists δ0 > 0, such that if

sup
t≤t1

‖φ(· − θ0, t) − φc0(· − c0t)‖H1
a
< δ0 for some θ0 ∈ R,
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then there exists a mapping in C1([0, t1]; R
2), t �→ (θ̃(t), c(t)), satisfying

sup|θ̃(t)| + sup| ˙̃θ(t)| + sup|c(t) − c0| + sup|ċ(t)| < δ1 for t ≤ t1,

T [φ(· − θ0, t)) − 1, θ̃(t), c(t)] = 0 for t ≤ t1.

Defining θ(t) = θ̃(t) + θ0, and applying the change of variables x �→ x̃+ θ0, we obtain
the form given in (5.1), (5.2), and (5.3).

Finally, because our norms are taken as the supremum over t ≤ t1, if δ0 works
for t1, then it will also work for any t2 ≤ t1. This allows δ0 to be constructed as a
decreasing function of t1.

Proposition 5.2. Let c0 > n, a ≤ a�(c0) and assume φ − 1 ∈ C1([0, Tmax];
H1 ∩H1

a), Tmax > 0 solves (1.2).
Given δ1 > 0, there exist δ0 > 0 and δ′0 > 0, such that for any t0 ∈ [0, Tmax),

if the decomposition of φ, v(y, t) = φ(x, t) − φc(t)(y), y = x −
∫ t

0 c(s)ds + θ(t), and
(θ, c) ∈ C1([0, t0]; R

2) satisfies

sup
t≤t0

‖v(t)‖H1
a
≤ δ0/3,(5.5)

sup
t≤t0

|c(t) − c0| ≤ δ′0,(5.6)

T [φ− 1, θ, c](t) = 0 for t ∈ [0, t0],(5.7)

then there is a unique extension of (θ, c) in C1([0, t0 + t�]; R
2) for some t� > 0 such

that

T [φ− 1, θ, c](t) = 0 for t ≤ t0 + t� ≤ Tmax,(5.8)

sup|θ(t) − θ(t0)| + sup|θ̇(t)|

+ sup|c(t) − c(t0)| + sup|ċ(t)| ≤ δ1, t ∈ [t0, t0 + t�].
(5.9)

Proof. This follows the proof of Proposition 5.2 in [28], although we are forced to
modify it as we do not know a priori that a solution exists for all time.

Given δ1, let δ0 > 0 be the value from Proposition 5.1 with t1 = 1
2 (Tmax − t0).

Set φ̃(x, t) = φ(x, t + t0), θ1 = −
∫ t0
0
c(s)ds + θ(t0). Let δ′0 be sufficiently small such

that

(5.10) ‖φc′ − φc0‖H1∩H1
a
≤ δ0/3 for all c′ such that |c′ − c0| ≤ δ′0.

Then, since∥∥∥ea(·+θ1)
(
φ̃(0) − φc0(· + θ1)

)∥∥∥
H1

≤
∥∥∥ea(·+θ1)

(
φ̃(0) − φc1(· + θ1)

)∥∥∥
H1

+ ‖ea(·+θ1) (φc1(· + θ1) − φc0(· + θ1))‖H1

= ‖v(t0)‖H1
a

+ ‖φc1 − φc0‖H1
a
≤ 2

3
δ0,

we have∥∥∥ea(·+θ1)
(
φ̃(t) − φc0(· − c0t+ θ1)

)∥∥∥
H1

≤
∥∥∥ea(·+θ1)

(
φ̃(t) − φ̃(0)

)∥∥∥
H1

+
2
3
δ0

= eaθ1‖φ(t+ t0) − φ(t0)‖H1∩H1
a

+
2
3
δ0.
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As φ is continuous in time, there exists a t� ≤ t1, such that

sup
t≤t�

‖ea(·+θ1)
(
φ̃(t) − φc0(· − c0t+ θ1)

)
‖H1 ≤ δ0.

Therefore, φ̃ satisfies the hypotheses of Proposition 5.1. We have a unique (θ̃(t), c̃(t))
with (θ̃(0), c̃(0)) = (θ(t0), c(t0)). This gives us the extension (θ(t), c(t)) = (θ̃(t− t0)−
θ0 + θ(t0), c̃(t− t0)) for t ∈ [t0, t0 + t�] and (5.9) will hold.

5.2. Modulation equations. Given that the perturbation must be orthogonal
to kerg(A�

a), the associated constraints give a pair of ODEs, coupled to the perturba-
tion, giving a complete system of three equations for the three dependent variables.

Let P denote the projection onto kerg(A�
a). Assuming this space is two-dimen-

sional, we use the biorthogonal bases given in Proposition 3.23 to define projection
onto this space and its complement,

P = 〈η1, ·〉 ξ1 + 〈η2, ·〉 ξ2,(5.11)

Q = I − P.(5.12)

The secular terms are excised from the perturbation equation, (2.36), by requiring
that

wτ = Aaw +QG,(5.13)

PG = 0,(5.14)

Pw(τ = 0) = 0.(5.15)

Constraint (5.14) corresponds to

(5.16) 〈ηj ,G〉 = 0 for j = 1, 2.

These two equations govern c(t) and θ(t), completing our system.
Defining p1(y, t) = ∂yφc(t)(y) − ∂yφc0(y) and p2(y, t) = ∂cφc(t)(y) − ∂cφc0(y), the

derived system is

(5.17)(
1 + 〈η̃1, p1〉 〈η̃1, p2〉
〈η̃2, p1〉 1 + 〈η̃2, p2〉

)(
θ̇

ċ

)
=
c− θ̇

c0

⎛⎝
〈
η1, Sa[c0, c, θ̇]w

〉
〈
η2, Sa[c0, c, θ̇]w

〉
⎞⎠+
(〈η1,G1〉
〈η2,G1〉

)
.

However, the right-hand side still has θ̇ dependence. Observe that

c− θ̇

c0
Sa[c0, c, θ̇]w = cm

[
∂y log

(
φc0

φc

)]
w − θ̇m∂y log (φc0)w

+
[ c
c0
nφm

c0
H−1

φc0 ,aDa

[(
φ−1

c0
− c0(φ−1

c0
− 1)
)
·
]

− nφm
c H

−1
φc,aDa

[(
φ−1

c − c(φ−1
c − 1)

)
·
]]
w

− θ̇

c0
φm

c0
H−1

φc0 ,aDa

[(
φ−1

c0
− c0(φ−1

c0
− 1)
)
·
]
w

− cm
[
φm

c0
H−1

φc0 ,a [∂y (logφc0) ·] − φm
c H−1

φc,a [∂y (logφc) ·]
]
w

+ θ̇mφm
c0
H−1

φc0 ,a [∂y (logφc0) ·]w.

(5.18)
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Defining

S̃a = S̃1
a + S̃2

a + S̃3
a,(5.19)

S̃1
a = cm

(
φ−1

c0
∂yφc0 − φ−1

c ∂yφc

)
,(5.20)

S̃2
a = n

{ c
c0
φm

c0
H−1

φc0 ,aDa

[(
φ−1

c0
− c0(φ−1

c0
− 1)
)
·
]

− φm
c H

−1
φc,aDa

[(
φ−1

c − c(φ−1
c − 1)

)
·
]}
,

(5.21)

S̃3
a = −cm

[
φm

c0
H−1

φc0 ,a

(
φ−1

c0
∂yφc0 ·

)
− φm

c H
−1
φc,a

(
φ−1

c ∂yφc·
)]
,(5.22)

and

Ta = −mφ−1
c0
∂yφc0 − c0

−1φm
c0
H−1

φc0 ,aDa

[(
φ−1

c0
− c0(φ−1

c0
− 1)
)
·
]

+mφm
c0
H−1

φc0 ,a

(
φ−1

c0
∂yφc0 ·

)
,

(5.23)

the right-hand side of (5.17) may be written as⎛⎝
〈
η1, S̃aw

〉
〈
η2, S̃aw

〉
⎞⎠+ θ̇

(〈η1, Taw〉
〈η2, Taw〉

)
+
(〈η1,G1〉
〈η2,G1〉

)
.

Equation(5.17) may be solved algebraically so that θ̇ appears only on the left-hand
side,

B(t)

(
θ̇

ċ

)
=
(

1 + 〈η̃1, p1〉 − 〈η1, Taw〉 〈η̃1, p2〉
〈η̃2, p1〉 − 〈η2, Taw〉 1 + 〈η̃2, p2〉

)(
θ̇

ċ

)

=

⎛⎝
〈
η1, S̃aw

〉
〈
η2, S̃aw

〉
⎞⎠+
(〈η1,G1〉
〈η2,G1〉

)
,

(5.24)

where B(t) = I +O(|c(t) − c0|) +O(‖w‖L2); for sufficiently small |c(t)− c0|+ ‖w‖L2 ,
B is invertible. Thus we have equations for θ̇ and ċ, closing the system for (v, c, θ).

Remark 5.3. In (5.24), we see that when B(t) is inverted, the right-hand side of
the system is continuous in t. Therefore, provided c(t), θ(t), and w(t) are continuous
in t, c(t) and θ(t) will actually be C1.

5.3. Lyapunov bound. Using the functional N [φ], defined in (2.8), we have
the following.

Proposition 5.4. Let c0 > n, a ≤ a�(c0), and let φ(x, t) be a solution to (1.2)
in C1([0, T ];H1 ∩H1

a) with data

φ0 = φc0(x + θ0) + v0(x), θ0 ∈ R.

Assume the decomposition φ(x, t) → (v(y, t), θ(t), c(t)) exists for t ≤ T and

|c(t) − c0| + ‖v(·, t)‖H1 ≤ δ1 < 1 for t ≤ T ,

∂cN [φc]
∣∣∣
c=c0

�= 0.
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Then there exist constants K and K ′ such that

‖v‖2
H1 (1 −K ′‖v‖H1) ≤ K

(
|ΔN| + ‖w‖L2 + ‖w‖2

L2

+ |c(t) − c0| + |c(t) − c0|2 + |c(t) − c0|3
)
,

(5.25)

ΔN = N [φc(t) + v] −N [φc0 ].

Remark 5.5. This proposition, which relates the unweighted norm of the pertur-
bation to the weighted norm, is where the invariance of N is particularly useful. In
[29], the Boussinesq equations lacked such an invariant; thus, only linear stability was
proven. Strictly speaking, it would be sufficient for ΔN to be bounded in terms of
the data; the conservation of N is not essential, though it is helpful.

Proof. Taylor expanding N about a solitary wave with perturbation z, we obtain

N [φc0 + z] = N [φc0 ] + 〈δN [φc0 ], z〉 +
1
2
〈
δ2N [φc0 ]z, z

〉
+O(‖z‖3

H1).

From [38], the first and second variations are

〈δN [φc0 ], z〉 =
∫ (

1 − φ1−n−m
c0

n+m− 1
+mφ−2m−1

c0
(∂xφc0)2 − ∂2

xφ
−2m
c0

φc0

)
zdx

= Θ−1 〈η̃2, z〉 ,
(5.26)

〈
δ2N [φc0 ]z, z

〉
=
∫ (

φ−n−m
c0

−m(1 + 2m)φ−2m−2
c0

(∂xφc0)2
)
z2dx

+
∫ (

2mφ−2m−1
c0

∂2
xφc0

)
z2dx+

∫
φ−2m

c0
(∂xz)2 dx,

(5.27)

where η̃2 and Θ are as defined in Proposition 3.23.
Take z(y, t) = φc(t)(y) − φc0(y) + v(y, t) = φ(x, t) − φc0(y). Then

〈δN [φc0 ], z〉 =
〈
Θ−1η̃2, z(y, t)

〉
= Θ−1

〈
η̃2, φc(t)(y) − φc0(y)

〉
+ Θ−1 〈η̃2, v(y, t)〉 .

(5.28)

Using the continuity of c �→ φc − 1,

(5.29) Θ−1
〈
η̃2, φc(t)(y) − φc0(y)

〉
≤ K|c(t) − c0|.

The term with the perturbation, v, may be bounded by

(5.30) Θ−1 〈η̃2, v(y, t)〉 = Θ−1 〈η2, w(y, t)〉 ≤ Θ−1‖η2‖L2‖w‖L2 ≤ K‖w‖L2.

Now we bound the second variation. For brevity, let

Φc0 = −m(1 + 2m)φ−2m−2
c0

(∂xφc0)2 + 2mφ−2m−1
c0

∂2
xφc0 .

Then 〈
δ2N [φc0 ]z, z

〉
=
∫
φ−2m

c0
(∂xz)2 + φ−n−m

c0
z2 +
∫

Φc0z
2

≥ K‖z‖2
H1 +

〈
Φc0 ,
(
φc(t) − φc0

)2〉
+ 2
〈
Φc0 ,
(
φc(t) − φc0

)
v
〉

+
〈
Φc0 , v

2
〉

≥ K1‖v‖2
H1 −K2|c(t) − c0|2

−K3|c(t) − c0| −K4

〈
Φc0e

−ay, w2
〉
.

(5.31)
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We would like Φc0e
−2ay ∈ L∞, so that the last term may be estimated by ‖w‖2

L2 .
Since a ≤ a�(γ) < 1

2γ, we may do this.
Lastly, we have the remainder term R[φc0 , z]. Because of the a priori bound on

‖v‖H1 , this may be estimated as

(5.32) |R[φc0 , z]| ≤ K‖z‖3
H1 ≤ K

(
|c(t) − c0|3 + ‖v‖3

H1

)
.

Combining these estimates, (5.29), (5.30), (5.31), and (5.32), gives us

‖v‖2
H1(1 −D‖v‖H1) ≤ K

(
|ΔN| + |c(t) − c0| + |c(t) − c0|2 + |c(t) − c0|3

)
+K
(
‖w‖L2 + ‖w‖2

L2

)
.

6. Proof of main results. Before proving Theorem 1.1, we make an a priori
estimate.

6.1. A priori estimates.
Proposition 6.1. Let c0 > n, a ≤ a�(c0), and assume there exists ε > 0 such

that

σ(Aa) ∩ {�λ ≥ −ε} = {0} , λ = 0 is an eigenvalue of algebraic multiplicity two.

Let T > 0. There exist δ� ∈ (0, 1) and K� ≥ 1 such that if the φ(x, t) − 1 ∈
C1
(
[0, T ];H1 ∩H1

a

)
solves (1.2) and satisfies, for t ≤ T ,

inf
x
φ(x, t) ≥ α0 > 0,(6.1)

inf
x
φ(x, t)m − a2φ(x, t)n ≥ β0 > 0,(6.2)

and furthermore
(i) the decomposition φ(x, t) �→ (v(y, t), c(t), θ(t)) exists for t ≤ T ;

(ii) for t ≤ T √
|ΔN| +

√
‖w(t)‖H1 +

√
|c(t) − c0|

+ |θ(t) − θ0| +
∣∣∣∣1 − c0

c(t) − θ̇(t)

∣∣∣∣+ ‖v(t)‖H1 ≤ δ�;
(6.3)

(iii) the data satisfies

(6.4)
√
|c(0) − c0| + |θ(0) − θ0| +

√
|ΔN| +

√
‖w(0)‖H1 ≤ ε < δ�;

then for t ∈ [0, T ],

(6.5)
√
eκt‖w(t)‖H1 +

√
|c(t) − c0|+ |θ(t)−θ0|+

∣∣∣∣1 − c0

c(t) − θ̇(t)

∣∣∣∣+‖v(t)‖H1 ≤ K�ε,

with κ = κ(α0, β0, δ�) ∈ (0, bmax).
Proof. The strategy for proving this proposition is to show that the left-hand

side of (6.5) may be estimated in terms of their data, (6.4), using (6.3). This largely
follows the proof in [21], with a few changes. The need to estimate |1 − c0/(c− θ̇)| in
terms of the data will require use of the modulation equations, (5.24), to control θ̇,
and to control ‖w‖H1 , we will need to work in τ -time. Thus we make the following
estimates.
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Temporal change of variables. First, let us assume that δ� ≤ 1
2 . Then, since

c0 > n > 1, 1
2c0 ≤ c(t) ≤ 3

2c0. Furthermore, this initial choice of δ� ensures

1
2
≤ c0

c(t) − θ̇(t)
=
dτ

dt
≤ 3

2
,

so the change of variables τ = τ(t) is well defined.
Time derivatives of modulation parameters. Examining (5.24), B(t) = I+O(|c(t)−

c0|) +O(‖w‖L2); so there exists δB > 0 such that for δ� ≤ δB, B(t) will be invertible.
Therefore
(6.6)

|θ̇(t)| + |ċ(t)| ≤ |B(t)−1|
(
‖S̃aw‖L2 + ‖G1‖L2

)
L2

≤ K1 (|c− c0| + ‖v‖H1) ‖w‖L2,

permitting the estimate

(6.7) |θ̇(t)| + |ċ(t)| ≤ K1δ
3
�.

As terms of the form 1/(c− θ̇) will appear, we will assume that

δ� ≤
(

1
2K1

)1/3

= δθ,

so |θ̇| ≤ 1
2 , and this quotient will be well defined and bounded.

Weighted perturbation. In τ -time, ‖w(τ)‖H1 is

w(τ) = eAaτw(τ(t = 0)) +
∫ τ

τ(0)

eAa(τ−s)QG(s)ds.

By the semigroup decay estimate of Theorem 4.1, there exist K2 > 0 and bmax > 0
such that

‖w(τ)‖H1 ≤ K2e
−bτ‖w(τ(0))‖H1 +K2

∫ τ

τ(0)

e−b(τ−s)‖QG(s)‖H1ds

for any b ∈ (0, bmax). Estimating G, we obtain

‖G‖H1 ≤ K

[∣∣∣∣ c0c− θ̇

∣∣∣∣ (|θ̇| + |ċ|
)

+
(
|c− c0| +

∣∣∣∣1 − c0

c− θ̇

∣∣∣∣) ‖w‖H1

]
+K

[∣∣∣∣ c0c− θ̇

∣∣∣∣ ‖v‖H1‖w‖H1

]
≤ K3δ�‖w‖H1 .

(6.8)

We have made use of (6.6) to control θ̇ and ċ in terms of ‖w‖H1 .
Therefore,

(6.9) ‖w(τ)‖H1 ≤ K2e
−bτ‖w(τ(0))‖H1 +K2K3δ�

∫ τ

τ(0)

e−b(τ−s)‖w(s)‖H1ds.

Defining ψ(s) = ebs‖w(s)‖H1 , (6.9) becomes

ψ(τ) ≤ K2‖w(0)‖H1 +K2K3δ�

∫ τ

τ(0)

ψ(s)ds,
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for which we may apply Gronwall’s inequality to get

(6.10) ‖w(τ)‖H1 ≤ K2‖w(τ(0))‖H1e−(b−K2K3δ�)(τ−τ(0)).

So for δ� small enough, b −K2K3δ� > 0 and we induce decay in the H1 norm of w.
In particular, suppose that δ� ≤ δb = 1

2b/(K2K3) and let

b′ = b−K2K3δ�.

We then return to t-time,

τ − τ(0) =
1
c0

∫ t

0

c(s)ds+
1
c0

(θ(0) − θ(t)) ≥ 1
c0

(c0 − δ�) t− 2
δ�
c0
.

Therefore,

(6.11) ‖w(t)‖H1 ≤ K̃2‖w(t = 0)‖H1e−κt

with κ = 1
2b

′. We now have eκt‖w‖H1 estimated in terms of the data.
Unweighted perturbation. Applying this to Proposition 5.4, we have the estimate

‖v(t)‖H1 ≤ K
(√

|ΔN| +
√
|c(t) − c0| + |c(t) − c0| + |c(t) − c0|3/2

)
+K
(√

‖w(t)‖L2 + ‖w(t)‖H1

)
≤ K
(√

|ΔN| +
√
|c(t) − c0|(1 + δ� + δ2�) +

√
‖w(t)‖L2(1 + δ�)

)
≤ K
(√

|ΔN| +
√
|c(t) − c0| +

√
‖w(0)‖L2

)
.

(6.12)

If we had control of
√
|c(t) − c0|, then we would also control ‖v(t)‖H1 in terms of the

data.
Deviation in c from c0. Estimating |c(t) − c0| using (6.6) and (6.11), we get

|c(t) − c0| ≤ |c(0) − c0| +
∫ t

0

|ċ(s)|ds ≤ |c(0) − c0|

+
∫ t

0

K1 (|c(s) − c0| + ‖v(s)‖H1) ‖w(s)‖L2ds

≤ |c(0) − c0| +K1δ�

∫ t

0

‖w(s)‖H1ds ≤ |c(0) − c0|

+K1δ�

∫ t

0

K2‖w(t0)‖H1e−κsds

≤ |c(0) − c0| +K1K2δ�‖w(0)‖H1/κ.

So we now have |c(t) − c0| in terms of data, which we rewrite as

(6.13)
√
|c(t) − c0| ≤ K4

(√
|c(0) − c0| +

√
‖w(0‖H1

)
,

which in turn gives

(6.14) ‖v(t)‖H1 ≤ K5

(√
|ΔN| +

√
|c(0) − c0| +

√
‖w(0)‖H1

)
.
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Deviation in θ from θ0. As with the speed parameter,

|θ(t) − θ0| ≤ |θ(0) − θ0| +
∫ t

0

|θ̇(s)|ds ≤ |θ(0) − θ0|

+
∫ t

0

K1 (|c(s) − c0| + ‖v(s)‖H1) ‖w(s)‖L2ds

≤ |θ(0) − θ0| +K1δ�

∫ t

0

‖w(s)‖H1ds ≤ |c(0) − c0|

+K1δ�

∫ t

0

K2‖w(t0)‖H1e−κsds

≤ |θ(0) − θ0| +K1K2δ�‖w(0)‖H1/κ.

This is rewritten as

(6.15) |θ(t) − θ0| ≤ K7

(
|θ(0) − θ0| +

√
‖w(0‖H1

)
.

Another estimate on the temporal change of variables.∣∣∣∣1 − c0

c− θ̇

∣∣∣∣ ≤ |c− c0| + |θ̇|
|c− θ̇|

≤ 2
(
|c− c0| + |θ̇|

)
.

Then using (6.6) and (6.13)∣∣∣∣1 − c0

c− θ̇

∣∣∣∣ ≤ K
(√

|c(0) − c0| + ‖w(t)‖H1

)
K ≤ (|c(0) − c0| +K2‖w(0)‖H1 )

≤ K6

(√
|c(0) − c0| +

√
‖w(0)‖H1

)
.

(6.16)

Combining (6.11), (6.13), (6.14), (6.15), and (6.16), we have (6.5) with δ� =
min{ 1

2 , δA, δb, δτ , δθ}, K� = max{K̃2,K4,K5,K6,K7}.

6.2. Main result. We now prove Theorem 1.1. Let c� and ϑ̂ be as in Theo-
rem 3.1 (b). Take c0 ∈ (n, c�] and a ∈ (γϑ̂, a�(c0)]. By Theorem 3.1 (b), there exists
ε > 0 such that the only eigenvalue of Ac0,a with �λ ≥ −ε is at the origin. Thus we
satisfy the first assumption of Proposition 6.1.

Define T to be the set of nonnegative numbers, T , such that, given c0, a, and
v0 ∈ H1 ∩H1

a ,
• a solution exists, φ− 1 ∈ C([0, T ), H1 ∩H1

a), satisfying

inf
x
φ(x, t) ≥ 1

4
= α0 > 0,(6.17)

inf
x

(
φ(x, t)m − a2φ(x, t)n

)
≥ 1

4
inf
x

(
φc0(x)m − a2φc0(x)n

)
= β0 > 0;(6.18)

• a decomposition of φ into (v(y(x, t), t), θ(t), c(t)) exists for t ∈ [0, T );
• (6.3) holds for t ∈ [0, T ).

Set T∗ = sup T . We will first show that there exists ε∗ > 0, such that for ε ≤ ε∗, if

‖v0‖H1 + ‖v0‖H1
a
≤ ε,
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then T∗ > 0. This will be proved using the continuous dependence upon the data.
Using Proposition 6.1, we will then prove T∗ = ∞.

Let δ� and K� be as in Proposition 6.1.
The most difficult part of the proof will be ensuring the persistence of (6.3).

Consider that, at t = 0, the left-hand side of that equation may be estimated with

LHS(t = 0) ≤ |ΔN| + ‖v0‖H1 + ‖∂yφc0‖H1 |θ0 − θ(0)|

+
√
|c(0) − c0| + |θ(0) − θ0| + ‖φc0 − φc(0)‖H1

+
∣∣∣∣1 − c0

c(0) − θ̇(0)

∣∣∣∣+√eaθ(0)‖v0‖H1
a

+
√
‖∂yφc0‖H1

a
|θ0 − θ(0)| +

√
‖φc0 − φc(0)‖H1

a
.

(6.19)

There exists a choice of δ′ and ε′ such that if

|c(0) − c0| + |ċ(0)| + |θ(0) − θ0| + |θ̇(0)| ≤ δ′(6.20)

‖v0‖H1∩H1
a
≤ ε′,(6.21)

then the right-hand side of (6.19) will be bounded by 1
2δ�. Set δ1 = min

{
1
4 , δ

′}. From
Propositions 5.1 and 5.2, let δ0, δ′0 be the corresponding values for δ1.

There exists εexist ∈ (0, 1) such that if ‖v0‖H1∩H1
a
≤ εexist, then

inf
x

[φc0(x+ θ0) + v0(x)] ≥ 2α0,

inf
x

[
(φc0(x+ θ0) + v0(x))m − a2 (φc0(x + θ0) + v0(x))n] ≥ 2β0.

By Theorem 2.1, there exist t1 > 0 and a solution in C1([0, t1], H1 ∩H1
a) satisfying

(6.17) and (6.18). Furthermore, we will have the a priori H1 ∩H1
a bound that

sup
t≤t1

‖φ(t) − 1‖H1∩H1
a
≤ 2‖φc0(· + θ0) + v0 − 1‖H1∩H1

a
≤ 2(‖φc0 − 1‖ + 1).

Set

(6.22) ε1 = min
{
εexist, ε

′,
1
2
e−aθ0δ0

}
and let ‖v0‖ ≤ ε1. As noted, the solution exists, satisfying (6.17) and (6.18), until at
least t1 > 0. At t = 0,

‖ea(·+θ0) (φ0 − φc0(· + θ0)‖H1 ≤ eaθ0‖v0‖H1 ≤ 1
2
δ0,

so by the continuity of φ in time, we have

‖ea(·+θ0) (φ(t) − φc0(· − c0t+ θ0)‖H1 ≤ δ0 for some t2 ∈ (0, t1).

Therefore the decomposition exists, with the δ1 bound on the modulation parameters,
up till t2 > 0.

Also at t = 0, using the δ1 bound on the parameters,

(6.23)
√
|ΔN| +

√
‖w(0)‖H1 +

√
|c(0) − c0| +

∣∣∣∣1 − c0

c(0) − θ̇(0)

∣∣∣∣+ ‖v(0)‖H1 ≤ 1
2
δ�.
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All of these terms are continuous in time, and there exists some t3 ∈ (0, t2)2, for which
this remains smaller than δ�. Therefore, for ε∗ ≤ ε1, t3 ∈ T and T∗ > 0.

Continuing to infinity. A few more constraints on ε∗ are needed to continue out
to t = ∞. There exists εαβ such that for ε ≤ εαβ , if√

|c− c0| + ‖v‖H1 ≤ ε,

then

inf
y

[φc(y) + v(y)] ≥ α0,

inf
y

[
(φc(y) + v0(y))m − a2 (φc(y) + v0(y))n] ≥ β0.

Let ε2 > 0 be so small that

(6.24) K�ε2 = min
{
δ�
3
,
√
δ0/3,

√
δ′0,

1
2
εαβ

}
and set

(6.25) ε∗ = min {ε1, ε2} .

Now, assume ‖v0‖H1∩H1
a
≤ ε ≤ ε∗. As above, for this data we will have T∗ > 0.

Assume T∗ < ∞. For any T < T∗, on the interval [0, T ], the solution exists with
(6.17) and (6.18), as does the decomposition, and (6.3) holds.

Then

‖φ(t) − 1‖H1∩H1
a
≤ max

{
1, ea(

∫
t
0

c(s)ds−θ(t))
} (

‖φc(t) − 1‖H1∩H1
a

+ ‖v(t)‖H1∩H1
a

)
≤ ea((c0+δ�)T∗+|θ0|+δ�)

(
sup

|c−c0|≤δ�

‖φc − 1‖H1∩H1
a

+ δ� + δ2�

)
<∞,

and this bound is uniform in T < T∗. By assumption, (6.17) and (6.18) hold for
t ∈ [0, T ], uniformly in T < T∗, which may written as∥∥∥∥ 1

φ(·, t)

∥∥∥∥
L∞

≤ 1
α0

<∞ and
∥∥∥∥ 1
φ(·, t)m − a2φ(·, t)n

∥∥∥∥
L∞

≤ 1
β0

<∞.

Therefore, according to (2.7), φ(x, t) may be extended beyond T∗ by some amount
t2 > 0. Hence, if T∗ �= ∞, it must be a failure for either the decomposition to continue
to exist or for (6.3) to hold.

Again using the Proposition 6.1 and our choice of ε∗,

‖w(·, t)‖H1
a
≤ δ0/3 and |c(t) − c0| ≤ δ′0 for all t ≤ T , uniformly in T < T∗.

Since φ exists until at least T∗ + t2, we may apply Proposition 5.2 to extend the
decomposition for some amount t� ≤ t2 also beyond T∗.

By assumption,√
|c(t) − c0| + ‖v(t)‖H1 ≤ K�ε∗ ≤ 1

2
εαβ for t < T∗.

Again, by continuity, these remain bounded by εαβ until some time t3 ∈ (0, t�) beyond
T∗, so (6.17) and (6.18) also persist beyond T∗.
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We may now apply Proposition 6.1 past T∗. This gives√
‖w(·, t)‖H1 +

√
|c(t) − c0|+ |θ(t)−θ0|+

∣∣∣∣1 − c0

c(t) − θ̇(t)

∣∣∣∣+‖v(·, t)‖H1 ≤ K�ε∗ ≤ 1
3
δ�

for t ≤ T < T∗. As
√
|ΔN| is time invariant and smaller than 1

2δ�,√
|ΔN| +

√
‖w(·, t)‖H1 +

√
|c(t) − c0| + |θ(t) − θ0|

+
∣∣∣∣1 − c0

c(t) − θ̇(t)

∣∣∣∣+ ‖v(·, t)‖H1 ≤ K�ε∗ ≤ 5
6
δ�

for t ≤ T , uniformly in T < T∗. But all of these functions are continuous for t ∈
[0, T∗+t3]; so for some t4 > 0, this expression remains bounded by δ�. This contradicts
T∗ < ∞. So a solution exists for all time satisfying (6.17), (6.18), along with a
decomposition and (6.3).

Since we may then apply Proposition 6.1 for all time, we will always have (6.5).
By virtue of K�ε∗ < δ� ≤ δB, we will be able to invert the matrix B(t) for the
modulation equations, (5.24). Therefore |ċ(t)| + |θ̇(t)| ≤ Kεe−κt and

lim
t→∞

c(t) = c∞

exists, and if we define

lim
t→∞

(
θ(t) +

∫ t

0

(c(s) − c∞) ds
)

= θ∞,

then

‖φ(·, t) − φc∞(· − c∞t+ θ∞)‖H1

≤ K�ε+ ‖φc∞ (· − c∞t+ θ∞) − φc(t)

(
· −
∫ t

0 c(s)ds+ θ(t)
)
‖H1

≤ K�ε+K|c(t) − c∞| + ‖∂yφc∞‖H1

∣∣∣∣θ(t) +
∫ t

0

(c(s) − c∞) ds− θ∞

∣∣∣∣
≤ K∗ε.

Similarly

‖φ(· + c∞t− θ∞, t) − φc∞‖H1
a
≤ K∗εe

−κt.

6.3. Remarks. This proof is equally applicable in the Hamiltonian case, n+m =
0, for values of c not in the discrete set, E, of points for which Aa has an imaginary
eigenvalue.

7. Summary and discussion. We have thus shown that in the space H1∩H1
a ,

the solitary waves are asymptotically stable. This dovetails with an extension of global
existence to data in a neighborhood of the solitary waves. In the Hamiltonian case,
we can extend it beyond c� via analytic continuation, as was done in [21], and this is
analytically verified for n = 2, with computations in [40] suggesting it is true for all
n > 1. Furthermore, to the extent that we will accept a computation of the Evans
function as proof, our result generalizes to large amplitude solitary waves with c > c�.
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To our knowledge, this is the first result for which asymptotic stability is estab-
lished for a conservative PDE in the absence of a variational principle.

Open problems include a weakening of the assumption of exponential decay on
the perturbation. This might be accomplished through the use of an algebraic spatial
weight, which would require the perturbation to decay algebraically rapidly. Yet less
restrictive would be to use the approach of Merle and his colleagues [11, 18, 19, 22].
However, there is a tradeoff in both of these approaches: weakening the assumption
on the spatial decay rate of the perturbation also weakens what can be proved about
the rate at which the perturbation decays in time.

Finally we remark that the multidimensional case of (1.1) is wide open. While
there is no existence theory for the two- and three-dimensional problems, perhaps a
similar approach, of working in a neighborhood of a solitary wave, could be applied
proving both existence and stability.

Appendix A. Properties of solitary waves.

A.1. Analyticity. Here we provide a proof of Corollary 2.9. Let us restate the
crucial theorem.

Theorem A.1 (Corollary 4.1.6 of [9]). Suppose that f is a solution of the con-
volution equation f = K ∗ G(f) such that f ∈ L2 ∩ L∞ and lim|x|→∞ f(x) = 0.
If the Fourier transform K̂ of the integral kernel K satisfies the decay condition
|K̂(ξ)| ≤ A1(1 + A2|ξ|m) for some constants A1, A2 > 0 and m ≥ 1, and G is an
infinitely differentiable function whose domain contains the range R(f) of f , hav-
ing all its derivatives bounded on R(f) and satisfying the condition G(0) = 0, then
f,G(f) ∈ H∞. In addition, if G is an analytic function on an open set U containing
R(f), G is continuous up to the boundary of ∂U of U , and

(A.1) d (∂U,R(f)) > ‖K‖L2,

then there exists a constant σ0 > 0 such that f and G(f) both have analytic extensions
to the strip {z ∈ C : |�z| < σ0}.

Let uc = φc − 1. By Theorem 2.6 and Corollary 2.7, uc is positive, in L∞ ∩ L2,
and decays exponentially fast at ±∞. Using (2.14) and (2.15), the equation may be
written as

(A.2) −γ2uc + ∂2
xuc +

∫ uc

0

∂3
τF2(1 + τ ; c)

(uc + 1 − τ)2

2
dτ = 0.

Define

(A.3) G(z) =
∫ z

0

∂3
τF2(1 + τ ; c)

(z + 1 − τ)2

2
dτ.

Taking a Fourier transform of (A.2), the equation is

−γ2ûc(ξ) − ξ2ûc(ξ) + Ĝ(uc)(ξ) = 0.

This becomes the nonlinear convolution equation

uc(x) = K ∗G(uc)(x),(A.4)

K̂(ξ) =
1

γ2 + ξ2
.(A.5)
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R(uc)
U

−1

dist(∂U, R(uc))

Fig. 6. A plot of a possible domain U and the range of uc, R(uc). Note that the distance
between these sets as drawn is the distance into the left-hand side of the complex plane that U
extends, and that any such ovoid will be acceptable as long as it stays to the right of �z = −1.

For purposes of satisfying (A.1), let us take K̃(x) = αK(x) and G̃(z) = α−1G(z) for
α > 0, where α is to be determined. Under this trivial scaling, uc = K̃ ∗ G̃(uc).̂̃K satisfies the decay estimate for Theorem A.1. G̃(z) will have a singularity at
z = −1 but is otherwise analytic. The range of uc is the finite segment

R(uc) = [0, umax],

and G̃ is infinitely differential there, with all derivatives bounded. G(0) = 0. Hence,
the first part of Theorem A.1 applies: uc and G̃(uc) are in H∞.

Now, consider the set U in Figure 6. In this figure, d(∂U,R(uc)) is the distance
U stretches into the left half-plane:

‖K̃‖2 = α

√
π

2
γ−3/2.

Picking α so small that the norm is less than 1, we can find a U such that the distance
between ∂U and R(uc) exceeds ‖K̃‖2, satisfying (A.1) and proving analyticity in a
strip.

A.2. Continuity as a function of speed. Consider the functional

(A.6) F [c, u] = ∂2
xu+ F2(1 + u; c)

as a mapping from H2×R → L2. The solitary wave uc = φc−1 satisfies F [c, uc] = 0.
Using this functional, we prove Corollary 2.11 via the implicit function theorem. Given
a particular ĉ > n, set û = uĉ.

Let H2
even and L2

even be the subspaces of H2 and L2, respectively, of only even
functions. Define the sets

M0 =
(
ĉ− ĉ− n

2
, ĉ+

ĉ− n

2

)
⊂ R,

N0 =
{
u ∈ H2

even : ‖u− û‖H2 ≤ 1
2

}
⊂ H2

even,

Z = L2
even.
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Note that set M0 is bounded away from zero and all of the functions in N0 are
uniformly bounded from below by 1

2 . Therefore F is well defined on M0 × N0 and
will be a C1 mapping on this set into Z.

Set

T =
δF
δc

[ĉ, û] = ∂cF2(1 + û; ĉ),

S =
δF
δu

[ĉ, û] = ∂2
x + ∂uF2(1 + û; ĉ).

T and S are bounded operators on R → L2
even and H2

even → L2
even, respectively.

Let f ∈ L2
even and consider the problem Su = f . As an elliptic problem, this has

a solution, provided f⊥ ker
(
S†). Note that S∂xû = 0. S is self-adjoint, has smooth

coefficients, and is in one spatial dimension; this is the unique element of the kernel.
But ∂xû is an odd function, hence f is orthogonal to it and the equation has a solution
u satisfying a bound

‖u‖H2 ≤ K‖u‖L2.

Because the coefficients in S and the right-hand side, f , are all even functions, ũ(x) =
u(−x) also solves Su = f . By the uniqueness of the solution, u = ũ, so u is an even
function. Therefore u ∈ H2

even and the map S : H2
even → L2

even is onto with bounded
inverse.

The kernel of S, restricted to u ∈ H2
even, is trivial, so the implicit function theorem

may be applied to conclude the existence of a function G : M1 → H2
even, ĉ ∈M1 ⊂M0,

such that

F [c,G(c)] = 0

for all c ∈M1. The mapping G is C1. For any such c,

∂2
xG(c) + F2(G(c) + 1; c) = 0.

This is just the solitary wave equation. Therefore G(c) = uc = φc−1, and the mapping
c �→ φc − 1 is C1(R;H2). The analyticity of the mapping may be proven by checking
the analyticity of F in a neighborhood of (ĉ, û).

To prove continuity in H2 ∩H2
a , the proof is similar. Fixing a < 1

2 , and taking
ĉ ∈ (n/(1 − 4a2),∞), we let Ma = M0 ∩ (n/(1 − 4a2),∞), Na = N0 ∩H2

a , and Za =
Z∩L2

a. We must check that S : H2
even∩H2

a → L2
even∩L2

a is onto with bounded inverse.
This is accomplished using the previous result and studying Sa = D2

a + ∂uF2(1 + û; ĉ)
on H2

even → L2
even.

Appendix B. Perturbation expansions. Here we provide some explicit cal-
culations, including those for Proposition 2.13.

Note the expansions

φn = φn
c + nφn−1

c v + fn[φc, v]v,

φm = φm
c +mφm−1

c v + fm[φc, v]v,

fp[a, b] =
∫ 1

0

[
p (a+ τb)p−1 − pap−1

]
dτ,
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and

H−1
φ = H−1

φc
−H−1

φc
B
[
nφn−1

c v + fn[φc, v]v,mφm−1
c v + fm[φc, v]v

]
H−1

φc

+H−1
φc
B[φn − φn

c , φ
m − φm

c ]
(
H−1

φ −H−1
φc

)
,

(B.1)

B[a, b]u = −∂x (a∂xu) + bu.(B.2)

Recall (1.2),

∂tφ = ċ∂cφc +
(
θ̇ − c
)
∂yφc +

(
θ̇ − c
)
∂yv + vt = − (φc + v)n

H−1
φc+v∂y (φc + v)n

.

Using the above expansions and the solitary wave equation, c∂yφc = φm
c H

−1
φc
∂y (φn

c ),
this may be expanded into

vt = φm
c H

−1
φc
∂y

[
−cφn

c ∂
2
y

(
φ−m

c v
)

+ cv − nφn−1
c v − cnφn−1

c ∂y

(
φ−m

c ∂yφc

)
v
]

(B.3)

− θ̇∂yv − ċ∂cφc − θ̇∂yφc(B.4)

− fm[φc, v]vH−1
φc
∂y(φn) +mφm−1

c vH−1
φc

(Hφ −Hφc)H−1
φ ∂y(φn)

−mφm−1
c vH−1

φc
∂y (φn − φn

c ) − φm
c H

−1
φc
∂y (fn[φc, v]v)

+ φm
c H

−1
φc
B[fn[φc, v]v, fm[φc, v]v]H−1

φ ∂y (φn)

− φm
c H

−1
φc
B[nφn−1

c v,mφm−1
c v]H−1

φc
(Hφ −Hφc)H−1

φ ∂y (φn)

+ φm
c H

−1
φc
B[nφn−1

c v,mφm−1
c v]H−1

φc
∂y (φn − φn

c ) .

(B.5)

(B.3) is a linear term. (B.4) will decay to zero as θ(t) and c(t), the modulating
parameters, approach their asymptotic limits. (B.5) is purely nonlinear in v.

We define F1[v;φc], the term nonlinear in v, as

F1[v;φc] = −fm[φc, v]vH−1
φc
∂y(φn) +mφm−1

c vH−1
φc

(Hφ −Hφc)H−1
φ ∂y(φn)

−mφm−1
c vH−1

φc
∂y (φn − φn

c ) − φm
c H

−1
φc
∂y (fn[φc, v]v)

+ φm
c H

−1
φc
B[fn[φc, v]v, fm[φc, v]v]H−1

φ ∂y (φn)

− φm
c H

−1
φc
B[nφn−1

c v,mφm−1
c v]H−1

φc
(Hφ −Hφc)H−1

φ ∂y (φn)

+ φm
c H

−1
φc
B[nφn−1

c v,mφm−1
c v]H−1

φc
∂y (φn − φn

c ) .

(B.6)

The operator S is given by

S[c0, c, θ̇] = mc0

(
φ−1

c0
∂yφc0 −

c

c− θ̇
φ−1

c ∂yφc

)
+ nφm

c0
H−1

c0
∂y

[(
φ−1

c0
− c0(φ−1

c0
− 1)
)
·
]

− nc0

c− θ̇
φm

c H
−1
φc
∂y

[(
φ−1

c − c(φ−1
c − 1)

)
·
]

− c0m

{
φm

c0
H−1

φc0

[
φ−1

c0
∂yφc0 ·

]
− c

c− θ̇
φm

c H
−1
φc

[
φ−1

c ∂yφc·
]}

.

(B.7)
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Finally, the terms making up G1 from (2.36):

G1 = G̃1 + G̃2 + G̃3 + G̃4 + G̃5 + G̃6 + G̃7,(B.8)

G̃1 = −fm[φc, v]wH−1
φc
∂y(φn),(B.9)

G̃2 = mφm−1
c wH−1

φc
(Hφ −Hφc)H−1

φ ∂y (φn) ,(B.10)

G̃3 = −mφm−1
c wH−1

φc
∂y

(
nφn−1

c v + fn[φc, v]v
)
,(B.11)

G̃4 = −φm
c H

−1
φc,aDa (fn[φc, v]w) ,(B.12)

G̃5 = φm
c H

−1
φc,aBa [fn[φc, v]w, fm[φc, v]w]H−1

φ ∂y (φn) ,(B.13)

G̃6 = −φm
c H

−1
φc,aBa

[
nφn−1

c w,mφm−1
c w

]
H−1

φc
(Hφ −Hφc)H−1

φ ∂y (φn) ,(B.14)

G̃7 = φm
c H

−1
φc,aBa

[
nφn−1

c w,mφm−1
c w

]
H−1

φc
∂y (φn − φn

c ) .(B.15)

The difference between Aa and A∞
a may be written as

Aa −A∞
a = −cmφ−1

c ∂yφc − (φm
c − 1)H−1

φc,aDa

(
nφn−1

c ·
)

+ cmφm
c H

−1
φc,a

(
φ−1

c ∂yφc·
)
− cnφm

c H
−1
φc,aDa

[
(1 − φ−1

c )·
]

+H−1
1,aDa

[
n(1 − φn−1

c )·
]

+H−1
1,a (φm

c − 1)H−1
φc,aDa

(
nφn−1

c ·
)

+H−1
1,aDa (1 − φn

c )DaH
−1
φc,aDa

(
nφn−1

c ·
)
.

(B.16)

In the space weighted by φc(x)−m, this difference is

Ãa − Ã∞
a = nH−1

1,aDa

[(
1 − φm−1

c

)
·
]

+ nH−1
1,aDa (φm

c − 1)H−1
1,a

(
φm−1

c ·
)

− nH−1
1,a [Da (φm

c − 1)]H−1
1,a

(
φm−1

c ·
)

− nH−1
1,a (φm

c − 1)H−1
1,a (φm

c − 1)H−1
φc,aDa

(
φm−1

c ·
)

+ nH−1
1,a (φm

c − 1)H−1
1,aDa (φn

c − 1)DaH
−1
φc,aDa

(
φm−1

c ·
)

− nH−1
1,aDa (φn

c − 1)DaH
−1
φc,aDa

(
φm−1

c ·
)

+ cmH−1
1,a

(
φm−1

c ∂yφc·
)

+ cmH−1
1,a (φm

c − 1)H−1
φc,a

(
φm−1

c ∂yφc·
)

− cmH−1
1,aDa (φn

c − 1)DaH
−1
φc,a

(
φm−1

c ∂yφc·
)

+ cnH−1
1,aDa

[
φm

c

(
φ−1

c − 1
)
·
]

+ cnH−1
1,a (φm

c − 1)H−1
φc,aDa

[
φm

c

(
φ−1

c − 1
)
·
]

− cnH−1
1,aDa (φn

c − 1)DaH
−1
φc,aDa

[
φm

c

(
φ−1

c − 1
)
·
]
.

(B.17)

Appendix C. Analysis of the characteristic polynomial. In this section
we prove that (3.36), (λ − cμ)(1 − μ2) + nμ = 0, has a unique root of minimal real
part on a slit half-plane

{λ : �λ > −λ0}\(−λ0,−Ω̃(γ)].

There are two ways that this could be false: there could be either a multiple root
or two roots with the same real part, but differing imaginary parts. As previously
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noted, we will have a unique root of minimal real part for λ in the closed right half-
plane, so we need only concern ourselves with �λ < 0.

We will identify a portion of the domain �λ < 0 for which there are neither
multiple roots nor complex roots with the same real part. Note that this is a stricter
condition than is needed, as the polynomial could have a double root for some λ,
where the third root of P (μ) has a smaller real part than the multiple root.

Note that P (±1) never vanishes, and hence P (μ) = 0 is equivalent to R(μ) = λ,
where

(C.1) R(μ) = cμ+
nμ

μ2 − 1
.

C.1. Roots of order greater than one. We start with the possibility of a
double or triple root, as this is very easy to rule out. If μ is a multiple root, then in
addition to R(μ) = λ, we will also have

dR

dμ
= c− n

1 + μ2

(1 − μ2)2
= 0,

which has solutions

μ = −

√
2c+ n±

√
8cn+ n2

2c
.

We have ignored the roots with a + sign in front, as these will correspond to positive
λ. Note that they are all real, and hence λ will also be real.

The λ one gets from the root

μ+ = −

√
2c+ n+

√
8cn+ n2

2c
≤ −3

√
3

2
n

is decreasing in c. The other root,

μ− = −

√
2c+ n−

√
8cn+ n2

2c
,

will map to λ values

(C.2) λ(μ−) = −
√

1
8

√
8c2 + 20cn− n2 − 8c

√
n2 + 8cn− n

√
n2 + 8cn.

It can be checked that for c > n > 1, R (μ+) < R (μ−). Therefore, for λ > −Ω̃(c),
with

(C.3) Ω̃(c) =

√
1
8

√
8c2 + 20cn− n2 − 8c

√
n2 + 8cn− n

√
n2 + 8cn,

P (μ) cannot have a multiple root.

C.2. Roots of differing imaginary part. If μ1 = α + ıβ1 and μ2 = α + ıβ2

are two roots of P , then

R(α+ ıβ1) = R(α+ ıβ2).
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After matching real and imaginary parts in this expression, the three unknowns,
α, β1, β2, must satisfy the two equations

�λ = cα+
nα(−1 + α2 + β2

1)
(−1 + α2)2 + 2(1 + α2)β2

1 + β4
1

= cα+
nα(−1 + α2 + β2

2)
(−1 + α2)2 + 2(1 + α2)β2

2 + β4
2

,

(C.4)

�λ = cβ1 −
nβ1(1 + α2 + β2

1)
(−1 + α2)2 + 2(1 + α2)β2

1 + β4
1

= cβ2 −
nβ2(1 + α2 + β2

2)
(−1 + α2)2 + 2(1 + α2)β2

2 + β4
2

.

(C.5)

Solving the (C.4) for β2
2 in terms of α and β1, there are two families of solutions:

β2
2 = β2

1 ,(C.6)

β2
2 =

(
1 − α2

) (
3 + β2

1 + α2
)

α2 + β2
1 − 1

.(C.7)

Without loss of generality, we assume β1 �= 0.
Recall that λ is imaginary if and only if P (μ) has a purely imaginary root; hence

the condition �λ < 0 ensures α �= 0. Then (C.7) implies 0 < |α| ≤ 1. Furthermore,
if |α| = 1, then either the roots are conjugate or β2 = 0. But if β2 = 0, then μ2 = 1,
which we know is not a root of P (μ).

C.2.1. Complex conjugates. When β1 = −β2 = β, (C.5) implies that λ is
real and

(C.8) c− n(1 + α2 + β2)
(−1 + α2)2 + 2(1 + α2)β2 + β4

= 0,

which has roots β2,

(C.9) β2 = −1 − α2 +
n

2c
±

√
n2 + 16c2α2

2c
.

We may immediately rule out the negative root for β2. For β2 > 0, α2 must satisfy

(C.10) 1 +
n

2c
−

√
n2 + 24c

2c
< α2 < 1 +

n

2c
+

√
n2 + 24c

2c
.

Using (C.4),

λ(α) =
n+ 8cα2 −

√
n2 + 16c2α2

4α
.

Since we are concerned only with λ < 0 here, α must, in addition to (C.10), satisfy

(C.11)
n+ 8cα2 −

√
n2 + 16c2α2

4α
< 0.

When α > 0, (C.11) requires

0 < α2 <
c− n

4c
.
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But 1
4 (c− n) /c < 1 + n/(2c) −

√
n2 + 24c/(2c), so complex conjugate roots with

α > 0 are not possible with λ in the left half-plane.
When α < 0, (C.11) requires

α < −1
2

√
c− n

c

to satisfy (C.11). Consider α in the interval⎡⎣−
√

1 +
n

2c
−

√
n2 + 8cn

2c
,−1

2

√
c− n

c

⎞⎠ .
In this interval, there will not be complex conjugate roots, as it violates (C.10).

λ, as a function of α, is negative and increasing on this interval. For λ in the
image of this interval, we may completely rule out complex conjugate roots. The
image of this interval is

λ

⎛⎝⎡⎣−
√

1 +
n

2c
−

√
n2 + 8cn

2c
,−1

2

√
c− n

c

⎞⎠⎞⎠ =
[
−Ω̃(c), 0

)
.

Hence, for 0 > λ > −Ω̃, one may rule out both multiple roots and complex conjugates.

C.2.2. Nonconjugate complex roots. Consider the case of complex roots
with the same real part, but imaginary parts such that |β1| �= |β2|. Squaring both
sides of (C.5) and plugging in (C.7) for β2

2 , we get a sixth order polynomial in β2
1 .

The roots, as functions of α, are

β2
1 = −1 − 2α− α2,(C.12)

β2
1 = −1 + 2α− α2,(C.13)

β2
1 = 1 − α2 − 2

√
1 − α2,(C.14)

β2
1 = 1 − α2 + 2

√
1 − α2,(C.15)

β2
1 =

(n/c)2 + 4(n/c)(1 − α2) − 8(1 − α4)
8(1 − α2)

−
√

((n/c)2 − 16(1 − α2))((n/c)2 − 8(1 − α2)(2α2 − (n/c)))
8(1 − α2)

,

(C.16)

β2
1 =

(n/c)2 + 4(n/c)(1 − α2) − 8(1 − α4)
8(1 − α2)

+

√
((n/c)2 − 16(1 − α2))((n/c)2 − 8(1 − α2)(2α2 − (n/c)))

8(1 − α2)
.

(C.17)

(C.12) and (C.13) force β1 to be imaginary, and hence they can be ruled out.
Using (C.7), if β1 is either (C.14) or (C.15), then β2 = ±β1, conjugate roots.

In the last two cases, if β2
1 is to be real, then

(C.18) ((n/c)2 − 16(1 − α2))((n/c)2 − 8(1 − α2)(2α2 − (n/c))) ≥ 0.
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If we can find for λ in the left half-plane sufficiently close enough to the imaginary
axis that it is negative, we will be done. (C.18) is negative at α = 0, so there exists
a neighborhood of the imaginary axis, such that complex nonconjugate roots may be
ruled out.

The roots on the left-hand side of (C.18) are

α2 = 1 − 1
16

(n
c

)2
=

1
16

(5 − γ2)(3 + γ2),(C.19)

α2 =
1
2

+
1
4
n

c
+

1
2

√
1 − n

c
=

1
4

(3 − γ)(1 + γ),(C.20)

α2 =
1
2

+
1
4
n

c
− 1

2

√
1 − n

c
=

1
4

(1 − γ)(3 + γ).(C.21)

These are positive for γ ∈ [0, 1]. It may be checked that (C.21) is the smallest for all
γ. Hence the root of (C.18) such that μ will be closest to the imaginary axis is

(C.22) α = −1
2

√
(1 − γ)(3 + γ).

α larger than (C.22) and less than zero will yield a λ that does not have nonconjugate
complex roots.

Given λ, if P(μ;λ) is to have two roots of same real part, α, but differing imaginary
part, then, by trying any of the last four roots for β1 (both positive and negative square
roots of (C.16) and (C.17)), in (C.4) the real part of λ and α are related by

(C.23) �λ = cα

(
2 − (n/c)

4(1 − α2) + (n/c)

)
.

Note that

(C.24)
d�λ
dα

= c

(
32(1 − α2)2 + 12(n/c) − 20α2(n/c) + (n/c)2

(4(1 − α2) + (c/n))2

)
and the derivative has one negative root with |α| < 1 at

(C.25) α = −

√
1 +

5
16
n

c
− 1

16

√
64
n

c
+ 17
(n
c

)2
.

Comparing (C.22) with (C.25), at γ = 1

(C.25) = −1 < 0 = (C.22),

and at γ = 0

(C.25) = −
√

3
4

= (C.22).

In addition, one may check that (C.25) is increasing in γ ∈ [0, 1], while (C.22) is
decreasing on the same interval. Therefore

−

√
1 +

5
16
n

c
− 1

16

√
64
n

c
+ 17
(n
c

)2
≤ −1

2

√
(1 − γ)(3 + γ)

for all γ ∈ [0, 1].
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For �μ = α in

(C.26)
(
−1

2

√
(1 − γ)(3 + γ), 0

)
(C.23) will be an increasing function in α, and (C.24) is positive at α = 0. On the
interval (C.26), the mapping is invertible and its image is

(C.27)
(
−1

4
c
√

1 − γ (γ + 3)3/2
, 0
)
.

Therefore if λ has real part in the interval (C.27), and P(μ;λ) is to have nonconjugate
complex roots, α must lie in (C.26). But such an α violates (C.18), and we may
conclude that there are no such roots. Letting −λ0 denote the �λ value at the left
end point of (C.27),

(C.28) λ0 =
c

4

√
1 − γ (γ + 3)3/2 =

n

4(1 − γ2)

√
1 − γ (γ + 3)3/2 .

Hence for �λ > −λ0, nonconjugate complex roots are not possible for P (μ).

Appendix D. The zero eigenvalue. In section 3.5, λ = 0 was identified as
an eigenvalue of multiplicity at least two. Using the Evans function, the order of this
eigenvalue may be related to the slope with respect to c of the invariant functional
N [φc].

Using the framework from section 3.3.2, set

y+ =

⎛⎜⎝ φ−m
c ∂xφc

∂x (φ−m
c ∂xφc)

0

⎞⎟⎠ ,(D.1)

z− =
(
c∂x

(
φ−m

c ∂xφc

)
, −cφ−m

c ∂xφc, −
∫ x

−∞
φ−n−m

c ∂xφc

)
.(D.2)

These are solutions to the dynamical systems

ẏ = B(x, λ = 0, γ)y and ż = −zB(x, λ = 0, γ).

Here, μ1 = −γ. Employing the notation and formulation of the Evans function of
[27], by [27, Proposition 1.6, parts 2 and 3], since

y+ = O(e−γx) as x→ +∞ and z− = O(eγx) as x→ −∞,

y+ and z− are scalar multiples of ζ+ and η−, respectively. ζ+ and η− are the solutions
of the dynamical systems satisfying

ζ+eγx → v+ as x→ +∞ and η−e−γx → w− as x→ −∞,

with

B∞v+ = −γv+, w−B∞ = −γw−,

v+ = (1, −γ, 0)T
, w− =

(
2cγ2
)−1 (

cγ2, −cγ, −1
)
,
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allowing us to define the Evans function as

D(λ = 0) = η−(x, λ = 0) · ζ+(x, λ = 0).

From the properties of the solitary waves, discussed in section 2.2, there exists
β > 0 such that

φ−m
c ∂xφce

γx → −β as x→ +∞,

and hence

ζ+ =
1
−βy+ and η− =

1
−2γcβ

z−.

D(0) = 0 by inspection. From [27], the derivative of the Evans function for a
system akin to ours is2

(D.3) ∂λD(λ) = −
∫ ∞

−∞
η−(x, λ)∂λ [B(x, λ) − μ1(λ)I] ζ+(x, λ)dx.

It is then trivial to compute that ∂λD(0) = 0, since the integrand is an odd function.
Taking the derivative of (D.3) at λ = 0 gives an equation for ∂2

λD(0),

(D.4) ∂2
λD(0) = −

∫ ∞

−∞
η−λ Bλζ

+dx −
∫ ∞

−∞
η−Bλζ

+
λ dx.

ζ+
λ and η−λ satisfy the ODEs

ẏλ = Byλ +Bλy and żλ = −zλB − zBλ.

These problems are associated with the derivatives with respect to λ of (3.24) and
(3.30) at λ = 0,

∂xLcYλ =
[
I − ∂x

(
φn

c ∂x

(
φ−m

c ·
))]

Y,(D.5)

−L�
c∂xZλ =

[
I − φ−m

c ∂x (φn
c ∂x·)

]
Z,(D.6)

through the identifications

y
(1)
λ = φ−m

c Yλ, z
(1)
λ = c∂x (φn

c ∂xZλ) ,

y
(2)
λ = ∂x

(
φ−m

c Yλ

)
, z

(2)
λ = −cφn

c ∂xZλ,

y
(3)
λ = LcYλ + φn

c ∂x

(
φ−m

c Y
)
, z

(3)
λ = −Zλ.

For λ = 0, (3.24), (3.30), (D.5), and (D.6) are related to the generalized kernels
of A and A�:

Y = ∂xφc, Yλ = −∂cφc,

Z =
∫ x

−∞

∂xφc

φn+m
c

dx, Zλ = −
∫ x

−∞
(L�

c)−1 [
I − φ−m

c ∂x (φn
c ∂x·)

] ∫ x

−∞

∂xφc

φn+m
c

dx.

2In particular, a system for which the matrix B has the same limit at ±∞.
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Then

ζ+
λ =

1
−β
(
−φ−m

c ∂cφc, −∂x

(
φ−m

c ∂cφc

)
, −Lc∂cφc + φn

c ∂x

(
φ−m

c ∂xφc

))T
,

η−λ =
1

2γcβ
(c∂x (φn

c ∂xZλ) , −cφn
c ∂xZλ, −Zλ) .

Finally, we compute

(D.7) ∂2
λD(0) =

1
cγβ2

∂cN [φc].
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ENERGY TRANSPORT BY ACOUSTIC MODES OF HARMONIC
LATTICES∗

LISA HARRIS† , JANI LUKKARINEN‡ , STEFAN TEUFEL§ , AND FLORIAN THEIL†

Abstract. We study the large scale evolution of a scalar lattice excitation u which satisfies a
discrete wave equation in three dimensions, üt(γ) = −

∑
γ′ α(γ − γ′)ut(γ′), where γ, γ′ ∈ Z3 are

lattice sites. We assume that the dispersion relation ω associated to the elastic coupling constants
α(γ − γ′) is acoustic; i.e., it has a singularity of the type |k| near the vanishing wave vector, k = 0.
To derive equations describing the macroscopic energy transport, we employ a related multiscale
Wigner transform and a scale parameter ε > 0. The spatial and temporal scales of the Wigner
transform are related to the corresponding lattice parameters via a scaling by ε. In the continuum
limit, which is achieved by sending the parameter ε to 0, the Wigner transform disintegrates into
three different limit objects: the Wigner transform of a rescaled weak-L2 limit, an H-measure, and
a Wigner measure. The first two provide the finer resolution of the energy concentrating at k = 0
so that a set of closed evolution equations may arise. We demonstrate that these three limit objects
satisfy a set of decoupled transport equations: a wave equation for the weak limit, a geometric optics
transport equation for the H-measure limit, and a dispersive transport equation for the standard
limiting Wigner measure. This yields a complete characterization of macroscopic energy transport
in harmonic lattices with regular acoustic dispersion relations.

Key words. microlocal analysis, multiscale methods, homogenization, discrete wave equations

AMS subject classifications. 70J30, 74Q15, 37K60

DOI. 10.1137/070699184

1. Introduction. The energy transport by atomic oscillations in crystalline
solids is a central problem in solid state physics. To the first order approximation,
the oscillations can be described by a discrete wave equation

üt(γ) = −
∑
γ′

α(γ − γ′)ut(γ′)(1.1)

where u(γ) ∈ R is composed of the displacements of the crystal atoms from their equi-
librium position, as will be discussed in section 1.1. To analyze physically relevant
properties of the crystal, such as its thermal conductivity, we first need to understand
how energy is transported within the crystal via purely harmonic vibrations. Such
transport properties are determined by the dispersion relation ω of the crystal, here
ω(k) =

√
α̂(k), the “hat” denoting a discrete Fourier transform. If ω is not smooth,

then depending on the wavelength different types of continuum energy transport equa-
tions can arise. The different contributions to the continuum energy are described
by different limit objects, so-called Wigner measures, or microlocal defect measures.
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These concepts were introduced by Tartar [23] and Gérard [10] to analyze the weak
limits of certain nonlinear quantities, the energy density being one of them. Two-
scale Wigner measures of the type we use here were first introduced independently by
Fermanian Kammerer [5, 6] and by Nier [18].

Our main interest is to characterize the macroscopic evolution of the energy den-
sity. The starting point of our mathematical analysis is the Wigner transform, which
can be interpreted as a “wavenumber resolved” energy density. Let us leave the de-
tails for section 2.1, and only summarize the main findings here. Let vt = u̇t. We can
then construct a complex field ψt ∈ �2(Z3), corresponding to a normal mode of the
oscillations, out of the fields ut and vt. On the other hand, for any given ψ ∈ �2(Z3)
and ε > 0, the lattice Wigner transform W ε = W ε[ψ] allows defining a corresponding
“energy” density, eε = eε[ψ], by the formula

eε(x) =
∫

T3

dkW ε(x, k),(1.2)

where ε > 0 denotes the “lattice spacing” and x ∈ R
3 is a variable which interpolates

between the points of the scaled lattice εZ3. Here T
3 denotes the 3-torus, and we

identify T
3 = R

3/Z3. Then eε(x, t) = eε[ψt/ε](x) can be considered to be a proper
energy density at a macroscopic time t, as it satisfies

∫
R3 dx eε(x, t) = H(ut/ε, vt/ε),

where H denotes the Hamiltonian related to (1.1).
In general, a limit of a sequence of scaled Wigner transforms, (W ε[ψε]) with ε

tending to 0, is given by a nonnegative Radon measure μ ∈ M+(R3 × T
3). In the

setup considered here, we have for a given time t a sequence of normal mode fields ψt/ε

which would then yield a family of nonnegative Radon measures μt as limit points
of the corresponding Wigner transforms. However, for these limit measures to form
a useful approximation of the original dynamical system, μt should also satisfy an
autonomous evolution equation. This is typically not possible if the initial measure
concentrates on the singular set of ω, i.e., to the points where ω is not smooth.

Here we will augment the standard Wigner transform scheme to encompass the
most common type of singularity encountered in solid state physics: acoustic singu-
larities, with ω(k) behaving like |k| near k = 0. Such modes occur in general within
crystal models with short range interactions, and they are particularly important as
they are responsible for sound propagation in the crystal. With some effort, in the
spirit of the results proven in [6], it is likely that these results could be extended to
cover more complicated singular sets of ω, but we do not consider such generalizations
here. Our result can also be seen as a generalization of the analysis in [17]. There it is
shown that μt can be computed from μ0 by solving a dispersive linear transport equa-
tion, provided that μ0 does not concentrate on wavenumbers k where the dispersion
relation ω is not C(1).

For acoustic modes, the dispersion relation fails to be C(1) at k = 0, and it is
necessary to resolve finer details of the solutions near the singular point, whenever
a concentration at k = 0 is possible. This will be accomplished here by introducing
a second scale to the lattice Wigner transform. The multiscale Wigner transform,
defined in section 2.1, maps a field ψ into a distribution W ε[ψ](x, k, q) where the new
parameter q ∈ R

3 resolves the energy density for wavenumbers of the order of ε. We
consider a sequence of initial conditions such that the corresponding initial fields ψε

0

are bounded and tight in �2(εZ3). We prove in Theorem 3.2 that then for all t ∈ R

there are two measures, a Wigner measure μt on R
3 × T

3
∗, T

3
∗ = T

3 \ {0}, and an
H-measure μH

t on R
3 × S2, as well as an L2-function φt such that W ε[ψε

t/ε] converges
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along a subsequence to a limit determined by (μt, μ
H
t , φt). The subsequence can be

chosen independently of t, and it will only be relevant for determining the limit of the
initial data, that is, (μ0, μ

H
0 , φ0). For all other times t ∈ R, the measures μt, μ

H
t and

the L2-function φt can be determined using the transport equations

∂tμt(x, k) + 1
2π∇ω(k) · ∇xμt(x, k) = 0, k ∈ T

3
∗ ,(1.3)

∂tμ
H
t (x, q) + 1

2π∇ω0(q) · ∇xμ
H
t (x, q) = 0, q ∈ S2 ,(1.4)

∂2
t φt(x) = div( 1

(2π)2A0∇φt(x)),(1.5)

where x ∈ R
3, together with the initial conditions

μt|t=0 = μ0, μH
t

∣∣
t=0

= μH
0 , φt|t=0 = φ0, ∂tφ̂t(p)|t=0 = −iω0(p)φ̂0(p), p ∈ R

3 ,

(1.6)

given by the limit objects (μ0, μ
H
0 , φ0) at t = 0. Here the constant matrix A0 and the

function ω0 are determined by the Hessian of the square of the dispersion relation ω
(defined in (2.6)) at k = 0, explicitly

A0 =
1
2
D2ω2(0), ω0(p) =

√
p ·A0p .(1.7)

It also follows from our analysis that the sum of the energies related to μt, μH
t , and φt

is a constant of motion and equals the limiting value of the total energy of the initial
excitations. This shows that no energy is lost in the taking of the continuum limit.

Equation (1.3) describes the propagation of energy along the harmonic lattice
with the group velocity ∇ω(k)/(2π). Equation (1.5) is a wave equation describing
the evolution of macroscopic fluctuations. Equation (1.4) is usually known under
the name “geometric optics” and describes the evolution of macroscopic fluctuations
whose wavelength is much longer than the lattice spacing ε and much smaller than
1, the wavelength of the fluctuations resolved by φt. The surprising feature about
acoustic modes is the separate evolution equation for the macroscopic perturbations
φt. As will be apparent in Theorem 3.2, but as also indicated by the fact that the
evolution equation for φt involves only the Hessian of ω2 at k = 0, its evolution is
determined by the second, fine-resolution scale introduced to the Wigner transform.
This is in contradistinction to the case of ω which is smooth, as then the evolution of
the energy density would not depend on the second scaling parameter.

The Wigner transform, or the Wigner function, was originally introduced to study
semiclassical behavior in quantum mechanics, but it has been proven to be a useful
tool in studying large scale behavior of wave equations as well [12, 19]. In particular,
the method of calculating continuous, macroscopic energy by finding the limit object
of a sequence of energies eε on rescaled lattice models is one that has been widely
used and justified, for example, in [9, 14, 17]. In [17], the Wigner transform of the
normal modes is employed in solving the macroscopic transport of energy in the above
harmonic systems for deterministic initial data. The same system is considered in [3]
with random initial data and in a larger function space, excluding, however, the type
of concentration effects we study here. In [6] two-scale Wigner measures of the same
type we use here were introduced for the study of concentration effects near shock
hypersurfaces for the heat equation. The precise connection to the results in [5, 6]
will be explained in Remark 3.6 in section 3.

In [8] spatially homogeneous Wigner measures are employed to study energy
asymptotics in static systems. Both the method (which was developed before the
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theory of 2-microlocal measures became available) and the results are in spirit very
similar to ours. Using specific profile functions, three limit objects are constructed
which capture the asymptotic behavior of the energy along bounded sequences. Only
Fourier methods are used in [8] and therefore the spatial distribution of the energy
cannot be characterized.

The main use of the Wigner transform is that, unlike the energy density eε itself,
it contains enough information to satisfy a closed evolution equation in the limit
ε → 0. Indeed, it was shown in [17] that as long as there is no concentration on the
singular set of the dispersion relation faster than ε1/2, the Wigner transform of the
time-evolved state vector ψt/ε converges to a limit measure μ̃t on R×K. Here K is a
suitable compactification of T

3 \S, S being the singular set, which allows a continuous
extension of the group velocity ∇ω. The measure μ̃t is then proven to satisfy the
transport equation

∂tμ̃t(x, k) + 1
2π∇ω(k) · ∇xμ̃t(x, k) = 0.(1.8)

However, the above assumption about the rate of convergence excludes macroscopic
variations of the initial data in the case of acoustic singularities, and enforces φt = 0
in the present terminology. Separately, it was also shown in [17] that if the weak limit
of the rescaled initial data exists, then the limit satisfies a continuum wave equation.
However, a combination of these results was not possible, leaving open the exact effect
the continuum wave equation will have on the energy density. In [15] it is shown that
the Wigner measures generated by sequences of solutions of discrete wave equations
satisfy transport equations; energy conservation along the sequence is not discussed.

In this paper we will show how to overcome the above difficulties in a physically
relevant class of models with a singular dispersion relation. Our main additional con-
tribution to the results of the above-mentioned references is to introduce a lattice
version of the multiscale Wigner transform and to employ this in solving the macro-
scopic evolution of the energy density in the presence of an acoustic singularity. In
section 2 we will first present the microscopic dynamical model in detail. In section
2.1 we will define the Wigner transform, and discuss its relation to the energy of the
microscopic lattice model. The main results will be presented in section 3.

1.1. Relation with solid state physics. A crystal in solid state physics is a
state of matter in which the atoms retain a nearly perfect periodic structure over
macroscopic times. The Hamiltonian model used for the time evolution in such a
crystal is, to the first order accuracy, harmonic. If we assume that each periodic cell
of the idealized perfectly periodic crystal structure contains n atoms, then we can
form a vector q(γ) ∈ R

3n out of the displacements of the atoms in the periodic cell
labeled by γ ∈ Z

3. The (classical) Hamiltonian equations of motion of this harmonic
model are then

q̇i(γ, t) =
1
mi

pi(γ, t), ṗi(γ, t) = −
∑
γ′,i′

A(γ − γ′)i,i′qi′(γ′, t),(1.9)

where γ ∈ Z
3, i = 1, . . . , 3n, and mi denotes the mass of the atom whose displacement

qi measures.
By the change of variables to q̃i(γ) = m

1
2
i qi(γ), p̃i(γ) = m

− 1
2

i pi(γ), these equations
can be transformed into a standard form whose force matrix is given by Ã(γ)i,i′ =
m

−1/2
i A(γ)i,i′m

−1/2
i′ . The standard form equations can then be solved by Fourier

transform, and a diagonalization of the remaining multiplicative evolution equations
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decomposes the 3n vector degrees of freedom into independent normal modes , called
phonons in solid state physics. Each normal mode is a complex scalar field on the
crystal lattice, and its time evolution is unitary and uniquely determined by the cor-
responding dispersion relation ωi(k) on T

3. More details on the related mathematical
issues can be found in [3, 17].

The complete decoupling of the evolution equations of the normal modes allows us
to study a scalar, single-mode model and still retain a straightforward applicability
of the results in the above, physically more relevant, vector models. As the above
procedure is fairly standard and well covered in the references, we will not present
the decomposition in any more detail here. However, to illustrate the matter, we
have performed the equivalent steps for the scalar model (1.1) in the beginning of
section 2.

In solid state physics, the normal modes are divided into optical and acoustic
depending on their regularity at k = 0: if the dispersion relation is regular at k = 0,
then the mode is called optical, and if it behaves as |k| at k = 0, the mode is called
acoustic. The latter name arises as these modes are believed to be responsible for the
propagation of sound waves in the crystal. Acoustic dispersion relations arise generally
from atomistic Hamiltonians with short range interactions, and crystal models are
typically expected to have three of them, related to the translation invariance of the
microscopic forces.

Finally, let us remark that the discrete linear wave equation alone does not suf-
fice to determine the physically relevant properties of the crystal, such as its thermal
conductivity. However, it forms the basis for perturbative treatments which can ad-
dress such questions. We refer to [1, 20, 21, 22, 25] for further details on the physical
aspects of the topic, and to [2] for a review about related open problems.

2. The microscopic model. There are two mathematically equivalent descrip-
tions of harmonic crystals. On the one hand, one can work with the Hamiltonian
equations of motion and analyze the properties of the solutions. Anharmonic crys-
tals can then be discussed in the same manner. On the other hand, one can employ
the Fourier transform and the linearity to condense the Hamiltonian into the disper-
sion relation. Although the second approach leads to an immediate solution of the
harmonic system, it cannot be used directly to analyze nonlinear models.

We will show in this chapter how the first approach reduces to the second one
for harmonic lattices. Then we demonstrate how the Wigner transform can be em-
ployed in the analysis of the time evolution of the energy density of the Hamiltonian
description.

We assume that the scalar excitation ut(γ), γ ∈ Z
3, satisfies the discrete wave

equation

(2.1)
∂2

∂t2
ut(γ) = −

∑
γ′∈Z3

α(γ − γ′)ut(γ′)

with initial data (ut|t=0, vt|t=0) ∈ X = �2 × �2, where vt denotes the velocity field,
vt = ∂tut. The numbers α(γ−γ′) are the elastic coupling constants between the sites
γ and γ′. We assume that α is real and symmetric (α(−γ) = α(γ)). Clearly, system
(2.1) can be written in a Hamiltonian form and the energy

(2.2) H(u, v) =
1
2

(∑
γ∈Z3

|v(γ)|2 +
∑
γ∈Z3

[ ∑
γ′∈Z3

u(γ)α(γ − γ′)u(γ′)
])
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Fig. 2.1. Values of ut(γ) along the axis γ2 = γ3 = 0 for t = 0, t = 0.1/ε, t = 0.9/ε with
ε = 1

7
∗ 10−1. The evolution is given by (2.1) with the nearest neighbor elastic couplings (2.13), and

the initial conditions are ut=0(0) = 1, ut=0(γ) = 0 for all γ �= 0, and u̇t=0 ≡ 0.

is constant along solutions. Depending on the initial conditions, the solutions of
system (2.1) may develop large scale oscillations which carry a finite amount of energy;
cf. Figure 2.1, where snapshots of u at several times are plotted.

Since system (2.1) is linear and invariant under discrete translations, we can write
the solutions in a closed form using the Fourier transform.

Definition 2.1. We define the Fourier transform �2(Z3) → L2(T3) by extending

(Fγ→kψ)(k) = ψ̂(k) =
∑
γ∈Z3

e−2πik·γψ(γ)(2.3)

from ψ with finite support to all of �2(Z3). Here T
3 = R

3/Z3 denotes the unit 3-torus.
The inverse transform is pointwise convergently defined by the integral

(Fk→γ ψ̂)(γ) =
∫

T3

dk e2πik·γ ψ̂(k) = ψ(γ),(2.4)

where the measure dk is induced by the Lebesgue measure on the parameterization T 3

of T
3, where T = (− 1

2 ,
1
2 ]. In particular,

∫
T3 dk = 1.

From now on the notation T 3 will refer to the above explicit parameterization
of the torus T

3. Occasionally, integration over k ∈ T
3 will be applied to functions

f(k) which are not periodic in k. In these cases, using the parameterization k ∈ T 3

is implicitly understood. The parameterization mapping T
3 → T 3 will be denoted

by k �→ (k mod T 3) whenever the use of the parameterization needs to be explicitly
stressed.

If one applies the Fourier transform to the Hamiltonian equations of motion de-
termined by H(u, v), one obtains a simpler system equivalent to (2.1):

∂

∂t

(
ût(k)
v̂t(k)

)
=
(

0 1
−ω2(k) 0

)(
ût(k)
v̂t(k)

)
, k ∈ T

3 .(2.5)

The function ω : T
3 → R is the dispersion relation and it is related to the Hamiltonian

via the following formula:

ω(k) =
√
α̂(k) =

√∑
γ∈Z3

α(γ) cos(2πγ · k),(2.6)

where we have employed the assumption α(γ) = α(−γ). Since α is real and satisfies
the above symmetry property, we find that ω is also real and symmetric, i.e., ω(k) =
ω(−k).
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A diagonalization of the matrix on the right-hand side of (2.5) motivates combin-
ing the real scalar fields u and v into the two complex fields ψ± = ψ±[u, v] ∈ �2(Z3,C)
defined by the formula

ψ̂σ(k) =
1√
2

(ω(k)û(k) + iσv̂(k)) , σ ∈ {±1}, k ∈ T
3 .(2.7)

For all (u, v) ∈ X , we clearly have ψ̂σ ∈ L2(T3), and thus ψσ ∈ �2(Z3). In addition,
since ω(−k) = ω(k), we also have ψ−(γ) = ψ+(γ) for all γ. The transformation can
always be inverted by applying

û =
1

ω
√

2
(ψ̂+ + ψ̂−) , v̂ = − i√

2
(ψ̂+ − ψ̂−) .(2.8)

Given a solution ut, vt = u̇t to (2.1), we then define the complex normal mode fields
by the formula

ψσ(γ, t) = ψσ[ut, vt](γ), σ ∈ {±1}, γ ∈ Z
3, t ∈ R .(2.9)

To see that these fields are indeed normal modes of the harmonic system, we apply
(2.5) and find the evolution equations

∂

∂t

(
ψ̂+(k, t)
ψ̂−(k, t)

)
= −i

(
ω(k) 0

0 −ω(k)

)(
ψ̂+(k, t)
ψ̂−(k, t)

)
,(2.10)

which are readily solved to yield for all t ∈ R, k ∈ R
3

ψ̂±(k, t) = e∓iω(k)tψ̂±(k, 0) .(2.11)

These are exactly the two evolution equations corresponding to a “phonon” mode
with a dispersion relation ω. The fields ψt mentioned in the introduction can now be
identified with ψ+(·, t) in the present notation.

After these reduction steps it is obvious that the dispersion relation ω fully de-
termines the properties of the solutions. We will assume throughout this paper that
ω is of the acoustic type in the following precise sense.

Definition 2.2. We call ω ∈ C(T3, [0,∞)) an acoustic dispersion relation if
λ = ω2 satisfies the following:

1. λ ∈ C(3)(T3, [0,∞)).
2. λ(0) = 0, and the Hessian of λ is invertible at 0.

A dispersion relation is called regular acoustic if it is acoustic and λ(k) > 0 for k �= 0.
The 3 × 3-matrix A0 is the Hessian of 1

2λ at k = 0 and ω0(q) =
√
q · A0q.

Let us briefly motivate why these assumptions should be satisfied quite generally.
For instance, if α is exponentially decaying, λ = α̂ will be analytic and thus satisfies
the first requirement. The stability condition λ ≥ 0 also needs to be satisfied ev-
erywhere; otherwise, the harmonic system has exponentially increasing solutions and
is a poor model for oscillations in a crystal. If λ(0) �= 0, the dispersion relation is
not singular at k = 0. Thus in order to have a singular dispersion relation, the only
real restriction for exponentially decaying stable interactions is the assumption about
invertibility of the Hessian. Our analysis could likely be extended to cover also more
degenerate instances of λ, although this would require some additional effort. By
analogous reasoning, acoustic normal modes—in the above sense—are seen to appear
commonly also in the vector models discussed in section 1.1, at least for exponentially
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decaying interactions. However, in the vector models level crossings can lead to addi-
tional singularities in the dispersion relations, which would require a separate study.
Finally, let us remark that exponential decay is not essential, since only sufficient
regularity of the Hessian of λ will be required in the proof. For instance, if there
are C, δ > 0 such that |α(γ)| ≤ C|γ|−6−δ, then λ = α̂ satisfies item 1 in Definition
2.2. This permits us to deal also with situations where α is obtained via linearization
around an equilibrium of a nonlinear system with potentials decaying slightly faster
than a Lennard–Jones potential.

A prototype for the kind of dispersion relations considered here is the dispersion
relation of the nearest neighbor square lattice,

ωnn(k) =
[ 3∑

ν=1

2(1 − cos(2πkν))
] 1

2

.(2.12)

This is clearly a regular acoustic dispersion relation, in the sense of Definition 2.2,
and for it A0 is proportional to a unit matrix and ω0(q) = 2π|q|. The corresponding
elastic couplings are given by αnn(γ′−γ) = −Δγ′γ , where Δ is the discrete Laplacian
of the square lattice. Explicitly,

αnn(γ) =

⎧⎪⎨⎪⎩
6 if γ = 0,
−1 if |γ| = 1,
0, otherwise.

(2.13)

To allow the creation of macroscopic oscillations we work with sequences of initial
conditions that depend on the scaling parameter ε > 0 and consider the asymptotic
behavior of the solutions as ε tends to 0.

2.1. Energy density and the lattice Wigner transform. From now on we
will focus on analyzing asymptotic behavior of the fields ψ± as ε tends to 0. As is
carefully discussed in [17], generalizing the definitions of the energy density and of the
Wigner transform to the discrete setting is not completely obvious. In an attempt to
minimize unnecessary repetition of certain basic results related to Wigner transforms,
we will resort here to the definitions used in [14], which will allow us to rely on the
properties proven in Appendix B of that reference. However, we wish to keep in mind
that this choice might not be optimal for all purposes, and we refer the interested
reader to the discussion and references found in [16, 17, 24] for further possibilities.

We employ here the definition that for any state (u, v) ∈ X , its energy density,
eε = eε[u, v], scaled to a lattice spacing ε > 0, is the following tempered distribution
defined via the complex fields ψσ = ψσ[u, v] in (2.7):

eε(x) =
∑
γ∈Z3

δ(x− εγ)
1
2

∑
σ=±1

|ψσ(γ)|2,(2.14)

where δ denotes the Dirac delta-distribution. This is a manifestly positive distribution
which is identifiable with a measure whose total mass equals the total energy,∫

dx eε[u, v](x) =
∑
γ∈Z3

1
2

∑
σ=±1

|ψσ(γ)|2 =
1
2

∑
σ=±1

‖ψσ‖2

=
1
4

∑
σ=±1

∫
dk |ω(k)û(k) + iσv̂(k)|2 = H(u, v) <∞.(2.15)
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Fig. 2.2. First three panels: Snapshots of the energy density |ψ+(γ, t)|2 in the plane γ3 = 0
at t = 0.1/ε, t = 0.3/ε, and t = 0.95/ε, ε = 1

128
, with initial data and elastic constants as in

Figure 2.1. The plot is of the logarithm of the density, with all values less than a fixed cutoff shown
white. Last panel: Plot of the restriction to the plane x3 = 0 of the singular set of the energy of the
solution to the transport equation (1.3), using a corresponding choice of macroscopic initial data.
As the solution is scale-invariant, no explicit length scale has been denoted.

This justifies calling eε[u, v] an energy density: it defines a distribution of the positive
total energy between the lattice sites. The symmetry of ω implies that |ψ−(γ)| =
|ψ+(γ)|, and thus we can also identify the energy density directly with the norm-
density of ψ+[u, v],

eε(x) =
∑
γ∈Z3

δ(x− εγ)|ψ+(γ)|2.(2.16)

Then also for all ε > 0,

H(u, v) =
∫

dx eε[u, v](x) = ‖ψ+‖2
	2(Z3) = ‖ψ̂+‖2

L2(T3) = ‖ψ̂−‖2
L2(T3),(2.17)

which is independent of t for any (u, v) = (ut, vt).
Let us now concentrate on the case when a solution ut to (2.1) has been given,

and define for any t the distribution eε(x, t) by setting

eε(x, t) = eε[ut/ε, vt/ε](x), x ∈ R
3, t ∈ R .(2.18)

We have given an example of the time evolution of the energy density in Figure 2.2.
The last panel in the figure contains the most obvious features which are implied
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by the corresponding macroscopic evolution equation: the points of discontinuity of
the solution. The macroscopic initial data is given by dμ0(x, k) = δ(x)1

2 |ω(k)|2dxdk,
which has no concentration at k = 0. Thus only (1.3) is relevant. It is readily solved
to yield as the energy density (defined in this case simply by integrating μt over the
k-variable)

e(x, t) =
∫

T3

dk δ(x− t 1
2π∇ω(k)) = t−3

∫
T3

dk δ(x
t − 1

2π∇ω(k)) .(2.19)

Evaluation of such integrals has been considered, for instance, in section 6.4 of [17].
|∇ω(k)| has its maximum near the point of discontinuity of the gradient, at k = 0.
This defines the outer circle outside which the solution must be zero. Inside the circle,
the solution has a finite density, apart from points which correspond to values of k
for which the Hessian of ω is not invertible. We have computed the positions of such
points using Mathematica and plotted the result in the last panel in Figure 2.2. For
a reader interested in the details of the computation, we point out that considering
the case x3 = 0 simplifies the problem, as it implies that either k3 = 0 or k3 = 1

2 .
We are interested in the limiting behavior of eε(x, t) as ε tends to 0. Since the

velocity of the waves with wave vector k depends on k, it is necessary to work with
an object that encodes the density of waves with wave vector k ∈ T

3 at x ∈ R
3.

This job is conveniently done by the Wigner transform. In order to avoid certain
technical difficulties, we are going to define our Wigner transform only in the sense
of distributions, i.e., via a duality principle.

First we introduce the space of Schwartz functions.
Definition 2.3. Let Sd = S(Rd) denote the Schwartz space and ‖ · ‖Sd,N the

corresponding Nth Schwartz norm. Explicitly, with α denoting an arbitrary multi-
index and with 〈x〉 =

√
1 + x2, then

‖f‖Sd,N = sup
x∈Rd

max
|α|≤N

|〈x〉N∂αf(x)|.(2.20)

We also employ the shorthand notation S = S3.
To extract the relevant weak limits as ε tends to 0, we have to specify a space

of suitable test functions. We need to track the evolution of three different kinds of
lattice vibrations (short, medium, and long wavelength), all done compatibly with the
periodicity in the Fourier variable. This leads to the following, somewhat involved
notion of multiscale test functions.

Definition 2.4. We call a test function a ∈ C∞(R3 × T
3 × R

3) admissible if it
satisfies the following properties:

1. supk,q,|α|≤N ‖∂α
k,qa(·, k, q)‖S,N <∞ for all N ≥ 0.

2. q �→ a(x, k, q) is constant for all x ∈ R
3 and k such that maxi |ki mod T | ≥ 1

4 .
3. There is a function b ∈ C∞(R3 × T

3 × S2) such that for any N ≥ 0

sup
|q|≥R,k∈T3

‖a(·, k, q) − b(·, k, q
|q| )‖S,N → 0, when R→ ∞.(2.21)

The first and third conditions are the most important and can be summarized as
follows: we assume the test functions to be Schwartz in x and smooth with bounded
derivatives in k and q and to have a radial limit b in q which is approached uniformly
in any of the Schwartz norms. The above requirements are not minimal. The second
condition is only needed in order to guarantee that k �→ a(x, k, (k mod T 3)/ε) is always
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smooth on T
3. Also, taking arbitrarily large N in the last step is not necessary; most

likely N = d+ 3 = 6 would suffice.
Having the notion of admissible test functions at our disposal we can define the

central object of this paper: the multiscale Wigner transform.
Definition 2.5. Let ψ ∈ �2(Z3). We define the multiscale lattice Wigner trans-

form W ε[ψ] at scale ε > 0 by

〈a,W ε[ψ]〉 =
∫

R3

dp
∫

T 3

dk â(p, k, k
ε ) ψ̂(k − ε p

2 )ψ̂(k + ε p
2 ),(2.22)

where a is an admissible test function and â = Fx→pa, i.e.,

â(p, k, q) =
∫

R3

dx e−2πip·xa(x, k, q).(2.23)

The L2-Wigner transform W
(ε)
cont[φ] of a function φ ∈ L2(R3) at the scale ε > 0 is

given by the distribution

b �→ 〈b,W (ε)
cont[φ]〉 =

∫
R3×R3

dp dq b̂(p, q) φ̂(q − ε p
2 )φ̂(q + ε p

2 )(2.24)

for all b ∈ S(R3, C∞(R3)), and with b̂ = Fx→pb.
The Wigner transform W

(ε)
cont is a rescaled version of the standard Wigner trans-

form in L2. The test-function space S(R3, C∞(R3)) used above in its definition is
obtained via the family of seminorms pN(b) = sup|α|,|x|,|q|≤N |〈x〉N∂α

x,qb(x, q)| with

b ∈ C∞(R3 ×R
3). This is a Fréchet space, and W (ε)

cont[φ] is a continuous functional on
it for any φ ∈ L2(R3), as the following estimate reveals:

|〈b,W (ε)
cont[φ]〉| ≤ sup

p,q
|〈p〉4b̂(p, q)| ‖φ‖2

∫
R3

dp 〈p〉−4.(2.25)

Although S6 is not dense in this test-function space, it is nevertheless enough to know
how W

(ε)
cont acts on it. More precisely, if Wi = W

(ε)
cont[φi], i = 1, 2, and 〈b,W1〉 = 〈b,W2〉

for all b ∈ S6, then W1 = W2. This follows straightforwardly from an estimate similar
to (2.25) using smooth cutoff functions to cut out the infinity of the q-variable. In
addition, we will also need the property that if b(x, q) = f(x), with f ∈ S3, then

〈b,W (ε)
cont[φ]〉 =

∫
R3

dxf(x)|φ(x)|2.(2.26)

That is,
∫

R3 dqW (ε)
cont[φ](x, q) = |φ(x)|2. For a more careful analysis of the properties

of the standard Wigner transform, see [12].
In [14] the Wigner transform of a lattice state was defined as a distribution W ε

latt ∈
S′(R3 × T

3). The above definition is simply a refinement of this definition: formally
for any ψ

W ε(x, k, q) = δ
(
q − k

ε

)
W ε

latt(x, k), x ∈ R
3, k ∈ T 3, q ∈ R

3 .(2.27)

This follows immediately from equation (B.6) of [14], after one realizes that if a is an
admissible test function, then (x, k) �→ a(x, k, (k mod T 3)/ε) belongs to S(R3 × T

3)
for any ε > 0. This identification immediately allows us to use the results in [14] and
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to prove that many of the basic properties of the usual Wigner transform carry over
to the multiscale Wigner transform. Particularly important for us is the following
relation.

Proposition 2.6. For any f ∈ S(R3), the test function af (x, k, q) = f(x) is
admissible, and for all ε > 0 and for all (u, v) ∈ X,

〈f, eε〉 = 〈af ,W
ε[ψ]〉,(2.28)

where eε = eε[u, v] and ψ = ψ+[u, v].
Proof. By inspection, we find that a is a well-defined test function and ψ ∈ �2.

Then, by the above-mentioned relation, 〈af ,W
ε[ψ]〉 = 〈Jf ,W

ε
latt[ψ]〉 with Jf (x, k) =

f(x). On the other hand, it follows directly from the definition of W ε
latt (equation

(B.2) in [14]) that

〈Jf ,W
ε
latt[ψ]〉 =

∑
γ,γ′∈Z3

ψ(γ)ψ(γ′)
∫

T3

dk e2πik·(γ′−γ)f(ε(γ′ + γ)/2)

(2.29)
=
∑
γ∈Z3

f(εγ)|ψ(γ)|2 = 〈f, eε〉.

This proves (2.28).
The above proposition can be formally summarized by the formula

eε(x) =
∫

T3

dk
∫

R3

dqW ε[ψ](x, k, q),(2.30)

which implies also (in the sense of choosing any suitable test-function sequence ap-
proaching 1)

(2.31)
∫

R3×T3×R3

dxdk dqW ε[ψ](x, k, q) = ‖ψ‖2
	2(Z3).

As noted earlier, analogous results hold for the L2-Wigner transform.
Several definitions have been used in the literature to study homogenization lim-

its of lattice systems. We follow [14] mainly for convenience. The definition in
[14] is based on the “Weyl quantization rule” of symbols, and a similar definition
of the Wigner transform as distributions with a “classical quantization rule” was pro-
posed earlier in [16]. Other choices include using Husimi transforms or considering
L2(T3) = L2(T 3) as a subspace of L2(R3) and then relying on the standard Wigner
transform [17]. Finally, one can consider also interpolations of the fields between lat-
tice sites and then using the Wigner series defined in [12]. The relations between the
various definitions are discussed in [11, 16, 17, 24]. As is apparent from the results
presented in these references, the various 1-microlocal definitions tend to lead to the
same limit Wigner measures. This is not the case for the above 2-microlocal measures,
since at least the information about the quantization rule will be carried over to the
homogenization limits. However, a more systematic study would be required to settle
the issue.

3. Main results. The macroscopic evolution is obtained by sending ε to 0.
Our objective is to characterize the asymptotic behavior of the Wigner transform
W ε[ψε

t/ε] of the solution ψε
t/ε of (2.10). The limit strongly depends on the dispersion

relation ω. We will consider here regular acoustic dispersion relations, keeping in
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mind that, for instance, in the case of a scalar field and nearest neighbor interactions
in Z

3 the dispersion relation ω is given by (2.12), which is regular acoustic with
ω0(q) = 2π|q|. The main achievement of this paper as compared to [17] is that
complicated assumptions concerning the concentrations of the Wigner transform W ε

in wavenumber space as ε tends to 0 are no longer needed. The only remaining
requirements are boundedness and tightness of the sequence of initial excitations.

Assumption 3.1. We consider a sequence of values ε > 0 such that ε → 0. For
each ε in the sequence we assume that there is given an initial data vector ψε

0 ∈ �2(Z3)
such that

1. supε ‖ψε
0‖ <∞;

2. the sequence ψε
0 is tight on the scale ε−1:

lim
R→∞

lim sup
ε→0

∑
|γ|>R/ε

|ψε
0(γ)|2 = 0.(3.1)

After these preparations we are in a position to state our result. The main point
is that if ω is a regular acoustic dispersion relation, the asymptotic behavior of the
energy density is characterized by precisely three different objects: a Wigner trans-
form of a weak limit (macroscopic waves), an H-measure (short macroscopic waves),
and a Wigner measure (microscopic waves). No assumptions concerning energy con-
centrations except those stated in Assumption 3.1 are required.

Theorem 3.2. Let ψε
0 ∈ �2(Z3) be a sequence which satisfies Assumption 3.1.

Let ω be a regular acoustic dispersion relation and define ψε
t ∈ �2(Z3) for all t ∈ R by

the formula

ψ̂ε
t (k) = e−itω(k)ψ̂ε

0(k).(3.2)

Let also T
3
∗ = T

3 \ {0}. Then there are positive, bounded Radon measures μ0, μ
H
0 on

R
3 × T

3
∗ and R

3 × S2, respectively, a function φ0 ∈ L2(R3), and a subsequence (not
relabeled) such that for all admissible test functions a and t ∈ R,

lim
ε→0

〈a,W ε[ψε
t/ε]〉 =

∫
R3×T3

∗

dμt(x, k) b(x, k, k
|k| )

+
∫

R3×S2

dμH
t (x, q) b(x, 0, q) + 〈a0,W

(1)
cont[φt]〉 ,(3.3)

where b(x, k, q) = limR→∞ a(x, k,Rq) for |q| = 1, a0(x, q) = a(x, 0, q), and φt, μt and
μH

t are determined for any f ∈ C(R3 × T
3
∗) and g ∈ C(R3 × S2) by

φ̂t(q) := e−itω0(q)φ̂0(q),(3.4) ∫
R3×T3

∗

f(x, k) dμt(x, k) :=
∫

R3×T3
∗

f(x+ t 1
2π∇ω(k), k) dμ0(x, k),(3.5) ∫

R3×S2

g(x, q) dμH
t (x, q) :=

∫
R3×S2

g(x+ t 1
2π∇ω0(q), q) dμH

0 (x, q) .(3.6)

Moreover, for all t the energy equality holds:

(3.7) lim
ε→0

‖ψε
0‖2 = μt(R3 × T

3
∗) + μH

t (R3 × S2) + ‖φt‖2
L2(R3) .

Remark 3.3. It is immediate from the definition that φ, μ, and μH are weak
solutions of the set of decoupled linear transport equations (1.3)–(1.5).
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The proof of Theorem 3.2 also shows that the subsequences which are extracted
in the statement of the theorem can be characterized by a simple condition. In
particular, the initial state of the wave equation, φ0, is determined as the weak-L2(R3)
limit of the sequence of the functions (φε

0) with Fourier transforms

φ̂ε
0(q) =

{
ε

3
2 ψ̂ε

0(εq) if ‖q‖∞ ≤ 1
2ε ,

0, otherwise.
(3.8)

The exact characterization is contained in the following corollary, whose proof will be
given in section 5.

Corollary 3.4. Let (ψε
0) be a sequence which satisfies Assumption 3.1. Suppose

that φε
0 converges weakly to φ0, and that limε→0〈a,W ε[ψε

0]〉 exists for every admissible
test function a. Then there are unique positive, bounded Radon measures μ0, μ

H
0 on

R
3 × T

3
∗ and R

3 × S2, respectively, such that for every admissible test function a

lim
ε→0

〈a,W ε[ψε
0]〉 =

∫
R3×T3

∗

dμ0(x, k) b(x, k, k
|k| )

+
∫

R3×S2

dμH
0 (x, q) b(x, 0, q) + 〈a0,W

(1)
cont[φ0]〉 ,(3.9)

where a0 and b are defined as in Theorem 3.2. In addition, then (3.3) holds for all
t ∈ R along the original sequence ε with the initial macroscopic data determined by
the triplet (μ0, μ

H
0 , φ0).

Remark 3.5. According to (2.27) for a ∈ S(R3×T
3) the lattice Wigner transform

W ε
latt[ψ

ε
0] satisfies

〈a,W ε
latt[ψ

ε
0]〉 = 〈a,W ε[ψε

0]〉 .(3.10)

It is well known (see, e.g., [14]) that W ε
latt[ψ

ε
0] has a limit μlatt,

lim
ε→0

〈a,W ε
latt[ψ

ε
0]〉 =

∫
R3×T3

dμlatt(x, k) a(x, k) ,(3.11)

which is a positive Radon measure on R
3 × T

3. Evaluating (3.9) for a ∈ S(R3 × T
3)

shows that the “standard Wigner measure” μlatt can be expressed in terms of the
two-scale Wigner measure according to

dμlatt(x, k) = dμlatt(x, k)�(k �= 0) +
∫

q∈S2

dμH
0 (x, q) ⊗ δ(k)dk + |φ0(x)|2dx⊗ δ(k)dk ,

(3.12)

where dx denotes Lebesgue measure on R
3, δ the Dirac δ-function, and � the charac-

teristic function.
Remark 3.6. Our proof of the existence of two-scale Wigner measures is similar

to the strategy proposed by Fermanian Kammerer in [4, 5]. For a general result on
existence of two-scale Wigner measures concentrating on hypersurfaces, see [6]. (See
[6, Theorem 1.4] for a simple formulation in one dimension and [6, Theorem 1.6] for
the general case.) Concerning the existence part the only novelty in our result is thus
the use of the lattice Wigner transform.

However, in our approach we obtain the existence of the measures together with
their time evolution. While the strategy for obtaining transport equations for two-
scale Wigner measures outlined in section 6 of [7] is not directly applicable in our
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case due to the singular nature of the dispersion relation ω, it could certainly be
adapted. The existence part and the transport part of the result could thus be sepa-
rated. However, our proof is technically simpler and we do not rely on any advanced
pseudodifferential calculus.

4. Proof of Theorem 3.2. Let a be an admissible test function and consider
a fixed t ∈ R when we need to inspect the ε→ 0 limit of

〈a,W ε[ψε
t/ε]〉 =

∫
R3

dp
∫

T3

dk â(p, k, k
ε ) e−i t

ε (ω(k+ε p
2 )−ω(k−ε p

2 )) ψ̂ε
0(k − ε p

2 ) ψ̂ε
0(k + ε p

2 ) .

(4.1)

First we identify the function φ0 which contains the contributions of the long-wave
excitations. Let φ̂ε

0 be defined by (3.8). Since lim supε→0 ‖φ̂ε
0‖L2 = lim supε→0 ‖ψε

0‖	2

is bounded by Assumption 3.1 there exist a subsequence and a function φ0 ∈ L2(R3)
such that φε

0 converges weakly to φ0 in L2(R3). We then define φt by (3.4).
Using a localization function χ, which will be specified later, we now split the

integral I on the right-hand side of (4.1) into three parts and an error term so that the
contributions of short-, medium-, and long-wave excitation can be analyzed separately.
We define

I> =
∫

R3

dp
∫

T3

dk â(p, k, k
ε ) e−i t

ε (ω(k+ε p
2 )−ω(k−ε p

2 )) ψ̂ε
0(k − ε p

2 ) ψ̂ε
0(k + ε p

2 )(1 − χ),

IH
< =

∫
R3

dp
∫

T3

dk â(p, k, k
ε ) e−i t

ε (ω(k+ε p
2 )−ω(k−ε p

2 )) (ψ̂ε
0(k − ε p

2 ) − ε−
3
2 φ̂0(k

ε − p
2 ))

× (ψ̂ε
0(k + ε p

2 ) − ε−
3
2 φ̂0(k

ε + p
2 ))χ,

Iwv
< = ε−3

∫
R3

dp
∫

T3

dk â(p, k, k
ε ) e−i t

ε (ω(k+ε p
2 )−ω(k−ε p

2 )) φ̂0(k
ε − p

2 ) φ̂0(k
ε + p

2 )χ,

R = I − I> − IH
< − Iwv

< .

The definition of R implies that

(4.2) 〈a,W ε[ψε
t/ε]〉 = I> + IH

< + Iwv
< +R.

To localize the oscillations in Fourier space we need smooth cutoff functions.
Definition 4.1. Let f ∈ C∞(R, [0, 1]) denote a fixed function which is symmet-

ric, f(−x) = f(x), strictly monotonically decreasing on [1, 2], and

f(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2.

(4.3)

We further define ϕ ∈ C∞(R3, [0, 1]) by ϕ(k) = f(|k|).
Let 0 < ρ ≤ 1

4 be arbitrary and set χ = χ(k, p; ε, ρ) = ϕ(k+

ρ )ϕ(k−
ρ ), where

k± = k ± ε p
2 . We will continue to use this shorthand notation in the following under

the tacit assumption that k± is always really a function of both k and εp. Let us
now also point out that all four terms in the decomposition (4.2) depend on ε and ρ,
via χ, even though we have not denoted this dependence explicitly.

The first term containing 1−χ in (4.2) is zero if |k±| ≤ ρ, while the remainder is
zero if |k+| or |k−| ≥ 2ρ. Thus the chosen decomposition splits the integration over k
and p into “large,” “intermediate,” and “small” wavenumbers. We will demonstrate
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that the following convergences hold: there is a sequence of ρ, a subsequence of ε, and
measures μt, μ

H
t satisfying the statements made in the theorem, such that

lim
ρ→0

lim
ε→0

I> =
∫

R3×T3
∗

dμt(x, k) b(x, k, k
|k| ),(4.4)

lim
ρ→0

lim
ε→0

IH
< =

∫
R3×S2

dμH
t (x, q) b(x, 0, q),(4.5)

lim
ρ→0

lim sup
ε→0

∣∣∣Iwv
< − 〈a0,W

(1)
cont[φt]〉

∣∣∣ = 0,(4.6)

lim
ρ→0

lim sup
ε→0

|R| = 0.(4.7)

Clearly, (4.4)–(4.7) then imply (3.3).

Large wavenumbers. We split I> further into two parts using

1 − ϕ
(

k−
ρ

)
ϕ
(

k+

ρ

)
= 1 − ϕ

(
k
ρ

)2

+
(
ϕ
(

k
ρ

)
− ϕ

(
k+

ρ

))
ϕ
(

k
ρ

)
+
(
ϕ
(

k
ρ

)
− ϕ

(
k−
ρ

))
ϕ
(

k+

ρ

)
.(4.8)

Let hρ(k) = 1 − ϕ(k
ρ )2, which is a smooth function. The integral then becomes

I> = I1
> +R1, where

I1
> =

∫
R3

dp
∫

T3

dk â(p, k, k
ε )hρ(k) e−i t

ε (ω(k+ε p
2 )−ω(k−ε p

2 )) ψ̂ε
0(k − ε p

2 ) ψ̂ε
0(k + ε p

2 ) .

(4.9)

The remainder R1 can be estimated using |ϕ| ≤ 1 and

ϕ
(

k±
ρ

)
− ϕ

(
k
ρ

)
= ± ε

2ρ

∫ 1

0

ds p · ∇ϕ
(

1
ρ(k ± s ε

2p)
)
,(4.10)

which yield the bound, with a universal constant C,

|R1| ≤ C ε
ρ sup

k,q
‖a(·, k, q)‖S,d+2‖ψ̂ε

0‖2‖∇ϕ‖∞.(4.11)

Therefore, there is a constant c′ such that |R1| ≤ c′ε/ρ and thus R1 → 0 when ε→ 0
for all ρ.

We then consider I1
>. The presence of hρ guarantees that the integrand is zero

unless |k| ≥ ρ. Thus we can change â(p, k, k/ε) to b̂(p, k, k/|k|) in the integrand with
an error R2 bounded by

|R2| ≤ C sup
k,|q|≥ρ/ε

‖a(·, k, q) − b(·, k, q
|q| )‖S,d+1‖ψ̂ε

0‖2,(4.12)

where C is a universal constant. Therefore, the assumptions imply that R2 → 0 when
ε→ 0 for all ρ. On the other hand, for |k| ≥ ρ and |p| < ρ/ε, inequality (A.2) derived
in the appendix implies∣∣1

ε

(
ω(k + ε p

2 ) − ω(k − ε p
2 )
)
− p · ∇ω(k)

∣∣ ≤ C3ε
|p|2
|k| ≤ C3

ε
ρ |p|

2.(4.13)
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Therefore, using the estimate |eix−eiy| ≤ min(|x−y|, 2), valid for all x, y ∈ R, we find
that we can further change the t-dependent exponential in the integrand to e−itp·∇ω(k)

with an error R3 satisfying

|R3| ≤ C sup
k,q

‖b(·, k, q)‖S,d+3

(
ε
ρ |t| +

∫
|p|≥ρ/ε

dp〈p〉−d−3
)

(4.14)

for some constant C. Therefore, also limε→0 R3 = 0 for all ρ. In summary, I1
> =

I2
> +R2 +R3, where R2, R3 are negligible, and

I2
> = I2

>(ε, ρ) =
∫

R3

dp
∫

T3

dk b̂(p, k, k
|k| )hρ(k)e−itp·∇ω(k) ψ̂ε

0(k − ε p
2 ) ψ̂ε

0(k + ε p
2 ) .

(4.15)

Let us for a moment consider the lattice Wigner transformW ε
latt of ψε

0 as defined in
[14]. As pointed out after Definition 2.5, then for any test function f ∈ S(R3×T

3), we
get an admissible test function by the formula af (x, k, q) = f(x, k) and 〈f,W ε

latt〉 =
〈af ,W

ε[ψε
0]〉. Since ψε

0 is a norm-bounded sequence, the sequence W ε
latt is weak-∗

bounded, and thus there are W 0
latt ∈ S′(R3 × T

3) and a subsequence along which
W ε

latt
∗
⇀W 0

latt.
Since the sequence ψε

0 is by assumption also tight on the scale ε−1, we can then
apply Theorems B.4 and B.5 of [14] and conclude that W 0

latt is given by a positive,
bounded Radon measure μ on R

3×T
3 such that for all continuous functions f ∈ C(T3)

and p ∈ R
3,

lim
ε→0

∫
T3

dk f(k)ψ̂ε
0(k − ε p

2 ) ψ̂ε
0(k + ε p

2 ) =
∫

R3×T3

dμ(x, k) f(k)e−2πip·x.(4.16)

Because ∇ω(k) and k
|k| are continuous apart from k = 0, the function k �→

hρ(k)b̂(p, k, k
|k| )e

−itp·∇ω(k) is everywhere continuous for all ρ > 0 and p ∈ R
3. There-

fore, by the dominated convergence theorem, for all ρ we find

lim
ε→0

I2
> =

∫
R3

dp
∫

R3×T3

dμ(x, k) b̂(p, k, k
|k| )hρ(k)e−2πip·(x+t∇ω(k)(2π)−1)

=
∫

R3×T3

dμ(x, k)hρ(k)b(x + t 1
2π∇ω(k), k, k

|k| ) .(4.17)

When ρ → 0, the integrand approaches pointwise b(x+ t 1
2π∇ω(k), k, k

|k| ) apart from
k = 0 when the limit is 0. Therefore, by the dominated convergence theorem

lim
ρ→0

∫
R3×T3

dμ(x, k)hρ(k)b(x+ t 1
2π∇ω(k), k, k

|k| )

=
∫

R3×T3
∗

dμ(x, k) b(x + t 1
2π∇ω(k), k, k

|k| ) =
∫

R3×T3
∗

dμt(x, k) b(x, k, k
|k| ),(4.18)

where we have defined the bounded, positive Radon measure μt using μ0 = μ|R3×T3
∗

in the formula (3.5). We have shown that (4.4) holds.

Small wavenumbers and the remainder. After a change of variables q = k
ε ,

one obtains that

Iwv
< =

∫
R3

dp
∫

T 3/ε

dq â(p, εq, q) e−i t
ε (ω(εq+)−ω(εq−)) φ̂0(q−) φ̂0(q+)ϕ( εq+

ρ )ϕ( εq−
ρ ) ,

(4.19)
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where q± = q± p
2 . We can immediately replace the integration region for the q-integral

by R
3. To see this, note that the integrand is zero, unless |q± p

2 | ≤
2ρ
ε for both signs.

Since 2q = q+ + q−, this can happen only if also |q| ≤ 2ρ
ε ≤ 1

2ε , which implies that
the integrand is zero if ‖q‖∞ > 1

2ε .
However, if |εq| ≤ 2ρ, then

|â(p, εq, q) − â(p, 0, q)| ≤ sup
k

|∇kâ(p, k, q)| 2ρ,(4.20)

and thus we can replace in the integrand the function â(p, εq, q) by â(p, 0, q), with an
error R′

1 which is bounded by Cρ with a constant C independent of ε and ρ. Thus
we only need to consider the integral

I1
< =

∫
R3

dp
∫

R3

dq â(p, 0, q) e−i t
ε (ω(εq+)−ω(εq−)) F ε,ρ(q−)F ε,ρ(q+),(4.21)

where F ε,ρ(q) = φ̂0(q)ϕ( εq
ρ ). Next we apply the estimate (A.3) derived in the ap-

pendix, proving that if now |p| ≤ 1
2ε , then∣∣1

ε (ω(εq+) − ω(εq−)) − ω0(q+) + ω0(q−)
∣∣ ≤ C4ε|p| |q| .(4.22)

Following the same argument as earlier, we can then conclude that the t-dependent
exponential can be changed to e−it(ω0(q+)−ω0(q−)), with an error R′

2 which satisfies the
estimate

|R′
2| ≤ C sup

q
‖a(·, 0, q)‖S,d+2

(
|t|ρ+

∫
|p|≥(2ε)−1

dp 〈p〉−d−2
)
.(4.23)

Thus limρ→0 lim supε→0 |R′
2| = 0 for all t. Finally, we need to change F ε,ρ to φ̂0, with

an error R′
3 which can be bounded by C‖F ε,ρ − φ̂0‖. Since the bound goes to zero

when ε→ 0 and

Iwv
< =

∫
R3

dp
∫

R3

dq â(p, 0, q) e−it(ω0(q+)−ω0(q−)) φ̂0(q−)φ̂0(q+) +R′
1 +R′

2 +R′
3,

(4.24)

equation (4.6) has been established.
Similar estimates can be employed to demonstrate the vanishing of the remainder,

(4.7). From the definition of R we get

R =
∫

R3

dp
∫

T 3/ε

dq â(p, εq, q) e−i t
ε (ω(εq+)−ω(εq−))

(
φ̂ε

0(q−)−φ̂0(q−)
)
φ̂0(q+)ϕ( εq+

ρ )ϕ( εq−
ρ )

+
∫

R3

dp
∫

T 3/ε

dqâ(p, εq, q) e−i t
ε (ω(εq+)−ω(εq−)) φ̂0(q−)

(
φ̂ε

0(q+)−φ̂0(q+)
)
ϕ( εq+

ρ )ϕ( εq−
ρ ).

(4.25)

We then apply the above estimates to remove the ε-dependence from all other terms
in the integrands, apart from the differences φ̂ε

0 − φ̂0. The error has a bound which
vanishes when ρ→ 0. We are then left with∫

R3

dη
∫

R3

dξ â(η − ξ, 0, 1
2 (η + ξ)) e−it(ω0(η)−ω0(ξ))

(
φ̂ε

0(ξ) − φ̂0(ξ)
)
φ̂0(η)

+
∫

R3

dη
∫

R3

dξ â(η − ξ, 0, 1
2 (η + ξ)) e−it(ω0(η)−ω0(ξ)) φ̂0(ξ)

(
φ̂ε

0(η) − φ̂0(η)
)
,(4.26)

which vanishes as ε→ 0, since φε
0 converges weakly to φ0. This establishes (4.7).



1410 L. HARRIS, J. LUKKARINEN, S. TEUFEL, AND F. THEIL

Intermediate wavenumbers. Changing coordinates to q = k
ε yields

IH
< =

∫
R3

dp
∫

T 3/ε

dq â(p, εq, q) e−i t
ε (ω(εq+)−ω(εq−)) f̂ε,ρ(q−)f̂ε,ρ(q+) ,

where f̂ε,ρ(q) = ϕ( εq
ρ )(φ̂ε

0(q) − φ̂0(q)). Let M > 0 be arbitrary. We split off the
values |p| > M from the integral defining I3

<. The difference R′
4 = R′

4(ε, ρ,M) can
be bounded by C

∫
|p|>M dp 〈p〉−d−1 and thus limM→∞ supρ,ε |R′

4| = 0. We divide the
remaining integral over |p| ≤M further into two parts using the identity

1 = ϕ̃
( q−

2M

)
ϕ̃
( q+

2M

)
+ 1 − ϕ̃

( q−
2M

)
ϕ̃
( q+

2M

)
,(4.27)

where ϕ̃ = 1 − ϕ. If |q| ≥ 5M , then |q±| ≥ 4M and the second part is zero. It can
be checked by inspection that the sequence (fε,ρ)ε is bounded and tight, and it has
a weak limit zero. Of these properties only the tightness is nonobvious, but this can
also be easily deduced from the formula

fε,ρ(x) = ρ3ε−3/2
∑
γ∈Z3

ψε
0(γ)ϕ̂(ρ(γ − 1

εx)) −
∫

R3

dy φ0(x+ ε
ρy)ϕ̂(y).(4.28)

Therefore, by Lemma A.2, limε→0 ‖f̂ε,ρ‖L2(B6M ) = 0 for all M,ρ. This implies that
the contribution of the second term, denoted by R′

5, satisfies limε→0 |R′
5| = 0 for all

M,ρ.
We are thus left with

I4
< =

∫
|p|≤M

dp
∫

R3

dq â(p, 0, q) e−it(ω0(q+)−ω0(q−)) ĝε,ρ,M (q−)ĝε,ρ,M (q+),(4.29)

where ĝε,ρ,M (q) = ϕ̃
(

q
2M

)
f̂ε,ρ(q) and the integrand can be nonzero only for |q| ≥M .

We thus only need to consider |q| ≥M and |p| ≤M . First we replace in the integrand
â(p, 0, q) by b̂(p, 0, q̂), q̂ = q

|q| , with an error R′
6 which is bounded by

|R′
6| ≤ C sup

k,|q|≥M

‖a(·, k, q) − b(·, k, q
|q| )‖S,d+1(4.30)

for some constant C. Then we change e−it(ω0(q+)−ω0(q−)) to e−itp·∇ω0(q̂) with an error
R′

7 which can be estimated using the inequality (A.4) of the appendix. This proves
that there is a constant C such that

|R′
7| ≤ C |t|

M sup
k,q

‖b(·, k, q)‖S,d+3.(4.31)

Therefore, I4
< = I5

< +R′
6 +R′

7, where

I5
< =

∫
|p|≤M

dp
∫

R3

dq b̂(p, 0, q̂) e−itp·∇ω0(q̂) ĝε,ρ,M (q−)ĝε,ρ,M (q+)(4.32)

and limM→∞ supρ,ε |R′
6 +R′

7| = 0 for all t.
Let

bt(x, q̂) = b(x+ t 1
2π∇ω0(q̂), 0, q̂).(4.33)
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Then bt ∈ S(R3 × S2), and it has an extension to a function Jt ∈ S6; i.e., there is Jt

such that Jt(x, q) = bt(x, q) for all |q| = 1. On the other hand, then

I5
< =

∫
|p|≤M

dp
∫

R3

dq b̂t(p, q̂) ĝε,ρ,M (q−)ĝε,ρ,M (q+) = 〈Jt,Λε,ρ,M 〉,(4.34)

where Λε,ρ,M ∈ S′
6 denotes the distribution

J �→ 〈J,Λε,ρ,M 〉 =
∫
|p|≤M

dp
∫

R3

dq Ĵ(p, q̂) ĝε,ρ,M (q−)ĝε,ρ,M (q+).(4.35)

Clearly, each Λε,ρ,M has support in R
3 × S2, and there is a constant C such that

for all J, ε, ρ,M

|〈J,Λε,ρ,M 〉| ≤ C‖ĝε,ρ,M‖2‖J‖S,d+1,(4.36)

with ‖ĝε,ρ,M‖ denoting the L2(R3)-norm. However, since we have ‖ĝε,ρ,M‖ ≤ ‖f̂ε,ρ‖,
where ‖f̂ε,ρ‖ is bounded in ε, the Banach–Alaoglu theorem implies that the family
(Λε,ρ,M )ε,ρ,M belongs to a weak-∗ sequentially compact set. Therefore, for every
ρ,M there is a subsequence of (ε) and Λρ,M such that Λε,ρ,M ∗

⇀ Λρ,M along this
subsequence. In addition, for every ρ there is Λρ and a sequence of integers M such
that Λρ,M ∗

⇀ Λρ along this sequence. Finally, there are Λ ∈ S′
6 and a sequence of

integers N ≥ 4 such that for ρ = 1
N , Λρ ∗

⇀ Λ.
All of the above distributions clearly must have support on R

3×S2. We will soon
prove that, in addition, for all f ∈ S6 and ρ

〈|f |2,Λρ〉 ≥ 0.(4.37)

This implies that then also 〈|f |2,Λ〉 ≥ 0. Therefore, by the Bochner–Schwartz the-
orem, there is a positive Radon measure μH on R

6 such that for all test functions
J , 〈J,Λ〉 =

∫
μH(dx, dk)J(x, k). Since also μH must have support on R

3 × S2, we
can thus identify it with a positive Radon measure μH

0 on R
3 × S2. By considering

test functions J(x, k) = e−δ2x2

in the limit δ → 0, it is also clear that μH
0 must be

bounded. We then define the positive, bounded Radon measures μH
t , t ∈ R, by the

formula (3.6). It follows from the construction of μH
t that (4.5) holds along the above

sequences ρ, ε.
The main missing ingredient is provided by the following lemma.
Lemma 4.1. For p, q ∈ R

3, let us denote q± = q± p
2 , q̂± = q±/|q±|, and q̂ = q/|q|.

There is a constant C such that for all q, q′ ∈ R
3 and f ∈ S6∣∣∣∣∫

R3

dx e−2πip·xf(x, q′)f(x, q)
∣∣∣∣ ≤ C〈p〉−d−1‖f‖2

S,d+1.(4.38)

If, in addition, |q| ≥M and |p| ≤M , then also∣∣∣∣Fx→p(|f |2)(p, q̂) −
∫

R3

dx e−2πip·xf(x, q̂+)f(x, q̂−)
∣∣∣∣ ≤ 1

MC〈p〉−d−1‖f‖2
S,d+2.(4.39)

Before proving the lemma we demonstrate that it implies the inequality (4.37).
Let f ∈ S6 be arbitrary. Define q±, q̂± as in Lemma 4.1, except that here also let
0̂ = 0, and let

Iε,ρ,M,f =
∫

R3

dp
∫

R3

dq
[∫

R3

dx e2πip·xf(x, q̂+)f(x, q̂−)
]
ĝε,ρ,M (q−)ĝε,ρ,M (q+).(4.40)
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Note that this integral is well-defined by (4.38). Then, by the estimate (4.39) and
uniform boundedness of gε,ρ,M , there is a constant c such that∣∣〈|f |2,Λε,ρ,M 〉 − Iε,ρ,M,f

∣∣ ≤ c‖f‖2
S,d+2

(∫
|p|≥M

dp 〈p〉−d−1 + 1
M

)
.(4.41)

On the other hand, Iε,ρ,M,f ≥ 0 always. To see this, consider first the case when
gε,ρ,R ∈ S. Then ĝε,ρ,R ∈ S, and by changing variables from (q, p) to (q+, q−) in
(4.40) and then using Fubini’s theorem to reorder the integrals, we find that

Iε,ρ,M,f =
∫

R3

dx|G(x)|2 , with G(x) =
∫

R3

dq e2πiq·xf(x, q̂)ĝε,ρ,R(q) ∈ L2.

(4.42)

Since Iε,ρ,M,f depends L2-continuously on gε,ρ,R this implies that also for general
gε,ρ,R ∈ L2 we have Iε,ρ,M,f ≥ 0. Since the right-hand side of (4.41) vanishes if first
ε→ 0 and then M → ∞, we must thus also have 〈|f |2,Λρ〉 ≥ 0. This proves (4.37).

The only remaining task is to prove Lemma 4.1. Consider first (4.38). If |p| ≤ 1,
we have trivially a bound∫

R3

dx |f(x, q′)| |f(x, q)| ≤ ‖f‖2
S,d+1

∫
R3

dx 〈x〉−2d−2 ≤ c‖f‖2
S,d+1.(4.43)

If |p| ≥ 1, we perform N partial integrations in the direction of p, i.e., in the direction
p̂ = p

|p| , yielding

∫
R3

dx e−2πip·xf(x, q′)f(x, q) = 1
(2πi|p|)N

∫
R3

dx e−2πip·x(p̂ · ∇)N
(
f(x, q′)f(x, q)

)
.

(4.44)

By the Leibniz rule,

(p̂ · ∇)N
(
f(x, q′)f(x, q)

)
=

N∑
n=0

(
N

n

)
(p̂ · ∇)nf(x, q′)(p̂ · ∇)N−nf(x, q),(4.45)

which is bounded by c′N 〈x〉−N‖f‖2
S,N . Choosing N = d + 1 then yields (4.38) for

some constant. Adjusting the constant C so that the bound is true also for |p| ≤ 1
proves that (4.38) is valid.

To prove (4.39), consider q, p as required in the second part of the lemma. Also
let q(s) = q+ s

2p. Then |q(s)| ≥ |q|/2 > 0 for all |s| ≤ 1, and q̂(s) is thus well-defined
and smooth. Therefore, for any g ∈ S6 and s0 ∈ [−1, 1],

g(x, q̂(s0)) − g(x, q̂) =
∫ s0

0

ds d
dsg(x, q̂(s))

=
∫ s0

0

ds
(

1
2|q(s)|p−

p·q̂(s)
2|q(s)| q̂(s)

)
· ∇qg(x, q)|q=q̂(s),(4.46)

implying

|g(x, q̂±) − g(x, q̂)| ≤ 2 |p|
|q| sup

|q|=1

|∇qg(x, q)|.(4.47)
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Also for all g1, g2 ∈ S6,

g1(x, q̂)g2(x, q̂) − g1(x, q̂−)g2(x, q̂+)

= (g1(x, q̂) − g1(x, q̂−))g2(x, q̂) + g1(x, q̂−) (g2(x, q̂) − g2(x, q̂+)) .(4.48)

Following the steps made in the first part of the proof, and replacing the earlier
estimates with the above more accurate ones when necessary, we can conclude that
the constant C can be adjusted so that for these values of q, p (4.39) also holds. This
completes the proof of (4.5).

Energy equality. The energy equality (3.7) follows by considering a sequence
of test functions aδ = e−δ2x2

and taking δ → 0. To see this, first note that the right-
hand side of (3.7) is clearly independent of t, and thus it is enough to consider t = 0.
Thanks to (2.28) and to the tightness of the sequence ψε

0, we obtain for this particular
test function that

lim
δ→0

lim
ε→0

〈aδ,W ε[ψε
0]〉 = lim

δ→0
lim
ε→0

〈aδ, eε〉 = lim
ε→0

‖ψε
0‖2.

Equation (3.3) implies that

lim
ε→0

〈aδ,W ε[ψε
0]〉 =

∫
R3

dxaδ(x)|φ0(x)|2 +
∫

R3

∫
T3

aδ(x) dμ0(x, k)

+
∫

R3

∫
S2

aδ(x) dμH
0 (x, k).

Sending δ to 0 yields that

lim
ε→0

‖ψ̂ε
0‖2 = ‖φ0‖2

L2(R3) + μ0(R3 × T
3) + μH

0 (R3 × S2),

and the energy equality has been established. This finishes the proof of Theorem 3.2.

5. Proof of Corollary 3.4. Let I0 denote the original sequence of ε, and con-
sider an arbitrary subsequence I of I0. Since (ψε

0)ε∈I then also satisfies Assump-
tion 3.1, we can conclude from Theorem 3.2 that for every I there is a subsequence
I ′ such that (3.3) holds for all t with the initial conditions given by some triplet
(μI , μ

H
I , φI). From the construction of the subsequence in the proof of Theorem 3.2,

we know that φI can be chosen as the weak limit of φε
0 along the subsequence I ′.

The first assumption thus implies that we can always choose φI = φ0. Let us also
denote μ0 = μI0 and μH

0 = μH
I0

, and to prove the stated uniqueness, we will prove that
μI = μ0 and μH

I = μH
0 for all I.

Consider first an arbitrary ã ∈ C∞
c (R3×T

3
∗). Let a(x, k, q) = ã(x, k) for k �= 0 and

define a(x, 0, q) = 0. Then a is an admissible test function with a0 = 0 = b(k, 0, q),
and for any subsequence I we thus obtain, using the second assumption,∫

R3×T3
∗

dμI(x, k) ã(x, k) = lim
ε∈I

〈a,W ε[ψε
0]〉 =

∫
R3×T3

∗

dμ0(x, k) ã(x, k).(5.1)

Such ã are dense in Cc(R3 × T
3
∗), and thus μI = μ0 on R

3 × T
3
∗.

Consider then an arbitrary b ∈ C∞
c (R×S2). Let ϕ be a smooth cutoff function as

in Definition 4.1, and define a(x, k, q) = b(x, q/|q|) (1−ϕ(2q)). Then a is an admissible
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test function and indeed limR→∞ a(x, k,Rq) = b(x, q) for all |q| = 1. By the already
proven results we then find that for any subsequence I∫

R3×S2

dμH
I (x, q) b(x, q) = lim

ε→0
〈a,W ε[ψε

0]〉 −
∫

R3×T3
∗

dμ0(x, k) b(x, k
|k| ) − 〈a0,W

(1)
cont[φ0]〉

=
∫

R3×S2

dμH
0 (x, q) b(x, q) .(5.2)

Therefore, also μH
I = μH

0 , which concludes the uniqueness part of the proof of the
corollary.

Finally, define for t �= 0 the triplet (μt, μ
H
t , φt) using (μ0, μ

H
0 , φ0) as the initial

data. By the uniqueness proved above, for any subsequence I, (3.3) holds along the
subsubsequence I ′. As the right-hand side is thus independent of I, this proves that
the limit also holds along the original sequence I0. This completes the proof of the
corollary.

Appendix. The proof of Theorem 3.2 uses two simple lemmas, which are pro-
vided here. The first lemma summarizes several properties of regular acoustic disper-
sion relations.

Lemma A.1. Let ω be a regular acoustic dispersion relation, as in Definition
2.2, and let λ, A0, and ω0 be related to ω as in the definition. Then the following
assertions are true.

1. ω ∈ C(3)(T3\ {0} ,R).
2. ∇λ(0) = 0 and A0 > 0.
3. There are constants C1, C2 > 0 such that for all ‖k‖∞ ≤ 3

4 ,

ω(k) ≥ C1|k|, |∇λ(k)| ≤ C2|k| .(A.1)

In addition, ‖∇ω‖∞ <∞.
4. There is C3 such that if ε > 0, p ∈ R

3, and ‖k‖∞ ≤ 1
2 , with |k| > ε|p|, then

|ω(k + 1
2εp) − ω(k − 1

2εp) − εp · ∇ω(k)| ≤ C3ε
2 |p|2

|k| .(A.2)

5. There is C4 such that if ε > 0 and p, q ∈ R
3 with |p|, ‖q‖∞ ≤ 1

2ε
−1, then for

q± = q ± 1
2p,

|ω(εq+) − ω(εq−) − ω0(εq+) + ω0(εq−)| ≤ C4ε
2|p| |q| .(A.3)

6. There is C5 such that if p, q ∈ R
3 with q �= 0 and |p| ≤ |q|, then for q± =

q ± 1
2p,

|ω0(q+) − ω0(q−) − p · ∇ω0( q
|q| )| ≤ C5

|p|2
|q| .(A.4)

Proof. From now on, we consider ω, λ, A0, and ω0 satisfying Definition 2.2. The
first item is then obvious, and the second one follows from the assumptions, since 0 is a
minimum. The second inequality in (A.1) follows by using item 2 and ‖D2λ‖∞ <∞,
when by Taylor expansion |∇λ(k)| ≤ C2|k| for all k ∈ R. To prove the first inequality,
we first note that, by continuity, also ‖D3λ‖∞ <∞. Thus there is c′ such that for all
k ∈ R

3

|λ(k) − λ0(k)| ≤ c′|k|3,(A.5)
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where λ0(k) = 1
2k ·A0k. Since A0 > 0, there is c > 0 such that λ0(k) ≥ c2k2 for all k.

Thus there is δ′ > 0 such that for all |k| < δ′, we have |1 − λ(k)/λ0(k)| ≤ 3
4 , and

for these k therefore also ω(k) =
√
λ(k) − λ0(k) + λ0(k) ≥ 1

2

√
λ0(k) ≥ c

2 |k|. Since λ
has no zeroes in the complement set, the constant can then be adjusted so that (A.1)
holds for all k with ‖k‖∞ ≤ 3

4 .
We still need to prove the third property, boundedness of ∇ω. For later use, let

us, more generally, consider a nonnegative f ∈ C(2)(R3), q ∈ R
3, and k such that

f(k) �= 0. Then we have

(q · ∇)
√
f(k) =

1
2
√
f(k)

q · ∇f(k),(A.6)

(q · ∇)2
√
f(k) = − 1

4f(k)3/2
(q · ∇f(k))2 +

1
2
√
f(k)

(q · ∇)2f(k).(A.7)

This implies that there is a constant C such that for all q ∈ R
3 and k �= 0, with

‖k‖∞ ≤ 3
4 ,

|q · ∇ω(k)|, |q · ∇ω0(k)| ≤ C|q| ,(A.8)

|(q · ∇)2ω(k)|, |(q · ∇)2ω0(k)| ≤ C
|q|2
|k| .(A.9)

In particular, by periodicity therefore ‖∇ω‖∞ <∞.
To prove item 4, consider k, p, ε as in the claim, and define a function f(s) =

ω(k+) − ω(k−) with k± = k ± s 1
2p and s ∈ [−ε, ε]. Then ‖k±‖∞ ≤ 3

2‖k‖∞ and
|k±| ≥ |k| − ε 1

2p ≥ 1
2 |k| > 0, and thus f belongs to C(3). In particular, f(0) = 0,

f ′(0) = p · ∇ω(k), and

f ′′(s) =
1
2

[ 1
ω(k+)

(p
2
· ∇
)2

λ(k+) − 1
ω(k−)

(p
2
· ∇
)2

λ(k−)

− 1
2ω(k+)3

(p
2
· ∇λ(k+)

)2

+
1

2ω(k−)3
(p

2
· ∇λ(k−)

)2]
.(A.10)

Using item 3, we find that there is C such that this is uniformly bounded by C|p|2/|k|.
Then a Taylor expansion at the origin proves item 4.

Since for all k �= 0

ω(k) − ω0(k) =
√
λ(k) −

√
λ0(k) =

λ(k) − λ0(k)√
λ(k) +

√
λ0(k)

,(A.11)

we then also have
(A.12)

q · ∇(ω(k)−ω0(k)) =
q · ∇λ(k) − q · ∇λ0(k)

ω(k) + ω0(k)
− (λ(k)−λ0(k))

q · ∇ω(k) + q · ∇ω0(k)
(ω(k) + ω0(k))2

.

By Taylor expansion at the origin, we find that there is C′ such that for all q ∈ R
3,

|λ(k) − λ0(k)| ≤ C′|k|3, |q · ∇λ(k) − q · ∇λ0(k)| ≤ C′|k|2|q|,(A.13)

|(q · ∇)2λ(k) − (q · ∇)2λ0(k)| ≤ C′|k| |q|2 .(A.14)

Thus there is also C such that for all q ∈ R
3, and for ‖k‖∞ ≤ 3

4 with k �= 0,

|q · ∇(ω(k) − ω0(k))| ≤ C|k| |q| , |(q · ∇)2(ω(k) − ω0(k))| ≤ C|q|2.(A.15)
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Let us then consider q, p, ε satisfying the assumptions made in the final item.
Since then ‖εq±‖∞ ≤ 3

4 , we can apply the previous estimates. If p = 0, then q− = q+
and the bound in (A.3) is trivially valid for any C4. Consider thus p �= 0, and assume
first that p is not proportional to q. Since then the line segment [0, 1] � s �→ εq+sεp/2
does not pass through the origin, the function s �→ ω(εq+ sεp/2)− ω0(εq + sεp/2) is
in C(3)([0, 1]). We make a Taylor expansion of this function at s = 0, yielding

ω(εq + ε p
2 ) − ω0(εq + ε p

2 ) = ω(εq) − ω0(εq) + ε p
2 · (∇ω(εq) −∇ω0(εq)) +R .(A.16)

Here (A.15) implies |R| ≤ Cε2|p|2, since

R =
∫ 1

0

ds (1 − s)
(
ε p

2 · ∇
)2

(ω(εq + sε p
2 ) − ω0(εq + sε p

2 )) .(A.17)

This proves that (A.3) holds in this case for some constant C4. In the final case p ∝ q,
we choose a direction u orthogonal to q, and use the previous estimate with p + δu
instead of p for an arbitrary 0 < δ ≤ 1. Since the left-hand side of (A.3) is continuous
in δ, the bound must then hold also for δ = 0, proving the validity of the estimate
also in this case.

To prove (A.4), we use the fact that by assumption |q±| ≥ 1
2 |q| > 0, and thus

denoting q̂ = q/|q|, we get

ω0(q+) − ω0(q−) = |q|
(
ω0

(
q̂ + p

2|q|
)
− ω0

(
q̂ − p

2|q|
))

= p · ∇ω0(q̂) +R,(A.18)

where |R| ≤ C|p|2/|q|. We have thus completed the proof of the lemma.
The second lemma recalls a well-known fact in Fourier analysis: the Fourier trans-

form of a bounded and tight sequence of L2 functions converges strongly on compact
sets. For the convenience of the reader we give a proof.

Lemma A.2. Let fε ∈ L2(Rd) be a bounded and tight sequence of functions such
that fε ⇀ 0 as ε→ 0. Then for every Ω ⊂ R

d with a finite measure

(A.19) lim
ε→0

‖f̂ε‖L2(Ω) = 0.

Proof. Let β > 0 be arbitrary. By tightness of fε there is Rβ > 0 such that

(A.20) lim sup
ε→0

∫
|x|≥Rβ

dx |fε(x)|2 ≤ β2.

Define now

fε,β(x) =

{
fε(x) if |x| ≤ Rβ ,

0, otherwise.
(A.21)

By the boundedness of fε,β in L2(Rd) there exist gβ and a subsequence (ε′) such
that fε′,β ⇀ gβ in L2(Rd) as ε′ → 0. Estimate (A.20) implies that lim supε→0 ‖fε −
fε,β‖2

L2(R3) ≤ β2. Since also fε ⇀ 0, we have

‖gβ‖2 = lim
ε′

|〈gβ , fε′,β〉| ≤ ‖gβ‖ lim sup
ε→0

‖fε − fε,β‖(A.22)

and, therefore, ‖gβ‖L2(Rd) ≤ β.
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Since gβ has support in a ball of radius Rβ, also gβ
1 (x) = −2πixgβ(x) ∈ L2(Rd).

Therefore, ĝβ ∈ H1(Rd) and ∇ĝβ = ĝβ
1 . Similarly, also f̂ε,β ∈ H1(Rd) and it is

straightforward to check that ∇f̂ε′,β ⇀ ∇ĝβ in L2. Since Ω is assumed to be a set
of finite measure, we then have limε′→0 ‖f̂ε′,β − ĝβ‖L2(Ω) = 0 (for a proof, see, for
instance, Theorem 8.6. in [13]). Collecting all the above estimates together proves
that

lim sup
ε′→0

‖f̂ε′
‖L2(Ω)

≤ lim sup
ε′→0

‖f̂ε′ − f̂ε′,β‖L2(Ω) + lim sup
ε′→0

‖f̂ε′,β − ĝβ‖L2(Ω) + ‖ĝβ‖L2(Ω) ≤ 2β.

Since β can be arbitrarily small, there must be a subsequence (ε′′) such that limε′′→0

‖f̂ε′′‖L2(Ω) = 0.
Since the assumptions on the sequence fε are preserved for subsequences, we can

consider an arbitrary subsequence and apply the above result to it. Then we can con-
clude that for every subsequence there is a subsubsequence along which (A.19) holds.
This implies that the limit (A.19) actually holds also along the original sequence.
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QUASI-LINEAR PROBLEM MODELLING

PHYTOPLANKTON I: EXISTENCE∗
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Abstract. We study the positive steady state of a quasi-linear reaction-diffusion system in
one space dimension introduced by Klausmeier and Litchman for the modelling of the distributions
of phytoplankton biomass and its nutrient. The system has nonlocal dependence on the biomass
function, and it has a biomass-dependent drifting term describing the active movement of the biomass
towards the location of the optimal growth condition. We obtain complete descriptions of the profile
of the solutions when the coefficient of the drifting term is large, rigorously proving the numerically
observed phenomenon of concentration of biomass for this model. Our theoretical results reveal four
critical numbers for the model not observed before and offer several further insights into the problem
being modelled. This is Part I of a two-part series, where we obtain nearly optimal existence and
nonexistence results. The asymptotic profile of the solutions is studied in the separate Part II.

Key words. quasi-linear, nonlocal dependence, phytoplankton, concentration phenomenon,
reaction-diffusion equation
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1. Introduction. In this paper, we study the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[d1ux + σc(x)u]x = [g(x) −m]u, 0 < x < 1,
−d2vxx = −g(x)u, 0 < x < 1,
d1ux + σc(x)u = 0, x = 0, 1,
vx(0) = 0, vx(1) = β[v0 − v(1)],

(1.1)

where d1, d2, σ, m, v0, and β are positive constants,

g(x) = f(min{αv(x), w(x)}), f(s) =
rs

KI + s
,

and

w(x) = w0 exp
[
−A0x−A

∫ x

0

u(s)ds
]
,

with α, r,KI , w0, A, and A0 positive constants. We note that the right-hand sides
of the differential equations in (1.1) depend on the unknown functions u and v in
a nonlocal manner. Moreover, the positive function c(x) is determined by u and v
in a rather unconventional way to be explained below. We are interested in positive
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solutions of (1.1), namely u > 0 and v > 0 in [0, 1]. From (1.1) it is easy to see that
for any such solution, v is an increasing function. Clearly w is a decreasing function.
The function c(x) is defined by

c(x) =
x− x0

δ + |x− x0|
,

where δ > 0 is a small constant and x0 ∈ [0, 1] is the intersection point of the functions
αu(x) and w(x) whenever such an intersection occurs in [0, 1]; if αu(x) and v(x) do
not intersect, then x0 = 0 if αv > w on [0, 1], and x0 = 1 if αv < w on [0,1]. In other
words, x0 is given by the following description:

min{αv(x), w(x)} = αv(x) ∀x ∈ [0, x0); min{αv(x), w(x)} = w(x) ∀x ∈ (x0, 1].

This unconventional dependence of c on the unknown solution (u, v) makes (1.1) a
very special quasi-linear problem.

Such a system arises in the mathematical modelling of phytoplankton in a one-
dimensional water column, where u(x) represents the distribution of phytoplankton
biomass, v(x) stands for the distribution of nutrient, and x denotes the depth in the
water column, with x = 0 at the surface and x = 1 at the bottom. The term σc(x)
is used to describe the active movement of the biomass towards the spatial location
with the optimal growth condition. Klausmeier and Litchman [KL] propose using this
model to study the concentration phenomenon widely observed for phytoplankton in
lakes and oceans. Their numerical analysis in [KL] demonstrates that for large σ,
the biomass function u(x) concentrates at a certain level x = x∗ while the nutrient
function v(x) is close to a piecewise linear function. They then treat u as a constant
multiple of the δ-function concentrating at x∗ and propose a game theoretical model
to determine the location of x∗.

In this paper, we rigorously prove the existence of such a concentration phe-
nomenon and obtain accurate formulas for the determination of x∗ and the total
biomass. Our theoretical results offer several further insights into the model besides
those obtained through numerical analysis in [KL]; for example, we show the existence
of four critical values v∗∗ < v∗ < v∗ < v∗∗ for v0 (the nutrient level at the sediment),
such that

(i) x∗ = 0 when v0 ≥ v∗, x∗ ∈ (0, 1) when v0 ∈ (v∗, v∗), and x∗ = 1 when
v0 ≤ v∗;

(ii) the total biomass increases with v0 in the range v∗∗ < v0 < v∗∗, but it stays
constant for v0 ≥ v∗∗ or v0 ≤ v∗∗ (and with v0 above a certain level so that
the biomass can survive).

It turns out that the game theoretical model of [KL] is a simplified version of our
equations governing x∗ and the total phytoplankton biomass for the case v∗ ≤ v0 ≤ v∗.
A more detailed description of these results is given in the introduction of Part II,
with their biological interpretations given in section 4 there.

To explain this model more precisely, we start by a brief description of the back-
ground and motivation of this research. Phytoplankton, the generic name of mi-
croorganisms living in lakes and oceans, is the basis of the aquatic food chain. Its
importance for the proper functioning of the aquatic ecosystem has long been recog-
nized, and its behavior has been widely studied. The distribution of phytoplankton
in lakes and oceans is highly heterogeneous. To better understand this property of
the phytoplankton, various mathematical models have been proposed and numeri-
cally analyzed; see, for example, [EATSH, KL, PT, PTHS, HTKS]. However, little
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rigorous mathematical analysis is available. In [YN], an ordinary differential equation
model for the vertical distributions of phytoplankton is theoretically analyzed; see
also [IT, BFH, BFHK] for earlier related research. It is our hope that the current
paper may induce further rigorous mathematical research in this direction and that
the techniques developed here may find more applications.

We now describe the model in more detail. In poorly mixed water columns, it
has been observed that algae can be heterogeneously distributed, with thin layers
of biomass on the surface, at depth, or on the sediment surface; examples for each
of these cases can be found in [KL]. To model these phenomena, [KL] proposes a
reaction-diffusion-taxis model of phytoplankton, nutrients, and light, based on the
principle of light and nutrient competition. They use the following system to describe
the distribution of phytoplankton in a one-dimensional water column, with depth
represented by 0 ≤ z ≤ zb; z = 0 at the surface and z = zb at the bottom:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bt = Dbbzz + [ν(g0
z)b]z + [g0 −m]b, 0 < z < zb, t > 0,

Rt = DRRzz − bg0/Y + εmb/Y, 0 < z < zb, t > 0,
Dbbz + ν(g0

z)b = 0, z = 0, zb, t > 0,
Rz(t, 0) = 0, Rz(t, zb) = h[Rin −R(t, zb)], t > 0,

I(t, z) = Iin exp
(
−
∫ z

0

[ab(t, s) + abg]ds
)
, 0 < z < zb, t > 0,

(1.2)

where a, abg, h, Db, DR, m, Iin, Rin, and Y are positive constants, ε ∈ [0, 1), ν(s) is
an odd decreasing function that approaches νmax > 0 as s→ −∞, and

g0(t, z) = min{fI(I(t, z)), fR(R(t, z))},

with

fI(s) = r
s

s+KI
, fR(s) = r

s

s+KR
, r,KI ,KR > 0.

In (1.2), b(t, z) denotes the distribution of the phytoplankton biomass, R(t, z)
represents the nutrient distribution, and I(t, z) stands for the distribution of light.
The constant Iin is the light distribution at the surface, and, by the Lambert–Beer
law, light at depth z is given by

I(t, z) = Iin exp
(
−
∫ z

0

[ab(t, s) + abg]ds
)
,

where a and abg are, respectively, the phytoplankton and background attenuation
coefficients. In this model, it is assumed that the change in phytoplankton biomass
at depth z results from three processes: growth, loss, and movement. The functions
fI(I) and fR(R) are the phytoplankton growth rate when only one of the resources
I and R is limited (the other being regarded as sufficient). By Liebig’s law of the
minimum for essential resources, the gross phytoplankton growth rate is given by
g0(t, z) = min{fI(I(t, z)), fR(R(t, z))}. Biomass is lost at density-dependent rate
m, representing respiration, death, and grazing. Db is the passive diffusion rate of
the biomass, while [ν(g0

z)b]z describes active movement of the biomass towards a
spatial location (i.e., depth) with a better growth condition. The no-flux boundary
condition for b means that no phytoplankton enters or leaves the water column at
z = 0 and z = zb. The equation for R is based on the assumption that nutrients in
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the water column are mixed with eddy diffusion with diffusion coefficient DR and are
consumed by phytoplankton at the rate −bg0/Y , and the term εmb/Y means that
ε proportion of the nutrients in dead phytoplankton is immediately recycled. Here
Y describes the yield of phytoplankton biomass per unit nutrient consumed. The
boundary condition for R means that nutrients do not leave or enter the top of the
water column but are supplied at the bottom, with nutrients in the sediments fixed
at constant concentration Rin, which diffuse across the sediment-water interface at a
rate proportional to the concentration difference across the interface; the parameter
h describes the permeability of the interface.

In [KL], taking ε = 0 and ν(s) = ν0(s) := −νmaxsgn(s) (where sgn(s) is the sign
function, which equals 1, −1, or 0 according to whether s > 0, s < 0, or s = 0),
the equilibrium distributions of b, R, and I are calculated numerically for various
parameter values (see Table 1 and Figure 1 in [KL]). The numerical simulation in [KL]
shows that as νmax increases, the biomass distribution concentrates at a certain depth
z = z∗. Further, based on intuition and formal analysis, a game theoretical approach
is proposed in [KL], which can be used to calculate z∗. Though the connection between
(1.2) and the simplified game theoretical approach is not rigorously established, the
predictions deduced from the game theoretical model agree well with the numerical
results based on (1.2); see details in [KL].

In this paper, we theoretically analyze the equilibrium solutions of (1.2). So
b = b(z), R = R(z), and I = I(z). Naturally, only positive solutions are of interest
to us.

As in [KL], we assume that ε = 0. We denote f(s) = rs/(s+KI) and α = KI/KR.
Then

fI(s) = f(s), fR(s) = f(αs).

Since f ′(s) > 0 we find that

g0(z) = min{f(I(z)), f(αR(z))} = f(min{I(z), αR(z)}).

Clearly I(z) is a decreasing function. Since DRR
′′ = bg0/Y > 0 and R′(0) = 0,

we find that R′(z) > 0 for z ∈ (0, zb]. Therefore R(z) is increasing, and we can always
find a unique z0 ∈ [0, zb] such that

g0(z) = f(αR(z)) ∀z ∈ [0, z0), g0(z) = f(I(z)) ∀z ∈ (z0, zb].

Evidently z0 depends on I and R, and z0 = 0 if αR(z) ≥ I(z) on [0, zb], and z0 = zb

when αR(z) ≤ I(z) on [0, zb].
In view of the above discussions for g0(z), we see that

ν0(g0
z(z)) = −νmaxsgn(g0

z(z)) = −νmax ∀z ∈ [0, z0),

ν0(g0
z(z)) = −νmaxsgn(g0

z(z)) = νmax ∀z ∈ (z0, zb].

In this paper, we use a continuous approximation of the above step function used in
[KL]; namely, we take

ν(g0
z(z)) = νδ′(z) := νmax

z − z0
δ′ + |z − z0|

.

It is easily seen that νδ′(z) → ν0(g0
z(z)) as δ′ → 0. We stress again that νδ′ depends

on I and R through the definition of z0.
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Next we normalize the functions in (1.2) by

u(x) = b(zbx)/Y, v(x) = R(zbx), w(x) = I(zbx), 0 ≤ x ≤ 1,

and define

d1 = z2
bDb, d2 = z2

bDR, σ = νmaxzb, δ = δ′/zb,

A = azbY, A0 = abgzb, β = hzb, v0 = Rin, w0 = Iin.

We denote

c(x) = cv,w(x) =
x− x0

δ + |x− x0|
, x0 =

z0
zb
.

Then after some simple calculations we find that the steady-state version of (1.2)
becomes (1.1), or, written in a more comprehensive form,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−[d1ux + σc(x)u]x = [f(min{αv,w}) −m]u, 0 < x < 1,
−d2vxx = −f(min{αv,w})u, 0 < x < 1,
d1ux(0) + σc(0)u(0) = d1ux(1) + σc(1)u(1) = 0,
vx(0) = 0, vx(1) = β[v0 − v(1)],

w(x) = w0 exp
[
−A0x−A

∫ x

0

u(s)ds
]
, 0 ≤ x ≤ 1.

(1.3)

Let us note that from the equation for u and the strong maximum principle, if u
is nonnegative on [0, 1], then it is either identically 0 or positive everywhere in [0, 1].
It is also easy to see that whenever u is positive, 0 < v < v0 in [0, 1].

Since this paper is very long, and the techniques used in the first half of the paper
are rather different from those in the second half, we divide it into two separate parts.
Part I here is mainly concerned with the existence and nonexistence problem, and
Part II studies the asymptotic behavior of the positive solutions as σ → ∞.

In section 2, treating m as a parameter, we make use of a bifurcation argument
to obtain two critical numbers 0 < m∗ ≤ m∗ such that (1.3) has no positive solution
when m ≥ m∗ and it has at least one positive solution when 0 < m < m∗. We also
show that as m (the death rate of the biomass) decreases to 0, the biomass blows
up everywhere; the exact limiting profiles of the biomass function and the nutrient
function as m → 0 are also obtained. In section 3, we show that as σ → ∞, m∗ and
m∗ converge to the same limit f(min{αv0, w0}). This demonstrates that our existence
and nonexistence results are sharp for large σ.

The asymptotic behavior of the positive solutions when σ → ∞ is investigated
separately in Part II (see [DH]), where we fix 0 < m < f(min{αv0, w0}) and study
the asymptotic behavior of a positive solution (un, vn) of (1.3) with σ = σn → ∞.

2. Existence and nonexistence results. The function c(x) appearing in (1.3)
plays a very important role in our analysis. From the definition of c(x) = cv,w(x) we
find that it is well defined if v(x) is increasing in [0, 1] and w(x) is decreasing in [0, 1],
and

c(x) =
x− x0

δ + |x− x0|
,
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where x0 ∈ [0, 1] is uniquely determined by the following:

min{αv(x), w(x)} = αv(x) ∀x ∈ [0, x0); min{αv(x), w(x)} = w(x) ∀x ∈ (x0, 1].

It is easily seen that for the definition of cv,w(x), the requirement that v is increasing
and w is decreasing can be relaxed; we can allow one (but not both) of the following:

(i) v is nondecreasing, (ii) w is nonincreasing.

Let us also observe that c(x) is a C1 function, with c′(x) = δ(δ + |x− x0|)−2.
With this in mind, we find that (u, v, w) = (0, v0, w∗) solves (1.3), where w∗(x) =

w0e
−A0x. We will call this the trivial solution. To find nontrivial solutions, we now

treat m as a parameter and look for special values of m so that positive solutions
of (1.3) may bifurcate from this trivial solution. If m∗ ≥ 0 is such a value, then
there exist mn → m∗ and (un, vn, wn) solving (1.3) with m = mn such that un > 0,
vn > 0, and un → 0, vn → v0, and wn → w∗ and in C1[0, 1] as n → ∞. Now vn(x)
is increasing and wn(x) is decreasing for x ∈ [0, 1]; therefore cvn,wn(x) is well defined.
Moreover, it is easily checked that cvn,wn → cv0,w∗ in C([0, 1]) as n→ ∞. To simplify
the notation, we write cn(x) = cvn,wn(x) and c0(x) = cv0,w∗(x). Therefore un satisfies{

−[d1u
′
n + σcn(x)un]′ = [f(min{αvn, wn}) −mn]un in (0, 1),

d1u
′
n + σcn(x)un = 0 for x = 0, 1.

Here and in what follows, we use the notation u′ = ux, etc. To determine the value
of m∗, we first deduce a useful equation from the equation for un. So we define
ûn = un/‖un‖∞. Then we have{

−(d1û
′
n + σcnûn)′ +mnûn = f(min{αvn, wn})ûn in (0, 1),

d1û
′
n + σcnûn = 0 for x = 0, 1.

(2.1)

Since the right-hand side of the first equation in (2.1) and {ûn} are both bounded in
L∞([0, 1]), and since mn, cn, (cn)′ are bounded in L∞([0, 1]), we can use standard Lp

theory for elliptic operators (see [GT]) to conclude that {ûn} is a bounded sequence
in W 2,p([0, 1]) for any p > 1. By the Sobolev embedding theorem, we see that {ûn}
is compact in C1([0, 1]). By passing to a subsequence, we may assume that ûn → û
in C1([0, 1]), and then we easily see that û satisfies (in the weak sense){

−(d1û
′ + σc0û)′ + m∗û = f(min{αv0, w∗})û in (0, 1),

d1û
′ + σc0û = 0 for x = 0, 1.

(2.2)

Since û ≥ 0 and ‖û‖∞ = 1, we necessarily have, by applying the strong maximum
principle to (2.2), that û > 0. This implies that −m∗ is the principal eigenvalue of
the problem{

−(d1u
′ + σc0u)′ − f(min{αv0, w∗})u = λu in (0, 1),

d1u
′ + σc0u = 0 for x = 0, 1.

(2.3)

One easily checks that 0 is the first eigenvalue of the problem{
−(d1u

′ + σc0u)′ = λu in (0, 1),
d1u

′ + σc0u = 0 for x = 0, 1.
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Since −f(min{αv0, w∗}) < 0, by the characterization of the first eigenvalues (see, for
example, Theorems 2.4 and 2.8 of [D]), the first eigenvalue of (2.3) is less than 0, and
hence m∗ > 0. On the other hand, if (u, v, w) is a positive solution to (1.3), then
rewriting the equation for u in the form{

−(d1u
′ + σcu)′ − f(min{αv,w})u = −mu in (0, 1),

d1u
′ + σcu = 0 for x = 0, 1,

we find that −m is the first eigenvalue of the problem{
−(d1u

′ + σcu)′ − f(min{αv,w})u = λu in (0, 1),
d1u

′ + σcu = 0 for x = 0, 1,

which we denote by λ1(c, v, w). Clearly v < v0 and w < w∗ in (0, 1). It follows that
−f(min{αv,w}) > −f(min{αv0, w∗}) in (0, 1) and hence

λ1(c, v, w) > λ1(c, v0, w∗).(2.4)

In this notation, clearly −m∗ = λ1(c0, v0, w∗). Since c(x) = (x−x0)/(δ+ |x−x0|)
is determined completely by x0, it is convenient to introduce the notation

Cx0 =
x− x0

δ + |x− x0|

and

m∗ = − inf
x0∈[0,1]

λ1(Cx0 , v0, w∗).

It is easy to show that m∗ is achieved by some x0 ∈ [0, 1], and m∗ ≥ m∗. Moreover,
from the above discussion, we have the following result.

Proposition 2.1. If (1.3) has a positive solution, then necessarily m < m∗.
We will show that (1.3) has a positive solution for every 0 < m < m∗. Before that

we briefly discuss some further simple estimates for the values of m so that (1.3) has
a positive solution. So suppose that (1.3) has a positive solution (u, v, w). Integrating
the equation for u over [0, 1], we obtain∫ 1

0

[
f(min{αv,w}) −m

]
udx = 0.

Since u > 0, [f(min{αv,w}) −m] must change sign over (0, 1), and therefore

min
[0,1]

f(min{αv(x), w(x)}) < m < max
[0,1]

f(min{αv(x), w(x)}).

It follows that

f(min{αv(0), w(1)}) < m < f(min{αv0, w0}).(2.5)

From a similar consideration, we have

m∗,m∗ ∈
(
f(min{αv0, w∗(1)}), f(min{αv0, w0})

)
.(2.6)

We now use a global bifurcation argument to show that (1.3) has a positive
solution for every m ∈ (0,m∗). First, we transform (1.3) into an abstract nonlinear
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equation. Due to its unconventional nature, we cannot use a simple inverse operator
trick to do this. In fact, to cope with the rather implicit dependence of cv,w on
(v, w), in the following, we have to choose the function spaces for the abstract setting
very carefully and then analyze the properties of the abstract operator mostly by
definitions.

Fix γ ∈ (0, 1) and set

K := {φ ∈ C1,γ([0, 1]) : φ is nondecreasing in [0, 1]},
P := {φ ∈ C1,γ([0, 1]) : φ is nonnegative in [0, 1]}.

Clearly they are closed convex sets in C1,γ([0, 1]), and, moreover, P is a positive cone.
For given (u, v) ∈ P ×K and m ≥ 0, we define

w = w0 exp
[
−A0x−A

∫ x

0

u(s)ds
]
,

c(x) = cv,w(x), v+ = max{v, 0}

and will use the solutions of the following problems to define an abstract operator
T (m,u, v) such that T (m,u, v) = (u, v) for (u, v) ∈ P × K if and only if (u, v) is a
nonnegative solution of (1.3). So we consider the problems{

−(d1φ
′ + σcφ)′ + (m+ 1)φ = f(min{αv+, w})u+ u, 0 < x < 1,

d1φ
′ + σcφ = 0, x = 0, 1,

(2.7)

and {
−d2ψ

′′ = −f(min{αv+, w})u, 0 < x < 1,
ψ′(0) = 0, ψ′(1) = β[v0 − ψ(1)].

(2.8)

Clearly (2.7) has a unique solution φ, and it is nonnegative. Let ζ(x) = v0−ψ(x).
Then (2.8) becomes{

−d2ζ
′′ = f(min{αv+, w})u, 0 < x < 1,

ζ′(0) = 0, ζ′(1) + βζ(1) = 0.
(2.9)

It is easily seen that (2.9) has a unique solution ζ, and it is nonnegative. Moreover,
from ζ′′ ≤ 0, and ζ′(0) = 0 we deduce that ζ is nonincreasing. Hence ψ is nonde-
creasing and ψ(x) ≤ v0 in [0, 1]. Thus the solution operator (φ, ψ) = T (m,u, v) is
well defined for (u, v) ∈ P ×K and m ≥ 0, and T (m, ·, ·) maps P ×K into itself.

We show next that T is continuous. Suppose that (mn, un, vn) ∈ [0,∞)×P ×K,
mn → m, and (un, vn) → (u, v) in C1,γ([0, 1])×C1,γ([0, 1]). Then it is easily checked
that cn := cvn,wn → c := cv,w in C1([0, 1]). Denote (φn, ψn) = T (mn, un, vn) and
ζn = v0 − ψn. We have

(2.10){
−(d1φ

′
n + σcnφn)′ + (mn + 1)φn = f(min{α(vn)+, wn})un + un, 0 < x < 1,

d1φ
′
n + σcnφn = 0, x = 0, 1,
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and {
−d2ζ

′′
n = f(min{α(vn)+, wn})un, 0 < x < 1,

ζ′n(0) = 0, ζ′n(1) + βζn(1) = 0.
(2.11)

Applying standard Lp theory to both (2.10) and (2.11), we find that {φn} and {ζn} are
bounded in W 2,p([0, 1]) for all p > 1. Hence they are precompact in C1,γ([0, 1]). This
implies that by passing to a subsequence, φn → φ and ψn → ψ in C1,γ([0, 1]). More-
over, letting n→ ∞ in (2.10) and (2.11) we find that necessarily (φ, ψ) = T (m,u, v).
Therefore the entire original sequence converges with limit (φ, ψ). This proves the
continuity of T .

We further show that T is compact. Suppose that {(mn, un, vn)} ⊂ [0,∞)×P×K
is bounded. Then along some subsequence nk, (un, vn) converges in the C1([0, 1]) ×
C1([0, 1]) norm to some (u, v), and, by passing to a further subsequence, we may
assume that mnk

→ m. We may now repeat the arguments in the above continuity
proof to conclude that T (mnk

, unk
, vnk

) → T (m,u, v) in C1,γ([0, 1]). Therefore T is
a compact operator on [0,∞) × P ×K.

Suppose that m ≥ 0 and (u, v) ∈ P ×K satisfies (u, v) = T (m,u, v). We claim
that v ≥ 0 in [0, 1]. Otherwise, due to the monotonicity of v there exists x0 ∈ (0, 1]
such that v < 0 in [0, x0) and v ≥ 0 in (x0, 1]. Therefore, by (2.8),

−v′′ = 0 in (0, x0).

Since v′(0) = 0, we deduce that v′(x) = 0 in (0, x0), and hence v is a negative constant
in (0, x0), say v = −c. This is possible only if x0 = 1 (otherwise, v is discontinuous
at x = x0 since v ≥ 0 in (x0, 1]), but then from v′(1) = β[v0 − v(1)] we deduce that
−c = v0 > 0, a contradiction. Therefore we must have v ≥ 0 in [0, 1], as claimed.
Thus (u, v) is a nonnegative solution of (1.3) if and only if (u, v) ∈ P × K and
T (m,u, v) = (u, v).

In order to apply the global bifurcation theory to the operator equation

(u, v) − T (m,u, v) = 0,

we now calculate the Fréchet derivative of T with respect to (u, v) at (m, 0, v0), in
the convex set P ×K of C1,γ([0, 1])×C1,γ([0, 1]), where m ≥ 0. From (2.7) and (2.8)
we easily see that T (m, 0, v0) = (0, v0). For (u, v) ∈ C([0, 1]) × C([0, 1]), we define
(ξ, η) = Lm(u, v) to be the unique solution of the following linear problems:{

−(d1ξ
′ + σc0ξ)′ + (m+ 1)ξ = f(min{αv0, w∗})u+ u, 0 < x < 1,

d1ξ
′ + σc0ξ = 0, x = 0, 1,

(2.12)

{
−d2η

′′ = −f(min{αv0, w∗})u, 0 < x < 1,
η′(0) = 0, η′(1) + βη(1) = 0,

(2.13)

where c0 and w∗ are defined as at the beginning of this section.
Suppose (un, vn) → (0, v0) in P ×K. Denote

(φn, ψn) = T (m,un, vn) and (τn, θn) = Lm(un, vn − v0).

We want to show that

‖(φn, ψn) − (0, v0) − (τn, θn)‖ = o(‖(un, vn − v0)‖),(2.14)
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where ‖(u, v)‖ = max{‖u‖, ‖v‖}, and ‖u‖ = ‖u‖C1,γ([0,1]). This would imply that the
Fréchet derivative of T with respect to (u, v) at (m, 0, v0), in the convex set P ×K,
is the linear operator Lm.

Suppose (un, vn) → (0, v0) in P × K. Without loss of generality we assume
that un 
≡ 0. We define wn and cn = cvn,wn as before, and let φ̂n = φn/‖un‖,
ûn = un/‖un‖. Then

(2.15){
−(d1φ̂

′
n + σcnφ̂n)′ + (m+ 1)φ̂n = f(min{α(vn)+, wn})ûn + ûn, 0 < x < 1,

d1φ̂
′
n + σcnφ̂n = 0, x = 0, 1.

Since the right-hand side of the first equation in (2.15) is bounded in L∞([0, 1]),
much as before we deduce from the Lp theory and the Sobolev imbedding theorem
that there exists some positive constant C independent of n such that

‖φ̂n‖ ≤ C ∀n ≥ 1.

We now define Φn = (φn − τn)/‖un‖, and from the equations for φn and τn we
obtain {

−(d1Φ′
n + σc0Φn)′ + (m+ 1)Φn = fn, 0 < x < 1,

d1Φ′
n + σc0Φ̂n = gn, x = 0, 1,

(2.16)

where

fn := [f(min{α(vn)+, wn}) − f(min{αv0, w∗})]ûn + [σ(cn − c0)φ̂n]′

and

gn = σ(c0 − cn)φ̂n.

It is easy to check that fn converges to 0 in L∞([0, 1]), and gn converges to 0 in
C1([0, 1]). Since (m + 1) ≥ 1, we may apply the Lp estimate to (2.16) to conclude
that ‖Φn‖ → 0 as n→ ∞. Hence

‖φn − τn‖ = o(‖un‖).

Define Ψn = [(v0 − ψn) + θn]/‖un‖. Then from the equations for ψn and θn we
deduce that{

−d2Ψ′′
n = [f(min{α(vn)+, wn}) − f(min{αv0, w∗})]ûn, 0 < x < 1,

Ψ′
n(0) = 0, Ψ′

n(1) + βΨn(1) = 0.
(2.17)

Since the right-hand side of the first equation in (2.17) converges to 0 in L∞([0, 1]), we
can apply the Lp theory to (2.17) to conclude that ‖Ψn‖ → 0 as n→ ∞. Therefore

‖ψn − v0 − θn‖ = o(‖un‖).

Thus we have

‖(φn, ψn) − (0, v0) − (τn, θn)‖ = o(‖(un, vn − v0)‖).
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Summarizing the above discussions, we have the following result.
Proposition 2.2. The operator T : [0,∞) × P × K → P × K is completely

continuous, and it is Fréchet differentiable at (m, 0, v0) with respect to (u, v) in the
convex set P ×K, with derivative operator Lm. Moreover, (u, v) = T (m,u, v) implies
that v ∈ P ; (u, v) is a nonnegative solution of (1.3) if and only if (u, v) = T (m,u, v).

We are now ready to prove the main result of this section.
Theorem 2.3. For every m ∈ (0,m∗), problem (1.3) has at least one positive

solution. Moreover, if mn decreases to 0 and (un, vn) is a positive solution of (1.3) with
m = mn, then un → ∞ uniformly in [0, 1] and there exists a unique τ ∈

(
0, v0

1+β−1

)
(determined by (2.27) below) such that

un(x)
‖un‖∞

→
(

1 +
x

δ

) σ
d1

δ

e
− σ

d1
x
, vn(x) → τx+ v0 − τ(1 + β−1)

uniformly in [0, 1]. Furthermore, for each m ∈ (0,m∗), there is a positive solu-
tion (m,u, v) lying on the global bifurcation branch, Γ = {(m,u, v)} ⊂ (0,∞) ×
C1,γ([0, 1])×C1,γ([0, 1]), bifurcating from the trivial solution branch Γ0 := {(m, 0, v0) :
m ∈ (−∞,∞)} at m = m∗.

Proof. Since the proof is rather long, we divide it into several steps.
Step 1: Existence of an unbounded global solution branch.
We observe that 1 is an eigenvalue of Lm∗ with eigenvector (φ1, ψ1) satisfying

φ1 > 0 and ψ1 < 0. Indeed, φ1 > 0 is a principal eigenfunction of (2.3) with
λ = −m∗, and ψ1 is the unique solution of (2.13) with u = φ1, and hence ψ1 < 0.
In order to apply the abstract global bifurcation theory in positive cones, we define
S : [0,∞) × P × (−K) → P × (−K) by

S(m,u, ξ) = (φ, ζ) if and only if T (m,u, v0 − ξ) = (φ, v0 − ζ).

Then from the properties of T we find that S is completely continuous. Moreover,
if we denote by DS(m, 0, 0) the Fréchet derivative of S with respect to (u, ξ) in
P × (−K) at (u, ξ) = (0, 0), then 1 is an eigenvalue of DS(m∗, 0, 0) with eigenvector
(φ1,−ψ1), where φ1 and ψ1 are as given above. Let us denote by P0 the nonnegative
functions in (−K). Clearly P0 is a cone in C1,γ([0, 1]), and hence P × P0 is a cone
in C1,γ([0, 1]) ×C1,γ([0, 1]). Moreover, it is easy to check through the definition of T
that S(m, ·, ·) maps P × P0 into itself, and 1 is the only eigenvalue of DS(m∗, 0, 0)
with an eigenvector in P × P0, and for any m ≥ 0, m 
= m∗, 1 is not an eigenvalue of
DS(m, 0, 0) corresponding to an eigenvector in P × P0. These properties allow us to
apply Corollary 18.4 of [A] to conclude that there exists a global unbounded branch
of solutions of (u, ζ) = S(m,u, ζ) in R1 ×

(
P × P0 \ {(0, 0)}

)
. We denote this global

branch by Γ̃ = {(m,u, ζ)} and define

Γ := {(m,u, v0 − ζ) : (m,u, ζ) ∈ Γ̃}.

Clearly Γ is a global branch of solutions to (u, v) = T (m,u, v) with u ≥ 0 and
v = v0 − ζ ≤ v0. We claim that u 
= 0. Otherwise, u = 0 and we deduce that v =
v0−ζ = v0. Hence ζ = 0, contradicting the fact that (m,u, ζ) ∈ R1×

(
P×P0\{(0, 0)}

)
.

Hence u ≥ 0 and u 
= 0. It then follows from Proposition 2.2 that v0 − ζ ≥ 0. But
u 
= 0 implies that v0 − ζ 
= 0, and hence (u, v0 − ζ) is a positive solution of (1.3).
Thus we have proved that Γ is an unbounded branch of positive solutions of (1.3).

Step 2: We show that the m-range of Γ covers (0,m∗).
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If (m,u, v) ∈ Γ, then from Proposition 2.1 and (2.5) we deduce that 0 < m < m∗.
Therefore we can find a sequence (mn, un, vn) ∈ Γ such that mn → m0 ∈ [0,m∗] and
‖(un, vn)‖ → ∞. Note that cvn,wn = Cxn for some xn ∈ [0, 1] uniquely determined
by vn and wn. By passing to a subsequence we may assume that xn → x0 ∈ [0, 1].
Then it is easily seen that Cxn → Cx0 in C1([0, 1]). We necessarily have, by pass-
ing to a subsequence, that ‖un‖∞ → ∞, for otherwise from the equation for un

we can deduce that ‖un‖ is bounded, which in turn implies that ‖vn‖ is bounded,
contradicting our assumption that ‖(un, vn)‖ → ∞. Therefore we may assume that
‖un‖∞ → ∞. Denote ûn = un/‖un‖∞. Then we can use the Lp estimate to the
equation for ûn to deduce that {ûn} is precompact in C1,γ([0, 1]). Hence we may as-
sume that ûn → û in C1,γ([0, 1]). Since 0 ≤ f(min{αvn, wn}) ≤ f(w∗), we may
assume that f(min{αvn, wn}) converges to f0 weakly in L2([0, 1]). Clearly we also
have 0 ≤ f0 ≤ f(w∗). Passing to the weak limit in the equation for ûn we deduce
that û is a weak solution of{

−(d1û
′ + σCx0 û)′ = (f0 −m0)û, 0 < x < 1,
d1û

′ + σCx0 û = 0, x = 0, 1.
(2.18)

Since û ≥ 0 and ‖û‖∞ = 1, we can apply the Harnack inequality and the strong
maximum principle to (2.18) to conclude that û > 0 in [0, 1]. This implies that
un = ‖un‖∞ûn → ∞ uniformly in [0, 1]. Therefore wn → 0 uniformly on any compact
subset of (0, 1]. This implies that f0 = 0, and hence we deduce from (2.18) that −m0

is the first eigenvalue of{
−(d1u

′ + σCx0u)′ = λu, 0 < x < 1,
d1u

′ + σCx0u = 0, x = 0, 1.
(2.19)

Hence m0 = 0 and

û = exp
[
− σ

d1

∫ x

0

Cx0(s)ds
]
.

This implies that the entire original sequence {mn} converges to 0. By the connected-
ness of Γ, we can conclude that for every m ∈ (0,m∗), (1.3) has at least one positive
solution lying on Γ. Moreover, when xn → x0, we have

un

‖un‖∞
→ exp

[
− σ

d1

∫ x

0

Cx0(s)ds
]
.

Step 3: The limiting profile of un.
We will show in a moment that x0 = 0 and hence the entire original sequence

un/‖un‖∞ converges in C1,γ([0, 1]) to exp
[
− σ

d1

∫ x

0
C0(s)ds

]
.

Let ζn = v0 − vn. Then{
−d2ζ

′′
n = f(min{αvn, wn})un, 0 < x < 1,

ζ′n(0) = 0, ζ′n(1) + βζn(1) = 0.
(2.20)

We have

0 ≤ f(min{αvn, wn})un ≤ f(wn(x))un(x).
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Moreover,

f(wn(x))un(x) ≤ (r/KI)wn(x)un(x)

= (r/KI)e−A0xe−A
∫ x
0

un(s)dsun(x)

≤ Ce−A‖un‖∞
∫

x
0

ûn(s)ds‖un‖∞ûn(x).

Since ûn → û > 0 uniformly in [0, 1], there exist c1, c2 > 0 such that c1 ≤ ûn ≤ c2
and hence

gn : = Ce−A‖un‖∞
∫

x
0

ûn(s)ds‖un‖∞ûn(x)

≤ Cc2e
−Ac1‖un‖∞x‖un‖∞.

One easily sees from the above inequality that gn → 0 uniformly in compact subsets
of (0, 1]. It follows that

fn := f(min{αvn, wn})un → 0

uniformly in compact subsets of (0, 1].
We can now prove that x0 = 0. Otherwise, x0 ∈ (0, 1] and thus xn > x0/2 for all

large n. Since vn(x) is increasing in x, and αvn(x) < wn(x) in [0, xn), it follows that

f(min{αvn, wn})un ≤ f(αvn(x0/2))un ≤ f(wn(x0/2))un in [0, x0/2].

By our earlier estimates for gn, we find that

f(wn(x0/2))un ≤ Cc2e
−Ac1‖un‖∞(x0/2)‖un‖∞ → 0.

Hence fn → 0 uniformly in [0, 1], which implies, by (2.20), that ζn → 0 in C1,γ([0, 1]).
In particular, ζn → 0 uniformly in [0, 1]; but this leads to a contradiction:

v0 − ζn = vn ≤ wn/α ≤ wn(x0/2)/α→ 0 uniformly in [x0/2, xn].

Hence x0 = 0. Therefore we have

xn → 0 and un/‖un‖∞ → φ0,(2.21)

where

φ0(x) = exp
[
− σ

d1

∫ x

0

C0(s)ds
]

= e
− σ

d1
x
(

1 +
x

δ

) σ
d1

δ

.

Step 4: The limiting profile of vn.
Since vn ≥ 0 we have 0 ≤ ζn ≤ v0. Moreover, due to (2.20) and the fact that

fn → 0 uniformly in compact subsets of (0, 1], we can use standard elliptic regularity
theory and a diagonal process to find a subsequence of {ζn}, still denoted by ζn, such
that ζn → ζ in C1([ε, 1]) for every ε ∈ (0, 1), and ζ satisfies

−d2ζ
′′ = 0 in (0, 1], ζ′(1) + βζ(1) = 0, 0 ≤ ζ ≤ v0.

It follows that



1432 YIHONG DU AND SZE-BI HSU

ζ(x) = τ(1 + β−1 − x) for some τ ≥ 0 to be determined below.

On the other hand, ζn can be explicitly expressed as

ζn(x) = d−1
2 (1 + β−1 − x)

∫ 1

0

fn(s)ds+ d−1
2

∫ 1

x

(x − s)fn(s)ds.

Since ∫ 1

0

fn(s)ds = d2βζn(1) ∈ (0, d2βv0(1)],

and fn → 0 uniformly on any compact subset of (0, 1], one easily sees that

∫ 1

x

(x − s)fn(s)ds→ 0

uniformly for x ∈ [0, 1]. Thus

τ = βζ(1) = lim
n→∞

βζn(1) = d−1
2 lim

n→∞

∫ 1

0

fn(s)ds = d−1
2 lim

n→∞

∫ ε

0

fn(s)ds(2.22)

for any ε ∈ (0, 1).
Since vn(x) is monotone increasing in x and v′′n(x) ≥ 0, by an elementary argument

we see that the fact that vn → v0 − ζ in C1([ε, 1]) for every ε ∈ (0, 1) implies that
vn → v0 − ζ uniformly in [0, 1].

We now show that τ > 0. Suppose τ = 0. Then ζn → 0 and hence vn → v0 in
C1([0, 1]). Therefore, due to

wn(0) = w0 and wn → 0 uniformly in [ε, 1] ∀ small ε > 0,

when w0 > αv0, we have 0 < xn < 1 for all large n, and

wn(xn) = αvn(xn) → αv0 as n→ ∞;

if w0 < αv0, then xn = 0 and wn(xn) = w0 for all large n; if w0 = αv0, then either
0 < xn < 1 and wn(xn) = αvn(xn), or xn = 0 and wn(xn) = w0; in either case we
can conclude that wn(xn) → w0 as n→ ∞.

Summarizing, we find that we always have

w0e
−A0xne−A

∫ xn
0

un(s)ds = wn(xn) → σ0 := min{w0, αv0}.

Since xn → 0 and ûn → φ0, we have e−A0xn = 1 + o(1), and∫ xn

0

un(s)ds = ‖un‖∞
∫ xn

0

ûn(s)ds = ‖un‖∞xnφ0(0)[1 + o(1)] = ‖un‖∞xn[1 + o(1)].

Here o(1) denotes a generic sequence converging to 0 as n→ ∞. This implies that
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w0e
−A‖un‖∞xn → σ0.

Hence

‖un‖∞xn → τ0 := A−1 ln
(w0

σ0

)
.(2.23)

Since we now assume that τ = 0, by (2.22) we must have limn→∞
∫ ε

0
fn(x)dx = 0.

On the other hand, making use of xn → 0, ‖un‖∞xn → τ0, ûn → φ0, and φ0(0) = 1,
we have, for all large n and small ε,

∫ ε

0

fn(x)dx ≥
∫ ε

xn

f(wn(x))un(x)dx

≥
∫ ε

xn

f
(
w0e

−Aε exp[−A‖un‖∞2φ0(0)x]
)φ0(0)

2
‖un‖∞dx

=
∫ ‖un‖∞ε

‖un‖∞xn

f
(
w0e

−Aεe−2Ay
)(1

2

)
dy

→
(

1
2

)∫ ∞

τ0

f
(
w0e

−Aεe−2Ay
)
dy > 0.

This contradiction shows that we must have τ > 0.
In order to find the asymptotic limit of the entire sequence {vn}, we need to

determine the value of τ . Recall that by passing to a subsequence, vn → v0 − ζ
uniformly in [0, 1]. Since xn → 0, we have either

wn(xn) = αvn(xn) → α[v0 − ζ(0)] = α[v0 − τ(1 + β−1)] := ξτ ,

which is the case when ξτ < w0, or wn(xn) → w0 when ξτ ≥ w0. By the expression
of wn(xn), as before, we deduce that

w0e
−A‖un‖∞xn → ξ̃τ := min{w0, ξτ}, ‖un‖∞xn → στ := A−1 ln

(
w0/ξ̃τ

)
.(2.24)

For fixed ε ∈ (0, 1), we have

∫ ε

0

fn(x)dx =
∫ xn

0

fn(x)dx +
∫ ε

xn

f(wn(x))un(x)dx.

It is easy to check that, in every possible case, we have

∫ xn

0

fn(x)dx = f(ξ̃τ )φ0(0)[1 + o(1)]‖un‖∞xn = f(ξ̃τ )στ [1 + o(1)].

Since we already know that f(wn(x))un(x) → 0 uniformly on any compact subset of
(0, 1], we find that, for any fixed ε1 ∈ (0, ε) and all large n,
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(2.25)∫ ε

xn

f
(
wn(x)

)
un(x)dx

=
∫ ε1

xn

f
(
wn(x)

)
un(x)dx + on(1)

=
∫ ε1

xn

f
(
w0e

−A0xe−A
∫ x
0

un(s)ds
)
un(x)dx + on(1)

=
∫ ε1

xn

f
(
w0[1 + oε1(1)]e−A‖un‖∞ûn(0)x[1+oε1(1)]

)
‖un‖∞ûn(0)[1 + oε1(1)]dx+ on(1)

= [1 + oε1(1)]
∫ ε1

xn

f
(
w0e

−A‖un‖∞ûn(0)x
)
‖un‖∞ûn(0)dx+ on(1)

= [1 + oε1(1)]
∫ ε1‖un‖∞ûn(0)

‖un‖∞ûn(0)xn

f
(
w0e

−Ay
)
dy + on(1)

= [1 + oε1(1)]
[∫ ∞

στ

f
(
w0e

−Ay
)
dy + on(1)

]
+ on(1),

where on(1) → 0 as n → ∞ for fixed ε1, and oε1(1) → 0 as ε1 → 0 uniformly in n.
For arbitrary ε1 ∈ (0, ε), we first let n→ ∞ and then let ε1 → 0, and we obtain from
(2.25) that

lim
n→∞

∫ ε

xn

f
(
wn(x)

)
un(x)dx =

∫ ∞

στ

f
(
w0e

−Ay
)
dy.

Therefore

lim
n→∞

∫ ε

0

fn(x)dx = f(ξ̃τ )στ +
∫ ∞

στ

f
(
w0e

−Ay
)
dy.(2.26)

Making use of (2.24) and (2.26), we can rewrite (2.22) as

d2τ = f(w0e
−Aστ )στ +

∫ ∞

στ

f
(
w0e

−Ay
)
dy.(2.27)

It can be easily checked that the function

F (θ) := f(w0e
−Aθ)θ +

∫ ∞

θ

f
(
w0e

−Ay
)
dy

satisfies F ′(θ) < 0 and hence it is decreasing in [0,∞), with

F (0) =
∫ ∞

0

f
(
w0e

−Ay
)
dy =

r

A
ln
(
w0 +KI

KI

)
, F (∞) = 0.

From the definition of στ , we find that τ → στ is nondecreasing, with

σ0 = A−1 ln
(

w0

min{w0, αv0}

)
, σv0/(1+β−1) = ∞.

Therefore

τ → F (στ ) is nonincreasing in [0, v0/(1 + β−1)) with F (σ0) > 0, F (σv0/(1+β−1)) = 0.
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This implies that (2.27) has a unique solution τ ∈
(
0, v0/(1 + β−1

)
. Thus,

vn → v0 − τ(1 + β−1 − x) uniformly in [0, 1],

with τ uniquely determined by (2.27). Since τ > 0 is uniquely determined, the above
convergence is true for the entire original sequence {vn}.

The proof is complete.

3. The limit ofm∗ andm∗ as σ → ∞. In order to investigate the asymptotic
behavior of the positive solutions of (1.3) as σ → ∞, we need to first understand the
limits of m∗ and m∗ as σ → ∞. To stress their dependence on σ, we write m∗ = m∗(σ)
and m∗ = m∗(σ). Let us recall that (2.6) holds; that is, m∗(σ) and m∗(σ) are always
between the positive numbers f(min{αv0, w∗(1)}) and f(min{αv0, w0}). We now
prove the following result.

Theorem 3.1.

lim
σ→∞

m∗(σ) = lim
σ→∞

m∗(σ) = f(min{αv0, w0}).(3.1)

Proof. Since

m∗(σ) ≤ m∗(σ) ≤ f(min{αv0, w0}),

we need only show that

lim
σ→∞

m∗(σ) = f(min{αv0, w0}).

Moreover, it suffices to prove this along an arbitrary sequence of positive numbers
increasing to ∞. Let {σn} be such a sequence, and denote mn = m∗(σn). By
definition, there exists un > 0 in [0, 1] such that{

−[d1u
′
n + σnc

0(x)un]′ = [f(min{αv0, w∗}) −mn]un in (0, 1),
d1u

′
n + σnc

0(x)un = 0 for x = 0, 1.
(3.2)

To simplify the notation, we will write

f0(x) = f(min{αv0, w∗(x)}).

Moreover, we define x∗0 by

c0(x) = Cx∗
0
(x) =

x− x∗0
δ + |x− x∗0|

.

If x∗0 = 1, i.e., αv0 ≤ w∗(x) in [0, 1] and hence f0(x) ≡ f(αv0), then clearly

mn ≡ f(αv0) = f(min{αv0, w0}).

So (3.1) holds trivially in this case.
Suppose from now on that x∗0 ∈ [0, 1). Therefore f0(x) is a constant in [0, x∗0) and

is decreasing in [x∗0, 1]. As before, integrating the first equation of (3.2) we find that
(f0(x)−mn) must change sign in (0, 1), and therefore there exists a unique xn ∈ (0, 1)
such that f0(x) > mn in [0, xn), and f0(x) < mn in (xn, 1].

By (2.6), {mn} is a bounded sequence, and, by passing to a subsequence, we may
assume that

mn → m0 ≤ f(min{(αv0, w0}) = f0(x∗0).
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To determine the value of m0, we use several steps.
Step 1: Change of variables.
Let

φn(x) := exp
[
− σn

d1

∫ x

x∗
0

c0(x)dx
]
.

Clearly

d1φ
′
n + σnc

0φn = 0, φn(x∗0) = 1, 0 < φn(x) ≤ 1 in [0, 1],

and φn → 0 uniformly on compact subsets of [0, 1] \ {x∗0}.
Define

ψn(x) = un(x)/φn(x).

Then (3.2) becomes{
−(d1φnψ

′
n)′ = [f0(x) −mn]φnψn in (0, 1),

ψ′
n = 0 for x = 0, 1.

(3.3)

Define

ξn(x) = σ−1/2
n

∫ x

0

1
φn(s)

ds.

Then ξn is an increasing function in [0, 1], with ξn(0) = 0 and

ξn(1) = yn := σ−1/2
n

∫ 1

0

1
φn(x)

dx→ ∞ as n→ ∞.

Let ηn : [0, yn] → [0, 1] be the inverse function of ξn(x), and define

Un(y) = ψn(ηn(y)) = ψn(x).

From (3.3) a simple calculation shows that{
−U ′′

n = d−1
1 σnφ

2
n(ηn(y))[f0(ηn(y)) −mn]Un in (0, yn),

U ′
n(0) = U ′

n(yn) = 0.
(3.4)

Step 2: Estimates of σnφ
2
n(ηn(y)).

For our later estimates, we need to analyze the function φ̃n(y) := σnφ
2
n(ηn(y)).

To this end, for some τ > 0 small to be determined later, we define ŷn and Δn by

ŷn := ξn(x∗0), σ−τ
n := σ−1/2

n

∫ x∗
0+Δn

x∗
0

1
φn(x)

dx,

so that

ŷn ± σ−τ
n = ξn(x∗0 ± Δn), x∗0 ± Δn = ηn(ŷn ± σ−τ

n ).

We will show that φ̃n(y) behaves like a δ-function concentrating at y = ŷn. For
definiteness, we assume that x∗0 > 0; the case x∗0 = 0 can be treated by a simple
modification of the arguments below. Then it is easily seen that as n→ ∞,

ŷn → ∞, yn − ŷn → ∞, Δn → 0.
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Using c0(x) = x−x∗
0

δ+|x−x∗
0|

, we can easily check that, for any given small ε > 0, there
exists δ0 = δ0(ε) > 0 small so that, when |x− x∗0| ≤ δ0,

exp
[
− σn

2δd1
(x− x∗0)2

]
≤ φn(x) ≤ exp

[
− σn(1 − ε)

2δd1
(x− x∗0)2

]
.(3.5)

Therefore, for all large n,

σ1/2−τ
n =

∫ x∗
0+Δn

x∗
0

1
φn(x)

dx

≤
∫ x∗

0+Δn

x∗
0

exp
[
σn

2δd1
(x − x∗0)2

]
dx

=
∫ Δn

0

exp
(
σn

2δd1
x2

)
dx

≤ Δn exp
(
σnΔ2

n

2δd1

)
,

σ1/2−τ
n =

∫ x∗
0+Δn

x∗
0

1
φn(x)

dx

≥
∫ x∗

0+Δn

x∗
0

exp
[
σn(1 − ε)

2δd1
(x − x∗0)2

]
dx

=
∫ Δn

0

exp
[
σn(1 − ε)

2δd1
x2

]
dx

≥
∫ Δn

(1−ε)Δn

exp
[
σn(1 − ε)

2δd1
x2

]
dx

≥ εΔn exp
[
σnΔ2

n(1 − ε)3

2δd1

]
.

It follows that σnΔ2
n → ∞, and

exp
(
− σnΔ2

n

2δd1

)
≤ Δnσ

τ−1/2
n ,(3.6)

and

σ1/2
n Δn exp

[
σnΔ2

n(1 − ε)3

2δd1

]
≤ ε−1σ1−τ

n ,

which gives (
1
2

)
ln(σnΔ2

n) +
(1 − ε)3

2δd1
σnΔ2

n ≤ ln
(
ε−1σ1−τ

n

)
.
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Since ln(σnΔ2
n) = o(σnΔ2

n), and

ln(ε−1σ1−τ
n ) = (1 − τ) ln σn + o(lnσn),

the last inequality above implies that

σnΔ2
n ≤ Cε lnσn(3.7)

for some Cε > 0 and all large n.
As a consequence of (3.5), (3.6), and (3.7) we have

φ̃n(ŷn ± σ−τ
n ) = σnφ

2
n(x∗0 ± Δn)

≤ σn exp
[
− σn(1 − ε)

δd1
Δ2

n

]
≤ σn

[
Δ2

nσ
2τ−1
n

](1−ε)

≤
[
Cε lnσn

](1−ε)
σ1+2(τ−1)(1−ε)

n

→ 0 as n→ ∞,

provided that τ is chosen in the interval (0, 1/2) and ε > 0 is small enough.
From the property of φn(x), we see that the above estimates imply that

φ̃n(y) → 0 uniformly in [0, yn] \ [ŷn − σ−τ
n , ŷn + σ−τ

n ],(3.8)

and for any M > 0,∫ ŷn+M

ŷn−M

φ̃n(y)dy=
∫ ŷn+σ−τ

n

ŷn−σ−τ
n

φ̃n(y)dy + o(1)

=
∫ ηn(ŷn+σ−τ

n )

ηn(ŷn−σ−τ
n )

σnφ
2
n(x)ξ′n(x)dx + o(1)

=
∫ x∗

0+Δn

x∗
0−Δn

σ1/2
n φn(x)dx + o(1)

= 2σ1/2
n

∫ Δn

0

exp
(
− σnx

2

2δd1
[1 + o(1)]

)
dx+ o(1)

= [2 + o(1)]
∫ σ1/2

n Δn

0

exp
(
− x2

2δd1

)
dx+ o(1)

= 2
∫ ∞

0

exp
(
− x2

2δd1

)
dx+ o(1).

In other words, for any M > 0,

lim
n→∞

∫ ŷn+M

ŷn−M

φ̃n(y)dy = c0 := 2
∫ ∞

0

exp
(
− x2

2δd1

)
dx.(3.9)

Step 3: The limiting profile of Un(y).
We now define

Ûn(y) = Un(y + ŷn − 1)/Un(ŷn − 1),

f̂n = d−1
1 φ̃n(y + ŷn − 1)

[
f0
(
ηn(y + ŷn − 1)

)
−mn

]
.
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Clearly Ûn(0) = 1, and by (3.4) we have{
−Û ′′

n = f̂nÛn in (1 − ŷn, yn + 1 − ŷn),

Û ′
n(1 − ŷn) = Û ′

n(yn + 1 − ŷn) = 0.
(3.10)

From (3.8) we see that

f̂n(y) → 0 uniformly in [1 − ŷn, 1 − σ−τ
n ] ∪ [1 + σ−τ

n , yn + 1 − ŷn].

Since Ûn(0) = 1, the boundedness of f̂n over [1 − ŷn, 1 − σ−τ
n ] allows us to apply the

Harnack inequality to conclude that Ûn has a bound CJ independent of n over any
bounded interval J ⊂ [1 − ŷn, 1 − σ−τ

n ] with 0 ∈ J . We can now apply to (3.10) the
Lp theory, the Sobolev imbedding theorem, and a standard diagonal argument, to
obtain a subsequence of {Ûn}, still denoted by Ûn, such that Ûn → Û in C1(J) for
any bounded interval J ⊂ (−∞, 1), and Û satisfies

Û ′′ = 0 in (−∞, 1), Û(0) = 1.(3.11)

Since Û is nonnegative in (−∞, 1), we deduce from (3.11) that

Û(y) = 1 + ay, a ∈ [−1, 0].

Now consider the sequence {Ûn(2)}. We claim that this is a bounded sequence.
Indeed, from our earlier observation for the sign of [f0(x) −mn], we know that the
right-hand side of the first equation in (3.4) changes sign from positive to negative
when y increases across ỹn := ξn(xn). It follows that U ′′

n (y) changes sign from negative
to positive as y increases across ỹn. Since U ′

n(0) = U ′
n(yn) = 0, we find that U ′

n ≤ 0
in [0, yn] and hence Un(y) is nonincreasing in y, which implies that Ûn(y) is non-
increasing in y and hence 0 ≤ Ûn(2) ≤ Ûn(0) = 1. We can now use the fact that
f̂n → 0 uniformly in [1+σ−τ

n , yn+1−ŷn], as above, to conclude that, subject to passing
to a further subsequence, Ûn → Û∗ in C1(J) for any bounded interval J ⊂ (1,∞),
and Û∗ satisfies

Û ′′
∗ = 0, 0 ≤ Û∗ ≤ 1 in (1,∞).

Therefore Û∗ must be a constant, say Û∗ ≡ b.
Using (3.9) we find that f̂n is a bounded sequence in L1([0, 2]). By (3.10), we

have

Û ′
n(y) = Û ′

n(0) −
∫ y

0

f̂n(y)Ûn(y)dy ∀y ∈ [0, 2].

Since Û ′
n(0) → Û ′(0) = a and 0 ≤ Ûn(y) ≤ Ûn(0) = 1, the above identity implies

that |Û ′
n(y)| ≤ C for some C > 0 and all n ≥ 1 and y ∈ [0, 2]. Therefore {Ûn(y)}

is equicontinuous in [0, 2]. It follows that Û∗ must be a continuous extension of Û .
Therefore b = 1 + a.

Step 4: We show that m0 = f(x∗0).
We are now ready to determine the value of m0 by using our estimates for φ̃n and

Ûn. We note that (3.8) and (3.9) imply that, for large n, φ̃n(y + ŷn − 1) behaves like
the δ-function concentrating at y = 1. We now use these properties of φ̃n and (3.10)
to obtain

Û ′
n(2) = Û ′

n(0) −
∫ 2

0

f̂n(y)Ûn(y)dy → a− [f0(x∗0) −m0](1 + a)c0.
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But since Û∗ is a constant function over (1,∞), we have Û ′
n(2) → Û ′

∗(2) = 0. Therefore

a = [f0(x∗0) −m0](1 + a)c0.

The right-hand side of the above identity is nonnegative, but a ≤ 0. Therefore we
must have a = 0 and m0 = f0(x∗0). This implies that the entire original sequence
{mn} converges to f0(x∗0). Hence (3.1) holds, and the proof is complete.

If we fix m such that 0 < m < f(min{αv0, w0}) and let σn be an increasing
sequence of positive numbers converging to ∞, then by Theorems 2.3 and 3.1, for all
large n, (1.3) with σ = σn has at least one positive solution. Suppose that (un, vn)
is such a solution. We will analyze the behavior of (un, vn) as n → ∞. This will be
done in Part II; see [DH].
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Abstract. This is Part II of our study on the positive steady state of a quasi-linear reaction-
diffusion system in one space dimension introduced by Klausmeier and Litchman for the modelling
of the distributions of phytoplankton biomass and its nutrient. In Part I, we proved nearly optimal
existence and nonexistence results. In Part II, we obtain complete descriptions of the profile of
the solutions when the coefficient of the drifting term is large, rigorously proving the numerically
observed phenomenon of concentration of biomass for this model. Moreover, we reveal four critical
numbers for the model and provide further insights to the problem being modelled.
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1. Introduction. We continue our investigation in [DH] on the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−[d1ux + σc(x)u]x = [g(x) −m]u, 0 < x < 1,
−d2vxx = −g(x)u, 0 < x < 1,
d1ux + σc(x)u = 0, x = 0, 1,
vx(0) = 0, vx(1) = β[v0 − v(1)],

(1.1)

where d1, d2, σ, m, v0, and β are positive constants,

g(x) = f(min{αv(x), w(x)}), f(s) =
rs

KI + s
,

and

w(x) = w0 exp
[
−A0x−A

∫ x

0

u(s)ds
]
,

with α, r, KI , w0, A, and A0 positive constants. We are interested in positive solutions
of (1.1), namely, u > 0 and v > 0 in [0, 1]. From (1.1) it is easy to see that for any
such solution v is an increasing function. Clearly w is a decreasing function. The
function c(x) is defined by

c(x) =
x− x0

δ + |x− x0|
,
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where δ > 0 is a small constant and x0 ∈ [0, 1] is uniquely determined by the following
description:

min{αv(x), w(x)} = αv(x) ∀x ∈ [0, x0); min{αv(x), w(x)} = w(x) ∀x ∈ (x0, 1].

(Due to the monotonicity of v(x) and w(x), such x0 always exists.)
Problem (1.1) is a rescaled version of a model proposed by Klausmeier and Litch-

man in [KL] for the study of phytoplankton in a one-dimensional water column, where
u(x) represents the distribution of phytoplankton biomass, v(x) stands for the dis-
tribution of nutrient, and x denotes the depth in the water column, with x = 0
at the surface and x = 1 at the bottom. The term σc(x) is used to describe the
active movement of the biomass towards spatial location with optimal growth con-
dition. Klausmeier and Litchman [KL] use this system to model the concentration
phenomenon of phytoplankton in lakes and oceans, and the numerical analysis in [KL]
demonstrates that, for large σ, the biomass function u(x) concentrates at a certain
level x = x∗, while the nutrient function v(x) is close to a piecewise linear function.
They then treat u as a constant multiple of the δ-function concentrating at x∗ and
propose a game theoretical model to determine the location of x∗. We refer the reader
to Part I [DH] for further details regarding the background of (1.1).

Here we rigorously prove the existence of such a concentration phenomenon and
obtain exact formulas for the determination of x∗ and the total biomass. In doing so,
we reveal the existence of four critical values v∗∗ < v∗ < v∗ < v∗∗ for v0 (the nutrient
level at the sediment) such that

(i) x∗ = 0 when v0 ≥ v∗, x∗ ∈ (0, 1) when v0 ∈ (v∗, v∗), and x∗ = 1 when
v0 ≤ v∗;

(ii) the total biomass increases with v0 in the range v∗∗ < v0 < v∗∗, but stays
constant for v0 ≥ v∗∗ or v0 ≤ v∗∗ (but with v0 above a certain level so that
the biomass can survive).

In order to give a more detailed description of these results, we first recall the
main results of Part I [DH], where we proved the following two theorems.

Theorem 1.1. There exist 0 < m∗ ≤ m∗ < ∞ such that (1.1) has a positive
solution for m ∈ (0,m∗) and has no positive solution for m > m∗.

The values of m∗ and m∗ depend on the parameters in (1.1). To stress their
dependence on σ, we write m∗ = m∗(σ), m∗ = m∗(σ).

Theorem 1.2.

lim
σ→∞

m∗(σ) = lim
σ→∞

m∗(σ) = f(min{αv0, w0}).

To investigate the limiting profile of the positive solutions of (1.1) as σ → ∞, we
will fix m such that 0 < m < f(min{αv0, w0}) and let σn be an increasing sequence of
positive numbers converging to ∞. By Theorems 1.1 and 1.2, for all large n, (1.1) with
σ = σn has at least one positive solution. Suppose that (un, vn) is such a solution.
We will analyze the behavior of (un, vn) as n→ ∞. This will be done in the following
two sections.

In section 2, we find all the possible limiting profiles that a subsequence of
{(un, vn)} can have; in particular, we find the limiting equations governing these
possible limiting profiles. More precisely, let xn ∈ [0, 1] be uniquely determined by{

min{αvn(x), wn(x)} = αvn(x) for x ∈ [0, xn),
min{αvn(x), wn(x)} = wn(x) for x ∈ (xn, 1],
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where

wn(x) = w0 exp
[
−A0x−A

∫ x

0

un(s)ds
]
.

We consider the following possibilities:

(i) xn → x∗ ∈ (0, 1), (ii) xn → 0, (iii) xn → 1.

The cases (ii) and (iii) are each further divided into two subcases, namely, for case (ii),

(a1) σ1/2
n xn → ∞, (a2) σ1/2

n xn → a∗ ∈ [0,∞);

for case (iii),

(b1) σ1/2
n (1 − xn) → ∞, (b2) σ1/2

n (1 − xn) → b∗ ∈ [0,∞).

One easily sees that, subject to a subsequence, the above are all the possible behaviors
of the sequence {xn}. Eventually we will show in section 3 that the limit of the entire
sequence {xn} always exists and that this limit is completely determined by the value
of v0, which in turn allows us to completely determine the profiles of un and vn for
large n. But in order to prove these facts, we need to first find all the possible limiting
profiles of {(un, vn)} and the limiting equations that govern these profiles for each of
the above listed cases. The main results of section 2 are summarized below.

If case (i) occurs, we show (see Lemma 2.3) that as n → ∞, subject to a subse-
quence, un → 0 uniformly in [0, x∗ − ε] ∪ [x∗ + ε, 1] for any small ε > 0 and∫ 1

0

un(x)dx → τ∗C0, C0 :=
∫ ∞

−∞
e−x2/(2δd1)dx =

√
2δd1π,

vn → v0 −
τ∗
d2
mC0(1 + β−1 − max{x, x∗})

uniformly in [0, 1], where x∗ ∈ (0, 1) and τ∗ > 0 are determined by⎧⎪⎪⎪⎨⎪⎪⎪⎩
w0e

−A0x∗−Aτ∗(C0/2) = α

[
v0 −

τ∗
d2
mC0(1 + β−1 − x∗)

]
,

m =
∫ 1

0

f
(
w0e

−A0x∗−Aτ∗ max{C0/2,C0y})dy.(1.2)

If case (ii)(a1) occurs, we show (see Lemma 2.4) that the above conclusions hold
with x∗ = 0; in particular,

w0e
−Aτ∗(C0/2) = α

[
v0 −

τ∗
d2
mC0(1 + β−1)

]
,(1.3)

and

m =
∫ 1

0

f
(
w0e

−Aτ∗ max{C0/2,C0y})dy.(1.4)

Since (1.4) uniquely determines τ∗ > 0, we can substitute this τ∗ into (1.3) to obtain
a special value for v0, say v0 = v∗.
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Similarly, if case (iii)(b1) occurs, we can show (Lemma 2.5) that the conclusions
of case (i) hold except that x∗ = 1; in particular,

w0e
−A0−Aτ∗(C0/2) = α

[
v0 −

τ∗
d2
mC0(1 + β−1 − 1)

]
,(1.5)

and

m =
∫ 1

0

f
(
w0e

−A0−Aτ∗ max{C0/2,C0y})dy.(1.6)

Analogously, τ∗ > 0 is uniquely determined by (1.6), and one can then use (1.5) to
obtain a special value for v0, say v0 = v∗.

If case (ii)(a2) occurs, we show (Lemma 2.4) that as n→ ∞, subject to a subse-
quence, un → 0 uniformly in [ε, 1] for any small ε > 0,∫ 1

0

un(x)dx → τ∗C(a∗), C(a∗) =
∫ ∞

−a∗

e−x2/(2δd1)dx,

vn → v0 −
τ∗
d2
mC(a∗)(1 + β−1 − x)

uniformly in [0, 1], where a∗ ∈ [0,∞) and τ∗ > 0 are determined by

m =
∫ 1

0

f
(
w0e

−Aτ∗ max{C(a∗)−C0/2,C(a∗)y})dy,(1.7)

and

α
(
v0 −

τ∗
d2
mC(a∗)(1 + β−1)

)
= w0e

−Aτ∗[C(a∗)−C0/2] if a∗ > 0,(1.8)

α

(
v0 −

τ∗
d2
m

(
C0

2

)
(1 + β−1)

)
≥ w0 if a∗ = 0.(1.9)

If case (iii)(b2) occurs, we show (Lemma 2.5) that as n → ∞, subject to a
subsequence, un → 0 uniformly in [0, 1 − ε] for any small ε > 0,∫ 1

0

un(x)dx → τ∗C̃(b∗), C̃(b∗) =
∫ b∗

−∞
e−x2/(2δd1)dx = C(−b∗),

and

vn → v0 −
τ∗
d2
β−1C̃(b∗),

where b∗ ∈ [0,∞) and τ∗ > 0 are determined by

m =
∫ 1

0

f
(
w0e

−A0−Aτ∗ max{C0/2,C̃(b∗)y})dy(1.10)

and

α
(
v0 −

τ∗
d2β

C(b∗)
)

= w0e
−A0−Aτ∗C0/2 if b∗ > 0,(1.11)

α

(
v0 −

τ∗
d2β

(
C0

2

))
≤ w0e

−A0−Aτ∗C0/2 if b∗ = 0.(1.12)
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In section 3, through careful analysis of the limiting equations (1.2)–(1.12), we
show that the entire sequence {xn} always converges to a point x∗ ∈ [0, 1], that exactly
one of the cases considered in section 2 occurs, and that in each case the limit of the
entire sequence in the conclusion exists. More precisely, if v∗ < v0 < v∗ (recall that
v∗ and v∗ are defined above in cases (ii)(a1) and (iii)(b1), respectively), then case (i)
must occur, and (1.2) uniquely determines x∗ and τ∗. If v0 = v∗, then case (ii)(a1)
occurs; if v0 = v∗, then case (iii)(b1) occurs. If v0 > v∗, then case (ii)(a2) must
happen, and if v0 < v∗, then case (iii)(b2) must happen. Moreover, our analysis on
the limiting total biomass limn→∞

∫ 1

0
un(x)dx reveals two further critical values of v0,

v∗∗ < v∗ and v∗∗ > v∗ such that this limiting total biomass is strictly increasing with
v0 for v0 in the range v∗∗ ≤ v0 ≤ v∗∗ but remains constant (i.e., no longer changes
with v0) when v0 ≥ v∗∗ or when v0 ≤ v∗∗. See Theorems 3.1–3.3 for more accurate
descriptions of these results.

In section 4 we give biological interpretations of our main results and compare
our rigorous limiting equations with the game theoretical model of [KL].

Though the proofs are rather involved, they consist mainly of elementary mathe-
matical analysis; most of the proofs in section 2 and all of the arguments in section 3
can be understood with sound knowledge of calculus and real analysis.

2. The limiting equations. We will keep using the notation of Part I [DH]. It
turns out that the techniques used in the proof of Theorem 3.1 in Part I are not quite
suitable for our purpose here. We will introduce some different techniques.

Suppose that 0 < m < f(min{αv0, w0}) and σn, (un, vn) are as given in the intro-
duction above. Suppose cvn,wn(x) = Cxn(x), xn ∈ [0, 1]. By passing to a subsequence
we may assume that xn → x∗ ∈ [0, 1]. Then

Cxn =
x− xn

δ + |x− xn|
→ Cx∗

in C1([0, 1]).
In order to obtain useful equations to determine the profiles of un and vn, we

need to stretch the variable x appropriately. We define

Φn(x) = exp
[
− σn

2d1

∫ x

xn

Cxn(s)ds
]

and

Ψn(x) = un(x)/Φn(x).

By a direct computation we obtain{
−d1Ψ′′

n + σnΓn(x)Ψn =
[
f(min{αvn, wn}) −m

]
Ψn, x ∈ (0, 1),

d1Ψ′
n + (σn/2)CxnΨn = 0, x = 0, 1,

where

Γn(x) :=
σn(x− xn)2 − 2d1δ

4d1(δ + |x− xn|)2
.

Let us introduce the stretched variable y = σ1/2(x − xn) and define

Vn(y) := Ψn

(
σ−1/2

n y + xn

)
, Cn(y) := σ1/2

n Cxn

(
σ−1/2

n y + xn

)
=

y

δ + σ
−1/2
n |y|

,

an := −σ1/2
n xn, bn := σ1/2

n (1 − xn),
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and

Fn(y) := f
(

min{αvn(σ−1/2
n y + xn), wn(σ−1/2

n y + xn)}
)
.

Then ⎧⎪⎨⎪⎩
−d1V

′′
n +

y2 − 2d1δ

4d1(δ + σ
−1/2
n |y|)2

Vn = σ−1
n

[
Fn(y) −m

]
Vn, y ∈ (an, bn),

d1V
′
n + (1/2)CnVn = 0, y = an, bn.

(2.1)

In the discussions below, we will consider the cases x∗ ∈ (0, 1), x∗ = 0, and x∗ = 1
separately.

Lemma 2.1. Suppose xn → x∗ ∈ (0, 1), and set Ṽn(y) = Vn(y)/‖Vn‖L∞([an,bn]).
Then

Ṽn → V0 in C1(J) for any finite interval J ⊂ (−∞,∞),

where V0(y) = exp[− y2

4d1δ ] is the unique solution of

−d1V
′′ =

2d1δ − y2

4d1δ2
V, 0 < V ≤ 1, V (0) = 1, V ′(0) = 0.

Proof. Since x∗ ∈ (0, 1), we have an → −∞ and bn → ∞ as n→ ∞. Let us note
that, for y ∈ [an,−(2d1δ)1/2 − ε] with ε > 0 sufficiently small and all large n, the first
equation in (2.1) implies that V ′′

n (y) > 0. Since d1V
′
n(an) = −(1/2)Cn(an)Vn(an) ≥

0, we deduce that V ′
n(y) > 0 in (an,−(2d1δ)1/2 − ε] for all large n. Hence Vn is

increasing in this range. Similarly, we can see that Vn(y) is decreasing in the range
y ∈ [(2d1δ)1/2 + ε, bn] for all large n. Therefore maxVn = Vn(yn) for some yn ∈
[−(2d1δ)1/2 − ε, (2d1δ)1/2 + ε], and Ṽn(y) = Vn(y)/Vn(yn). We may assume that
yn → y∗ as n→ ∞. We now define

F̃n(y) :=
2d1δ − y2

4d1(δ + σ
−1/2
n |y|)2

+ σ−1
n

[
Fn(y) −m

]
.

Then Ṽn(yn) = 1, and{
−d1Ṽ

′′
n = F̃nṼn, 0 < Ṽn ≤ 1, y ∈ (an, bn),

d1Ṽ
′
n + (1/2)CnṼn = 0, y = an, bn.

(2.2)

Since {F̃n} is uniformly bounded over any bounded interval and 0 ≤ Ṽn ≤ 1, we may
apply the interior Lp theory (see [GT]) to (2.2) and use the Sobolev imbedding theorem
and a standard diagonal argument to conclude that, by passing to a subsequence,
Ṽn → Ṽ in C1(J) for any bounded interval J , and Ṽ satisfies

−d1Ṽ
′′ =

2d1δ − y2

4d1δ2
Ṽ , 0 < Ṽ ≤ 1 in (−∞,∞), Ṽ (y∗) = 1, Ṽ ′(y∗) = 0.(2.3)

By the monotonicity property of Vn(y) observed earlier, we know that Ṽ (y) is nonde-
creasing in (−∞,−(2d1δ)1/2) and is nonincreasing in ((2d1δ)1/2,∞). We can now
use (2.3) to conclude that Ṽ ′(y) is positive and increasing in (−∞,−(2d1δ)1/2),
reaching a positive maximum at y = −(2d1δ)1/2; then is decreasing in (−(2d1δ)1/2,
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(2d1δ)1/2), reaching a negative minimum at y = (2d1δ)1/2; and for y > (2d1δ)1/2,
is increasing and stays negative. Therefore V ′(y) has a unique zero at some y0 ∈(
− (2d1δ)1/2, (2d1δ)1/2

)
, which is the unique maximum point of Ṽ . Thus y0 = y∗.

In other words, Ṽ (y) is increasing in (−∞, y∗) and is decreasing in (y∗, 0). It then
follows from an elementary analysis that Ṽ decays to 0 as |y| → ∞, and there exists
C1, C2 > 0 such that

Ṽ (y), |Ṽ ′(y)| ≤ C1e
−C2|y| ∀y ∈ (−∞,∞).

We now multiply Ṽ (−y) to (2.3), integrate over [y∗,∞), and then apply integration
by parts. Since Ṽ (−y) satisfies the differential equation in (2.3), we deduce

Ṽ ′(−y∗)Ṽ (y∗) + Ṽ ′(y∗)Ṽ (−y∗) = 0.

It follows that Ṽ ′(−y∗) = 0. Since y∗ is the only zero of Ṽ ′, we must have y∗ = −y∗,
that is, y∗ = 0. By the uniqueness theorem of initial value problems of ordinary
differential equations, we must have Ṽ = V0, the unique solution of (2.3) with y∗ = 0.
A simple calculation confirms that the function exp[− y2

4d1δ ] solves the equation for V0.
Hence, by uniqueness,

V0(y) = exp
[
− y2

4d1δ

]
.

Since V0 is uniquely determined, it follows that the entire original sequence {Ṽn}
converges to V0.

Using the monotonicity of Ṽn and the fact that V0(y) → 0 as |y| → ∞, we see
that Lemma 2.1 implies∥∥Ψn(·)/‖Ψn‖∞ − V0

(
σ1/2

n (· − xn)
)∥∥

L∞([0,1])
→ 0 as n→ ∞,(2.4)

since for large n the function

Ψn(x)/‖Ψn‖∞ − V0

(
σ1/2

n (x− xn)
)

is uniformly small at those values of x ∈ [0, 1] such that σ1/2
n (x − xn) stays bounded

(by Lemma 2.1), and, by the properties of Ṽn and V0, the values of the function at
the remaining x ∈ [0, 1] are also small.

We now denote Ψ̃n(x) = Ψn(x)/‖Ψn‖∞ and consider the function

ũn(x) := σ1/2
n Φn(x)Ψ̃n(x) =

(
σ

1/2
n

‖Ψn‖∞

)
un.

We will show that, for large n, ũn behaves like the δ-function concentrating at x∗.
Indeed, we have the following result.

Lemma 2.2. For any given small ε > 0, |x− xn| ≥ ε implies

0 < ũn(x) ≤ σ1/2
n exp

[
− σn

4(δ + 1)d1
ε2
]
→ 0.(2.5)

Moreover, when xn → x∗ ∈ (0, 1),

lim
n→∞

∫ 1

0

ũn(x)dx = C0 :=
∫ ∞

−∞
e−x2/(2δd1)dx =

√
2δd1π.(2.6)
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Proof. For any given small ε > 0, there exists δ0 = δ0(ε) > 0 small so that, when
|x− xn| ≤ δ0,

exp
[
− σn

4δd1
(x− xn)2

]
≤ Φn(x) ≤ exp

[
− σn(1 − ε)

4δd1
(x − xn)2

]
.

For any x ∈ [0, 1], we have

exp
[
− σn

4δd1
(x − xn)2

]
≤ Φn(x) ≤ exp

[
− σn

4(δ + 1)d1
(x− xn)2

]
.

Since Ψ̃n ≤ 1, for |x− xn| ≥ ε, we have

ũn(x) ≤ σ1/2
n exp

[
− σn

4(δ + 1)d1
ε2
]
→ 0.

This proves (2.5). Moreover, we have∫ 1

0

ũn(x)dx =
∫ xn+ε

xn−ε

σ1/2
n Φn(x)Ψ̃n(x)dx + o(1)

=
∫ εσ1/2

n

−εσ
1/2
n

Φn(xn + σ−1/2
n y)Ṽn(y)dy + o(1)

=
∫ ∞

−∞
exp
[
− y2

4d1δ

]
V0(y)dy + o(1)

=
∫ ∞

−∞
exp
[
− y2

2d1δ

]
dy + o(1).

Hence (2.6) holds. For later application, let us also note from the above argument
that

lim
n→∞

∫ 1

xn

ũn(x)dx = lim
n→∞

∫ xn

0

ũn(x)dx = C0/2.(2.7)

Denote τn := ‖Ψn‖∞σ−1/2
n . We find that

un(x) = τnũn(x).

Lemma 2.3. Suppose that xn → x∗ ∈ (0, 1). Then {τn} has a subsequence, still
denoted by itself, such that τn → τ∗ > 0. Moreover, τ∗ and x∗ must satisfy

w0e
−A0x∗−Aτ∗(C0/2) = α

[
v0 −

τ∗
d2
mC0(1 + β−1 − x∗)

]
(2.8)

and

m =
∫ 1

0

f
(
w0e

−A0x∗−Aτ∗ max{C0/2,C0y})dy.(2.9)

Furthermore, by possibly passing to a further subsequence, un → 0 in C([0, 1] \ [x∗ −
ε, x∗ + ε]), for all ε > 0, and

vn(x) → v0 −
τ∗
d2
mC0(1 + β−1 − max{x, x∗})(2.10)
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uniformly in [0, 1].
Proof. By passing to a subsequence, we have two possible cases:

(i) τn → ∞, (ii) τn → τ∗ ∈ [0,∞).

Step 1. Case (i) cannot happen.
Suppose τn → ∞; we are going to derive a contradiction. Denote

fn = f(min{αvn, wn}).

Since

wn(xn) ≤ w0e
−Aτn

∫ xn
0

ũn(s)ds,

and by (2.7) ∫ xn

0

ũn(s)ds→ C0/2 > 0,

we easily see that wn(xn) → 0. It follows that

‖fn‖∞ = fn(xn) = f(wn(xn)) → 0.

This implies that ∫ 1

0

fnũndx→ 0.

On the other hand, we may integrate the equation for un to obtain∫ 1

0

[fn(x) −m]undx = 0,

which implies that ∫ 1

0

[fn(x) −m]ũndx = 0.

Letting n→ ∞ and using (2.6), we obtain

mC0 = lim
n→∞

∫ 1

0

fnũndx = 0,

which contradicts our assumption that m > 0. Therefore case (i) cannot happen.
Step 2. The limiting profile of un and vn.
We next consider case (ii), namely, τn → τ∗ ∈ [0,∞). In this case, due to (2.5),

un = τnũn → 0 in C([0, 1] \ [x∗ − ε, x∗ + ε]), for all ε > 0, and hence

τnfnũn → 0 uniformly in [0, x∗ − ε] ∪ [x∗ + ε, 1] ∀ε > 0.(2.11)

Let ζn = v0 − vn. Then

−d2ζ
′′
n = τnfnũn in (0, 1), ζ′n(0) = 0, ζ′n(1) + βζn(1) = 0.(2.12)
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Since vn ≥ 0, we have ζn ≤ v0. Since τnfnũn > 0, from (2.12) and the maximum
principle, we deduce that ζn > 0. Hence we always have 0 < ζn ≤ v0. Therefore we
can integrate (2.12) to obtain

ηn := τn

∫ 1

0

fnũndx = d2[ζ′n(0) − ζ′n(1)] = d2βζn(1) ∈ [0, d2βv0].

This implies that, by passing to a subsequence, we may assume that ηn → η∗ ∈
[0, d2βv0].

Moreover, using (2.11), (2.12), and ηn → η∗, we find that

{ζ′n} is a bounded sequence in L∞([0, 1]),
ζ′n(x) → 0 uniformly in [0, x∗ − ε] ∀ε > 0,
ζ′n(x) → −η∗/d2 uniformly in [x∗ + ε, 1] ∀ε > 0.

Since, moreover, 0 ≤ ζn ≤ v0, we conclude that {ζn} is precompact in C([0, 1]).
Hence, by passing to a subsequence, we may assume that ζn → ζ in C([0, 1]).

On the other hand, we may apply the Lp theory to (2.12) and the Sobolev imbed-
ding theorem to find a further subsequence, still denoted by ζn, such that ζn → ζ̃ in
C1(J) for any compact interval J ⊂ [0, x∗)∪(x∗ , 1], and ζ̃ satisfies (in the weak sense)

−d2ζ̃
′′ = 0 in [0, x∗) ∪ (x∗, 1], ζ̃′(0) = 0, ζ̃′(1) + βζ̃(1) = 0.

Clearly we must have ζ̃ = ζ. Moreover, our earlier analysis on ζn implies that ζ′(x) = 0
in [0, x∗) and ζ′(x) = −η∗/d2 in (x∗, 1]. These properties uniquely determine ζ:

ζ(x) = (η∗/d2)(1 + β−1 − max{x∗, x}).(2.13)

Step 3. τ∗ > 0.
Otherwise, τ∗ = 0 and hence η∗ = 0. It follows that ζ = 0 and vn → v0 uniformly

in [0, 1], and that

wn(x) = w0e
−A0xe−Aτn

∫ x
0

ũn(s)ds → w0e
−A0x = w∗(x)

uniformly in [0, 1]. This implies that

x∗ = x∗0 and fn(x) → f0(x) := f(min{αv0, w∗}) uniformly in [0, 1].

We may now integrate the equation for un to obtain, as before,∫ 1

0

[fn(x) −m]ũndx = 0.

Letting n→ ∞, we deduce

[f0(x∗0) −m]C0 = 0,

which contradicts our assumption that m < f(min{αv0, w0}) = f0(x∗0). Hence τ∗ > 0.
Step 4. The equations for x∗ and τ∗.
We now set out to find the equations that determine x∗ and τ∗. By (2.7),

wn(xn) = w0e
−A0xne−Aτn

∫ xn
0

ũn(s)ds → w0e
−A0x∗e−Aτ∗(C0/2).
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On the other hand,

wn(xn) = αvn(xn) → α
[
v0 − ζ(x∗)

]
.

Thus we necessarily have

w0e
−A0x∗−Aτ∗(C0/2) = α

[
v0 − ζ(x∗)

]
= α

[
v0 − (η∗/d2)(1 + β−1 − x∗)

]
.(2.14)

Moreover, using (2.5), (2.7), and the fact that αvn → α(v0 − ζ) uniformly in [0, 1], we
deduce ∫ xn

0

f(αvn)ũndx→ (C0/2)f
(
αv0 − αζ(x∗)

)
.(2.15)

Using

wn(x) = w0e
−A0xe−Aτn

∫
x
0

ũn(s)ds

and the property of ũn, we obtain, for any small ε > 0,∫ 1

xn

f(wn)ũndx

=
∫ 1

xn

f
(
w0e

−A0x−Aτn

∫ xn
0

ũn(s)ds−Aτn

∫ x
xn

ũn(s)ds)ũndx

=
∫ x∗+ε

xn

f
(
w0e

−A0x−Aτn(C0/2)e−Aτn

∫
x
xn

ũn(s)ds)ũndx+ o(1)

= [1 + oε(1)]
∫ x∗+ε

xn

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτn

∫
x
xn

ũn(s)ds)ũndx+ o(1)

= [1 + oε(1)]
∫ [

∫
1
xn

ũn(s)ds]

0

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτny
)
dy + o(1)

= [1 + oε(1)]
∫ C0/2

0

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτ∗y
)
dy + o(1),

where oε(1) represents a quantity that converges to 0 as ε→ 0.
Thus ∫ 1

xn

f(wn)ũn(x)dx →
∫ C0/2

0

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτ∗y
)
dy(2.16)

as n→ ∞.
Combining (2.15) and (2.16), we obtain

η∗ = lim
n→∞

τn

∫ 1

0

fnũndx

= τ∗

[
(C0/2)f

(
αv0 − αζ(x∗)

)
+
∫ C0/2

0

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτ∗y
)
dy

]
.

(2.17)

Moreover, we may integrate the equation for un to obtain∫ 1

0

[fn(x) −m]ũndx = 0.
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Letting n→ ∞ and using (2.15), (2.16), we obtain

mC0 = (C0/2)f(αv0 − αζ(x∗)) +
∫ C0/2

0

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτ∗y
)
dy.

This combined with (2.17) yields

η∗ = τ∗mC0(2.18)

and combined with (2.14) gives

m = (1/2)f(w0e
−A0x∗−Aτ∗(C0/2)) + C−1

0

∫ C0/2

0

f
(
w0e

−A0x∗−Aτ∗(C0/2)e−Aτ∗y
)
dy

= C−1
0

∫ C0

0

f
(
w0e

−A0x∗−Aτ∗ max{C0/2,y})dy
=
∫ 1

0

f
(
w0e

−A0x∗−Aτ∗ max{C0/2,C0y})dy;

thus (2.9) is proved. Equation (2.8) and (2.10) clearly follow from (2.13), (2.14), and
(2.18).

We now consider the case x∗ = 0. By passing to a subsequence, we have two
subcases:

(a1) an := σ
1/2
n xn → ∞, (a2) an → a∗ ∈ [0,∞).

Lemma 2.4. In subcase (a1), all of the conclusions in Lemmas 2.2 and 2.3 hold.
In subcase (a2), {τn} has a subsequence, still denoted by itself, such that τn → τ∗ > 0.
Moreover, τ∗ and a∗ must satisfy

m =
∫ 1

0

f
(
w0e

−Aτ∗ max{C(a∗)−C0/2,C(a∗)y})dy(2.19)

and

α
(
v0 −

τ∗
d2
mC(a∗)(1 + β−1)

)
= w0e

−Aτ∗[C(a∗)−C0/2] if a∗ > 0,(2.20)

α

(
v0 −

τ∗
d2
m

(
C0

2

)
(1 + β−1)

)
≥ w0 if a∗ = 0,(2.21)

where

C(a∗) :=
∫ ∞

−a∗

exp
[
− y2

2d1δ

]
dy.

Furthermore, by possibly passing to a further subsequence, un → 0 in C([ε, 1]), for all
ε ∈ (0, 1),

lim
n→∞

∫ xn

0

ũn(x)dx = C(a∗) − C0/2, lim
n→∞

∫ 1

0

ũn(x)dx = C(a∗),(2.22)

and

vn(x) → v0 −
τ∗
d2
mC(a∗)(1 + β−1 − x)(2.23)
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uniformly in [0, 1].
Proof. In subcase (a1), we may repeat the arguments used for the case x∗ ∈ (0, 1)

above to see that all the conclusions there (with x∗ replaced by 0) remain valid; the
proofs carry over with minor modifications.

Consider now subcase (a2). In this case, we may use interior and boundary
Lp estimates and the Sobolev imbedding theorem to conclude that, by passing to a
subsequence, ‖Ṽn − Ṽ ‖C1([an,M ]) → 0 for all M > 0, where Ṽ satisfies, instead of
(2.3), ⎧⎪⎪⎨⎪⎪⎩

−d1Ṽ
′′ =

2d1δ − y2

4d1δ2
Ṽ , 0 < Ṽ ≤ 1 in (−a∗,∞),

d1Ṽ
′(−a∗) − a∗

2δ
Ṽ (−a∗) = 0, Ṽ (y∗) = 1, Ṽ ′(y∗) = 0.

(2.24)

Note that as before Ṽ is decreasing in [(2d1δ)1/2,∞). This and (2.24) imply that Ṽ
converges to 0 as y → ∞. Moreover, an elementary consideration shows that

|Ṽ ′(y)|, Ṽ (y) ≤ C1e
−C2y

for some C1, C2 > 0, and all y > 0.
We will show that y∗ = 0 and Ṽ is again the unique solution of (2.3) with y∗ = 0,

namely V0. Since V0 and |V ′
0 | are bounded from above by a function of the form

C1e
−C2|y|, we can multiply the first equation in (2.24) by V0, integrate over [y∗,∞),

and use integration by parts to deduce

d1[Ṽ V ′
0 − Ṽ ′V0]

∣∣∞
y∗ = 0.

It follows that V ′
0(y∗) = 0, which implies that y∗ = 0. Therefore, by the uniqueness of

initial value problems of the ordinary differential equations, we deduce Ṽ ≡ V0. Let
us note that a direct calculation shows

d1V
′
0(y) +

y

2δ
V0(y) = 0 for every y ∈ (−∞,∞).

Therefore (2.24) does not introduce any restriction for a∗.
Since now σ

1/2
n xn → a∗, instead of (2.6), we have

lim
n→∞

∫ xn

0

ũn(x)dx = C(a∗) − C0/2, lim
n→∞

∫ 1

0

ũn(x)dx = C(a∗),(2.25)

where

C(a∗) :=
∫ ∞

−a∗

exp
[
− y2

4d1δ

]
V0(y)dy =

∫ ∞

−a∗

exp
[
− y2

2d1δ

]
dy.

We proceed as in the case x∗ ∈ (0, 1) and have two possibilities for τn as before.
We show that, in the current case, we still cannot have τn → ∞. Arguing indirectly,
we assume that τn → ∞.

Then in the case a∗ > 0, we have C(a∗) − C0/2 > 0, and hence

wn(xn) ≤ w0e
−Aτn

∫
xn
0

ũn(s)ds → 0.

It follows that

‖fn‖∞ = fn(xn) = f(wn(xn)) → 0
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and ∫ 1

0

fnũndx→ 0.

If a∗ = 0, then C(a∗) − C0/2 = 0 and∫ 1

0

fn(x)ũn(x)dx =
∫ 1

xn

f(wn(x))ũn(x)dx + o(1)

≤
∫ 1

xn

f
(
w0e

−Aτn

∫ x
xn

ũn(s)ds)ũndx+ o(1)

=
∫ [

∫ 1
xn

ũn(s)ds]

0

f
(
w0e

−Aτny
)
dy + o(1)

≤ εf(w0) +
∫ C0/2

ε

f
(
w0e

−Aτny
)
dy + o(1)

= εf(w0) + o(1) ∀ε ∈ (0, C0/2).

Therefore we always have ∫ 1

0

fnũndx→ 0 as n→ ∞.

As before, we may integrate the equation for un to obtain∫ 1

0

[fn(x) −m]ũndx = 0.

Letting n→ ∞ and using the above estimate, we deduce

−mC(a∗) = 0,

a contradiction to our assumption that m > 0. Therefore we cannot have τn → ∞.
Thus we can only have the case τn → τ∗. Then much as before we deduce un → 0

in C([ε, 1]) for all ε ∈ (0, 1), and

ζn → ζ := (η∗/d2)(1 + β−1 − x)

in C([0, 1]) ∩ C1([ε, 1]) for all ε ∈ (0, 1). If τ∗ = 0, we can deduce as before that
m = f0(x∗0), a contradiction to our initial assumption on m. Therefore τ∗ > 0.

If a∗ = 0, we first choose yn ∈ (xn, 1) such that yn → 0 and
∫ 1

yn
ũn(x)dx → 0,

and then we have∫ 1

0

fn(x)ũn(x)dx =
∫ yn

xn

f(wn(x))ũn(x)dx + o(1)

=
∫ yn

xn

f
(
w0e

−A0x−Aτn

∫
xn
0

ũn(s)ds−Aτn

∫
x
xn

ũn(s)ds)ũndx+ o(1)

=
∫ yn

xn

f
(
w0e

−Aτn

∫
x
xn

ũn(s)ds)ũndx+ o(1)

=
∫ 1

xn

f
(
w0e

−Aτn

∫
x
xn

ũn(s)ds)ũndx+ o(1)

=
∫ C0/2

0

f
(
w0e

−Aτ∗y
)
dy + o(1).
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If a∗ > 0, then xn > 0 and wn(xn) = αvn(xn). From

vn(xn) → v0 − ζ(0)

and

wn(xn) = w0e
−A0xn−Aτn

∫
xn
0

ũndx → w0e
−Aτ∗[C(a∗)−C0/2]

we obtain

α[v0 − ζ(0)] = w0e
−Aτ∗[C(a∗)−C0/2].

Moreover, similar to the above,∫ 1

xn

fn(x)ũn(x) =
∫ yn

xn

f(wn(x))ũn(x)dx + o(1)

=
∫ yn

xn

f
(
w0e

−Aτn

∫ xn
0

ũn(s)ds−Aτn

∫ x
xn

ũn(s)ds)ũndx+ o(1)

=
∫ C0/2

0

f
(
w0e

−Aτ∗[C(a∗)−C0/2]−Aτ∗y
)
dy + o(1),

and ∫ xn

0

fn(x)ũn(x)dx =
∫ xn

0

f(αvn(x))ũn(x)dx

= f
(
α[v0 − ζ(0)]

)
[C(a∗) − C0/2] + o(1)

= [C(a∗) − C0/2]f
(
w0e

−Aτ∗[C(a∗)−C0/2]
)

+ o(1).

Therefore we always have∫ 1

0

fnũndx→
∫ C(a∗)

0

f
(
w0e

−Aτ∗ max{[C(a∗)−C0/2],y})dy.(2.26)

We may now use ∫ 1

0

[fn(x) −m]ũndx = 0

to obtain

mC(a∗) =
∫ C(a∗)

0

f
(
w0e

−Aτ∗ max{C(a∗)−C0/2,y})dy.
Therefore

m =
∫ 1

0

f
(
w0e

−Aτ∗ max{C(a∗)−C0/2,C(a∗)y})dy,
and (2.19) is proved.

We thus obtain

η∗ = τ∗ lim
n→∞

∫ 1

0

fnũndx = τ∗mC(a∗).
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Therefore,

vn(x) → v0 − ζ = v0 −
τ∗
d2
mC(a∗)(1 + β−1 − x)

uniformly in [0, 1]; that is, (2.23) holds.
Let us note that (2.22) was already proved in (2.25). So it remains to prove (2.20)

and (2.21). If a∗ > 0, then xn > 0, and we necessarily have αvn(xn) = wn(xn). Recall
that

wn(xn) → w0e
−Aτ∗[C(a∗)−C0/2], vn(xn) → v0 − ζ(0).

Hence

α
(
v0 −

τ∗
d2
mC(a∗)(1 + β−1)

)
= w0e

−Aτ∗[C(a∗)−C0/2].

If a∗ = 0, then xn = 0 is possible, and so we have αvn(xn) ≥ wn(xn) in general, and
instead of the above identity we should have

α

(
v0 −

τ∗
d2
m

(
C0

2

)
(1 + β−1)

)
≥ w0.

Thus (2.20) and (2.21) are established. The proof is now complete.
Finally we consider the case x∗ = 1. By passing to a subsequence, we have two

subcases:

(b1) bn := σ
1/2
n (1 − xn) → ∞, (b2) bn → b∗ ∈ [0,∞).

Lemma 2.5. In subcase (b1), all of the conclusions in Lemmas 2.2 and 2.3 hold.
In subcase (b2), {τn} has a subsequence, still denoted by itself, such that τn → τ∗ > 0.
Moreover, τ∗ and b∗ must satisfy

m =
∫ 1

0

f
(
w0e

−A0−Aτ∗ max{C0/2,C̃(b∗)y})dy(2.27)

and

α
(
v0 −

τ∗
d2β

C̃(b∗)
)

= w0e
−A0−Aτ∗C0/2 if b∗ > 0,(2.28)

α

(
v0 −

τ∗
d2β

(
C0

2

))
≤ w0e

−A0−Aτ∗C0/2 if b∗ = 0,(2.29)

where

C̃(b∗) :=
∫ b∗

−∞
exp
[
− y2

2d1δ

]
dy = C(−b∗).

Furthermore, by possibly passing to a further subsequence, un → 0 in C([0, 1− ε]) for
every ε ∈ (0, 1),

lim
n→∞

∫ 1

xn

ũn(x)dx = C̃(b∗) − C0/2, lim
n→∞

∫ 1

0

ũn(x)dx = C̃(b∗),(2.30)

vn(x) → v0 − ζ = v0 −
τ∗
d2β

C̃(b∗)(2.31)
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uniformly in [0, 1].
Proof. In subcase (b1), we may repeat the arguments used in Lemmas 2.2 and 2.3

for the case x∗ ∈ (0, 1) to see that all the conclusions there (with x∗ replaced by 1)
remain valid; the proofs need only minor modifications.

We now consider subcase (b2). Then instead of (2.3) we have⎧⎪⎪⎨⎪⎪⎩
−d1Ṽ

′′ =
2d1δ − y2

4d1δ
Ṽ , 0 < Ṽ ≤ 1 in (−∞, b∗),

Ṽ ′(b∗) +
b∗
2δ
Ṽ (b∗) = 0, Ṽ (y∗) = 1, Ṽ ′(y∗) = 0.

(2.32)

Note that as before Ṽ is increasing in (−∞,−(2d1δ)1/2]. This and (2.32) imply that
Ṽ converges to 0 as y → −∞. Moreover, an elementary consideration shows that

|Ṽ ′(y)|, Ṽ (y) ≤ C1e
−C2|y|

for some C1, C2 > 0, and all y < 0.
As in the case for (2.24), we can similarly show that y∗ = 0 and Ṽ ≡ V0, the

unique solution of (2.3) with y∗ = 0. Moreover, (2.32) introduces no restriction for b∗.
Since σ1/2

n (1 − xn) → b∗, instead of (2.6), we have

lim
n→∞

∫ 1

xn

ũn(x)dx = C̃(b∗) − C0/2, lim
n→∞

∫ 1

0

ũn(x)dx = C̃(b∗),

where

C̃(b∗) :=
∫ b∗

−∞
exp
[
− y2

4d1δ

]
V0(y)dy = C(−b∗).

This establishes (2.30).
We proceed as in the case x∗ ∈ (0, 1) and have two possibilities for τn as before.

We show that in the current case, we still cannot have τn → ∞. Arguing indirectly,
we assume that τn → ∞.

Since
∫ xn

0
ũndx→ C0/2, we have

wn(xn) ≤ w0e
−Aτn

∫ xn
0

ũn(s)ds → 0.

It follows that

‖fn‖∞ = fn(xn) ≤ f(wn(xn)) → 0,

and ∫ 1

0

fnũndx→ 0.

As before, we may integrate the equation for un to obtain∫ 1

0

[fn(x) −m]ũndx = 0.

Letting n→ ∞ and using the above estimate, we deduce

−mC̃(b∗) = 0,
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a contradiction to our assumption that m > 0. Therefore we cannot have τn → ∞.
Thus we can have only the case τn → τ∗. Then much as before we deduce un → 0

in C([0, 1 − ε]) for each ε ∈ (0, 1) and ζn → ζ in C([0, 1]) ∩ C1([0, 1 − ε]), for all
ε ∈ (0, 1), with ζ satisfying

ζ′′ = 0 in [0, 1), ζ′ = 0 in [0, 1).

Hence ζ is a constant. To determine its value, we use

−d2ζ
′
n(1) =

∫ 1

0

τnfnũndx→ τ∗C̃(b∗)

and

ζ′n(1) + βζn(1) = 0

to deduce

− τ∗
d2
C̃(b∗) + βζ = 0,

and hence

ζ =
τ∗
d2β

C̃(b∗).(2.33)

If τ∗ = 0, then ζ ≡ 0, and hence vn → v0 uniformly in [0, 1] and

wn(x) = w0e
−A0x−Aτn

∫
x
0

ũndx → w0e
−A0x

uniformly in [0, 1]. Then we can deduce as before that m = f0(x∗0), a contradiction
to our initial assumption on m. Therefore τ∗ > 0.

We have ∫ xn

0

fn(x)ũn(x)dx =
∫ xn

0

f(αvn(x))ũn(x)dx

= (C0/2)f
(
α(v0 − ζ)

)
+ o(1).

If b∗ = 0, then ∫ 1

xn

fn(x)ũn(x)dx = o(1).

If b∗ > 0, then xn > 0 and wn(xn) = αvn(xn). From

vn(xn) → v0 − ζ = v0 −
τ∗
d2β

C̃(b∗)

and

wn(xn) = w0e
−A0xn−Aτn

∫
xn
0

ũndx → w0e
−A0−Aτ∗C0/2,

we obtain

α
(
v0 −

τ∗
d2β

C̃(b∗)
)

= w0e
−A0−Aτ∗C0/2.(2.34)
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Moreover,∫ 1

xn

fn(x)ũn(x)dx =
∫ 1

xn

f(wn(x))ũn(x)dx

=
∫ 1

xn

f
(
w0e

−A0x−Aτn

∫
xn
0

ũn(s)ds−Aτn

∫
x
xn

ũn(s)ds)ũndx

=
∫ C̃(b∗)−C0/2

0

f
(
w0e

−A0−Aτ∗C0/2−Aτ∗y
)
dy + o(1).

Therefore, whether b∗ = 0 or b∗ > 0, we always have∫ 1

0

fn(x)ũn(x)dx →
∫ C̃(b∗)

0

f
(
w0e

−A0−Aτ∗ max{C0/2,y})dy.(2.35)

We may now use ∫ 1

0

[fn(x) −m]ũndx = 0

to obtain

mC̃(b∗) =
∫ C̃(b∗)

0

f
(
w0e

−A0−Aτ∗ max{C0/2,y})dy,
which gives (2.27).

Note that if b∗ = 0, then xn = 1 is possible, and we have only wn(xn) ≥ αv(xn),
so instead of (2.27), we should have

α
(
v0 −

τ∗
d2β

C̃(b∗)
)
≤ w0e

−A0−Aτ∗C0/2.

Thus we have established (2.28) and (2.29). Clearly (2.31) follows from (2.33) and
the fact that vn → v0 − ζ uniformly in [0, 1]. The proof is complete.

3. Limiting profile of the positive solutions. We are now ready to state
and prove our main results. We will show that the limiting equations obtained in the
previous section uniquely determine x∗ and τ∗, and the value of v0 determines which
set of limiting equations should be used for calculating x∗ and τ∗. In this way, the
asymptotic behavior of the positive solutions is completely determined.

Let us recall that m is fixed such that

0 < m < f(min{αv0, w0}),(3.1)

and σn → ∞ is a sequence of positive numbers. Therefore by Theorems 1.1 and 1.2,
problem (1.1) with σ = σn has a positive solution (un, vn) for all large n. Recall that
C0 > 0 is given in (2.6), which is completely determined by δ and d1. Due to (3.1)
there exists a unique τ∗0 > 0 such that

m =
∫ 1

0

f
(
w0e

−Aτ∗
0 max{C0/2,C0y})dy.(3.2)

Let us then define

v∗ = v∗(m) :=
w0

α
e−Aτ∗

0 C0/2 +
τ∗0
d2
mC0(1 + β−1).(3.3)
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Let v(m) > 0 be uniquely determined by

m = f(αv(m)).

By (3.1), we always have v0 > v(m).
When m < f(w0e

−A0), we can find a unique τ∗1 > 0 such that

m =
∫ 1

0

f
(
w0e

−A0−Aτ∗
1 max{C0/2,C0y})dy.(3.4)

We now define

v∗ = v∗(m)(3.5)

:=

⎧⎪⎨⎪⎩
w0

α
e−A0−Aτ∗

1 C0/2 +
τ∗1
d2
mC0β

−1 if m < f(w0e
−A0),

v(m) if f(w0e
−A0) ≤ m < f(w0).

It is easily seen that v∗(m) is continuous in m.
As we will see below, to completely determine the asymptotic profile of (un, vn), it

is necessary to distinguish the cases v0 ∈ [v∗(m), v∗(m)], v0 > v∗(m), and v0 < v∗(m).
Theorem 3.1. Suppose that v0 > v(m) and

v∗(m) ≤ v0 ≤ v∗(m).(3.6)

Then the system (2.8) and (2.9), namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩
w0e

−A0x∗−Aτ∗(C0/2) = α

[
v0 −

τ∗
d2
mC0(1 + β−1 − x∗)

]
,

m =
∫ 1

0

f
(
w0e

−A0x∗−Aτ∗ max{C0/2,C0y})dy,
has a unique solution pair (x∗, τ∗) satisfying x∗ ∈ [0, 1] and τ∗ > 0. Moreover,

un → 0 in C([0, 1] \ [x∗ − ε, x∗ + ε]) ∀ ε > 0,
∫ 1

0

undx→ τ∗C0,

vn(x) → v0 −
τ∗
d2
mC0(1 + β−1 − max{x, x∗}) uniformly in [0, 1].

Furthermore, x∗ = 0 if v0 = v∗(m), x∗ ∈ (0, 1) if v∗(m) < v0 < v∗(m), and x∗ = 1 if
v0 = v∗(m).

Proof. Using the notation of the previous section, by passing to a subsequence,
xn → x∗ ∈ [0, 1]. By possibly passing to a further subsequence, the behavior of
(un, vn) as n→ ∞ is then determined by Lemmas 2.2, 2.3 (if x∗ ∈ (0, 1)), Lemma 2.4
(if x∗ = 0 and subcases (a1) and (a2) occur), and Lemma 2.5 (if x∗ = 1 and sub-
cases (b1) and (b2) happen).

If we can show that x∗ and τ∗ are uniquely determined by the value of v0, then the
corresponding results in the previous section would hold not only for a subsequence,
but for the entire original sequence, and hence the behavior of (un, vn) as n → ∞
would be completely determined.

The rather long proof below is broken into several steps.
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Step 1. Subcases (a2) and (b2) do not happen
First we observe that subcase (a2) does not happen. Indeed, if this case occurs,

then since C(a∗) < C0/2, we see (as explained below) from a careful comparison of
(2.19) and (3.2) that

τ∗ > τ∗0 , τ∗C(a∗) < τ∗0C0/2, τ∗[C0/2 + C(a∗)] > τ∗0C0.

In the comparison, we can deduce these inequalities one at a time, in the above order,
and the previous inequalities are used for obtaining the next inequality. For example,
to deduce τ∗C(a∗) < τ∗0C0/2 from τ∗ > τ∗0 , we observe that τ∗C(a∗) ≥ τ∗0C0/2 and
τ∗ > τ∗0 would imply

τ∗ max{C(a∗), [C0/2 + C(a∗)]y} ≥ max{τ∗0C0/2, [τ∗C0/2 + τ∗0C0/2]y}

≥ τ∗0 max{C0/2, C0y}

with strict inequality holding in the last step for y ∈ [1/2, 1], which is impossible when
one compares (2.19) with (3.2).

It then follows from (2.20) and (2.21) that v0 > v∗(m), contradicting (3.6).
Similarly, if subcase (b2) happens, then from (2.27) we deduce

τ∗ > τ∗1 and τ∗[C0/2 + C̃(b∗)] < τ∗1C0,

which imply, by (2.28) and (2.29), that v0 < v∗(m), again contradicting (3.6). There-
fore subcase (b2) cannot happen.

Thus, by our discussion in the previous section, we have the cases where (2.8)
and (2.9) hold. To show that (2.8) and (2.9) have a unique solution (x∗, τ∗) satisfying
x∗ ∈ [0, 1] and τ∗ > 0, we establish a procedure to uniquely find x∗ and τ∗. In the
discussion below, we will treat v0 > 0 as a varying parameter.

Step 2. A procedure to solve (2.8) and (2.9).
It is useful to use the new variable

λ = A0x∗ +Aτ∗C0/2.

Then

x∗ = (λ−Aτ∗C0/2)/A0,

and (2.8) can be rewritten as

w0

α
e−λ = v0 −

τ∗
d2
mC0

(
1 + β−1 − λ−Aτ∗C0/2

A0

)
or

mC0

d2A0
τ∗
[
(1 + β−1)A0 − λ+A(C0/2)τ∗

]
= v0 −

w0

α
e−λ.

We now consider the quadratic equation of τ :

mC0

d2A0
τ
[
(1 + β−1)A0 − λ+A(C0/2)τ

]
= v0 −

w0

α
e−λ.(3.7)

For each v0 > 0, let λ0(v0) denote the minimal nonnegative λ such that v0 −
w0

α e
−λ ≥ 0. Clearly

λ0(v0) = 0 if v0 ≥ w0/α, λ0(v0) is decreasing in (0, w0/α], lim
v0→0

λ0(v0) = ∞.(3.8)
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For each v0 > 0 and λ ≥ λ0(v0), the quadratic equation (3.7) has a maximal zero,
which we denote by τ(λ, v0). It is easily seen that τ(λ, v0) ≥ 0 and

when v0 ≤ w0/α, τ(λ0(v0), v0) = max
{

0,
λ0(v0) −A0(1 + β−1)

AC0/2

}
,(3.9)

τ(λ, v0) is increasing in λ and in v0, lim
v0→∞

τ(λ, v0) = ∞ for fixed λ ≥ 0.(3.10)

Since λ0(w0/α) = 0, by (3.9), τ(λ0(w0/α), w0/α) = 0. Let us consider the con-
tinuous function

M(v0) =
∫ 1

0

f
(
w0e

−λ0(v0)−Aτ(λ0(v0),v0)max{0,C0y−C0/2})dy.
The above observation shows that M(w0/α) = f(w0) > m. By (3.8), we have
M(v0) → 0 as v0 → 0. By (3.10), we deduce M(v0) → 0 as v0 → ∞. Hence
from the continuity of M(v0) we can find vmin and vmax such that

0 < vmin < w0/α < vmax <∞,

M(v0) > m ∀v0 ∈ (vmin, vmax), M(vmin) = M(vmax) = m.

Now for each v0 ∈ (vmin, vmax),

m <

∫ 1

0

f
(
w0e

−λ0(v0)−Aτ(λ0(v0),v0) max{0,C0y−C0/2})dy.
This and the monotonicity of τ(λ, v0) in λ imply that for such v0 we can find a unique
λ∗ = λ∗(v0) > λ0(v0) such that

m =
∫ 1

0

f
(
w0e

−λ∗−Aτ(λ∗,v0) max{0,C0y−C0/2})dy.
Clearly v0 → λ∗(v0) is continuous and

λ∗(vmin + 0) = λ0(vmin), λ∗(vmax − 0) = λ0(vmax).

So we may define

λ∗(vmin) = λ0(vmin), λ∗(vmax) = λ0(vmax).

We claim that the function T (v0) := τ(λ∗(v0), v0) is increasing in [vmin, vmax].
Otherwise, we can find vmin ≤ s1 < s2 ≤ vmax such that T (s1) ≥ T (s2). Since∫ 1

0

f
(
w0e

−λ∗(s1)−AT (s1) max{0,C0y−C0/2}) =
∫ 1

0

f
(
w0e

−λ∗(s2)−AT (s2)max{0,C0y−C0/2}),
T (s1) ≥ T (s2) implies that λ∗(s1) ≤ λ∗(s2), which implies, by the monotonicity of
τ(λ, v0),

T (s1) = τ(λ∗(s1), s1) < τ(λ∗(s2), s2) = T (s2).

This contradiction proves the claimed monotonicity of T (v0).
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We show next that T (vmax) > τ∗0 . Since vmax > w0/α, we have λ0(vmax) = 0
and hence

m = M(vmax) =
∫ 1

0

f(w0e
−Aτ(0,vmax)max{0,C0y−C0/2})dy.

By (3.2),

m =
∫ 1

0

f(w0e
−Aτ∗

0 C0/2−Aτ∗
0 max{0,C0y−C0/2})dy.

Comparing the above two expressions, we obtain τ(0, vmax) > τ∗0 . Hence

T (vmax) = τ(λ∗(vmax), vmax) = τ(λ0(vmax), vmax) = τ(0, vmax) > τ∗0 ,

as we wanted.
We now consider T (vmin). We have two different cases: m < f(w0e

−A0) and
m ≥ f(w0e

−A0). First consider the case m < f(w0e
−A0). We show that T (vmin) < τ∗1

in this case. Since λ∗(vmin) = λ0(vmin) we have

T (vmin) = τ(λ0(vmin), vmin).

Hence, by (3.9),

T (vmin) = max
{

0,
λ0(vmin) −A0(1 + β−1)

AC0/2

}
.

If λ0(vmin)−A0(1+β−1)
AC0/2 ≤ 0, then T (vmin) = 0 < τ∗1 . If λ0(vmin)−A0(1+β−1)

AC0/2 > 0,
then

T (vmin) =
λ0(vmin) −A0(1 + β−1)

AC0/2
,

and hence

m =
∫ 1

0

f
(
w0e

−λ0(vmin)−AT (vmin)max{0,C0y−C0/2})dy
=
∫ 1

0

f
(
w0e

−A0(1+β−1)−AT (vmin)C0/2−AT (vmin) max{0,C0y−C0/2})dy
=
∫ 1

0

f
(
w0e

−A0(1+β−1)−AT (vmin) max{C0/2,C0y})dy.
Comparing this with (3.4), we find that T (vmin) < τ∗1 .

With the above properties of T (v0), we can uniquely determine v∗ and v∗ with
vmin < v∗ < v∗ < vmax such that

T (v∗) = τ∗0 , T (v∗) = τ∗1 .

We claim that v∗ = v∗(m) and v∗ = v∗(m). Indeed, from

m =
∫ 1

0

f
(
w0e

−λ∗(v∗)−AT (v∗) max{0,C0y−C0/2})dy
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and T (v∗) = τ∗0 , we easily see by comparing with (3.2) that λ∗(v∗) = τ∗0AC0/2. Hence

τ∗0 = T (v∗) = τ(λ∗(v∗), v∗) = τ(τ∗0AC0/2, v∗).

By the definition of τ(λ, v0), the above identity means that τ = τ∗0 solves (3.7) with
λ = τ∗0AC0/2 and v0 = v∗. Therefore we may compare with (3.3) to deduce v∗ =
v∗(m). Similarly, we can show that v∗ = v∗(m).

Since T is monotone, for each v0 ∈ [v∗(m), v∗(m)], T (v0) ∈ [τ∗1 , τ
∗
0 ]. Hence we

can compare (3.2) and (3.4) with

m =
∫ 1

0

f
(
w0e

−λ∗(v0)−AT (v0)max{0,C0y−C0/2})dy
to find that, for such v0, we necessarily have

AT (v0)C0/2 ≤ λ∗(v0) ≤ A0 +AT (v0)C0/2;

otherwise we would arrive at contradictions to T (v0) ∈ [τ∗1 , τ
∗
0 ]. This implies that

there exists a unique x∗ ∈ [0, 1] such that

λ∗(v0) = A0x∗ +AT (v0)C0/2.

Let τ∗ = T (v0); we find that (x∗, τ∗) solves (2.8) and (2.9).
We next consider the case m ≥ f(w0e

−A0). In this case, v∗(m) = v(m); moreover,
we show that

T (vmin) = 0, vmin = v(m).

Indeed, from

T (vmin) = τ(λ∗(vmin), vmin) = τ(λ0(vmin), vmin),

we obtain

m =
∫ 1

0

f
(
w0e

−λ0(vmin)−Aτ(λ0(vmin),vmin) max{0,C0y−C0/2})dy
≤ f(w0e

−λ0(vmin)).

It follows that λ0(vmin) ≤ A0 < A0(1+β−1). By (3.9), we deduce τ(λ0(vmin), vmin) =
0, that is, T (vmin) = 0. This gives

m =
∫ 1

0

f(w0e
−λ0(vmin))dy = f(w0e

λ0(vmin)).

Hence

αv(m) = w0e
−λ0(vmin).

On the other hand, since vmin < w0/α, by the definition of the function λ0,

vmin − w0

α
e−λ0(vmin) = 0.

Therefore we have vmin = v(m).
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We can now conclude that there exists a unique v∗ ∈ (vmin, vmax) such that
T (v∗) = τ∗0 . We may then prove v∗ = v∗(m) as before. Since T is monotone, for each
v0 ∈ (v∗(m), v∗(m)] = (v(m), v∗(m)], T (v0) ∈ (0, τ∗0 ]. Hence we can compare (3.2)
and m ≥ f(w0e

−A0) with (3.1) to deduce

AT (v0)C0/2 ≤ λ∗(v0) < A0 +AT (v0)C0/2,

and there exists a unique x∗ ∈ [0, 1) such that

λ∗(v0) = A0x∗ +AT (v0)C0/2.

Let τ∗ = T (v0); we find that (x∗, τ∗) solves (2.8) and (2.9).
The above discussion shows that when (3.6) holds, (2.8) and (2.9) have at least

one solution (x∗, τ∗) satisfying x∗ ∈ [0, 1] and τ∗ > 0, and such a solution can be found
by following the above procedure.

Step 3. Uniqueness of (x∗, τ∗) and completion of the proof.
We next show that when (3.6) holds, (2.8) and (2.9) have a unique solution (x∗, τ∗)

satisfying x∗ ∈ [0, 1] and τ∗ > 0. So let (x∗, τ∗) be an arbitrary solution of (2.8) and
(2.9) with v0 ∈ [v∗(m), v∗(m)] ∩ (v(m), v∗(m)] and x∗ ∈ [0, 1], τ∗ > 0. Then τ∗ must
be the maximal zero of (3.7) with λ = A0x∗ +Aτ∗C0/2 > 0; this is the case because
v0 − w0

α e
−λ > 0, and thus the two zeros of (3.7) are of opposite sign. Therefore, using

our earlier notation,

τ∗ = τ(λ, v0), λ > λ0(v0).

Then (2.9) yields

m =
∫ 1

0

f(w0e
−A0x∗−Aτ∗ max{C0/2,C0y})dy

=
∫ 1

0

f(w0e
−λ−Aτ(λ,v0)max{0,C0y−C0/2})dy.

Since v0 ∈ [v∗(m), v∗(m)]∩(v(m), v∗(m)] ⊂ (vmin, vmax), in view of the above identity,
our definition of λ∗(v0) implies that λ = λ∗(v0) and hence τ(λ, v0) = T (v0); that is,
τ∗ = τ(λ, v0) = T (v0). This implies that the solution pair (x∗, τ∗) is the same as
the one obtained through our procedure introduced above for solving (2.8) and (2.9).
Hence there is a unique solution.

With τ∗ and x∗ uniquely determined now, it is easily seen that our conclusions
for un and vn follow from Lemmas 2.2, 2.3, 2.4, and 2.5.

Moreover, from the above procedure for finding (x∗, τ∗), we easily see that x∗ = 0
if v0 = v∗(m), x∗ ∈ (0, 1) if v∗(m) < v0 < v∗(m), and x∗ = 1 if v0 = v∗(m).

The proof of the theorem is now complete.
Next we consider the case that v0 > v∗(m). Let 0 < λ0 < λ0 be uniquely

determined by

m = f(w0e
−Aλ0) =

∫ 1

0

f
(
w0e

−Aλ0y
)
dy.(3.11)

For each λ ∈ [0, λ0], we can find a unique Γ = Γ(λ) such that

m =
∫ 1

0

f
(
w0e

−A max{λ,Γy})dy.(3.12)
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Moreover, it is easily seen that λ 
→ Γ(λ) is a continuous decreasing function with

Γ(λ0) = λ0, Γ(0) = λ0.

Therefore we can find a unique λ0
∗ ∈ (0, λ0) such that

Γ(λ0
∗) = 2λ0

∗.

Comparing with (3.2), we find that actually

λ0
∗ = τ∗0C0/2.(3.13)

We define

Λ(λ) :=
w0

α
e−Aλ +

Γ(λ)
d2

m(1 + β−1).

Clearly Λ(λ) is a decreasing function on [0, λ0] with

Λ(0) =
w0

α
+
λ0

d2
m(1 + β−1), Λ(λ0

∗) =
w0

α
e−Aλ0

∗ +
2λ0

∗
d2

m(1 + β−1).

Due to (3.13), we find that

Λ(λ0
∗) = v∗(m).

Theorem 3.2. Suppose that

v0 > v∗(m) = Λ(λ0
∗).(3.14)

If v0 < Λ(0) and λ∗ ∈ (0, λ0
∗) is uniquely determined by v0 = Λ(λ∗), then

un → 0 in C([ε, 1]) ∀ε ∈ (0, 1),
∫ 1

0

undx→ Γ(λ∗),

vn(x) → v0 −
Γ(λ∗)
d2

m(1 + β−1 − x) uniformly in [0, 1].

If v0 ≥ Λ(0), then the above conclusions hold with λ∗ = 0.
Proof. We first show that case (a2) happens. Let us start by observing that

the cases leading to (2.8) and (2.9) (namely, cases (i), (ii)(a1), and (iii)(b1)) cannot
happen. Indeed, in these cases, (x∗, τ∗) solves (2.8) and (2.9) with x∗ ∈ [0, 1] and
τ∗ > 0. As in Step 3 of the proof of Theorem 3.1, denoting λ = A0x∗ +Aτ∗C0/2, we
must have τ∗ = τ(λ, v0) and λ > λ0(v0). Then (2.9) gives

m =
∫ 1

0

f(w0e
−λ−Aτ(λ,v0)max{0,C0y−C0/2})dy.

Since v0 > v∗(m), we have either

v0 > vmax or v0 ∈ (v∗(m), vmax].

If v0 ∈ (v∗(m), vmax] ⊂ (vmin, vmax), then the above identity implies that λ = λ∗(v0)
and hence τ(λ, v0) = T (v0). From v0 > v∗(m) we now deduce τ∗ = T (v0) > τ∗0 , and
hence we can compare (2.9) with (3.2) to deduce x∗ < 0, a contradiction.
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If v0 > vmax, then by the monotonicity of τ(·, ·), we deduce

τ(λ, v0) > τ(λ, vmax) > τ(0, vmax).

Therefore, recalling λ∗(vmax) = λ0(vmax) = 0, we obtain

m =
∫ 1

0

f(w0e
−λ−Aτ(λ,v0) max{0,C0y−C0/2})dy

<

∫ 1

0

f(w0e
−Aτ(0,vmax)max{0,C0y−C0/2})dy

= m,

again a contradiction. Therefore none of the cases that lead to (2.8) and (2.9) can
happen. This implies that either (a2) or (b2) happens.

Next we show that case (b2) cannot happen. Otherwise, by (2.27) we obtain

m < f(w0e
−A0).

Hence τ∗1 > 0 is defined. Moreover, comparing (2.27) with (3.4), we obtain

τ∗ > τ∗1 , τ∗C̃(b∗) < τ∗1C0,

which imply, by (2.28) and (2.29), that v0 < v∗(m) < v∗(m), contradicting (3.14).
Therefore we necessarily have case (a2). We now introduce the notation

λ = τ∗[C(a∗) − C0/2], Γ = τ∗C(a∗).

From (2.19), (2.20), and (2.21) we find that

m =
∫ 1

0

f
(
w0e

−A max{λ,Γy})dy,(3.15)

v0 ≥ w0

α
e−Aλ +

Γ
d2
m(1 + β−1),(3.16)

with equality holding if a∗ > 0.
Suppose now that v0 ≥ Λ(0). We claim that in this case we have λ = 0 and

hence, by (3.15), Γ = Γ(0) = λ0. Suppose for the sake of contradiction that λ > 0.
From (3.15) and (3.11) we easily see that λ ≤ λ0. Now C(a∗) −C0/2 > 0, and hence
a∗ > 0. Thus equality in (3.16) holds. By (3.15) we deduce Γ = Γ(λ), and hence it
follows from (3.16) that v0 = Λ(λ) < Λ(0), contradicting our assumption on v0 above.
Hence in this case, we have λ = 0 and thus

C(a∗) − C0/2 = 0, τ∗ = Γ(0)/(C0/2).

Next we suppose that v∗(m) < v0 < Λ(0). From (3.15) we deduce Γ = Γ(λ) for
some λ ∈ [0, λ0]. We must have λ > 0 for otherwise, from (3.15) and (3.16), we deduce
Γ = Γ(0) and v0 ≥ Λ(0), contradicting our current assumption on v0. Therefore λ > 0
and hence a∗ > 0, implying that equality in (3.16) holds. Recalling Γ = Γ(λ), we thus
obtain v0 = Λ(λ) and λ = λ∗. It follows that τ∗ and a∗ in Lemma 2.4 are uniquely
determined by

τ∗[C(a∗) − C0/2] = λ∗, τ∗C(a∗) = Γ(λ∗),
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namely,

τ∗ =
Γ(λ∗) − λ∗

C0/2
, a∗ = C−1(λ∗/τ∗ + C0/2).

The rest of the proof now follows from Lemma 2.4.
We now consider the remaining case that v(m) < v0 < v∗(m), which can happen

only if m < f(w0e
−A0). Suppose that λ0, λ0, λ0

∗, and Γ(λ) are as in Theorem 3.2
but with w0 there replaced by w0e

−A0 , and we denote them by λ̃0, λ̃
0, λ̃0

∗, and Γ̃(λ),
respectively. Define

Δ(λ) :=
w0

α
e−A0−Aλ +

Γ̃(λ)
d2

mβ−1.

Then Δ(λ) is a decreasing function over [0, λ̃0] with

Δ(0) =
w0

α
e−A0 +

λ̃0

d2
mβ−1, Δ(λ̃0

∗) =
w0

α
e−A0−Aλ̃0

∗ +
λ̃0
∗
d2
mβ−1 = v∗(m).

Theorem 3.3. Suppose that m < f(w0e
−A0) and

v(m) < v0 < v∗(m) = Δ(λ̃0
∗).(3.17)

If v0 > Δ(0) and λ∗ ∈ (0, λ̃0
∗) is uniquely determined by v0 = Δ(λ∗), then

un → 0 in C([0, 1 − ε]) ∀ε ∈ (0, 1),
∫ 1

0

undx→ Γ̃(λ∗),

vn(x) → v0 −
Γ̃(λ∗)
d2

mβ−1 uniformly in [0, 1].

If v(m) < v0 ≤ Δ(0), then the above conclusions hold with λ∗ = 0.
Proof. This is similar to the proof of Theorem 3.2. Here we can show that

case (b2) must happen, and then we use Lemma 2.5. We omit the details.
Remark 3.4. Our results in this section reveal an interesting property for the

limiting total biomass limn→∞
∫ 1

0 un(x)dx. First consider the case v∗(m) ≤ v0 ≤
v∗(m). By Theorem 3.1, in this case the above limit has value τ∗C0. By the proof
of Theorem 3.1, we know that τ∗ = T (v0) with T (v0) a strictly increasing function of
v0. Therefore the limit is strictly increasing with v0 for v0 ∈ [v∗(m), v∗(m)].

If v0 ∈ (v∗(m),Λ(0)), then by Theorem 3.2, limn→∞
∫ 1

0
un(x)dx = Γ(λ∗) = Γ ◦

Λ−1(v0). Since Γ(·) and Λ(·) are both strictly decreasing functions, Γ◦Λ−1(·) is strictly
increasing, and hence the limit is strictly increasing with v0 for v0 ∈ (v∗(m),Λ(0)).
However, by Theorem 3.2, this limit takes the same value Γ(0) for all v0 ≥ Λ(0).

If v0 ∈ (Δ(0), v∗(m)), then by Theorem 3.3, the limit takes value Γ̃(λ∗) = Γ̃ ◦
Δ−1(v0), which is strictly increasing in v0, but it takes the same value Γ̃(0) for all
v0 ∈ (v(m),Δ(0)].

Therefore if we denote

v∗∗ = v∗∗(m) := Δ(0), v∗∗ = v∗∗(m) := Λ(0),

then limn→∞
∫ 1

0
un(x)dx is strictly increasing with v0 as v0 varies in the range v∗∗ ≤

v0 ≤ v∗∗, but is constant for v0 ≥ v∗∗ or for v0 ∈ (v(m), v∗∗].
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4. Biological interpretations. In this section we compare our results with the
game theoretical model in [KL] and explain the predictions that our theoretical results
offer for the phytoplankton problem being modelled.

Since u(x) and v(x) are, respectively, rescaled versions of the biomass function
b(x) and the nutrient function R(x) used in the original model of [KL] (see Part I for
details), we will interpret u(x) and v(x) as representing the (steady) distributions of
the biomass and nutrient at depth x of a water column with surface at x = 0 and
bottom at x = 1.

(i) First we note that, if we replace max{C0/2, C0y} in (2.9) by C0, then the
system of equations for (x∗, τ∗) in Theorem 3.1 reduces to the game theoretical
model of [KL], namely, equations (4) and (5) in [KL] with B̂ = τ∗C0. Thus the
game theoretical model of [KL] is a simplified version of the rigorous limiting
equations here. It captures the main properties of the limiting equations but
only in the case that v∗ ≤ v0 ≤ v∗.

(ii) When v0 > v∗ = v∗(m), from Theorem 3.2 and Step 1 of the proof of Theo-
rem 3.1, we see that as σ → ∞ the total biomass has limit

Γ(λ∗) = τ∗C(a∗) > τ∗0C0.

If we have simply used (2.8) and (2.9) with x∗ = 0 to calculate the total
biomass, we would have obtained the incorrect limit τ∗0C0. Similarly, the
limit of the total biomass in the case of Theorem 3.3 is less than the value
one would have obtained by simply using (2.8) and (2.9) with x∗ = 1.

(iii) Remark 3.4 shows that as σ → ∞, the limit of the total biomass is strictly
increasing with v0 in the range v∗∗ ≤ v0 ≤ v∗∗. It is interesting to notice that
the layer position of the biomass (in the limit) already reaches the surface at
v0 = v∗ (i.e., x∗ = 0 when v0 = v∗), but as the nutrient level at the sediment
v0 increases past the critical value v∗, though the layer remains at the surface,
the total biomass keeps increasing until v0 reaches a second critical value v∗∗,
where the total biomass reaches a maximum, and then remains at this value
even if v0 is further increased. On the other hand, if v0 is decreased to v∗,
the layer of the biomass lowers to the bottom (x∗ = 1), but as v0 decreases
past v∗, though the layer remains at the bottom, the total biomass keeps
decreasing until v0 reaches the critical value v∗∗, where the total biomass
reaches its minimal value, and then remains at this minimal value until v0 is
so low (v0 ≤ v(m)) that the phytoplankton can no longer survive.

(iv) Our results support the important predictions in [KL] that depth-regulating
phytoplankton can form a thin layer in a poorly mixed water column and
that the concentration of the limiting nutrient should be low and constant
above the phytoplankton layer and linearly increasing with depth below the
layer. The predictions in item (iii) above seem to provide new insights to this
problem.

(v) We could fix v0 and use a different parameter in the model, say the surface
light level w0, as a varying parameter to interpret the phenomena represented
in items (i)–(iii) above.

Acknowledgment. Y. Du thanks NCTS for the hospitality during his visit,
when a major part of this paper was written.
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Abstract. Motivated by emerging applications from imaging processing, this paper studies the
heat flow of a generalized p-harmonic map into spheres for the whole spectrum, 1 ≤ p < ∞, in a
unified framework. The existence of global weak solutions is established for the flow using the energy
method together with a regularization and a penalization technique. In particular, a BV -solution
concept is introduced and the existence of such a solution is proved for the 1-harmonic map heat
flow. The main idea used to develop such a theory is to exploit the properties of measures of the
forms A · ∇v and A ∧ ∇v, which pair a divergence-L1, or a divergence-measure, tensor field A
and a BV -vector field v. Based on these analytical results, a practical fully discrete finite element
method is then proposed for approximating weak solutions of the p-harmonic map heat flow, and the
convergence of the proposed numerical method is also established.
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1. Introduction. Let Ω ⊂ Rm be a bounded domain with smooth boundary
∂Ω, and let Sn−1 denote the unit sphere in Rn. A map u ∈ C1(Ω, Sn−1) is called a
p-harmonic map if it is a critical point of the following p-energy:

(1.1) Ep(v) :=
1
p

∫
Ω

| ∇v |p dx, 1 ≤ p <∞.

It is well known [12, 21, 40] that the Euler–Lagrange equation of the p-energy is

(1.2) −Δpu = |∇u|pu,

where

(1.3) Δpu := div(|∇u|p−2∇u).

Note that Δp is often called the p-Laplacian. It is easy to see that (1.2) is a degenerate
elliptic equation for p > 2 and a singular elliptic equation for 1 ≤ p < 2. These
degeneracy and singular characteristics both disappear when p = 2.

We call a map u ∈W 1,p(Ω, Sn−1) a weakly p-harmonic map if u satisfies (1.2) in
the distributional sense. Here W 1,p(Ω, Sn−1) denotes the Sobolev space

W 1,p(Ω, Sn−1) :=
{
u ∈W 1,p(Ω,Rn); u(x) ∈ Sn−1 for a.e. x ∈ Ω

}
.
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One well-known method for looking for a weakly p-harmonic map is the homotopy
method (or the gradient descent method), which then leads to considering the follow-
ing gradient flow (or heat flow) for the p-energy functional Ep complemented with
some given boundary and initial conditions:

ut − Δpu = |∇u|pu in ΩT := Ω × (0, T ),(1.4)

|u| = 1 in ΩT .(1.5)

Clearly, (1.4) is a degenerate parabolic equation for p > 2 and a singular parabolic
equation for 1 ≤ p < 2. Again, these degeneracy and singular characteristics both
disappear when p = 2.

We remark that p-harmonic maps and weakly p-harmonic maps between two
Riemannian manifolds (M, g) and (N, h) and their heat flows can be defined in the
same fashion (cf. [21, 43, 44, 46, 47]). In this paper, we shall only consider the case
M = Ω andN = Sn−1, which is sufficient for the applications that we are interested in.

The p-harmonic map and its heat flow, in particular, the harmonic map and the
harmonic map heat flow (p = 2), have been extensively studied in the past twenty
years for 1 < p <∞ (cf. [9, 11, 12, 13, 16, 17, 18, 21, 22, 25, 30, 31, 32, 34, 38, 39, 40,
41, 46, 48] for 1 < p <∞; [26, 27] for p = 1). In the case when the target manifold is a
sphere, the existence of a global weak solution for the harmonic flow was first proved by
Chen in [11] using a penalization technique. The result and the penalization technique
were extended to the p-harmonic flow for p > 2 by Chen, Hong, and Hungerbühler in
[12]. The p-harmonic flow for 1 < p < 2 was solved by Misawa in [41] using a time
discretization technique (the method of Rothe) proposed in [31], and by Liu in [39]
using a penalization technique similar to that of [12]. The p-harmonic flow (1 < p <
∞) from a unit ball in Rm into S1 ⊂ R2 was studied by Courilleau and Demengel in
[16]. In the case of general target manifolds the p-harmonic flow (1 < p < ∞) with
small initial data was treated by Fardoun and Regbaoui in [22], and the conformal
case of the p-harmonic flow was considered by Hungerbühler in [33]. Nonuniqueness
of the p-harmonic flow was addressed in [15, 32]. Recently, Giga, Kashima, and
Yamazaki [28] proved existence of strong local solutions for 1-harmonic map heat
flow using nonlinear semigroup theory. Besides the great amount of mathematical
interests in the p-harmonic map and the p-harmonic flow, research on these problems
has been strongly motivated by applications of the harmonic map and its heat flow
in liquid crystals and micromagnetism; we refer to [2, 5, 7, 8, 19, 29, 36, 37, 51] and
the references therein for detailed exposition in this direction.

Another reason, which is the main motivation of this paper, for studying the
p-harmonic map and its heat flow, in particular, for 1 ≤ p < 2, arises from their
emerging and intriguing applications to image processing for denoising color images
(cf. [49, 50]). We recall that a color image is often expressed by the RGB color
system, in which a vector I(x) = (r(x), g(x), b(x)) for each pixel x = (x1, x2) is used
to represent the intensity of the three primary colors (red, green, and blue). The
chromaticity and brightness of a color image are deduced from the RGB system by
decomposing I(x) into two components,

η(x) := | I(x) | (brightness),

g :=
I(x)
| I(x) | (chromaticity),
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where |I(x)| stands for the Euclidean norm of I(x). By definition, the chromaticity
must lie on the unit sphere S2. One of the main benefits of the chromaticity and
brightness decomposition is that it allows one to denoise η and g separately using
different methods. For example, one may denoise η by the well-known total variation
(TV) model of Rudin, Osher, and Fatemi [42] (also see [24]), but denoise g by another
model. One such model is to define the recovered chromaticity u as a (generalized)
p-harmonic map [49, 50]

(1.6) u = argmin
v∈W 1,p(Ω;S2)

Jp,λ(v) for p ≥ 1,

where

Jp,λ(v) := Ep(v) +
λ

2

∫
Ω

|v − g|2 dx for λ > 0.(1.7)

In particular, the cases 1 ≤ p < 2 are the most important and interesting since the
recovered images keep geometric information such as edges and corners of the noisy
color images. We shall call (1.6) the p-harmonic model for color image denoising.
We also remark that the second term on the right-hand side of (1.7) is often called
a fidelity term. As in the TV model [42, 24], the parameter λ controls the trade-off
between goodness of fit-to-the-data and variability in u.

Again, to find a solution for the p-harmonic map model (1.6), we consider the
gradient flow (heat flow) for the energy functional Jp,λ, which is given by

ut − Δpu + λ(u − g) = μp,λu in ΩT ,(1.8)

|u| = 1 in ΩT ,(1.9)

Bpn = 0 on ∂ΩT := ∂Ω × (0, T ),(1.10)

u = u0 on Ω × {t = 0},(1.11)

where

(1.12) Bp := |∇u|p−2∇u, μp,λ := |∇u|p + λ (1 − u · g).

The goals of this paper are twofold. First, we shall present a general theory
of weak solutions for the parabolic system (1.8)–(1.11) for the whole spectrum 1 ≤
p < ∞. To the best of our knowledge, there is no theory known in the literature
for the 1-harmonic map and its heat flow, which on the other hand is the most
important (and most difficult) case for the color image denoising application. So our
theory and results fill this void. Furthermore, our theory handles the p-harmonic
map heat flow (1.8)–(1.11) for all 1 ≤ p < ∞ in a unified fashion, rather than
treating the system separately for different values of p and using different methods
(cf. [11, 12, 13, 16, 18, 21, 22, 30, 31, 34, 41, 46, 48]). Second, based on the above
theoretical work, we also develop and analyze a practical fully discrete finite element
method for approximating the solutions of the p-harmonic map heat flow (1.8)–(1.11).

We now highlight the main ideas and key steps of our approach. Notice that
there are two nonlinear terms in the p-harmonic flow: the p-Laplace term and the
right-hand side due to the nonconvex constraint |u| = 1, so the main difficulties are
how to handle these two terms and how to pass to the limit in these two terms when a
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compactness argument is employed. To handle the degeneracy of the p-Laplace term,
we approximate the p-energy Ep(v) by the following regularized energy

Eε
p(v) :=

bp(ε)
2

∫
Ω

|∇v|2 dx+
1
p

∫
Ω

|∇v|pε dx(1.13)

=
∫

Ω

{bp(ε)
2

|∇v|2 +
1
p

[
|∇v|2 + ap(ε)2

] p
2

}
dx,

where ε > 0 and

(1.14) ap(ε) :=

{
0 if 2 ≤ p <∞,

ε if 1 ≤ p < 2,
bp(ε) := εα for 1 ≤ p <∞

for some α > 0. Here and in the rest of this paper we adopt the shorthand notation

(1.15) |∇v|ε :=
√
|∇v|2 + ap(ε)2.

To handle the nonconvex constraint |u| = 1, we approximate it by the well-
known Ginzburg–Landau penalization [7], that is, we abandon the exact constraint,
but enforce it approximately by adding a penalization term to the regularized p-energy
Eε

p. To this end, we replace the energy Eε
p by

(1.16) Eε,δ
p (v) := Eε

p(v) + Lδ(v) for ε, δ > 0,

where

Lδ(v) :=
1
δ

∫
Ω

F (v) dx, F (v) :=
1
4
(
|v|2 − 1

)2 ∀δ > 0, v ∈ Rn.(1.17)

So the idea is, as δ gets smaller and smaller, the energy functional Eε,δ
p becomes more

and more favorable for maps u which take values close to the unit sphere Sn−1.
Consequently, the regularized model for the p-harmonic model (1.6) (with general

m and n) reads

(1.18) uε,δ = argmin
v∈W 1,p(Ω;Rn)

Jε,δ
p,λ(v) for p ≥ 1,

where

Jε,δ
p,λ(v) := Eε,δ

p (v) +
λ

2

∫
Ω

|v − g|2 dx.(1.19)

In addition, the gradient flow for the regularized energy functional Jε,δ
p,λ is given by

uε,δ
t − Δε

pu
ε,δ +

1
δ

(
|uε,δ|2 − 1

)
uε,δ + λ(uε,δ − g) = 0 in ΩT ,(1.20)

Bε,δ
p n = 0 on ∂ΩT ,(1.21)

uε,δ = u0 on Ω × {t = 0},(1.22)

which is an approximation to the original flow (1.8)–(1.11), where

(1.23) Bε,δ
p := bp(ε)∇uε,δ + |∇uε,δ|p−2

ε ∇uε,δ, Δε
pu

ε,δ := divBε,δ
p .
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After having introduced the regularized flow (1.20)–(1.22), the next step is to
analyze this regularized flow, in particular, to derive uniform (in ε and δ) a priori
estimates. Finally, we pass to the limit in (1.20)–(1.22), first letting δ → 0 and then
setting ε → 0. As pointed out earlier, the main difficulty here is passing to the limit
in two nonlinear terms on the left-hand side of (1.20). For 1 < p < ∞, this will be
done using a compactness technique and exploiting the symmetries of the unit sphere
Sn−1, as done in [11, 12, 13, 21, 32, 41, 46]. However, for p = 1, since L1(Ω) is not a
reflexive Banach space, instead of working in the Sobolev spaceW 1,1(Ω), we are forced
to work in BV (Ω), the space of functions of bounded variation, since solutions of the
original 1-harmonic map heat flow (1.8)–(1.11) belong only to L∞((0, T ); [BV (Ω)]n)
in general. This lack of regularity makes the analysis for p = 1 much more delicate
than that for 1 < p <∞.

We note also that the regularized flow (1.20)–(1.22) not only plays an important
role for proving existence of weak solutions for the flow (1.8)–(1.11), but also provides
a practical and convenient formulation for approximating the solutions. The second
goal of this paper is to develop a practical fully discrete finite element method for ap-
proximating solutions of the regularized flow (1.20)–(1.22); and hence, approximating
solutions of the original p-harmonic flow (1.8)–(1.11) via the regularized flow. It is
well known that explicitly enforcing the nonconvex constraint |u| = 1 at the discrete
level is hard to achieve. The penalization used in (1.20) allows one to get around
this numerical difficulty at the expense of introducing an additional scale, δ. As ex-
pected, the numerical difficulty now is to control the dependence of the regularized
solutions on δ and to establish scaling laws which relate the numerical scales (spatial
and temporal mesh sizes) to the penalization scale δ for both stability and accuracy
concerns. We refer to [6] and the references therein for more discussions in this di-
rection and discussions on a related problem arising from liquid crystal applications.
Borrowing a terminology from the phase transition of materials science, the regular-
ized flow (1.20)–(1.22) may be regarded as a “diffuse interface” model for the original
“sharp interface” model (1.8)–(1.11), and the “diffuse interface” is represented by the
region {|uε,δ| < 1 − δ}.

The remaining part of the paper is organized as follows. In section 2 we collect
some known results and facts, which will be used in the later sections. In section 3
we present a complete analysis for the regularized flow (1.20)–(1.22), which includes
proving its well-posedness, an energy law, a maximum principle, and uniform (in ε
and δ) a priori estimates. As expected, these uniform a priori estimates serve as
the basis for carrying out the energy method and the compactness arguments in the
later sections. In section 4 we pass to the limit in (1.20)–(1.22) as δ → 0 for each
fixed ε > 0. As in [13, 12, 32, 41], the main idea is to exploit the monotonicity
of the operator Δε

p and the symmetries of the unit sphere Sn−1. Sections 5 and
6 are devoted to passing to the limit as ε → 0 in the ε-dependent limiting system
obtained in section 4. For 1 < p < ∞, this will be done by following the idea of
section 4. However, for p = 1 the analysis becomes much more delicate because
the nonreflexivity of W 1,1(Ω) forces us to work in the BV (Ω) space. The main idea
used to develop a BV -solution concept is to exploit the properties of measures of
the forms A · ∇v and A ∧ ∇v, which pair a divergence-L1, or a divergence-measure,
tensor field A and a BV -vector field v. Finally, based on the theoretical results
of sections 3–6, in section 7 we propose and analyze a practical fully discrete finite
element method for approximating solutions of the p-harmonic flow (1.8)–(1.11) via
the regularized flow (1.20)–(1.22). It is proved that the proposed numerical scheme
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satisfies a discrete energy inequality, which mimics the differential energy inequality,
and this leads to uniform (in ε and δ) a priori estimates and the convergence of the
numerical approximations to the solutions of the flow (1.8)–(1.11) as the spatial and
temporal mesh sizes, and the parameters ε and δ, all tend to zero.

2. Preliminaries. The standard notation for spaces is adopted in this paper
(cf. [1, 3]). For example, W k,p(Ω), k ≥ 0 integer and 1 ≤ p <∞, denotes the Sobolev
spaces over the domain Ω and ‖ · ‖W k,p denotes its norm. W 0,p(Ω) = Lp(Ω) and
W k,2(Ω) = Hk(Ω) are also used. Lq((0, T );W k,p(Ω,Rn)) denotes the space of vector-
valued functions (or maps), whose W k,p(Ω)-norm is Lq-integrable as a function of t
over the interval (0, T ), and ‖ · ‖Lq(W k,p) := (

∫ T

0 ‖ · ‖q
W k,pdt)

1
q for q ∈ [1,∞) denotes

its norm, with the standard modification for q = ∞. We use 〈·, ·〉 to denote a generic
dual product between elements of a Banach space X and its dual space X ′.

In addition, M(Ω) (resp., [M(Ω)]n) denotes the space of real-valued (resp., Rn-
valued) finite Radon measures on Ω. Recall that M(Ω) is the dual space of C0(Ω)
(cf. [3]). For a positive non-Lebesgue measure μ ∈ M(Ω), Lp(Ω, μ) is used to denote
the space of Lp-integrable functions with respect to the measure μ, and for f ∈
L1(Ω, μ), the measure fμ is defined by

fμ(A) :=
∫

A

f dμ for any Borel set A ⊂ Ω.

For any μ ∈ M(Ω), μ = μa + μs denotes its Radon–Nikodým decomposition, where
μa and μs, respectively, denotes the absolute continuous part and the singular part
of μ with respect to the Lebesgue measure Ln.

Furthermore, BV (Ω) is used to denote the space of functions of bounded variation.
Recall that a function u ∈ L1(Ω) is called a function of bounded variation if all of its
first order partial derivatives (in the distributional sense) are measures with finite
total variations in Ω. Hence, the gradient of such a function u, denoted by Du, is a
bounded vector-valued measure, with the finite total variation

(2.1) |Du| ≡ |Du|(Ω) := sup
{∫

Ω

−u divv dx ; v ∈ [C1
0 (Ω)]n, ‖v ‖L∞ ≤ 1

}
.

BV (Ω) is known to be a Banach space endowed with the norm

(2.2) ‖ u ‖BV := ‖ u ‖L1 + |Du|.

For any u ∈ BV (Ω), (Du)a and |Du|a are used to denote, respectively, the absolute
continuous part of Du and |Du| with respect to the Lebesgue measure Ln. We refer
to [3] for detailed discussions about the space BV (Ω) and properties of BV functions.

For any vector a ∈ Rn and any matrices A, B ∈ Rn×m with jth column vectors
A(j) and B(j), respectively, we define the following wedge products:

A∧ a := [A(1) ∧ a, . . . ,A(m) ∧ a], a ∧A := [a ∧ A(1), . . . ,a ∧ A(m)],(2.3)

A∧ B := A(1) ∧ B(1) + · · · + A(m) ∧ B(m).(2.4)

We point out that (2.4) defines A∧B to be a vector instead of a matrix, which seems
not to be natural. However, we shall see in section 6 that it turns out that this is a
convenient and useful notation.
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We conclude this section by citing some known results which will be used in the
later sections. The first result is known as “the decisive monotonicity trick,” and its
proof can be found in [52].

Lemma 2.1. Let X be a reflexive Banach space, and X ′ denote the dual space of
X. Suppose that an operator F : X −→ X ′ satisfies

(i) F is monotone on X, that is, 〈Fu −Fv, u− v〉 ≥ 0 for all u, v ∈ X;
(ii) F is hemicontinuous, that is, the function t �→ 〈F(u + tv), w〉 is continuous

on [0, 1] for all u, v, w ∈ X.
In addition, suppose that uk → u and Fuk → f weakly in X and X ′, respectively, as
n→ ∞, and

lim
k→∞

〈Fuk, uk〉 ≤ 〈f, u〉.

Then

Fu = f.

The second lemma is a compactness result, it can be proved following the proof
of Theorem 2.1 of [12] (also see Theorem 3 of Chapter 4 of [20]) using the fact that
the operator Δε

p is uniformly elliptic.
Lemma 2.2. For 1 ≤ p < ∞, let p∗ = max{2, p}. For a fixed ε > 0, let

{wε,δ}δ>0 be bounded in L∞((0, T );W 1,p∗
(Ω,Rn)), and let {fε,δ}δ>0 be bounded in

L1((0, T );L1(Ω, Rn)), both uniformly in δ. Moreover, suppose that {∂wε,δ

∂t }δ>0 is
bounded in L2((0, T ); L2(Ω,Rn)) uniformly in δ and wε,δ satisfies the equation

∂wε,δ

∂t
− Δε

pw
ε,δ = fε,δ in ΩT , δ > 0,

in the distributional sense. Then {wε,δ}δ>0 is precompact in Lq((0, T );W 1,q(Ω,Rn))
for all 1 ≤ q < p∗.

The last lemma is a variation of Lemma 2.2, and its proof can be found in [38]
(also see Lemma 9 of [40]).

Lemma 2.3. For 1 < p <∞, let {wε}ε>0 be bounded in L∞((0, T );W 1,p(Ω,Rn)),
and {fε} be bounded in L1((0, T ); L1(Ω,Rn)), both uniformly in ε. Moreover, suppose
that {∂wε

∂t } is bounded uniformly in ε in L2((0, T );L2(Ω,Rn)) and wε satisfies the
equation

∂wε

∂t
− Δε

pw
ε = fε in ΩT , ε > 0,

in the distributional sense. Then {wε}ε>0 is precompact in Lq((0, T );W 1,q(Ω,Rn))
for all 1 ≤ q < p.

Remark 2.1. In Lemma 2.2, ε > 0 is a fixed parameter and the differential
operator Δε

p does not depend on the variable index δ. It can be shown that (cf.
Theorem 2.1 of [12]) that the lemma still holds for ε = 0 when p ≥ 2. On the other
hand, ε is a variable index in Lemma 2.3, and the operator Δε

p also depends on the
variable index ε.

3. Well-posedness of the regularized flow (1.20)–(1.22). In this section we
shall analyze the regularized flow (1.20)–(1.22) for each fixed pair of positive numbers
(ε, δ). We establish an energy law, a maximum principle, uniform (in both ε and δ)
a priori estimates, and existence and uniqueness of weak and classical solutions. We
begin with a couple of definitions for solutions to (1.20)–(1.22).
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Definition 3.1. For 1 ≤ p < ∞, a map uε,δ : ΩT → Rn is called a global weak
solution to (1.20)–(1.22) if

(i) uε,δ ∈ L∞((0, T );W 1,p∗
(Ω,Rn))∩H1((0, T );L2(Ω,Rn)), for p∗ = max{2, p};

(ii) |uε,δ| ≤ 1 a.e. in ΩT ;
(iii) uε,δ satisfies (1.20)–(1.22) in the distributional sense.
Definition 3.2. A weak solution uε,δ to (1.20)–(1.22) is called a strong solution

if uε,δ ∈ Lp((0, T ); W 2,p∗
(Ω,Rn)) ∩ H1((0, T );Lp∗

(Ω,Rn)). It is called a regular
solution if in addition uε,δ ∈ H1((0, T ); W 1,p∗

(Ω,Rn)).

3.1. Energy law and a priori estimates. Since (1.20)–(1.22) is the gradient
flow for the functional Jε,δ

p,λ, its regular solutions must satisfy a dissipative energy law.
Indeed, we have the following lemma.

Lemma 3.3. Let u0 and g be sufficiently smooth, and suppose that uε,δ is a
regular solution to (1.20)–(1.22). Then uε,δ satisfies the following energy law:

(3.1) Jε,δ
p,λ(uε,δ(s)) +

∫ s

0

‖uε,δ
t (t) ‖2

L2 dt = Jε,δ
p,λ(u0) for a.e. s ∈ [0, T ].

Proof. Testing (1.20) with uε,δ
t we get

‖uε,δ
t (t) ‖2

L2 +
d

dt

∫
Ω

{ bp(ε)
2

|∇uε,δ(t)|2 +
1
p
|∇uε,δ(t)|pε

+
1
δ
F (uε,δ(t)) +

λ

2
|uε,δ(t) − g|2

}
dx = 0.

The desired identity (3.1) then follows from integrating the above equation in t over
the interval [0, s] and using the definition of Jε,δ

p,λ.
The above energy law immediately implies the following uniform (in ε and δ) a

priori estimates.
Corollary 3.4. Suppose that u0 and g satisfy

(3.2) Jε,δ
p,λ(u0) ≤ c0

for some positive constant c0 independent of ε and δ. Then there exists another
positive constant C := C(p, λ, c0) which is also independent of ε and δ such that

‖uε,δ ‖L∞(W 1,p) + ‖uε,δ ‖H1(L2) ≤ C for 1 ≤ p <∞,(3.3)

δ−
1
2 ‖ |uε,δ|2 − 1 ‖L∞(L2) ≤ C for 1 ≤ p <∞,(3.4)

‖ |∇uε,δ|p−2
ε ∇uε,δ ‖L∞(Lp′) ≤ C for p′ =

p

p− 1
, 1 ≤ p <∞,(3.5)

√
bp(ε) ‖∇uε,δ ‖L∞(L2) ≤ C for 1 ≤ p <∞.(3.6)

Next, using a test function technique of [12], we show that the modulus |uε,δ| of
every weak solution uε,δ to (1.20)–(1.22) satisfies a maximum principle.

Lemma 3.5. Suppose that |g| ≤ 1 and |u0| ≤ 1 a.e. in Ω. Then weak solutions
to (1.20)–(1.22) satisfy |uε,δ| ≤ 1 a.e. in ΩT .

Proof. Define the function

(3.7) χ(z) :=
(z − 1)+

z
=

⎧⎨⎩
0 for 0 ≤ z ≤ 1,

z − 1
z

for z > 1.
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It is easy to check that χ is a nonnegative monotone increasing function on the interval
[0,∞).

Now testing (1.20) with v := uε,δχ(|uε,δ|) we get

1
2
d

dt

∫
{|uε,δ|>1}

(
|uε,δ| − 1)2 dx+

∫
{|uε,δ|>1}

{
bp(ε)|∇uε,δ|2 + |∇uε,δ|p−2

ε |∇uε,δ|2

+
1
δ

(
|uε,δ|2 − 1

)
|uε,δ|2 + λ

(
|uε,δ|2 − uε,δ · g

)}
χ(|uε,δ|) dx

+
1
4

∫
{|uε,δ|>1}

[bp(ε) + |∇uε,δ|p−2
ε ] |∇|uε,δ|2|2

|uε,δ|3 dx = 0.

Since uε,δ ·g ≤ |uε,δ|·|g| ≤ |uε,δ|, the second integral is nonnegative. The assertion
then follows from integrating the above inequality and using the assumption |u0| ≤ 1
a.e. in Ω.

3.2. Existence of global weak and classical solutions. We now state and
prove the existence of global weak and classical solutions to the regularized flow (1.20)–
(1.22) for each fixed pair of positive numbers (ε, δ). Since −Δε

p is uniformly elliptic
for all 1 ≤ p < ∞, the existence of classical solutions follows immediately from the
classical theory of parabolic partial differential equations (cf. [35]).

Theorem 3.6. Let Ω ⊂ Rm be a bounded domain with a smooth boundary. Sup-
pose that u0 and g are sufficiently smooth functions (say, u0,g ∈ [C3(Ω)]n) and satisfy
(3.2). Then for each fixed pair of positive numbers (ε, δ), the regularized flow (1.20)–
(1.22) possesses a unique global classical solution uε,δ. Moreover, uε,δ satisfies the
following energy law:

(3.8) Jε,δ
p,λ(uε,δ(s)) +

∫ s

0

‖uε,δ
t (t) ‖2

L2 dt = Jε,δ
p,λ(u0) for a.e. s ∈ [0, T ].

Proof. The existence and uniqueness follow from an application of the standard
results for parabolic systems; see Chapter 5 of [35]. Equation (3.8) follows from
Lemma 3.3.

For less regular functions u0 and g, we have the following weaker result.
Theorem 3.7. Let Ω ⊂ Rm be a bounded domain with smooth boundary. Sup-

pose that |u0| ≤ 1 and |g| ≤ 1 a.e. in Ω and Jε,δ
p,λ(u0) < ∞. Then the regularized

flow (1.20)–(1.22) has a unique global weak solution uε,δ in the sense of Definition 3.1.
Moreover, uε,δ satisfies the following energy inequality:

(3.9) Jε,δ
p,λ(uε,δ(s)) +

∫ s

0

‖uε,δ
t (t) ‖2

L2 dt ≤ Jε,δ
p,λ(u0) ∀s ∈ [0, T ].

Proof. Let ηρ denote any well-known mollifier (cf. [35]), and let u0,ρ := ηρ ∗ u0

and gρ := ηρ ∗ g denote the mollifications of u0 and g, respectively. Let uε,δ
ρ denote

the classical solution to (1.20)–(1.22) corresponding to the smoothed datum functions
u0,ρ and gρ. Hence, uε,δ

ρ satisfies the energy law (3.8) with u0,ρ and gρ in the place
of u0 and g.

From Lemma 3.5 we know that |uε,δ
ρ | satisfies the maximum principle, thus,

max
(x,t)∈ΩT

|uε,δ
ρ (x, t)| ≤ 1.
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Next, since

lim
ρ→0

Jε,δ
p,λ(uε

0,ρ) = Jε,δ
p,λ(u0) <∞,

the energy law for uε,δ
ρ immediately implies that uε,δ

ρ satisfies estimates (3.3)–(3.6),
uniformly in ρ and δ.

The remainder of the proof is to extract a convergent subsequence of {uε,δ
ρ }ρ>0

and to pass to the limit as ρ → 0 in the weak formulation of (1.20). This can be
done easily in all terms of (1.20) except the nonlinear term in Δε

p (see (1.23)). To
overcome the difficulty, we appeal to Minty’s trick or the “decisive monotonicity trick”
as described in Lemma 2.1. Since this part of proof is the same as that of Theorem 1.5
of [12], we omit it and refer to [12] for the details.

The uniqueness of weak solutions follows from a standard perturbation argument
and using the fact that Δε

p is a monotone operator. Finally, (3.9) follows from setting
ρ→ 0 in the energy law (3.8) for uε,δ

ρ and from using the lower semicontinuity of Jε,δ
p,λ

and the L2-norm with respect to L2 weak convergence.
We conclude this section with some remarks.
Remark 3.1. (a) Since W 1,1(Ω) is not a reflexive Banach space, Minty’s trick

would not apply in the case p = 1 without the help of the bp(ε)Δ term in the operator
Δε

p (see (1.23)). On the other hand, in the presence of this term, Minty’s trick does
apply since we now deal with the Sobolev space H1(Ω) instead of W 1,1(Ω). In fact,
if bp(ε) = 0 in (1.20), BV solutions are what one can only expect in general for the
regularized flow (1.20)–(1.22) in the case p = 1 (cf. [24]).

(b) We also point out that using nonzero parameter bp(ε) is not necessary in the
case 1 < p <∞. For example, the conclusion of Theorem 3.7 still holds if we replace
the above bp(ε) and p∗ by

b̂p(ε) =

{
0 if 1 < p <∞,

εα if p = 1 (α > 0)
and p̂∗ =

{
p if 1 < p <∞,

2 if p = 1.

On the other hand, the conclusion of Theorem 3.6 may no longer be true after this
modification.

(c) Theorem 3.7 also holds when Ω is a bounded Lipschitz domain. One way to
prove this assertion is to use the Galerkin method as done in [12], or to use the finite
element method to be introduced in section 7.

4. Passing to the limit as δ → 0. The goal of this section is to derive the
limiting flow of (1.20)–(1.22) as δ → 0 for each fixed ε > 0. As in [11, 12, 13, 31, 41, 46],
the key ideas for passing to the limit are to use the compactness result of Lemma 2.2
and to exploit the symmetries of the unit sphere Sn−1. Our main result of this section
is the following existence theorem.

Theorem 4.1. Let p∗ := max{2, p} and let Ω ⊂ Rm be a bounded Lipschitz
domain. For 1 ≤ p < ∞, suppose that u0 ∈ W 1,p∗

(Ω,Rn), |u0| = 1 and |g| ≤ 1 in
Ω. Then there exists a map uε ∈ L∞((0, T ); W 1,p∗

(Ω,Rn)) ∩H1((0, T );L2(Ω,Rn))
such that

(4.1) |uε| = 1 a.e. in ΩT ,
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and uε is a weak solution (in the distributional sense; see (4.29)) to the problem

uε
t − Δε

pu
ε + λ(uε − g) = με

p,λu
ε in ΩT ,(4.2)

Bε
pn = 0 on ∂ΩT ,(4.3)

uε = u0 on Ω × {t = 0},(4.4)

where

(4.5) με
p,λ := bp(ε)|∇uε|2 + |∇uε|p−2

ε |∇uε|2 + λ(1 − uε · g).

Moreover, uε satisfies the energy inequality

(4.6) Jε
p,λ(uε(s)) +

∫ s

0

‖uε
t (t) ‖2

L2 dt ≤ Jε
p,λ(u0) ≤ J1

p,λ(u0) for a.e. s ∈ [0, T ]

and the additional estimates

‖ |∇uε|p−2
ε ∇uε ‖L∞(Lp′) ≤ C for p′ =

p

p− 1
, 1 ≤ p <∞,(4.7)

‖ divBε
p ‖L2(L1) ≤ C for 1 ≤ p <∞,(4.8)

‖ div (Bε
p ∧ uε) ‖L2(L2) ≤ C for 1 ≤ p <∞,(4.9) √

bp(ε)‖∇uε ‖L∞(L2) ≤ C(4.10)

for some positive ε-independent constant C. Here Bε
p is the n×m matrix

(4.11) Bε
p := bp(ε)∇uε + |∇uε|p−2

ε ∇uε

and

Jε
p,λ(v) := Eε

p(v) +
λ

2

∫
Ω

|v − g|2 dx.(4.12)

Proof. In light of Remark 3.1(c) and the density argument, without loss of the
generality we assume that Ω is a bounded smooth domain, and u0 and g are smooth
functions. On noting that |u0| = 1 implies that Lδ(u0) = 0, then Eε,δ

p (u0) = Eε
p(u0)

in (1.16). Since Eε
p(u0) ≤ E1

p(u0), hence the assumptions on u0 and g ensure (3.2)
holds. Since the proof is long, we divide it into three steps.

Step 1: Extracting a convergent subsequence. Let uε,δ be the weak solution solu-
tion to (1.20)–(1.22) whose existence is established in Theorem 3.7. Since Eε,δ

p (u0) ≤
E1

p(u0), then Jε,δ
p,λ(u0) is uniformly bounded with respect to ε and δ. Hence, (3.9)

implies that uε,δ satisfies the uniform (in both ε and δ) estimates (3.3)–(3.6) and the
maximum principle |uε,δ| ≤ 1 on ΩT .

By the weak compactness of W 1,p(Ω) and Sobolev embedding (cf. [1, 45]), there
exists a subsequence of {uε,δ}δ>0 (still denoted by the same notation) and a map
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uε ∈ L∞((0, T );W 1,p∗
(Ω,Rn)) ∩H1((0, T );L2(Ω,Rn)) such that as δ → 0

uε,δ −→ uε weakly* in L∞((0, T );W 1,p∗
(Ω,Rn)),(4.13)

strongly in L2((0, T );L2(Ω,Rn)),(4.14)

a.e. in ΩT ,(4.15)

uε,δ
t −→ uε

t weakly in L2((0, T );L2(Ω,Rn)),(4.16)

|uε,δ| −→ 1 strongly in L2((0, T );L2(Ω)).(4.17)

It follows immediately from (4.15) and (4.17) that

(4.18) |uε| = 1 a.e. in ΩT .

Step 2: Wedge product technique and passing to the limit. Since |uε,δ| ≤ 1 in
ΩT , an application of the Lebesgue-dominated convergence theorem yields, on noting
(4.15), that

(4.19) uε,δ δ↘0−→ uε strongly in Lr((0, T );Lr(Ω,Rn)) ∀r ∈ [1,∞).

Let

fε,δ :=
1
δ

(
1 − |uε,δ|2

)
uε,δ − λ

(
uε,δ − g

)
.

It follows from the estimate |uε,δ| ≤ 1 and the inequality |uε,δ| ≤ 1
2

(
1 + |uε,δ|2

)
that

1
δ

∫ T

0

∫
Ω

(
1 − |uε,δ|2

)
|uε,δ| dxdt ≤ 1

δ

∫ T

0

∫
Ω

(
1 − |uε,δ|2

)2
dxdt

+
1
δ

∫ T

0

∫
Ω

(
1 − |uε,δ|2

)
|uε,δ|2 dxdt.

Inequality (3.4) immediately implies that the first term on the right-hand side is uni-
formly bounded in δ. Testing (1.20) by uε,δ and using estimates (3.3), (3.5), and (3.6),
we conclude that the second term on the right-hand side is also uniformly bounded
in δ. Hence, fε,δ is uniformly bounded with respect to δ in L1((0, T );L1(Ω,Rn)). By
Lemma 2.2 we have that

(4.20) ∇uε,δ δ↘0−→ ∇uε strongly in Lq((0, T );Lq(Ω,Rn×m)) ∀q ∈ [1, p∗).

This and (3.5) imply that

|∇uε,δ|p−2
ε ∇uε,δ δ↘0−→ |∇uε|p−2

ε ∇uε(4.21)

weakly* in L∞((0, T );Lp′
(Ω,Rn×m)) with p′ = p

p−1 if p �= 1 and weakly* in L∞((0, T );
L∞(Ω,Rn×m)) if p = 1.

Next, taking the wedge product of (1.20) with uε,δ yields

(4.22) uε,δ
t ∧ uε,δ − div

(
Bε,δ

p ∧ uε,δ
)
− λg ∧ uε,δ = 0,
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where Bε,δ
p is defined in (1.23).

Testing (4.22) with any w ∈ L∞((0, T );W 1,p∗
(Ω,Rn)) we get

(4.23)
∫ T

0

∫
Ω

{(
uε,δ

t ∧ uε,δ
)
· w +

(
Bε,δ

p ∧ uε,δ
)
· ∇w − λ

(
g ∧ uε,δ

)
·w
}
dxdt = 0.

It follows from setting δ → 0 in (4.23) and using (4.16), (4.19), and (4.21) that

(4.24)
∫ T

0

∫
Ω

{(
uε

t ∧ uε
)
· w +

(
Bε

p ∧ uε
)
· ∇w − λ

(
g ∧ uε

)
·w
}
dxdt = 0,

where Bε
p is given by (4.11).

Note that (4.18) implies

(4.25) uε
t · uε = 0, (Bε

p)
T uε = 0 a.e. in ΩT .

This in turn yields the following identity

(4.26)
∫ T

0

∫
Ω

{
uε

t · uεϕ+ Bε
p · ∇(uεϕ) + λ

(
uε − g

)
· uεϕ

}
dxdt =

∫ T

0

∫
Ω

με
p,λ ϕdxdt

for any ϕ ∈ L∞(ΩT ) ∩ L∞((0, T );W 1,p∗
(Ω)), where με

p,λ is defined by (4.5).
Finally, for any v ∈ [C1(ΩT )]n, taking w = uε ∧ v in (4.24), ϕ = uε · v in (4.26),

and using the formula a · (b ∧ c) = (a ∧ b) · c yield

(4.27)∫ T

0

∫
Ω

{
uε

t ·
(
uε ∧ (uε ∧ v)

)
+ Bε

p · ∇(uε ∧ (uε ∧ v))

− λg ·
(
uε ∧ (uε ∧ v)

)}
dxdt = 0,

(4.28)∫ T

0

∫
Ω

{
uε

t · uε(uε · v) + Bε
p · ∇(uε(uε · v))

+ λ
(
uε − g

)
· uε(uε · v)

}
dxdt =

∫ T

0

∫
Ω

με
p,λu

ε · v dxdt.

Subtracting (4.27) from (4.28) and using the identity

v = (uε · v)uε − uε ∧ (uε ∧ v),

we obtain that

(4.29)
∫ T

0

∫
Ω

{
uε

t · v + Bε
p · ∇v + λ

(
uε − g

)
· v
}
dxdt =

∫ T

0

∫
Ω

με
p,λu

ε · v dxdt

for any v ∈ [C1(ΩT )]n. This is equivalent to saying that uε is a weak solution (in the
distributional sense) to (4.2)–(4.4).

Step 3: Wrapping up. We conclude the proof by showing the estimates (4.6)–
(4.10). First, (4.6) follows immediately from letting δ → 0 in (3.9), appealing to
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Fatou’s lemma and the lower semicontinuity of L2- and Lp∗
-norms with respect to L2-

and Lp∗
-weak convergence. We emphasize again that this is possible in the case p = 1,

because the uniform (in δ) estimate (3.6) implies that uε ∈ L∞((0, T );H1(Ω,Rn)).
Inequalities (4.7) and (4.10) are direct consequences of (4.6). Finally, the bounds (4.8)
and (4.9) follow immediately from (4.29) and (4.24), respectively. Hence the proof is
complete.

Remark 4.1. If bp(ε) = 0 is used in the regularization, the solutions to (4.1)–(4.4)
are only expected to belong to L∞((0, T ); [BV (Ω)]n) in general when p = 1.

5. Passing to the limit as ε → 0: The case 1 < p < ∞. In this section, we
shall pass to the limit as ε → 0 in (4.1)–(4.4) and show that the limit map is a weak
solution to (1.8)–(1.11). Since the analysis and techniques for passing the limit for
1 < p <∞ and p = 1 are quite different, we shall first consider the case 1 < p <∞ in
this section and leave the case p = 1 to the next section. We begin with a definition
of weak solutions to (1.8)–(1.11) in the case 1 < p <∞.

Definition 5.1. For 1 < p < ∞, a map u : ΩT → Rn is called a global weak
solution to (1.8)–(1.11) if

(i) u ∈ L∞((0, T );W 1,p(Ω,Rn)) ∩H1((0, T );L2(Ω,Rn));
(ii) | bu| = 1 a.e. on ΩT ;
(iii) u satisfies (1.8)–(1.11) in the distributional sense.
Our main result of this section is the following existence theorem.
Theorem 5.2. Let 1 < p <∞, and suppose that the assumptions on u0 and g in

Theorem 4.1 still hold. Then problem (1.8)–(1.11) has a weak solution u in the sense
of Definition 5.1. Moreover, u satisfies the energy inequality

(5.1) Jp,λ(u(s)) +
∫ s

0

‖ut(t) ‖2
L2 dt ≤ Jp,λ(u0) for a.e. s ∈ [0, T ],

where Jp,λ is defined by (1.7).
Proof. We divide the proof into three steps.
Step 1: Extracting a convergent subsequence. Let uε denote the solution of (4.1)–

(4.4) constructed in Theorem 4.1. From (4.1), (4.6)–(4.10), the weak compactness of
W 1,p(Ω), and Sobolev embedding (cf. [1, 45]), there exists a subsequence of {uε}ε>0

(still denoted by the same notation) and a map u ∈ L∞((0, T );W 1,p(Ω,Rn)) ∩
H1((0, T );L2(Ω,Rn)) such that as ε→ 0

uε −→ u weakly* in L∞((0, T );W 1,p(Ω,Rn)),(5.2)

strongly in L2((0, T );Lp(Ω,Rn)),(5.3)

a.e. in ΩT ,(5.4)

bp(ε)∇uε −→ 0 weakly in L2((0, T );L2(Ω,Rn×m)),(5.5)

uε
t −→ ut weakly in L2((0, T );L2(Ω,Rn)).(5.6)

It follows immediately from (5.4) and (4.18) that

(5.7) |u| = 1 a.e. in ΩT .

Step 2: Passing to the limit. First, by (5.4) and the Lebesgue-dominated conver-
gence theorem we have that

(5.8) uε ε↘0−→ u strongly in Lr((0, T );Lr(Ω,Rn)) ∀r ∈ [1,∞).
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Next, let fε := με
p,λu

ε − λ (uε − g). Clearly, fε ∈ L1((0, T );L1(Ω;Rn)) and is
uniformly bounded, on noting (4.5)–(4.6). By Lemma 2.3 we get

(5.9) ∇uε ε↘0−→ ∇u strongly in Lq((0, T );Lq(Ω,Rn×m)) ∀q ∈ [1, p),

which, using (4.7) and (5.5), implies that

|∇uε|p−2
ε ∇uε ε↘0−→ |∇u|p−2∇u weakly* in L∞((0, T );Lp′

(Ω,Rn×m)),(5.10)

Bε
p

ε↘0−→ Bp := |∇u|p−2∇u weakly in L2((0, T );Lp′
∗(Ω,Rn×m)),(5.11)

where p′ = p
p−1 and p′∗ := min{2, p′}.

It then follows from taking ε→ 0 in (4.24) and using (5.6), (5.8), and (5.11) that

(5.12)
∫ T

0

∫
Ω

{(
ut ∧ u

)
· w +

(
Bp ∧ u

)
· ∇w − λ

(
g ∧ u

)
· w
}
dxdt = 0

for any w ∈ C1(ΩT ). Since Bp ∈ L∞((0, T );Lp′
(Ω,Rn×m)), by the standard density

argument one can show that (5.12) also holds for all w ∈ L∞((0, T );W 1,p(Ω,Rn)) ∩
L∞(ΩT ).

Since |u| = 1 a.e. in ΩT , there holds the following identity, which is analogous
to (4.26):

(5.13)
∫ T

0

∫
Ω

{
ut · uϕ+ Bp · ∇(uϕ) + λ

(
u− g

)
· uϕ

}
dxdt =

∫ T

0

∫
Ω

μp,λϕ dxdt

for any ϕ ∈ L∞(ΩT ) ∩ L∞((0, T );W 1,p(Ω,Rn)), where μp,λ is defined by (1.12).
Finally, for any v ∈ [C1(ΩT )]n, on choosing w = u ∧ v in (5.12) and ϕ = u · v in

(5.13), subtracting the resulting equations, and using the identity

v = (u · v)u − u ∧ (u ∧ v),

we obtain that

(5.14)
∫ T

0

∫
Ω

{
ut · v + Bp · ∇v + λ

(
u − g

)
· v
}
dxdt =

∫ T

0

∫
Ω

μp,λu · v dxdt

for any v ∈ [C1(ΩT )]n. Hence, u is a weak solution to (1.8)–(1.11).
Step 3: Wrapping up. We conclude the proof by showing the energy inequal-

ity (5.1). First, notice that (4.6) implies that

(5.15)∫
Ω

{1
p
|∇uε(s)|p +

λ

2
|uε(s) − g|2

}
dx+

∫ s

0

‖uε
t (t) ‖2

L2 dt ≤ Jε
p,λ(u0) ∀s ∈ [0, T ].

Then (5.1) follows from taking ε → 0 in (5.15) and using Fatou’s lemma and the
lower semicontinuity of the Lp-norm with respect to Lp-weak convergence. The proof
is complete.

Remark 5.1. (a) We remark that it was proved in [15, 32, 41] that weak solutions
to (1.8)–(1.11) are not unique in general.

(b) Although the above proof is carried out for any α > 0 in the definition of bp(ε)
(cf. (1.15)), α should be chosen large enough so that the error due to the perturbation
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term bp(ε)Δ is much smaller than the error due to other regularization terms in
numerical simulations.

(c) The existence result of Theorem 5.2 is established under the assumption
u0 ∈ W 1,p∗(Ω,Rn) with p∗ = max{p, 2}. This condition can be weakened to u0 ∈
W 1,p(Ω,Rn) in the case 1 < p < 2 by a smoothing technique.

6. Passing to the limit as ε → 0: The case p = 1. In this section, we
consider the case p = 1 and establish the existence of global weak solutions for the
1-harmonic map heat flow (1.8)–(1.11) by passing to the limit as ε→ 0 in (4.2)–(4.4).
There are two main difficulties which prevent one from repeating the analysis and
techniques of the previous section. First, the compactness result of Lemma 2.3 no
longer holds when p = 1. Second, since the sequence {uε}ε>0 is uniformly bounded
only in L∞((0, T ); [W 1,1(Ω) ∩ L∞(Ω)]n), and W 1,1(Ω,Rn) is not a reflexive Banach
space, hence the limiting map u now belongs to L∞((0, T ); [BV (Ω) ∩ L∞(Ω)]n); i.e.,
u(t) is only a map of bounded variation. As expected, these two difficulties make the
passage to the limit as ε→ 0 more difficult and delicate.

6.1. Technical tools and lemmas. In this subsection, we shall cite some tech-
nical tools and lemmas in order to develop a weak solution concept to be given in the
next subsection for the 1-harmonic map heat flow. Specifically, we need the pairings
A ·Dv and A∧Dv between a tensor field A and a BV -vector field v as a generaliza-
tion of the pairing b ·Dv between a vector field b and a BV -function v developed in
[4, 10]. The proofs of the key results in achieving this can be found in [23], where an
extension of the theory for the 1-harmonic case studied in this section is developed
for a general linear growth functional on the gradient.

We recall from [23] the space of divergence-Lq tensors

(6.1) Y(Ω)q := {A ∈ L∞(Ω;Rn×m); divA ∈ Lq(Ω;Rn)} for 1 ≤ q <∞,

and that A ·Dv and A ∧Dv are defined as follows.
Definition 6.1. For any A ∈ Y(Ω)1 and v ∈ [BV (Ω) ∩ L∞(Ω)]n, we define

A ·Dv and A ∧Dv to be the functionals on C∞
0 (Ω) and [C∞

0 (Ω)]n, respectively, by

〈A ·Dv, ψ〉 := −
∫

Ω

(AT v) · ∇ψ dx−
∫

Ω

(divA · v)ψ dx ∀ψ ∈ C∞
0 (Ω),(6.2)

〈A ∧Dv,w〉 := −
∫

Ω

(A ∧ v) · ∇w dx−
∫

Ω

(divA ∧ v) ·w dx ∀w ∈ [C∞
0 (Ω)]n,(6.3)

where AT stands for the matrix transpose of A and the notation (2.4) is used in (6.3).
We now list some properties of the pairings A · Dv and A ∧ Dv and refer to

section 2 of [23] for their proofs. The first lemma declares that A · Dv and A ∧Dv
are Radon measures in Ω.

Lemma 6.2. For any Borel set E ⊂ Ω, there hold∣∣〈A ·Dv, ψ〉
∣∣≤ max

x∈E
|ψ(x)| · ‖A ‖L∞(E,Rn×m) · |Dv|(E) ∀ψ ∈ C0(E),

∣∣〈A ∧Dv,w〉
∣∣≤ max

x∈E
|w(x)| · ‖A ‖L∞(E,Rn×m) · |Dv|(E) ∀w ∈ [C0(E)]n.

Hence, it follows from the Riesz theorem (cf. Theorem 1.54 of [3]) that both functionals
A ·Dv and A ∧Dv are Radon measures in Ω.
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Corollary 6.3. The measures A ·Dv, |A ·Dv|, A ∧Dv, and |A ∧Dv| all are
absolutely continuous with respect to the measure |Dv| in Ω. Moreover, there hold
inequalities ∣∣(A ·Dv)(E)

∣∣ ≤ ∣∣A ·Dv
∣∣(E) ≤ ‖A‖L∞(E′,Rn×m) · |Dv|(E),(6.4) ∣∣(A ∧Dv)(E)

∣∣ ≤ ∣∣A∧Dv
∣∣(E) ≤ ‖A‖L∞(E′,Rn×m) · |Dv|(E)(6.5)

for all Borel sets E and for all open sets E′ such that E ⊂ E′ ⊂ Ω.
Hence, by the Radon–Nikodým theorem (cf. Theorem 1.28 of [3]), there exist |Dv|-

measurable functions Θ := Θ(A, Dv, x) : Ω → R and Λ := Λ(A, Dv, x) : Ω → Rn

such that

(A ·Dv)(E) =
∫

E

Θ d|Dv| and ‖Θ ‖L∞(Ω,|Dv|) ≤ ‖A‖L∞(Ω,Rn×m),(6.6)

(A ∧Dv)(E) =
∫

E

Λ d|Dv| and ‖Λ ‖L∞(Ω,|Dv|) ≤ ‖A‖L∞(Ω,Rn×m)(6.7)

for all Borel sets E ⊂ Ω.
The second lemma declares that every A ∈ Y(Ω)1 has a well-behaved traction An

on the boundary of a Lipschitz domain Ω.
Lemma 6.4. Let Ω be a bounded domain with a Lipschitz continuous boundary

∂Ω in Rm. Then there exists a linear operator β : Y(Ω)1 → L∞(∂Ω;Rn) such that

‖ β(A) ‖L∞(∂Ω,Rn) ≤ ‖A‖L∞(Ω,Rn×m),(6.8)

〈A,v〉∂Ω =
∫

∂Ω

β(A)(x)v(x) dHm−1 ∀v ∈ [BV (Ω) ∩ L∞(Ω)]n,(6.9)

β(A)(x) = A(x)n(x) ∀x ∈ ∂Ω, A ∈ C1(Ω,Rn×m).(6.10)

Remark 6.1. Since β(A) is a weakly defined traction of A on ∂Ω, hence we shall
use An to denote β(A) in the rest of this section.

The third lemma declares that the following hold.
Lemma 6.5. Let Ω be a bounded domain with a Lipschitz continuous boundary

∂Ω in Rm. Then for any A ∈ Y(Ω)1 and v ∈ [BV (Ω) ∩ L∞(Ω)]n there hold the
identities ∫

Ω

divA · v dx+ (A ·Dv)(Ω) =
∫

∂Ω

An · v dHm−1,(6.11)

∫
Ω

divA ∧ v dx+ (A ∧Dv)(Ω) =
∫

∂Ω

An ∧ v dHm−1.(6.12)

Lemmas 6.6 and 6.7 state continuity results for the measure A ·Dv and A∧Dv
with respect to A and v, respectively.

Lemma 6.6. Let Aj ,A ∈ Y(Ω)1 and suppose that

Aj −→ A weakly∗ in L∞(E),

divAj −→ divA weakly in L1(E)
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for all open sets E ⊂⊂ Ω. Then for all v ∈ [BV (Ω) ∩ L∞(Ω)]n the following hold:

Aj ·Dv −→ A ·Dv weakly∗ in M(Ω),(6.13)

Aj ∧Dv −→ A∧Dv weakly∗ in [M(Ω)]n(6.14)

and

Θ(Aj , Dv, ·) −→ Θ(A, Dv, ·) weakly∗ in L∞(E)∀E ⊂⊂ Ω,(6.15)

Λ(Aj , Dv, ·) −→ Λ(A, Dv, ·) weakly∗ in [L∞(E)]n ∀E ⊂⊂ Ω.(6.16)

Here “E ⊂⊂ Ω” means that E is compactly contained in Ω; that is, E ⊂ E ⊂ Ω and
E is compact.

Lemma 6.7. Let A ∈ Y(Ω)1 and v ∈ [BV (Ω) ∩ L∞(Ω)]n. Suppose that {vj} ⊂
[C∞(Ω) ∩BV (Ω)]n strictly converges to v (cf. Definition 3.14 of [3]). Then

A ·Dvj −→ A ·Dv weakly∗ in M(Ω),(6.17)

A∧Dvj −→ A∧Dv weakly∗ in [M(Ω)]n.(6.18)

Moreover, ∫
Ω

A ·Dvj dx −→
∫

Ω

A ·Dv,(6.19)

∫
Ω

A∧Dvj dx −→
∫

Ω

A ∧Dv.(6.20)

Lemma 6.8 gives the precise representations for the density functions Θ and Λ
defined in Corollary 6.3.

Lemma 6.8. (i) If A ∈ Y(Ω)1 ∩ C(Ω,Rn×m) and v ∈ [BV (Ω) ∩ L∞(Ω)]n, then
there hold

(6.21) Θ(A, Dv, x) = A(x) · Dv
|Dv| (x), Λ(A, Dv, x) = A(x) ∧ Dv

|Dv| (x)

for |Dv| a.e. in Ω.
(ii) If A ∈ Y(Ω)1 and v ∈ [BV (Ω) ∩ L∞(Ω)]n, then there hold

(6.22) Θ(A, Dv, x) = A(x) · Dv
|Dv| (x), Λ(A, Dv, x) = A(x) ∧ Dv

|Dv| (x)

for |Dv|a a.e. in Ω, where Dv
|Dv| denotes the density function of the measure Dv with

respect to the measure |Dv|, and |Dv|a denotes the absolute continuous part of the
measure |Dv| with respect to the Lebesgue measure Ln.

Next, we recall from [23] the space of divergence-measure tensors

(6.23) DT (Ω) :=
{
A ∈ L∞(Ω,Rn×m); divA ∈ [M(Ω)]n

}
and briefly discuss two of its important properties. First, as in the case of the space
of the divergence-L1 tensors Y(Ω)1, Definition 6.1 is still valid for A ∈ DT (Ω) and
v ∈ [BV (Ω) ∩ L∞(Ω) ∩C(Ω)]n (cf. [4]). Second, there is a well-behaved traction An
for every A ∈ DT (Ω).
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Lemma 6.9. Let Ω be a bounded domain with Lipschitz continuous boundary ∂Ω
in Rm. Then there exists a linear operator α : DT (Ω) → L∞(∂Ω;Rn) such that

‖α(A) ‖L∞(∂Ω,Rn) ≤ ‖A‖L∞(Ω,Rn×m),(6.24)

〈A,v〉∂Ω =
∫

∂Ω

α(A)(x)v(x) dHm−1 ∀v ∈ [BV (Ω) ∩ L∞(Ω) ∩ C(Ω)]n,(6.25)

α(A)(x) = A(x)n(x) ∀x ∈ ∂Ω, A ∈ C1(Ω,Rn×m).(6.26)

Moreover, for any A ∈ DT (Ω) and v ∈ [BV (Ω) ∩ L∞(Ω) ∩ C(Ω)]n, let An := α(A)
on ∂Ω. Then there hold the following Green’s formulas:

(divA · v)(Ω) + (A ·Dv)(Ω) =
∫

∂Ω

An · v dHm−1,(6.27)

(divA∧ v)(Ω) + (A ∧Dv)(Ω) =
∫

∂Ω

An ∧ v dHm−1.(6.28)

Third, the following product rule holds.
Lemma 6.10. For any A ∈ DT (Ω) and v ∈ [BV (Ω) ∩ L∞(Ω)]n, the identities

div(AT v) = (divA) · v + A ·Dv,(6.29)

div(A ∧ v) = (divA) ∧ v + A ∧Dv(6.30)

hold in the sense of Radon measures in Ω, where v denotes the limit of a mollified
sequence for v through a positive symmetric mollifier, and A ·Dv (resp., A∧Dv)
is a Radon measure which is absolutely continuous with respect to the measure |Dv|,
and whose absolutely continuous part (A ·Dv)a (resp., (A ∧Dv)a) with respect to the
Lebesgue measure Lm in Ω coincides with A· (∇v)a (resp., A∧ (∇v)a) a.e. in Ω, that
is, (A ·Dv)a = A · (∇v)a (resp., (A ∧Dv)a = A ∧ (∇v)a) for Lm a.e. in Ω.

Remark 6.2. Equations (6.29) and (6.30) hold without all the overbars if either
v ∈ [BV (Ω) ∩ L∞(Ω) ∩ C(Ω)]n or A ∈ Y(Ω)1.

Remark 6.3. It should be noted that the results of Lemmas 6.6–6.8 also hold for
the tensor fields in DT (Ω) and the vector fields in [BV (Ω) ∩ L∞(Ω) ∩ C(Ω)]n.

6.2. Existence of weak solutions of 1-harmonic map heat flow. Through-
out the rest of this paper we let B1(Rn×m) denote the unit ball in the Euclidean space
Rn×m; that is,

B1(Rn×m) =
{
A ∈ Rn×m; |A| :=

( m∑
j=1

n∑
i=1

A2
ij

) 1
2 ≤ 1

}
.

In addition, let

σε
λ := με

1,λu
ε, Bε :=

∇uε

|∇uε|ε
.

Hence Bε
1 = b1(ε)∇uε + Bε (cf. (4.11)).

We now give a definition of weak solutions to (1.8)–(1.11) in the case p = 1.
Definition 6.11. For p = 1, a map u : ΩT → Rn is called a global weak solution

to (1.8)–(1.11) if there exists a tensor (or matrix-valued function) B such that
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(i) u ∈ L∞((0, T ); [BV (Ω) ∩ L∞(Ω)]n) ∩H1((0, T );L2(Ω,Rn));
(ii) |u| = 1 for Lm+1 a.e. in ΩT ;
(iii) B ∈ L∞((0, T );L∞(Ω, B1(Rn×m))) ∩ L2((0, T );DT (Ω));
(iv) u and B satisfy B ∧ u ∈ L2((0, T );Y(Ω)2), BTu = 0, and B · (Du)a = |Du|a

for Lm+1 a.e. in ΩT ;
(v) Bn = 0 on ∂ΩT in the sense of Lemma 6.9;
(vi) there holds the identity∫ T

0

∫
Ω

{
ut · v + B · ∇v + λ(u − g) · v

}
dxdt =

∫ T

0

(∫
Ω

v dσλ

)
dt

for any v ∈ [C1(ΩT )]n, where σλ denotes the vector-valued Radon measure

σλ = (B ∧ u) ∧Du + λ (1 − g · u)u.(6.31)

Moreover, the Radon measure (B ∧ u) ∧ Du is absolutely continuous with
respect to the measure |Du|, and for L1 a.e. t ∈ (0, T ) there exists a function
Φ(B, Du, x, t) : Ω → R such that

((B ∧ u) ∧Du)(E) =
∫

E

Φ(B ∧ u, Du, x, t) d|Du| for all Borel sets E ⊂ Ω,

‖Φ(t) ‖L∞(Ω,|Du|) ≤ ‖B(t) ‖L∞(Ω,Rn×m) for L1 a.e. t ∈ (0, T ),

Φ(B ∧ u, Du, x, t) = (B(t) ∧ u) ∧ Du
|Du| for |Du|aa.e. in Ω, L1 a.e. t ∈ (0, T ),

((B ∧ u) ∧Du)a = (B ∧ u) ∧ (Du)a = |Du|au for Lm+1 a.e. in ΩT .

Remark 6.4. (a) The tensor field B extends Du
|Du| as a calibration across the gulfs.

(b) If u(t) ∈ W 1,1

loc(Ω) and B(t) ∈ Y(Ω)1, using (ii) and (iv) and the identity
(a∧b)∧ c = (a · c)b− (b · c)a we get that (B ∧u)∧Du = |∇u|u. Hence, (6.31) can
be rewritten as

(6.32) σλ = |∇u|u + λ (1 − g · u)u.

Thus, (6.31) is a weak form of (6.32) since |Du|u may not be defined for u(t) ∈
[BV (Ω) ∩ L∞(Ω)]n and B(t) ∈ DT (Ω).

Our main result of this section is the following existence theorem.
Theorem 6.12. Let p = 1, and suppose that u0 ∈ H1(Ω,Rn) and g ∈ L2(Ω,Rn)

with |u0| = 1 and |g| ≤ 1 a.e. in Ω. Then problem (1.8)–(1.11) has a global weak
solution u in the sense of Definition 6.11. Moreover, u satisfies the energy inequality

(6.33) Iλ(u(s)) +
∫ s

0

‖ut(t) ‖2
L2 dt ≤ Iλ(u0) for a.e. s ∈ [0, T ],

where

(6.34) Iλ(u) := |Du|(Ω) +
λ

2

∫
Ω

|u− g|2 dx.

Proof. The proof is divided into four steps.
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Step 1: Extracting a convergent subsequence and passing to the limit. Let uε

denote the solution of (4.1)–(4.4) constructed in Theorem 4.1. It follows from (4.1),
(4.6), (4.7), and (4.8) that {uε}ε>0 is uniformly bounded in L∞((0, T ); [W 1,1(Ω) ∩
L∞(Ω)]n) ∩ H1((0, T );L2(Ω,Rn)), {Bε}ε>0 in L∞((0, T );L∞(Ω, B1(Rn×m))), and
{divBε

1}ε>0 in L2((0, T );L1(Ω;Rn)), and {σε
λ}ε>0 is uniformly bounded in L∞((0, T );

L1(Ω,Rn)). Since L1(Ω) ⊂ M(Ω) and W 1,1(Ω) ⊂ BV (Ω), by the weak com-
pactness of M(Ω) and BV (Ω) (cf. [3]) we have that there exist subsequences of
{uε}ε>0, {Bε}ε>0, {Bε

1}ε>0, and {σε
λ}ε>0 (still denoted by the same notation), re-

spectively, and maps u ∈ L∞((0, T ); [BV (Ω) ∩ L∞(Ω)]n) ∩H1((0, T );L2(Ω,Rn)),
B ∈ L∞((0, T );L∞(Ω, B1(Rn×m))), ν ∈ L2((0, T ); [M(Ω)]n), and σλ ∈ L∞((0, T );
[M(Ω)]n), respectively, such that as ε→ 0

uε −→ u weakly* in L∞((0, T ); [BV (Ω) ∩ L∞(Ω)]n),(6.35)

strongly in L2((0, T );L1(Ω,Rn))(6.36)

a.e. in ΩT ,(6.37)

b1(ε)∇uε −→ 0 weakly in L2((0, T );L2(Ω,Rn×m)),(6.38)

uε
t −→ ut weakly in L2((0, T );L2(Ω,Rn)),(6.39)

divBε
1 −→ ν weakly* in L2((0, T ); [M(Ω)]n),(6.40)

Bε −→ B weakly* in L∞((0, T );L∞(Ω, B1(Rn×m))),(6.41)

σε
λ −→ σλ weakly* in L∞((0, T ); [M(Ω)]n).(6.42)

It follows immediately from (6.37) and (4.18) that

(6.43) |u| = 1 a.e. in ΩT ,

and an application of the Lebesgue-dominated convergence theorem yields that

(6.44) uε ε↘0−→ u strongly in Lr((0, T );Lr(Ω,Rn)) ∀r ∈ [1,∞).

Now, taking ε → 0 in (4.24), and (4.29) (with p = 1) we have for any v ∈
[C1(ΩT )]n and w ∈ L∞((0, T );H1(Ω;Rn))∫ T

0

∫
Ω

{(
ut ∧ u

)
·w +

(
B ∧ u

)
· ∇w − λ

(
g ∧ u

)
· w
}
dxdt = 0,(6.45)

∫ T

0

∫
Ω

{
ut · v + B · ∇v + λ

(
u− g

)
· v
}
dxdt =

∫ T

0

(∫
Ω

v dσλ

)
dt.(6.46)

Step 2: Identifying ν and σλ. First, it follows from the identity (Bε)T uε = 0 (cf.
(4.25)), (6.41), and (6.44) that

(6.47) BTu = 0 a.e. in ΩT .

Second, for any v ∈ [C1(ΩT )]n, it follows from (6.38), (6.40), and (6.41) that∫
ΩT

v · dν = lim
ε→0

∫
ΩT

v · divBε
1 dxdt = − lim

ε→0

∫
ΩT

∇v · Bε
1 dxdt = −

∫
ΩT

∇v · B dxdt.
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Hence, divB exists and

(6.48) divB = ν, and therefore B ∈ L2((0, T );DT (Ω)).

It then follows from (6.11) that

Bn = 0 on ∂ΩT .

Third, notice that (6.45) immediately implies that

(6.49) div(B ∧ u) ∈ L2(ΩT ,Rn), and hence B ∧ u ∈ L2((0, T );Y(Ω)2).

Let {uρ} denote the smooth approximation sequence of u as constructed in The-
orem 3.9 of [3]. For any v ∈ [C1

0 (ΩT )]n, setting w = uρ ∧ v in (6.45) we get

(6.50)
∫ T

0

∫
Ω

{
ut ·
(
u∧(uρ ∧v)

)
+
(
B∧u

)
·∇(uρ∧v)−λg ·

(
u∧(uρ∧v)

)}
dxdt = 0.

It follows from (6.43), the convergence property of uρ (cf. [3]), and the identity u ∧
(u ∧ v) = u(u · v) − v that

lim
ρ→0

∫
Ω

ut ·
(
u ∧ (uρ ∧ v)

)
dx =

∫
Ω

ut ·
(
u ∧ (u ∧ v)

)
dx =

∫
Ω

ut ·
(
u(u · v) − v

)
dx

= −
∫

Ω

ut · v dx,

lim
ρ→0

∫
Ω

g ·
(
u ∧ (uρ ∧ v)

)
dx =

∫
Ω

g ·
(
u ∧ (u ∧ v)

)
dx

=
∫

Ω

{(
u− g

)
· v − (1 − g · u)u · v

}
dx.

It follows from Theorem 3.9 of [3], Lemma 6.7, and the identity∫
Ω

(
B ∧ u

)
· ∇(uρ ∧ v) dx =

∫
Ω

{(
(B ∧ u) ∧ uρ

)
· ∇v +

(
(B ∧ u) ∧∇uρ

)
· v
}
dx

that

lim
ρ→0

∫
Ω

(
B ∧ u

)
· ∇(uρ ∧ v) dx =

∫
Ω

(
(B ∧ u) ∧ u

)
· ∇v dx+ 〈(B ∧ u) ∧Du,v〉

= −
∫

Ω

B · ∇v dx+ 〈(B ∧ u) ∧Du,v〉.

Here we have used the fact that (B ∧ u) ∧ u = −B in light of (6.43) and (6.47), and
the measure (B ∧ u) ∧Du is defined by (6.3) with A = B ∧ u and v = u.

Finally, substituting the above three equations into (6.50) and multiplying the
equation by (−1) we get∫ T

0

∫
Ω

{
ut · v + B · ∇v + λ

(
u− g

)
· v
}
dxdt(6.51)

=
∫ T

0

〈
(B ∧ u) ∧Du + λ(1 − g · u)u,v

〉
dt
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for any v ∈ [C1
0 (ΩT )]n. This and (6.46) imply that

σλ = (B ∧ u) ∧Du + λ(1 − g · u)u.

Step 3: Identifying B. First, since {Bε · ∇uε} is uniformly bounded in L2((0, T );
L1(Ω)), then there exists a subsequence (still denoted by the same notation) and
μ ∈ L2((0, T );M(Ω)) such that

(6.52) Bε · ∇uε −→ μ weakly* in L2((0, T );M(Ω)).

Let uε
ρ and uρ denote mollified sequences for uε and u, respectively, through a

positive symmetric mollifier. For any open set E ⊂ Ω we have

lim
ε→0

∫ T

0

∫
E

Bε · ∇uε dxdt = lim
ε→0

lim
ρ→0

∫ T

0

∫
E

Bε ·Duε
ρ dxdt(6.53)

= lim
ρ→0

lim
ε→0

∫ T

0

∫
E

Bε ·Duε
ρ dxdt

= lim
ρ→0

∫ T

0

(B ·Duρ)(E) dt (by (6.41), (6.44))

=
∫ T

0

B ·Du (E) dt (by (6.29)),

where B ·Du is defined in Lemma 6.10.
Hence, it follows from (6.52), (6.53), and Lemma 6.10 that

μ = B ·Du << |Du|.(6.54)

We refer the reader to Definition 1.24 of [3] for the notation “<<.”
On the other hand, a direct calculation yields that

Bε · ∇uε =
|∇uε|2
|∇uε|ε

≥ |∇uε|ε − ε.

Setting ε→ 0 and by the lower semicontinuity of the BV -norm (cf. [3]) we obtain

μ >> |Du|,

which together with (6.54) and Lemma 6.10 yield that

(6.55) |Du| = μ = B ·Du,

and hence

(6.56) |Du|a = (B ·Du)a = B · (Du)a.

Finally, we note that all other properties of B and the measure (B∧u)∧Du listed
in (vi) of Definition 6.11 are immediate consequences of (6.55) and Lemmas 6.2, 6.4–
6.10, and Corollary 6.3.
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Step 4: Finishing up. We now conclude the proof of the theorem by showing the
energy inequality (6.33). First, notice that (4.6) implies that for a.e. s ∈ [0, T ]

Iλ(uε(s)) +
∫ s

0

‖uε
t (t) ‖2

L2 dt ≤ Jε
1,λ(u0)(6.57)

≤ b1(ε)
2

‖∇u0 ‖2
L2 + a1(ε)|Ω| + Iλ(u0).

Then (6.33) follows from taking ε→ 0 in (6.57), using the lower semicontinuity of the
BV -seminorm and the L2-norm with respect to L2-weak convergence. The proof is
complete.

Remark 6.5. (a) Since weak solutions to (1.8)–(1.11) are not unique in general
for 1 < p <∞ (cf. [15, 32, 41]), we expect that this nonuniqueness also holds for the
case p = 1.

(b) The existence result in Theorem 6.12 is proved under the assumption u0 ∈
H1(Ω,Rn). This assumption can be weakened to u0 ∈ [BV (Ω) ∩ L∞(Ω)]n using a
smoothing technique.

7. Fully discrete finite element approximations.

7.1. Formulation of fully discrete finite element methods. For ease of
exposition, we assume Ω is a polytope in this section. Let Th be a quasi-uniform
“triangulation” of the domain Ω of mesh size 0 < h < 1 and Ω =

⋃
K∈Th

K (K ∈ Th

are tetrahedrons in the case m = 3). Let Jτ := {tk}L
k=0 be a uniform partition of

[0, T ] with mesh size τ := T
L , and ∂tvk := (vk − vk−1)/τ . For an integer r ≥ 1, let

Pr(K) denote the space of polynomials of degree less than or equal to r on K. We
introduce the finite element space

Vh =
{
vh ∈ C(Ω,Rn) ∩H1(Ω,Rn); vh|K ∈ [Pr(K)]n ∀K ∈ Th

}
.

Notice that the density function F defined in (1.17) is not a convex function. On
the other hand, there exist two convex functions W+ and W− such that

(7.1) F (v) = W+(v) −W−(v).

One such an example is W+(v) = |v|4
4 and W−(v) = |v|2

2 − 1
4 . Clearly, the above

decomposition is not unique.
We are now ready to introduce our fully discrete finite element discretizations for

the initial boundary value problem (1.20)–(1.22). Find uk
h ∈ Vh for k = 1, 2, . . . , L

such that ∫
Ω

{
∂tuk

h · vh + Bk
h · ∇vh + λ

(
uk

h − g
)
· vh +

1
δ
W ′

+(uk
h) · vh

}
dx(7.2)

=
1
δ

∫
Ω

W ′
−(uk−1

h ) · vh dx ∀v ∈ Vh,

where

(7.3) Bk
h =

[
bp(ε) + |∇uk

h|p−2
ε

]
∇uk

h,

with some starting value u0
h ∈ Vh to be specified later. Note that for notational

brevity we have omitted the indices ε, δ, and p on uk
h and Bk

h
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For each k, (7.2) is a nonlinear equation in uk
h. Hence, the above numerical method

is an implicit scheme, and its well-posedness is ensured by the following theorem.
Theorem 7.1. For each fixed k ≥ 1, suppose that uk−1

h ∈ Vh is known. Then
there exists a unique solution uk

h ∈ Vh to (7.2)–(7.3). Moreover, {uk
h}L

k=0 satisfies
the following energy estimate:

τ

2

	∑
k=1

‖ ∂tuk
h ‖2

L2 + Jε,δ
p,λ(uk

h) ≤ Jε,δ
p,λ(u0

h) for 1 ≤ � ≤ L.(7.4)

Here Jε,δ
p,λ is defined by (1.19).

Proof. For each fixed k ≥ 1, it is easy to check that (7.2)–(7.3) is the Euler–
Lagrange equation of the following functional over Vh:

Gk(v) :=
∫

Ω

{ 1
2τ

|v − uk−1
h |2 +

bp(ε)
2

|∇v|2 +
1
p
|∇v|pε +

λ

2
|v − g|2(7.5)

+
1
δ
W+(v)

}
dx− 1

δ

∫
Ω

W ′
−(uk−1

h ) · v dx.

Since Gk is a convex, coercive, and differentiable functional, then it has a unique
minimizer uk

h ∈ Vh (cf. [47]), and hence (7.2)–(7.3) has a unique solution.
Since uk

h is the minimizer of Gk over Vh, we have that

(7.6) Gk(uk
h) ≤ Gk(uk−1

h ).

It follows from the convexity of W− that

W ′
−(uk−1

h )
(
uk

h − uk−1
h

)
≤W−(uk

h) −W−(uk−1
h ).

This and (7.6) imply that

1
2
‖ ∂tuk

h ‖2
L2 +

Jε,δ
p,λ(uk

h) − Jε,δ
p,λ(uk−1

h )
τ

≤ 0.

The bound (7.4) then follows from applying the summation operator τ
∑	

k=1 (1 ≤ � ≤
L) to the last inequality. Hence the proof is complete.

7.2. Convergence analysis. The goal of this subsection is to show that the
numerical solution of (7.2)–(7.3) converges to the unique weak solution of (1.20)–
(1.22) as h, τ → 0. There are two approaches to reach this goal. The first approach
assumes the existence of the solution of (1.20)–(1.22), which in fact has been proved in
Theorem 3.7, and then proves that uk

h converges to that solution. The other approach
shows the convergence without assuming the existence of the solution of (1.20)–(1.22).
This can be done by applying the energy method and compactness argument used in
the proof of Theorem 3.7 to the finite element solution {uk

h}. In the following, we
shall go with the latter approach since this will also provide an alternative proof for
Theorem 3.7 as alluded to in Remark 3.1(c).

For the fully discrete finite element solution {uk
h}, we define its linear interpolation

in t as follows:

(7.7) Uε,δ,h,τ (·, t) :=
t− tk−1

τ
uk

h(·) +
tk − t

τ
uk−1

h (·) ∀ t ∈ [tk−1, tk], 1 ≤ k ≤ L.
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Clearly, Uε,δ,h,τ is continuous in both x and t.
The main result of this section is the following convergence theorem.
Theorem 7.2. For 1 ≤ p < ∞, suppose that u0 ∈ W 1,p∗

(Ω,Rn) with p∗ =
max{2, p}, |u0| = 1, and |g| ≤ 1 in Ω. For each pair of positive numbers (ε, δ), let
Uε,δ,h,τ be defined by (7.7). Then there exists uε,δ ∈ L∞(ΩT ) such that

(7.8) lim
h,τ→0

‖uε,δ − Uε,δ,h,τ ‖Lq(ΩT ) = 0 ∀q ∈ [1,∞),

provided that

lim
h→0

‖u0 − u0
h ‖W 1,p∗(Ω) = 0.

Moreover, uε,δ solves (1.20)–(1.22) in the sense of Definition 3.1.
Proof. The proof follows along the same lines as that of Theorem 1.5 of [12], where

the convergence of a general Galerkin approximation was proved for the case p ≥ 2.
Since the finite element approximation is a special Galerkin approximation, the proof
of Theorem 1.5 of [12] can easily be adapted to the finite element approximation
Uε,δ,h,τ for p ≥ 2 thanks to the discrete energy estimate (7.4) and the facts that
∂tuk

h = Uε,δ,h,τ
t and τ

∑L
k=1 ‖ ∂tuk

h ‖2
L2 = ‖Uε,δ,h,τ

t ‖L2(L2).
Since the operator −Δε

p is uniformly elliptic, as a result, the compactness of
Lemma 2.2 holds not only for p ≥ 2 but also for 1 ≤ p < 2. In addition, note that
Uε,δ,h,τ is uniformly (in h and τ) bounded in L∞((0, T );H1(Ω,Rn)) for 1 ≤ p < 2.
Hence, the proof of Theorem 1.5 of [12] can be adapted with slight modifications to
prove (7.8) for the case 1 ≤ p < 2.

Remark 7.1. Several practical choices of u0
h are possible. For instance, both

the L2-projection of u0 and the Clemént finite element interpolation of u0 into Vh

(cf. [14]) are qualified candidates for u0
h.

An immediate consequence of Theorems 4.1, 5.2, 6.12, 7.1, and 7.2 is the following
convergence theorem.

Theorem 7.3. Let 1 ≤ p <∞, let Uε,δ,h,τ be defined by (7.7), and assume that
the assumptions of Theorems 7.1, 7.2, 4.1, 5.2, and 6.12 hold. Then there exists a
subsequence of {Uε,δ,h,τ} (still denoted by the same notation) and a weak solution u
of (1.8)–(1.11) such that

(7.9) lim
ε,δ→0,

lim
h,τ→0,

‖u− Uε,δ,h,τ ‖Lq(ΩT ) = 0 ∀q ∈ [1,∞).
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Non Linéaire, 7 (1990), pp. 335–344.

[16] P. Courilleau and F. Demengel, Heat flow for p-harmonic maps with values in the circle,
Nonlinear Anal., 41 (2000), pp. 689–700.

[17] F. Duzaar and M. Fuchs, Existence and regularity of functions which minimize certain en-
ergies in homotopy classes of mappings, Asymptot. Anal., 5 (1991), pp. 129–144.

[18] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math.,
86 (1964), pp. 109–169.

[19] J. Ericksen and D. Kinderlehrer, Theory and applications of liquid crystals, IMA Vol.
Math. Appl. 5, Springer-Verlag, New York, 1997, pp. 99–122.

[20] L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, AMS,
Providence, RI, 1990.

[21] A. Fardoun and R. Regbaoui, Heat flow for p-harmonic maps between compact Riemannian
manifolds, Indiana Math. J., 40 (2002), pp. 1305–1320.

[22] A. Fardoun and R. Regbaoui, Heat flow for p-harmonic maps with small initial data, Calc.
Var. Partial Differential Equations, 16 (2003), pp. 1–16.

[23] X. Feng, Divergence-Lq and divergence-measure tensors fields and gradient flow for linear
growth functionals of maps into spheres, Calc. Var. Partial Differential Equations, submit-
ted.

[24] X. Feng and A. Prohl, Analysis of total variation flow and its finite element approximations,
M2AN Math. Model. Numer. Anal., 37 (2003), pp. 533–556.

[25] A. Freire, Uniqueness for the harmonic map flow in two dimensions, Calc. Var. Partial
Differential Equations, 1 (1995), pp. 95–105.

[26] M. Giaquinta, G. Modica, and J. Soucek, Variational problems for maps of bounded varia-
tion with values in S1, Calc. Var. Partial Differential Equations, 1 (1993), pp. 87–121.

[27] M. Giaquinta, G. Modica, and J. Soucek, Cartesian Currents in the Calculus Variations,
II: Variational Integrals, Springer-Verlag, New York, 1998.

[28] Y. Giga, Y. Kashima, and N. Yamazaki, Local solvability of a constrained gradient system
of total variation, Abstr. Appl. Anal., 8 (2004), pp. 651–682.

[29] B. Guo and M. C. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and
harmonic maps, Calc. Var. Partial Differential Equations, 1 (1994), pp. 311–334.

[30] R. Hardt and F. H. Lin, Mappings minimizing the Lp-norm of the gradient, Comm. Pure
Appl. Math., 15 (1987), pp. 555–588.

[31] N. Hungerbühler, Global weak solutions of the p-harmonic flow into homogeneous spaces,
Indiana Math. J., 45 (1996), pp. 275–288.

[32] N. Hungerbühler, Non-uniqueness for the p-harmonic flow, Canad. Math. Bull, 40 (1997),
pp. 793–798.

[33] N. Hungerbühler, m-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997),
pp. 593–631.



1498 JOHN W. BARRETT, XIAOBING FENG, AND ANDREAS PROHL

[34] N. Hungerbühler, Heat flow into spheres for a class of energies, in Variational Problems
in Riemannian Geometry, Progr. Nonlinear Differential Equations Appl. 59, Birkhäuser,
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GLOBAL EXISTENCE OF SOME INFINITE ENERGY SOLUTIONS
FOR A PERFECT INCOMPRESSIBLE FLUID∗
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Abstract. This paper provides results on local and global existence for a class of solutions to
the Euler equations for an incompressible, inviscid fluid. By considering a class of solutions which
exhibits a characteristic growth at infinity we obtain an initial value problem for a nonlocal equation.
We establish local well-posedness in all dimensions and persistence in time of these solutions for three
and higher dimensions. We also examine a weaker class of global solutions.
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1. Introduction. A fundamental question in the study of fluids concerns the
possibility of finite time blow up of solutions to the Euler equations for a perfect,
incompressible fluid. It is well known that blow up cannot take place in the two-
dimensional case for solutions defined over a bounded domain subject to Dirichlet
boundary conditions (see, for example, the work of Wolibner [17] and Ebin [7]), since
smooth data in this case lead to solutions remaining smooth for all time. However,
the question remains open in higher dimensions.

A separate class of solutions consists of those having “stagnation-point” form,
which attracted early attention by Weyl [16] and Lin [13], and provides a set of
equations which depend on only a single spatial variable and time. The resulting
equations, once solved, provide exact solutions to the full Euler equations. However,
the associated growth of the full solutions in certain directions means that the flows
possess, at best, only locally finite kinetic energy. Nevertheless, one may discuss such
questions as finite time blow up for this class, and it has been shown by Stuart in
[15] that this can take place when the reduced equations are defined over the real line
and those solutions decay at infinity. In this case the corresponding spatial domain
for the full equations is R

n for n = 2 and n = 3, with the full set of solutions growing
linearly in the other direction(s).

The evolution of two-dimensional solutions, which can blow up on the unbounded
domain R

2, therefore differs significantly from the class of globally defined solu-
tions which exists for bounded subdomains of R

2. So the consequences of higher-
dimensional stagnation-point solutions blowing up might be thought to result simply
from their behavior at infinity rather than bearing on the question of singularity for-
mation. This view is in some sense strengthened by the results of Childress et al.
in [3] (see also a related result by Cox in [5]), where solutions defined over a two-
dimensional, infinite strip were examined. Since blow up was still found over this,
smaller, semi-infinite domain, stagnation-point solutions defined over such domains
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would give the appearance of behaving, generally, much as those defined on the full
space.

A similar approach is implemented by Constantin in [4] to reduce the three-
dimensional Euler equations, periodic in two directions, to a nonlocal Riccati equation
and prove the blow up in finite time by solving these equations on characteristics.

In this paper we consider a stagnation-point class of solutions defined over R
n

which is spatially periodic in one coordinate direction. In two dimensions, the equa-
tions reduce to those of [3] and, although we examine slightly different boundary
conditions, the same blow up results essentially apply. In three and higher dimen-
sions, however, we find a “regularizing” effect not present in solutions which decay to
zero at infinity in the same coordinate direction, and this leads to the existence for
all time of all such solutions, stemming from sufficiently smooth initial data.

Section 2 sets out the fundamental field equations, which in a basic sense date
back to [13], [16]. Section 3 is devoted to local well-posedness (existence, uniqueness,
and continuous dependence on initial data) of classical solutions to the initial value
problem for the pseudodifferential equation derived in section 2. We establish this
result by rewriting the problem on the topological group D of C1 class diffeomorphisms
as an initial value problem for an ordinary differential equation. Section 4 provides
a priori estimates for more regular classes of solutions, leading to global existence of
such solutions in three and higher dimensions.

In section 5, we reconsider a class of piecewise affine solutions previously men-
tioned in [3]. These solutions are less regular than those arising in our existence results.
It is found that they exist globally, independently of the underlying dimension.

2. The n-dimensional equation. Consider the n-dimensional Euler equations
for an ideal, inviscid and incompressible fluid

∂tu + u.∇u + ∇p = 0,(2.1a)

∇.u = 0,(2.1b)

where x = (x1, . . . xn) ≡ (x1,x′). Denoting x1 by x, u(x,x′, t) represents the spatial
velocity field of the fluid and p(x,x′, t) its pressure. We impose the ansatz

u(x,x′, t) = (u(x, t),−∂xu(x, t)v(x′, t)),(2.2)

where the (n− 1)-dimensional vector field, v, will be chosen below. As a consequence
of (2.2), (2.1a) may be written as

∂tu+ u∂xu+ ∂xp = 0,(2.3)

together with

∂t∂xuv + ∂xu ∂tv + u∂2
xuv − (∂xu)2v · ∇′v −∇′p = 0,(2.4)

where the primed operators refer to the variable x′. Using (2.2) and (2.3), one sees
that ∇′∂xp = 0. Hence, differentiating (2.4) in x eliminates the pressure term to give

∂x(∂t∂xu+ u∂2
xu) v + ∂2

xu ∂tv − ∂x((∂xu)2)v · ∇′v = 0.(2.5)

Applying the ∇′· operator to (2.5) and using (2.1b) with (2.2) to find that ∇′ ·v = 1
shows

∂x(∂t∂xu+ u∂2
xu) − ∂x((∂xu)2) ∇′v : ∇′v = 0,(2.6)
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where ∇′v : ∇′v = tr(∇′v)2 = ∂jvk ∂kvj (summing over j, k from 2 to n). For
compatibility, we must choose v such that ∇′v : ∇′v is independent of x′. This can
be done, for instance, by choosing v = 1

n−1 x′, in which case ∇′v : ∇′v = 1
n−1 and

(2.4) takes the form(
∂t∂xu+ u∂2

xu− 1
n− 1

(∂xu)2
)

v −∇′p = 0.(2.7)

We note that this particular choice of v corresponds to the stagnation-point form
solution referred to in the introduction. As a result, the solution becomes unbounded
in the x′ direction, and hence has infinite energy when considered over the entire n-
dimensional domain. We next examine the periodic, initial-boundary value problem,
with boundary conditions for x ∈ T � R/Z, t ≥ 0, given by

u(0,x′, t) = u(1,x′, t)(2.8)

and

p(0,x′, t) = p(1,x′, t).(2.9)

Since (2.6) now becomes

∂x(∂t∂xu+ u∂2
xu) − 1

n− 1
∂x((∂xu)2)) = 0,(2.10)

which we remark happens to be the x-derivative of a Calogero-class equation (see [2])

∂x∂tu+ u∂2
xu− Φ(∂xu) = 0,

we obtain the equation

∂t∂xu+ u∂2
xu− 1

n− 1
(∂xu)2 = f(2.11)

with f purely a function of time. This implies, by (2.7), that

∇′p =
f

n− 1
x′,(2.12)

while by (2.3), −∂2
xp = n

n−1 (∂xu)2 + f and so Δp = − n
n−1 (∂xu)2. Finally, for suffi-

ciently smooth functions u(x, t), using (2.8) and integrating (2.11) we have

f = − n

n− 1

∫
T

(∂xu)2dx,(2.13)

while (2.3), (2.8), and (2.9) imply that

d

dt

∫
T

u dx = 0.(2.14)

Let us introduce the operator ∂−1
x defined by

∂−1
x φ(x, t) =

∫ x

x0

φ(y, t)dy −
∫

T

∫ x

x0

φ(y, t) dydx.
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We make the observation that ∂x and ∂−1
x generally do not commute since [∂x, ∂

−1
x ]φ =∫

T
φdx, where [P,Q] = PQ−QP. Consider (2.11), written in the form

∂x(∂tu+ u∂xu) =
n

n− 1
(∂xu)2 + f(t)(2.15)

with n > 1. As a result of (2.13) and the fact that ∂−1
x ∂xφ = φ −

∫
T
φdx, we may

write (2.15) in a nonlocal form as

∂x(∂tu+ u∂xu) =
n

n− 1
∂−1

x ∂x((∂xu)2)(2.16)

and then, using the periodicity of u, we obtain

∂tu+ u∂xu =
n

n− 1
∂−2

x ∂x((∂xu)2).(2.17)

Okamoto and Zhu [14] previously established local existence for (2.10) with u ∈ H2,
using a method introduced by Kato and Lai. Their approach requires showing unique-
ness separately and then using uniqueness to prove continuous dependence on initial
data. Here we instead derive a local well-posedness result in C1 which follows from
Picard iteration after rewriting the equation as an ordinary differential equation on
an infinite-dimensional Banach space. This method can also be used to prove well-
posedness in Sobolev spaces Hs(T) for s > 3/2 (see [10] and [12], for example, for a
similar result for the Camassa–Holm equation).

3. Local existence of classical solutions. In [1], Arnold observed that the
initial value problem for the classical Euler equations of a perfect fluid can be stated as
a geometric problem of finding geodesics on the group of volume preserving diffeomor-
phisms. Following this observation, Ebin and Marsden [8] developed the functional
analytic tools to establish sharp local well-posedness results for the Euler equations.
This method has since been used for other equations with similar geometric inter-
pretations; for example, Misio�lek [12] obtained local well-posedness in C1(T) for the
Camassa–Holm equation, which is the equation for geodesics of the H1 metric on the
Virasoro group.

In this section we develop an appropriate analytic framework for (2.17), using a
similar approach to prove the following theorem.

Theorem 3.1. Suppose that n > 1. Then there exists a unique solution

u ∈ C0([0, T ), C1(T)) ∩ C1([0, T ), C0(T))

to the Cauchy problem for (2.17) with initial data u0 ∈ C1(T) for some T > 0, and
the solution depends continuously on the initial data.

Let γ be the flow generated by u, that is,

dγ

dt
(x, t) = u(γ(x, t), t),

or u = γ̇ ◦ γ−1. Then we obtain the equation

γ̈ =
n

n− 1
∂−2

x ∂x

(
(∂x(γ̇ ◦ γ−1))2

)
◦ γ(3.1)

from (2.17). Therefore it is sufficient to prove that

F (X, γ) =
n

n− 1
(
∂−2

x ∂x

(
(∂x(X ◦ γ−1))2

))
◦ γ
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defines a continuously differentiable vector field in a neighborhood of the identity on
the topological group D of C1 class diffeomorphisms. Then Theorem 3.1 follows by
Picard iteration over Banach spaces.

We remark that the smooth dependence on initial data for (3.1) implies only
continuous dependence on initial data for (2.17). The map γ → γ−1 is continuous but
not locally Lipschitz [8], and this prevents obtaining more regularity for the initial
data to solution map by this method. The question of whether the regularity of the
solution map u0 → u(t) can be improved, or not, is open. It is known, for instance,
that it is not possible to improve the regularity of this map for the Camassa–Holm
equation in Sobolev spaces [11].

In the remainder of this section, Cγ will represent a generic constant depending
only on the C1 norms of γ and γ−1.

Proof of Theorem 3.1. Let us denote by Pγ the operator given by conjugation

Pγ(φ) := P (φ ◦ γ−1) ◦ γ

for any γ ∈ D and pseudodifferential operator P . Using this notation we write

F (X, γ) =
n

n− 1
(∂−2

x ∂x)γ((∂x)γX)2.

Next we compute the directional derivative ∂γF(X,γ) and prove that it is a bounded
linear map.

Note that (∂−2
x ∂x)f = ∂−1

x {f −
∫ 1

0 f dx} is a bounded operator from C0(T) into
C1(T). Furthermore we abuse the notation slightly and denote by D the connected
component of orientation preserving C1 diffeomorphisms of T.

Let s → γs be a smooth curve in D such that γ0 = id and ∂sγs|s=0 = W for
W ∈ C1(T). Then we have

∂γF(X,γ)(W ) =
n

n− 1
{(∂εGε)|ε=0 ◦ γ +W (∂xGε)ε=0 ◦ γ},(3.2)

where Gε = ∂−2
x ∂x{(∂x(X ◦ γ−1

ε ))2}. We know that ∂x∂
−1
x gives the identity; hence

the second summand on the right in (3.2) can be written as

W∂xGε|ε=0 ◦ γ =
{

((∂x)γX)2 −
∫ 1

0

(∂x(X ◦ γ−1))2dx
}
W.(3.3)

Moreover, the computation of the first summand on the right in (3.2) is reduced by

(∂εGε)|ε=0 = ∂−2
x ∂x(∂εHε|ε=0)(3.4)

to determine ∂εHε|ε=0, where Hε = (∂x(X ◦ γ−1
ε ))2. Here a straightforward compu-

tation leads to

∂εHε|ε=0 = −
(
∂x(X ◦ γ−1)

)2
∂x(W ◦ γ−1) − ∂x{(W ◦ γ−1)

(
∂x(X ◦ γ−1)

)2}.(3.5)

Then, after an integration by parts, we obtain

∂εGε|ε=0 = −
(
∂x(X ◦ γ−1)

)2 (W ◦ γ−1) +
∫ 1

0

(
∂x(X ◦ γ−1)

)2 (W ◦ γ−1)dx

− ∂−2
x ∂x{(∂x(X ◦ γ−1))2∂x(W ◦ γ−1)}

+
(
x− 1

2

)
{
(
∂x(X ◦ γ−1)

)2 (W ◦ γ−1)}|10.
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The last term on the left-hand side of the above inequality vanishes since X and W
are periodic functions and γ is an orientation preserving diffeomorphism. Therefore
we have

∂γF(X,γ)(W ) =
n

n− 1

{
− ∂−2

x ∂x{(∂x(X ◦ γ−1))2∂x(W ◦ γ−1)} ◦ γ

+
∫ 1

0

(∂x(X ◦ γ−1))2W ◦ γ−1dx(3.6)

− W

∫ 1

0

(∂x(X ◦ γ−1))2dx
}
.

The linearity of the map W → ∂γF(X,γ)(W ) is clear. Thus we proceed to show
that it is bounded. It is sufficient to estimate the C1 norms of all three summands on
the right in (3.6). The second and third terms are both bounded by Cγ‖W‖C0‖X‖2

C1.
For the first term on the right in (3.6), we have

‖(∂−2
x ∂x)γ{((∂x)γX)2(∂x)γW}‖C1 ≤‖(∂−2

x ∂x)γ{((∂x)γX)2(∂x)γW}‖C0

+ ‖((∂x)γX)2(∂x)γW‖C0‖γ‖C1,(3.7)

which is bounded by Cγ‖X‖2
C1‖W‖C1.

In the direction of X , the Gâteaux derivative of F is given by

∂XF(X,γ)(W ) =
2n
n− 1

(∂−2
x ∂x)γ ((∂x)γX(∂x)γW ) ,

and this is a bounded map since

‖∂XF(X,γ)(W )‖C1 ≤ Cn‖(∂−2
x ∂x)γ ((∂x)γX(∂x)γW ) ‖C0

+
∥∥∥∥(∂x)γX(∂x)γW −

∫
T

(∂x)γX(∂x)γW dx

∥∥∥∥
C0

‖γ‖C1

≤ Cn,γ‖X‖C1‖W‖C1,

where Cn,γ depends only on n and C1 norms of γ and γ−1.
In order to complete the proof of Theorem 3.1 it is sufficient to show that F is

Fréchet differentiable; i.e., both directional derivatives ∂γF and ∂XF are continuous
maps.

Continuity of (X, γ) → ∂γF(X,γ)(W ). The following inequality reduces the proof
of continuity of ∂γF(X,γ)(W ) to estimating the two summands on the right-hand side:

‖∂γF(X1,γ1)(W ) − ∂γF(X2,γ2)(W )‖C1 ≤ ‖∂γF(X1,γ1)(W ) − ∂γF(X2,γ1)(W )‖C1

+ ‖∂γF(X2,γ1)(W ) − ∂γF(X2,γ2)(W )‖C1

where the inequality holds up to a constant depending on n. We rewrite the C1 norm
that we wish to estimate to show continuity in X as
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‖∂γF(X1,γ) − ∂γF(X2,γ)‖C1 ≤‖(∂−2
x ∂x)γ

{
(((∂x)γX1)2 − ((∂x)γX2)2)(∂x)γW

}
‖C1

+
∣∣∣∣∫ 1

0

(∂x(X1 ◦ γ −X2 ◦ γ))2W ◦ γ−1dx

∣∣∣∣(3.8)

+ |W |
∣∣∣∣∫ 1

0

(∂x(X1 ◦ γ −X2 ◦ γ))2 dx
∣∣∣∣ .

The last two summands in (3.8) are bounded by Cγ‖X1 −X2‖2
C1‖W‖C0 . For the

remaining term, we have

‖(∂−2
x ∂x)γ

{
(((∂x)γX1)2 − ((∂x)γX2)2)(∂x)γW

}
‖C1

≤ ‖(∂−2
x ∂x)γ

{
(((∂x)γX1)2 − ((∂x)γX2)2)(∂x)γW

}
‖C0

+ ‖
(
(∂x(X1 ◦ γ−1))2 − (∂x(X2 ◦ γ−1))2

)
∂x(W ◦ γ−1)‖C0‖∂xγ‖C0,

which is bounded by Cγ‖X1 −X2‖C1‖X1 +X2‖C1‖W‖C1.
Our next estimate establishes continuity of γ → ∂γF(X,γ)(W ). Note that it is

sufficient to consider

‖∂γF(X,γ)(W ) − ∂γF(X,id)(W )‖C1

≤ ‖(∂−2
x ∂x)γ

{
((∂x)γX)2(∂x)γW

}
− ∂−2

x ∂x((∂xX)2∂xW )‖C1(3.9)

+
∣∣∣∣∫ 1

0

{
(∂x(X ◦ γ−1))2(W ◦ γ−1) − (∂xX)2W

}
dx

∣∣∣∣(3.10)

+ ‖W‖C0

∣∣∣∣∫ 1

0

{
(∂x(X ◦ γ−1))2 − (∂xX)2

}
dx

∣∣∣∣ ,(3.11)

where the inequality is up to a constant depending on n. After adding and subtracting
the appropriate terms, (3.10) is bounded by

‖W‖C0‖∂xX‖C0‖(∂xX ◦ γ−1)∂xγ
−1 − ∂xX‖C0 + ‖∂xX‖2

C0‖W‖C1‖γ − id‖C0 ,(3.12)

which is bounded (up to a constant Cγ) by ‖X‖2
C1‖W‖C1‖γ − id‖C1 . The term in

(3.11) is estimated similarly. Hence in order to establish continuity in γ it is sufficient
to bound

‖(∂−2
x ∂x)γ

{
((∂x)γX)2(∂x)γW

}
− ∂−2

x ∂x((∂xX)2∂xW )‖C1

≤ ‖(∂−2
x ∂x)γ

{
((∂x)γX)2(∂x)γW

}
− ∂−2

x ∂x((∂xX)2∂xW )‖C0(3.13)

+ ‖
{

(∂x(X ◦ γ−1)2∂x(W ◦ γ−1)
}
◦ γ∂xγ − (∂xX)2∂xW‖C0 .(3.14)

The norm in (3.14) is equal to

‖∂xW (∂xX)2
{

(∂xγ
−1)2 ◦ γ − 1

}
‖C0 ,(3.15)

which is bounded by Cγ‖∂xX‖2
C0‖∂xW‖C0‖γ − id‖C1. For (3.13) it is sufficient to

estimate

‖(∂−2
x ∂x)γS − ∂−2

x ∂xS‖C0 + ‖∂−2
x ∂xS − ∂−2

x ∂x((∂xX)2∂xW )‖C0 ,(3.16)
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where

S = S(X, γ,W ) = (∂x(X ◦ γ−1))2 ◦ γ∂x(W ◦ γ−1) ◦ γ.

After a change of variables we regroup the terms in the first summand of (3.16)
to obtain

(∂−2
x ∂x)γS − ∂−2

x ∂xS =
∫ 1

0

∫ x

γ−1(x)

S(y)∂xγ(y)dydx+
∫ x

x0

S(y)(∂xγ(y) − 1)dy

(3.17)

−
∫ 1

0

∫ x

x0

S(y)(∂xγ(y) − 1)dydx(3.18)

−
(
γ(x) − 1

2

)∫ 1

0

S ◦ γ−1(y)dy +
(
x− 1

2

)∫ 1

0

S(y)dy.(3.19)

The right-hand side of this equality can be simplified further as

(∂−2
x ∂x)γS − ∂−2

x ∂xS =
∫ 1

0

∫ x

γ−1(x)

S(y)∂xγ(y)dydx(3.20)

+ ∂−2
x ∂x(S(∂xγ − 1)) − (γ(x) − x)

∫ 1

0

S ◦ γ−1(y)dy.(3.21)

Clearly the sup norms of all three summands in (3.20)–(3.21) vanish in the limit
as γ goes to id in C1. The second summand in (3.16) is equal to the C0 norm of

∂−2
x ∂x

(
∂xW (∂xX)2

{
(∂xγ

−1)3 ◦ γ − 1
})
,(3.22)

which is bounded by Cγ‖W‖C1‖X‖2
C1‖γ−id‖C1. Hence the continuity of γ → ∂F(X,γ)

follows.
The continuity of (X, γ) → ∂XF(X,γ) can be shown analogously. Therefore

F (X, γ) defines a continuously differentiable map in a neighborhood of (id, u0). This
completes the proof of Theorem 3.1.

4. Global existence for n ≥ 3. In this section we investigate the persistence
of solutions of the initial value problem for (2.17) and show that, unlike the two-
dimensional case where solutions may blow up in finite time (see [3], [5]), they persist
for n ≥ 3 in the appropriate function spaces.

For the theorem below let us use the following notation:

Xn(T) =

{
W 2,∞(T), n = 3,

W 2, n−1
n−3 (T), n > 3,

and

Yn(T) =

{
W 1,∞(T), n = 3,

W 1, n−1
n−3 (T), n > 3.
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Theorem 4.1. Let n ≥ 3 and assume that u0(x) ∈ Xn(T). Then the solution
u(x, t) from Theorem 3.1 has a unique extension to all T < ∞ such that u(x, t) ∈
C0([0, T ], Xn(T)) ∩ C1([0, T ], Yn(T)).

Proof. Consider (2.10), expressed in the form

∂t∂
2
xu+ u∂3

xu+
n− 3
n− 1

∂xu∂
2
xu = 0.(4.1)

Using the flow γ of u (γ̇ = u ◦ γ) in (4.1), we first solve for ∂2
xu:

∂2
xu ◦ γ(t) = u′′0 exp

(
−n− 3
n− 1

∫ t

0

∂xu ◦ γ(s)ds
)
.(4.2)

By the identity ∂xγ̇ = ∂xu ◦ γ ∂xγ, we also have

∂xγ(t) = exp
(∫ t

0

∂xu ◦ γ(s)ds
)
.(4.3)

Therefore

∂2
xu ◦ γ(t)(∂xγ(t))

n−3
n−1 = u′′0 .(4.4)

Note that Theorem 3.1 implies that γ ∈ C1 locally in time and it follows, given
∂xγ(0) = 1, that there exists an interval, t ∈ [0, τ(ε)), over which 0 < ε ≤ infx∈T

∂xγ(t) ≤ supx∈T ∂xγ(t) ≤ ε−1. Equation (4.4) then implies that, locally, u ∈ Xn(T),
since γ maps T diffeomorphically to itself. In turn, (2.16) shows that ∂tu ∈ Yn(T) over
the same time interval. (With additional assumptions on the data, further regularity
can also be bootstrapped to higher derivatives.)

Assuming then that sufficient smoothness holds locally in time, we find on mul-
tiplying (4.1) by |∂2

xu|p−2 ∂2
xu that

∂t|∂2
xu|p + u∂x|∂2

xu|p + p
n− 3
n− 1

∂xu|∂2
xu|p = 0.(4.5)

Since (2.2) and (2.8) imply that both u and ∂xu are periodic functions of x, the same
is true of ∂2

xu, by (2.11). One therefore obtains, on integrating (4.5) over T,

d

dt

∫
T

|∂2
xu|pdx+

(
p
n− 3
n− 1

− 1
)∫

T

∂xu|∂2
xu|pdx = 0,(4.6)

from which it follows that the L
n−1
n−3 (T) norm of ∂2

xu is uniformly conserved in time
for n > 3. The case n = 3 can either be considered as the limit n → 3 with p → ∞
in (4.6), or directly using (4.1) which shows that ∂2

xu is constant along characteristics
and hence its L∞(T) norm is uniformly conserved.

Periodicity of u(x, t) in x implies there exists a zero for ∂xu, say at x = x0(t),
and so for x, x0 ∈ T,

∂xu(x, t) =
∫ x

x0

∂2
yu(y, t)dy.

For n > 3, we therefore have the estimate

|∂xu(x, t)| ≤ |x− x0|
2

n−1 ||u′′0 ||n−1
n−3

≤ ||u′′0 ||n−1
n−3
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using Hölder’s inequality, and so

||∂xu||∞ ≤ ||u′′0 ||n−1
n−3

.

If n = 3, then

||∂2
xu||∞ = ||u′′0 ||∞,

which means

|∂xu(x, t)| ≤ |x− x0|||u′′0 ||∞ ≤ ||u′′0 ||∞

for all x ∈ T, and so

||∂xu||∞ ≤ ||u′′0 ||∞

for all t > 0.
Further, since u(x, t) − u0(x) has mean zero by (2.14), there exists x = x1(t),

where u(x1, t) = u0(x1) and, for x, x1 ∈ T, we have

u(x, t) = u0(x) +
∫ x

x1

(∂yu(y, t) − u′0(y))dy.

It follows that

|u(x, t)| ≤ ||u0||∞ + |x− x1|(||∂xu||∞ + ||u′0||∞)

for all x ∈ T, which gives the inequality

||u||∞ ≤ ||∂xu||∞ + ||u0||C1 .

Combining the results of the previous two paragraphs shows that

||u||C1 ≤ ||u0||C2 for n = 3,(4.7)

and

||u||C1 ≤ ||u0||C1 + ||u′′0 ||n−1
n−3

for n > 3.(4.8)

Finally, on using the properties of the operators ∂−1
x ∂x and ∂−2

x ∂x in (2.16) and (2.17)
together with the above estimates, it is seen that ||∂tu||∞ and ||∂t∂xu||∞ are majorized
by a function of ||u0||C2 for n = 3, while ||∂tu||∞ and ||∂t∂xu||n−1

n−3
are majorized by

a function of ||u0||
W

2,
n−1
n−3

for n > 3.

In both of these cases it follows that the C1(T) norm of u and the C0(T) norm
of ∂tu remain uniformly bounded in time over any interval of local existence and, by
bootstrapping the arguments of Theorem 3.1, the solution can be continued, globally,
in time.

As a remark, we note here how a blow up argument made in [3], which involves
a nontrivial class of separable solutions to (2.10) for n = 2, fails to apply in the case
n > 3. In particular, the possible appearance of a (τ − t)−1 factor, τ > 0, in the
two-dimensional case no longer exists in higher dimensions.

Given the solution form u(x, t) = X(x)T (t), (2.10) reduces to

λX ′′(x) +
n− 3
n− 1

X ′(x)X ′′(x) +X(x)X ′′′(x) = 0, x ∈ T,(4.9)
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where

Ṫ (t) − λT (t)2 = 0, t ≥ 0,(4.10)

and λ is a constant. Multiplying (4.9) by |X ′′(x)|
5−n
n−3X ′′(x) now gives

λ|X ′′(x)|
n−1
n−3 +

n− 3
n− 1

(X ′(x)|X ′′(x)|
n−1
n−3 + X(x)(|X ′′(x)|

n−1
n−3 )′) = 0.(4.11)

By using periodicity, an integration of (4.11) over T for n > 3 therefore shows

λ

∫
T

|X ′′(x)|
n−1
n−3dx = 0(4.12)

and the result then follows. We note that there are in general one or more points of
inflection in nontrivial, periodic solutions, which prevents this argument from holding
in two dimensions.

5. Weak solutions. In this section, we construct a basic, piecewise differentiable
class of weak solutions u(x, t) ∈ C0([0, T ), PC1(T)) ∩ C1([0, T ), PC0(T)) to (2.11),
which are found to exist for all T > 0, regardless of the underlying dimension.

For every vector field Φ(x, t) ∈ C∞
0 ([0, T ) × T × R

n−1; R
n) such that ∇ · Φ = 0,

and for every scalar function θ(x, t) ∈ C∞
0 ([0, T ) × T × R

n−1; R), the velocity field
u(x, t) in (2.1b) satisfies∫

Q

∂tΦ · u + (∇Φ u) · u dx dt+
∫

T×Rn−1

Φ(x, 0) · u(x, 0) dx = 0,(5.1)

∫
Rn

∇θ · u dx = 0,(5.2)

where Q = [0, T ) × T × R
n−1.

In terms of (2.2), (5.1) and (5.2) reduce to∫
Q

∂tφu − ∂tΦ′ · v ∂xu dx dt

+
∫

Q

∂xφu
2 − (∂xΦ′ + ∇′φ) · v u∂xu+ (∇′Φ′ v) · v (∂xu)2 dx dt

+
∫

T×Rn−1

φ(x, 0)u(x, 0) − Φ′(x, 0) · v(x, 0)∂xu(x, 0) dx = 0,(5.3)

∫
T×Rn−1

∂xθ u−∇′θ · v ∂xu dx = 0,(5.4)

in which we have used the notation Φ = (φ,Φ′) to distinguish the first component
from the remaining n− 1 components of Φ. Denoting by [u] = u+ − u− the jump in
u across any smooth surface of discontinuity, S, and considering test functions whose
support crosses S, (5.2) shows that

[u] · n = 0,(5.5)
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where n = (n,n′) is normal to S. Then, by (5.4), we have

[u]n − [∂xu]v · n′ = 0, where v =
1

n− 1
x′.(5.6)

In examining weak, frontlike, piecewise continuous solutions for which [u] = 0 and
[∂xu] 
= 0 (see [6]), it follows that these discontinuities propagate so that n′ · x′ =
0. A weak formulation specific to such discontinuities may be derived by means of
appropriate choice of test functions from (5.3), or by observing that (2.11) may be
written in conservation form as

∂t((∂xu)1−n) + ∂x(u(∂xu)1−n) + (n− 1)(∂xu)−nf = 0, x ∈ T.(5.7)

We will admit weak solutions, u(x, t), which satisfy the relation∫
Q

∂tϕ (∂xu)1−n + ∂xϕu(∂xu)1−n − (n− 1)fϕ(∂xu)−n dx dt(5.8)

+
∫

T

ϕ(x, 0)(∂xu)1−n(x, 0) dx = 0(5.9)

for all ϕ(x, t) ∈ C∞
0 (Q), where Q = [0, T ) × T. Using standard Rankine–Hugoniot-

type arguments [6], discontinuities in ∂xu that jump across a curve x = ψ(t) are seen
to satisfy

(−ψ̇ + u(ψ, t))[(∂xu)1−n] = 0,(5.10)

and such discontinuities therefore propagate with the flow of (2.11); i.e., ψ(t) is a
member of the characteristic family γ̇ = u ◦ γ.

5.1. Piecewise affine solutions. We begin by commenting on the general case
of periodic, N -phase, piecewise affine solutions. Given that both ∂xu and ∂tu may
be discontinuous across the curves x = ψi(t), 1 ≤ i ≤ N − 1, in order for u to remain
continuous there we must have [u](γ(t), t) = 0, and so d

dt [u](γ(t), t) = 0. As a result,
∂t[u] + u∂x[u] = 0, and first derivative jumps are seen to satisfy the relations

[∂tu] + u[∂xu] = 0 and [∂xp] = 0(5.11)

from (2.3). Under these conditions on u, the expression for f(t), which was obtained
in (2.13) by integrating (2.11) for u ∈ C1(T), remains unchanged:

f = − n

n− 1

∫
T

(∂xu)2dx.(5.12)

In the special case, N = 2, which we consider here, our form of solution is given by
the periodic extension of the function

u(x, t) = α+

⎧⎪⎨⎪⎩
x p, x ∈ (0, φ̃),

φ̃p+ (x− φ̃) q, x ∈ (φ̃, ψ̃),

φ̃p+ (ψ̃ − φ̃) q + (x− ψ̃) p, x ∈ (ψ̃, 1),

(5.13)

where φ̃ = φ − [[φ]], ψ̃ = ψ − [[ψ]], with [[.]] denoting the “integer part” of the ar-
gument. The functions φ̃(t) and ψ̃(t) are the representatives in [0, 1] of the phase
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curves φ(t), ψ(t) ∈ (−∞,∞), which start out from φ(0), ψ(0) ∈ [0, 1] and separate
those regions where ∂xu(x, t) periodically takes on values of p(t) or q(t).

Proceeding heuristically for the moment, periodicity of u(x, t) requires that

N (t) = φ(t)p(t) + (ψ(t) − φ(t))q(t) + (1 − ψ(t))p(t) = 0.(5.14)

Given the spatial periodicity in pressure (see (2.9)), we recall that integration of (2.3)
over one period showed the integral

∫ 1

0
u(x, t)dx to be independent of time. This

allows (5.13) to be used to give an expression for α(t). The result may be written, for
instance, in terms of p, φ̃, and ψ̃, as

α+
p

2
(φ̃+ ψ̃ − 1) = c,(5.15)

where we have set c =
∫ 1

0
u(x, 0) dx = α(0) + p(0)−q(0)

2 (ψ(0) − φ(0))(φ(0) + ψ(0) − 1).
We will assume that 0 < φ(0) < ψ(0) < 1. Choosing, for convenience, c = 0, the
“average characteristic” must propagate with speed zero and we will see, consequently,
that both φ(t) and ψ(t) remain in [0, 1] for all time. The distinctions between φ̃ and
φ, ψ̃, and ψ will therefore not be made further here.

Combining (2.11), (5.12), and (5.13) now gives

ṗ =
1

n− 1
p2 + f, q̇ =

1
n− 1

q2 + f,(5.16)

where

f = − n

n− 1
(φp2 + (ψ − φ)q2 + (1 − ψ)p2).(5.17)

Also, by (5.10),

φ̇ = α+ φp(5.18)

and

ψ̇ = α+ φp+ (ψ − φ)q.(5.19)

We next verify that (5.14) follows from the system of equations (5.16)–(5.19). Differ-
entiation and some simplification gives

Ṅ = −(ψ − φ)(p − q)q + (ψ − φ)q2 + (φ+ (1 − ψ))
(

p2

n− 1
+ f

)
+ (ψ − φ)

(
q2

n− 1
+ f

)
= −(ψ − φ)(p− q)q − ((φ + (1 − ψ))p2 + (ψ − φ)q2)

= −p(q(ψ − φ) + p(φ+ (1 − ψ)))

= −pN ,

and so N (t) = N (0)e−
∫

t
0

p(s)ds. In particular, taking periodic data, N (0) = 0, means
that N (t) = 0, t > 0. We may therefore use (5.14) to write (5.19) as

(1 − ψ)̇ = −α+ (1 − ψ)p,(5.20)
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and again employ (5.14) to express the following phase fractions as functions of p and
q:

ψ − φ =
p

p− q
, φ+ (1 − ψ) =

−q
p− q

.(5.21)

Using these relations in (5.17) leads to

f =
n

n− 1
pq(5.22)

from which (5.16) reduces to the autonomous system

ṗ =
1

n− 1
(p2 + n pq),(5.23)

q̇ =
1

n− 1
(q2 + n pq).(5.24)

Subtracting (5.18) from (5.19) implies

ψ(t) − φ(t) = (ψ(0) − φ(0)) exp
(∫ t

0

q(s)ds
)
,(5.25)

which means that the center phase fraction does not collapse as long as
∫ t

0 q(s)ds
remains bounded away from −∞. Similarly, adding (5.18) and (5.20) gives

φ(t) + (1 − ψ(t)) = (φ(0) + (1 − ψ(0)) exp
(∫ t

0

p(s)ds
)
,(5.26)

and the outer phase fraction exists as long as
∫ t

0
p(s)ds > −∞. Comparing (5.25) and

(5.26) shows also that periodicity imposes the following requirement on p(t) and q(t)
in terms of their initial phase fractions:

(φ(0) + (1 − ψ(0)) exp
(∫ t

0

p(s)ds
)

+ (ψ(0) − φ(0)) exp
(∫ t

0

q(s)ds
)

= 1.(5.27)

Using (5.16) to compute p− q next gives

p(t) − q(t) = (p(0) − q(0)) exp
(

1
n− 1

∫ t

0

p(s) + q(s) ds
)
,(5.28)

which shows p(t)−q(t) cannot change sign. By (5.21), p(t) and q(t) consequently keep
their signs as long as neither phase fraction collapses. This can alternatively be seen
by considering a sketch of u and observing that p and q have opposite signs and can
vanish only simultaneously. Thus, without loss of generality, we subsequently assume
p(t) > 0 > q(t), for at least some t ≥ 0.

In the following lemma, we solve the system (5.23), (5.24) implicitly in order to
show that two-phase solutions of the type (5.13) exist for all time.

Lemma 5.1. Let (p(t), q(t)) satisfy (5.23), (5.24) with initial data p(0) > 0 > q(0)
(respectively, p(0) < 0 < q(0)). Then (p(t), q(t)) exists for all t ∈ (−∞,∞) and
satisfies p(t) > 0 > q(t) (respectively, p(t) < 0 < q(t)). Further, (p(t), q(t)) → (0, 0)
as t→ ±∞, and ||u(., t)||C1 + ||∂tu(., t)||C0 → 0 as t → ±∞.
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Proof. Writing (5.23) and (5.24) using polar variables p(t) = r(t) cos θ(t), q(t) =
r(t) sin θ(t), r(t) ≥ 0, leads to the following:

ṙ(t) =
r2

n− 1
(cos3(θ(t)) + n(cos θ(t) + sin θ(t)) cos θ(t) sin θ(t) + sin3(θ(t))),(5.29)

and

θ̇(t) = r(cos θ(t) − sin θ(t)) cos θ(t) sin θ(t).(5.30)

In the case p(0) > 0 > q(0), θ(0) ∈ (−π/2, 0), so by (5.30) θ̇(0) < 0 and, as long as
θ(t) ∈ (−π/2, 0), θ̇(t) < 0.

We will show that θ(t) → −π/2 as t→ ∞ (θ(t) → 0 as t→ −∞) by using (5.29)
and (5.30). Integrating the resulting expression for d ln r

dθ gives

r(θ) = c| cos θ sin θ| 1
n−1 | cos θ − sin θ|−

n+1
n−1 ,(5.31)

where c > 0 denotes a generic constant. Inserting this expression for r(θ) in (5.30)
results in

θ̇(t) = c| cos θ sin θ| 1
n−1 | cos θ − sin θ|−

n+1
n−1 (cos θ − sin θ) cos θ sin θ

= −c| cos θ sin θ| n
n−1 | cos θ − sin θ|− 2

n−1(5.32)

for θ(t) ∈ (−π/2, 0), and so∫ θ(t)

θ(0)

| cos θ − sin θ| 2
n−1

| cos θ sin θ| n
n−1

dθ = −ct, −π
2
< θ(0) < 0, c > 0.(5.33)

Since n
n−1 > 1, the integral expression diverges, both as θ(t) → −π/2 (t → +∞) and

as θ(t) → 0 (t → −∞). Thus θ(t) and, from (5.31), r(t), are bounded, continuous
functions of time, with θ(t) ∈ (−π/2, 0). By (5.31) then, r(t) → 0 as t → ±∞, and,
noting that from (5.14), (5.15),

α(t) = −p(t) − q(t)
2

(ψ(t) − φ(t))(φ(0) + ψ(0) − 1) ,

it follows from (5.35) and (5.36) that

p(t), q(t), α(t), and u(x, t) → 0 as t→ ±∞.

The remaining conclusions are easily obtained.
Finally, we show that for c = 0 the phases remain in the interval [0, 1] for all time.
Theorem 5.1. Suppose c = 0 and 0 < φ(0) < ψ(0) < 1. Then the phases φ, ψ

stay in [0, 1]. In particular

φ(t) ∈ [φ(0), 1
2 (φ(0) + ψ(0)) and ψ(t) ∈ (1

2 (φ(0) + ψ(0)), ψ(0)]

for all t > 0. Further, the time asymptotic behavior satisfies

lim
t→∞

φ(t) = 1
2 (φ(0) + ψ(0)) = limt→∞ ψ(t).
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Proof. With (5.15) giving α (for c = 0), substituting into (5.18) and (5.20) shows
that, by (5.26),

(5.34)

φ̇(t) = (1 − ψ(t))̇ =
p

2
(φ+ (1 − ψ)) =

1
2

(φ(0) + (1 − ψ(0)))p(t) exp
(∫ t

0

p(s)ds
)
,

and the individual phases therefore satisfy

φ(t) = φ(0) +
1
2

(φ(0) + (1 − ψ(0)))
(

exp
(∫ t

0

p(s)ds
)
− 1
)

(5.35)

and

ψ(t) = ψ(0) − 1
2

(φ(0) + (1 − ψ(0)))
(

exp
(∫ t

0

p(s)ds
)
− 1
)
.(5.36)

Now we examine (5.27). Assuming q < 0 < p, the first term is monotonically increas-
ing in time and must converge, for 0 < φ(0) < ψ(0) < 1, to a positive limit. The
second term is positive but monotonically decreasing, so it may converge, as t → ∞,
either to a positive limit or to zero. Formally, setting 0 <

∫∞
0
p(t)dt = L < ∞ and

−∞ ≤
∫∞
0
q(t)dt = M < 0, (5.27) and (5.28) imply

(φ(0) + (1 − ψ(0)))eL + (ψ(0) − φ(0))eM = 1(5.37)

and

lim
t→∞

(p(t) − q(t)) = (p(0) − q(0))e
L+M
n+1 .(5.38)

If M is finite and p(0) 
= q(0), then (5.38), together with the necessity for p(t) to
approach zero as t → ∞, means that limt→∞ q(t) 
= 0. However, this implies that
M = −∞, a contradiction. On the other hand, if M = −∞, then, since L <∞, (5.38)
requires that limt→∞ q(t) = 0, which is permitted. We conclude that, for smooth
solutions p(t), q(t) to exist with p(0) > 0 > q(0), we require that L =

∫∞
0 p(t)dt <∞

and M =
∫∞
0 q(t)dt = −∞. Thus, by (5.37),

eL =
1

φ(0) + 1 − ψ(0)
.(5.39)

Writing (5.35) in the form

φ(t) =
1
2

(φ(0) − (1 − ψ(0))) +
1
2

(φ(0) + (1 − ψ(0))) exp
∫ t

0

p(s)ds,(5.40)

it follows that

lim
t→∞

φ(t) =
1
2

(φ(0) + ψ(0))(5.41)

and, similarly,

lim
t→∞

ψ(t) =
1
2

(φ(0) + ψ(0)).(5.42)

By the monoticity in time of
∫ t

0
p(s)ds, therefore φ(t) ∈ [φ(0), 1

2 (φ(0) + ψ(0)) and
ψ(t) ∈ (1

2 (φ(0) + ψ(0)), ψ(0)] for all t > 0.
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BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS IN A
SINGULARLY PERTURBED KDV MODEL∗

ALEXANDER TOVBIS†

Abstract. There are several recent developments in the well-known problem of breaking of
homoclinic orbits (splitting of separatrices) of a system that undergoes a singular perturbation.
First, survival of a homoclinic orbit is an exceptional situation that can be linked to triviality of
the Stokes phenomenon of the underlying “truncated” equation. Second, homoclinic connections to
exponentially small periodic orbits survive the perturbation in the generic case. In this paper we
consider a different problem: we study deformations of “genuine” periodic orbits of the second order
equation y′′ = y + y2 that undergoes the singular perturbation ε2y′′′′ + (1 − ε2)y′′ = y + y2, where
ε > 0 is a small parameter. We prove that if the period and the constant of motion do not change
too rapidly (in ε), a genuine (nontrivial) periodic solution does not survive the perturbation.

Key words. singular perturbations, periodic solutions, exponentially small phenomena
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1. Introduction.

1.1. Breaking of homoclinic connections. Let y = 0 be a hyperbolic sta-
tionary point of an n-dimensional differential equation y′ = f(y), and let Ws, Wu be
the stable and unstable manifolds at y = 0. It is said that the stationary point y = 0
has a homoclinic connection if there exists a phase trajectory, originating and ending
at y = 0, that lies on Ws ∩Wu. For example, the (bounded) separatrix solution

(1) y(x) = − 3/2
cosh2(x/2)

to

(2) y′′(x) = y(x) + y2(x)

corresponds to the homoclinic connection of the stationary point (0, 0) in the phase
plane of (2). There exists a general problem to describe how a singular perturbation
of the original equation affects the homoclinic (or a heteroclinic) connection. A large
number of particular singularly perturbed equations, originating from the correspond-
ing physical or computational problems, have been discussed in the literature (see, for
example, [STL] and the references therein). In particular, the singular perturbation

(3) ε2y′′′′(x) + (1 − ε2)y′′(x) = y(x) + y2(x)

of (2) is related to the traveling wave reduction of a fifth order KdV equation that
models gravity water waves. Existence or nonexistence of homoclinic connections of
(3) has been studied in a number of papers; see, for example, [HM], [PRG], [GJ].
A rigorous proof of nonexistence of such connections was obtained in [AM] (see also
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[Eck]) and later on in [To4], where the “asymptotic beyond all orders” approach, first
suggested in [KS] for a simple crystal growth model, was put on a rigorous basis.
This approach is, in a sense, a natural way to study exponentially small phenomena,
such as the mismatch between the stable and the unstable manifolds of (3). The
goal of the present paper is to show that a similar argument can be used to prove
nonexistence of symmetrical periodic solutions to (3) (see below), subject to some
additional requirements.

The approach of [KS] is to rescale (3), which is called the outer equation, to the
inner equation

(4) v′′′′(z) + (1 − ε2)v′′(z) = ε2v(z) + v2(z),

where x = εz and v = ε2y. The main advantage of (4) versus (3) is that the (ex-
ponentially small) difference between the stable and unstable solutions is detectable
even in the leading order part

(5) v′′′′(z) + v′′(z) = v2(z),

of (4), which is called the truncated equation (4). This means that the difference
between the stable and unstable solutions to (3) can be studied through the Stokes
phenomenon of (5). In fact, in [TP] we considered the family of singular perturbations

(6) ε2y(iv) + (1 − ε2)y′′ − y = y2 + ε2γ
(
2yy′′ + (y′)2

)
of (2), parametrized by γ ∈ R, and found exact conditions for persistence of the ho-
moclinic connection (under the singular perturbation) in terms of the Stokes constant
for the corresponding truncated inner equation. The technique developed in [To4] can
be modified to consider singularly perturbed problems in other settings. For exam-
ple, it was used in [To5] to show that the discretized equation (3) does not have a
homoclinic connection.

Notice that persistence of the homoclinic connection under singular perturba-
tions (3), (6) is equivalent to existence of a symmetrical (even) stable solution to
the corresponding equation. Since the family of stable solutions to (3) (or to (6)) is
one-dimensional (translation), we can arrange for y′(0) = 0; then the symmetry of
the stable solution y(x) is equivalent to y′′′(0) = 0.

1.2. Deformation of periodic solutions under singular perturbations.
The problem of deformations of periodic solutions under singular perturbations has
not yet received as much attention as the problem of homoclinic connections. However,
it is known that there exist symmetrical periodic solutions to (3) that are exponentially
small in ε; see [Lo] and later papers [IL1], [IL2]. We consider such periodic solutions as
deformations of a constant solution y ≡ 0 of the unperturbed equation (2). Existence
of even periodic solutions that are deformations of a trivial solution was also proved
in [BPBA] for a certain class of reversible fourth order Hamiltonian systems with zero
Hamiltonian. Discussion of even periodic solutions for some fourth order ODEs with
nonzero Hamiltonian and cubic nonlinearity ((3) has a quadratic nonlinearity) can be
found in [PT].

In the present paper we extended the technique of [To4] to study deformations of
a genuine (nonconstant) periodic solution of (2). We limit our attention to periodic
solutions inside the potential well of (2). Any such solution is given by the Weierstrass
elliptic ℘-function with invariants g2, g3,

(7) y(x) = 6℘g2,g3(x− x0) − 1
2
,
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and has an integral of motion

(8) y′
2 = y2 +

2
3
y3 + C,

where x0 ∈ C is a translation and g2 = 1
12 , g3 = − 1

36 (C + 1
6 ) (see section 1.3).

The requirement C ∈ (− 1
3 , 0) on the constant of motion (energy) C guarantees that

solution y(x) is inside the potential well. (The value C = 0 corresponds to the trivial
solution and to the separatrix solution of (2), whereas C = − 1

3 corresponds to the
stationary solution y(x) ≡ −1.) Solution (7) is a periodic function with finite basic
real and purely imaginary periods

(9) 2ω1 =
∫ ∞

e1

du√
4u3 − 1

12u− g3

, 2ω3 = i

∫ e3

−∞

du√
4u3 − 1

12u− g3

,

where e1, e3 are the largest and the smallest real roots of 4u3 − 1
12u − g3 = 0 (see

below), respectively. It is also an even function provided that x0 is an integer linear
combination of ω1, ω3. It will be convenient for us to choose

(10) x0 = ω3,

so that the unperturbed solution (7) is bounded, real-valued, symmetrical, and peri-
odic with the period 2ω1 on x ∈ R. Equivalently, we can consider solution (7) with
x0 = 0 along the horizontal line ω3 + R in the complex x-plane.

The perturbed equation (3) also has an integral of motion

(11) ε2(2y′′′y′ − y′′
2) + (1 − ε2)y′2 − y2 − 2

3
y3 = C(ε),

where C(ε) is the constant of motion (energy). Since we are interested in deformations
of periodic solutions satisfying (8), we require C(0) = C ∈ (− 1

3 , 0).
Let α ≥ 1. We say that a solution y(x, ε) to the perturbed equation (3) is a

Cα-deformation of a periodic solution (7) (in the potential well) to the unperturbed
equation (2) under the singular perturbation (3) on interval S if

(12) Y (x, ε) = Y (x, 0) + εαỸ (x, ε),

where vector Ỹ (x, ε) is continuous in ε, uniformly on interval S of the x-axis. Here
Y (x, ε) = Col (y(x, ε), y′(x, ε), y′′(x, ε), y′′′(x, ε)). Note that a Cα-deformation of a
periodic solution (7) has constant of motion (11) satisfying

(13) C(ε) = C + εαC̃(ε),

where C̃(ε) is a continuous function.
Our main result is the following theorem.
Theorem 1.1. Let y(x, 0) = 6℘ 1

12 ,g3
(x−ω3)− 1

2 , where |g3| < 6−3, be a periodic
solution (inside the potential well) of the nonperturbed equation (2). Let n ∈ N and
y(x, ε) be a Cα-deformation, α ≥ 1, of y(x, 0) under the perturbation (3) on some
open interval S that contains the segment [ω1, nω1]. Then the deformation y(x, ε) does
not contain a sequence of symmetric periodic solutions y(x, εm) of (3) with periods
2kω1(εm), where k = 1, 2, . . . , n, limm→∞ εm = 0, and ω1(ε) is subject to

(14) ω1(ε) − ω1 = ε
α
2 τ(ε),
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where τ(ε) is a continuous function for small ε ≥ 0.
Similarly to the homoclinic connection problem, the central idea of our proof

here is uniform (in small ε ≥ 0) control of an iterative solution of inner equation (4).
In a certain sense, though, the homoclinic connection problem is simpler, because
the manifolds of stable and unstable solutions to (3) are one-dimensional, whereas
deformations of a periodic solution to (2) under the perturbation (3) form a manifold
of the full dimension. We rescale the outer equation (3) to the inner equation (4) by
x = εz, v = ε2y and approach the problem through the following sequence of steps:
(a) we construct by iterations a two-parameter family Fα of deformations of the
rescaled periodic solution (7), (10), satisfying (4); (b) we show that solutions v(z, ε)
to the inner equation (4) that corresponds to a Cα-deformation y(x, ε) of a periodic
solution (7) with the period 2ω1 belong to the family Fα; and (c) for any k ∈ N we
prove that the family Fα does not contain a sequence {v(z, εm)}∞1 of symmetrical and
periodic (with the period 2k ω1(εm)

εm
) solutions if ω1(ε) is subject to (14).

The paper is organized in the following way. In the remaining part of this section
we describe the Stokes phenomenon for the truncated inner equation (5) and some
connections between deformations of homoclinic and periodic orbits of (3). Solution
of (3) by iterations, which yields the two-parameter family of solutions Fα, is obtained
in sections 2–3. Finally, the proof of Theorem 1.1 is completed in section 4.

1.3. Periodic solutions of the unperturbed equation. It is easy to check
that the values C from the interval (− 1

3 , 0) define periodic solutions of the unperturbed
equation (2) within the well of the potential −y2 − 2

3y
3. After the change of variables

y = 6X − 1
2 , (8) is reduced to

(15) X ′2 = 4X3 − 1
12
X − g3,

where g3 = − 1
36 (C + 1

6 ). The solution to this equation is given by the Weierstrass
elliptic function ℘(x) = ℘g2,g3(x), where the invariant g2 = 1

12 and g3 is defined above.
Thus, periodic solutions to the unperturbed equation (2) are given by

(16) y(x) = 6℘g2,g3(x) − 1
2
.

The number Δ = g3
2 − 27g2

3 is called the discriminant of ℘g2,g3(x). The condition
Δ > 0 is equivalent to |g3| < 6−3, i.e., to C ∈ (− 1

3 , 0). Under this condition the
Weierstrass function ℘ has real period 2ω1 defined by (9) and purely imaginary period
2ω3, where ω1,−iω3 are positive numbers (the latter requires correct choice of the
branch of the square root in (9)). Using the standard notation, we denote ω2 = ω1+ω3

and ej = ℘(ωj), where j = 1, 2, 3. It is well known that (see, for example, [GR]) ej

are the roots of the cubic polynomial in (15),

(17) ℘′(ωj) = 0, j = 1, 2, 3, e1 + e2 + e3 = 0, and e3 ≤ e2 ≤ e1.

When x varies along the real axis, the value of ℘ varies between e1 and +∞ (as
℘(x) is an even function that has a second order pole at the origin with the principle
part 1

x2 ); see Figure 1.
This corresponds to the periodic solution of (2), defined by (16), with the range

from ẽ1 to infinity outside the potential well, i.e., to the unbounded branch of the
periodic orbit (the energy of the motion is fixed). Here ẽj = 6ej − 1

2 , j = 1, 2, 3; see
Figure 2.
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Fig. 1. Part of the parallelogram of periods 0ω1ω2ω3 for the Weierstrass functions ℘(x) in the
complex x-plane together with the corresponding values of ℘ shown in the brackets.
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Fig. 2. Phase portrait of (2) showing periodic solutions (Δ > 0) of the same period inside
(bounded) and outside (unbounded) the potential well. Here ẽj = 6ej − 1

2
, j = 1, 2, 3.

When x varies along the horizontal line �x = ω3, the value of ℘ varies between
e3 and e2. That corresponds to the periodic solution of (2), defined by (16), with
the range from ẽ3 to ẽ2 inside the potential well, i.e., to the bounded branch of the
periodic orbit. When x varies along the vertical line 	x = ω1, the value of ℘ varies
between e1 and e2. That corresponds to the tunneling between the unbounded and
bounded branches of the periodic orbit defined by the solution (16); see Figures 1 and
2. For Δ < 0 the periods ω1 and ω3 are complex conjugated so that ω2 is real. In this
case the value of ℘ varies between e2 and +∞, which corresponds to infinite periodic
motion outside the potential well; see Figure 3.
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Fig. 3. Phase portrait of (2) showing an unbounded periodic solution (Δ < 0) outside the
potential well. Here ẽ2 = 6e2 − 1

2
.

Here and henceforth it will be convenient for us to consider x0 from (7) to be zero.
Then we are interested in the behavior of y(x) along the horizontal line ω3(ε) + R.

1.4. Solutions to the perturbed equation. Considering perturbations of the
separatrix solution (1) of the original equation, we focus our attention on the stable
and unstable solutions of the perturbed equation (3) (those are solutions correspond-
ing to the one-dimensional manifolds Ws and Wu in the phase space of (3)). We
define the unstable and stable solutions to (3) as

(18) yu,s(x, ε) =
∞∑

k=1

yk(ε)e±kx,

respectively, where y1(ε) as an arbitrary continuous positive function and all yk, k > 1,
are uniquely defined through y1 [To4]. The series (18) is convergent in properly chosen
left- and right-half planes of the complex x-plane, respectively. It is easy to check that
for ε = 0 the choice of y1(0) = 6 yields the unbounded separatrix solution

(19) y(x) =
3/2

sinh2(x/2)
,

which is related to the bounded separatrix solution (1) through the shift x 
→ x+ iπ.
Considering x as a complex variable, now and henceforth we refer to (19) as the
separatrix solution of (3).

Perturbations of periodic solutions to the original equation (2) that we are inter-
ested in are not as clearly identifiable as solutions (18) in the separatrix case. We start
with considering the separatrix solution of (3) as the limit of periodic solutions (16)
as C → 0−. In this limit the real half-period ω1 → ∞, and the imaginary half-period
ω3 → iπ. Thus, the point ω2 → iπ + ∞ as C → 0−.

Note that the stable and unstable solutions (18) are symmetrical with respect
to x = 0 since ys(x, ε) = yu(−x, ε). Alternatively, we can consider yu(x) as the
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symmetrical continuation of ys(x) through x = ∞ on the compactification of R.
The same observation is correct for the horizontal line �x = π and x = iπ + ∞. The
analogue of the point x = iπ+∞ in the periodic case is x = ω2. Therefore, by analogy
with the separatrix case, we will consider perturbations of the periodic solution (16)
that are symmetrical with respect to the point ω2(ε). Equivalently, that means that
the first and third derivatives of y(x) turn zero at x0 = ω2. The remaining two of the
total of four conditions to define y(x, ε) are y′(ω3(ε), ε) = 0 and the integral of motion
(11). Thus, y(x, ε) satisfies third order differential equation (11) with the prescribed
energy C(ε) together with three boundary conditions

(20) y′(ω3(ε), ε) = 0, y′(ω2(ε), ε) = y′′′(ω2(ε), ε) = 0,

where C(0) = C and 2ω1(ε), 2ω3(ε) are the fundamental periods of the Weierstrass
function ℘ in the solution (16) of (8).

It is easy to see that if f(x) is an even (symmetrical at x = 0) periodic function
with a period 2ω1, then f(x) is symmetrical at any point x = kω1, k ∈ N. Since a
solution y(x, ε) to the BVP (11), (20) is symmetrical at x = ω2(ε) on the horizontal
line �x = �ω3(ε), y(x, ε) is an even periodic solution if and only if

(21) y′′′(ω3(ε), ε) = 0.

1.5. The Stokes phenomenon for the inner equation. Periodic solutions
(16) to (2) have second order poles at x = 0. The asymptotic beyond all orders
approach of [KS] suggests blowing up this singularity by rescaling

(22) x = εz, y(x, ε) = ε−2v(z, ε),

where z is a new independent complex variable. The rescaled equation (inner equa-
tion) is given by (4), which we can rewrite as

(23) (D2
z + 1)(D2

z − ε2)v = v2.

Let v+(z, ε) and v−(z, ε) denote, respectively, the rescaled solutions to the BVP
(11), (20) and to its “symmetrical” problem, where conditions at ω2(ε) are replaced by
the same conditions at −ω̄2(ε) = −ω1(ε)+ω3(ε), i.e., y′(−ω̄2(ε), ε) = y′′′(−ω̄2(ε), ε) =
0. Our observation (proved below) is that, similarly to the case of the separatrix
solution, the leading order (in ε) of the difference between v+(z, ε) and v−(z, ε) can
be derived from the truncated equation

(24) (D2
z + 1)D2

zv = v2.

Note that z = ∞ is the irregular singular point of (24) and that this equation has a
unique formal power series solution

(25) v̂(z) =
∞∑

k=1

vk

z2k
,

where v1 = 6.
The inverse Laplace transform L−1 converts the truncated inner equation (24)

into the convolution equation

(26) (p4 + p2)V (p) = V (p) ∗ V (p),



BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1523

where p is a dual variable (called Borel variable), V (p) = [L−1v](p), and F (p)∗G(p) =∫ p

0 F (p−τ)G(τ)dτ . It is well known that the asymptotic expansion (25) of v(z) yields
the corresponding asymptotic expansion in powers of p of V (p) at p = 0.

Theorem 1.2. Equation (26) admits a unique nontrivial power series solution
in odd powers of p. This solution defines a function V (p) that is analytic at the whole
p-plane except for two vertical rays: from p = i upward and from p = −i downward.
The function V (p) is of exponential order 1 along any nonvertical ray in this cut
p-plane.

This theorem follows from a more general statement (Main Theorem) of [To2].
Corollary 1.3. Let v±(z) be defined by

(27) v±(z) =
∫ ±∞

0

e−zpV (p)dp.

These functions are the only analytic solutions of the truncated inner equation (24)
that satisfy

(28) v±(z) ∼ v̂(z) as z → ∞, z ∈ S±,

where S± are sectors

(29) S+ = {z : | arg z| < π} , S− = {z : | arg z − π| < π} .

Moreover,

(30) v+(z) − v−(z) = −2πiseiz(1 + o(1)) as z → ∞, 0 < arg z < π,

where the constant s is determined through

(31) s = lim
p→−i

(p+ i)V (p).

Proof. The Taylor expansion of V (p) at p = 0 can be obtained by applying the
inverse Laplace transform (Borel transform) to the formal series v̂(z). The function
V (p) is analytic on a Riemann surface that has possible branch points of the loga-
rithmic type at p = ik, where k ∈ Z \ {0}. The statement on the behavior of V (p)
at singularities p = ±i follows from Theorem 2.2 in [To2]. The uniqueness of solu-
tions v±(z) satisfying (28) follows from Theorem 1.2 and properties of the Laplace
transform.

Definition 1.4. The constant s in (31) is called the Stokes constant for the
truncated inner equation (24).

Proposition 1.5. The following three conditions are equivalent: (i) the for-
mal power series solution (25) has a positive radius of convergence; (ii) s = 0; and
(iii) v+(z) ≡ v−(z).

Proof. The fact that (i) implies (iii) is obvious. The inverse statement follows
from the fact that v(z) = v+(z) ≡ v−(z) implies that the function v(z) is single-
valued near infinity and has asymptotic expansion v̂(z) in the full neighborhood of
infinity (see [Wa]). It is also clear that (i) implies (ii), since in this case L−1v̂(z) is an
entire function. Suppose now that s = 0. Since V (p) is real-analytic on R, we obtain
that V (p) = o( 1

p−(±i) ) as p → ±i. That means, according to Corollary 2.2 in [To2],
that v+(z) coincides with v−(z) in both the lower and upper z half-planes. Thus (ii)
implies (iii).
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Divergence (zero radius of convergence) of the formal power series (25) was proved
in [To2, p. 247]. According to Proposition 1.5, this implies that v+(z) �≡ v−(z). (In
fact, nonzero numerical values of s for equations, equivalent to (24), were computed
in [PRG], [GJ] by means of formal Borel summation.) This implies, at least at the
formal level, that solution v+(z, ε) to (23) does not coincide with solution v−(z, ε) to
(23). To make this statement rigorous, it is sufficient to show that (a)

(32) v±(z, ε) → v±(z)

as ε → 0 in some regions R± uniformly in z ∈ R±, and (b) intersection R+ ∩ R−
contains some segment of a positive length.

2. Inner equation. In the following theorem (Theorem 2.1) we construct a
two-parameter family of solutions to (23) that are symmetrical at z = ω̃2(ε) and that
converge to v+(z), or to its translation v+(z − h), h ∈ R, as ε → 0 uniformly in
the corresponding region (see below) of the complex z-plane. Here ω̃j(ε) = ωj(ε)

ε ,
j = 1, 2, 3.

This result constitutes an essential part of the method of [KS]; convergence of
v+(z, ε) to v+(z) was mentioned only briefly in the original paper [KS] (with regard
to a third order equation considered there), but explicit formulations and proofs were
omitted. In other papers, connection between solutions of (23) and (24) was consid-
ered only on the formal level. The proof of convergence of v+(z, ε) to v+(z) in the
separatrix case was given in [To4] (see also [To5] for the discretized equation (2), as
well as [TP] for a more general family of singular perturbations of (2)). The major
difficulty there was based on the fact that solutions of the full and of the truncated
inner equations have different rates of convergence to 0 as z → ∞ (in proper direc-
tions): v+(z, ε), ε > 0, approaches 0 exponentially fast (in z), while v+(z) has only
power order convergence. One needs to find, however, some uniform majorization
that will cover both cases. In order to find such a majorization, we suggested [To4],
[To5] linearizing (23) around the unperturbed solution 6q2, where q(z, ε) = ε

sinh εz
2

,
and applying the contraction mapping principle to the obtained equation. A similar
approach will be developed below with the natural choice

(33) q(z, ε) = ε

√
℘ 1

12 ,g3(ε)(εz) − 1
12
,

where g3 = g3(ε) is determined through ω1 = ω1(ε) by (9).

2.1. Linearized equation. The substitution

(34) v(z, ε) = u(z, ε) + 6c(ε)q2(z, ε),

where q(z, ε) is given by (33), reduces (23) to

(35) (D2
z + 1)(D2

z − ε2)u = u2 + 12c(ε)q2u+ f(q).

Here c = c(ε) is a continuous function satisfying c(0) = 1. Calculations of f after
some algebra yield

(36) f(q) = c
[
36(c− 1 − 4ε2)q4 − 6!q6 − 2ε6J(ε)

]
,

where

(37) J(ε) = −36g3(ε) − 1
6
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is determined through ω1 = ω1(ε). (To simplify notation, we omit the ε dependence in
ωj or ω̃j , j = 1, 2, 3, provided that such omission cannot cause any misunderstanding.)
Note that limε→0 6c(ε)q2(z, ε) = 6

z2 . This is the leading term of the asymptotic
expansion (25) of v+(z). So, substitution (34) linearizes (23) with respect to the
leading term for both positive and zero values of ε.

Let

(38) w = (D2 + 1)u.

Then (35) becomes

(39) (D2 − ε2)w =
[
(D2 + 1)−1w

]2
+ 12cq2(D2 + 1)−1w + f(q)

or

[D2 − (ε2 + 12q2)]w =
[
(D2 + 1)−1w

]2
(40)

+ 12cq2[(D2 + 1)−1 − 1]w − 12q2(1 − c)w + f(q).

Using the identity

(41) (D2 + 1)−1 − 1 = −(D2 + 1)−1D2

and solving (39) for D2w, we finally get

[D2 − (ε2 + 12q2)]w = [1 − 12cq2(D2 + 1)−1]
(
f(q) + [(D2 + 1)−1w]2

)
(42)

− 12q2(1 − c)w − 12cq2(D2 + 1)−1
[
ε2 + 12cq2(D2 + 1)−1

]
w.

This integrodifferential equation is equivalent to (35), (38). We solve (42) by the con-
traction mapping principle, considering it as a “perturbation” of the nonhomogeneous
linear ODE

(43) [D2 − (ε2 + 12q2)]w = [1 − 12cq2(D2 + 1)−1]f(q).

The corresponding homogeneous equation

(44) [D2 − (ε2 + 12q2)]w = 0

has two independent solutions v1(z) and v2(z), where v2(z) is symmetric (even) and
v1(z) is antisymmetric (odd) at the origin. Indeed, v = 6q2 is a solution to (D2−ε2)v =
v2, which is the rescaled equation (2). Differentiating both sides of the latter equation,
we get (D2 − ε2)v′ = 2vv′. This equation coincides with (44), where w = v′. Thus,
we obtain

(45) v1(z) = 6
d

dz
q2 = 6ε3℘′(εz).

The second linearly independent solution can be taken as

(46) v2(z) = v1(z)
∫ z

0

dξ

v2
1(ξ)

.
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Note that ℘(εz) is symmetrical and, thus, v1 is an antisymmetrical (odd) function
with respect to any integer combination of half periods ω̃1 and ω̃3. It will be shown
below (section 2.3) that solutions

(47) v2j(z) = v2(z) − 1
6ε7Δ

[
3g3
2
ωj − g2ζ(ωj)

]
v1(z), j = 1, 2, 3,

to (44), where

(48) ζ(x) =
1
x
−
∫ x

0

(
℘(y) − 1

y2

)
dy

is a “negative antiderivative” of ℘, are symmetrical at the points z = ω̃j , respectively.

2.2. Formulation of the theorem. Let g(z) be a function, symmetrical (even)
with respect to the point ω̃2(ε), and let I2 = (D2 + 1)−1 denote the operator, inverse
to D2+1 and such that I2g(z) is symmetrical with respect to ω̃2(ε). The construction
of I2 will be given in section 3.1.

Equation (42) can be written in the operator form as w = Nw, where

(49)

Nw = I1 ◦
[
(1 − 12cq2I2)[f + (I2w)2] − 12q2(1 − c)w + 12cq2I2(ε2 + 12cq2I2)w

]
and

(50) I1g(z) = −v1(z)
∫ z

ω̃2

v2(ξ)g(ξ)dξ + v2(z)
∫ z

ω̃2

v1(ξ)g(ξ)dξ.

We define iterations

(51) w0 = 0, w1 = Nw0 + ε6b(ε)v22(z), wn = Nwn−1, n = 2, 3, . . . ,

and Δwn = wn −wn−1, n = 1, 2, . . . , where b(ε) is a continuous function in a vicinity
of ε = 0. The following theorem proves uniform convergence of the series

∑∞
n=1 Δwn

in a region Rz0 ⊂ C, which is defined below. Thus, we obtain a family of solutions to
(42), parametrized by c(ε) and b(ε), which are symmetrical at z = ω̃2.

Consider the parallelogram of periods of the elliptic function q(z, ε) (the periods
are 2ω̃1 and 2ω̃3) centered at the origin with the square cut that has vertices ±z0(1+i)
and ±z0(1 − i), where z0 > 0 is a positive constant. We require ε ∈ [0, ε0], where

(52) ε0z0 < min{ω1, |ω3|}.

By Rz0 we denote a quarter of this figure, i.e., of the parallelogram of periods with
the square cut, that lies in the first quadrant; see Figure 4.

Theorem 2.1. Let E be a closed subinterval of (− 1
3 , 0), and let J(ε) from (37)

be a function, defined on a neighborhood of ε = 0 with the range in E. Let continuous
functions b(ε), c(ε) satisfy

(53) |b(ε)| ≤ lεα and |c(ε) − 1| ≤ lεα

for some l > 0, α ≥ 1, and for all nonnegative ε from a vicinity of ε = 0. Then there
exist ε0 > 0, z0 > 0 satisfying (52), which depend only on E and l, and such that the
series

(54) w(z, ε) =
∞∑

n=1

Δwn(z, ε)
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converges uniformly in Rz0 × [0, ε0].
Remark 2.2. The rectangular “cut” in Rz0 can be replaced by a cut of any other

shape so that the distance between Rz0 and the origin is O(z0). In fact, it will be
replaced by a more convenient triangular “cut” in the course of the proof.

The proof of the theorem is given in section 3.4.

2.3. The second fundamental solution to the linearized equation. Note
that, similarly to the separatrix case, the solution v1 to (44) is an odd function, while
the solution v2 is an even function; see (45)–(46). Moreover, ℘(εz) is symmetrical, and,
thus, v1 is an antisymmetrical (odd) function with respect to any integer combination
of half-periods ω̃1 and ω̃3.

Our computation of v2 is based on the well-known fact (see, for example, [WW])
that the difference between two elliptic functions with the same periods and same
principal parts at each singular point is a constant. The only zeros of the function
℘′(εz) within the parallelogram of periods are simple zeros at the points ω̃j , j = 1, 2, 3.
Therefore

(55)
1

℘′2(εz)
= A0 +

3∑
j=1

Aj℘(εz − ωj)

for all z and

(56)
∫ z

0

dξ

℘′2(εξ)
= A0z −

1
ε

3∑
j=1

Aj [ζ(εz − ωj) + ζ(ωj)],

where the constants Ak, k = 0, 1, 2, 3, will be discussed below and ζ(x), defined by
(48), is an odd function. The following arguments use some standard facts about the
Weierstrass ℘-function that can be found, for example, in [WW], [Ha].

Using the “addition theorem” for ζ-function

(57) ζ(εz − ωj) − ζ(−ωj) = ζ(εz) +
1
2

℘′(εz)
℘(εz) − ej

, j = 1, 2, 3,

we get

(58)
∫ z

0

dξ

℘′2(εξ)
=

1
ε

⎡⎣A0εz − ζ(εz)
3∑

j=1

Aj −
1
2
℘′(εz)

3∑
j=1

Aj

℘(εz) − ej

⎤⎦ .
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Constants Ak, k = 0, 1, 2, 3, are calculated in Lemma 2.3 below. Differential equations

(59) ℘′2 = 4
3∏

j=1

(℘− ej) and ℘′′ = 6℘2 − g2
2

for the Weierstrass ℘-function and identities

(60) e1e2 + e1e3 + e2e3 = −g2
4

and e1e2e3 =
g3
4

are also utilized in this lemma.
Lemma 2.3.

(61)

A0 =
9g3
Δ
, Aj =

[
1

2(ej − ei)(ej − ek)

]2

, j = 1, 2, 3, and A+ =
3∑

j=1

Aj =
6g2
Δ
,

where the indices i, j, k are a permutation of 1, 2, 3.
Proof. The Taylor expansion of ℘ at ωj, j = 1, 2, 3, yields

(62) ℘(x) = ej + aj(x− ωj)2 +O(x− ωj)4.

Therefore the principal part of (℘′)−2 at ωj is 1
4a2

j (x−ωj)2
. According to (59), aj =

1
2℘

′′(ωj) = 3e2j − g2

4 . The principal part of ℘(x) at the origin is 1
x2 . Thus

(63) Aj =
1

(6e2j −
g2

2 )2
=
[

1
2(ej − ei)(ej − ek)

]2

,

where the indices i, j, k are a permutation of 1, 2, 3. The latter expression follows from

3e2j −
g2
4

= 2e2j + ej(ej + ei) + ejek + eiek = 2e2j + eiek = 2(ei + ek)2 + eiek(64)

= (2ei + ek)(2ek + ei) = (ei − ej)(ek − ej),

where (17) and (60) were taken into account.
Direct computations, based on (17) and (60), show that

(65)
3∑

j=1

e2j =
g2
2
,

∑
i<k

e2i e
2
k =

g2
2

16
, and

3∑
j=1

e3j =
3
4
g3,

where summation in the second expression is taken over all possible pairs i, k such
that 1 ≤ i < k ≤ 3. Then

(66)
3∑

j=1

Aj =
∑

i<k(ei − ek)2

4
∏

i<k(ei − ek)2
=

3g2
8
∏

i<k(ei − ek)2
.

Next we compute the denominator, using (60) and (63):

−8
∏
i<k

(ei − ek)2 =
3∏

j=1

(
6e2j −

g2
2

)
= − g3

2

8
+ 6

g2
2

4

3∑
j=1

e2j − 18g2
∑
i<k

e2i e
2
k(67)

+ 63
3∏

j=1

e2j =
1
2

(27g2
3 − g3

2) = −Δ
2
.
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Now the second statement of the lemma follows from (66).
In order to evaluate A0 we put z = 0 at (55). Since ℘′ has a pole at the origin,

(55) yields

(68) A0 = −
3∑

j=1

Ajej =

∑3
j=1 ej(ei − ek)2

−4
∏

i<k(ei − ek)2
.

Using (17) and (65), we calculate the numerator in the latter expression as − 9
4g3.

Then the first statement of the lemma follows from (67)–(68).
Now, the combination of (45)–(46) and of (58)–(59) yields

(69) v2(z) =
1

6ε4

⎡⎣[A0x−A+ζ(x)]℘′(x) − 2
3∑

j=1

Aj(℘(x) − ei)(℘(x) − ek)

⎤⎦ ,
where for convenience we use the notation x = εz. The latter sum is a quadratic
polynomial in ℘, which, according to (17) and (68), can be written as −2A+℘

2 +
2A0℘ + B, where the constant B = −2

∑3
j=1 Ajeiek. In order to determine B, note

that (46) implies that v2 is an even function, which has zero of order four at the origin.
Using the Laurent expansions of ℘, ℘′, and ζ at the origin (see [GR]) and equating
the constant term of (69) to be zero, we obtain

(70) B = −2
3∑

j=1

Ajeiek = A+

( g2
10

+
g2
30

)
+ 2A+

g2
10

=
2g2

2

Δ
.

Combining the latter equation with (69) and Lemma 2.3 yields

v2(z) =
1
ε4Δ

([
3g3
2
εz − g2ζ(εz)

]
℘′(εz) − 2g2℘2(εz) + 3g3℘(εz) +

g2
2

3

)
(71)

=
1
ε4Δ

(
3g3
2

[εz℘′(εz) + 2℘(εz)] − g2
3
[
3ζ(εz)℘′(εz) + 6℘2(εz) − g2

])
.

Note that v2(z) is an elliptic function if and only if 3g3

2 x−g2ζ(x) is doubly periodic
with fundamental periods 2ω1, 2ω3. Using ζ(x+ 2ωj) = ζ(x) + 2ζ(ωj) for all x in the
domain of ζ and j = 1, 2, 3 [GR], we can write the condition that v2 is an elliptic
function as

(72) 3g3ωj − 2g2ζ(ωj) = 0, j = 1, 3.

Considering these equations as a linear system for unknowns 3g3,−2g2, we come to
the conclusion that it cannot have nontrivial solutions since its determinant ω1ζ(ω3)−
ω3ζ(ω1) ≡ − iπ

2 [GR]. Thus v2 is not an elliptic function for any energy C ∈ (− 1
3 , 0).

Note that in the case of the separatrix solution v2 is also not a hyperbolic function
(see [To4]).

2.4. Estimates for v1(z), v2(z). Let T denote trapezoid ABCD in C with the
vertices A(ω̃1 − ω̃3), B(ω̃1 + 2ω̃3), C(3

2 ω̃3), D(− 1
2 ω̃3). We start with the estimate

(73) |q2(z, ε)| ≤ Q

|z|2
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with some Q > 0, which is valid for any ε ≥ 0 and for any z in the trapezoid
T . The value of the constant Q can be chosen as Q = 1 + |ω2|2Q̃, where Q̃ =
1
12 + maxx∈T̃ |℘(x) − 1

x2 |. Here T̃ denotes the trapezoid in the x-plane, x = εz, that
corresponds to T . Note that ω2 is defined by the energy J(ε) of the periodic solution
(33). However, we can choose Q such that (73) holds for all J(ε) ∈ E.

Lemma 2.4. There exist positive constants A and B such that the estimates

(74) |v1(z)| ≤ A

|z|3 and |v2(z)| ≤ B|z|4

are valid in T for any ε ≥ 0 and any J(ε) ∈ E.
Proof. The first estimate follows from (45) and the inequality

(75)
∣∣∣∣℘′(x) +

2
x3

∣∣∣∣ ≤ A3

in T̃ , similarly to (73).
The second inequality (74) follows from the fact that the expression in the square

brackets in the right-hand side of (69) is bounded by 6|x|4B in T̃ with some positive
constant B that does not depend on ε and on J(ε) ∈ E.

3. Solution by iterations.

3.1. Operator (D2 + 1)−1. Let ω ∈ C, a > 0, and let an analytic function
g(z) be real-valued on 	z = 	ω and symmetrical with respect to ω. Note that under
these assumptions g(z) is also real-valued along �z = �ω.

Proposition 3.1. The operator Iω
a defined by

(76) Iω
a g(z) =

1
2i

[
eiz

∫ z

ω−ia

e−iξg(ξ)dξ − e−iz

∫ z

ω+ia

eiξg(ξ)dξ
]

is inverse to D2 + 1, and Iω
a g(z) is real-valued on 	z = 	ω and symmetrical with

respect to ω.
Proof. The first statement of the proposition is obvious. In order to prove the

second statement, we decompose

(77) Iω
a g(z) = Iωg(z) +

1
2i

[
eiz

∫ ω

ω−ia

e−iξg(ξ)dξ − e−iz

∫ ω

ω+ia

eiξg(ξ)dξ
]
,

where Iω = Iω
0 . Let ib =

∫ ω+ia

ω ei(ξ−ω)g(ξ)dξ. Since g is real-valued along the path
of integration, b ∈ R and −ib =

∫ ω−ia

ω
e−i(ξ−ω)g(ξ)dξ. Thus, the second term in (77)

is symmetrical and real-valued as it is

(78)
1
2i

[ibei(z−ω) + ibe−i(z−ω)] = b cos(z − ω).

To complete the proof we observe that

Iω =
1
2i

[
eiz

∫ z

ω

e−iξg(ξ)dξ − e−iz

∫ z

ω

eiξg(ξ)dξ
]

=
∫ z

ω

sin(z − ξ)g(ξ)dξ(79)

= sin(z − ω)
∫ z

ω

cos(ξ − ω)g(ξ)dξ − cos(z − ω)
∫ z

ω

sin(ξ − ω)g(ξ)dξ
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is also symmetrical with respect to ω and real-valued.
Using the reflection principle, it is easy to show that the function g(z) of Propo-

sition 3.1 is periodic with real or purely imaginary period 2P if and only if it is
symmetrical with respect to ω+P . Then Proposition 3.1 shows that there is a (real)
one-parameter family of operators Iω

a , preserving the symmetry of g at ω. The fol-
lowing proposition shows that symmetry can be preserved at both ω and ω + P if P
is not a multiple of π. If P is a multiple of π, one can prove that a symmetrical and
periodic (D2 + 1)−1g(z) exists if and only if the Fourier expansion of g(z) does not
contain a cos z term.

Proposition 3.2. Let g(z) be a function, symmetrical with respect to ω and
ω + P and real-valued on [ω, ω + P ], where P is either real or purely imaginary. If
P �= kπ, k ∈ N, then there exists an operator I that is inverse to D2 + 1 and such
that Ig inherits the abovementioned properties of g.

Proof. To satisfy the requirements at ω, the operator I has to be of the form
Ig = Iωg + d cos(z − ω), where d ∈ R (and depends on g). Then

Ig = Iω+P g + d cos(z − ω)

(80)

+
1
2i

[
ei(z−ω−P )

∫ ω+P

ω

e−i(ξ−ω−P )g(ξ)dξ − e−i(z−ω−P )

∫ ω+P

ω

ei(ξ−ω−P )g(ξ)dξ

]
.

Let A1,2 denote the (two) terms in the square brackets, respectively, and let A =
1
2 (A1 + A2), B = 1

2 (A1 − A2). Then the square bracket expression in (80) becomes
A sin(z − ω − P ) − iB cos(z − ω − P ). Therefore

(81) Ig = Iω+P g + (d cosP − iB) cos(z − ω − P ) + (A− d sinP ) sin(z − ω − P ).

Using (79) we see that the first two terms in the right-hand side of (81) are symmetrical
at ω + P . Thus Ig is symmetrical with respect to ω + P if and only if

(82) d =
2
∫ ω+P

ω cos(ξ − ω − P )g(ξ)dξ
sinP

.

Equation (82) can be satisfied for any P �= kπ, k ∈ Z. Noting that d and iB are real
for both real and purely imaginary P concludes the proof.

3.2. Estimates for the operator I2. Consider the trapezoid T introduced in
section 2.4. Given a number z1 ∈ (0, 1

4 ω̃1), which is independent of ε, we cut a triangle
near the origin with vertices z1, z2, z3, where z2, z3 are the points on the intersection
of the imaginary axis and the lines through the points z1, A and the points z1, B,
respectively. The obtained region is denoted by Tz1 . Clearly, for a given z0 > 0 we
have Rz0 ⊂ Tz1 if z0 is large enough (i.e., according to (52), if ε0 is small enough).
We define the operator

(83) I2 = I ω̃2

−2iω̃3
.

For a given z ∈ Tz1 , γ±(z) denote contours of integration [z,B] and [z,A], respectively;
see Figure 5.

Proposition 3.3. The inequality

(84)
∣∣∣∣ ξz
∣∣∣∣ > ω1√

ω2
1 − 25

4 ω
2
3
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holds for all z ∈ Tz1 and all ξ ∈ γ+(z) ∩ γ−(z).
Proof. For an arbitrary z ∈ Tz1 , let φ(z) denote the angle between the segments

γ−(z) and [0, z] (see Figure 6), and let α(z) = minξ∈γ−(z)
|ξ|
|z| . We choose the acute

angle for φ(ω̃1 + 2ω̃3) (at the vertex B) and then define φ(z) in Tz1 by continuity.
Clearly α(z) = 1 if φ(z) ≥ π

2 and α(z) = sinφ(z) if φ(z) < π
2 . The latter case can

happen only if �z ≥ 0; hence α(z) = 1 if �z < 0. Let φ0 be the acute angle between
AB and DB. We show that φ(z) ≥ φ0 for every z ∈ Tz1 .

Indeed, let us inscribe the right trapezoid ABCD into a circle. Then (at the
vertex C) φ(3

2 ω̃3) = φ0. Simple geometrical considerations (see Figure 6) imply that
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minz∈Tz1
φ(z) is attained at z = 3

2 ω̃3. Thus, α(z) ≥ sinφ0. Therefore

(85) α(z) ≥ sinφ0 =
ω1√

ω2
1 − 25

4 ω
2
3

for any z ∈ Tz1 . The same estimate holds for the contour γ+(z). The proof is
completed.

Proposition 3.4. For any z ∈ Tz1

(86) |I2f(z)| ≤

√
1 − 4

ω2
1

ω2
3

max
ξ∈γ+(z)∪γ−(z)

|f(ξ)|,

where f is a continuous function on Tz1 .
Proof. According to the construction of γ+, γ−,

(87) 	[i(ξ − z)] ≤ − |ω3|√
4ω2

1 − ω2
3

|z − ξ| and 	[i(z − ξ)] ≤ − |ω3|√
4ω2

1 − ω2
3

|z − ξ|

for all ξ ∈ γ±(z), respectively. Therefore

|I2f(z)| ≤ 1
2

∣∣∣∣∣
∫

γ−(z)

ei(z−ξ)f(ξ)dξ +
∫

γ−(z)

ei(z−ξ)f(ξ)dξ

∣∣∣∣∣(88)

≤ max
ξ∈γ+(z)∪γ−(z)

|f(ξ)|
∫ ∞

0

e−
(
|ω3|/

√
4ω2

1−ω2
3

)
λdλ,

which implies (86).
Lemma 3.5. If

(89) |f(z)| ≤ 1
|z|a

in Tz1 with a ≥ 0, then

(90) |I2f(z)| ≤ β

|z|a ,

where β = (1 − 25ω2
3

4ω2
1

)
1
2 (1 − 4ω2

1

ω2
3
)

a
2 .

This lemma is a direct consequence of Propositions 3.3 and 3.4.

3.3. Estimates for the operator I1. Solution I1g to linear differential equa-
tion (43), where g denotes the right-hand side of (43), that we consider in the paper
is given by (50). In order to estimate I1, we need the following simple statement.

Proposition 3.6. Let a ray λ on the complex z-plane lie outside the disk |z| < a,
a > 0. Then for any α ≥ 2

(91)
∣∣∣∣∫

λ

dz

zα

∣∣∣∣ ≤ π

aα−1
.

Proof. Let m denote the line containing the ray λ. Suppose m is tangent to the
disk |z| < a at the point ω. If z ∈ m, then |z|2 = a2 + x2, where x = |z − ω|. Then

(92)
∣∣∣∣∫

λ

dz

zα

∣∣∣∣ ≤ ∫ ∞

−∞

dx

(a2 + x2)
α
2
≤ 2
aα−2

∫ ∞

0

dx

(a2 + x2)
=

π

aα−1
.
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This estimate will definitely hold if m does not intersect the closed disk |z| ≤ a.
Suppose now that m intersects the disk |z| < a. Let ω denote the vertex of the

ray λ, and let ζ denote one of the two points which lie on the distance a from both ω
and m. Then |ξ − ζ| < |ξ| for any ξ ∈ λ, and we can apply the estimate (92) again,
placing the origin at ζ.

Notice that estimates of Proposition 3.3 are applicable to the contours in (50).
Then, using Lemma 2.4 and Proposition 3.6, we can easily establish the following
estimates.

Lemma 3.7. If |g(z)| ≤ K|z|−n, n ≥ 6, or if |g(z)| ≤ K|z|−4 in Tz1 , then

(93) |I1g(z)| ≤ M1K

|zn−2| and |I1g(z)| ≤ M2K

ε|z−3| ,

respectively, where M1 = (1− 25
4

ω2
3

ω2
1
)

n−5
2 πAB and M2 = max{2|ω3|,

√
ω2

1 − 9
4ω

2
3}AB.

3.4. Proof of Theorem 2.1. Proof. We start with the obvious observation that

(94) ε ≤
√
ω2

1 − 4ω2
3

|z|
if z ∈ Tz1 . Using the first inequality in (53), we obtain that f(q) from (36) satisfies

(95) |f | ≤ K̃0|z|−6 + εK̃1|z|−4

in Tz1 with some positive constants K̃0, K̃1 that do not depend on ε and J(ε) ∈ E.
Thus, according to (49) and the estimates for I1,2,

(96) |Nw0| ≤
K

2

(
εα−1

|z|3 +
1

|z|4

)
in Tz1 for some constant K > 0 that does not depend on ε, J(ε), and z1.

Let us now prove by induction that by choosing a sufficiently large z1 > 0 we can
find δ > 0, such that the estimate

(97) Δwn ≤ (δM)n−1 K

|z|3 , where δM ≤ 1
2
,

holds in Tz1 for all n = 1, 2, . . . , all J(ε) ∈ E, and all sufficiently small ε. Here
M = max{M1,M2}, where M1 is given in Lemma 3.7 with n = 6.

According to Lemma 2.4, the estimate for v22 for all z ∈ Tz1 and J(ε) ∈ E is

(98) |v22(z)| ≤ B|z|4 +
L

ε7|z|3

for some L > 0. Then, according to (94), (96), and (53), we can choose K > 0 to be
so large that w1 = Nw0 + ε6b(ε)v22 satisfies

(99) |w1| ≤
K

|z|3

in Tz1 for all J(ε) ∈ E and all sufficiently small ε. Thus, for n = 1, (97) has been
established. Assume that this estimate is true for k = 1, 2, . . . , n, and let us establish
it for k = n+ 1. First, we can represent

Δwn+1 = I1 ◦
[
(1 − 12cq2I2)[I2(wn + wn−1) · I2Δwn] − 12q2(1 − c)Δwn(100)

+ 12cq2I2(ε2 + 12cq2I2)Δwn

]
.
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Taking into account (99) and Lemma 3.5, we obtain the estimates

(101)

12Qlεα

|z|

∣∣∣∣Δwn

z

∣∣∣∣ , 12cQβ
[
ε

|z|

∣∣∣∣εΔwn

z

∣∣∣∣+
12cQβ
|z|

∣∣∣∣Δwn

z3

∣∣∣∣] , 4Kβ2

(
1 +

12cQβ
|z|2

) ∣∣∣∣Δwn

z3

∣∣∣∣
for the second, third, and first (nonlinear) terms in the square brackets in (100),
respectively. For the latter estimate, observe that both wn and wn−1 are bounded
by 2K

|z|3 according to (97). (Note that the constants β,K,M are independent of z1.)
Applying operator I1 to these three terms and utilizing Lemma 3.7, we obtain the
estimates

(102)

12Ql
|z| ε

α−1M |Δwn| , 12cQβ
[
ε+

12cQβ
|z|

]
M

|z| |Δwn| , 4Kβ2

(
1 +

12cQβ
|z|2

) ∣∣∣∣MΔwn

z

∣∣∣∣ .
Factoring M |Δwn|, we obtain |Δwn+1| ≤ δM |Δwn|, where

(103) δ =
12Qlεα−1 + 12cQβε

|z| +
122c2Q2β2

|z|2 +
4Kβ2

|z|

(
1 +

12cQβ
|z|2

)
.

By choosing a sufficiently large z1 > 0 and sufficiently small ε0 > 0, we can guarantee
the condition δM ≤ 1

2 in Tz1 for all ε ≤ ε0 and for all J(ε) ∈ E. Thus, (97) holds for
k = n+ 1. We can choose some z0 ≥ z1 so that Rz0 ⊂ Tz1 and ε0z0 ≤ max{ω1, |ω3|}
(taking smaller ε0 if necessary). Thus, inequalities (97) prove convergence of iterations
to a solution of (42) that is uniform in Rz0 × (0, ε0] for all J(ε) ∈ E.

In the case ε = 0 the region Tz1 becomes the right half-plane with the appropriate
cut, q2 = 6

z2 , f(q) = − 6!
z6 , and the fundamental solutions v1,2 to the homogeneous

equations (43) become v1(z) = −12
z3 and v2(z) = −z4

84 . Thus, for the case ε = 0
Lemma 2.4 becomes trivial, and the proof of convergence of iterations w =

∑∞
1 Δwn

that solve (42) holds for the case ε = 0. (Note that in this case the contours of
integration in the integral operators I1,2 are the rays, emanating from z, with the
slope 	w


w , where w is the beginning of the corresponding contour in the case ε > 0;
in other words, argw does not depend on ε.) Thus, the proof of Theorem 2.1 is
completed.

Remark 3.8. It is easy to verify that α > 1 in Theorem 2.1 implies that there
exist some Ln > 0 such that for all n ∈ N

(104) |Δwn| ≤ Ln|z|−n(1+α̃)−2

in Rz0 , where α̃ = min{1, α − 1}. Moreover, for all n ∈ N there exist some Kn > 0
such that

(105)

∣∣∣∣∣∣
∞∑

j=n

Δwn

∣∣∣∣∣∣ ≤ Kn|z|−n(1+α̃)−2.

Let P ⊂ T denote the triangle with vertices ω̃3, ω̃1, and ω̃1 + 2ω̃3. It is clear that
z ∈ P implies that all the contours of integration in operators I1,2 are in P . Notice
that in P

(106) min{ω1, |ω3|} ≤ ε|z| ≤
√
ω2

1 − 4ω2
3.
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The latter condition allows us to prove convergence of iterations in P without the
requirement (53) in Theorem 2.1.

Corollary 3.9. If instead of (53) in Theorem 2.1 we require only

(107) lim
ε→0

b(ε) = lim
ε→0

[c(ε) − 1] = 0,

the statement of Theorem 2.1 is still valid in P × [0, ε0]; i.e., there exists some ε0 > 0
such that the series (54) is uniformly convergent in P × [0, ε0].

Proof. The function

(108) h(ε) = max{|b(ε)|, |c(ε) − 1|}

is continuous and nonnegative, and limε→0 h(ε) = 0. Then inequalities (95) and (96)
become

(109) |f | ≤ K̃0|z|−6 + h(ε)K̃1|z|−4 and |Nw0| ≤
K

2

(
h(ε)
ε|z|3 +

1
|z|4

)
,

respectively. Then, as in Theorem 2.1, we can choose K > 0 so large that

(110) |w1| ≤
h̃(ε)K
|z|2

in P , where h̃(ε) = max{h(ε), ε2}.
As in Theorem 2.1, we will prove convergence of (54) by induction if we show

that by choosing a sufficiently small ε0 > 0 we can find δ > 0, such that the estimate

(111) Δwn ≤ (δM)n−1 h̃(ε)K
|z|2 , where δM ≤ 1

2
,

holds in P for all n = 1, 2, . . . and all J(ε) ∈ E. Taking into account (111) and
Lemma 3.5, we obtain the estimates

12Qlh̃(ε)
∣∣∣∣Δwn

z2

∣∣∣∣ ,(112)

12cQβ
[∣∣∣∣ε2Δwn

z2

∣∣∣∣+
12cQβ
|z|2

∣∣∣∣Δwn

z2

∣∣∣∣] , 4h̃(ε)Kβ2

(
1 +

12cQβ
|z|2

) ∣∣∣∣Δwn

z2

∣∣∣∣
for the second, third, and first (nonlinear) terms in the square brackets in (100),
respectively. Making sure that h̃(ε) and |z−2| are sufficiently small by choosing a
sufficiently small ε0 and using Lemma 3.7, we can repeat the arguments of Theorem 2.1
in order to complete the proof of convergence of iterations (54).

Remark 3.10. In fact, we can prove convergence of iterations (54) in larger
domains than those stated in Theorem 2.1 and Corollary 3.9. Fix some n ∈ N.
For Theorem 2.1, we replace the trapezoid T with vertices ABCD by the (concave)
hexagon T with vertices AONBCD, where O = ω̃1, N = nω̃1 + ω̃3, and other vertices
are the same as in T ; see Figure 7. For z ∈ T , contours of integration in operators I1,2

are the same as before, except for contour γ−(z) that is now the union of segments
[z,O] and [OA]. For Corollary 3.9, we replace the triangle P with vertices ω̃3, ω̃1,
ω̃1 + 2ω̃3 by a quadrilateral P with vertices ω̃1, nω̃1 + ω̃3, ω̃1 + 2ω̃3, ω̃3. For z ∈ P ,
contours of integration in operators I1,2 are the same as before. It is easy to verify
that the estimates for operators I1,2 from Lemmas 3.7 and 3.5 hold in domains T and
P , possibly with larger constants that depend on n. Now proofs of Theorem 2.1 and
Corollary 3.9 can be extended to the domains T and P , respectively.
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Fig. 7. Hexagon T with vertices AONBCD. The contour γ−(z) is the union of segments [z,O]
and [OA].

3.5. Symmetry at ω̃2. Here we will show that any solution to inner equation
(23), obtained through iterations (54), is symmetrical with respect to z = ω̃2. Con-
sequently, corresponding solutions to the outer equation (1), connected with (23) via
(22), are symmetric at x = ω2.

The operator I1 can be represented in the following form.
Proposition 3.11. If a function g(z) is analytic and bounded in Tz1 , then

(113) I1g = v1(z)
∫ z

ω̃2

∫ t

ω̃2
v1(τ)g(τ)dτ

v2
1(t)

dt.

Proof. Using (46) and integration by parts, one gets

I1g = −v1(z)
∫ z

ω̃2

(
v1(t)g(t)

∫ t

0

dτ

v2
1(τ)

)
dt+ v2(z)

∫ z

ω̃2

v1(t)g(t)dt(114)

= v1(z) ×
[
−
∫ t

ω̃2

v1(τ)g(τ)dτ ·
∫ t

0

dτ

v2
1(τ)

∣∣∣∣z
ω̃2

+
∫ z

ω̃2

∫ t

ω̃2
v1(τ)g(τ)dτ

v2
1(τ)

dt+
∫ z

0

dt

v2
1(τ)

·
∫

γ(z)

v1(t)g(t)dt

]

= v1(z) lim
ζ→ω̃2

[∫ z

ζ

v1(t)g(t)dt ·
∫ ζ

0

dt

v2
1(τ)

]
+ v1(z)

∫ z

ω̃2

∫ t

ω̃2
v1(τ)g(τ)dτ

v2
1(τ)

dt.

Note that the limit in the latter expression is zero because
∫

γ(ζ)
v1(t)g(t)dt has a zero

of order two at ω̃2, whereas
∫ ζ

0
dt

v2
1(τ)

has a simple pole there.
Based on (45) and (73), solutions to the homogeneous equation (44) preserving

the symmetry at the points ω̃j , j = 1, 2, 3, are given by

(115) v2j(z) = v2(z) − 1
6ε7Δ

[
3g3
2
ωj − g2ζ(ωj)

]
v1(z), j = 1, 2, 3,
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respectively. Indeed, direct calculations show that Dzv2j(ω̃j) = 0. Then, according
to (44),

(116) D3
zv2j = (ε2 + 12q2)Dzv2j + 12(q2)′v2j = 0

at z = ω̃j . By continuing this argument for higher derivatives, we prove symmetry
of v2j at z = ω̃j. Also, note that v2j(ω̃j) ∈ R. Then, according to the differential
equation for v2j , all even derivatives of v2j at z = ω̃j are also real.

The fact that operator I1 preserves the symmetry at the point ω̃2 and real-
valuedness along the line �z = �ω̃2 is a direct consequence of Proposition 3.11.
Thus, according to (36), Δw1 is symmetric with respect to ω̃2 and real-valued on the
line �z = �ω̃2. Then, according to (100) and to Proposition 3.1, the same is true
for w =

∑∞
1 Δwn. Now, according to (34), the corresponding solution v(z, ε) to (23)

satisfies

(117) v′(ω̃2, ε) = v′′′(ω̃2, ε) = 0

and is real-valued on �z = �ω̃2.
Thus, in Theorem 2.1 and Corollary 3.9 we have constructed a two-parameter

family of solutions to (23), where b(ε) and c(ε) are the parameters, that are real along
�z = �ω̃2 and satisfy (117).

3.6. Calculation of I1f(q). In order to calculate I1f(q), we use (36) and (45)
to evaluate the integral∫ t

ω̃2

v1(τ)f(q(τ))dτ =
∫
f(q)d(6q2)(118)

= c

[
c− 1 − 4ε2

3
(6q2)3 − 5/6(6q2)4 − 2ε6C(ε)(6q2)

]∣∣∣∣z
ω̃2

in (113). Switching to the original variable x = εz and using (113), we obtain

(119)
I1f = 6ε3c℘′(x)

×
∫ x

ω2

(6℘(t) − 1
2 )
[

c−1−4m2

3ε (6℘(s) − 1
2 )2 − 5ε

6 (6℘(s) − 1
2 )3 − 2εC(ε)

]∣∣∣s=t

s=ω2

dt

144
∏3

1(℘(t) − ej)
.

The integrand in (119) is nonsingular at t = ω2 since the numerator has zero at this
point. Using this fact, we can cancel the factor (℘ − e2) in both the numerator and
denominator. Then direct calculations show that the integrand in (119) becomes

c− 1 − 4ε2

3ε
·
℘2 + (e2 − 1

4 )℘+ e22 − 1
4e2 + 1

48

4(℘− e1)(℘− e3)
(120)

−
5ε
6 (6℘(t) − 1

2 )4

144
∏3

1(℘(t) − ej)
−

2εC(ε)(6℘(t) − 1
2 )

144
∏3

1(℘(t) − ej)
.
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Let us focus on the first term of (120). Separating the integer part, we can rewrite it
as

c− 1 − 4ε2

3 · 4ε

[
1 − 1

4
℘+ e2 − 1

6

(℘− e1)(℘− e3)

]
(121)

=
c− 1 − 4ε2

3 · 4ε

[
1 − B0 +B1℘(t− ω1) +B3℘(t− ω3)

4

]
,

where

(122)

B1 = −
e3 + 1

6

(e1 − e3)2(e1 − e2)
, B3 =

e1 + 1
6

(e1 − e3)2(e2 − e3)
, and B0 = −B1e1 −B3e3.

The expressions for B1, B3, and B0 were obtained by evaluating the principal parts
of the left-hand side of (122) at t = ω1, t = ω3, and t = 0, respectively.

Using similar calculations, we obtain expressions

− 15ε
2
℘(t) +

5ε
2

− 5ε
24

[E0 + E1℘(t− ω1) + E3℘(t− ω3)] and(123)

− εC(ε)
12

[D0 +D1℘(t− ω1) +D3℘(t− ω3)]

for the second and the third terms of (120), respectively, where

(124) D1 =
1

(e1 − e3)2(e1 − e2)
, D3 = − 1

(e1 − e3)2(e2 − e3)
, D0 = −D1e1−D3e3

and

(125) E3 = −
9
4e3 + 3

2e2 + 36e32 − 1
3

(e1 − e3)2(e2 − e3)
, E0 = −E1e1 − E3e3.

(The constant E0 could be calculated similarly to E3, but we do not need its explicit
value.)

Substituting (121)–(125) into (119), we obtain

I1f = cε3℘′(x) {45ε[ζ(x) − ζ(ω2)] + 6G1[ζ(x − ω1) − ζ(ω1)](126)

+ 6G3[ζ(x− ω3) − ζ(ω3)] +
[
−15ε+ (c− 1 − 4ε2)(2ε)−1 − 6G1e1 − 6G3e3

]
(x− ω2)

}
,

where x = εz and

(127) Gj = −Bj(c− 1 − 4ε2)
48ε

− 5ε
24
Ej −

εC(ε)
12

Dj , j = 1, 3.

3.7. The limit of iterations as ε → 0. In this subsection we assume that
conditions of Theorem 2.1 hold. In the ε = 0 case, direct calculation, based on (50)
and (49), shows that

(128) Δw1(z, 0) = −90
z4

+
12 · 6!

7

(
−z−3

∫ z

∞
t2I2[t−6]dt+ z4

∫ z

∞
t−5I2[t−6]dt

)
.
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It is easy to check that Δwn, n = 2, 3, . . . , is a function, analytic in Tz1 and possessing
an asymptotic expansion in powers of z−2 there, such that

(129) Δwn(z) ∼ O(z−2(n+1)), z → ∞, | arg z| < π

2
.

Then, according to Corollary 1.3, the solution (34) to (23) in the case ε = 0 coincides
with v+(z), i.e., v(z, 0) = v+(z).

Let w(z, ε) denote the solution (54) from Theorem 2.1. In order to prove the
continuity of w(z, ε) in ε at ε = 0, we need the following statement.

Proposition 3.12. Let g(z, ε) be analytic in z in Tz1 and continuous in ε for all
sufficiently small ε ≥ 0. Moreover, let g(z, 0) ∼ O(z−b) and Δεg(z, ε) ∼ O(z−a) in
Tz1 , the latter uniformly in ε, where a, b ≥ 0 and Δεg(z, ε) = g(z, ε) − g(z, 0). Then

(130) ΔεI2g(z, ε) = O(z−a) +O(εb),

and, if b > 5,

(131) ΔεI1g(z, ε) = O(z2−a) +O(εb−5z−3) +O(z−b+4ε2),

where both (130) and (131) are uniform in Tz1 and in small ε ≥ 0.
Proof. Since g(z, ε) is analytic in Tz1 ,

ΔεI2g(z, ε) =
1
2i

[∫ z

ω̃1−ω̃3

ei(z−ξ)Δεg(ξ, ε)dξ −
∫ z

ω̃1+2ω̃3

e−i(z−ξ)Δεg(ξ, ε)dξ
]

(132)

+
1
2i

[∫ ω̃1−ω̃3

∞
ei(z−ξ)g(ξ, 0)dξ −

∫ ω̃1+2ω̃3

∞
e−i(z−ξ)g(ξ, 0)dξ

]
.

According to Lemma 3.5, estimate (130) follows directly (132).
To prove (131), we first consider Δεq

2(z, ε). Representing ℘(x) = [℘(x) − 1
x2 ] +

1
x2 = Ψ(x) + 1

x2 , we note that Ψ(x) is analytic in the trapezoidal region T̃ (vertices
at ω1 − ω3, ω1 + 2ω3,

3
2ω3,− 1

2ω3). (The trapezoid T̃ is the image of the trapezoid T
under the scaling x = εz.) Since q2(z, 0) = 1

z2 for any z ∈ T , we have

(133) Δεq
2(z, ε) = ε2

[
Ψ(εz) − 1

12

]
= O(ε2)

uniformly in T . Similarly, using (45), (46), and (71), we obtain

(134) v1(z, ε) − v1(z, 0) = O(ε3)

and

(135) v2(z, ε) − v2(z, 0) = O(ε2z6)

uniformly in T .
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Now,

(136)

ΔεI1g(z, ε) = −
[
v1(z, ε)

∫ z

ω̃2

v2(ξ, ε)g(ξ, ε)dξ − v1(z, 0)
∫ z

ω̃2

v2(ξ, 0)g(ξ, 0)dξ
]

+
[
v2(z, ε)

∫ z

ω̃2

v1(ξ, ε)g(ξ, ε)dξ − v2(z, 0)
∫ z

ω̃2

v1(ξ, 0)g(ξ, 0)dξ
]

+

[
−v1(z, 0)

∫ ω̃2

∞
v2(ξ, 0)g(ξ, 0)dξ + v2(z, 0)

∫ ω̃2

∞
v1(ξ, 0)g(ξ, 0)dξ

]
.

The third term in the right-hand side of (136) is of the order O(εb−2) as ε→ 0, while
the first term can be represented as

− v1(z, ε)
∫ z

ω̃2

[v2(ξ, ε)Δεg(ξ, ε) + g(ξ, 0)Δεv2(ξ, ε)] dξ(137)

− Δεv1(z, ε)
∫ z

ω̃2

v2(ξ, 0)g(ξ, 0)dξ.

Using Lemma 2.4 together with (134), (135), we obtain estimates

(138) O(z2−a) +O(ε2z4−b) +O(ε3z5−b)

for the three terms of (137) that are uniform in T and in small ε ≥ 0. The second
term in the right-hand side of (136) yields the same result. Now (131) follows from
(138) and (94).

Theorem 3.13. (1) If in condition (53) of Theorem 2.1 we require α > 1, then

(139) lim
ε→0

v(z, ε) = v+(z)

uniformly on compact subsets of Tz1.
(2) If condition (53) of Theorem 2.1 is replaced by

(140) c(ε) = 1 + εαc̃(ε) and b(ε) = εαb̃(ε),

where α = 1 and functions c̃(ε), b̃(ε) are continuous for small ε ≥ 0, then

(141) lim
ε→0

v(z, ε) = v+(z − z∗)

uniformly on compact subsets of Tz1 , where the translation z∗ depends on b̃(0), c̃(0).
Proof. (1) As a consequence of (133), we obtain that (139) is equivalent to

(142) lim
ε→0

w(z, ε) = w(z, 0)

as ε → 0 uniformly on compact subsets of Tz1 . Since w(z, ε) =
∑∞

n=1 Δwn(z, ε),
where the series converges uniformly for all sufficiently small ε ≥ 0 and all z ∈ Tz1 , it
is sufficient to prove the continuity of each Δwn(z, ε) in ε ≥ 0 in order to prove the
continuity of w(z, ε).
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According to (36) and (94),

(143) f(z, 0) = −6!z−6 and Δεf(z, ε) = O(εαz−4).

Then, according to Proposition 3.12,

(144) ΔεI1f(z, ε) = O(εα̃z−3),

where α̃ = min{α− 1, 1}. Using

(145) Δε[h(z, ε)g(z, ε)] = h(z, ε)Δεg(z, ε) + Δεh(z, ε)g(z, 0)

together with (36) and (130), we prove that Δw1(z, ε) = w1(z, ε) also satisfies (144).
Now limε→0 Δwn(z, ε) = Δwn(z, 0), n = 2, 3, . . . , can be proved by induction.

Assume that Δε(Δwk(z, ε)) satisfies (144) for every k ∈ N, k ≤ n. We want to
prove the statement for k = n + 1. According to (94), (129), and (130), Δεg(z, ε) =
O(εα̃z−6), where g(z, ε) denotes the argument of I1 in (100). It is easy to see that
g(z, 0) = O(z−2(n+3)). Then the fact that Δε[Δwn+1(z, ε)] satisfies (144) follows from
(131). The proof of part (1) is completed.

(2) According to (126), for a given z ∈ Tz1

(146) lim
ε→0

I1f = −90
z4

+
c̃(0)

{∑
j=1,3 Bj [2ζ(ωj) − ω2ej] − 4ω2

}
4z3

,

where Bj are defined by (122). Similarly,

(147) lim
ε→0

ε7b̃(ε)v22 = −b̃(0)
3g3

2 ω2 − g2ζ(ω2)
3Δz3

.

Thus,

(148) lim
ε→0

w1(z, ε) = −90
z4

+
12z∗
z3

,

where the constant z∗, which depend on b̃(0), c̃(0), can be derived from (146), (147).
Now we can repeat the argument of part (1) to show that Δwn(z, ε) is continuous

in ε. It is pretty straightforward to show that Δwn(z, 0) = O(z−n−2) as z → ∞
and that Δwn(z, 0) has asymptotic expansion in z−1. Due to uniform convergence of
series (54) in Theorem 2.1, we proved that limε→0 v(z, ε) is a solution of the truncated
equation (24) that has asymptotic expansion in z−1 as z → ∞ with the leading terms
6
z2 + 12z∗

z3 + · · · . Then (141) follows from Corollary 1.3.

4. Nonexistence of symmetric periodic solutions to (3). Let S be an
interval of R that contains the point ω1 = ω1(0), and let y(x, ε) be a Cα-deformation
of y(x, 0) = 6℘ 1

12 ,g3
(x − ω3) − 1

2 , where |g3| < 6−3, and where ω1, ω3, and g3 are
related through (9). As mentioned earlier, it is more convenient for us to consider
y(x, ε) as a Cα-deformation of y(x, 0) = 6℘ 1

12 ,g3
(x)− 1

2 on the interval S+ω3. Assume
that y(x, ε) contains a sequence {y(x, εm)}∞1 of solutions that are symmetrical at
x = ω3(εm) (after a proper translation β(ε)) and periodic (along the horizontal line
x = ω3(εm) + R) with the period 2ω1(εm), where limm→∞ εm = 0 and ω1(εm) satisfy
(14). Here ω1(ε), ω3(ε), and g3(ε) are related through (9).

Let us show that β(εm) = O(εα
m). Indeed, since y(x, ε) is a Cα-deformation of

y(x, 0), we know that y′(ω2(ε)+β(ε), ε)−y′(ω2(ε)+β(ε), 0) = O(εα) and limε→0 β(ε) =



BREAKING OF SYMMETRICAL PERIODIC SOLUTIONS 1543

0. But solutions y(x+β(εm), εm) are symmetrical at ω3(εm) and have period 2ω1(εm),
m ∈ N, so y′(ω2(εm) + β(εm), εm) = 0. Thus,

(149) y′(ω2(εm) + β(εm), 0) = O(εα
m).

Since y′(ω2, 0) = 0, then y′(ω2(εm) + β(εm), 0) = β(εm)y′′(ω2(εm) + θ(εm)β(εm), 0)
by the mean value theorem, where θ(εm) ∈ (0, 1). Combining this with (149) and
the fact that ℘′′ is separated from zero in a vicinity of ω2 (see (64)), we obtain
β(εm) = O(εα

m). Since derivatives of y(x, 0) are bounded on the line ω3 + R, it is easy
to show that y(x+β(εm), εm) are also Cα-deformations of y(x, 0). Thus, without any
loss of generality, we will consider only such deformations y(x, ε) of y(x, 0) that are
symmetrical at ω2(ε). That means that solutions v(z, ε) to the inner equation (4),
that correspond to such y(x, ε), are symmetrical at ω̃2(ε).

Let us denote by Fα, α ≥ 1, the two-parameter family of solutions constructed
in Theorem 2.1 that satisfy an additional assumption: condition (53) in Theorem 2.1
is replaced by (140), where α ≥ 1. The proof of Theorem 1.1 is divided into the
following two steps: (1) if v(z, ε) is the inner solution, symmetrical at z = ω̃2(ε), that
corresponds to a Cα-deformation y(x, ε) and if ω1(ε) satisfies (14), then v(z, ε) ∈ Fα;
(2) if ω1(ε) satisfies (14), then there is no symmetrical and 2ω1(ε) periodic solution
v(z, ε) ∈ Fα. Here and below we use ω̃j to denote ω̃j(ε), j = 1, 2, 3, wherever such
notation is clear. Additionally, we prove that the BVP

2v′′′v′ − v′′
2 + (1 − ε2)v′2 − ε2v2 − 2

3
v3 = ε6C(ε),(150)

v′(ω̃3, ε) = v′(ω̃2, ε) = v′′′(ω̃2, ε) = 0

has a unique solution in Fα.
If y(x, ε) is a Cα-deformation of solution (16), then the constant of motion C(ε)

of y(x, ε), given by (11), satisfies (13). Then the corresponding inner solution v(z, ε)
satisfies (150) and the two latter boundary conditions of (150). It is easy to see that
v(z, ε) is periodic with the period 2ω1(ε) and symmetrical if and only if, additionally,
v′(ω̃3, ε) = v′′′(ω̃3, ε) = 0. In other words, a solution v(z, ε) to the BVP (150) is
symmetric and periodic with the period 2ω1(ε) if and only if v′′′(ω̃3, ε) = 0.

4.1. Solution of BVP (150). Here we prove existence and uniqueness of solu-
tion to BVP (150) within the family Fα using the implicit function theorem.

If v(z, ε) is a solution to the BVP (150), then the integral of motion (150) evalu-
ated at the points z = ω̃2, z = ω̃3 becomes

(151) ε2v2(ω̃j) +
2
3
v3(ω̃j) + v′′

2(ω̃j) + ε6C(ε) = 0,

where j = 2, 3. We want to show that for sufficiently small ε there exists a unique
v ∈ Fα satisfying (151). To this end, we can restrict our attention on the triangle
P ⊂ Tz1, which was introduced in section 3.4.

According to (34), (49),

(152) v = 6q2 + ṽ = 6q2 + 6εαc̃q2 + I2

[
ε6+αb̃v22 + I1f(q) + w̃

]
,

where

(153) w̃ = −12cI1q
2I2f(q) +

∞∑
n=2

Δwn.
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It is easy to see that v(z, ε) = O(ε2) uniformly in P as ε → 0. According to
(106), (140), and Remark 3.8, we have w(z, ε) = O(ε3+α̃) uniformly in P , where
α̃ = min{1, α− 1} as ε→ 0. Then, according to (152) and Lemma 2.4,

(154) ṽ ∼ O(ε3+α̃) and w̃ ∼ O(ε4+2α̃)

uniformly in P as ε→ 0. Now combining (154) and (39), we see that

(155) w′′ = ε2w + [I2w]2 + 12cq2I2w + f(q) ∼ O(ε5+α̃) as ε→ 0,

uniformly on P . Then

(156) w′(z, ε) =
∫ z

ω̃2

w′′(t, ε)dt = O(ε4+α̃)

uniformly in z ∈ P . To estimate v′′ in (151) we need the following statement.
Proposition 4.1. Let g(z, ε) be a differentiable in z ∈ Tz1 function. If there

exists a constant M > 0 such that for all small ε > 0 both |g(z, ε)| and |g′(z, ε)| are
bounded by M in Tz1 , then there exists some δ0 > 0 such that

(157) I2g(z, ε) = g(z, ε) − I2g
′′(z, ε) +O

(
e−

δ0
ε ρ(z)

)
as ε→ 0 uniformly in P , where ρ(z) = min{|z − (ω̃1 + 3ω̃3)|, |z − (ω̃1 − ω̃3)|}.

Proof. Integrating by parts I2g(z, ε), expressed by (76) and (83), twice, we obtain

I2g(z, ε) = g(z, ε) − I2g
′′(z, ε) − 1

2
ei(z−ξ) [g(ξ, ε) − ig′(ξ, ε)]

∣∣∣
ξ=ω̃1−ω̃3

(158)

− 1
2
e−i(z−ξ) [g(ξ, ε) + ig′(ξ, ε)]

∣∣∣
ξ=ω̃1+3ω̃3

.

The last two terms of (158) are exponentially small in ε−1 according to the construc-
tion of Tz1 .

Under the assumptions of Proposition 4.1,

(159) D2I2g = g − I2g = I2D
2g +O

(
e−

δ0
ε ρ(z)

)
.

According to (156), Proposition 4.1 is applicable for g(z, ε) = w(z, ε). Thus,

(160) v′′ = 6c(ε)(q2)′′ + I2w
′′ = O(ε4) as ε→ 0,

uniformly on [ω̃3, ω̃2].
Note that y = 6q2

ε2 is the solution of the unperturbed equation (2) with the
constant of motion J(ε); see (37). Thus,

(161)
(

6q2

ε2

)2

+
2
3

(
6q2

ε2

)3

+ J(ε) = 0

at x = εz = ωj , j = 1, 2, 3. Notice that (9) and (14) imply that

(162) J(ε) = C + εαJ̃(ε),
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where J̃(ε) is a continuous function. Now substituting v = 6q2 + ṽ into (151), dividing
both sides by ε7+α̃, and taking into account (161), we obtain

2
(

6q2

ε2

)
v̆ + ε1+α̃v̆2 + 2

(
6q2

ε2

)2

v̆ + 2ε1+α̃

(
6q2

ε2

)
v̆2(163)

+
2
3
ε2+2α̃v̆3 +

v′′
2

ε7+α̃
+ C̃(ε) − J̃(ε) = 0

at z = ω̃2, ω̃3, where

(164) v̆(z, ε) =
ṽ(z, ε)
ε3+α̃

= c̃(ε)
(

6q2

ε2

)
+ ε4b̃(ε)I2v22 + I2

I1f(q) + w̃

ε3+α̃
.

Equation (163) evaluated at the points z = ω̃2, ω̃3 forms a system that we denote by

(165) F (ε, b̃, c̃) = 0.

Lemma 4.2. There exist some ε1 ∈ (0, ε0] and functions b̃(ε), c̃(ε), continuous on
[0, ε1], such that the system (165) holds identically on [0, ε1]. Moreover, the solution
b̃(ε), c̃(ε) to (165) is unique.

Proof. The proof is based on the implicit function theorem (see, for example, [MB,
p. 122]). According to this theorem, we have to show that (a) F (0, b̃(0), c̃(0)) = 0 for
some b̃(0), c̃(0); (b) matrix

(166) Col
(
∂F

∂b̃
,
∂F

∂c̃

)∣∣∣∣
ε=0

is not singular; and (c) F and ∂F
∂c̃ , ∂F

∂b̃
are continuous in all variables in a vicinity of

(0, b̃(0), c̃(0)).
According to (156), we can apply Proposition 4.1 to v̆(z, ε) − c̃(ε)6q2

ε2 = I2w
ε3+α̃ .

Then

(167) lim
ε→0

v̆(z, ε) = c̃(0)
(

6℘(εz) − 1
2

)
+ b̃(0) lim

ε→0
ε4v22(z, ε)+ lim

ε→0

I1f(q)
ε3+α̃

+ lim
ε→0

w̃

ε3+α̃

uniformly on [ω̃3, ω̃2]. Due to Remark 3.8, the last limit in (167) is zero.
Using (63), (69), (47), and the fact that v1(ω̃j) = 0, we have

(168) lim
ε→0

ε4v22(ω̃j , ε) = − 1
12

1
(ej − ei)(ej − ek)

.

Note that I1f(q)(ω̃2) = 0. To calculate limε→0 ε
−3−α̃I1f(q)(ω̃3), we notice that

℘′(x− ωj) =
(

6e2j −
g2
2

)
(x− ωj) +O((x − ωj)2)(169)

= 2(ei − ej)(ek − ej)(x − ωj) +O((x − ωj)2)

as x→ ωj, j = 1, 2, 3. It follows then from (126) that

ε−3I1f(q)(ω3, ε) = 12c(ε)(e1 − e3)(e2 − e3)G3(170)

=
c(ε)

e1 − e3

{
−c(ε) − 1 − 4ε2

4ε

(
e1 +

1
6

)
− 5ε

2

(
9
4
e3 +

3
2
e2 + 36e32 −

1
3

)
+ εC(ε)

}
.
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Using (126), we obtain

lim
ε→0

ε−3−α̃I1f(q)(ω̃3 = −
c̃(ε)(e1 + 1

6 )
4(e1 − e3)

(171)

− δα̃,1

e1 + 1
6 + 5

2

(
9
4e3 + 3

2e2 + 36e32 − 1
3

)
+ 36g3 + 1

6

e1 − e3

at z = ω̃3, where δα̃,1 = 1 if α̃ = 1 and δα̃,1 = 0 otherwise. Combining (167)–(171),
we obtain

lim
ε→0

v̆(ω̃2) =
(

6e2 −
1
2

)
c̃(0) +

b̃(0)
12(e1 − e2)(e2 − e3)

,(172)

lim
ε→0

v̆(ω̃3) =
[(

6e3 −
1
2

)
−

e1 + 1
6

4(e1 − e3)

]
c̃(0) − b̃(0)

12(e1 − e3)(e2 − e3)
− δα̃,1D̃,

where D̃ denotes the last fraction in (171).
According to (154) and (160), in the limit ε→ 0 equations (163) become

(173) 2
[
36℘2(ωj) − 1

4

]
lim
ε→0

v̆(ω̃j) + C̃(0) − J̃(0) = 0,

where j = 2, 3. Clearly, (172)–(173) form a linear system of equations for the un-
knowns b̃(0), c̃(0). Note that the first factor in (173) is different from zero since,
otherwise, according to (64), we would have either C = 0 or C = − 1

3 , which contra-
dicts our assumption C ∈ (− 1

3 , 0). After some algebra, we calculate the determinant
of the matrix of linear system (172)–(173) as

(174)∣∣∣∣∣ 6e2 − 1
2

1
12(e1−e2)(e2−e3)

6e3 − 1
2 − e1+ 1

6

4(e1−e3)
− 1

12(e1−e3)(e2−e3)

∣∣∣∣∣ =
1

3
√

Δ

∣∣∣∣∣ (6e2 − 1
2 )(e1 − e2) 1

(6e3 − 1
2 )(e1 − e3) − e1+

1
6

4 −1

∣∣∣∣∣
=

7(e1 + 1
6 )

12
√

Δ
,

where Δ, defined by (67), is different from zero. This determinant is different from
zero since e1 > 0. Thus, we have established parts (a) and (b) of the lemma; i.e.,
we have established that F (0, b̃(0), c̃(0)) = 0 at z = ω̃2, ω̃3 for some b̃(0), c̃(0) and
that matrix (166) is nonsingular. Continuity of F follows from Theorem 3.13 and
the fact that iterations Δwn(z, ε) in the solution (54) are polynomials in b̃(0), c̃(0) of
degree not exceeding n. Estimates of Theorem 2.1 can be readily adjusted to prove
convergence of the series

∑∞
n=1

∂Δwn(z,ε)
∂c̃ and

∑∞
n=1

∂Δwn(z,ε)

∂b̃
at z = ω̃2, z = ω̃3.

Part (c) and the whole proof are completed.
Theorem 4.3. If C(ε) and ω1(ε) satisfy (13) and (14), respectively, where α ≥ 1,

then the BVP (150) has a unique solution in Fα.
Proof. According to Lemma 4.2, it is sufficient to show that (151) at z = ω̃3 and

the rescaled integral of motion (150) imply v′(ω̃3) = 0. Indeed, addition of these two
equations yields

(175) v′(ω̃3)[2v′′′(ω̃3) + (1 − ε2)v′(ω̃3)] = 0.
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That means that v′(ω̃3) = 0 or 2v′′′(ω̃3) + (1 − ε2)v′(ω̃3) = 0. According to (34),
and since operators D and D2 + 1 commute, this implies u′(ω̃3) = 0 or 2w′(ω̃3) =
(1 + ε2)u′(ω̃3). If u′(ω̃3) = 0, then v′(ω̃3) = 0, and the proof is completed. The
assumption u′(ω̃3) �= 0 leads to a contradiction. Indeed, on one hand, we have

(176) u′(ω̃3) =
2

1 + ε2
w′(ω̃3),

whereas, on the other hand, according to Proposition 4.1,

(177) u′(ω̃3) = I2w
′|z=ω̃3 = w′(ω̃3) − I2w

′′′|z=ω̃3 +O
(
e−

δ0
ε

)
.

Proposition 4.1 is applicable to I2w
′ according to (39) and (156). Moreover, differ-

entiating (39), we obtain w′′′ = O(ε6+α̃) uniformly on [ω̃3, ω̃2]. Thus, (177) contra-
dicts (176).

4.2. Proof of Theorem 1.1.
Proof. As mentioned in the beginning of section 4, our proof consists of two

steps. Step (1) is to show that the inner solution v(z, ε) = ε2y(εz, ε), corresponding
to a Cα-deformation y(x, ε) of the periodic solution y(x, 0), is an Fα solution. Let us
consider first the case n = 1.

As discussed above, we can assume without any loss of generality that v(z, εm) is
symmetrical with respect to z = ω̃3(εm) and z = ω̃2(εm), where g3(εm) and ω3(εm)
are defined by ω1(εm) through (9). Then v′(ω̃2(εm), εm) = v′′′(ω̃2(εm), εm) = 0,
so that v(z, εm) is defined by initial conditions v(ω̃2(εm), εm) and v′′(ω̃2(εm), εm). In
order to show that there is a solution in Fα with the abovementioned initial conditions
at z = ω̃2(εm), we first establish that

v(ω̃2(en), εm) − ε2m

(
6e2(0) − 1

2

)
= ε2+α

m ṽ(εm),(178)

v′′(ω̃2(en), εm) − ε4m

(
3e22(0) − 1

48

)
= ε4+α

m ṽ′′(εm),

where ṽ(ε), ṽ′′(ε) are continuous functions. Indeed, according to our assumptions and
taking into account (14),

y(ω2(εm), εm) − y(ω2, 0)(179)

= [y(ω2(εm), εm) − y(ω2(εm), 0)] + [y(ω2(εm), 0) − y(ω2, 0)]

= εα
mỹ(ω2(εm), εm) +

1
2
εα

mτ
2(εm)℘′′(ω2(0) + θ(ω1(εm) − ω1)),

where θ ∈ (0, 1). Here we used the mean value theorem and the fact that ℘′(ω2(0)) =
0. A similar estimate holds for y′′(ω2(εm), εm) − y′′(ω2, 0). Then, (178) follows from
(179).
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According to (164), equations (178) in the leading order can be written as

c̃(ε)
(

6q2

ε2

)
+ ε4b̃(ε)I2v22 + I2

I1f(q) + w̃

ε3+α̃
(180)

= ṽ(ε) − 1
2
τ2(ε)℘′′(ω2(0) + θ(ω1(ε) − ω1(0))),

c̃(ε)D2
z

(
6q2

ε2

)
+ ε4b̃(ε)D2

zI2v22 + D2
zI2

I1f(q) + w̃

ε3+α̃

= ṽ′′(ε) − 3
2

(e2(ε) + e2(0))τ2(ε)℘′′(ω2(0) + θ(ω1(ε) − ω1(0))).

According to (167) and Proposition 4.1, in the limit ε→ 0 equations (180) become

c̃(0) lim
ε→0

6q2

ε2
+ b̃(0) lim

ε→0
ε4v22(ω̃2(ε), ε) = ṽ(0) − 1

2
τ2℘′′(ω2(0)),(181)

c̃(0) lim
ε→0

[
6q2

ε2
+

36q4

ε4

]
+ b̃(0) lim

ε→0

{
ε4v22(ω̃2(ε), ε)

[
1 +

12q2

ε2

]}
= ṽ′′(0)

− 3e2(0)τ2(0)℘′′(ω2(0)).

Here we used the fact that 6q2

ε2 and v22 satisfy differential equations (2) and (44),
respectively. Calculation of the determinant of the latter system yields

lim
ε→0

∣∣∣∣∣∣
6q2

ε2 ε4v22
6q2

ε2 + 36q4

ε4

[
1 + 12q2

ε2

]
ε4v22

∣∣∣∣∣∣ = lim
ε→0

∣∣∣∣∣
6q2

ε2 ε4v22
36q4

ε4 12q2ε2v22

∣∣∣∣∣(182)

= 36 lim
ε→0

q4v22 =
3(e2(0) − 1

2 )2

(e1(0) − e2(0))(e2(0) − e3(0))
�= 0.

Following the arguments of Lemma 4.2, we can now use the implicit function theorem
to show that the system (180) has a unique solution c̃(ε), b̃(ε), where c̃(ε), b̃(ε) are
continuous functions. Thus, v(z, ε) ∈ Fα. To prove step (1) for the case for general n
we simply have to consider the region P from Remark 3.10 instead of the triangle P
and the point nω̃1(ε) + ω̃3(ε) instead of ω̃2(ε).

To prove step (2), we assume that there is a family of solutions v(z, εm) ⊂ Fα to
(4), where ω1(ε) satisfies (14), that is symmetrical at ω̃3(εm). However, according to
Theorem 3.13,

(183) lim
m→∞

v(z, εm) = v+(z)

uniformly in z on any closed segment of the imaginary axis that belongs to Tz1 . Due
to the symmetry with respect to the imaginary axis, we also have

(184) lim
m→∞

v(z, εm) = v−(z)

uniformly in z on the same segment of the imaginary axis. But, according to Corol-
lary 1.3, v+(z) �≡ v−(z). The obtained contradiction proves nonexistence of a family
of symmetric periodic solutions v(z, εm) ⊂ Fα, α > 1, where εm → 0. The same
result, according to Theorem 3.13, part (2), holds for the case α = 1.
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RISE OF CORRELATIONS OF TRANSFORMATION STRAINS IN
RANDOM POLYCRYSTALS∗

LEONID BERLYAND† , OSCAR BRUNO‡ , AND ALEXEI NOVIKOV§

Abstract. We investigate the statistics of the transformation strains that arise in random
martensitic polycrystals as boundary conditions cause its component crystallites to undergo marten-
sitic phase transitions. In our laminated polycrystal model the orientation of the n grains (crystal-
lites) is given by an uncorrelated random array of the orientation angles θi, i = 1, . . . , n. Under
imposed boundary conditions the polycrystal grains may undergo a martensitic transformation. The
associated transformation strains εi, i = 1, . . . , n depend on the array of orientation angles, and they
can be obtained as a solution to a nonlinear optimization problem. While the random variables θi,
i = 1, . . . , n are uncorrelated, the random variables εi, i = 1, . . . , n may be correlated. This issue is
central in our considerations. We investigate it in following three different scaling limits: (i) Infinitely
long grains (laminated polycrystal of height L = ∞); (ii) Grains of finite but large height (L � 1);
and (iii) Chain of short grains (L = l0/(2n), l0 � 1). With references to de Finetti’s theorem, Riesz’
rearrangement inequality, and near neighbor approximations, our analyses establish that under the
scaling limits (i), (ii), and (iii) the arrays of transformation strains arising from given boundary
conditions exhibit no correlations, long-range correlations, and exponentially decaying short-range
correlations, respectively.

Key words. polycrystals, misfit, phase transitions, correlations, De Finetti’s theorem, Riesz’
rearrangement inequality
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1. Introduction. We investigate the statistics of the transformation strains
(misfits) that arise in random martensitic polycrystals as boundary conditions cause
its component crystallites to undergo solid-to-solid (martensitic) phase transitions.
Martensitic transformations are shape-deforming phase transitions that can be in-
duced in certain alloys as a result of changes in the imposed strains, stresses, or
temperatures. These transitions occur when a crystalline solid transforms between
its parent phase (austenite) and any of a number of variants of the product phase
(martensite). We focus on a setting that, while sufficiently simple to allow for a com-
plete analytical treatment, provides significant insights on the problem: We study
laminated polycrystals that consist of sequences of n of grains of rectangular cross-
section—of base 1/n and height L = L(n), so that a complete polycrystal is an infinite
parallelepiped with rectangular cross-section of base 1 and height L. The goal of this
work is to provide a rigorous probabilistic theory for the misfit statistics in such poly-
crystals and, in particular, to provide a rationale for the approximations implicit in
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Fig. 1.1. A reference crystallite undergoes stress-free transformations: Atomic view (left) and
macroscopic view (right).

Fig. 1.2. One of two grains undergoes a stress-free transformation.

the numerical algorithms [6, 7, 8] for polycrytalline phase transitions in two- and
three-dimensional space.

The microstructure in a laminated polycrystal is described by a sequence of the
orientation angles θi, i = 1, . . . , n; θi represents the orientation of the two-dimensional
lattice structure in the ith grain. We assume θi is a sequence of n independent
identically distributed (i.i.d.) random variables. The transformation in the ith grain
gives rise to a strain tensor, the transformation strain εT

i , (i = 1, . . . , n), which is
constant, and it takes one of three admissible values: No deformation (the original
square lattice remains square), or deformation into one of two rectangular crystalline
lattices parallel to the original square lattice. The phase transition in the polycrystal
gives rise to a sequence of transformation strains εT

i , i = 1, . . . , n obtained by the
minimization of the elastic misfit energy among all admissible configurations.

We briefly explain the concept of misfit using a simple example of a polycrystal
with two grains. Assume a rectangular single-crystalline grain, considered separately,
can undergo a stress-free (two-dimensional version of the) cubic-to-orthorhombic phase
deformation into shapes depicted in Figure 1.1. A polycrystal with two square grains
can undergo deformations as depicted in Figure 1.2. The elastic energy of the former
transformation is zero, because it is stress-free. In contrast, the latter transforma-
tion requires some elastic misfit energy that arises because when two crystallites are
combined in a polycrystal, their boundaries must remain coherent after the transfor-
mation. In general, minimization of misfit energy leads to interactions amongst all of
the grains in a polycrystal. Our probabilistic setup allows us to provide a rigorous
description of this phenomenology.

The main results of this paper characterize the probability distributions of the
random variables εT

i that arise as minimizers of the overall elastic energy for a given
i.i.d. distribution of the angle sequence θi. Such results are provided in three different
cases according to whether the grains are (1) infinitely long (L = ∞), (2) of finite
but large height (L = L � 1), and (3) short height (L = l0/(2n), l0 � 1). In
case (1) our treatment applies to arbitrary i.i.d. probability measures ρ defining the
distribution of angles, and in cases (2) and (3), in turn, we restrict consideration to
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i.i.d. distribution of angles with Bernoulli probability measures ρ. Our main results
can be briefly described as follows:

1. Infinitely long grains. Theorem 5.2. For an arbitrary i.i.d. distribution of
angles θi, i = 1, 2, . . . , n, under certain technical assumptions, in the limit
n → ∞, the transformation strains εT

i , i = 1, 2 . . . , n are also i.i.d. with
probability measure μ, where the measure μ is the minimizer of a certain
functional ((5.8) below). In particular, in the case of infinitely long grains
there are no correlations between transformation strains of any two grains.

2. Long finite grains. L � 1. Theorem 6.4. If θi, i = 1, . . . , n are Bernoulli
random variables (4.3), then in the limit n → ∞, εT

i , i = 1, 2 . . . , n have
long-range but no short-range correlations.

3. Short grains. L = l0/(2n), l0 � 1. Theorems 7.4 and 7.5. If θi, i = 1, . . . , n
are Bernoulli random variables (4.3), then in the limit n → ∞, εT

i , i =
1, 2 . . . , n have short-range but no long-range correlations.

Results 2 and 3 can be explained as follows. The cornerstone of our study is the
maximization of an integral energy functional (see (3.4) below) of the form

∫
KL(x−

t)f(x)f(t)dxdt. Its integral kernel KL(x) decays on different length scales for long
and short grains. For long grains it decays on the length scale of the composite (on
O(1) scale), while for short grains it decays on the length scale of a grain (on O(1/n)
scale). Maximization with respect to this integral kernel leads to long-range and short-
range correlations for long and short grains, respectively. Formally, correlations arise
because grains that undergo the stress-free transformation tend to “group together”
on the scale of the decay of the integral kernel. We justify this heuristic idea in the
case of long grains (see section 6) by applying a randomized version of the Riesz
rearrangement inequality. In the case of short grains (see section 7) we show the
transforming grains group together—by applying an isoperimetric inequality.

The paper is organized as follows: After describing in section 2 our model of
the polycrystal, in section 3 we solve an auxiliary linear elasticity problem, and we
obtain an explicit expression for the stored elastic energy for a fixed admissible ar-
ray of transformation strains. In section 4 we describe our probabilistic model. Our
main results are then established in the next three sections, where the nonlinear min-
imization problem for a random polycrystal is solved. The cases concerning infinitely
long grains, finitely long grains, and short grains are studied in sections 5, 6, and 7,
respectively.

2. Formulation.
Stress-free transformation. A two-dimensional polycrystal is a collection of grains.

In our model, each grain is a single crystal (a crystallite) which can undergo a shape-
deforming phase transition that results in a transformation strain. An untransformed
grain with a horizontal-vertical square lattice (angle θ = 0) may either elongate in the
horizontal direction and remain unchanged in the vertical direction (the upper-right
state in Figure 1.1); it may elongate in the vertical direction and remain unchanged
in the horizontal direction (the lower right state in Figure 1.1); or, finally, it may not
transform at all and thus have its size unchanged (the left state in Figure 1.1). These
states correspond to the transformation strains:

(2.1) ε1
0 =

(
1 0
0 0

)
, ε2

0 =
(

0 0
0 1

)
, ε00 =

(
0 0
0 0

)
.

The first and the second state correspond to a nontrivial transformation. The null
strain ε0

0 corresponds to absence of transformation.
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Fig. 2.1. The laminated polycrystal.

Mathematical model of a laminated polycrystal. Grains in a polycrystal have a
varying orientation of the crystalline lattices. We consider a rectangular polycrystal
ΠL = [0, 1] × [−L,L] (see Figure 2.1) partitioned into n vertical rectangular layers
(the grains) of width 1/n and height 2L,

ΠL = ∪n
i=1Πi

L, Πi
L =

[
i− 1
n

,
i

n

]
× [−L,L].

Each grain Πi
L is occupied by a crystallite obtained by rotation by the orientation

angle

θi, 0 ≤ θi ≤ π/2,

of the reference crystallite (see Figure 2.1).
The array of crystallites’ orientations is completely determined by the vector of

the orientation angles

(2.2) θ = (θ1, θ2, . . . , θn).

Using the matrix of rotation by an angle θ

R = R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
,

we see that the stress-free transformation strain for the grain Πi
L must lie in the set

(2.3) Sθi =
{
ε1(θi), ε2(θi), ε0(θi)

}
, 0 ≤ θi ≤ π/2,

where

ε1(θ) = Rε1(0)Rt =
(

cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ)

)
,

ε2(θ) = Rε2(0)Rt =
(

sin2(θ) − sin(θ) cos(θ)
− sin(θ) cos(θ) cos2(θ)

)
,

ε0(θ) = Rε0(0)Rt =
(

0 0
0 0

)
.

(2.4)
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The superscript t stands for the matrix transpose. The set of all sequences of strains
that are admissible for some sequence of angles is denoted by Ω̃n:

(2.5) Ω̃n =
{
εT|εT = (εT

1 , ε
T
2 , ε

T
3 , . . . , ε

T
n ), εT

i ∈ Sθi for some θi ∈ [0, π/2]
}
.

The set of all sequences of strains that are admissible for a given sequence θ will be
denoted by

(2.6) Ω̃n(θ) =
{
εT|εT ∈ Ω̃n such that εT

i ∈ Sθi

}
.

Linear elasticity equations for given transformation strains. For a given sequence
of the orientation angles θ = {θi, i = 1, . . . , n} there are up to 3n corresponding
sequences εT = {εTi , i = 1, . . . , n} in the class Ω̃n(θ) defined in (2.6). Here we
introduce the relevant elasticity PDEs on the domain ΠL for a given such εT. We
assume that each grain can be described by isotropic elasticity equations with elastic
moduli given by

(2.7) cijkl = λδijδkl + G(δikδjl + δilδjk),

where λ and G are the Lamé constants [19].
As an applied displacement is imposed, our polycrystal may acquire microscopic

strains ε which contain combined contributions of elastic and stress-free transforma-
tions (see [9]):

(2.8) ε = εelastic + εT.

Then Hooke’s law σij = cijklε
elastic
kl yields the stress-strain relation of linear elasticity

under a given transformation strain εT

(2.9) σij = cijkl(εkl − εTkl).

Here the strain tensor εkl is determined by the displacement vector u = (u1(x, y),
u2(x, y)):

(2.10) εij =
1
2

(∂iuj + ∂jui) where ∂1 =
∂

∂x
, ∂2 =

∂

∂y
.

The stress tensor satisfies the elasticity equations

(2.11) ∂jσij = 0 for i = 1, 2.

The above equation is to be understood in the distributional sense, and thus the
traction must be continuous across the interfaces between grains:

(2.12) [σi1](x, y) = 0, for i = 1, 2 and x = m/n, m = 1, 2, . . . , n− 1.

For such a given admissible configuration εT
i , we assume a given imposed dis-

placement that is chosen in the direction transversal to the laminates:1

(2.13) u1(0, y) = 0, u1(1, y) = U, u2(0, 0) = 0,

together with the zero-traction boundary conditions

(2.14) σ12(0, y) = σ12(1, y) = 0, σi2(x,±L) = 0.

1Other boundary conditions (e.g., shears) could be treated similarly.
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It is easy to check that, for a fixed admissible configuration εT, (2.11), (2.13), and
(2.14) are the Euler–Lagrange equations for the minimizer of the elastic energy

(2.15)

W (U, εT) =
1
Ec

min
u

1
2L

∫
ΠL

(εij − εTij)cijkl(εkl − εTkl)dxdy, u subject to (2.13),

where

(2.16) Ec =
4G(λ + G)
λ+ 2G

,

is the two-dimensional Young modulus. Thus it can be verified that the boundary
value problem (2.11), (2.13), and (2.14) admits a unique solution.

Overall polycrystalline energy. As a displacement (2.13) is imposed on the poly-
crystal, each grain may undergo a stress-free transformation into one of the three
possible stress-free states. The overall energy Wn(U,θ) in the polycrystal is deter-
mined by global minimization of the misfit energy W (U, εT) of the polycrystal over
all admissible configurations [9]

(2.17) Wn(U,θ) = min
εT∈ Ω̃n|θ

W (U, εT).

The (possible nonunique) array(s) of transformations strains that arise in the poly-
crystal is (are) the minimizer(s) in (2.17).

Simplifying assumptions of our model. The idea that the energy minimization in
composites and polycrystals can explain correlations has been long pursued in material
science (see, e.g., [16, 22]). In this paper we use a quadratic form of the polycrystal’s
energy proposed in [9] and further developed analytically in [20, 6] and numerically
in [6, 7, 8].

The probabilistic model introduced in this work captures many of the essential fea-
tures of the general physical phenomenon of misfit and, at the same time, is amenable
to rigorous analytical treatment.

Clearly, however, our model is too simple to reflect the rich phenomena that
occur in actual three-dimensional polycrystals. For example, we consider isotropic
elasticity, whereas typically, the crystalline lattice of each of the martensite variants
has less symmetry than that of the austenite. Further, for sufficiently large grains, the
lattices associated with the various martensite variants could be combined, giving rise
to twins and/or higher-rank laminates of two or more different variants of martensite
within each grain [21, 4, 15, 5, 17]—an effect that our model does not allow. We also
note that, in general, a stress-free transformation is a time-dependent process that
involves energy dissipation. Our study assumes that the final state of a polycrystal is
determined by minimizers of a time-independent, dissipation-free misfit energy (see,
e.g., [9, 6, 8] and references therein). Importantly, however, we do not assume that
the grains in the polycrystal transform without elastic stresses (self-accommodation);
see, e.g., [3, 2] and references therein.

Although not explicitly considered in this work, related phenomena, including
electrical and magnetic polarizations in electro- and magneto-rheological materials
and the combined elastic and magnetic-electric misfits arising from magnetostriction
and electrostriction in composite materials, could be treated by similar methods.

3. Elasticity kernel. In this section we give a representation for the elastic
energy W (U, εT) in terms of a certain integral kernel KL((x−t)), and we then present
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asymptotics of this kernel under two regimes that are relevant in our studies of the
statistics of transformation strains in sections 5, 6, and 7. Denote spatial averages as

(3.1) 〈g〉 =
1

|ΠL|

∫
ΠL

g(x, y)dxdy =
1

2L

∫
ΠL

g(x, y)dxdy.

It turns out that the most convenient mathematical formulation of the elastic energy
is in terms of

(3.2) s(x) = εT22(x),

and the volume fraction of grains that undergo a phase transition2

(3.3) f = 〈I〉, I = εT11 + εT22.

Then the elastic energy

(3.4) W (U, εT) = 〈(U − f + s)2〉 −
∫ 1

−1

∫ 1

−1

(s(x) − 〈s〉)KL((x− t))(s(t) − 〈s〉)dxdt,

where KL is an even, 2-periodic integral kernel whose cosine Fourier coefficients

(3.5) K̂L(m) =
∫ 1

−1

KL(x) cos(πmx)dx

are explicitly given in Appendix A.1 by formulas (A.5) and (A.6).
The idea of the proof of (3.4) is to decompose the solution u = (u1, u2) of the

boundary value problem (2.11), (2.13), and (2.14) in the form u = ũ + ū, where
ũ solves the elasticity equations (2.15) for infinitely long grains (L = ∞) and the
remainder ū is the correction for finite L. It turns out that ũ is a piecewise linear
function of the form

(3.6)

{
ũi

1 = aix+ fi,

ũi
2 = cix+ dy + gi,

and ū satisfies the boundary value problem

(3.7)

⎧⎪⎨⎪⎩
∂j σ̄ij = 0 for i = 1, 2,
ū1(0, y) = ū1(1, y) = 0, ∂1ū2(0, y) = ∂1ū2(1, y) = 0,
σ̄12(x,±L) = 0, σ̄22(x,±L) = Ec(εT22 − 〈εT22〉).

where {
σ̄ij = cijkl ε̄kl,

ε̄11 = ∂1ū1, ε̄12 = ε̄21 = (∂2ū1 + ∂1ū2)/2, ε̄22 = ∂2ū2.

Both functions can be computed explicitly: ũ is obtained from direct computations
and ū is found by the Airy function method. A detailed proof is provided in Ap-
pendix A.1. The asymptotics of the convolution kernel in two important limiting

2Since the transformation strains defined in (2.4) satisfy ε111 + ε122 = 1, ε211 + ε222 = 1, and
ε011 + ε022 = 0, it follows that the quantity f equals the volume fraction of grains that undergo a
phase transition.



RISE OF CORRELATIONS IN RANDOM POLYCRYSTALS 1557

cases, in turn, are summarized in the following two lemmas. The proofs of the lem-
mas are provided in Appendices A.2 and A.3, respectively.

Lemma 3.1 (kernel asymptotics as L → ∞). KL(x) can be represented in the
form

(3.8) KL(x) =
B

L
K∞(x) +O(exp(−L)), as L→ ∞,

where

K∞ = − ln | sin(πx/2)|,
and

B =
5λ+ 9G

4π(λ+ 2G)
> 0.

We now consider polycrystals for which the height is commensurate with the grain
widths L = l0/(2n). The parameter l0 is the height-to-width ratio. In particular, when
L = 1/(2n), such polycrystals can be viewed as chains of square grains.

Lemma 3.2 (kernel asymptotics as L → 0). Suppose L = l0/(2n), where l0 > 0,
and n→ ∞. Then for each fixed height-to-width ratio l0 there exists a positive-definite
function Kl0(x), x ∈ R independent of n, such that

(3.9) ||KL(x) − nKl0(nx)||L∞([−1,1]) → 0, as n→ ∞,

where Kl0(x) is even: Kl0(−x) = Kl0(x), and

(3.10) |Kl0(x)| ≤ c

l0
exp(−|x|/l0).

The constant c in (3.10) does not depend on n and l0.
We will find it useful, especially for chains of rectangular grains, to identify se-

quences (vectors) (f1, . . . .fn) (of real number, matrices, etc.) with the corresponding
piecewise constant (real valued, matrix valued, etc.) functions defined in the interval
[0, 1] that take the values f(x) = fk for x ∈ Πk

L, k = 1, . . . , n. For example, the
argument εT of W in (2.15), which is a matrix-valued function defined in the interval
[0, 1], will often be replaced by a sequence of n matrices (εT

1 , ε
T
2 , ε

T
3 , . . . , ε

T
n ). As an-

other example, note that the dependence on n of the quantity on the left-hand side
of (2.17) arises merely from the fact that εT on the right-hand side of that formula is
a piecewise constant function determined by a sequence of n matrices. For a function
f defined by a sequence (f1, . . . .fn) the spatial average (3.1) is

〈f〉 =
1
n

n∑
i=1

fi.

Further, on the space of the piecewise constant functions the integral representation
of the misfit energy (3.4) can be viewed as an algebraic nonnegative definite quadratic
form:

(3.11) Wn(U, εT) = 〈(U − f + s)2〉 − 〈(s− 〈s〉)M(n,L)(s− 〈s〉)〉,
where M = M(n,L) is a n × n symmetric Toeplitz matrix with entries Mij(n,L) =
λi−j(n,L) defined by

(3.12) (s− 〈s〉)M(s− 〈s〉) =
∫ 1

−1

∫ 1

−1

(s(x) − 〈s〉)KL(x− t)(s(t) − 〈s〉)dxdt

for piecewise constant functions s = (s1, . . . , sn).
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As an immediate consequence of Lemma 3.2 we can estimate the decay of the
coefficients λi−j(n,L) for a chain of rectangular grains (L = l0/(2n)): As n → ∞,
λk(n,L) → λk(l0) where

(3.13) |λk(l0)| ≤ c

n
exp(−|k|/l0).

By (3.13) for a chain of rectangular grains λi−j(n,L) can be accurately approxi-
mated by a (truncated) Toeplitz matrix by setting λk(n,L) ≡ 0, for |k| > k0, and the
misfit energy is approximately

(3.14) W k0
n (U, εT) = 〈(U − f + s)2〉 −

k0∑
k=−k0

n∑
i=1

λk(n)(si − 〈s〉)(si+k − 〈s〉),

where we define si+k for i+ k > n by periodicity

si+k =

{
si+k, if i+ k ≤ n,

si+k−n, if i+ k > n.

The approximation (3.14) provides a justification, in a one-dimensional con-
text, of numerical schemes which are used in practical evaluation of the misfit en-
ergy [9, 6, 7, 8]. The approximation (3.14) takes into account only interaction with
the nearest neighbors. Hence we call (3.14) k0-nearest neighbors energy. The next
proposition shows that for any finite value of n and finite k0, this k0-nearest neigh-
bors approximation has an exponential in k0 error. Therefore the computational
complexity of finding the misfit energy can be significantly reduced if (3.11) is re-
placed by (3.14). In [6, 7, 8] this truncation was implemented for general two- and
three-dimensional polycrystals, and the convergence was verified numerically. The
following proposition justifies this convergence analytically in the case of chains of
rectangular grains, and provides an explicit exponential error estimate.

Proposition 3.3. For a given U and a given vector of orientation angles θ,
suppose εT(k0) ∈ Ω̃n(θ) is a minimizer of the k0-nearest neighbors energy W k0

n (U, εT)
given by (3.14). Then there is a universal constant c, independent of n, such that
Wn(U,θ), the minimum of the misfit energy (3.11), satisfies

(3.15) |Wn(U,θ) −W k0
n (U, εT(k0))| ≤ c exp(−k0).

A proof the theorem is given in Appendix A.4. Finally, applying Proposition 3.3
and Lemma 3.2, the misfit energy (3.4) of a chain of short grains becomes

(3.16)
Wn(U, εT) = 〈(U − f + s)2〉 − λ0〈(s− 〈s〉)2〉 − Be−1/l0

n

n∑
i=1

(si − 〈s〉)(si+1 − 〈s〉) +O(e−2/l0 ), as l0 → 0,

where λ0 > 0, B > 0.3 Thus, when l0 � 1, the misfit energy is approximated by the
nearest neighbor energy.

3From numerical computations λk , k ≥ 2 are negligible even for large l0 = 1:
∑∞
k=2 |λk| ≤ .1λ1,

λ1 ≤ .17λ0.
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4. A probabilistic model. Our probabilistic model is set to describe energy
minimizers within a random setting. In detail, we consider orientation angles θi,
i = 1, 2, . . . as a sequence of random variables4

θi : Ω → Ωθ = [0, π/4]

on a common probability space (Ω,F , P ). We denote by ρn the usual induced prob-
ability measure of a sequence of the first n orientation angles on (Ωθ

n, σ
θ
n), where

Ωθ
n =

(
Ωθ
)n = Ωθ × Ωθ × · · · × Ωθ, and σθ

n is the Borel σ-algebra on Ωθ
n.

We may define and work with the probability space (Ω̃n, σ̃n, μ̃n) of arrays of
transformation strains (εT

i )n
i=1, where we recall that Ω̃n is the set of all sequences of

strains that are admissible for some sequence of orientation angles (see (2.5)).
We will, however, work with a different, but equivalent probability space. Recall

that the misfit energy (3.4) depends only on a sequence of pairs {(si, Ii)}, i = 1, . . . , n,
where

Ii = εT11,i + εT22,i ∈ {0, 1}, and si = εT22,i ∈ [0, 1].

Therefore, we will study the probability space(
ΩT

n , σ
T
n , μn

)
, ΩT

n =
(
ΩT
)n

= ΩT × ΩT × · · · × ΩT, (si, Ii) ∈ ΩT = [0, 1] × {0, 1},

where σT
n is the Borel σ-algebra on ΩT

n and μn is a probability measure, which we will
define next.

Probability measure in the space of transformation strains. Suppose the applied
deformation U is given. For a fixed sequence of orientation angles θ, there are up to
3n different admissible arrays of transformation strains (εT

i )n
i=1, T = 0, 1, 2; see (2.6)

with (2.3) and (2.4). They correspond to 3n different arrays of pairs {(si, Ii)}, i =
1, . . . , n using the rule that the matrices ε1(θi), ε2(θi), and ε0(θi) in (2.4) correspond to
the pairs (si, Ii) = (sin2 θi, 1), (si, Ii) = (cos2 θi, 1), and (si, Ii) = (0, 0), respectively.
Some of these arrays {(si, Ii)}, i = 1, . . . , n, say a number k of them, minimize the
misfit energy (3.4) amongst all admissible arrays. We assume, as it may indeed be
natural from a physics perspective, that each of these energy minimizing arrays occurs
with equal probability. In other words, we will define the probability measure μn in
such a way that the conditional probability measure μn((si, Ii)n

i=1|θ) satisfies

(4.1) μn((si, Ii)n
i=1|θ) =

{
1/k, if εT is a minimizer
0, if εT is not a minimizer,

where k is the number of minimizers of the misfit energy (3.4) for the fixed θ. The
probability measure μn on the sequences (si, Ii)n

i=1 is thus defined by

(4.2) μn(A) =
∫

Ωθ
n

μn(A|θ)dρn(θ)

for any Borel set A ∈ σT
n .

4In principle θ ∈ [0, π/2]. It follows from (2.4) that we are concerned only with sin2 θ and cos2 θ.
Since sin(π/2 − θ) = cos θ and cos(π/2 − θ) = sin θ, we may and do assume that θ ∈ [0, π/4]. The
orientation of a square crystalline lattice can be described uniquely by a value θ ∈ [0, π/4].
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The measure μn describes statistics of the transformation strains; the main ob-
jective of this paper is to describe it in detail for n � 1 and for various polycrystal
configurations.

Distribution of angles. In the remainder of this paper we will assume that the
angles θi are independent and identically distributed with the induced probability
measure (distribution) ρ on Ωθ = [0, π/4]—although other types of angle distribu-
tions could be considered within the present context. In other words, the probability
measure ρn on the sequences of the orientation angles will be taken to be a product
measure of the form

ρn = Πn
i=1ρ.

In particular, to illustrate our theory we will consider two specific probability distri-
butions ρ: (1) the uniform distribution, in which ρ is proportional to the Lebesgue
measure, and (2) the Bernoulli trials model for which ρ is concentrated in two θ values

(4.3) θi =

{
α, with probability q,
β, with probability 1 − q,

0 ≤ β ≤ α ≤ π/4.

5. Statistics of asymptotic energy minimizers 1: Infinitely long grains
(L = ∞).

5.1. The main theorem. Suppose the grains are infinitely long (L = ∞).
Then, by Lemma 3.1 the misfit energy for a given admissible sequence of transforma-
tion strains on the array of n grains is given by

(5.1) Wn(U, εT) = 〈
(
U − f + εT22

)2〉 = 〈(U − f + s)2〉.

The sequence of measures (4.2) contains convergent subsequences [18]; each such limit
μlim is a measure on the set of infinite sequences of transformation strains; the limits
along various subsequences may, in principle, not all coincide. In fact, in all cases
we consider, however, all such limits do coincide, and the full sequences (4.2) are
convergent. For the sake of simplicity, in the subsequent analysis we assume this is
the case and we denote μlim = limn→∞ μn.

As we shall show the limits μlim are convex combinations of product measures.
This is a consequence of the de Finetti’s representation theorem (see [13] for a general
version of this theorem). In order to motivate the advantages of this observation in
our context, we first consider one such limit μlim and we assume (this may or may not
be true!) that (1) for each finite n the minimizers are unique, and (2) the measure
μlim is given by a product of the form

(5.2) μlim = μ̃ := Π∞
i=1μ,

for a certain measure μ so that, according to μlim, the random variables {(si, Ii)}∞i=1

are i.i.d.
Since, as we have seen above, for each i we must necessarily have si = sin2(θi)

or si = cos2(θi) whenever Ii = 1, under the uniqueness assumption (1) above the
measure μ in (5.2) must satisfy{
μ
(
s = sin2(θ)|θ, I = 1

)
+ μ

(
s(θ) = cos2(θ)|θ, I = 1

)
= 1

μ
(
s = sin2(θ)|θ, I = 1

)
= 0 or 1 and μ

(
s(θ) = cos2(θ)|θ, I = 1

)
= 0 or 1.
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Hence, we can define a function κ(θ), κ(θ) = 0, or κ(θ) = 1 such that

(5.3) κ(θ) =

{
1, if μ

(
s = sin2(θ)|θ, I = 1

)
= 1,

0, if μ
(
s = cos2(θ)|θ, I = 1

)
= 1.

By the law of large numbers, as n→ ∞ we have for the misfit energy (5.1)

(5.4) Wn(U, εT) →
∫ π/4

0

g(θ)χ(θ)dρ(θ) + (U − f)2(1 − f),

where g(θ) = (U − f + sin2 θ)2κ(θ) + (U − f + cos2 θ)2(1 − κ(θ)) and where we have
set

(5.5) χ(θ) = μ(I = 1|θ), (0 ≤ χ(θ) ≤ 1),

and f =
∫ π/4

0
χ(θ)dρ(θ).

Clearly, in the present context the limiting values of the energy functionWn(U, εT)
are determined uniquely by the functions κ(θ) and χ(θ). Since μlim is the limit of
probability measures {μn} given by (4.1) with (5.1), it follows that the measure μ in
(5.2) must minimize (5.4). In other words, under the assumption (5.2), the overall
minimization problem has been reduced to the following minimization problem for
the functions κ(θ) and χ(θ):

min
κ(θ),χ(θ)

∫ π/4

0

g(θ)χ(θ)dρ(θ) + (U − f)2(1 − f)

g(θ) = (U − f + sin2 θ)2κ(θ) + (U − f + cos2 θ)2(1 − κ(θ)),

f =
∫ π/4

0

χ(θ)dρ(θ), 0 ≤ χ(θ) ≤ 1, 0 ≤ κ(θ) ≤ 1.

(5.6)

One can anticipate that, generally, the assumption (5.2) does not hold. Indeed,
even working under the assumption (5.2), we note that a solution μ (i.e., (κ, χ)) to
the minimization problem (5.6) may not be unique. If there are two such solutions
μ1 and μ2 to this problem, then the corresponding infinite products μ̃1 and μ̃2 could,
conceivably, equal to the limit of a subsequence of μn. As shown in Theorem 5.2,
however, in general μlim will equal a convex combination of such infinite products.
The following definition will be useful in these regards.

Definition 5.1. Consider the set S of all measures on the set of pairs (s, I) ∈
[0, 1] × {0, 1}. For each measure μ ∈ S define the associated product measure

μ̃ = Π∞
i=1μ

on Π∞
i=1(si, Ii). A measure γ is called a convex combination of such product measures,

if there exists a positive measure ν(μ) on the set S, such that

(5.7) γ(A) =
∫

S

μ̃(A)dν(μ),
∫

S

dν(μ) = 1.

Theorem 5.2. Consider infinitely long grains and an arbitrary i.i.d. angle dis-
tribution with the probability measure ρ, and assume the limit μlim of the sequence
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μn defined by (4.2) and (4.1) exists. Then μlim is given by a convex combination of
product measures arising from minimization problems. In detail, we have

μlim =
∫

S

μ̃dν(μ),
∫

S

dν(μ) = 1,

where S is the set of product measures: μ̃ = Π∞
i=1μ, and each μ is defined by

μ((s, I)|θ) =

{
χ(θ)κ(θ), if I = 1,
1 − χ(θ), if I = 0,

where κ(θ) and χ(θ) are minimizers of

min
κ(θ),χ(θ)

∫ π/4

0

(U − f + s(θ))2χ(θ)dρ(θ) + (U − f)2(1 − f),

f =
∫ π/4

0

χ(θ)dρ(θ), χ : [0, π/4] → [0, 1],

(5.8)

(5.9) s(θ) = κ(θ) sin2(θ) + (1 − κ(θ)) cos2(θ), where κ : [0, π/4] → {0, 1}.

If the minimizer of (5.8) is unique, then transformation strains in different grains are
independent identically distributed; that is, μlim is a product measure μlim = Π∞

i=1μ.
Proof. A key property of the energy Wn (5.1) in the case of infinitely long

grains is that it is invariant under permutations; e.g., for a three-grain polycrys-
tal, if (s1, I1), (s2, I2), (s3, I3) is a minimizing sequence for the angles (θ1, θ2, θ3), then
(s2, I2), (s1, I1), (s3, I3) is a minimizing sequence for the angles (θ2, θ1, θ3) with the
same probability. More generally, the form of the misfit energy and our assumption
(4.1) imply that the probability measure μn (defined by (4.1), (4.2)) on the minimizers
must be symmetric;5 that is, for any finite permutation τ ∈ S(n)

μn((s1, I1) ∈ A1 . . . , (sn, In) ∈ An) = μn((sτ(1), Iτ(1)) ∈ A1, . . . , (sτ(n), Iτ(n)) ∈ An).

As n→ ∞, the probability measure μn converges to a certain μlim. Clearly, μlim must
be symmetric as well: For any n and τ ∈ S(n)

μlim ((s1, I1) ∈ A1, . . . , (sn, In) ∈ An, (sn+1, In+1) ∈ An+1, . . . )

= μlim

(
(sτ(1), Iτ(1)) ∈ A1, . . . , (sτ(n), Iτ(n)) ∈ An, (sn+1, In+1) ∈ An+1, . . .

)
.

Hence, we can apply the de Finetti’s representation theorem [13], and μlim must be a
convex combination of product measures μ̃:

μlim =
∫

S

μ̃dν(μ),
∫

S

dν(μ) = 1, ν(μ) ≥ 0;

see Definition 5.1, as claimed.
Let us now show that

(5.10)

lim
n→∞

∫
ΩT

n

Wn(U, εT)dμn

=
∫

S

[∫ π/4

0

(U − f + s(θ))2χ(θ)dρ(θ) + (U − f)2(1 − f)

]
dν(μ).

5Sometimes the term exchangeable is used instead of symmetric.
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The key issue here is classical: Given that μn → μlim weakly, we cannot, in general,
conclude convergence of

∫
Wndμn. In our case, however, we can, because the measures

μn are symmetric. It follows that for an n-grain sample, the functions {(si, Ii)}n
i=1

satisfy, for any i, j, 1 ≤ i, j ≤ n,∫
IiIjdμn =

{∫
I1I2dμn, i 
= j,∫
I2
1dμn, i = j,

and similar equalities hold for siIj , and (U − 〈I〉 + si)
2. Therefore, Wn can be written

as ∫
Wn(U, εT)dμn =

∫
F (U, s1, I1, I2)dμn +

1
n

∫
G(s1, I1, I2)dμn,

where both functions F (U, s1, I1, I2) and G(s1, I1, I2) depend continuously (they are
quadratic polynomials) on the values of si and Ii only in two grains i = 1, 2 (and,
thus, do not depend on n), and they are explicitly given as

F = (U + s1)2 − 2UI1 − 2s1I2 + I1I2, G = −2s1I1 + 2s1I2 + I2
1 − I1I2.

Therefore

lim
n→∞

∫
ΩT

n

Wn(U, εT)dμn = lim
n→∞

∫
ΩT

n

F (U, s1, I1, I2)dμn + lim
n→∞

1
n

∫
ΩT

n

G(s1, I1, I2)dμn

=
∫

ΩT
∞

F (U, s1, I1, I2)dμlim.

Hence it only remains to show that

(5.11)

∫
ΩT

∞

F (U, s1, I1, I2)dμlim

=
∫

S

[∫ π/4

0

(U − f + s(θ))2χ(θ)dρ(θ) + (U − f)2(1 − f)

]
dν(μ).

The last equality is obtained by explicit computations provided in Appendix B.1. The
proof of the identity (5.10) is now complete.

Further, up to a set of ν-measure zero, each μ must minimize (5.8). Otherwise,
we can choose a δ > 0 such that the set

A =
{
μ :
∫
F (U, s1, I1, I2)dμ̃− δ > min

∫
F (U, s1, I1, I2)dμ̃

}
has positive measure: ν(A) > 0. Then, if ν(S \A) 
= 0 we define a new measure ν̃ by

ν̃(B) = ν(B \A)/ν(S \A).

Clearly ∫
S

[∫
F (U, s1, I1, I2)dμ̃

]
dν̃(μ) <

∫
S

[∫
F (U, s1, I1, I2)dμ̃

]
dν(μ),

which contradicts the assumption that ν yields a limit of minimizers of the misfit
energy (5.8) as indicated in (5.11). If ν(S \ A) 
= 0, in turn, we can select a single
minimizer and assign ν̃ measure 1 to it, arriving again to a contradiction.
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To establish (5.9), note that for a minimizer μ of (5.6), the μ probabilities condi-
tional to a given angle θ and to I = 1, satisfy

μ
(
s(θ) = cos2(θ)|θ, I = 1

)
= 0, or μ

(
s(θ) = sin2(θ)|θ, I = 1

)
= 0.

Hence κ(θ) takes only the values 0 and 1 and (5.9) holds.
Finally, suppose (5.8) admits a unique minimizer μ. Since, as established above,

the limit μlim must be a convex combination of product measures that minimize
(5.8); in the case of uniqueness of solution to (5.8), μlim must be the product measure
μlim = Π∞

i=1μ, as claimed.
A few remarks about Theorem 5.2 are in order. Firstly, we are aware of some

examples when the minimization problem (5.8) has more than one solution. One of
these examples is to consider a deterministic sequence θi = 0 and U = 1. Then
there are two solutions κ1 ≡ 0, χ1 ≡ 1, and κ2 ≡ 0, χ2 ≡ 0 to the minimization
problem (5.8), which give rise to corresponding measures μ1 and μ2, and, thus, product
measures μ̃1 and μ̃2. For both i = 1, 2 we have∫ π/4

0

(U − fi + si(θ))2χi(θ)dρ(θ) + (U − fi)2(1 − fi) = 1.

In view of our symmetrization assumption 4.1, the limit of μn exists and it is equal to
a convex combination of product measures as implied by Theorem (5.2); the convex
combination is given by μ̃1/2 + μ̃2/2. We expect that generically the minimization
problem (5.8) has a unique solution. We give two explicit examples when this measure
is unique: Bernoulli trials, Lemma 5.3, and Uniform distribution, Lemma 5.6, in
section 5.2.

Secondly, in principle, the (unique) solution to the minimization problem (5.8)
may be such that χ(θ) takes only two values 0 or 1, i.e., χ : [0, π/4] → {0, 1}. This,
indeed, happens for uniform distribution (Lemma 5.6 in section 5.2). If we know
that χ : [0, π/4] → {0, 1}, then the proof of Theorem 5.2 becomes straightforward.
However, there are examples, when 0 < χ(θ) < 1 for some θ, and one of them is the
Bernoulli trials (Corollary 5.4 in section 5.2).

Finally, if we do not assume the uniform conditional probability (4.1), then μlim

may not be unique even if the minimizer of (5.8) is unique. We discuss this issue for
Bernoulli trials after the proof of Corollary 5.4 below.

Motivated by the above remarks, we next investigate in more detail how measure
μ, a solution to the minimization problem (5.8), depends on the underlying probability
measure ρ for two specific probability measures ρ: the Bernoulli trials model and the
uniform distribution of θ.

5.2. Bernoulli trials and uniform distribution. For the Bernoulli trials
model (4.3), the minimization problem (5.8) from Theorem 5.2 is

min
qα,qβ ,s(α),s(β)

W (qα, qβ , s(α), s(β)),

W = (U − f + s(α))2qα + (U − f + s(β))2qβ + (U − f)2(1 − f),
(5.12)

with f = qα + qβ ,

(5.13) 0 ≤ qα ≤ q, 0 ≤ qβ ≤ 1 − q,

0 ≤ β ≤ α ≤ π/4, and s(α), s(β) are defined by s(θ) = sin2 θ or s(θ) = cos2 θ.
In particular, the minimization with respect to χ is reduced to determining the pro-
portions qα and qβ of grains with angles α and β that do not undergo a stress-free
transformation.
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Lemma 5.3. For the Bernoulli trials model (4.3) with 0 < q < 1 the minimizer
(κ, χ) of (5.12) is unique. For the minimizer κ(θ) ≡ 1, i.e.,

(5.14) s(θ) = sin2 θ,

and χ depends on U and can be described as follows. For a given U the total proportion
of grains that undergoes a stress-free transformation f = f(U) is a (deterministic)
nondecreasing function of U . For a given f we have several cases

• if f < 1 − q, then

(5.15) qα = 0, 0 ≤ qβ ≤ 1 − q,

i.e., χ(α) = 0, χ(β) = qβ/(1 − q),
• if f > 1 − q, then

(5.16) 0 ≤ qα ≤ q, qβ = 1 − q,

i.e. χ(β) = qα/q, χ(β) = 1.
A proof of the Lemma is in Appendix B.2.
Corollary 5.4. The probability distribution

θi =

{
π/4, with probability q, q ≥ 1/2,
0, with probability 1 − q

is an example, where the minimizer (κ, χ) of (5.12) is unique, but

χ : [0, π/4] → K ⊂ [0, 1],K 
= {0, 1}.

Indeed, in this case

χ(0) = U, χ(π/4) = 0, if U ≤ 1 − q,

χ(0) = 1, χ(π/4) = 0, if 1 − q ≤ U ≤ 5/4 − q,

χ(0) = 1, χ(π/4) = U − 5/4 + q, if 5/4 − q ≤ U ≤ 3/4, or
χ(0) = 1, χ(π/4) = 1, if 3/4 ≤ U.

Let us now discuss our final remark that if we do not assume the uniform condi-
tional probability (4.1), then μlim may not be unique even if the minimizer of (5.12)
is unique. It depends on whether χ takes more than two values, that is, on whether
χ : [0, π/4] → K, but K 
= {0, 1}. For example, consider the Bernoulli trials with
0 < qα < q. Then one can choose the grains with θi = α, which do not undergo
a stress-free transformation, arbitrarily, provided that their total proportion is qα.
Thus, if we remove our assumption of equal probability (4.1), in the case of infinitely
long grains there are many minimizers of the misfit energy in addition to minimizers
described in Theorem 5.2. Hence, it is possible to construct the limiting measure
μlim on the infinite sequence of pairs {(si, Ii)}∞i=1 so that it is not a product measure.
Moreover, actual construction of the exact minimizers εT of the energy (5.1) (for a
given sequence {θi}n

i=1) in practice [9, 6, 7, 8] is done numerically. Thus it typically
results in finding an almost minimizer ε̃T, such that

(5.17) |Wn(U, εT) −Wn(U, ε̃T)| ≤ δ, δ > 0.

Thus, it is natural to ask which characteristic properties of exact minimizers
are approximated by characteristic properties of almost minimizers. The property
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that μlim is a product measure is not characteristic, but the proportion of grains that
undergo a stress-free transformation is such property. For example, for Bernoulli trials,
qα(θ) characterizes the proportion of grains with θi = α, i = 1, . . . , n, which undergo
a stress-free transformation (grains for which I = 1), and we have the following
immediate result.

Lemma 5.5. For every δ′ > 0 there exists δ > 0 such that an almost minimizer
ε̃T in the sense (5.17) satisfies

|qα(θ) − q̃α(θ)| < δ′, |qβ(θ) − q̃β(θ)| < δ′,

where qα(θ) and q̃α(θ) correspond to the exact and almost minimizers, respectively
(qβ(θ) and q̃β(θ) are defined analogously).

Analogous to the Bernoulli trials model, direct computations show the following
result for the uniform distribution.

Lemma 5.6. For the uniform distribution of θ ∈ [0, π/4], the minimizer (κ, χ) of
(5.12) is unique. For the minimizer κ(θ) ≡ 1, hence

(5.18) s(θ) = sin2 θ,

and χ depends on U and can be described as follows. For a given U the total propor-
tion of grains that undergoes a stress-free transformation f(U) is a (deterministic)
nondecreasing function of U given by

f(U) =

{
4π

8+πU + g(U), if U ≤ 1
4 + 2

π ≈ .88662,
1 otherwise,

where the small correction g(U) is concave and it satisfies g(0) = f(1/4 + 2/π) =
0, −0.055 < g(U) ≤ 0. For a given f < 1

χ(θ) =

{
1, if sin2 θ ≤ 2(f − U),
0, otherwise.

If f = 1, then χ ≡ 1.
Lemmas 5.3 and 5.6 together with Theorem 5.2 imply the following.
Corollary 5.7. For Bernoulli trials and uniform distribution, the unique min-

imizing sequence of transformation strains is i.i.d, and, in particular, it is uncorre-
lated.

6. Statistics of asymptotic energy minimizers 2: Thin long grains (fi-
nite L � 1).

6.1. Basic definitions and formulation of the main theorem. In contrast
to the case of infinitely long grains, if L is large but finite, then each grain may
undergo a stress-free transformation which, as we show in this section, is correlated
to stress-free transformations of other grains. In particular, for Bernoulli trials in
case 1 (L = ∞, n → ∞) the minimizers are shown to be i.i.d. (see Corollary 5.7 in
the previous section), whereas in case 2 (n→ ∞, followed by L→ ∞) the minimizers
are no longer i.i.d. (see Theorem 6.4 below).6

By Lemma 3.1 the misfit energy for L � 1 has the following asymptotic repre-
sentation (up to higher order terms):

(6.1) Wn(U, εT) = 〈(U − f + s)2〉 − B

L
W̄n(U, εT), as L→ ∞,

6In this sense, we prove that the limits for large n and large L do not commute.
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where

(6.2) W̄n(U, εT) =
∫ 1

−1

∫ 1

−1

(s(x) − 〈s〉)(s(t) − 〈s〉)K∞(x− t)dxdt,

(6.3) K∞ = − ln | sin(πx/2)| > 0.

For L � 1 the second term on the right-hand side of (6.1) amounts to a small
correction to the misfit energy of infinitely long grains (5.1) (the first term in (6.1)),
a situation that bears connections with the concept of almost minimizers (5.17) in-
troduced in the previous section. In the present context we have:

Lemma 6.1. For any δ > 0, there exists a sufficiently large L0 > 0, so that for
any L ≥ L0

(6.4) s(θ) = sin2 θ,

(6.5) |qα(θ) − qL
α (θ)| < δ, |qβ(θ) − qL

β (θ)| < δ,

where qα(θ) and qL
α (θ) correspond to minimizers of (5.1) and (6.1), respectively (qβ(θ)

and qL
β (θ) are defined analogously).

A proof of Lemma 6.1 is in Appendix C.1. As we pointed out after Corollary 5.4,
when L = ∞ and 0 < qα < q or 0 < qβ < 1 − q there is an ambiguity: The
solution to the minimization problem (5.1) (the first term in (6.1)) is not unique. We
now show that the second term (6.2) plays a role of regularization—it resolves this
ambiguity by reducing the number of minimizers, and it gives rise to correlation of
transformations in different grains of a laminated polycrystal. The correlations arise
from maximization of W̄ (note the negative sign in front of the second term in (6.1)).
We formalize this idea in the next definition.

Definition 6.2. For a given deformation U and a sequence of angles {θi}n
i=1,

an asymptotic energy minimizer is a pair of piecewise constant functions

(s(x), I(x)) = (si, Ii) if x ∈
(
i− 1
n

,
i

n

]
, i = 1, 2, . . . , n, s(x), I(x) ∈ Hn,

which maximizes (6.2) (the second term in (6.1)) amongst all7 minimizers of the misfit
energy of infinitely long grains (5.1) (the first term in (6.1)).

When the distribution of angles ρn is given, we denote by μa
n the corresponding

probability measure of the distribution of asymptotic energy minimizers (si, Ii)n
i=1.

The behavior of the asymptotic energy minimizers for the distribution of angles ρn

given by the Bernoulli trials (4.3) model will be described by the Riesz symmetrically
rearranged minimizer which we define as follows.

Definition 6.3. Consider Bernoulli trials (4.3) model (θ is α or β with prob-
abilities q or 1 − q). For a given displacement U , let qα and qβ be the proportion of
grains for which I = 1 with θ = α and θ = β, respectively,

(6.6) 0 ≤ qα ≤ q, 0 ≤ qβ ≤ 1 − q,

7Note that we consider here all possible minimizers of the misfit energy of infinitely long
grains (5.1) (the first term in (6.1)). In other words, here minimizers of (5.1) may not satisfy
our assumption of equal probability (4.1).
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as given by Lemma 5.3. For a given sequence of angles {θi}n
i=1 a Riesz left-rearranged

sequence of transformation strains is a pair of functions (sl(x), Il(x)) ∈ Hn given for
each x ∈ ((i− 1)/n, i/n] as

(sl(x), Il(x)) =
(
sl

(
i

n

)
, Il

(
i

n

))
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(sin2 α, 1), if θ = α, 0 ≤ i/n ≤ qα/q,

(0, 0), if θ = α, qα/q ≤ i/n ≤ 1,
(sin2 β, 1), if θ = β, 0 ≤ i/n ≤ qβ/(1 − q),
(0, 0), if θ = β, qβ/(1 − q) ≤ i/n ≤ 1.

Similarly, a Riesz right-rearranged sequence (sr(x), Ir(x)) ∈ Hn is determined by

(sr(x), Ir(x)) =
(
sr

(
i

n

)
, Ir

(
i

n

))

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(sin2 α, 1), if θ = α, 1 − qα/q ≤ i/n ≤ 1,
(0, 0), if θ = α, 0 ≤ i/n ≤ 1 − qα/q,

(sin2 β, 1), if θ = β, 1 − qβ/(1 − q) ≤ i/n ≤ 1,
(0, 0), if θ = β, 0 ≤ i/n ≤ 1 − qβ/(1 − q).

We denote by μl
n and μr

n the corresponding probability measures. A Riesz symmet-
rically rearranged probability measure μs

n is the average of right- and left-rearranged
measures μs

n = 1/2μl
n+1/2μr

n. Finally, the Riesz symmetrically rearranged probability
measure μs, the weak limit of probability measures: μs

n ⇒ μs, as n→ ∞.
The rearranged minimizers quantitatively describe the rise of correlations for

asymptotic energy minimizers (Definition 6.2), because, as we prove in Lemma 6.7,
the asymptotic and rearranged minimizers coincide in the limit as n → ∞. In other
words, Definitions 6.2 and 6.3 characterize the same measure as n → ∞. Moreover,
the following theorem shows that the minimizer probability measure of the full mis-
fit energy (6.1) converges to the Riesz symmetrically rearranged probability measure
when we let n→ ∞, and then let L→ ∞.

Theorem 6.4. Consider the Bernoulli trials (4.3). For a given U , let qα and qβ
be defined as in Lemma 5.3 by (5.15) or (5.16). Then as n → ∞ and subsequently
L → ∞ the probability measure of the energy minimizer of the misfit energy (6.1)
converges weakly to the Riesz symmetrically rearranged probability measure μs.

6.2. Riesz rearrangement inequalities and proof of Theorem 6.4. The
key idea of the proof comes from the classical Riesz rearrangement inequality (see
e.g., [12], [14]). In particular, this inequality motivated the name for minimizers in
Definition 6.3. The simplest form of this inequality, which is sufficient for our purposes
is as follows.

Lemma 6.5. Riesz rearrangement inequality on a circle.
Consider two classes of even, bounded, and positive functions on [−1, 1]:

Ai = {f(x)|f(x) = f(−x), 0 ≤ f(x) ≤ 1,
∫ 1

0

f(x)dx = pi}, i = 1, 2.

Let χ1
pi

(x) ∈ Ai be the characteristic function of the set [−pi, pi] and χ2
pi

(x) ∈ Ai be
the characteristic function of the set [−1,−1 + pi] ∪ [1 − pi, 1]. Suppose K(x) is an
even positive locally integrable 2-periodic function on R that decreases on [0, 1]:
(6.7)

K(x) ≥ 0, K(x) = K(−x),
∫ 1

0

K(x)dx <∞, K(x+2) = K(x), and K(x1) > K(x2),
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if 0 < x1 < x2 ≤ 1. Then for any f(x) ∈ A1, g(x) ∈ A2

(6.8)

∫ 1

−1

∫ 1

−1

(f(x) − p1)(g(t) − p2)K(x− t)dxdt

≤
∫ 1

−1

∫ 1

−1

(χ1
p1

(x) − p1)(χ1
p2

(t) − p2)K(x− t)dxdt,

where the equality holds only in the following two cases

(6.9) (a) f(x) = χ1
p1

(x), g(x) = χ1
p2

(x), (b) f(x) = χ2
p1

(x), g(x) = χ2
p2

(x).

Moreover, for any δ > 0 there exists δ′ > 0 so that if min(e1, e2) ≥ δ′,

(6.10) e1 =
∫ 1

0

(|f − χ1
p1
| + |g − χ1

p2
|)dx, e2 =

∫ 1

0

(|f − χ2
p1
| + |g − χ2

p2
|)dx,

then

(6.11)

∫ 1

−1

∫ 1

−1

(f(x) − p1)(g(t) − p2)K(x− t)dxdt

≤
∫ 1

−1

∫ 1

−1

(χ1
p1

(x) − p1)(χ1
p2

(t) − p2)K(x− t)dxdt − δ.

We assumed in this lemma that the functions are bounded from above by one.
This assumption can be replaced by any positive number with obvious modifications of
the results. The proof of Lemma 6.5 follows from considerations similar to those found
in [1]. It basically says that among all possible functions 0 ≤ f(x) ≤ 1, 0 ≤ g(x) ≤ 1
on a circle [−1, 1] (where the endpoints x = ±1 are identified) the maximum of the
integral

(6.12)
∫ 1

−1

∫ 1

−1

(f(x) − p1)(g(t) − p2)dxdt, with
∫ 1

0

f(x)dx = p1,

∫ 1

0

g(x)dx = p2

is achieved on characteristic functions of the intervals of length 2p1 and 2p2. The
reason why the intervals centered at x = 0 and x = 1 is due to our assumption that
f(x) and g(x) are even. In order to explain how Lemma 6.5 must be modified and
applied for our case, we decompose

s(x) − 〈s〉 = sin2 αεα + sin2 βεβ , εα = (χαχ̃α − qα), εβ = (χβχ̃β − qβ),

where χα and χβ , χα + χβ = 1 are (random) characteristic functions of the angle
distributions θ = α and θ = β, respectively; χ̃α and χ̃β are the characteristic function
of the grains with θ = α and θ = β, respectively, for which I = 1.

The term (6.2) (the second term in (6.1)) equals

W̄ (U, εT) = sin4 α

∫ 1

−1

∫ 1

−1

εα(x)εα(t)K∞(x− t)dxdt

+ 2 sin2 α sin2 β

∫ 1

−1

∫ 1

−1

εα(x)εβ(t)K∞(x− t)dxdt

+ sin4 β

∫ 1

−1

∫ 1

−1

εβ(x)εβ(t)K∞(x− t)dxdt.

(6.13)



1570 LEONID BERLYAND, OSCAR BRUNO, AND ALEXEI NOVIKOV

p

1

0 x1

y

1−p

1

0 x1

y

Fig. 6.1. A sample of two random intervals χα(x)χ1
qα

(x) and χα(x)χ2
qα

(x), where p = qα/q.

Each of the three integral terms in (6.13) has the form described in the previous
Lemma 6.5, because by Lemma 3.1 the integral kernel K∞ = − ln | sin(πx/2)|, and
hence it satisfies all the conditions (6.7). As in Lemma 6.5 we need to maximize the
integral (6.13) by varying the characteristic functions χ̃α and χ̃β . The only difference
is the additional constraint that χα and χβ are random characteristic functions. This
additional constraint, loosely speaking, requires that the maximizers of (6.13) are
“random intervals” still centered at x = 0 or x = 1. More precisely, note that the
values of the characteristic functions χ̃α and χ̃β in (6.13) are important only where
χα = 1 and χβ = 1, respectively. Hence for a sequence of Bernoulli random variables
θi, i = 1, . . . , n we can define characteristic functions of random intervals of length
2qα on [−1, 1] centered at x = 0 and x = 1 as a product of two characteristic functions
χα(x)χ1

qα
(x) and χα(x)χ2

qα
(x), respectively, where

(6.14) χ1
qα

(x) =

{
1,− qα

q ≤ x ≤ qα

q ,

0, otherwise,
χ2

qα
(x) =

{
0,−1 + qα

q < x < 1 − qα

q ,

1, otherwise.

Similarly, functions χα(x)χ1
qα

(x) and χα(x)χ2
qα

(x) are random intervals of length 2qβ
centered at x = 0 and x = 1 where

(6.15) χ1
qβ

(x) =

{
1,− qβ

1−q ≤ x ≤ qβ

1−q ,

0, otherwise,
χ2

qβ
(x) =

{
0,−1 + qβ

1−q < x < 1 − qβ

1−q ,

1, otherwise.

For an illustration see Figure 6.1. The above discussion is made rigorous by the
following.

Lemma 6.6 (randomized Riesz rearrangement inequality for asymptotic energy
minimizers). Consider Bernoulli trials (4.3). Suppose χα and χβ, χα + χβ = 1
are (random) characteristic functions of the angle distributions θ = α and θ = β,
respectively. Let qα(θ) and qβ(θ) be random variables of θ with values

0 ≤ qα(θ) ≤ q, 0 ≤ qβ(θ) ≤ 1 − q.

Suppose K(x) satisfies (6.7). Then for every δ > 0 there exists δ′ > 0 so that if

(6.16) |qα(θ) − qα| < δ′, |qβ(θ) − qβ| < δ′
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for some fixed qα and qβ, then almost surely8 as n→ ∞ the maximizers of

max
χ̃α,χ̃β

∫ 1

−1

∫ 1

−1

(aεα(x) + bεβ(x))(aεα(t) + bεβ(t))K(x − t)dxdt,

εα = (χαχ̃α − qα(θ)), εβ = (χβχ̃β − qβ(θ)), a > 0, b > 0

χα(x) = χα(−x), χβ(x) = χβ(−x),
∫ 1

0

χαχ̃αdx = qα(θ),
∫ 1

0

χβχ̃βdx = qβ(θ)

(6.17)

satisfy

(6.18) min (e1, e2) < δ,

where
(6.19)

e1 =
∫ 1

0

(|χ̃α − χ1
qα
|χα + |χ̃β − χ1

qβ
|χβ)dx, e2 =

∫ 1

0

(|χ̃α − χ2
qα
|χα + |χ̃β − χ2

qβ
|χβ)dx,

χi
qα

and χi
qβ

, i = 1, 2 are defined in (6.14) and (6.15), respectively.
The proof of Lemma 6.6 is by contradiction to the law of large numbers and it is

provided in Appendix C.2. The next lemma shows the equivalence of Definitions 6.2
and 6.3 as n→ ∞.

Lemma 6.7. Consider the Bernoulli trials (4.3). For a given U , let qα and qβ
be defined as in Lemma 5.3 by (5.15) or (5.16). Then the probability measure μa

n of
the asymptotic energy minimizer of the misfit energy (6.1) (see Definition 6.2)) and
the probability measure μs

n of the Riesz symmetrically rearranged energy minimizer
(Definition 6.3) have the same weak limit μs. Moreover,

(6.20) lim
n→∞

e1 = 0, or lim
n→∞

e2 = 0 with equal probability 1/2,

where e1 and e2 are defined by (6.19) in Lemma 6.17 above.
Proof. By Lemmas 5.3 and 5.5, depending on U , the minimizer of the first term

in (6.1) satisfies (5.15) or (5.16) for almost every θ as n → ∞. Since the condition
(6.16) of the randomized Riesz rearrangement inequality is satisfied for any δ > 0, by
Lemma 6.17 for almost every θ,

lim
n→∞

min (e1, e2) = 0.

Hence {(si, Ii)}n
i=1 is either a left-rearranged or right-rearranged sequence almost

surely as n → ∞. For every n the measure μa
n must be symmetric with respect to

the to reflection about the point x = 1/2, i.e. with equal probability either e1 → 0 or
e2 → 0 as n → ∞. This proves (6.20). Clearly (6.20) implies that μa

n and the Riesz
symmetrically rearranged measure μs

n have the same weak limit as n→ ∞.

End of proof of Theorem 6.4. Again, by the symmetry of the problem with
respect to reflection about the point x = 1/2, μn also must be similarly symmetric. By
Lemma 6.1 the minimizer of (6.1) is an almost minimizer, i.e. for any δ > 0 there is L0

so that the condition (6.16) of the randomized Riesz rearrangement inequality holds.

8Here and in the sequel almost sure convergence is considered in the probability space (Ω,F , P )
set in the beginning of section 4.
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Hence it implies that for sufficiently large L0 the minimizing sequences {(si, Ii)}n
i=1

for any L > L0 are arbitrarily close to the Riesz symmetrically rearranged minimizing
sequences, namely either
(6.21)∫ 1

0

(|χ̃α −χ1
qα
|χα + |χ̃β −χ1

qβ
|χβ)dx < δ, or

∫ 1

0

(|χ̃α −χ2
qα
|χα + |χ̃β −χ2

qβ
|χβ)dx < δ,

with equal probability 1/2 as n → ∞. If L0 → ∞, then δ → 0, and this completes
the proof.

It follows from (6.21) that long/short-range correlations in the minimizing se-
quences {(si, Ii)}n

i=1 are determined by long/short-range correlations of the Riesz
symmetrically rearranged minimizing sequences. There is no short-range correlations
of the Riesz symmetrically rearranged minimizing sequences. Riesz rearranged mea-
sure is, however, correlated on the large-scale: For example, suppose qα = q and
qβ < 1 − q, then for the right-rearranged measure:

(6.22) (s, I) =

⎧⎪⎨⎪⎩
(sin2 α, 1), with probability q,
(sin2 β, 1), with probability 1 − q, if 1 − qβ/(1 − q) ≤ x ≤ 1,
(0, 0), with probability 1 − q, if 0 ≤ x < 1 − qβ/(1 − q),

and for the left-rearranged measure:

(6.23) (s, I) =

⎧⎪⎨⎪⎩
(sin2 α, 1), with probability q,
(sin2 β, 1), with probability 1 − q, if 0 ≤ x < qβ/(1 − q),
(0, 0), with probability 1 − q, if qβ/(1 − q) ≤ x ≤ 1.

The long-range correlation of transformation strains for the symmetrically rearranged
minimizer probability measure can be read off the formulas (6.22) and (6.23).

7. Statistics of asymptotic energy minimizers 3: Chain of short grains.

7.1. Basic definitions and ideas. In this section we will show how exponen-
tially decaying correlations arise when the scaling of the polycrystal is such that
L = l0/(2n), l0 � 1 (short grains). By estimate (3.16) the misfit energy for l0 � 1 is
given (up to higher order terms) by the nearest neighbor energy

(7.1) Wn(U, εT) = 〈(U − f + s)2〉 − λ0〈(s− 〈s〉)2〉 − Bl0
n

n∑
i=1

(si − 〈s〉)(si+1 − 〈s〉),

where B > 0, λ0 > 0. In this case, we show that for Bernoulli trials (4.3) exponentially
decaying correlations arise when n→ ∞, followed by l0 → 0.

Qualitatively, the misfit energy W 1
n(U, εT) has three terms which are analogous

to the case of thin long grains (6.1). The minimization of the first two terms,

(7.2) W 0
n(U, εT) = 〈(U − f + s)2〉 − λ0〈(s− 〈s〉)2〉

determines, as in Lemma 5.3, qα and qβ, the total amount of the grains that undergo
a stress-free transformation. The minimizers of (7.2) are, in general, not unique. The
third term provides a small correction to (7.2), and, as in section 6, plays a role of
regularization, that is it selects the unique minimizer of (7.2) that maximizes

(7.3) W̄n(U, εT) :=
1
n

n∑
i=1

(si − 〈s〉)(si+1 − 〈s〉).
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Analogous to Definition 6.2, the above considerations motivate the following
definition:

Definition 7.1. For a fixed sequence θi, i = 1, . . . , n, the asymptotic energy
minimizer of the nearest neighbor model (7.1) is the sequence (si, Ii), i = 1, . . . , n
such that it minimizes (7.2) and maximizes (7.3) among minimizers of (7.2).

Lemma 7.2. For the Bernoulli trials model (4.3) the minimizing sequence (si, Ii),
i = 1, . . . , n of the misfit energy W 0

n(U, εT) given by (7.2) satisfies

(7.4) s(θ) = sin2 θ,

and as n→ ∞,

qα(θ) → qα, qβ(θ) → qβ

almost surely. The values qα and qβ are determined as follows. For a given U the
total proportion of grains that undergoes a stress-free transformation f = f(U) is a
(deterministic) nondecreasing function of U . For a given f we have several cases:

• if f < 1 − q, then

(7.5) qα = 0, 0 ≤ qβ ≤ 1 − q,

χ(α) = 0, χ(β) = qβ/(1 − q),
• if f > 1 − q, then

(7.6) 0 ≤ qα ≤ q, qβ = 1 − q,

χ(β) = qα/q, χ(β) = 1.
There are values of α, β, and U for which 0 < qβ < 1 − q or 0 < qα < q.

The proof of this lemma is analogous to Lemma 5.3. Clearly, the function f(U)
in Lemma 7.2 is different from the one for the infinitely long grains in Lemma 5.3.
However, the characteristic property of the measure that it is determined by qα and qβ
with either (7.5) or (7.6) still holds. One of the consequences of the previous lemma is
that there are, again, some values qα and qβ that determine the proportion of grains
that undergo a stress-free transformation and they satisfy qα = 0 or qβ = 1 − q. This
is exactly the characteristic property that we need to be able to prove exponential
decay of correlations by applying the isoperimetric inequality (7.8) to the sequences
described in Definition 7.1. Following the logic in section 6, we obtain that asymptotic
energy minimizer of the nearest neighbor model (7.1) arises in the limit n → ∞,
followed by l0 → ∞. The proof of this statement is similar to the proof of the
analogous statement in case 2; see end of the proof of Theorem 6.4 in section 6.2.
Hence we only need to find a statistical characterization of maximizers of (7.3) for
fixed qα and qβ found from Lemma 7.2. This is given in Theorems 7.4 and 7.5 below.

7.2. Isoperimetric inequalities and characterization of maximizers of
(7.3). Here, it is convenient to characterize any point in the composite x ∈ [0, 1] as
a point that belongs to a (maximal) uninterrupted string of identical values of θ.

Definition 7.3. For a fixed θ = θ1, θ2, . . . , θn we say that a string

θm
α = θi+1, θi+2, . . . , θi+m, θ

m
α ⊂ θ

is a (maximal) uninterrupted string of θ = α of length m if all θi+j = α, i = 1, . . . ,m
and θi = θi+1+m = β. We say that x ∈ [0, 1] belongs to an uninterrupted string of
values α of length m if x ∈ θm

α . The notion x ∈ θm
β is defined analogously.
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Recall our notation

s(x) − 〈s〉 = sin2 αεα + sin2 βεβ ,

εα = (χαχ̃α − qα), εβ = (χβχ̃β − qβ),

where χα and χβ , χα + χβ = 1 are (random) characteristic functions of the angle
distributions θ = α and θ = β, respectively; χ̃α and χ̃β are the characteristic function
of the grains with θ = α and θ = β, respectively, for which I = 1.

By Lemma 7.2, we have two cases: Either qβ = 1− q, and then χ̃β ≡ 1, or qα = 0,
and then χ̃α ≡ 0. Let us study these two cases separately.

Suppose qα = 0. Let us look at maximization of

(7.7)
1
n

n∑
i=1

sisi+1, 〈s〉 = qβ sin2 β

only. Each of si (up to the constant sin2 β) is either 1 or 0; therefore the maximization
of the nearest neighbors term (7.7) can be understood as the minimization of the
boundary of a set with constant area:

(7.8) min
D∈A

∂D, A =
{
D|D = {x|si(x) 
= 0},

∫
D

dx = qβ

}
.

Then the usual isoperimetric inequality implies that the maximizer of (7.7) is
such that the grains with θi = β undergo a stress-free transformation, if they belong
to a “long” uninterrupted sequence θm

β of the grains with the same θ = β. If θi = β
belongs to a “short” uninterrupted sequence θm

β , then it does not undergo a stress-free
transformation. Hence there should be short-range correlations. The notion of short
and long sequences is relative to the value of the total number of grains that must
undergo a stress-free transformation. The above ideas are formulated more precisely
in the next theorem.

Theorem 7.4. Consider the Bernoulli trials (4.3). Denote by χ̃α and χ̃β the
characteristic function of the grains with θ = α and θ = β, respectively, for which
I = 1. Suppose U is such that the minimizer of the first term in (7.1) satisfies qα = 0.
Then in the limit n → ∞ the sequence (si, Ii), i = 1, 2, . . . , n, . . . is a stationary
process with exponentially decaying short-range correlations, long-range correlations
are zero, and χ̃α ≡ 1. Moreover, almost surely as n→ ∞ the minimizer of the nearest
neighbor model (7.1) satisfies

χ̃β(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ∈ θm

β , m > k,

0, if x ∈ θm
β , m < k,

1, with probability r, if x ∈ θk
β,

0, with probability 1 − r, if x ∈ θk
β,

where

(7.9) k = max(m) such that qβ < (1 − q)m,

and r is found from

(7.10) qβ = rq(1 − q)k − (1 − q)k+1.
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Proof. By the law of the large numbers, χ̃α = 0 and qβ(θ) → qβ almost surely;
therefore it is sufficient to study (7.7) or, equivalently, (7.8). By the isoperimetric
inequality for every θ the function χ̃β(x) must be such that if θm1

β , θm2

β , . . . θmt

β are
all the (maximal) uninterrupted sequences θmi

β ∈ θ of values β ordered so that the
indices are decreasing m1 ≥ m2 ≥ · · · ≥ mt, then there exists an i: 1 ≤ i ≤ t so that
χ̃(x) = 1, if x ∈ θ

mj

β , j ≤ i, and χ̃(x) = 0, if x ∈ θ
mj

β , j > i with the exception of at
most one j ≥ i.

By construction as n → ∞, the process (si, Ii), i = 1, . . . , n, . . . is stationary.
Since all θm

α , θm
β are geometrically distributed independent random variables [11], it

means explicitly that the probability of a string θm
β is given by

ρ∞(. . . θm
β . . . ) = q(1 − q)m−1.

Hence if the total proportion of grains that undergoes a stress-free transformation is
qβ , we must have, as n→ ∞

qβ = rq(1 − q)k +
∑

i=k+1

q(1 − q)i = rq(1 − q)k + (1 − q)k+1,

where, due to our assumption of equal probability (4.1), r is the probability that
χ̃(x) = 1, if x ∈ θk

β . Therefore k is found so that (1 − q)k+1 ≤ qβ < (1 − q)k, i.e.,
(7.9), and r is found from (7.10).

Since θm
α , θm

β are independent random variables, the limiting process has ex-
ponentially decaying short-range correlations. It implies simultaneously two results:
long-range correlations are zero, and short-range correlations decay exponentially with
k. These correlations are not zero and can be computed explicitly.

Suppose qβ = 1 − q. This case is slightly more technically complicated, but the
methods are the same as in the case qα = 0. The main new issue is that si may
now take three values, and, therefore, we have to account for three possible different
interfaces. Direct computations show that we have here three different situations,
depending on the relative value of α and β. If sin2 α > 2 sin2 β, then the maximizer
of (7.7) is such that χ̃α(x) = 1 if x belongs to the longest (maximal) uninterrupted
strings θm

α . If, however, sin2 α < 2 sin2 β, then χ̃α(x) = 1 if x belongs to to the shortest
uninterrupted strings θm

α . If sin2 α = 2 sin2 β, then there is no difference, and the only
statement that is possible to make here is that χ̃α(x) = χ̃α(y), if x and y belong to
the same uninterrupted string θm

α . Due to our assumption of equal probability (4.1),
it is possible to conclude that if sin2 α = 2 sin2 β, then there is no correlation at all,
therefore we will omit the discussion of this case. Combining these arguments with
the arguments in the proof of Theorem 7.4 we have the following result.

Theorem 7.5. Consider the Bernoulli trials (4.3). Denote by χ̃α and χ̃β the
characteristic function of the grains with θ = α and θ = β, respectively, for which
I = 1. Suppose U is such that the minimizer of the first term in (7.1) satisfies
qβ = 1 − q. Then in the limit n → ∞ the sequence (si, Ii), i = 1, 2, . . . , n, . . . is
a stationary process with exponentially decaying short-range correlations; long-range
correlations are zero, and χ̃β ≡ 1. Moreover, almost surely as n→ ∞, the minimizer
of the nearest neighbor model (7.1) satisfies: If sin2 α > 2 sin2 β, then

χ̃α(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ∈ θm

α , m > k,

0, if x ∈ θm
α , m < k,

1, with probability r, if x ∈ θk
α,

0, with probability 1 − r, if x ∈ θk
α,
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where k = max(m) such that qα < qm and r solves qα = r(1 − q)qk − qk+1; if
sin2 α < 2 sin2 β, then

χ̃α(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ∈ θm

α , m < k,

0, if x ∈ θm
α , m > k,

1, with probability r, if x ∈ θk
α,

0, with probability 1 − r, if x ∈ θk
α,

where k = max(m) such that q − qα < qm and r solves q − qα = r(1 − q)qk − qk+1.

Appendix A. Proofs for section 3.

A.1. Proof of formula (3.4). To obtain the representation (3.4) we begin by
decomposing u = (u1, u2) of the boundary value problem (2.11), (2.13), and (2.14)
in the form u = ũ + ū, where ũ solves (3.6). The constants ai, ci, d, fi, and gi are
chosen to satisfy the continuity of the displacement ũ and traction (condition (2.12))
and, denoting

σ̃ij = cijkl(ε̃kl − εTkl), ε̃11 = ∂1ũ1, ε̃12 = ε̃21 = (∂2ũ1 + ∂1ũ2)/2, ε̃22 = ∂2ũ2,

the boundary conditions

ũ1(0, y) = 0, ũ1(1, y) = U, ũ2(0, 0) = 0, σ̃12(x, y) = 0, for x = 0, 1.

The stresses are

σ̃i,11 = (λ+ 2G)(ai − εTi,11) + λ(d− εTi,22),

σ̃i,22 = (λ+ 2G)(d − εTi,22) + λ(ai − εTi,11),

σ̃i,12 = G(ci − 2εTi,12).

Hence [σ̃12] = 0, if ci = 2εTi,12. Similarly [σ̃i,11] = 0, if

ai = εTi,11 +
λ

λ+ 2G
εTi,22 + Const,

where the constant can be found from the condition that the displacement of the right
boundary is U :

Const = U − 〈εT11〉 −
λ

λ+ 2G
〈εT22〉.

Finally,〈
σ̃22〉 = 〈(λ + 2G)(d − εT22) + λ

(
λ

λ+ 2G
εT22 + U − 〈εT11〉 −

λ

λ+ 2G
〈εT22〉

)〉
= (λ+ 2G)(d− 〈εT22〉) + λ(U − 〈εT11〉).

Setting 〈σ̃22〉 = 0 we have

d = 〈εT22〉 −
λ

λ+ 2G
(U − 〈εT11〉).

The values of fi and gi in (3.6) are unimportant for our analysis, and we omit them.
We have

(A.1) σ̃11 = Ec(U − 〈εT11〉), σ̃i,22 = Ec(〈εT22〉 − εTi,22), σ̃12 = 0,
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where the Young’s modulus Ec is given by (2.16). The elastic misfit energy associated
with ũ is

1
Ec

1
4L

∫ L

−L

∫ 1

−1

[ 1
Ec

((σ̃11)2 + (σ̃22)2) − 2
λ

4G(λ + G)
σ̃11σ̃22 +

1
2G

(σ̃12)2
]
dxdy.

Since σ̃12 ≡ 0, σ̃11 = const, and σ̃22 is mean-zero, the above equation becomes

1
E2

c

1
4L

∫ L

−L

∫ 1

−1

(
(σ̃11)2 + (σ̃22)2

)
dxdy = 〈

(
U − f + εT22

)2〉 = 〈(U − f + s)2〉,

which is the first term in (3.4).
Let us now find ū. It solves (3.7) on a bounded domain ΠL. A useful periodic

setting for (3.7) is obtained by assuming this equation is posed on an infinite strip
] −∞,∞[×[−L,L] with data that is even and periodic in x:

(a) θ(−x) = θ(x), θ(x+ 2) = θ(x),(A.2)
(b) εT(x, y) = εT(−x, y), εT(x + 2, y) = εT(x, y).

Thus, ū equals to the restriction of the solution of (3.7) on an infinite strip x ∈
]−∞,∞[, y ∈ [−L,L] with periodicity conditions defined by (A.2). Since σ̄22(x,±L)
is a periodic, mean-zero, even function, it can be represented as a cosine Fourier
series. The solution on the infinite strip with a sinusoidal symmetric stress cos(kπx)
at y = ±L can be computed explicitly for any k by the Airy function method. Namely,
since we are given that σ̄22(x,±L) is a periodic, mean-zero, even function, it can be
represented as

σ̄22(x,±L) = Ec

∞∑
k=1

ck cos(kπx), Ec =
4G(λ+ G)
λ+ 2G

,

where ck are the corresponding Fourier coefficients of εT(x). The solution for the
infinite strip with a sinusoidal symmetric stress cos(kπx) at y = ±L is given (see [19])
by the Airy function

Φk(x, y)

= 2
cos(kπx)

(kπ)2
kπy sinh(kπL) sinh(kπy) − [kπL cosh(kπL) + sinh(kπL)] cosh(kπy)

2kπL+ sinh(2kπL)
.

This Airy function gives rise to the following stresses

σ̄k
11 =

∂2Φk

∂y2
= dk

11 cos(kπx), σ̄k
12 = −∂

2Φk

∂x∂y

= dk
12 sin(kπx), σ̄k

22 =
∂2Φk

∂x2
= dk

22 cos(kπx),

where

dk
11 = 2

kπy sinh(kπL) sinh(kπy) − [kπL cosh(kπL) − sinh(kπL)] cosh(kπy)
2kπL+ sinh(2kπL)

,

dk
12 = 2

kπy sinh(kπL) cosh(kπy) − kπL cosh(kπL) sinh(kπy)
2kπL+ sinh(2kπL)

,

dk
22 = 2

−kπy sinh(kπL) sinh(kπy) + [kπL cosh(kπL) + sinh(kπL)] cosh(kπy)
2kπL+ sinh(2kπL)

.

(A.3)
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Therefore the total stresses are

σ11 = Ec(U − 〈εT11〉) + Ec

∞∑
k=1

ckd
k
11 cos(kπx),

σ12 = Ec

∞∑
k=1

ckd
k
12 sin(kπx), σ22 = Ec

∞∑
k=1

ck(dk
22 − 1) cos(kπx),

where in the last equation we have dk
22 − 1 instead of dk

22, because (see (A.1))

σ̃22 = −Ec

∞∑
k=1

ck cos(kπx).

By definition

W =
1
Ec

1
4L

∫ L

−L

∫ 1

−1

[ 1
Ec

((σ11)2 + (σ22)2) − 2
λ

4G(λ+ G)
σ11σ22 +

1
2G

(σ12)2
]
dxdy.

Since
∫ 1

−1 cos(kπx) cos(mπx)dx = δkm

W (U, εT) = 〈(U − f + εT22)2〉 +
∞∑

m=1

c2mK̂L(m),

where

(A.4) K̂L(m) =
1

4L

∫ L

−L

[
(dm

11)2+dm
22(dm

22−2)− 2λdm
11(dm

22 − 1)
λ+ 2G

+
2(λ+ G)(dm

12)2

λ+ 2G

]
dy.

Denoting a = 2πmL and using MathematicaR© we obtain an explicit form of (A.4):

(A.5) K̂L(m) =
5λ+ 9G

2(λ+ 2G)
S1(a) − λ+ G

λ+ 2G
S2(a), a = 2πmL, where

(A.6) S1(a) =
(cosh(a) − 1)
a(a+ sinh(a))

, S2(a) =
a2(2 + cosh(a))
6(a+ sinh(a))2

.

A.2. Proof of Lemma 3.1. Using (A.5) and (A.6) from Appendix A.1, direct
computations show that the Fourier coefficients of KL(x) (3.5) are given by

(A.7) K̂L(m) =
B

L

1
m

+O(exp(−L)),

so that, defining

(A.8) K∞(x) =
∞∑

m=1

1
m

cos(πmx),
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(3.8) is satisfied. A closed form expression for this sum is known: K∞(x) =
− ln | sin(πx/2)| (see, e.g., [10]), and the Lemma follows.

A.3. Proof of Lemma 3.2. Set L = l0/(2n), then for a defined in (A.5) we
obtain a = 2πmL = l0πm/n. Substitute (A.6) into (A.5) and observe that the Fourier
coefficients K̂L(m) depend on the variable a = l0πm/n. Thus we can introduce the
notation

K̂(a) := K̂L(m), a = l0π
m

n
.

In other words the Fourier series of KL(x) can be written in the form

KL(x) =
∞∑

m=−∞
K̂
(
l0π

m

n

)
cos(πmx).

For y = nx, y ∈ [−n, n] let

K(n)(y) :=
1
n
KL(y/n) =

1
n

∞∑
m=−∞

K̂
(
l0π

m

n

)
cos
(
π
m

n
y
)
,

and K(n)(y) = 0 for |y| ≥ n. Set

Kl0(y) =
1

2π

∫ ∞

−∞
K̂ (l0ζ) cos(ζy)dζ, y ∈ R.

Note that

K̂ (l0ζ) =
∫ ∞

−∞
Kl0(y) cos (ζy) dy,

provided Kl0(y) is smooth and it decays sufficiently fast as y → ∞. The function
Kl0(y) is exactly the limiting function mentioned in Lemma 3.2; that is, K(n)(y) =
KL(y/n)/n converges to Kl0(y) as n → ∞. Let us first verify properties of Kl0 de-
scribed in Lemma 3.2 and then establish convergence. Direct calculations using (A.5)
show that K̂(a) > 0 for all physical choices of the Lamé constants, so that, by
Bochner’s theorem [18, Vol. 1], Kl0 is positive-definite. We verify (3.10) by applying
the Paley–Wiener type Theorems [18, Vol. 1]. Indeed, from (A.6) it follows that the
Fourier transform of Kl0 can be analytically extended into a finite strip |Im(a)| ≤ c2
around the real axis provided there is no solution of the equation a + sinh(a) = 0,
a 
= 0, or, equivalently

(A.9) Re(a) = − sinh(Re(a)) cos(Im(a)), Im(a) = − cosh(Re(a)) sin(Im(a)), a 
= 0.

There is no solution of the last equation in (A.9) at least in the strip |Im(a)| ≤ π. This
implies the exponential decay (3.10) of Kl0(y) by Paley–Wiener theorems. Finally,
for every n consider the 2n-periodization of Kl0(y):

K(n)
l0

(y) =
+∞∑

k=−∞
Kl0(y + 2nk).
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Since Kl0(y) decays exponentially as y → ∞, we have that K(n)
l0

(y) is a smooth 2n
periodic function and its Fourier coefficients

K̂(n)
l0

(m) =
1
n

∫ n

−n

K(n)
l0

(y) cos
(
π
m

n
y
)
dy

=
1
n

∫ n

−n

(
+∞∑

k=−∞
Kl0(y + 2nk)

)
cos
(
π
m

n
y
)
dy

=
1
n

∫ ∞

−∞
Kl0(y) cos

(
π
m

n
y
)
dy =

1
n
K̂
(
l0π

m

n

)
=

1
n
K̂L(m).

Thus K(n)
l0

(y) = KL(y/n)/n = K(n)(y) on [−n, n]. Therefore

||KL(x) − nKl0(nx)||L∞([−1,1]) = n||K(n)(y) −Kl0(y)||L∞([−n,n])

= n||K(n)
l0

(y) −Kl0(y)||L∞([−n,n])

= n

∥∥∥∥∥∥
∑
k �=0

Kl0(y + 2nk)

∥∥∥∥∥∥
L∞([−n,n])

≤ Cn

∞∑
k=1

e−ckn

≤ Cne−cn → 0,

as n→ ∞, and C = C(l0) > 0 is independent of n.

A.4. Proof of Proposition 3.3. For any U and εT we can estimate the error
of the truncation (3.14) as

|Wn(U, εT) −W k0
n (U, εT)| ≤ c

∑
k>k0

|λk(n)|〈(s− 〈s〉)2〉

≤ c exp(−k0)〈(s− 〈s〉)2〉 ≤ c exp(−k0).

Since

W k0
n (U, εT

k0
) = min

ε̃T∈Ω̃n(θ)

W k0
n (U, ε̃T),

we have

Wn(U, εT) ≤ min
ε̃T∈Ω̃n(θ)

Wn(U, ε̃T) + c exp(−k0) = Wn(U,θ) + c exp(−k0).

By definition of the minimizer Wn(U,θ) ≤Wn(U, εT). This implies (3.15).

Appendix B. Proofs for section 5.

B.1. Verification of (5.11). For a given product measure μ̃ we have∫
I1I2dμ̃ =

(∫
I1dμ̃

)2

,

∫
s1I2dμ̃ =

(∫
s1dμ̃

)(∫
I1dμ̃

)
,

because the events in the first and the second grains are independent and identically
distributed. Hence∫

I1I2dμ̃ =

(∫ π/4

0

χ(θ)dρ(θ)

)2

= f2,

∫
(U + s1)I2dμ̃ = f

(∫ π/4

0

(U + s(θ))χ(θ)dρ(θ) + (1 − f)U

)
.
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It gives∫
F (U, s1, I1, I2)dμ̃

=
∫ (

(U + s1)2 − 2(U + s1)I2 + I1I2
)
dμ̃

=
∫ π/4

0

(U + s(θ))2χ(θ)dρ(θ) + (1 − f)U2

− 2f

(∫ π/4

0

(U + s(θ))χ(θ)dρ(θ) + (1 − f)U

)
+ f2

=
∫ π/4

0

(
(U + s(θ) − f)2 − f2

)
χ(θ)dρ(θ) + (1 − f)(U2 − 2Uf) + f2

=
∫ π/4

0

(U + s(θ) − f)2χ(θ)dρ(θ) + (U − f)2(1 − f),

where the last equality is obtained by noting the following identity:

f2 = f2(1 − f) +
∫ π/4

0

f2χ(θ)dρ(θ).

B.2. Proof of Lemma 5.3. The proof is the direct evaluation and comparison
of all possible scenarios in (5.12). Using (5.12), we simply consider four functions of
U , q, qα, and qβ :

W1 = (U − qα − qβ + cos2 α)2qα

+ (U − qα − qβ + cos2 β)2qβ + (U − qα − qβ)2(1 − qα − qβ),

W2 = (U − qα − qβ + cos2 α)2qα

+ (U − qα − qβ + sin2 β)2qβ + (U − qα − qβ)2(1 − qα − qβ),

W3 = (U − qα − qβ + sin2 α)2qα

+ (U − qα − qβ + cos2 β)2qβ + (U − qα + qβ)2(1 − qα − qβ),

W4 = (U − qα − qβ + sin2 α)2qα

+ (U − qα − qβ + sin2 β)2qβ + (U − qα − qβ)2(1 − qα − qβ),

and compare their values for each fixed U and q, where qα and qβ are in the range
(5.13). It is easy to check that the minimum is always achieved for W4; hence equation
(5.14) is satisfied.
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Appendix C. Proofs for section 6.

C.1. Proof of Lemma 6.4. Since the Fourier coefficients of a convolution equal
the products of the Fourier coefficients, and since from (A.8) we know the Fourier
coefficients of K∞ are ≤ 1 in absolute value, and in view of Plancherel’s theorem, we
have ∫ 1

−1

∫ 1

−1

(s(x) − 〈s〉)(s(t) − 〈s〉)K∞(x − t)dxdt ≤
∫ 1

−1

(s(x) − 〈s〉)2dx,

and |s(x)| ≤ 1, for any δ > 0, there exists L0 > 0, so that for any L ≥ L0∣∣∣∣BL W̄n(U, εT)
∣∣∣∣ ≤ δ.

Hence for any s = εT22

〈(U − f + s)2〉 < Wn(U, εT) ≤ 〈(U − f + s)2〉 + δ.

It follows that

min
s,f

〈(U − f + s)2〉 < min
s,f

Wn(U, εT) ≤ min
s,f

〈(U − f + s)2〉 + δ

for any sequence of angles θ. Applying Lemma 5.5 we complete the proof of (6.5).
Equality (6.4) follows from direct computations as in Lemma 5.3.

C.2. Proof of Lemma 6.6. Suppose (6.18) and (6.19) do not hold. It means
that there exists δ > 0 such that for every δ′ > 0 there is a sequence of sets Ank

∈ σθ
nk

,
{nk} → ∞ with probability ρnk

(Ank
) > 2C > 0 such that for every fixed θ ∈ Ank

(or, equivalently, (χα, χβ) ∈ Ank
) there is a (at least one) maximizer χ̃α, χ̃β of (6.17)

such that

(C.1) min (e1, e2) > δ,

where

(C.2)

e1 =
∫ 1

0

(|χ̃α − χ1
qα
|χα + |χ̃β − χ1

qβ
|χβ)dx, e2 =

∫ 1

0

(|χ̃α − χ2
qα
|χα + |χ̃β − χ2

qβ
|χβ)dx;

χi
qα

and χi
qβ

are defined in (6.14) and (6.15), respectively. Since K(x) ∈ L1[−1, 1]
is fixed and χ̃αχα, χ̃βχβ are uniformly bounded in L∞[−1, 1], for any δ1 > 0 there
exists h > 0 so that∣∣∣∣∫ 1

−1

∫ 1

−1

εα(x)εα(t)K(x− y)dxdt−
∫ 1

−1

∫ 1

−1

ε̄α(x)ε̄α(t)K(x − y)|dxdt
∣∣∣∣ < δ1,∣∣∣∣∫ 1

−1

∫ 1

−1

εα(x)εβ(t)K(x− y)|dxdt −
∫ 1

−1

∫ 1

−1

ε̄α(x)ε̄β(t)K(x − y)|dxdt
∣∣∣∣ < δ1,∣∣∣∣∫ 1

−1

∫ 1

−1

εβ(x)εβ(t)K(x− y)|dxdt−
∫ 1

−1

∫ 1

−1

ε̄β(x)ε̄β(t)K(x − y)|dxdt
∣∣∣∣ < δ1,

(C.3)

where

ε̄α(x) =
1

2h

∫ h

−h

ε̄α(x+ t)dt, ε̄β(x) =
1

2h

∫ h

−h

ε̄β(x + t)dt.
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By the law of the large numbers, for any δ2 > 0 there is Ānk
∈ Ank

, ρnk
(Ank

) > C so
that for every θ ∈ Ānk

(or, equivalently, (χnk
α , χnk

β ) ∈ Ānk
) and nk > N0, we have

ε̄α(x) = qχα(x,θ) − qα(θ), ε̄β(x) = (1 − q)χβ(x,θ) − qα(θ),

where (random in θ ∈ Ānk
) functions χα(x,θ), χβ(x,θ) satisfy

0 ≤ χα(x,θ) ≤ 1 + δ2, 0 ≤ χβ(x,θ) ≤ 1 + δ2,

and min (e1, e2) > δ − δ2 where

e1 =
∫ 1

0

(|χα(x,θ) − χ1
qα
| + |χβ(x,θ) − χ1

qβ
|)dx, e2

=
∫ 1

0

(|χα(x,θ) − χ2
qα
| + |χβ(x,θ) − χ2

qβ
|)dx.

The classical Riesz rearrangement inequality (6.11) implies that when δ1 and δ2 are
sufficiently small, there is δ′ > 0 so that for every θ ∈ Ānk∫ 1

−1

∫ 1

−1

(aεα(x) + bεβ(x))(aεα(t) + bεβ(t))K(x − t)dxdt

≤
∫ 1

−1

∫ 1

−1

(aε1α(x) + bε1β(x))(aε1α(t) + bε1β(t))K(x− t)dxdt− δ′,

where

ε1α(x) = χ1
qα
χα, ε

1
α(x) = χ1

qβ
χβ .

Hence we have that χ̃α and χ̃β with (C.1) and (C.2) cannot be maximizers of (6.17).
This leads to contradiction with our assumption that (6.18) and (6.19) do not hold.
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THE PERIODIC UNFOLDING METHOD IN HOMOGENIZATION∗

D. CIORANESCU† , A. DAMLAMIAN‡, AND G. GRISO§

Abstract. The periodic unfolding method was introduced in 2002 in [Cioranescu, Damlamian,
and Griso, C.R. Acad. Sci. Paris, Ser. 1, 335 (2002), pp. 99–104] (with the basic proofs in [Pro-
ceedings of the Narvik Conference 2004, GAKUTO Internat. Ser. Math. Sci. Appl. 24, Gakkōtosho,
Tokyo, 2006, pp. 119–136]). In the present paper we go into all the details of the method and include
complete proofs, as well as several new extensions and developments. This approach is based on
two distinct ideas, each leading to a new ingredient. The first idea is the change of scale, which is
embodied in the unfolding operator. At the expense of doubling the dimension, this allows one to
use standard weak or strong convergence theorems in Lp spaces instead of more complicated tools
(such as two-scale convergence, which is shown to be merely the weak convergence of the unfolding;
cf. Remark 2.15). The second idea is the separation of scales, which is implemented as a macro-micro
decomposition of functions and is especially suited for the weakly convergent sequences of Sobolev
spaces. In the framework of this method, the proofs of most periodic homogenization results are
elementary. The unfolding is particularly well-suited for multiscale problems (a simple backward
iteration argument suffices) and for precise corrector results without extra regularity on the data.
A list of the papers where these ideas appeared, at least in some preliminary form, is given with
a discussion of their content. We also give a list of papers published since the publication [Cio-
ranescu, Damlamian, and Griso, C.R. Acad. Sci. Paris, Ser. 1, 335 (2002), pp. 99–104], and where
the unfolding method has been successfully applied.

Key words. homogenization, periodic unfolding, multiscale problems
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1. Introduction. The notion of two-scale convergence was introduced in 1989
by Nguetseng in [58], further developed by Allaire in [1] and by Lukkassen, Nguetseng,
and Wall in [55] with applications to periodic homogenization. It was generalized to
some multiscale problems by Ene and Saint Jean Paulin in [38], Allaire and Briane in
[2], Lions et al. in [52] and Lukkassen, Nguetseng, and Wall in [55].

In 1990, Arbogast, Douglas, and Hornung defined a “dilation” operator in [5] to
study homogenization for a periodic medium with double porosity. This technique
was used again in [16], [3], [4], [48], [49], [50], [51], [54], [20], [21], [22], and [23].

In [24], we expanded on this idea and presented a general and quite simple ap-
proach for classical or multiscale periodic homogenization, under the name of “un-
folding method.” Originally restricted to the case of domains consisting of a union
of ε-cells, it was extended to general domains (see the survey of Damlamian [34]). In
the present work, we give a complete presentation of this method, including all of the
proofs, as well as several new extensions and developments. The relationship of the
papers listed above with our work is discussed at the end of this introduction.

The periodic unfolding method is essentially based on two ingredients. The first
one is the unfolding operator Tε (similar to the dilation operator), defined in section 2,
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where its properties are investigated. Let Ω be a bounded open set, and Y a reference
cell in R

n. By definition, the operator Tε associates to any function v in Lp(Ω), a
function Tε(v) in Lp(Ω × Y ). An immediate (and interesting) property of Tε is that
it enables one to transform any integral over Ω in an integral over Ω× Y . Indeed, by
Proposition 2.6 below

(1.1)
∫

Ω

w(x) dx ∼ 1
|Y |

∫
Ω×Y

Tε(w)(x, y) dx dy ∀w ∈ L1(Ω).

Proposition 2.14 shows that the two-scale convergence in the Lp(Ω)-sense of a
sequence of functions {vε} is equivalent to the weak convergence of the sequence of
unfolded functions {Tε(vε)} in Lp(Ω × Y ). Thus, the two-scale convergence in Ω
is reduced to a mere weak convergence in Lp(Ω × Y ), which conceptually simplifies
proofs.

In section 2 are also introduced a local average operator Mε and an averaging
operator Uε, the latter being, in some sense, the inverse of the unfolding operator Tε.

The second ingredient of the periodic unfolding method consists of separating
the characteristic scales by decomposing every function ϕ belonging to W 1,p(Ω) in
two parts. In section 3 it is achieved by using the local average. In section 4, the
original proof of this scale-splitting, inspired by the finite element method (FEM), is
given. The confrontation of the two methods of sections 3 and 4 is interesting in itself
(Theorem 3.5 and Proposition 4.8). In both approaches, ϕ is written as ϕ = ϕε

1 +εϕε
2,

where ϕε
1 is a macroscopic part designed not to capture the oscillations of order ε (if

there are any), while the microscopic part ϕε
2 is designed to do so. The main result

states that, from any bounded sequence {wε} in W 1,p(Ω), weakly convergent to some
w, one can always extract a subsequence (still denoted {wε}) such that wε = wε

1+εwε
2,

with

(1.2)

(i) wε
1 ⇀ w weakly in W 1,p(Ω),

(ii) Tε(wε) ⇀ w weakly in Lp(Ω;W 1,p(Y )),

(iii) Tε(wε
2) ⇀ ŵ weakly in Lp(Ω;W 1,p(Y )),

(iv) Tε(∇wε) ⇀ ∇w + ∇yŵ weakly in Lp(Ω × Y ),

where ŵ belongs to Lp(Ω;W 1,p
per(Y )).

In section 5 we apply the periodic unfolding method to a classical periodic homog-
enization problem. We point out that, in the framework of this method, the proof of
the homogenization result is elementary. It relies essentially on formula (1.1), on the
properties of Tε, and on convergences (1.2). It applies directly for both homogeneous
Dirichlet or Neumann boundary conditions without hypothesis on the regularity of
∂Ω. For nonhomogenous boundary conditions (or for Robin-type condition), some
regularity of ∂Ω is required for the problem to make sense, in which case the method
applies also directly (see Remark 5.12).

Section 6 is devoted to a corrector result, which holds without any additional
regularity on the data (contrary to all previous proofs; see [11], [30], and [59]). This
result follows from the use of the averaging operator Uε. The idea of using averages
to improve corrector results first appeared in Dal Maso and Defranceschi [33]. We
also give some error estimates and a new corrector result for the case of domains with
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a smooth boundary (obtained by Griso in [42], [43], [44], and [45]). These results are
explicitely connected to the unfolding method and improve on known classical ones
(see [11] and [59]).

The periodic unfolding method is particularly well-suited for the case of multiscale
problems. This is shown in section 7 by a simple backward iteration argument. This
problem has a long history; one of the first papers on the subject is due to Bruggeman
[19]. Its mathematical treatment by homogenization goes back to the book of Bensous-
san, Lions, and Papanicolaou [11], where for this problem, the method of asymptotic
expansions is used. For more recent references of multiscale homogenization and its
applications, we refer to the books of Braides and Defranceschi [17], Milton [57], and
the articles by Damlamian and Donato [35], Lukkassen and Milton [54], Lukkassen
[53], Braides and Lukkassen [18], Babadjian and Báıa [6], and Barchiesi [8].

The final section gives a list of papers where the method has been successfully
applied since the publication of [24].

To conclude, let us turn back to the papers quoted at the beginning of this
introduction and point out their relationships with our results. The dilation operation
from Arbogast, Douglas, and Hornung [5] was defined in a domain which is an exact
union of εY -cells. It consists in a change of variables, similar to that used in Definition
2.1 below. By this operation, any integral on Ω can be written as an integral over
Ω×Y . Some elementary properties of the dilation operator in the space L2 were also
contained in Lemma 2 of [5].

The same dilation operator was used by Bourgeat, Luckhaus, and Mikelic in [16]
under the name of “periodic modulation.” Proposition 4.6 of [16] showed that if a
sequence two-scale converges and its periodic modulation converges weakly, they have
the same limit.

In the context of two-scale convergence, Allaire and Conca [3] defined a pair
of extension and projection operators (suited to Bloch decompositions) which are
adjoint of each other. They are similar to our operators Tε and Uε and the equiv-
alent of property (2.12) and Proposition 2.18(ii) below, are proved in Lemma 4.2
of [3]. These properties were exploited by Allaire, Conca, and Vanninathan in [4]
for a general bounded domain by extending all functions by zero on its comple-
ment.

In [48], Lenczner used the dilation operator (here called “two-scale transforma-
tion”) in order to treat the homogenization of discrete electrical networks (by nature,
the domain is a union of ε-cells). The convergence of the two-scale transform is
called two-scale convergence (this would be confusing except that it was shown to be
equivalent to the original two-scale convergence). As an aside, a convergence similar
to (1.2)(iv) was also treated. In Lenczner and Mercier [49], Lenczner and Senouci-
Bereksi [50], and Lenczner, Kader, and Perrier [51], this theory was applied to periodic
electrical networks.

Finally, Casado Dı́az and Luna-Laynez [21], Casado Dı́az, Luna-Laynez, and Mar-
tin [22] and [23] used the dilation operator in the case of reticulated structures. In
this framework, they obtained the equivalent of (3.7)(i) of Theorem 3.5 below.

2. Unfolding in Lp-spaces.

2.1. The unfolding operator Tε. In R
n, let Ω be an open set and Y a reference

cell (e.g., ]0, 1[n, or more generally, a set having the paving property, with respect to
a basis (b1, . . . , bn) defining the periods).

By analogy with the notation in the one-dimensional case, for z ∈ R
n, [z]Y denotes

the unique integer combination
∑n

j=1 kjbj of the periods such that z − [z]Y belongs
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Fig. 1. Definition of [z]Y and {z}Y .

to Y , and set

{z}Y = z − [z]Y ∈ Y a.e. for z ∈ R
n.

Then for each x ∈ R
n, one has

x = ε
([x
ε

]
Y

+
{x
ε

}
Y

)
a.e. for x ∈ R

n (See Figure 1).

We use the following notations:

(2.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ξε =
{
ξ ∈ Z

N , ε(ξ + Y ) ⊂ Ω
}
,

Ω̂ε = interior

{ ⋃
ξ∈Ξε

ε
(
ξ + Y

)}
,

Λε = Ω \ Ω̂ε.

The set Ω̂ε is the largest union of ε(ξ + Y ) cells (ξ ∈ Z
n) included in Ω, while Λε is

the subset of Ω containing the parts from ε
(
ξ+Y

)
cells intersecting the boundary ∂Ω

(see Figure 2).
Definition 2.1. For φ Lebesgue-measurable on Ω, the unfolding operator Tε is

defined as follows:

Tε(φ)(x, y) =

⎧⎨⎩φ
(
ε
[x
ε

]
Y

+ εy
)

a.e. for (x, y) ∈ Ω̂ε × Y,

0 a.e. for (x, y) ∈ Λε × Y.

Observe that the function Tε(φ) is Lebesgue-measurable on Ω × Y and vanishes
for x outside of the set Ω̂ε.

As in classical periodic homogenization, two different scales appear in the defi-
nition of Tε: the “macroscopic” scale x gives the position of a point in the domain
Ω, while the “microscopic” scale y (= x/ε) gives the position of a point in the cell
Y . The unfolding operator doubles the dimension of the space and puts all of the
oscillations in the second variable, in this way separating the two scales (see Figures 3,
4 and Figures 5, 6).

The following property of Tε is a simple consequence of Definition 2.1 for v and
w Lebesgue-measurable; it will be used extensively:

(2.2) Tε(vw) = Tε(v) Tε(w).
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Fig. 2. The domains Ω̂ε and Λε.

Fig. 3. fε(x) = 1
4

sin(2π x
ε

) + x; ε = 1
6
.

Fig. 4. Tε(fε).
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Fig. 5. fε = f({x
ε
}Y ).

Fig. 6. Tε(fε).

Another simple consequence of Definition 2.1 is the following result concerning highly
oscillating functions.

Proposition 2.2. For f measurable on Y , extended by Y -periodicity to the whole
of R

n, define the sequence {fε} by

(2.3) fε(x) = f
(x
ε

)
a.e. for x ∈ R

n.

Then

Tε(fε|Ω)(x, y) =

{
f(y) a.e. for (x, y) ∈ Ω̂ε × Y,

0 a.e. for (x, y) ∈ Λε × Y.

If f belongs to Lp(Y ), p ∈ [1,+∞[, and if Ω is bounded,

(2.4) Tε(fε|Ω) → f strongly in Lp(Ω × Y ).

Remark 2.3. An equivalent way to define fε in (2.3) is to take simply fε(x) =
f({x

ε }Y ). For example, with

f(y) =

{
1 for y ∈

(
0, 1/2

)
,

2 for y ∈
(

1/2, 1
)
,

fε is the highly oscillating periodic function, with period ε from Figure 5.
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Remark 2.4. Let f in Lp(Y ), p ∈ [1,+∞[, and fε be defined by (2.3). It is
well-known that {fε|Ω} converges weakly in Lp(Ω) to the mean value of f on Y , and
not strongly unless f is a constant (see Remark 2.11 below).

The next two results, essential in the study of the properties of the unfolding
operator, are also straightforward from Definition 2.1.

Proposition 2.5. For p ∈ [1,+∞[, the operator Tε is linear and continuous
from Lp(Ω) to Lp(Ω × Y ). For every φ in L1(Ω) and w in Lp(Ω),

(i)
1
|Y |

∫
Ω×Y

Tε(φ)(x, y) dx dy =
∫

Ω

φ(x) dx−
∫

Λε

φ(x) dx =
∫

Ω̂ε

φ(x) dx,

(ii)
1
|Y |

∫
Ω×Y

|Tε(φ)| dxdy ≤
∫

Ω

|φ| dx,

(iii)
∣∣∣∣∫

Ω

φdx − 1
|Y |

∫
Ω×Y

Tε(φ) dxdy
∣∣∣∣ ≤ ∫

Λε

|φ| dx,

(iv) ‖Tε(w)‖Lp(Ω×Y ) = | Y |
1
p ‖w 1Ω̂ε

‖Lp(Ω) ≤ | Y |
1
p ‖w‖Lp(Ω).

Proof. Recalling Definition 2.2 of Ω̂ε, one has

1
|Y |

∫
Ω×Y

Tε(φ)(x, y) dx dy =
1
|Y |

∫
Ω̂ε×Y

Tε(φ)(x, y) dx dy

=
1
|Y |

∑
ξ∈Ξε

∫
(εξ+εY )×Y

Tε(φ)(x, y) dx dy.

On each (εξ+εY )×Y , by definition, Tε(φ)(x, y) = φ(εξ+εy) is constant in x. Hence,
each integral in the sum on the right-hand side successively equals∫

(εξ+εY )×Y

Tε(φ)(x, y) dx dy = |εξ + εY |
∫

Y

φ(εξ + εy) dy

= εn|Y |
∫

Y

φ(εξ + εy) dy = |Y |
∫

(εξ+εY )

φ(x) dx.

By summing over Ξε, the right-hand side becomes
∫
Ω̂ε
φ(x) dx, which gives the

result.
Property (iii) in Proposition 2.5 shows that any integral of a function on Ω is

“almost equivalent” to the integral of its unfolded on Ω× Y ; the “integration defect”
arises only from the cells intersecting the boundary ∂Ω and is controlled by its integral
over Λε.

The next proposition, which we call unfolding criterion for integrals (u.c.i.),
is a very useful tool when treating homogenization problems.

Proposition 2.6 (u.c.i.). If {φε} is a sequence in L1(Ω) satisfying∫
Λε

|φε| dx→ 0,

then ∫
Ω

φε dx− 1
|Y |

∫
Ω×Y

Tε(φε) dxdy → 0.

Based on this result, we introduce the following notation.
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Notation. If {wε} is a sequence satisfying u.c.i., we write∫
Ω

wεdx
Tε� 1

|Y |

∫
Ω×Y

Tε(wε) dxdy.

Proposition 2.7. Let {uε} be a bounded sequence in Lp(Ω), with p ∈]1,+∞]
and v ∈ Lp′

(Ω) (1/p+ 1/p′ = 1), then

(2.5)
∫

Ω

uεv dx
Tε� 1

|Y |

∫
Ω×Y

Tε(uε)Tε(v) dxdy.

Suppose ∂Ω is bounded. Let {uε} be a bounded sequence in Lp(Ω) and {vε} a bounded
sequence in Lq(Ω), with 1/p+ 1/q < 1, then

(2.6)
∫

Ω

uεvεdx
Tε� 1

|Y |

∫
Ω×Y

Tε(uε)Tε(vε) dxdy.

Proof. Observe that 1Λε(x) → 0 for all x ∈ Ω. Consequently, by the Lebesgue
dominated convergence theorem, one gets

∫
Λε

|v|p′
dx→ 0, and then by the Hölder in-

equality,
∫
Λε

|uεv| dx→ 0. This proves (2.5). If ∂Ω is bounded, then one immediately
has |Λε| → 0 when ε→ 0, and this implies (2.6).

We now investigate the convergence properties related to the unfolding operator
when ε → 0. For φ uniformly continuous on Ω, with modulus of continuity mφ, it is
easy to see that

sup
x∈Ω̂ε,y∈Y

|Tε(φ)(x, y) − φ(x)| ≤ mφ(ε).

So, as ε goes to zero, even though Tε(φ) is not continuous, it converges to φ uniformly
on any open set strongly included in Ω. By density, and making use of Proposition 2.5,
further convergence properties can be expressed using the mean value of a function
defined on Ω × Y .

Definition 2.8. The mean value operator M
Y

: Lp(Ω × Y ) �→ Lp(Ω) for p ∈
[1,+∞], is defined as follows:

(2.7) M
Y

(Φ)(x) =
1
|Y |

∫
Y

Φ(x, y) dy a.e. for x ∈ Ω.

Observe that an immediate consequence of this definition is the estimate

‖M
Y

(Φ)‖Lp(Ω) ≤ |Y |− 1
p ‖Φ‖Lp(Ω×Y ) for every Φ ∈ Lp(Ω × Y ).

Proposition 2.9. Let p belong to [1,+∞[.
(i) For w ∈ Lp(Ω),

Tε(w) → w strongly in Lp(Ω × Y ).

(ii) Let {wε} be a sequence in Lp(Ω) such that

wε → w strongly in Lp(Ω).

Then

Tε(wε) → w strongly in Lp(Ω × Y ).
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(iii) For every relatively weakly compact sequence {wε} in Lp(Ω), the correspond-
ing {Tε(wε)} is relatively weakly compact in Lp(Ω × Y ). Furthermore, if

Tε(wε) ⇀ ŵ weakly in Lp(Ω × Y ),

then

wε ⇀M
Y

(ŵ) weakly in Lp(Ω).

(iv) If Tε(wε) ⇀ ŵ weakly in Lp(Ω × Y ), then

(2.8) ‖ŵ‖Lp(Ω×Y ) ≤ lim inf
ε→0

|Y | 1p ‖wε‖Lp(Ω).

(v) Suppose p > 1, and let {wε} be a bounded sequence in Lp(Ω). Then, the
following assertions are equivalent:

(a) Tε(wε) ⇀ ŵ weakly in Lp(Ω × Y ) and lim sup
ε→0

|Y |
1
p ‖wε‖Lp(Ω) ≤

‖ŵ‖Lp(Ω×Y ),

(b) Tε(wε) → ŵ strongly in Lp(Ω × Y ) and
∫

Λε

|wε|p dx→ 0.

Proof. (i) The result is obvious for any w ∈ D(Ω). If w ∈ Lp(Ω), let φ ∈ D(Ω).
Then, by using (iv) from Proposition 2.5,

‖Tε(w) − w‖Lp(Ω×Y ) = ‖Tε(w − φ) +
(
Tε(φ) − φ

)
+ (φ− w)‖Lp(Ω×Y )

≤ 2|Y |
1
p ‖w − φ‖Lp(Ω) + ‖Tε(φ) − φ‖Lp(Ω×Y ),

hence,

lim sup
ε→0

‖Tε(w) − w‖Lp(Ω×Y ) ≤ 2|Y | 1p ‖w − φ‖Lp(Ω),

from which statement (i) follows by density.
(ii) The following estimate, a consequence of Proposition 2.5(iv), gives the result

‖Tε(wε) − Tε(w)‖Lp(Ω×Y ) ≤ | Y |
1
p ‖wε − w‖Lp(Ω) ∀w ∈ Lp(Ω).

(iii) For p ∈]1,+∞[, by Proposition 2.5(iv), boundedness is preserved by Tε.
Suppose that Tε(wε) ⇀ ŵ weakly in Lp(Ω × Y ), and let ψ ∈ Lp′

(Ω). From Proposi-
tion 2.7, ∫

Ω

wε(x)ψ(x) dx
Tε� 1

|Y |

∫
Ω×Y

Tε(wε)(x, y) Tε(ψ)(x, y) dx dy.

In view of (i), one can pass to the limit in the right-hand side to obtain

lim
ε→0

∫
Ω

wε(x)ψ(x) dx =
∫

Ω

{
1
|Y |

∫
Y

ŵ(x, y) dy
}
ψ(x) dx.

For p = 1, one uses the extra property satisfied by weakly convergent sequences
in L1(Ω), in the form of the De La Vallée–Poussin criterion (which is equivalent to
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relative weak compactness): there exists a continuous convex function Φ : R
+ �→ R

+

such that

lim
t→+∞

Φ(t)
t

= +∞, and the set
{∫

Ω

(
Φ ◦ |wε|

)
(x) dx

}
is bounded.

Unfolding the last integral shows that{∫
Ω×Y

(
Φ ◦ |Tε(wε)|

)
(x, y) dxdy

}
is bounded,

which completes the proof of weak compactness of {Tε(wε)} in L1(Ω×Y ) in the case
of Ω with finite measure. For the case where the measure of Ω is not finite, a similar
argument shows that the equiintegrability at infinity of the sequence {wε} carries over
to {Tε(wε)}.

If Tε(wε) ⇀ ŵ weakly in L1(Ω × Y ), let ψ be in D(Ω). For ε sufficiently small,
one has ∫

Ω

wε(x)ψ(x) dx =
1
|Y |

∫
Ω×Y

Tε(wε)(x, y) Tε(ψ)(x, y) dx dy.

In view of (i), one can pass to the limit in the right-hand side to obtain

lim
ε→0

∫
Ω

wε(x)ψ(x) dx =
∫

Ω

{
1
|Y |

∫
Y

ŵ(x, y) dy
}
ψ(x) dx.

(iv) Inequality (2.8) is a simple consequence of Proposition 2.5(ii).
(v) Proposition 2.5(i) applied to the function |wε|p gives

1
|Y | ‖Tε(wε)‖p

Lp(Ω×Y ) +
∫

Λε

|wε|p dx = ‖wε‖p
Lp(Ω).

This identity implies the required equivalence.
Corollary 2.10. Let f be in Lp(Y ), p ∈ [1,+∞[, and {fε} be the sequence

defined by (2.3). Then

(2.9) fε|Ω ⇀M
Y

(f) weakly in Lp(Ω).

Proof. Proposition 2.2 gives the strong (hence weak) convergenge of {Tε(fε|Ω)}
to f in Lp(Ω × Y ). Convergence (2.9) follows from Proposition 2.9(iii).1

Remark 2.11. In general, in the case where Λε is not null set (for every ε),
the strong (resp. weak) convergence of the sequence {Tε(wε)} does not imply the
corresponding convergence for the sequence {wε}, since it gives no control of the
sequence {wε1Λε}. If {wε1Λε} is bounded in Lp(Ω) and if {Tε(wε)} converges weakly,
so does {wε} by Proposition 2.9(iii). On the other hand, even if {wε1Λε} converges
strongly to 0 in Lp(Ω), the strong convergence of {Tε(wε)} does not imply that of
{wε} as it is shown by the sequence {fε|Ω} in Corollary 2.10, unless f is a constant
on Y .

Corollary 2.12. Let p belong to ]1,+∞[, let {uε} be a sequence in Lp(Ω) such
that

Tε(uε) ⇀ u weakly in Lp(Ω × Y ),

1Note that the proof of convergence (2.9) is really straightforward when using unfolding!
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and let {vε} be a sequence in Lp′
(Ω) (1/p+ 1/p′ = 1), with

Tε(vε) → v strongly in Lp′
(Ω × Y ).

Then, for any ϕ in Cc(Ω), one has∫
Ω

uε(x) vε(x) ϕ(x)dx → 1
|Y |

∫
Ω×Y

u(x, y) v(x, y) ϕ(x)dxdy.

Moreover, if ∫
Λε

|vε|p
′
dx→ 0,

then, for any ϕ in C(Ω), one has∫
Ω

uε(x) vε(x) ϕ(x)dx → 1
|Y |

∫
Ω×Y

u(x, y) v(x, y) ϕ(x)dxdy.

Proof. The result follows from the fact that, in both cases, the sequence {uε vεφ}
satisfies the u.c.i. by the Hölder inequality.

Remark 2.13. A consequence of (iii) of Proposition 2.9, together with (iv) of
Proposition 2.5, is the following. Suppose the sequence {wε} converges weakly to w
in Lp(Ω). Then the sequence {Tε(wε)} is relatively weakly compact in Lp(Ω × Y ),
and each of its weak-limit points ŵ satisfies M

Y
(ŵ) = w.

Now recall the following definition from Nguetseng [58] and Allaire [1].

Two-scale convergence. Let p ∈]1,+∞[. A bounded sequence {wε} in Lp(Ω)
two-scale converges to some w belonging to Lp(Ω × Y ), whenever, for every smooth
function ϕ on Ω × Y , the following convergence holds:∫

Ω

wε(x)ϕ
(
x,
x

ε

)
dx→ 1

|Y |

∫ ∫
Ω×Y

w(x, y)ϕ(x, y) dxdy.

The next result reduces two-scale convergence of a sequence to a mere weak
Lp(Ω × Y )-convergence of the unfolded sequence.

Proposition 2.14. Let {wε} be a bounded sequence in Lp(Ω), with p ∈]1,+∞[.
The following assertions are equivalent:

(i) {Tε(wε)} converges weakly to w in Lp(Ω × Y ),
(ii) {wε} two-scale converges to w.
Proof. To prove this equivalence, it is enough to check that, for every ϕ in a set

of admissible test functions for two-scale convergence (for instance, D(Ω, Lq(Y ))), the
sequence {Tε[ϕ(x, x/ε)]} converges strongly to ϕ in Lq(Ω × Y )). This follows from
the definition of Tε, indeed

Tε

[
ϕ
(
x,
x

ε

)]
(x, y) = ϕ

(
ε
[x
ε

]
Y

+ εy, y
)
.

Remark 2.15. Proposition 2.14 shows that the two-scale convergence of a se-
quence in Lp(Ω), p ∈]1,+∞[, is equivalent to the weak−Lp(Ω × Y ) convergence of
the unfolded sequence. Notice that, by definition, to check the two-scale convergence,
one has to use special test functions. To check a weak convergence in the space
Lp(Ω × Y ), one simply makes the use of functions in the dual space Lp′

(Ω × Y ).
Moreover, due to density properties, it is sufficient to check this convergence only on
smooth functions from D(Ω × Y ).
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2.2. The averaging operator Uε. In this section, we consider the adjoint Uε

of Tε, which we call averaging operator. In order to do so, let v be in Lp(Ω×Y ), and
let u be in Lp′

(Ω). We have successively,

1
|Y |

∫
Ω×Y

Tε(u)(x, y) v(x, y) dxdy =
1
|Y |

∫
Ω̂ε×Y

Tε(u)(x, y) v(x, y) dxdy

=
1
|Y |

∑
ξ∈Ξε

∫
ε(ξ+Y )×Y

u(εξ + εy) v(x, y) dxdy

=
∑
ξ∈Ξε

1
|Y |

∫
Y ×Y

u(εξ + εy) v(εξ + εz, y)εN dzdy

=
∑
ξ∈Ξε

1
|Y |

∫
Y

dz

∫
ε(ξ+Y )

u(x) v
(
ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)
dx

=
∫

Ω̂ε

u(x)
(

1
|Y |

∫
Y

v
(
ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)
dz

)
dx.

This gives the formula for the averaging operator Uε.
Definition 2.16. For p in [1,+∞], the averaging operator Uε : Lp(Ω × Y ) �→

Lp(Ω) is defined as

Uε(Φ)(x) =

⎧⎨⎩
1
|Y |

∫
Y

Φ
(
ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)
dz a.e. for x ∈ Ω̂ε,

0 a.e. for x ∈ Λε.

Consequently, for ψ ∈ Lp(Ω) and Φ ∈ Lp′
(Ω × Y ), one has∫

Ω

Uε(Φ)(x)ψ(x) dx =
1
|Y |

∫
Ω×Y

Φ(x, y) Tε(ψ)(x, y) dxdy.

As a consequence of the duality (Hölder’s inequality) and of Proposition 2.5(iv),
we get the following.

Proposition 2.17. Let p belong to [1,+∞]. The averaging operator is linear
and continuous from Lp(Ω × Y ) to Lp(Ω) and

(2.10) ‖Uε(Φ)‖Lp(Ω) ≤ | Y |−
1
p ‖Φ‖Lp(Ω×Y ).

The operator Uε maps Lp(Ω × Y ) into the space Lp(Ω). It allows one to replace
the function x �→ Φ(x, {x

ε }Y ), which is meaningless, in general, by a function which
always makes sense. Notice that this implies, in particular, that the largest set of test
functions for two-scale convergence is actually the set Uε(Φ), with Φ in Lp′

(Ω × Y ).
It is immediate from its definition that Uε is almost a left-inverse of Tε, since

(2.11) Uε

(
Tε(φ)

)
(x) =

{
φ(x) a.e. for x ∈ Ω̂ε,

0 a.e. for x ∈ Λε,

for every φ in Lp(Ω), while
(2.12)

Tε(Uε(Φ))(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1

| Y |

∫
Y

Φ
(
ε
[x
ε

]
Y

+ εz, y
)
dz a.e. for (x, y) ∈ Ω̂ε × Y,

0 a.e. for (x, y) ∈ Λε × Y,

for every Φ in Lp(Ω × Y ).
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Proposition 2.18 (properties of Uε). Suppose that p is in [1,+∞[.
(i) Let {Φε} be a bounded sequence in Lp(Ω × Y ) such that Φε ⇀ Φ weakly in

Lp(Ω × Y ). Then

Uε(Φε) ⇀M
Y

(Φ) =
1
|Y |

∫
Y

Φ( · , y) dy weakly in Lp(Ω).

In particular, for every Φ ∈ Lp(Ω × Y ),

Uε(Φ) ⇀M
Y

(Φ) weakly in Lp(Ω),

but not strongly, unless Φ is independent of y.
(ii) Let {Φε} be a sequence such that Φε → Φ strongly in Lp(Ω × Y ). Then

Tε(Uε(Φε)) → Φ strongly in Lp(Ω × Y ).

(iii) Suppose that {wε} is a sequence in Lp(Ω). Then, the following assertions are
equivalent:

(a) Tε(wε) → ŵ strongly in Lp(Ω × Y ),
(b) wε 1Ω̂ε

− Uε(ŵ) → 0 strongly in Lp(Ω).

(iv) Suppose that {wε} is a sequence in Lp(Ω). Then, the following assertions are
equivalent:

(c) Tε(wε) → ŵ strongly in Lp(Ω × Y ) and
∫

Λε

|wε|p dx→ 0,

(d) wε − Uε(ŵ) → 0 strongly in Lp(Ω).

Proof. (i) This follows from Proposition 2.9(ii) by duality for p > 1. It still holds
for p = 1 in the same way as the proof of Proposition 2.9(ii). Indeed, if the De La
Vallée–Poussin criterion is satisfied by the sequence {Φε}, it is also satisfied by the
sequence {Uε(Φε)}, since for F convex and continuous, Jensen’s inequality implies
that

F (Uε(Φε))(x) ≤ Uε(F (Φε))(x).

(ii) The proof follows the same lines as that of (i)–(ii) of Proposition 2.9.
(iii) The implication (a)⇒(b) follows from (2.10) applied to Φε = wε 1Ω̂ε

−Uε(ŵ)
and from (2.11).

As for the converse (b)⇒(a), Proposition 2.9(ii) implies that

Tε(wε 1Ω̂ε
− Uε(ŵ)) → 0 strongly in Lp(Ω × Y ).

Since Tε(wε) = Tε(wε 1Ω̂ε
), from (ii) above it converges to ŵ strongly in Lp(Ω × Y ).

(iv) The implication (c)⇒(d) follows from (iii) and the second condition of (c).
Its converse (d)⇒(c) is a consequence of from (iii): since Uε(ŵ) 1Λε = 0, (d)

implies (b) and wε 1Λε → 0 in Lp(Ω).
Remark 2.19. The statement of Proposition 2.18(iii) does not hold with weak

convergences instead of strong ones, contrary to an erroneous statement made in [24].
In view of (2.11) and Proposition 2.18(i), if Tε(wε) ⇀ ŵ weakly in Lp(Ω × Y ), then
wε 1Ω̂ε

− Uε(ŵ) converges weakly to 0 in Lp(Ω).
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But the converse of this last implication cannot hold. Indeed, choose v̂ with
M

Y
(v̂) = 0. By Proposition 2.18(i), Uε(v̂) converges weakly to M

Y
(v̂) = 0. Conse-

quently, the weak limit of wε 1Ω̂ε
−Uε(ŵ) is also the weak limit of wε 1Ω̂ε

−Uε(ŵ+ v̂).
If the converse were true, it would imply that Tε(wε) converges weakly to both ŵ and
ŵ + v̂. So v̂ = 0. In other words, M

Y
(v̂) = 0 would imply v̂ = 0.

Remark 2.20. Assertions (iii)(b) and (iv)(d) are corrector–type results.
Remark 2.21. The condition (iii)(a) is used by some authors to define the notion

of “strong two-scale convergence.” From the above considerations, condition (c) of
Proposition 2.18(iv) is a better candidate for this definition.

2.3. The local average operator Mε. In this section, we consider the classical
average operator associated to the partition of Ω by ε-cells Y (setting it to be zero on
the cells intersecting the boundary ∂Ω).

Definition 2.22. The local average operator Mε : Lp(Ω) �→ Lp(Ω), for p ∈
[1,+∞], is defined by

(2.13) Mε(φ)(x) =

⎧⎪⎪⎨⎪⎪⎩
1

εN |Y |

∫
ε
[x
ε

]
y

φ(ζ) dζ if x ∈ Ω̂ε,

0 if x ∈ Λε.

Remark 2.23. It turns out that the local averageMε is connected to the unfolding
operator Tε. Indeed, by the usual change of variable cell by cell,

Mε(φ)(x) =
1
|Y |

∫
Y

Tε(φ)(x, y) dy = M
Y

(
Tε(φ)

)
(x).

Remark 2.24. Note that, for any φ in Lp(Ω), one has Tε(Mε(φ)) = Mε(φ) on
the set Ω × Y . Moreover, one also has Uε(φ) = Mε(φ).

Proposition 2.25 (properties of Mε).

(i) Suppose that p is in [1,+∞]. For any any φ in Lp(Ω),

‖Mε(φ)‖Lp(Ω) ≤ ‖φ‖Lp(Ω).

(ii) Suppose that p is in [1,+∞]. For φ ∈ Lp(Ω) and ψ ∈ Lp′
(Ω),

(2.14)
∫

Ω

Mε(φ)ψ dx =
∫

Ω

Mε(φ)Mε(ψ) dx =
∫

Ω

φMε(ψ) dx.

(iii) Suppose that p is in [1,+∞[. Let {vε} be a sequence such that vε → v strongly
in Lp(Ω). Then

Mε(vε) → v strongly in Lp(Ω).

In particular, for every φ ∈ Lp(Ω),

(2.15) Mε(φ) → φ strongly in Lp(Ω).

(iv) Suppose that p is in [1,+∞[. Let {vε} be a sequence such that vε ⇀ v weakly
in Lp(Ω). Then

Mε(vε) ⇀ v weakly in Lp(Ω).

The same holds true for the weak-∗ topology in L∞(Ω).
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Proof. The proofs of (i) and (ii) are straightforward. The proof of (iii) is a simple
consequence of (ii) of Proposition 2.9. For the proof of (iv), let φ be in Lp′

(Ω), with
p

′ ∈ [1,+∞[ (p �= 1), and use (2.14) and (2.15) to obtain∫
Ω

φMε(vε) dx =
∫

Ω

Mε(φ) vε dx→
∫

Ω

φ v dx.

For p = 1, in the same way as the proof of Proposition 2.9(ii) and Proposi-
tion 2.18(i), if the De La Vallée–Poussin criterion is satisfied by the sequence {vε},
it is also satisfied by the sequence {Mε(vε)}, since for F convex and continuous,
Jensen’s inequality implies that

F (Mε(vε))(x) ≤ Mε(F (vε))(x),

which ends the proof.
Corollary 2.26. Suppose that p is in [1,+∞[ . Let w be in Lp(Ω) and {wε} be

a sequence in Lp(Ω) satisfying Tε(wε) → w strongly in Lp(Ω × Y ). Then,

wε 1Ω̂ε
→ w strongly in Lp(Ω).

Furthermore, if
∫
Λε

|wε|p → 0, then, wε → w strongly in Lp(Ω).
Proof. Since w does not depend on y, one has Uε(w) = Mε(w) which, by

Proposition 2.25(iii), converges strongly to w. The conclusion follows from Propo-
sition 2.18(iii), respectively, (iv).

3. Unfolding and gradients. This section is devoted to the properties of the
restriction of the unfolding operator to the space W 1,p(Ω). Some results require no
extra hypotheses, but many others are sensitive to the boundary conditions and the
regularity of the boundary itself.

Observe that, for w in W 1,p(Ω), one has

(3.1) ∇y(Tε(w)) = εTε(∇w), ∀w ∈W 1,p(Ω) a.e. for (x, y) ∈ Ω × Y.

Then, Proposition 2.5(iv) implies that Tε maps W 1,p(Ω) into Lp(Ω;W 1,p(Y )).
For simplicity, we assume that Y =]0, 1[n. Nevertheless, the results we prove here

hold true in the case of a general Y , with minor modifications.
Proposition 3.1 (gradient in the direction of a period). Let k in [1, . . . , n] and

{wε} be a bounded sequence in Lp(Ω), with p ∈]1,+∞], satisfying

(3.2) ε

∥∥∥∥∂wε

∂xk

∥∥∥∥
Lp(Ω)

≤ C.

Then, there exist a subsequence (still denoted ε) and ŵ in Lp(Ω × Y ), with ∂ŵ
∂yk

in
Lp(Ω × Y ) such that

(3.3)

Tε(wε) ⇀ ŵ weakly in Lp(Ω × Y ),

εTε

(
∂wε

∂xk

)
=
∂Tε(wε)
∂yk

⇀
∂ŵ

∂yk
weakly in Lp(Ω × Y ), (weakly-∗ for p = +∞).

Moreover, the limit function ŵ is 1-periodic, with respect to the yk coordinate.
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Proof. Convergences (3.3) are a simple consequence of (3.1) and (3.2). It remains
to prove the periodicity of ŵ. Without loss of generality, assume k = n and write
y = (y′, yn), with y′ in Y ′ .=]0, 1[n−1 and yn ∈]0, 1[.

Let ψ ∈ D(Ω × Y ′). Convergences (3.3) imply that the sequence {Tε(wε)} is
bounded in Lp(Ω× Y ′;W 1,p(0, 1)) so that {Tε(wε)|{yn=s}} is bounded in Lp(Ω× Y ′)
for every s ∈ [0, 1]. The periodicity with respect to yn results from the following
computation with an obvious change of variable:∫

Ω×Y ′

[
Tε(wε)(x, (y ′, 1)) − Tε(wε)(x, (y ′, 0)

]
ψ(x, y′) dx dy ′

=
∫

Ω×Y ′

{
wε

(
ε
[x
ε

]
Y

+ ε(y ′, 1)
)
− wε

(
ε
[x
ε

]
Y

+ ε(y ′, 0)
)}
ψ(x, y′) dx dy′

=
∫

Ω×Y ′
wε

(
ε
[x
ε

]
Y

+ ε(y ′, 0)
)[
ψ(x− εen, y

′) − ψ(x, y′)
]
dx dy′,

=
∫

Ω×Y ′
Tε(wε)(x, (y ′, 0))

[
ψ(x− εen, y

′) − ψ(x, y′)
]
dx dy′,

which goes to zero.
Corollary 3.2. Let {wε} be in W 1,p(Ω), with p ∈]1,+∞[, and assume that

{wε} is a bounded sequence in Lp(Ω) satisfying

ε‖∇wε‖Lp(Ω) ≤ C.

Then, there exist a subsequence (still denoted ε) and ŵ ∈ Lp(Ω;W 1,p(Y )) such that

Tε(wε) ⇀ ŵ weakly in Lp(Ω;W 1,p(Y )),
εTε(∇wε) ⇀ ∇yŵ weakly in Lp(Ω × Y ).

Moreover, the limit function ŵ is Y -periodic, i.e., belongs to Lp(Ω;W 1,p
per(Y )), where

W 1,p
per(Y ) denotes the Banach space of Y -periodic functions in W 1,p

loc (Rn), with the
W 1,p(Y ) norm.

Corollary 3.3. Let p be in ]1,+∞[ and {wε} be a sequence converging weakly
in W 1,p(Ω) to w. Then,

Tε(wε) ⇀ w weakly in Lp(Ω;W 1,p(Y )).

Furthermore, if {wε} converges strongly to w in Lp(Ω), the above convergence is strong
(this is the case if, for example, W 1,p(Ω) is compactly embedded in Lp(Ω)).

Proof. Using (3.1), since {wε} weakly converges, one has the estimates

‖Tε(wε)‖Lp(Ω×Y ) ≤ C,

‖∇y(Tε(wε))‖Lp(Ω×Y ) ≤ εC,

so that there exist a subsequence (still denoted ε) and ŵ in Lp(Ω;W 1,p(Y )) such that

(3.4)
Tε(wε) ⇀ ŵ weakly in Lp(Ω;W 1,p(Y )),
∇y(Tε(wε)) → 0 strongly in Lp(Ω × Y ),

and ∇yŵ = 0. Consequently, ŵ does not depend on y, and Proposition 2.9(iii)
immediately gives w = M

Y
(ŵ) = ŵ. Moreover, convergence (3.4) holds for the entire
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sequence ε. Finally, if the sequence {wε} converges strongly to w in Lp(Ω), so does
the sequence {Tε(wε)}, thanks to Proposition 2.9(ii).

Proposition 3.4. Suppose that p is in [1,+∞[. Let {wε} be a sequence which
converges strongly to some w in W 1,p(Ω). Then,

(i) Tε(∇wε) → ∇w strongly in Lp(Ω × Y ),

(ii)
1
ε

(
Tε(wε) −Mε(wε)

)
→ yc · ∇w strongly in Lp(Ω;W 1,p(Y )),

where

yc =
(
y1 −

1
2
, . . . , yn − 1

2

)
.

Proof. The first asssertion follows from Proposition 2.9(i). To prove (ii), set

Zε
.=

1
ε

(
Tε(wε) −Mε(wε)

)
,

which has mean value zero in Y . Since

∇yZε =
1
ε
∇y

(
Tε

(
wε

))
= Tε

(
∇wε

)
,

thanks to assertion (i),

∇yZε → ∇w strongly in Lp(Ω × Y ).

Then recall the Poincaré–Wirtinger inequality in Y :

(3.5) ∀ψ ∈W 1,p(Y ),
∥∥ψ −M

Y
(ψ)

∥∥
Lp(Y )

≤ C‖∇ψ‖Lp(Y ).

Applying it to the function Zε − yc · ∇w (which is of mean value zero) gives

(3.6)
∥∥Zε − yc · ∇w

∥∥
Lp(Ω×Y )

≤ C‖∇yZε −∇w‖Lp(Ω×Y ),

and this concludes the proof.
Theorem 3.5. Suppose that p is in ]1,+∞[. Let {wε} be a sequence converg-

ing weakly to some w in W 1,p(Ω). Up to a subsequence, there exists some ŵ in
Lp(Ω;W 1,p

per(Y )) such that

(3.7)
(i) Tε(∇wε) ⇀ ∇w + ∇yŵ weakly in Lp(Ω × Y ),

(ii)
1
ε

(
Tε(wε) −Mε(wε)

)
⇀ ŵ + yc · ∇w weakly in Lp(Ω;W 1,p(Y )).

Moreover, M
Y

(ŵ) = 0.

Proof. Following the same lines as in the previous proof, introduce

Zε =
1
ε

(
Tε(wε) −Mε(wε)

)
,

which has mean value zero in Y . Since ∇yZε = Tε

(
∇wε

)
, (ii) implies (i).
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To prove (ii), note that the sequence {∇yZε} is bounded in Lp(Ω×Y ). By (3.6),∥∥Zε − yc · ∇w
∥∥

Lp(Ω×Y )
≤ C

so that there exists ŵ in Lp(Ω;W 1,p(Y )) such that, up to a subsequence,

Zε − yc · ∇w ⇀ ŵ weakly in Lp(Ω;W 1,p(Y )).

Since, by construction, M
Y

(yc) vanishes, so does M
Y

(ŵ).
It remains to prove the Y -periodicity of ŵ. This is obtained in the same way as

in the proof of Proposition 3.1 by using a test function ψ ∈ D(Ω × Y ′). One has
successively,∫

Ω×Y ′

[
Zε(x, (y ′, 1)) − Zε(x, (y ′, 0)

]
ψ(x, y′) dx dy ′

=
∫

Ω×Y ′

1
ε

{
wε

(
ε
[x
ε

]
Y

+ ε(y ′, 1)
)
− wε

(
ε
[x
ε

]
Y

+ ε(y ′, 0)
)}
ψ(x, y′) dx dy′

=
∫

Ω×Y ′
wε

(
ε
[x
ε

]
Y

+ ε(y ′, 0)
) 1
ε

[
ψ(x− εen, y

′) − ψ(x, y′)
]
dx dy′,

=
∫

Ω×Y ′
Tε(wε)(x, (y ′, 0))

1
ε

[
ψ(x− εen, y

′) − ψ(x, y′)
]
dx dy′.

By Proposition 2.9(ii), {Tε(wε)} converges strongly to w in Lp(Ω × Y ), and by (3.7)
(i), it converges weakly to the same w in Lp(Ω;W 1,p(Y )). By the trace theorem in
W 1,p(Y ), the trace of Tε(wε) on Ω×Y ′ converges weakly to w in Lp(Ω×Y ′). Hence,
the last integral converges to

(3.8) −
∫

Ω×Y ′
w(x)

∂ψ

∂xn
(x, y′) dx dy′.

Similarly, since (yc · ∇w)(y ′, 1) − (yc · ∇w)(y ′, 0) = ∂w
∂xn

, we obtain∫
Ω×Y ′

[
(yc · ∇w)(y ′, 1) − (yc · ∇w)(y ′, 0)]ψ(x, y′) dx dy ′

=
∫

Ω×Y ′

∂w

∂xn
ψ(x, y′) dx dy′ = −

∫
Ω×Y ′

w(x)
∂ψ

∂xn
(x, y′) dx dy′.

This, together with (3.8) and convergence (3.7)(ii), shows that∫
Ω×Y ′

[
ŵ(x, (y ′, 1)) − ŵ(x, (y ′, 0)

]
ψ(x, y′) dx dy ′ = 0,

so that ŵ is yn-periodic. The same holds in the directions of all of the other
periods.

Theorem 3.5 can be generalized to the case of W k,p(Ω)-spaces, with k ≥ 1 and
p ∈]1,+∞[ . In order to do so, for r = (r1, . . . , rn) ∈ N

n with |r| = r1 + · · · + rn ≤ k,
introduce the notation Dr and Dr

y:

Dr =
∂|r|

∂xr1
1 . . . ∂xrn

n
, Dr

y =
∂|r|

∂yr1
1 . . . ∂yrn

n
.

Then the following result holds.
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Theorem 3.6. Let {wε} be a sequence converging weakly in W k,p(Ω) to w,
k ≥ 1, and p ∈]1,+∞[. There exist a subsequence (still denoted ε) and ŵ in the space
Lp(Ω;W k,p

per (Y )) such that

(3.9)

{
Tε(Dlwε) ⇀ Dlw weakly in Lp(Ω;W k−l,p(Y )), |l| ≤ k − 1,

Tε(Dlwε) ⇀ Dlw +Dl
yŵ weakly in Lp(Ω × Y ), |l| = k.

Furthermore, if {wε} converges strongly to w in W k−1,p(Ω), the above convergences
are strong in Lp(Ω;W k−l,p(Y )) for |l| ≤ k − 1.

Proof. We give a brief proof for k = 2. The same argument generalizes for k > 2.
If |l| = 1, the first convergence in (3.9) follows directly from Corollary 3.3. Set

Wε =
1
ε2

[
Tε(wε) −Mε(wε) − yc ·Mε

(
∇wε

)]
.

The sequence {wε} is bounded in W 2,p(Ω), hence proceeding as in the proof of Propo-
sition 2.25(iii), one obtains ∥∥Wε

∥∥
Lp(Ω×Y )

≤ C.

Moreover,

∇y

(
Wε

)
=

1
ε2

(
Tε

(
∇wε

)
−Mε(∇wε)

)
,

and

Dl
y

(
Wε

)
= Tε

(
Dlwε

)
, with |l| = 2.

This implies that the sequence {Wε} is bounded in Lp(Ω;W 2,p(Y )). Therefore, there
exist a subsequence (still denoted ε) and w̃ ∈ Lp(Ω;W 2,p(Y )) such that
(3.10)

Wε ⇀ w̃ weakly in Lp(Ω;W 2,p(Y )),

∂Wε

∂yi
=

1
ε2

(
Tε

(
∂wε

∂xi

)
−Mε

(
∂wε

∂xi

))
⇀

∂w̃

∂yi
weakly in Lp(Ω;W 1,p(Y )).

Consequently,

(3.11) Dl
y(Wε) = Tε(Dlwε) ⇀ Dl

yw̃ weakly in Lp(Ω × Y ), |l| = 2.

Now, apply Theorem 3.5 to each of the derivatives ∂wε

∂xi
, i ∈ {1, . . . , n}. There exist a

subsequence (still denoted ε) and ŵi ∈ Lp(Ω;W 1,p
per(Y )) such that M

Y
(ŵi) ≡ 0 and

1
ε

(
Tε

(
∂wε

∂xi

)
−Mε

(
∂wε

∂xi

))
⇀ yc · ∇ ∂w

∂xi
+ ŵi weakly in Lp(Ω × Y ).

Then (3.10) gives

(3.12) ∀i ∈ {1, . . . , n}, ∂w̃

∂yi
= yc · ∇ ∂w

∂xi
+ ŵi.

Set

ŵ = w̃ − 1
2

n∑
i,j=1

(
yc

i y
c
j −M

Y
(yc

i y
c
j)
) ∂2w

∂xi∂xj
.
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By construction, the function ŵ belongs to Lp(Ω;W 2,p(Y )). Furthermore,

M
Y

(ŵ) = 0,
∂ŵ

∂yi
=
∂w̃

∂yi
− yc · ∇

(
∂w

∂xi

)
= ŵi, and M

Y
(∇yŵ) = 0.

The last equality implies that ŵ belongs to Lp(Ω;W 2,p
per(Y )). Finally from (3.12) one

gets

Dl
yw̃ = Dlw +Dl

yŵ, with |l| = 2,

which together with (3.11), proves the last convergence of (3.9).
Corollary 3.7. Let {wε} be a sequence converging weakly in W 2,p(Ω) to w,

and p ∈]1,+∞[. Then, there exist a subsequence (still denoted ε) and ŵ in the space
Lp(Ω;W 2,p

per(Y )) such that

1
ε2

[
Tε(wε) −Mε(wε) − yc · Mε

(
∇wε

)]
⇀

1
2

n∑
i,j=1

(
yc

i y
c
j −M

Y
(yc

i y
c
j)
) ∂2w

∂xi∂xj
+ ŵ

weakly in Lp(Ω;W 2,p(Y )), where ŵ is such that M
Y

(ŵ) = 0.
Remark 3.8. For the case Y =]0, 1[n, yc was defined in Proposition 3.4. For a

general Y , all of the statements of this section hold true, with yc = y −M
Y

(y).

4. Macro-micro decomposition: The scale-splitting operators Qε

and Rε. In this section, we give a different proof of Theorem 3.5, which was the
one given originally in [24]. It is based on a scale-separation decomposition which is
useful in some specific situations, for example, in the statement of general corrector
results (see section 6).

The procedure is based on a splitting of functions φ in W 1,p(Ω) (or in W 1,p
0 (Ω))

for p ∈ [1,+∞], in the form

φ = Qε(φ) + Rε(φ),

where Qε(φ) is an approximation of φ having the same behavior as φ, while Rε(φ)
is a remainder of order ε. Applied to the sequence {wε} converging weakly to w
in W 1,p(Ω), it shows that, while {∇wε} , {∇(Qε(wε))} and {Tε(∇Qε(wε))} have the
same weak limit ∇w in Lp(Ω), respectively, in Lp(Ω×Y ), the sequence Tε

(
∇(Rε(wε))

)
converges weakly in Lp(Ω × Y ) to ∇yŵ

′ for some ŵ′ in Lp(Ω;W 1,p
per(Y )).

We will distinguish between the case W 1,p
0 (Ω) and the case W 1,p(Ω). For the

former, any function φ in W 1,p
0 (Ω) is extended by zero to the whole of R

n, and this
extension is denoted by φ̃. In the latter case, we suppose that ∂Ω is smooth enough so
that there exists a continuous extension operator P : W 1,p(Ω) �→ W 1,p(Rn) satisfying

‖P(φ)‖W 1,p(Rn) ≤ C ‖φ‖W 1,p(Ω), ∀φ ∈W 1,p(Ω),

where C is a constant depending on p and ∂Ω only.
The construction of Qε is based on the Q1 interpolate of some discrete approx-

imation, as is customary in FEM. The idea of using these types of interpolate was
already present in Griso [40], [41] for the study of truss-like structures. For the pur-
pose of this paper, it is enough to take the average on εξ+εY to construct the discrete
approximations, but the average on εξ+ εY ′, where Y ′ is any fixed open subset of Y ,
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or any open subset of a manifold of codimension 1 in Y . The only property which is
needed is the Poincaré–Wirtinger inequality, which holds in both of these cases.

Definition 4.1. The operator Qε : Lp(Rn) �→ W 1,∞(Rn), for p ∈ [1,+∞], is
defined as follows:

(4.1) Qε(φ)(εξ) = Mε(φ)(εξ) for ξ ∈ εZn,

and for any x ∈ R
n, we set

(4.2)
Qε(φ)(x) is the Q1 interpolate of the values of Qε(φ) at the vertices

of the cell ε
[x
ε

]
Y

+ εY.

In the case of the space W 1,p
0 (Ω), the operator Qε : W 1,p

0 (Ω) �→ W 1,∞(Ω) is
defined by

Qε(φ) = Qε(φ̃)|Ω,

where Qε(φ̃) is given by (4.1).
In the case of the space W 1,p(Ω), the operator Qε : W 1,p(Ω) �→ W 1,∞(Ω) is

defined by

Qε(φ) = Qε(P(φ))|Ω,

where Qε(P(φ)) is given by (4.1).
We start with the following estimates.
Proposition 4.2 (properties of Qε on R

n
). For φ in Lp(Rn), p ∈ [1,+∞], there

exists a constant C depending on n and Y only, such that

(i) ‖Qε(φ)‖Lp(Rn) ≤ C‖φ‖Lp(Rn), (ii) ‖∇Qε(φ)‖Lp(Rn) ≤
C

ε
‖φ‖Lp(Rn),

(iii) ‖Qε(φ)‖L∞(Rn) ≤
C

εn/p
‖φ‖Lp(Rn), (iv) ‖∇Qε(φ)‖L∞(Rn) ≤

C

ε1+n/p
‖φ‖Lp(Rn).

Furthermore, for any ψ in Lp(Y ),

(4.3)
∥∥∥Qε(φ)ψ

({ ·
ε

}
Y

)∥∥∥
Lp(Rn)

≤ C‖φ‖Lp(Rn)‖ψ‖Lp(Y );

if ψ is in W 1,p
per(Y ), then

(4.4)
∥∥∥Qε(φ)ψ

({ ·
ε

}
Y

)∥∥∥
W 1,p(Rn)

≤ C

ε
‖φ‖Lp(Rn)‖ψ‖W 1,p(Y ).

Proof. By definition, the Q1 interpolate is Lipschitz-continuous and reaches its
maximum at some εξ. So, to estimate the L∞ norm of Qε(φ), it suffices to estimate
the Qε(φ)(εξ)′s. By (4.1),

(4.5) |Qε(φ)(εξ)|p ≤ 1
|Y |

∫
Y

|φ(εξ + εz)|p dz =
1

εn|Y |

∫
εξ+εY

|φ(x)|p dx.

Since
1

εn|Y |

∫
εξ+εY

|φ(x)|p dx ≤ 1
εn|Y | ‖φ‖

p
Lp(Rn),

estimate (iii) follows, with C = 1
|Y |1/p .
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The space Q1(Y ) is of dimension 2n, hence all of the norms are equivalent. So,
there are constants c1, c2, and c3 (depending only upon p and Y ) such that, for every
Φ ∈ Q1(Y ),

‖∇Φ‖L∞(Y ) ≤ c1
∑

κ∈{0,1}n

∣∣∣∣∣∣Φ
⎛⎝ n∑

j=1

κjbj

⎞⎠∣∣∣∣∣∣ ,
‖Φ‖Lp(Y ) ≤ c2

⎛⎝ ∑
κ∈{0,1}n

∣∣∣∣∣∣Φ
⎛⎝ n∑

j=1

κjbj

⎞⎠∣∣∣∣∣∣
p⎞⎠1/p

,

‖∇Φ‖Lp(Y ) ≤ c3

⎛⎝ ∑
κ∈{0,1}n

∣∣∣∣∣∣Φ
⎛⎝ n∑

j=1

κjbj

⎞⎠∣∣∣∣∣∣
p⎞⎠1/p

.

Rescaling these inequalities for Φ(y) .= Qε(φ)(εξ + εy), gives

‖∇Qε(φ)‖L∞(εξ+εY ) ≤
c1
ε

∑
κ∈{0,1}n

∣∣∣∣∣∣Qε(φ)

⎛⎝εξ + ε

n∑
j=1

κjbj

⎞⎠∣∣∣∣∣∣ ,
‖Qε(φ)‖Lp(εξ+εY ) ≤ c2ε

n/p

⎛⎝ ∑
κ∈{0,1}n

∣∣∣∣∣∣Qε(φ)

⎛⎝εξ + ε

n∑
j=1

κjbj

⎞⎠∣∣∣∣∣∣
p⎞⎠1/p

,

‖∇Qε(φ)‖Lp(εξ+εY ) ≤ c3ε
n/p−1

⎛⎝ ∑
κ∈{0,1}n

∣∣∣∣∣∣Qε(φ)

⎛⎝εξ + ε

n∑
j=1

κjbj

⎞⎠∣∣∣∣∣∣
p⎞⎠1/p

.

Using (4.5), we have

‖∇Qε(φ)‖L∞(Rn) ≤
2nc1

ε1+n/p|Y |1/p
‖φ‖Lp(Rn),

which gives (iv). Similarly,

‖Qε(φ)‖p
Lp(εξ+εY ) ≤

cp2
|Y |

∑
κ∈{0,1}n

∫
εξ+ε

∑n
j=1 κjbj+εY

|φ(x)|p dx,

which, by summation on ξ ∈ Ξε, gives (i), with C = (2c2)
n/p

|Y |1/p .

Estimate (ii), with C = (2c3)
n/p

|Y |1/p , follows by a similar computation.
To prove (4.3), observe first that the function Qε(φ)ψ({ ·

ε}Y ) belongs to Lp(Rn),
since Qε(φ) is in L∞(Rn) and ψ({ ·

ε}Y ) is in Lp(Rn). Moreover,∥∥∥ψ({ ·
ε

}
Y

)∥∥∥p

Lp(εξ+εY )
= εn‖ψ‖p

Lp(Y ),

while, by (4.5),

‖Qε(φ)‖p
L∞(εξ+εY ) ≤

∑
κ∈{0,1}n

1
εn|Y |

∫
εξ+εY +ε

∑
n
j=1 κjbj

|φ(x)|p.

Using these two estimates and summing on Ξε gives (4.3), with C = 2n/p

|Y |1/p .
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Estimate (4.4) is obtained in a similar fashion, with C = (2)n/p+(2c3)
n/p

|Y |1/p .
Corollary 4.3. For φ in Lp(Rn), p ∈ [1,+∞[, the following convergences hold:

Qε(φ) → φ strongly in Lp(Rn),
ε∇Qε(φ) → 0 strongly in (Lp(Rn))n.

Definition 4.4. The remainder Rε(φ) is given by

Rε(φ) = φ−Qε(φ) for any φ ∈W 1,p(Ω).

The following proposition is well-known from the FEM.
Proposition 4.5 (properties of Qε and Rε). For the case W 1,p

0 (Ω), one has

(i) ‖Qε(φ)‖W 1,p(Ω) ≤ C‖φ‖W 1,p
0 (Ω),

(ii) ‖Rε(φ)‖Lp(Ω) ≤ εC‖φ‖W 1,p
0 (Ω),

(iii) ‖∇Rε(φ)‖Lp(Ω) ≤ C‖∇φ‖Lp(Ω).

The constant C depends on Y (via its diameter and its Poincaré–Wirtinger constant)
only, and depends neither on Ω nor on ε.

Similarly, for the case W 1,p(Ω), one has

(iv) ‖Qε(φ)‖W 1,p(Ω) ≤ C ‖P‖‖φ‖W 1,p(Ω),

(v) ‖Rε(φ)‖Lp(Ω) ≤ εC ‖P‖‖φ‖W 1,p(Ω),

(vi) ‖∇Rε(φ)‖Lp(Ω) ≤ C ‖P‖‖∇φ‖Lp(Ω).

Moreover, in both cases,

(4.6)
∥∥∥∥∂2Qε(φ)
∂xi∂xj

∥∥∥∥
Lp(Ω)

≤ C′

ε
‖∇φ‖Lp(Ω) for i, j ∈ [1, . . . , n], i �= j,

where C′ does not depend on ε.
Proof. We start with φ in W 1,p(Rn). From Proposition 2.5(i) and inequality

(3.5), we get

(4.7) ‖φ−Mε(φ)‖Lp(Rn) = | Y |−
1
p ‖Tε(φ) −Mε(φ)‖Lp(Rn×Y ) ≤ εC‖∇φ‖Lp(Rn).

On the other hand, for any ψ ∈ W 1,p(interior(Y ∪ (Y + ei))), i ∈ {1, . . . , n}, we
have

| M
Y +ei

(ψ) −M
Y

(ψ) |=| M
Y

(
ψ(· + ei) − ψ(·)

)
|

≤ ‖ψ(· + ei) − ψ(·)‖Lp(Y ) ≤ C‖∇ψ‖Lp(Y ∪(Y +ei)).

By a scaling argument and using Definition 4.1, this gives

(4.8) |Qε(φ)(εξ) −Qε(φ)(εξ + εei)| ≤ εC‖∇φ‖Lp(ε(ξ + Y ) ∪ ε(ξ + ei + Y ))

for all ξ ∈ εZn.
Let x ∈ ε

(
ξ + Y

)
, and set for every κ = (κ1, . . . , κn) ∈ {0, 1}n,

x
(κl)
l =

⎧⎪⎨⎪⎩
xl − ξl
ε

if κl = 1,

1 − xl − ξl
ε

if κl = 0.
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If ξ ∈ εZn, for every κ ∈ {0, 1}n, by definition we have

(4.9) Qε

(
φ
)
(x) =

∑
κ∈{0,1}n

Qε(φ)
(
εξ + εκ

)
x

(κ1)
1 . . . x(κn)

n ,

and so, for example,

∂Qε(φ)
∂x1

(x)

=
∑

κ2, ...,κn

Qε(φ)
(
εξ + ε(1, κ2, . . . , κn)

)
−Qε(φ)

(
εξ + ε(0, κ2, . . . , κn)

)
ε

x
(κ2)
2 . . . x(κn)

n ,

and a same expression for the other derivatives. This last formula and (4.7)–(4.9)
imply estimate (i) written in R

n.
Now, from (4.9), we get

φ(x) −Qε

(
φ
)
(x) =

∑
κ∈{0,1}n

(
φ(x) −Qε(φ)

(
εξ + εκ

))
x

(κ1)
1 . . . x(κn)

n ,

and (ii) (in R
n) follows by using estimate (4.7). Estimate (iii) (again in R

n) is straight-
forward from the previous ones.

If φ is in W 1,p
0 (Ω), let φ̃ be its extension to the whole of R

n. To derive (i)–(iii), it
suffices to write down the estimates in R

n obtained above. Similarly, applying them
to P(φ) for φ in W 1,p(Ω) gives (iv)–(vi).

To finish the proof, it remains to show estimate (4.6) . To do so, it is enough to
take the derivative with respect to any xk, with k �= 1 in the formula of ∂Qε(φ)

∂x1
above,

and use estimate (4.8).
Remark 4.6. By construction (see explicit formula (4.9)), the function Qε(φ) is

separately piecewise linear on each cell. Observe also that, for any k ∈ {1, . . . , n},
∂Qε(φ)

∂xk
is independent of xk in each cell ε

(
ξ + Y

)
.

Proposition 4.7. Let {wε} be a sequence converging weakly in W 1,p
0 (Ω) (resp.

W 1,p(Ω)) to w. Then, the following convergences hold:

(i) Rε(wε) → 0 strongly in Lp(Ω),

(ii) Qε(wε) ⇀ w weakly in W 1,p(Ω),

(iii) Tε(∇Qε(wε)) ⇀ ∇w weakly in Lp(Ω × Y ).

Proof. Convergence (i) is a direct consequence of estimate (ii) (resp. (v)) of
Proposition 4.5, and it implies convergence (ii). Together with (i), Proposition 2.9(ii)
implies Tε(Qε(wε)) ⇀ w weakly in Lp(Ω × Y ). From (4.5),∥∥∥∥ ∂

∂xi

(
∂Qε(wε)
∂xj

)∥∥∥∥
Lp(Ω)

≤ C

ε
for i, j ∈ [1, . . . , n], i �= j.

Now, by Proposition 3.1, there exist a subsequence (still denoted ε) and ŵj ∈ Lp(Ω×
Y ), with ∂ŵj

∂yi
∈ Lp(Ω × Y ) such that, for i �= j,

Tε

(
∂Qε(wε)
∂xj

)
⇀ ŵj weakly in Lp(Ω × Y ),

εTε

(
∂2Qε(wε)
∂xi∂xj

)
⇀

∂ŵj

∂yi
weakly in Lp(Ω × Y ),
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where ŵj is yi-periodic for every i �= j. Moreover, from Remark 4.6, the function ŵj

does not depend on yj, hence it is Y -periodic. But, by Remark 4.6 again, ŵj is also
piecewise linear, with respect to any variable yi. Consequently, ŵj is independent of
y. On the other hand, from (ii) above we have

∂Qε(wε)
∂xj

⇀
∂w

∂xj
weakly in Lp(Ω).

Now Proposition 2.9(iii) gives ŵj = ∂w
∂xj

, and convergence (iii) holds for the whole
sequence ε.

Proposition 4.8 (Theorem 3.5 revisited). Let {wε} be a sequence converging
weakly in W 1,p

0 (Ω) (resp. in W 1,p(Ω)) to w. Then, up to a subsequence there exists
some ŵ′ in the space Lp(Ω;W 1,p

per(Y )) such that the following convergences hold:

1
ε
Tε

(
Rε(wε)

)
⇀ ŵ′ weakly in Lp(Ω;W 1,p(Y )),

Tε

(
∇Rε(wε)

)
⇀ ∇yŵ

′ weakly in Lp(Ω × Y ),

Tε(∇wε) ⇀ ∇w + ∇yŵ
′ weakly in Lp(Ω × Y ).

Actually, the connection with the ŵ of Theorem 3.5 is given by

ŵ = ŵ′ −M
Y

(ŵ′).

Proof. Due to estimates of Proposition 4.5, up to a subsequence, there exists ŵ′

in Lp(Ω;W 1,p
per(Y )) such that

1
ε
Tε

(
Rε(wε)

)
⇀ ŵ′ weakly in Lp(Ω;W 1,p(Y )),

Tε

(
∇Rε(wε)

)
⇀ ∇yŵ

′ weakly in Lp(Ω × Y ).

Combining with convergence (iii) of Proposition 4.7 shows that

Tε

(
∇wε

)
⇀ ∇w + ∇yŵ

′ weakly in Lp(Ω × Y ).

So ∇yŵ ≡ ∇yŵ
′ in Lp(Ω × Y ). Since M

Y
(ŵ) = 0, it follows that ŵ = ŵ′ −

M
Y

(ŵ′).

Remark 4.9. In the previous proposition, one can actually compute the average
of ŵ′. One can check that M

Y
(ŵ′) = −M

Y
(y) · ∇w, and consequently,

1
ε

(
Tε(wε) −Mε(wε)

)
⇀ y · ∇w + ŵ′ weakly in Lp(Ω;W 1,p(Y )).

5. Periodic unfolding and the standard homogenization problem.
Definition 5.1. Let α, β ∈ R, such that 0 < α < β and O be an open subset

of R
n. Denote by M(α, β,O) the set of the n × n matrices A = (aij)1≤i,j≤n ∈

(L∞ (O))n×n such that, for any λ ∈ R
n and a.e. on O,

(A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|.
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Let Aε = (aε
ij)1≤i,j≤n be a sequence of matrices in M(α, β,Ω). For f given in

H−1(Ω), consider the Dirichlet problem

(5.1)

{
−div (Aε∇uε) = f in Ω,
uε = 0 on ∂Ω.

By the Lax–Milgram theorem, there exists a unique uε ∈ H1
0 (Ω) satisfying

(5.2)
∫

Ω

Aε∇uε ∇v dx = 〈f, v〉H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω),

which is the variational formulation of (5.1). Moreover, one has the apriori estimate

(5.3) ‖uε‖H1
0 (Ω) ≤

1
α
‖f‖H−1(Ω).

Consequently, there exist u0 in H1
0 (Ω) and a subsequence, still denoted ε, such that

(5.4) uε ⇀ u0 weakly in H1
0 (Ω).

We are now interested to give a limit problem, the “homogenized” problem, sat-
isfied by u0. This is called standard homogenization, and the answer, for some classes
of Aε, can be found in many works, starting with the classical book by Bensoussan,
Lions, and Papanicolaou [11] (see, for instance, Cioranescu and Donato [30] and the
references herein). We now recall it.

Theorem 5.2 (standard periodic homogenization). Let A = (aij)1≤i,j≤n belong
to M(α, β, Y ), where aij = aij(y) are Y -periodic. Set

(5.5) Aε(x) =
(
aij

(x
ε

))
1≤i,j≤n

a.e. on Ω.

Let uε be the solution of the corresponding problem (5.1), with f in H−1(Ω). Then
the whole sequence {uε} converges to a limit u0, which is the unique solution of the
homogenized problem

(5.6)

⎧⎪⎪⎨⎪⎪⎩
−div (A0∇u0) =

n∑
i,j=1

a0
ij

∂2u0

∂xi∂xj
= f in Ω,

u0 = 0 on ∂Ω,

where the constant matrix A0 = (a0
ij)1≤i,j≤n is elliptic and given by

(5.7) a0
ij = MY

(
aij −

n∑
k=1

aik
∂χ̂j

∂yk

)
= MY (aij) −MY

(
n∑

k=1

aik
∂χ̂j

∂yk

)
.

In (5.7), the functions χ̂j (j = 1, . . . , n), often referred to as correctors, are the solu-
tions of the cell systems

(5.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

n∑
i,k=1

∂

∂yi

(
aik

∂(χ̂j − yj)
∂yk

)
= 0 in Y,

MY (χ̂j) = 0,
χ̂j Y -periodic.
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As will be seen below, using the periodic unfolding, the proof of this theorem is
elementary! Actually, with the same proof, a more general result can be obtained,
with matrices Aε.

Theorem 5.3 (periodic homogenization via unfolding). Let uε be the solution
of problem (5.1), with f in H−1(Ω), and Aε = (aε

ij)1≤i,j≤n be a sequence of matrices
in M(α, β,Ω). Suppose that there exists a matrix B such that

(5.9) Bε .= Tε

(
Aε

)
→ B strongly in [L1(Ω × Y )]n×n.

Then there exists u0 ∈ H1
0 (Ω) and û ∈ L2(Ω;H1

per(Y )) such that

(5.10)

uε ⇀ u0 weakly in H1
0 (Ω),

Tε(uε) ⇀ u0 weakly in L2(Ω;H1(Y )),

Tε(∇uε) ⇀ ∇u0 + ∇yû weakly in L2(Ω × Y ),

and the pair (u0, û) is the unique solution of the problem

(5.11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀Ψ ∈ H1

0 (Ω), ∀Φ ∈ L2(Ω; H1
per(Y )),

1
|Y |

∫
Ω×Y

B(x, y)
[
∇u0(x) + ∇yû(x, y)

][
∇Ψ(x) + ∇yΦ(x, y)

]
dxdy

= 〈f,Ψ〉H−1(Ω),H1
0 (Ω).

Remark 5.4. System (5.11) is the unfolded formulation of the homogenized limit
problem. It is of standard variational form in the space

H = H1
0 (Ω) × L2(Ω; H1

per(Y )/R).

Remark 5.5. Hypothesis (5.9) implies that B ∈M(α, β,Ω × Y ).
Remark 5.6. If Aε is of the form (5.5), then B(x, y) = A(y). In the case where

Aε(x) = A1(x)A2(x
ε ), one has (5.9), with B(x, y) = A1(x)A2(y).

Remark 5.7. Let us point out that every matrix B ∈ M(α, β,Ω × Y ) can be
approached by the sequence of matrices Aε in M(α, β,Ω), with Aε defined as follows:

Aε =

{
Uε(B) in Ω̂ε,

αIn in Λε.

Proof of Theorem 5.3. Convergences (5.10) follow from estimate (5.3), Corol-
lary 3.3, and Proposition 4.7, respectively.

Let us choose v = Ψ, with Ψ ∈ H1
0 (Ω) as test function in (5.2). The integration

formula (2.5) from Proposition 2.7 gives

(5.12)
1
|Y |

∫
Ω×Y

Bε Tε

(
∇uε

)
Tε

(
∇Ψ

)
dxdy

Tε� 〈f,Ψ〉H−1(Ω),H1
0 (Ω).

We are allowed to pass to the limit in (5.12), due to (5.9), (5.10), and Proposi-
tion 2.9(i), to get

(5.13)
1
|Y |

∫
Ω×Y

B(x, y)
[
∇u0(x) + ∇yû(x, y)

]
∇Ψ(x) dxdy = 〈f,Ψ〉H−1(Ω),H1

0 (Ω).
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Now, taking in (5.2), as test function vε(x) = εΨ(x)ψ(x
ε ), Ψ ∈ D(Ω), ψ ∈ H1

per(Y ),
one has, due to (2.5) and Proposition 2.7,

1
|Y |

∫
Ω×Y

Bε Tε

(
∇uε

)
εψ(y)Tε

(
∇Ψ

)
dxdy

+
1
|Y |

∫
Ω×Y

Bε Tε

(
∇uε

)
∇yψ(y)Tε

(
Ψ
)
dxdy

Tε� 〈f, vε〉H−1(Ω),H1
0 (Ω).

Since vε ⇀ 0 in H1
0 (Ω), we get at the limit

1
|Y |

∫
Ω×Y

B(x, y)
[
∇u0(x) + ∇yû(x, y)

]
Ψ(x)∇yψ(y) dxdy = 0.

By the density of the tensor product D(Ω) ⊗H1
per(Y ) in L2(Ω;H1

per(Y )), this holds
for all Φ in L2(Ω;H1

per(Y )).
Remark 5.8. As in the two-scale method, (5.11) gives û in terms of ∇u0 and

yields the standard form of the homogenized equation, i.e., (5.6). In the simple case
where A(x, y) = A(y) = (aij(y))1≤i,j≤n, it is easily seen that

(5.14) û =
n∑

i=1

∂u0

∂xi
χ̂i,

and that the limit B is precisely the matrix A0 which was defined in Theorem 5.2 by
(5.7) and (5.8).

Proposition 5.9 (convergence of the energy). Under the hypotheses of Theo-
rem 5.3,

(5.15)

⎧⎪⎪⎨⎪⎪⎩
lim
ε→0

∫
Ω

Aε∇uε∇uε dx =
1
|Y |

∫
Ω×Y

B
[
∇u0 + ∇yû

] [
∇u0 + ∇yû

]
dx dy,

lim
ε→0

∫
Λε

|∇uε|2 dx = 0.

Proof. By standard weak lower-semicontinuity, one successively obtains

1
|Y |

∫
Ω×Y

B
[
∇u0 + ∇yû

] [
∇u0 + ∇yû

]
dx dy

≤ lim inf
ε→0

1
|Y |

∫
Ω×Y

Bε Tε

(
∇uε

)
Tε

(
∇uε

)
dx dy

≤ lim sup
ε→0

1
|Y |

∫
Ω×Y

Bε Tε

(
∇uε

)
Tε

(
∇uε

)
dx dy

≤ lim sup
ε→0

∫
Ω

Aε ∇uε∇uε dx = lim sup
ε→0

〈f, uε〉H−1(Ω),H1
0 (Ω)

= 〈f, u0〉H−1(Ω),H1
0 (Ω) =

1
|Y |

∫
Ω×Y

B
[
∇u0 +∇yû

] [
∇u0 +∇yû

]
dx dy,

which gives the first convergence in (5.15), as well as

lim sup
ε→0

∫
Λε

Aε ∇uε∇uε dx = 0,

which implies the second convergence in (5.15).
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Remark 5.10. From the above proof, we also have

lim
ε→0

1
|Y |

∫
Ω×Y

Bε Tε

(
∇uε

)
Tε

(
∇uε

)
dx dy

=
1
|Y |

∫
Ω×Y

B
[
∇u0 + ∇yû

] [
∇u0 + ∇yû

]
dx dy.

Corollary 5.11. The following strong convergence holds:

(5.16) Tε(∇uε) → ∇u0 + ∇yû strongly in L2(Ω × Y ).

Proof. We have successively

1
|Y |

∫
Ω×Y

Bε
[
Tε

(
∇uε

)
−∇u0 −∇yû

][
Tε

(
∇uε

)
−∇u0 −∇yû

]
dx dy

=
1
|Y |

∫
Ω×Y

BεTε

(
∇uε

)
Tε

(
∇uε

)
dx dy

− 1
|Y |

∫
Ω×Y

Bε
[
∇u0 + ∇y û

]
Tε

(
∇uε

)
dx dy

− 1
|Y |

∫
Ω×Y

BεTε

(
∇uε

)[
∇u0 + ∇yû

]
dx dy

+
1
|Y |

∫
Ω×Y

Bε
[
∇u0 + ∇y û

] [
∇u0 + ∇yû

]
dx dy.

Each term in the right-hand side converges, the first one due to Remark 5.10, and the
others due to (5.10) and hypothesis (5.9). So, the right-hand side term converges to
zero. Then convergence (5.16) is a consequence of the ellipticity of Bε.

Remark 5.12. One can consider problem (5.1) with a homogeneous Neumann
boundary condition on ∂Ω provided a zero order term is added to the operator. This
problem is variational on the space H1(Ω) without any regularity condition on the
boundary. The exact same method applies and gives the corresponding limit problem.
In order for a nonhomogeneous Neumann boundary condition (or Robin condition)
on ∂Ω to make sense, a well-behaved trace operator is needed from H1(Ω) to L2(Ω).
In that case, the same method applies.

6. Some corrector results and error estimates. Under additional regularity
assumptions on the homogenized solution u0 and the cell-functions χ̂j , the strong
convergence for the gradient of u0 with a corrector is known (cf. [11] Chapter 1,
section 5, [30] Chapter 8, section 3 and references therein). More precisely, suppose
that ∇yχ̂j ∈ (Lr(Y ))n, j = 1, . . . , n and ∇u0 ∈ Ls(Ω), with 1 ≤ r, s < +∞ and such
that 1/r + 1/s = 1/2. Then

∇uε −∇u0 −
n∑

j=1

∂u0

∂xj

(
∇yχ̂j

)( ·
ε

)
→ 0 strongly in L2(Ω).

Our next result gives a corrector result without any additional regularity assump-
tion on χ̂j , and its proof reduces to a few lines. We also include a new type of
corrector.

Theorem 6.1. Under the hypotheses of Theorem 5.2, one has

(6.1) ∇uε −∇u0 − Uε

(
∇yû

)
→ 0 strongly in L2(Ω).
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In the case where Aε(x) = A({x
ε }Y ), the function u0 + ε

∑n
i=1 Qε(∂u0

∂xi
)χi({ ·

ε}Y ) be-
longs to H1(Ω), and one has

(6.2) uε − u0 − ε

n∑
i=1

Qε

(
∂u0

∂xi

)
χi

({ ·
ε

}
Y

)
→ 0 strongly in H1(Ω).

Proof. From (5.15), (5.16), and Proposition 2.18(iii), one immediately has

∇uε − Uε

(
∇u0

)
− Uε

(
∇yû

)
→ 0 strongly in L2(Ω).

But since ∇u0 belongs to L2(Ω), Corollary 2.26 implies that

Uε

(
∇u0

)
→ ∇u0 strongly in L2(Ω),

whence (6.1). From (4.4) in Proposition 4.2, the function u0+ε
∑n

i=1 Qε(∂u0

∂xi
)χi({ ·

ε}Y )
belongs to H1(Ω). From (5.14), we obtain

∇u0 + Uε (∇yû) −∇
[
u0 + ε

n∑
i=1

Qε

(
∂u0

∂xi

)
χi

({ ·
ε

}
Y

)]

= −
n∑

i=1

[
Qε

(
∂u0

∂xi

)
−Mε

(
∂u0

∂xi

)]
∇yχi

({ ·
ε

}
Y

)
− ε

n∑
i=1

∇
[
Qε

(
∂u0

∂xi

)]
χi

({ ·
ε

}
Y

)
,

and using estimate (4.2), Proposition 2.25(iii), and Corollary 4.3, one immediately
gets the strong convergence in L2(Ω) of the right-hand side in the above equality.
Thanks to (6.1), one has (6.2).

We end this section by recalling the error estimates obtained by Griso in [42],
[44], and [45] for problem (5.1), with f ∈ L2(Ω).

Theorem 6.2 (see [42], [44]). Suppose that ∂Ω is of class C1,1. The solution uε

of (5.1) satisfies the following estimates:∥∥∥∇uε −∇u0 −
n∑

i=1

Qε

(
∂u0

∂xi

)
∇yχ̂i

({ .
ε

})∥∥∥
[L2(Ω)]n

≤ Cε1/2‖f‖L2(Ω),

‖uε − u0‖L2(Ω) +

∥∥∥∥∥ρ
(
∇uε −∇u0 −

n∑
i=1

Qε

(
∂u0

∂xi

)
∇yχ̂i

( .
ε

))∥∥∥∥∥
[L2(Ω)]n

≤ Cε‖f‖L2(Ω),

where χ̂i for i = 1, . . . , n is defined by (5.8) and ρ = ρ(x) is the distance between
x ∈ Ω and the boundary ∂Ω. The constant C depends on n, A, and ∂Ω.

Corollary 6.3 (see [44]). Let Ω
′
be an open set strongly included in Ω, then∥∥∥∥∥uε − u0 − ε

n∑
i=1

Qε

(
∂u0

∂xi

)
χ̂i

( .
ε

)∥∥∥∥∥
H1(Ω′ )

≤ Cε‖f‖L2(Ω).

The constant depends on n, A, Ω
′
, and ∂Ω.

In what follows in this paragraph, we suppose that the open set Ω is a bounded
domain in R

n, n = 2 or 3, of polygonal (n = 2) or polyhedral (n = 3) boundary. We
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assume that Ω is on one side only of its boundary, and that Γ0 is the union of some
edges (n = 2) or some faces (n = 3) of ∂Ω. Recall that classical regularity results
show that the solution u0 of the homogenized problem (5.6) belongs to H1+s(Ω) for s
in ]1/2, 1[ (s = 1 if the domain is convex) depending only on ∂Ω, on A0, and satisfies
the estimate

‖∇u0‖H1+s(Ω) ≤ C‖f‖L2(Ω).

The error estimate for this case is given in the following result.
Theorem 6.4 (see [45]). The solution uε of problem (5.1) satisfies the estimate∥∥∥∥∥∇uε −∇u0 −

n∑
i=1

Qε

(
∂u0

∂xi

)
∇yχ̂i

( .
ε

)∥∥∥∥∥
[L2(Ω)]n

≤ Cεs/2‖f‖L2(Ω),

‖uε − u0‖L2(Ω) +

∥∥∥∥∥ρ
(
∇uε −∇u0 −

n∑
i=1

Qε

(
∂u0

∂xi

)
∇yχ̂i

( .
ε

))∥∥∥∥∥
[L2(Ω)]n

≤ Cεs‖f‖L2(Ω).

The constants depend on n, A, and ∂Ω.
Corollary 6.5 (see [45]). Let Ω

′
be an open set strongly included in Ω, then∥∥∥∥∥uε − u0 − ε

n∑
i=1

Qε

(
∂u0

∂xi

)
χ̂i

( .
ε

)∥∥∥∥∥
H1(Ω′ )

≤ Cεs‖f‖L2(Ω).

The constant depends on n, A, Ω
′
, and ∂Ω.

7. Periodic unfolding and multiscales. As we mentioned in the Introduction,
the periodic unfolding method turns out to be particularly well-adapted to multiscales
problems. As an example, we treat here a problem with two different small scales.

Consider two periodicity cells Y and Z, both having the properties introduced
at the beginning of section 2 (each associated to its set of periods). Suppose that
Y is “partitioned” in two nonempty disjoint open subsets Y1 and Y2, i.e., such that
Y1 ∩ Y2 = ∅ and Y = Y 1 ∪ Y 2.

Let Aεδ be a matrix field defined by

Aεδ(x) =

⎧⎪⎪⎨⎪⎪⎩
A1

({x
ε

}
Y

)
for

{x
ε

}
Y
∈ Y1,

A2

({{
x
ε

}
Y

δ

}
Z

)
for

{x
ε

}
Y
∈ Y2,

where A1 is in M(α, β, Y1) and A2 in M(α, β, Z) (cf. Definition 5.1). Here we have
two small scales, namely, ε and εδ, associated, respectively, to the cells Y and Z (see
Figure 7).

Consider the problem∫
Ω

Aεδ∇uεδ∇w dx =
∫

Ω

f w dx ∀w ∈ H1
0 (Ω),

with f in L2(Ω). The Lax–Milgram theorem immediately gives the existence and
uniqueness of uεδ in H1

0 (Ω) satisfying the estimate

‖uεδ‖H1
0 (Ω) ≤

1
α
‖f‖L2(Ω).



1616 D. CIORANESCU, A. DAMLAMIAN, AND G. GRISO

Z

Y

Y1

Fig. 7. A domain with periodic scales ε and εδ.

So, there is some u0 such that, up to a subsequence,

uεδ ⇀ u0 weakly in H1
0 (Ω).

Using the unfolding method for scale ε, as before we have

Qε

(
uεδ

)
⇀ u0 weakly in H1

0 (Ω),

Tε(uεδ) ⇀ u0 weakly in L2(Ω; H1(Y )),
1
ε
Tε

(
Rε(uεδ)

)
⇀ û weakly in L2(Ω; H1(Y )),

Tε

(
∇uεδ

)
⇀ ∇u0 + ∇yû in L2(Ω × Y ).

These convergences do not see the oscillations at the scale εδ. In order to capture
them, one considers the restrictions to the set Ω × Y2 defined by

vεδ(x, y)
.=

1
ε
Tε

(
Rε(uεδ)

)
|Y2 .

Obviously,

vεδ ⇀ û|Y2 weakly in L2(Ω;H1(Y2)).

Now, we apply to vεδ, a similar unfolding operation, denoted T y
δ , for the variable y,

thus adding a new variable z ∈ Z.

T y
δ (vεδ)(x, y, z) = vεδ

(
x, δ

[y
δ

]
Z

+ δz
)

for x ∈ Ω, y ∈ Y2, and z ∈ Z.

It is essential to remark that all of the estimates and weak convergence properties
which were shown for the original unfolding Tε still hold for T y

δ , with x being a mere
parameter. For example, Proposition 4.7 and Theorem 3.5 adapted to this case imply
that

T y
δ

(
∇yvεδ

)
⇀ ∇yû|Ω2 + ∇z ũ weakly in L2(Ω × Y2 × Z),

T y
δ

(
Tε

(
∇uεδ

))
⇀ ∇u0 + ∇yû+ ∇zũ weakly in L2(Ω × Y2 × Z).

Under these conditions, the limit functions u0, û, and ũ are characterized by the
following result.
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Theorem 7.1. The functions

u0 ∈ H1
0 (Ω), û ∈ L2(Ω, H1

per(Y )/R), ũ ∈ L2(Ω × Ω2, H
1
per(Z)/R)

are the unique solutions of the variational problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
|Y ‖Z|

∫
Ω

∫
Y2

∫
Z

A2(z)
{
∇u0 + ∇yû+ ∇z ũ

}{
∇Ψ + ∇yΦ + ∇zΘ

}
dx dy dz

+
1
|Y |

∫
Ω

∫
Y1

A1(y)
{
∇u0 + ∇yû

}{
∇Ψ + ∇yΦ

}
dx dy =

∫
Ω

f Ψ dx,

∀Ψ ∈ H1
0 (Ω), ∀Φ ∈ L2(Ω; H1

per(Y )/R), ∀Θ ∈ L2(Ω × Ω2, H
1
per(Z)/R).

The proof uses test functions of the form

Ψ(x) + εΨ1(x)Φ1

(x
ε

)
+ εδΨ2(x)Φ2

({x
ε

}
Y

)
Θ2

(
1
δ

{x
ε

}
Y

)
,

where Ψ,Ψ1,Ψ2 are in D(Ω), Φ1 in H1
per(Y ), Φ2 ∈ D(Y2), and Θ2 ∈ H1

per(Z).
Remark 7.2. The same theorem holds true for a general Aεδ under the hypotheses

Tε(Aεδ) 1Y1 → A1 strongly in [L1(Ω × Y1)]n×n,

T y
δ

(
Tε(Aεδ) 1Y2

)
→ A2 strongly in [L1(Ω × Y2 × Z)]n×n.

Proposition 5.9 (convergence of the energy) and Corollary 5.11 extend without
any difficulty to the multiscale case.

Proposition 7.3. The convergence for the energy holds true:

lim
ε,δ→0

∫
Ω

Aεδ∇uεδ∇uεδ dx

=
1

|Y ‖Z|

∫
Ω

∫
Y2

∫
Z

A2(z)
{
∇u0 + ∇yû+ ∇zũ

}{
∇u0 + ∇yû+ ∇z ũ

}
dx dy dz

+
1
|Y |

∫
Ω

∫
Y1

A1(y)
{
∇u0 + ∇yû

}{
∇u0 + ∇yû

}
dx dy.

Corollary 7.4. The following strong convergences hold true:

T y
δ

(
∇yvεδ

)
⇀ ∇yû|Ω2 + ∇zũ strongly in L2(Ω × Y2 × Z),

T y
δ

(
Tε

(
∇uεδ

))
⇀ ∇u0 + ∇yû+ ∇z ũ strongly in L2(Ω × Y2 × Z).

Remark 7.5. A corrector result, similar to that of Theorem 6.1, can be obtained.
Remark 7.6. Theorem 7.1 can be extended to the case of any finite number of

distinct scales by a simple reiteration.

8. Further developments. The unfolding method has some interesting prop-
erties which make it suitable for more general situations than that presented here. In
problems which are set on a domain Ωε which depends on the parameter ε, it may be
difficult to have a good notion of convergence for the sequence of solutions uε. The
traditional way is to extend the solution by 0 outside Ωε; however, this precludes the
strong convergence of these extended functions in general. For the case of holes of the
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size of order ε distributed ε-periodically, the unfolded sequence lives on a fixed do-
main. Similarly, for domains with ε-oscillating boundaries, a partial unfolding yields
a function which is defined on a fixed domain.

We conclude by giving a list of publications making use of the unfolding method
in several of these directions (both for linear and nonlinear problems).

– Reiterated homogenization: Meunier and Van Schaftingen [56].
– Electro-magnetism: Banks et al. [7], Bossavit, Griso, and Miara [15].
– Homogenization of thin piezoelectric shells: Ghergu et al. [39].
– Homogenization of diffusion deformation media: Griso and Rohan [46].
– Homogenization of the Stokes problem in porous media: Cioranescu, Damlamian,

and Griso [25].
– Homogenization in perforated domains with Robin boundary conditions: Cio-

ranescu, Donato and Zaki [31], [32].
– Homogenization in domains with oscillating boundaries: Damlamian and Pet-

tersson [36].
– Homogenization of nonlinear integrals of the calculus of variations: Cioranescu,

Damlamian, and De Arcangelis [27], [28], and [29].
– Homogenization of multivalued monotone operators of Leray–Lions type:

Damlamian, Meunier, and Van Schaftingen [37].
– Thin junctions in linear elasticity: Blanchard, Gaudiello, and Griso [12], [13],

Blanchard and Griso [14].
– Thin domains and free boundary problems arising in lubrication theory:

Bayada, Martin, and Vazquez [9], [10].
– Elasticity problems in perforated domains: Griso and Sanchez-Rua [47].
– Neumann sieve and Dirichlet shield problems: Onofrei [60], Cioranescu et al.

[26]. This last paper treats the case of domains with ε-periodically distributed “very
small” holes (their size being a power of ε) on the boundary of which a homogeneous
Dirichlet condition is prescribed. This requires the introduction of a rescaled unfolding
operator (which originally appeared in the framework of the two-scale convergence in
Casado-Dı́az [20]).

Aknowledgments. We thank Petru Mironescu and Riccardo De Arcangelis for
helpful comments and corrections.
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ON THE ASYMPTOTIC STABILITY OF SMALL NONLINEAR
DIRAC STANDING WAVES IN A RESONANT CASE∗

NABILE BOUSSAID†

Abstract. We study the behavior of perturbations of small nonlinear Dirac standing waves. We
assume that the linear Dirac operator of reference H = Dm + V has only two double eigenvalues
and that degeneracies are due to a symmetry of H (theorem of Kramers). In this case, we can
build a small four-dimensional manifold of stationary solutions tangent to the first eigenspace of
H. Then we assume that a resonance condition holds, and we build a center manifold of real
codimension 8 around each stationary solution. Inside this center manifold any Hs perturbation of
stationary solutions, with s > 2, stabilizes towards a standing wave. We also build center-stable
and center-unstable manifolds, each one of real codimension 4. Inside each of these manifolds, we
obtain stabilization towards the center manifold in one direction of time, while in the other, we have
instability. Eventually, outside all of these manifolds, we have instability in the two directions of
time. For localized perturbations inside the center manifold, we obtain a nonlinear scattering result.

Key words. Dirac equation, nonlinear PDE, asymptotic stability, Strichartz estimates, smooth-
ness estimates, center manifold
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Introduction. We study the asymptotic stability of stationary solutions of a
time-dependent nonlinear Dirac equation.

A localized stationary solution of a given time-dependent equation represents a
bound state of a particle. Like Rañada [39], we call it a particle-like solution (PLS).
Many works have been devoted to the proof of the existence of such solutions for a
wide variety of equations. Although their stability is a crucial problem (in particular,
in a numerical computation or experiment), less attention has been devoted to this
issue.

In this paper, we deal with the problem of stability of small PLSs of the following
nonlinear Dirac equation:

i∂tψ = (Dm + V )ψ + ∇F (ψ),(0.1)

where ∇F is the gradient of F : C
4 �→ R for the standard scalar product of R

8.
Here, Dm is the usual Dirac operator (see Thaller [48]) acting on L2(R3,C4):

Dm = α · (−i∇) +mβ = −i
3∑

k=1

αk∂k +mβ,

where m ∈ R
∗
+, α = (α1, α2, α3), and β are C

4 Hermitian matrices satisfying⎧⎪⎨⎪⎩
αiαk + αkαi = 2δik1C4 , i, k ∈ {1, 2, 3},
αiβ + βαi = 0C4 , i ∈ {1, 2, 3},
β2 = 1C4 .
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Here, we choose

αi =

(
0 σi

σi 0

)
and β =

(
IC2 0
0 −IC2

)
,

where σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

In (0.1), V is the external potential field, and F : C
4 �→ R is a nonlinearity with the

following gauge invariance:

∀(θ, z) ∈ R × C
4, F (eiθz) = F (z).(0.2)

Some additional assumptions on F and V will be made in what follows. Nonlinearity
with no potential arises in some Dirac models introduced by physicists to model either
extended particles with self-interaction or particles in space-time with geometrical
structure. In the latter case, physicists have shown that a relativistic theory sometimes
imposes a fourth order nonlinear potential (i.e., a cubic nonlinearity) such as the
square of a quadratic form on C

4; see Rañada [39] and the references therein. We
added a potential with special features to ensure the existence of small stationary
solutions, whose existence and stability are easier to study.

Stationary solutions (PLSs) of (0.1) take the form ψ(t, x) = e−iEtφ(x), where φ
satisfies

Eφ = (Dm + V )φ+ ∇F (φ).(0.3)

We show that there exists a manifold of small solutions to (0.3) tangent to the first
eigenspace of Dm + V (see Proposition 1.1 below).

Concerning the asymptotic stability in the Schrödinger equation, the question
has been solved in several cases. For small stationary solutions in the simple eigen-
value case it has been studied by Soffer and Weinstein [43, 44], Pillet and Wayne
[38], and Gustafson, Nakanishi, and Tsai [22]. For the two eigenvalue case under a
resonance condition for an excited state, the problem has been studied by Tsai and
Yau [51, 53, 54, 52, 50] and Soffer and Weinstein [45, 46]. Another problem has been
studied by Cuccagna [16, 17, 18], who considered the case of a big PLS, when the
linearized operator has only one eigenvalue, and obtained the asymptotic stability of
the manifold of ground states. Schlag [41] proved that any ground state of the cubic
nonlinear Schrödinger equation in dimension 3 is orbitally unstable but possesses a
stable manifold of codimension 9.

We also would like to mention the works of Buslaev and Perel’mann [12, 10, 11, 9],
Buslaev and Sulem [14, 13], Weder [55], and Krieger and Schlag [31] in the one-
dimensional Schrödinger case. Krieger and Schlag [31] proved a result similar to
[41] in the one-dimensional case. Concerning two-dimensional nonlinear Schrödinger
equations, Mizumachi [35, 36] studied the properties of unstable solutions, while Kirr
and Zarnescu [30] proved the existence of small asymptotically stable states in a
semilinear case.

In [7], we prove that there are stable directions for the PLS manifold under a
nonresonance assumption on the spectrum of H := Dm + V . This gives a stable
manifold containing the PLS manifold. But we were not able to say anything about
solutions starting outside the stable manifold.
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The results we present here state the existence of a stable manifold and describe
the behavior of solutions starting outside of it. In fact, we prove the instability of the
perturbations starting outside the stable manifold. We also prove stabilization to-
wards stationary solutions inside the stable manifold for Hs perturbation with s > 2.
We have been able to obtain it since we impose a resonance condition (see Assump-
tion 1.5 below), while in [7], we assumed that there is no resonance phenomena.

When the perturbations are localized, we are able to push the analysis further
and obtain a nonlinear scattering.

This paper is organized as follows.
In section 1, we present our main results and the assumptions we need. Subsec-

tion 1.1 is devoted to the statement of the time decay estimates of the propagator
associated with H = Dm + V on the continuous subspace. One estimate is a kind of
smoothness result, in the sense of Kato (see, e.g., [27]), and the other is a Strichartz-
type result. We prove these estimates with the propagation and dispersive estimates
proved in [7]. In subsection 1.2, we state the existence of small stationary states
forming a manifold tangent to an eigenspace of H . The study of the dynamics around
such states leads us to our main results; see subsection 1.3 and 1.4. In subsection 1.3,
we split a neighborhood of a stationary state into different parts, each giving rise to
stabilization or instability. In subsection 1.4, we state our scattering result.

To prove our theorems, we consider our nonlinear system as a small perturbation
of a linear equation. More precisely, in subsection 2.2, we show that the spectral
properties of the linearized operator around a stationary state, presented in section 2,
permit us to obtain, as in the linear case, some properties of the dynamics around a
stationary state. We obtain center, center-stable, and center-unstable manifolds. In
section 3, we obtain, with our time decay estimates, a stabilization towards the PLS
manifold for Hs perturbation with s > 2 in the center manifold. Section 4 deals with
the dynamics outside the center manifold. Eventually in section 5, we conclude our
study.

Our results are the analogue, in the Dirac case, of some results of Tsai and Yau
[54], Soffer and Weinstein [43], Pillet and Wayne [38], and Gustafson, Nakanishi, and
Tsai [22] about the semilinear Schrödinger equation. The point which we did not
investigate is the long time behavior of perturbation in the unstable direction. In
[51, 53, 54, 52, 50, 45, 46], the authors show that such perturbations relax towards
the ground states. Their analyses are based on the asymptotic stability of ground
states under a resonance condition. In our case this question is still open and should
be investigated. But we believe that the techniques used in the previously cited
works will allow us to obtain a similar result. Indeed the phenomenon that leads to
this relaxation, namely nonlinear resonance, is not specific to the Shrödinger operator
or nonnegative operators. Such a phenomenon comes from the interaction between
discrete and continuous modes allowed by the nonlinearity. So a Fermi golden rule
assumption should have the same consequences in both Shrödinger and Dirac equa-
tions.

We should also mention that four manifolds appear in this paper: the PLS man-
ifold, the center manifold, the center-stable manifold, and the center-unstable man-
ifold. The PLS manifold used to be called center manifold by previous papers on
the same subject. The terminology we choose to adopt here comes from dynamical
system theory and especially from the center manifold theorem. All these manifolds
are invariant manifolds of our equation, at least locally in time. The PLS manifold is
a set of stationary solutions, while the center manifold is a set of solutions converging
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to the PLS manifold and containing the PLS manifold. The center manifold in turn
is the intersection of the center-stable and center-unstable manifolds. The roles of the
center-stable and center-unstable manifolds are exchanged when time is reversed.

This paper is devoted to the study of the asymptotic stability of some Dirac equa-
tions. So we are investigating convergence of orbits. As far as we know, the question
of the orbital stability which requires the orbits to stay close and not necessarily to
converge is still open for Dirac equations. In the Schrödinger case, orbital stability
results (see, e.g., [15], [56, 57], or [42, 21]) give that any solution stays near the PLS
manifold. Unfortunately, orbital stability criteria applied to Schrödinger equations
use the fact that Schrödinger operators are bounded from below. Hence the question
of orbital stability for Dirac standing waves cannot be solved by a straightforward
application of the methods used in the Schrödinger case.

1. Assumptions and statements.

1.1. Time decay estimates. We generalize, to small nonlinear perturbations,
stability results for linear systems. These results, as in [7], follow from linear de-
cay estimates. Here we use smoothness-type and Strichartz-type estimates deduced
from propagation and dispersive estimates of [7]. Hence, we work within the same
assumptions for V and Dm + V .

Assumption 1.1. The potential V : R
3 �→ S4(C) (self-adjoint 4 × 4 matrices) is a

smooth function such that there exists ρ > 5 with

∀α ∈ N
3, ∃C > 0, ∀x ∈ R

3, |∂αV |(x) ≤ C

〈x〉ρ+|α| .

We notice that by the Kato–Rellich theorem, the operator

H := Dm + V

is essentially self-adjoint on C∞
0 (R3,C4) and self-adjoint on H1(R3,C4).

We also mention that Weyl’s theorem gives that the essential spectrum of H is
(−∞,−m]∪ [+m,+∞), and the work of Berthier and Georgescu [5, Theorems 6 and
A] gives that there is no embedded eigenvalue. Hence the thresholds ±m are the
only points of the continuous spectrum which can be associated with a wave of zero
velocity. These waves perturb the spectral density and diminish the decay rate in the
propagation and the dispersive estimates. We will work (as in [7]) within the following
assumption.

Assumption 1.2. The operator H presents no resonance at thresholds and no
eigenvalue at thresholds.

A resonance is a stationary solution in H1/2
−σ \H1/2 for any σ ∈ (1/2, ρ−2), where

H
t

σ is given by the following definition.
Definition 1.1 (weighted Sobolev space). The weighted Sobolev space is defined

by

Ht
σ(R3,C4) =

{
f ∈ S′(R3), ‖〈Q〉σ〈P 〉tf‖2 <∞

}
for σ, t ∈ R. We endow it with the norm

‖f‖Ht
σ

= ‖〈Q〉σ〈P 〉tf‖2.

If t = 0, we write L2
σ instead of H0

σ.
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We have used the usual notation: 〈u〉 =
√

1 + u2, P = −i∇, and Q is the operator
of multiplication by x in R

3.
Remark 1.1. Assumption 1.2 is generic in the following sense.
If V does not fulfill Assumption 1.2, then (1 ± ε)V does for nonzero small ε. As

in [26, section 3] one can prove that resonances and eigenvalues at theresholds at
±m are in the kernel of 1 + (Dm ∓m)−1V in H

1/2
σ for any σ ∈ (1/2, ρ − 2). Since

(Dm ∓ m)−1V is a compact operator in H
1/2
σ (see proof of Lemma 1.1 below) for

any σ ∈ (1/2, ρ − 2), its spectrum is discrete, and hence if −1 is in its spectrum,
then −1 is not in the spectrum of λ(Dm ∓ m)−1V for λ �= 1 but close to 1. This
remark can be extended to any analytic operator valued functions λ→ V (λ) satisfying
Assumption 1.1.

Under the previous assumption one can prove the following lemma.
Lemma 1.1. The discrete spectrum of H is finite.
Proof. To prove this lemma we show that there is no eigenvalue in a neighborhood

of the thresholds ±m. Since there is no other possible accumulation point for the
discrete spectrum, this will be sufficient.

We will do the proof for m, since it is similar for −m. To do so, we show that
(H − z)−1 exists from H

−1/2
σ to H1/2

−σ for any σ ∈ (1/2, ρ− 2) and z close to m and
�z < m. Since isolated eigenvectors belong to H

−1/2
σ (see [23]), this will give the

desired result.
We use the formula

H − z = (Dm − z)
(
1 + (Dm − z)−1V

)
for z close to m and �z < m. From [7, Proposition 2.4] (or [26, Lemma 2.1] and [48,
section 1.E]), z �→ (Dm − z)−1 is a continuous map from {z ∈ C,�z > 0,�z > 0}
to B(H−1/2

σ , H
1/2
−σ ) for any σ ∈ (1/2, ρ− 2). The point is to prove the invertibility of(

1 + (Dm − z)−1V
)

in H−1/2
σ . Using continuity and Assumption 1.1, we see that it is

enough to prove that
(
1 + (Dm −m)−1V

)
is invertible in H

−1/2
σ . This follows from

Assumption 1.2 (see [7, Lemma 2.2 and Proof of Proposition 2.3]).
Now let

Pc(H) = 1(−∞,−m|∪[+m,+∞)(H)

be the projector associated with the continuous spectrum of H and let Hc be its
range. Using [7, Theorem 1.1], we obtain a limiting absorption principle which gives
the H-smoothness of 〈Q〉−1 in the sense of Kato.

Theorem 1.1 (Kato smoothness estimates). If Assumptions 1.1 and 1.2 hold,
then for any σ ≥ 1 and s ∈ R one has∥∥∥〈Q〉−σ

e−itHPc (H)ψ
∥∥∥

L2
t (R,Hs)

≤ C ‖ψ‖Hs ,(1.1)

∥∥∥∥∫
R

eitHPc (H) 〈Q〉−σ F (t) dt
∥∥∥∥

Hs

≤ C ‖F‖L2
t (R,Hs) ,(1.2)

∥∥∥∥∫
s<t

〈Q〉−σ
e−i(t−s)HPc (H) 〈Q〉−σ

F (s) ds
∥∥∥∥

L2
t (R,Hs)

≤ C ‖F‖L2
t (R,Hs) .(1.3)
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Proof. We first prove (1.1). For s = 0, it is (see, e.g., [1, Proposition 7.11] or [40,
Theorem XIII.25]) a consequence of the limiting absorption principle:

sup
�z∈(0,1)

{∥∥∥〈Q〉−σ (H − z)−1
Pc(H) 〈Q〉−σ

∥∥∥
2

}
<∞,(1.4)

which follows from [7, Theorem 1.1] (or Theorem 3.1 below) for σ > 5/2 using the
fact that the Fourier transform in time of the propagator is the resolvent. Actually,
the Fourier transform of

〈Q〉−σ
e−it(H−iε)Pc (H)1R∗

+
(t) 〈Q〉−σ

f

in time is

〈Q〉−σ (H − λ− iε)−1Pc (H) 〈Q〉−σ
f

for f ∈ L2(R3,C4). Then we use the Born expansion

(H−z)−1 = (Dm−z)−1−(Dm−z)−1V (Dm−z)−1+(Dm−z)−1V (H−z)−1V (Dm−z)−1,

the limiting absorption in [25, Theorem 2.1(i)] (the authors prove the identity (1.4)
for H = Dm when σ = 1), [7, Proposition 2.3], and the fact that ‖(1 − Pc(H))‖B(H

1/2
σ )

is bounded (since the discrete spectrum is finite and eigenvectors are exponentially
decaying; see [23]) to obtain (1.4) for σ = 1. Hence we have concluded the proof for
s = 0 and σ ≥ 1. For s ∈ 2Z and σ ≥ 1 it follows from the previous cases using the
boundedness of 〈H〉s〈Dm〉−s and 〈H〉−s〈Dm〉s (which follow from the boundedness of
V and its derivatives) and the boundedness of 〈Q〉∓σ[〈Q〉±σ, H〉s]〈H〉−s (which follow
from multicommutator estimates; see [24, Appendix B]). The rest of the claim (1.1)
follows by interpolation.

Estimates (1.1) and (1.2) are equivalent by duality.
To prove estimate (1.3) when s = 0 (the general case will follow in the same way

as above), we notice that we have to prove that there exists C > 0 such that, for all
F,G ∈ L2

t (R, L2(R3,C4)), we have∣∣∣∣∫∫
R2

〈
G(t), 〈Q〉−σ

e−i(t−s)HPc (H) 1R∗
+

(t− s) 〈Q〉−σ
F (s)

〉
dsdt

∣∣∣∣
≤ C ‖G‖L2

t (R,L2(R3,C4)) ‖F‖L2
t (R,L2(R3,C4)) .

We can suppose that F and G are smooth functions with compact support from R×R
3

to C
4 and we just need to prove that there exists C > 0 such that, for all ε > 0 and

for all F,G ∈ C∞
0 (R, L2(R3,C4)), we have∣∣∣∣∫∫

R2

〈
G(t), 〈Q〉−σ

e−i(t−s)(H−iε)Pc (H) 1R∗
+

(t− s) 〈Q〉−σ
F (s)

〉
dsdt

∣∣∣∣
≤ C ‖G‖L2

t (R,L2(R3,C4)) ‖F‖L2
t (R,L2(R3,C4)) .

Then we take the limit as ε→ 0 and conclude using density arguments. Let us write
Aε(t) for 〈Q〉−σ

e−it(H−iε)Pc (H) 1R∗
+

(t) 〈Q〉−σ; then we have to prove∣∣∣∣∫
R

〈G(t), (Aε ∗ F )(t)〉 dt
∣∣∣∣ ≤ C ‖G‖L2

t (R,L2(R3,C4)) ‖F‖L2
t(R,L2(R3,C4)) .
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Using Plancherel’s identity in L2
t (R, L2(R3,C4)) and Aε ∗ F ∈ L2

t (R, L2(R3,C4)), we
just need to prove∣∣∣∣∫

R

〈
Ĝ(λ), Âε ∗ F (λ)

〉
dλ

∣∣∣∣ ≤ C
∥∥∥Ĝ∥∥∥

L2
λ(R,L2(R3,C4))

∥∥∥F̂∥∥∥
L2

λ(R,L2(R3,C4))
.

Since the Fourier transform in time of the propagator is the resolvent, F is smooth
with compact support, and ε > 0, we obtain

Âε ∗ F (λ) = 〈Q〉−σ (H − λ− iε)−1Pc (H) 〈Q〉−σ F̂ (λ).

Hence we just have to prove∣∣∣∣∫
R

〈
Ĝ(λ), 〈Q〉−σ (H − λ− iε)−1Pc (H) 〈Q〉−σ

F̂ (λ)
〉
dλ

∣∣∣∣
≤ C

∥∥∥Ĝ∥∥∥
L2

λ
(R,L2(R3,C4))

∥∥∥F̂∥∥∥
L2

λ
(R,L2(R3,C4))

.

This in turn follows from the limiting absorption principle (1.4) just proved.
To state the next result, we need the following definition.
Definition 1.2 (Besov space). For s ∈ R and 1 ≤ p, q ≤ ∞, the Besov

space Bs
p,q(R3,C4) is the space of all f ∈ S′(R3,C4) (dual of the Schwartz space)

such that

‖f‖Bs
p,q

=

⎛⎝∑
j∈N

2jsq‖ϕj ∗ f‖q
p

⎞⎠
1
q

< +∞

with ϕ̂ ∈ C∞
0 (Rn \ {0}) such that

∑
j∈Z

ϕ̂(2−jξ) = 1 for all ξ ∈ R
3 \ {0}, ϕ̂j(ξ) =

ϕ̂(2−jξ) for all j ∈ N
∗ and for all ξ ∈ R

3, and ϕ̂0 = 1−
∑

j∈N∗ ϕ̂j . It is endowed with
the natural norm f ∈ Bs

p,q(R3,C4) �→ ‖f‖Bs
p,q

.
Using the dispersive estimates of [7, Theorem 1.2] and [29, Theorem 10.1], we

obtain the following theorem.
Theorem 1.2 (Strichartz estimates). If Assumptions 1.1 and 1.2 hold, then for

any 2 ≤ p, q ≤ ∞, θ ∈ [0, 1], with (1 − 2
q )(1 ± θ

2 ) = 2
p and (p, θ) �= (2, 0), and for any

reals s, s′ with s′ − s ≥ α(q), where α(q) = (1 + θ
2 )(1 − 2

q ), there exists a positive
constant C such that∥∥e−itHPc(H)ψ

∥∥
Lp

t (R,Bs
q,2(R3,C4))

≤ C ‖ψ‖Hs′ (R3,C4) ,(1.5) ∥∥∥∥∫ eitHPc(H)F (t) dt
∥∥∥∥

Hs

≤ C ‖F‖
Lp′

t (R,Bs′
q′,2

(R3,C4))
,(1.6)

∥∥∥∥∫
s<t

e−i(t−s)HPc(H)F (s) ds
∥∥∥∥

Lp
t (R,B−s

q,2(R3,C4))

≤ C ‖F‖
Lp̃′

t (R,Bs̃
q̃′,2

(R3,C4))
,(1.7)

for any r ∈ [1,∞], (q̃, p̃) chosen like (q, p), and s+ s̃ ≥ α(q) + α(q̃).
Proof. This is a consequence of [29, Theorem 10.1] applied to U(t) = e−itHPc(H),

using [7, Theorem 1.2] (or Theorem 3.2 below) and

B
(1+ θ

2 )(1− 2
q )+s

q,2 ↪→ (Hs, B
1+θ/2+s
1,2 )2/((1±θ/2)p),2
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continuously for p ≥ 2 (p �= 2 if θ = 0) and 1/q = 1 − 1/((1 ± θ/2)p). For these
embeddings, we refer to the proof of [4, Theorem 6.4.5] as well as the properties of
the real interpolation (see [4] or [49]). More precisely, for θ = 0 or 1 it is obvious. In
the other cases, we work as in the proof of [4, Theorem 6.4.5(3)].

We use [4, Theorem 6.4.3] (Bs
p,2 is a retract of ls2(Lp) for s ∈ R and p, q ∈

[1,∞]) and [4, Theorem 5.6.2] (about the interpolation of ls2(Lp) spaces) with [4,
Theorem 5.2.1] (about the interpolation of Lp spaces). Then we conclude using the
injection of Lp spaces into some Lorentz spaces [4, section 1.3 and Exercice 1.6.8].

In the case θ �= 0, the proof is actually simpler. We can prove it using the usual
TT ∗ method and the Hölder inequality instead of the Hardy–Littlewood–Sobolev
inequality.

1.2. The manifold of PLS. We study the nonlinear Dirac equation{
i∂tψ = Hψ + ∇F (ψ),
ψ(0, ·) = ψ0

(1.8)

with ψ ∈ C1(I,H1(R3,C4)) for some real open interval I which contains 0 and H =
Dm + V . The nonlinearity F : C

4 �→ R is a differentiable map for the real structure
of C

4, and hence the ∇ symbol has to be understood for the real structure of C
4: for

the usual Hermitian product of C
4, one has

DF (v)h = �〈∇F (v), h〉.

If F has a gauge invariance (see (0.2) or Assumption 1.4), this equation may have
stationary solutions, i.e., solutions of the form e−iEtφ0, where φ0 satisfies the nonlinear
stationary equation

Eφ0 = Hφ0 + ∇F (φ0).

We notice that the Dirac operatorDm has an interesting invariance property due to its
matrix structure. This invariance can be shared by some perturbed Dirac operators
and gives a consequence of a theorem of Kramers; see [2, 37]. Indeed if we introduce
K, the antilinear operator defined by

K

(
ψ

χ

)
=

(
σ2ψ

σ2χ

)
with σ2 =

(
0 −i
i 0

)
,(1.9)

the operator Dm commutes with K. So if V also commutes with K, we obtain that
the eigenspaces of H are always of even dimension. Here we work with the following
assumption.

Assumption 1.3. The potential V commutes to K. The operator H := Dm + V
has only two double eigenvalues λ0 < λ1, with {φ0,Kφ0} and {φ1,Kφ1} as associated
orthonormalized bases.

Remark 1.2. This assumption is fulfilled by V = λφβ, where φ is a smooth
version of the characteristic function of the unit ball and λ is big enough to obtain a
first set of double eigenvalues ±E with E close to m for H but not too much to avoid
the appearance of a second set of eigenvalues. Computations have been sketched in
[6], and similar ones have been done in detail for V = λφIdC4 in [47].

We also need the next assumption.



STABILITY OF SMALL NONLINEAR DIRAC STANDING WAVES 1629

Assumption 1.4. The function F : C
4 �→ R is in C∞(R8,R) and satisfies F (z) =

O(|z|4) as z → 0. Moreover, it has the following invariance property:

∀z ∈ C
4, ∀u1, u2 ∈ C

2 with |u1|2 + |u2|2 = 1, F (u1z + u2Kz) = F (z).

Remark 1.3. The invariance property is actually equivalent to both the gauge
invariance with respect to the semigroups generated by i and eiθK for all real θ.

We note that this assumption includes the cubic nonlinearity mentionned in the
introduction. We were not able to go beyond the cubic order in the present work.
This comes from the fact that here orbital stability does not hold or, equivalently, we
have no a priori control in the L2 norm of the perturbation. We bound it with L∞

t H
s

and L2
tB

β
∞,2 (s > β+ 2 > 2) using Duhamel’s formula and Theorem 1.2. Our method

asks the nonlinearity to be at least cubic; see the proof of Lemma 3.8.
We also note that both the nonlinearity and the potential are smooth. This is

not optimal. Concerning the nonlinearity, what we have in mind is a smooth cubic
nonlinearity. For instance, a nonlinearity of class C4 should be enough. It can be
improved, but we are not looking for an optimal result in this direction. The advantage
of choosing smooth potentials and nonlinearities here is that it allows stationary states
to be smooth. It also avoids having to introduce a new parameter giving a bound for
the regularity of our solutions.

We obtain the following proposition.
Proposition 1.1 (PLS manifold). If Assumptions 1.1–1.4 hold, then for any σ ∈

R
+, there exist Ω, a neighborhood of 0 in C

2; a smooth map

h : Ω �→ {φ0,Kφ0}⊥ ∩H2(R3,C4) ∩ L2
σ(R3,C4);

and a smooth map E : Ω �→ R such that S((u1, u2)) = u1φ0 + u2Kφ0 + h((u1, u2))
satisfies, for all U ∈ Ω,

HS(U) + ∇F (S(U)) = E(U)S(U),(1.10)

with the following properties:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h((u1, u2)) =
(

u1

|(u1,u2)|IdC4 + u2

|(u1,u2)|K
)
h ((|(u1, u2)|, 0)) ∀U = (u1, u2) ∈ Ω,

h(U) = O(|U |2),

E(U) = E(|U |),

E(U) = λ0 +O(|U |2).

Proof. This result is adapted from [38, Proposition 2.2] after the reduction due
to the invariance of the problem with respect to K.

Moreover, we have the following lemma.
Lemma 1.2 (exponential decay). For any β ∈ N

4, s ∈ R
+, and p, q ∈ [1,∞],

there exist γ > 0, ε > 0, and C > 0 such that for all U ∈ BC2(0, ε) one has

‖eγ〈Q〉∂β
US(U)‖Bs

p,q
≤ C‖S(U)‖2,

where

∂β
(u1,u2)

=
∂|β|

∂β1�u1∂β2�u1∂β3�u2∂β4�u2
.

Proof. This is proved as in [7, Lemma 4.1], where we used ideas from [23].
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1.3. The unstable manifold and the stabilization. Each stationary solution
previously introduced has, as in [7], a stable manifold. Under the following assump-
tion, we can prove that a small perturbation of a stationary solution starting outside
of this manifold leaves any neighborhood of this stationary solution. We work with
the following assumption.

Assumption 1.5. The resonant condition

|λ1 − λ0| > min{|λ0 +m|, |λ0 −m|}

holds. Moreover, we have the Fermi golden rule

Γ(φ) > 0,(1.11)

where, for any nonzero eigenvector φ associated with λ0, Γ(φ) is given by

Γ(φ) = lim
ε→0,ε>0

〈
d2F (φ)φ1,� ((H − λ0) + (λ1 − λ0) − iε)−1 Pc(H)d2F (φ)φ1

〉
.

In this assumption, the notation d2F denotes the differential of ∇F with respect
to the real structure of C

4. Let us introduce the linearized operator JH(U) around a
stationary state S(U):

H(U) = H + d2F (S(U)) − E(U).

We note that the operator H(U) is not C-linear but only R-linear. Hence we work
with the space L2(R3,R4 × R

4) instead of L2(R3,C4) by writing(
�φ
�φ

)
instead of φ. The multiplication by −i becomes the operator

J =

(
0 IR4

−IR4 0

)
.

Now we mention some spectral properties of the real operator JH(U) in L2(R3,C8)
(the complexification of L2(R3,R4×R

4)) which are needed to state and to understand
our main theorem. These properties will be proved in subsection 2.1.

Proposition 1.2 (spectrum of JH(U)). The operator JH(U) in L2(R3,C4×C
4)

has a four-dimensional algebraic kernel, and its spectrum is symmetric with respect
to the imaginary and real axes.

Outside the imaginary axis the spectrum is discrete. The sum of the algebraic
eigenspaces associated with the right of the imaginary axis (i.e., associated with {z ∈
C,�z > 0}) is stable under complex conjugation, and its dimension is 4. The same
is true for the left of the imainary axis.

The rest of the spectrum is the essential (or continuous) spectrum. We write
Hc(U) for the space associated with the continuous spectrum. The space JHc(U) is
the orthogonal of the previous eigenspaces and the geometric kernel of JH(U) and is
invariant by the complex conjugation.

Proof. See subsection 2.1 below.
We will work on the real part of the previous spaces. Let Xu(U) ⊂ L2(R3,R4×R

4)
be the real part of the sum of the spectral subspaces associated with {z ∈ C,�z > 0}.
We introduce a real basis (ξi(U))i=1,...,4 of Xu(U).
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We will also work in the real part of the sum of the spectral subspaces associ-
ated with {z ∈ C,�z < 0}: Xs(U) ⊂ L2(R3,R4 × R

4). We introduce a real basis
(ξi(U))i=5,...,8 of Xs(U).

We define ξ(U) = (ξi(U))i=1,...,8. We can state our main theorems which will be
proved in sections 2–5.

Theorem 1.3 (central manifold and asymptotic stability). If Assumptions 1.1–
1.5 hold, then, for s > β + 2 > 2 and σ > 3/2, there exist ε > 0, a continuous map
r : BC2(0, ε) �→ R with r(U) = O(|U |2), C > 0, V a neighborhood of (0, 0) in

S = {(U, z) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs(0, r(U))}

endowed with the metric of C
2 ×Hs, and a map Ψ : V �→ R

8, smooth on V \ (0, 0),
satisfying for any nonzero U ∈ BC2(0, ε)

‖Ψ(U, z)‖ = O(‖z‖2
Hs)

for all z ∈ Hc(U) ∩BHs(0, r(U)) with (U, z) ∈ V such that the following is true.
For any initial condition of the form

ψ0 = S(U0) + z0 +A · ξ(U0)

with (U0, z0) ∈ V and A = Ψ(U0, z0), there exists a solution ψ ∈ ∩2
k=0Ck

(
R, Hs−k

)
of

(1.8) with initial condition ψ0, and this solution is unique in L∞((−T, T ), Hs(R3,C4))
for any T > 0.

Moreover, we have for all t ∈ R

ψ(t) = e−i
∫

t
0

E(U(v)) dvS(U(t)) + ε(t)(1.12)

with ‖U̇‖Lq(R) ≤ C‖z0‖2
Hs for all q ∈ [1,∞], limt→±∞ U(t) = U±∞, and

max
{
‖ε‖L∞(R±,Hs) , ‖ε‖L2(R±,Hs

−σ) , ‖ε‖L2(R±,Bβ
∞,2)

}
≤ C‖z0‖Hs .

Remark 1.4. We mention that to our knowledge the local well-posedness of the
Cauchy problem associated with (1.8) has not been obtained for initial data in the
energy spaceH1. Some results are available for slightly bigger spaces; see, for instance,
the work of Escobedo and Vega [19] and Machihara, Nakamura, Nakanishi, and Ozawa
[34, 33, 32].

In our case, we work with data in Hs with s > 2; this comes from the fact that
we use inhomogeneous Strichartz estimates (1.7) with q = q̃ = ∞ (see the proof of
Lemma 3.8).

Theorem 1.4 (center-stable and center-unstable manifolds). With the same
assumptions and notation as in Theorem 1.3, let CM be the graph of (U, z) ∈ V �→
S(U) + z + Ψ(U, z) · ξ(U). Then for the set

S̃ = {(U, z, p) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs(0, r(U)), p ∈ BR4(0, r(U))}

endowed with the metric of C
2 ×Hs × R

4, there exist C > 0, γ > 0, neighborhoods
W± of (0, 0, 0) in S̃, and maps Φ± : W± �→ R

4, smooth on W± \ {(0, 0, 0)} with

‖Φ±(U, z, p)‖ = O(‖z‖2
Hs + ‖p‖2)
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for all (U, z, p) ∈ W±, such that for any initial condition of the form

ψ0 = S(U0) + z0 + (p+, p−).ξ(U0)

not in CM, i.e.,

(p+, p−) �= Ψ(U0, z0),

the following is true.
1. If (U0, z0, p+) ∈ W+ and p− = Φ+(U0, z0, p+) (resp., if (U0, z0, p−) ∈ W− and
p+ = Φ−(U0, z0, p−)), then for any small neighborhood O of S(U0) containing
ψ0 there exist t+ > 0 (resp., t− > 0) and a solution

ψ+ ∈ ∩2
k=0Ck([−t+; +∞), Hs−k),

respectively,

ψ− ∈ ∩2
k=0Ck((−∞; t−], Hs−k),

of (1.8) with initial condition ψ0, and in L∞((−T ′, T ), Hs(R3,C4)) this solu-
tion is unique for any T > 0 (resp., T ∈ (0, t−)) and any T ′ ∈ (0, t+) (resp.,
T ′ < 0).
Moreover, there exist C > 0, φ±(t) ∈ CM, and ρ+(t) ∈ Xs(U0) (resp.,
ρ−(t) ∈ Xu(U0))) for all t > −t+ (resp., for all t < t−) such that ψ±(t) =
φ±(t) + ρ±(t) with

‖ρ±(t)‖Hs ≤ C ‖ρ±(0)‖Hs e
∓γt as t→ ±∞ and ψ±(∓t±) /∈ O.

We also have

φ±(t) = e−i
∫

t
0

E(U±(v)) dvS(U±(t)) + ε±(t) ∀t > t− (resp., ∀t < −t+)

with ∥∥∥U̇+

∥∥∥
Lq((−t+,+∞))

≤ C (‖z0‖Hs + ‖ρ±(0)‖Hs)2 ,

respectively, ∥∥∥U̇−

∥∥∥
Lq((−∞,t−))

≤ C (‖z0‖Hs + ‖ρ±(0)‖Hs)2 ,

for all q ∈ [1,∞], lim
t→±∞

U±(t) = U±∞, and

max
{
‖ε+‖L∞((−t+,+∞),Hs) , ‖ε+‖L2((−t+,+∞),Hs

−σ) , ‖ε+‖L2((−t+,+∞),Bβ
∞,2)

}
≤ C (‖z0‖Hs + ‖ρ±(0)‖Hs) ,

respectively,

max
{
‖ε−‖L∞((−∞,t−),Hs) , ‖ε−‖L2((−∞,t−),Hs

−σ) , ‖ε−‖L2((−∞,t−),Bβ
∞,2)

}
≤ C (‖z0‖Hs + ‖ρ±(0)‖Hs) .
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2. If (U0, z0, p+) ∈ W+ and (U0, z0, p−) ∈ W− with p− �= Φ+(U0, z0, p+) and
p+ �= Φ−(U0, z0, p−), then there exist t+(ψ0) > 0, t−(ψ0) < 0, and a unique
solution ψ of (1.8) with initial condition ψ0 such that, for any small neighbor-
hood O of S(U0) containing ψ0, φ ∈ ∩2

k=0Ck([t−; t+], Hs−k) with ψ(t+) /∈ O
and ψ(t−) /∈ O. This solution is unique in L∞((T ′, T ), Hs(R3,C4)) for any
T ∈ (0, t+) and any T ′ ∈ (t−, 0).

Remark 1.5. In Theorem 1.4, we note that when U0 = 0, then z0 = 0 and p = 0,
and so the theorem does not say anything for this case. In fact, the charge conservation
gives the orbital stability of 0. But we cannot extend the previous results to 0 since
we can build a manifold of stationary states tangent to the eigenspace associated with
λ1, similarly to Proposition 1.1.

One can also note that the previous result (and the following ones) are still valid
when switching the roles of λ0 and λ1 as long as the resonance condition, Assump-
tion 1.5, is fulfilled with λ0 and λ1 switched. If the resonance condition does not hold,
the result in [7] can be applied if the strict nonresonance condition holds:

|λ0 − λ1| < min{|λ1 +m|, |λ1 −m|},

and we obtain a stable manifold associated with λ1. As far as we know, the cases

|λ0 − λ1| = min{|λ1 +m|, |λ1 −m|} and |λ1 − λ0| = min{|λ0 +m|, |λ0 −m|}

are open.

1.4. The nonlinear scattering. If we choose a localized z0, we are able to
further expand (1.12) as stated by the following theorems that are also proved in
sections 2–5.

Theorem 1.5. With the assumptions and the notation of Theorem 1.3, for the
set

Sσ =
{

(U, z) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs
σ
(0, r(U))

}
endowed with the metric of C

2 × Hs
σ, there exists a neighborhood Vσ of (0, 0) in Sσ

such that the following is true. If A = Ψ(U0, z0) with (U0, z0) ∈ Vσ, there exist V±
σ

open neighborhoods of (0, 0) in Sσ and (V±∞; z±∞) ∈ V±
σ , such that

|V±∞ − U0| ≤ C‖z0‖2
Hs

σ
, ‖z±∞ − z0‖Hs ≤ C‖z0‖2

Hs
σ
,

and for all t ∈ R

ψ(t) = e−itE(V±∞)S(V±(t)) + eJtE(V±∞)eJtH(V±∞)z±∞ + ε±(t)

with ∣∣∣V̇±(t) + i (E(V±(t)) − E(V±∞))
∣∣∣ ≤ C

〈t〉2
‖z0‖2

Hs
σ
,

|V±(t) − V±∞| ≤ C

〈t〉‖z0‖Hs
σ
,

max
{
‖ε±(t)‖Hs , ‖ε±(t)‖Hs

−σ
, ‖ε±(t)‖Bβ

∞,2

}
≤ C

〈t〉2
‖z0‖2

Hs
σ
,

and
∥∥∥e−JtH(V±∞)eJ

∫ t
0
(E(V±(s))−E(V±∞) dsε±(t)

∥∥∥
Hs

3
2

≤ C

〈t〉
1
2

‖z0‖2
Hs

σ
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for all t ∈ R.
Moreover, the maps

(U0; z0) ∈ Vσ �→ (V±∞; z±∞) ∈ V±
σ

are bijective.
Remark 1.6. The fact that z0 is localized gives us the convergence of∫ t

0

E(U(v)) dv − tE(U±∞)

as t → ±∞ and allows us to obtain an asymptotic profile for the dispersive part of
the perturbed solution φ. Indeed, to obtain an asymptotic profile for z, we need an
asymptotic profile for the phase and hence the existence of

lim
t→±∞

∫ t

0

E(U(v)) dv − tE(U±∞) =
∫ ±∞

0

(E(U(v)) − E(U±∞)) dv.(1.13)

But in the present case, we control U̇ by the third power of some spatial norm of z.
If z belongs just to some Lebesgue space in time, we are able to obtain just that

lim
t→±∞

(E(U(v)) − E(U±∞)) = 0,

which gives nothing about the existence of (1.13). To obtain this existence, we need
pointwise estimates in time for z (see subsection 3.2.4). This requires z0 to be localized
in space. Moreover, we believe that a result similar to [22, Theorem 1.9] showing slow
pointwise decay for the perturbation in the nonlocalized case can be adapted here.
Such phenomena prevent (1.13) from existing.

What we call the nonlinear scattering result is essentially the fact that the maps

(U0; z0) ∈ Vσ �→ (U±∞; z±∞) ∈ V±
σ

are well defined and bijective.
Using wave operators for the pair (JH(U), JDm), we can obtain an expansion of

the form ψ(t) = e−i
∫ t
0

E(U(v)) dvS(U±∞) + e−itDmz± + ε±(t) but will only have

‖z±∞ − z0‖Hs ≤ C‖z0‖Hs

and

max
{
‖ε±‖L∞(R±,Hs) , ‖ε±‖L2(R±,Hs

−σ) , ‖ε±‖L2(R±,Bβ
∞,2)

}
≤ C‖z0‖Hs .

Or, using wave operators for the pair (JH(U), JH), we can obtain an expansion of
the form ψ(t) = e−i

∫ t
0

E(U(v)) dvS(U±∞) + e−itHz± + ε±(t) with

‖z±∞ − z0‖Hs ≤ C (|U0| + ‖z0‖Hs) ‖z0‖Hs

and

max
{
‖ε±‖L∞(R±,Hs) , ‖ε±‖L2(R±,Hs

−σ) , ‖ε±‖L2(R±,Bβ
∞,2)

}
≤ C (|U0| + ‖z0‖Hs) ‖z0‖Hs .
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But in these cases, we cannot obtain a nice asymptotic completness statement.
We have (in the previous expansions)

max

{
sup
t∈R

(∥∥∥eJtH(U±∞)z±∞

∥∥∥
Hs

)
, sup

t∈R

(
〈t〉3/2

∥∥∥eJtH(U±∞)z±∞

∥∥∥
Hs

−σ

)
,

sup
t∈R

(
〈t〉3/2

∥∥∥eJtH(U±∞)z±∞

∥∥∥
Bβ

∞,2

)}
≤ C‖z±∞‖Hs .

This follows from Lemmas 3.13 and 3.14.
Outside the center manifold, we can also have an expansion of the same type.

But due to the presence of exponentially stable and unstable directions, one cannot
expect a scattering result of the same type. Actually we cannot obtain the injectivity
of the corresponding mappings. We have the following theorem.

Theorem 1.6. With the assumptions and notation of Theorem 1.4, for the sets

S̃σ =
{

(U, z, p) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs
σ
(0, r(U)), p ∈ BR4(0, r(U))

}
endowed with the metric of C

2×Hs
σ×R

4, there exist C > 0, γ > 0, and neighborhoods
W±

σ of (0, 0, 0) in Sσ such that the following is true.
If ψ0 /∈ CM, (U0, z0, p+) ∈ W+

σ and p− = Φ+(U0, z0, p+) (resp., (U0, z0, p−) ∈
W−

σ and p+ = Φ−(U0, z0, p−)), then there exist C > 0, φ±(t) ∈ CM, and ρ±(t) ∈
Xs(U0) for all t > −t+ (resp., for all t < t−) such that ψ±(t) = φ±(t) + ρ±(t) with

‖ρ±(t)‖Hs ≤ C ‖ρ±(0)‖Hs e
∓γt as t→ ±∞ and ψ(∓t±) /∈ O.

Further, there exist (V±∞; z±∞) ∈ S such that

|V±∞ − U0| ≤ C
(
‖z0‖Hs

σ
+ ‖ρ±(0)‖Hs

)2
,

‖z±∞ − z0‖Hs ≤ C
(
‖z0‖Hs

σ
+ ‖ρ±(0)‖Hs

)2
,

and for all t > −t+ (resp., for all t < t−)

φ±(t) = e−itE(V±∞)S(V±(t)) + eJtE(V±∞)eJtH(V±∞)z±∞ + ε±(t)

with ∣∣∣V̇±(t) + i (E(V±(t)) − E(V±∞))
∣∣∣ ≤ C

〈t〉2
(
‖z0‖Hs

σ
+ ‖ρ±(0)‖Hs

)2
,

|V±(t) − V±∞| ≤ C

〈t〉
(
‖z0‖Hs

σ
+ ‖ρ±(0)‖Hs

)2
,

max
{
‖ε±(t)‖Hs , ‖ε±(t)‖Hs

−σ
, ‖ε±(t)‖Bβ

∞,2

}
≤ C

〈t〉2
(
‖z0‖Hs

σ
+ ‖ρ±(0)‖Hs

)2
,

∥∥∥e−JtH(V±∞)eJ
∫

t
0
(E(V±(s))−E(V±∞)) dsε±(t)

∥∥∥
Hs

3
2

≤ C

〈t〉
1
2

(
‖z0‖Hs

σ
+ ‖ρ±(0)‖Hs

)2
for all t > −t+ (resp., for all t < t−).

2. Linearized operator and exponentially stable and unstable mani-
folds. We study the dynamics associated with (1.8) around a stationary state. We
will use spectral properties of the linearized operator around a stationary state.
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2.1. The spectrum of the linearized operator. Here we study the spectrum
of the linearized operator associated with (1.8) around a stationary state S(U). Let
us recall

H(U) = H + d2F (S(U)) − E(U),

where d2F is the differential of ∇F . The operator H(U) is R-linear but not C-linear.
Replacing L2(R3,C4) by L2(R3,R4 × R

4) with the inner product obtained by taking
the real part of the inner product of L2(R3,C4), we obtain a symmetric operator. We
then complexify this real Hilbert space and obtain L2(R3,C4 × C

4) with its natural
Hermitian product. This process transforms the operator −i into

J =

(
0 IdC4

−IdC4 0

)
.

For φ ∈ L2(R3,R4 × R
4) ⊂ L2(R3,C4 × C

4), we still write φ instead of(
�φ
�φ

)
.

The extension of H(U) to L2(R3,C4 × C
4) is also written H(U) and is now a real

operator. The extension of K (see (1.9)) is also written K.
The linearized operator associated with (1.8) around the stationary state S(U) is

given by JH(U). We shall now study its spectrum.
Differentiating (1.10), we have that for U = (u1, u2) ∈ Ω

H0(u1, u2) = span
{

∂

∂�u1
S(u1, u2),

∂

∂�u1
S(u1, u2),

∂

∂�u2
S(u1, u2),

∂

∂�u2
S(u1, u2)

}
is invariant under the action of JH(U). Differentiating the gauge invariance property
for S, we notice that JS(U) ∈ H0(U); differentiating the gauge invariance property
for F , we also obtain

JH(U)JS(U) = 0;

and differentiating (1.10), we obtain for any β ∈ N
4 with |β| = 1

JH(U)∂β
US(U) = (∂β

UE)(U)JS(U).

The space H0(U) is contained in the algebraic null space of JH(U); in fact, it is
exactly the algebraic null space as proved in what follows.

Now we state our results on the spectrum of JH(U). The first deals with the
excited states part. Using the function Γ introduced in Assumption 1.5, we have the
following proposition.

Proposition 2.1. If Assumptions 1.1–1.5 hold, let

Γ̃(|U |) = inf
V ∈C2,|V |=|U|

Γ(S(V )).

For any sufficiently small U , we have

Γ̃(|U |) > 0.
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There exist continuous maps Ei
1 : BC2(0, ε) �→ R smooth outside U = 0 with{

�Ei
1(U) = (λ1 − E(U)) +O(|U |4),

�Ei
1(U) = Γi(U) +O(|U |6),

where

Γi(U) ≥ 1
2

Γ̃(|U |)

for i ∈ {1, 2} such that Ei
1(U), Ei

1(U), −Ei
1(U), and −Ei

1(U) are eigenvalues of
JH(U). These eigenvalues are simple if E1

1 �= E2
1 ; otherwise the associated algebraic

eigenspace is of dimension 2. We can define maps Φi
±(U) : BC2(0, ε) �→ Hs such that

•
{

Φ1
+(U),Φ2

+(U)
}

is an orthonormal basis of the sum of the eigenspaces asso-
ciated with E1

1(U) and E2
1(U),

• {Φ1
+(U),Φ2

+(U)} is an orthonormal basis of the eigenspaces associated with
E1

1(U) and E2
1(U),

•
{

Φ1
−(U),Φ2

−(U)
}

is an orthonormal basis of the sum of the eigenspaces asso-
ciated with −E1

1(U) and −E2
1(U),

• {Φ1
−(U),Φ2

−(U)} is an orthonormal basis of the sum of the eigenspaces asso-
ciated with −E1

1(U) and −E2
1(U).

In the case of double eigenvalues E1
1(U) = E2

1 (U) one should consider algebraic
eigenspaces instead of the sum of the eigenspaces. In any case, the associated projec-
tors are continuous around U = 0 and smooth outside U = 0.

Moreover, for any β ∈ N
4, s ∈ R

+ and p, q ∈ [1,∞]. There exist γ > 0, ε > 0,
and C > 0 such that, for all U ∈ BC2(0, ε) \ {0} and for any i ∈ {1, 2}, one has

‖eγ〈Q〉∂β
U Φi

±(U)‖Bs
p,q

≤ C‖Φi
±(U)‖2,(2.1)

where

∂β
(u1,u2)

=
∂|β|

∂β1�u1∂β2�u1∂β1�u2∂β2�u2
.

Proof. Using Weyl’s sequences, we prove that the essential spectrum of JH(U),
for small U , is the essential spectrum of J(H − E(U)), i.e., i(R \ (−c, c)) with c =
min{m−E(U),m+E(U)}. So z with nonzero real part is in the spectrum of JH(U)
if and only if it is an isolated eigenvalue with finite multiplicity. The multiplicity of z
here is the dimension of the algebraic kernel of JH(U) − z.

We now investigate properties of the eigenvalues. To do so, we use ideas from the
proof of [54, Theorem 2.2]. The equation to solve for excited states is

(JH(U) − z)φ = 0.(2.2)

We consider solutions of the form φ = (v1S1 +v2KS1)+η, where S1 is the normalized
eigenvector of JH ,

S1 =
1√
2

(
φ1

−iφ1

)
,
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with (v1, v2) ∈ C
2 such that |v1|2 + |v2|2 = 1 and η ∈ {S1,KS1}⊥. The orthogonal

relation is taken, in fact, with respect to J (but since JS1 = iS1 and JKS1 = iKS1,
we can take it in the usual way). For z ∈ C \ iR, we obtain the equation

η = (J(H − E(U)) − z)−1
P⊥

1 W (U) {(v1S1 + v2KS1) + η}(2.3)

with P⊥
1 the orthogonal projector into {JS1}⊥ = {S1}⊥ and W (U) = JH(U)−J(H−

E(U)). We notice that {S1}⊥ is invariant under the action of J(H −E(U)). To solve
this equation in η for a fixed U and z, we note that if

�z > 0 and |�z| ≥ c,

where c = min{m+ E(U),m− E(U)}, the series

k(U, z)(v1S1 + v2KS1) = (J(H − E(U)) − z)−1

× P⊥
1

∑
k≥0

(
−W (U) (J(H − E(U)) − z)−1

P⊥
1

)k

W (U)(v1S1 + v2KS1)

is convergent in L2 for sufficiently small |U | and |�z| = O(|U |2) using the limiting
absorption principle (1.4) and the bound of the resolvent

∥∥ (H − z′)−1 ∥∥ ≤ |�z′|−1 in
L2. Hence, we have a solution of (2.3).

Then we solve the equation in z. We obtain from (2.2) the equations

〈(JH(U) − z)φ, S1〉 = 0 and 〈(JH(U) − z)φ,KS1〉 = 0

with φ = (v1S1 + v2KS1) + k(U, z)(v1S1 + v2KS1). Hence, z is an eigenvalue of the
matrix A(U, z) defined by(

〈JH(U)(S1 + k(U, z)S1), S1〉 〈JH(U)(S1 + k(U, z)S1),KS1〉

〈JH(U)(KS1 + k(U, z)KS1), S1〉 〈JH(U)(KS1 + k(U, z)KS1),KS1〉

)

in C
2. So we study the zeros of det(A(U, z)− z). We have that dε : z �→ det(A(U, z+

ε) − z) is an analytic function for z in {z ∈ C,�z > −ε} for any ε ≥ 0, det(A(0, z +
ε) − z) = (z − i(λ1 − λ0))2 and det(A(U, z + ε) − z) − det(A(0, z + ε) − z) → 0 as
U → 0 uniformly in z and ε in a bounded set. Since at (U, ε) = (0, ε) (ε > 0) we have
a double zero, for (U, 0) close to (0, 0), we have two zeros counted with multiplicity.

Hence if z is a zero of d0(U, ·) and hence an eigenvalue of A(U, z), we have with
an associated normalized eigenvector (v1, v2) ∈ C

2 and ψ = (v1S1 + v2KS1)

z = i (λ1 − λ0) +
〈
W (U)ψ, ψ

〉
+
∑
k≥0

〈
JH(U) (J(H − E(U)) − z)−1

× P⊥
1

(
−W (U) (J(H − E(U)) − z)−1 P⊥

1

)k

W (U)ψ, ψ
〉

= i (λ1 − λ0) + 〈W (U)ψ, ψ〉

+
∑
k≥0

〈
P⊥

1

(
−W (U) (J(H − E(U)) − z)−1

P⊥
1

)k

W (U)ψ, ψ
〉
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+
∑
k≥0

〈
(W (U) + z) (J(H − E(U)) − z)−1

× P⊥
1

(
−W (U) (J(H − E(U)) − z)−1P⊥

1

)k

W (U)ψ, ψ
〉
.

Since P⊥
1 (v1S1 + v2KS1) = 0, we introduce the function

f(z) = i (λ1 − λ0) +
〈
W (U)ψ, ψ

〉
+
∑
k≥0

〈
W (U) (J(H − E(U)) − z)−1

× P⊥
1

(
−W (U) (J(H − E(U)) − z)−1

P⊥
1

)k

W (U)ψ, ψ
〉
.

Since J(v1S1 + v2KS1) = −i(v1S1 + v2KS1), we obtain that

� 〈W (U)(v1S1 + v2KS1), (v1S1 + v2KS1)〉 = 0.

Thus for z ∈ C \ iR, we have

�f(z)

= �
〈
W (U) (J(H − E(U)) − z)−1

P⊥
1 W (U)(v1S1 + v2KS1), (v1S1 + v2KS1)

〉
+ O(|U |6)

= �
〈
d2F (S(U)) ((H − E(U)) + zJ)−1

× P⊥
1 d

2F (S(U))(v1S1 + v2KS1), (v1S1 + v2KS1)
〉

+O(|U |6).

Then using (1.11) and

((H − E(U)) + zJ)−1

=
1
2

(
((H − E(U)) − iz)−1 (IC2 + iJ) + ((H − E(U)) + iz)−1 (IC2 − iJ)

)
,

we obtain

�
〈
d2F (S(U))((H − E(U)) + zJ)−1

P⊥
1 d

2F (S(U))(v1S1+v2KS1),(v1S1 + v2KS1)
〉

=
1
2
(
�
〈
d2F (S(U))((H − E(U)) − iz)−1

d2P⊥
1 F (S(U))(v1S1 + v2KS1),(v1S1 + v2KS1)

〉
+ �

〈
d2F (S(U))((H − E(U)) + iz)−1

P⊥
1 d

2F (S(U))(v1S1 + v2KS1),(v1S1 + v2KS1)
〉)

−�
〈
d2F (S(U))

(
(H − E(U))2+z2

)−1
zJP⊥

1 d
2F (S(U))(v1S1+v2KS1),(v1S1+v2KS1)

〉
,

and so, using regularity results of the resolvent of [20, Theorem 1.7], we obtain

�
〈
d2F (S(U)) ((H − E(U)) + (i(λ1 − λ0) + 0)J)−1

×P⊥
1 d

2F (S(U))(v1S1 + v2KS1), (v1S1 + v2KS1)
〉

=
1
2
�
〈
d2F (S(U)) ((H − E(U)) + (λ1 − λ0) − i0)−1

×Pc(H)d2F (S(U))(v1S1 + v2KS1), (v1S1 + v2KS1)
〉
.
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Using Assumption 1.5, the limiting absorption principle (1.4), and regularity results
of [20, Theorem 1.7], we obtain

�f(z) =
1
2
�
〈
d2F (S(U)) ((H − E(U)) + (λ1 − λ0) − i0)−1

×Pc(H)d2F (S(U))(v1S1 + v2KS1), (v1S1 + v2KS1)
〉

+O(|U |6)

for z in a ball of radius of order |U |2 around i (λ1 − λ0) and for small U . We also
prove in the same way that

�f(z) = (λ1 − λ0) +O(|U |4)

for z in a ball of radius of order |U |2 around i (λ1 − λ0) and for small U .
This proves that the zeros of A(U, z) at the right of the imaginary axis are close

to i (λ1 − λ0). Hence we have obtained that, for small U , JH(U) has at most two
eigenvalues. Counted with algebraic multiplicity, we have that it is exactly two at the
right side of the imaginary axis. Indeed, a complex number z is in the resolvent set of
JH(U) if and only if JH(U)− z is invertible or if and only if H(U) +Jz is invertible.

Let us consider for ε > 0

Jε =

(
ε
2 (1 + i ε

2 )IdC4

(−1 − i ε
2 )IdC4

ε
2

)

and the set of z for which the operator

H(U) − Jεz

is invertible. When U = 0, we have after multiplication by

P =
1√
2

(
i 1
1 i

)

on the left and by P−1 on the right (that is to say, diagonalization of Jε)(
H − λ0 + iz + iε 0

0 H − λ0 − iz

)
,

which is invertible if

z �∈ i {R \ (−m− λ0,m− λ0) ∪ {0, λ1 − λ0}}

and

z �∈ −i {R \ (−m− λ0,m− λ0) ∪ {0, λ1 − λ0}} − ε.

Since we have closed operators, applying Theorems 3.16 and 5.33 of [28, Chap-
ter IV] to J−1

ε H(U), we obtain that close to i(λ1 − λ0) the operator J−1
ε H(U) has

two simple eigenvalues or one double (algebraic) eigenvalue when U is small. Now
consider ε as a parameter and U fixed, and applying again Theorems 3.16 and 5.33 of
[28, Chapter IV], we obtain that, counted with multiplicity, JH(U) has two eigenval-
ues since the discrete spectrum of JH(U) = J−1

0 H(U) close to i(λ1 − λ0) at the right
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of the imaginary axis is outside the imaginary axis. Theorems 3.16 and 5.33 of [28,
Chapter IV] give as well the continuity with respect to U of the associated projector.

The continuity of eigenvalues follows from the continuity of the zeros of dε intro-
duced earlier.

Letting P1(U) be the spectral projector associated with
{
Ei

1(U), i ∈ {1, 2}
}

, the
eigenvalue of JH(U), we have the formula

P1(U) = − 1
2iπ

∫
Γ

(JH(U) − z)−1dz,

where Γ is a positively oriented circle at the right of the imaginary axis around E1
1(U ′)

and E2
1(U ′) for some fixed U ′ and U sufficiently close to U ′; see [28, Formula I.1.16].

Since the resolvent is smooth outside U = 0, we have that P1(U) is smooth outside
U = 0.

Using complex conjugation, we obtain the corresponding result for the spectrum
at the right of the imaginary axis in a neighborhood of i (λ1 − λ0).

Using Weyl’s sequences, we prove that the essential spectrum of (JH(U))∗ =
−H(U)J , for small U , is the essential spectrum of −(H −E(U))J = −J(H −E(U)).
So z with nonzero real part is in the spectrum of (JH(U))∗ if and only if it is an
isolated eigenvalue; see [28, Theorem IV.5.33]. Then to obtain −Ei

1(U) and −Ei
1(U),

we notice that Ei
1(U) and Ei

1(U) are eigenvalues of (JH(U))∗. Using the symmetry
J(JH(U)) = −(JH(U))∗J , we show that any algebraic eigenvector φ of (JH(U))∗

associated with λ, Jφ is an algebraic eigenvector of JH(U) associated with −λ. Hence,
repeating the previous proof for (JH(U))∗, we also obtain the multiplicity two. Except
for the symmetry of the eigenvalues, this can also be obtained by adapting the previous
proof to the left part of the complex plane.

The exponential decay works as in Lemma 1.2.
Remark 2.1. If F (z) is homogeneous of order p, then there exist ε,Γ1,Γ2 > 0

such that for all U ∈ BC2(0, ε)

|U |p−2 Γ1 ≤ Γ̃(|U |) ≤ |U |p−2 Γ2.

We just write S((u1, u2)) = u1φ0 + u2Kφ0 + h((u1, u2)), expand Γ(U), and use As-
sumption 1.5 with the regularity results of the resolvent from [20, Theorem 1.7].

The following proposition deals with the essential spectrum of our linearized op-
erator.

Proposition 2.2. If Assumptions 1.1–1.5 hold, for any sufficiently small nonzero
U ∈ C

2, let

H1(U) = span
{

Φ1
+(U),Φ2

+(U),Φ1
+(U),Φ2

+(U),Φ1
−(U),Φ2

−(U),Φ1
−(U),Φ2

−(U)
}
.

The orthogonal space of H0(U) ⊕H1(U),

Hc(U) = {JH0(U) ⊕H1(U)}⊥ ,

is invariant under the action of JH(U).
We also have that, for Pc(U), the orthogonal projector onto JHc(U) is a bounded

operator from Hs
σ(R3,C8) or Bs

p,q(R3,C8) to itself for any reals s, σ ∈ R and p, q ∈
[1,∞], and for U ′ ∈ BC2(U, ε), with sufficiently small ε > 0, that

Pc(U)|Hc(U ′) : Hc(U ′) �→ Hc(U)
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is an isomorphism and its inverse R(U ′, U) can be extended to a bounded operator
from Hs

σ(R3,C8) or Bs
p,q(R3,C8) to itself for any reals s, σ ∈ R and p, q ∈ [1,∞].

Moreover, there exists C > 0 such that we have

‖ψ‖X ≤ C ‖Pcψ‖X(2.4)

∀ψ ∈ Hc(U) ∩X with X = Hs
σ(R3,C8) or Bs

p,q(R3,C8),

∀s, σ ∈ R, ∀p, q ∈ [1,∞];∫
R

‖〈Q〉−σesJH(U)Pc(U)ψ‖2
2 ds ≤ C‖ψ‖2

2(2.5)

∀ψ ∈ L2, ∀σ ≥ 1;∥∥∥etJH(U)Pc(U)ψ
∥∥∥

2
≤ C‖ψ‖2(2.6)

∀t ∈ R, ∀ψ ∈ L2,

and Hc(U) contains no eigenvector.
Remark 2.2. We use the same notation for Hc(U) and its real part (see definition

below) that appears in our main theorems. We just note that Hc(U) appears when
we discuss spectral properties in our proof. Then when we talk about dynamical
properties, we deal with its real part. We remind the reader that the real part of
Hc(U) is left invariant by JH(U).

Proof. We prove that there is no other eigenvector by proving that smoothness
estimate (2.5) takes place over

Hc(U) = {JH0(U) ⊕H1(U)}⊥ .

First we prove that

Pc((U))|Hc(U ′) : Hc(U ′) �→ Hc(U)

is an isomorphism. To prove it, we exhibit an inverse R(U ′, U) which is the projector
onto Hc(U ′) associated with the decomposition H0(U)⊕H1(U)⊕Hc(U ′) of L2(R3,C8).
Indeed, we have {H0(U) ⊕H1(U)} ∩ Hc(U ′) = {0} when U ′ and U are close to one
another and codimHc(U ′) = dim{H0(U) ⊕ H1(U)}. We have a decomposition of
L2(R3,C8) into closed subspaces; hence the associated projectors are continuous. So
R(U ′, U) should be of the form

R(U ′, U) = Id+
∑

i

|Jξi(U)〉 〈αi(U ′, U)| ,

where ξi(U) is a basis of the eigenspaces of JH(U) and (αi(U ′, U))i solve the equations

Jξj(U ′) +
∑

i

〈Jξi(U), Jξj(U ′)〉αi(U ′, U) = 0.

Such an α exists because the matrix (〈Jξi(U), Jξj(U ′)〉)i,j is invertible. Indeed, if
it is not invertible, there exists φ ∈ H1(U ′) = span{ξj(U ′)} orthogonal to H1(U) =
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span{ξj(U)}, and hence φ ∈ Hc(U) with Pc(U ′)φ = 0. But for all ψ ∈ Hc(U), we
have

‖ψ‖ ≤ ‖Pc(U ′)ψ‖ + ‖(1 − Pc(U ′))ψ‖ ≤ ‖Pc(U ′)ψ‖ + C|U − U ′| ‖ψ‖ ,
and hence for φ this gives a contradiction.

The boundedness of R in B(Hs
σ(R3,C8)) or B(Bs

p,q(R3,C8)) follows from the ex-
ponential decay of eigenvectors and their derivatives; see Proposition 1.1, Lemma 1.2,
and Proposition 2.1.

Let us now consider the orthogonal projector Pc associated with the continuous
subspace of JH . Since the eigenvectors of JH are exponentially decaying, we can
extend Pc to obtain an operator of L2

±σ into itself. The same is true for Pc(U), and
hence we can consider the extension of Hc(U) to L2

±σ. We still call it Hc(U).
For all ψ ∈ Hc(U),

‖ψ‖L2
−σ

≤ ‖Pcψ‖L2
−σ

+ ‖(1 − Pc)ψ‖L2
−σ
.

Since 1 − Pc is the projector into the eigenspaces of H and ψ is orthogonal to the
eigenvectors of JH(U), we obtain that

‖(1 − Pc)ψ‖L2
−σ

= ‖(1 − Pc(U))ψ‖L2
−σ

+O(|U |)‖ψ‖L2
−σ
.

Since the components of eigenvectors with respect of Hc(U) are small with respect to
U (see the proof of Lemma 2.1), the projection of ψ in the eigenspaces of H is small.
Moreover, for a sufficiently small nonzero U , we obtain estimate (2.4) for X = L2

−σ

with σ > 0.
The rest of estimate (2.4) follows in the same way using the exponential decay of

eigenvectors (estimate (2.1) and Lemma 1.2).
We infer that

‖〈Q〉−σetJH(U)Pc(U)ψ‖

≤ C‖〈Q〉−σPce
tJH(U)Pc(U)ψ‖

≤ C‖〈Q〉−σPce
−it(H−E(U))Pc(U)ψ‖

+C
∥∥∥∥〈Q〉−σ

∫ t

0

Pce
−i(t−s)(H−E(U))D∇F (S(U))esJH(U)Pc(U)ψ ds

∥∥∥∥ .
Using estimates (1.1) and (1.3) of Theorem 1.1, we obtain estimate (2.5) for sufficiently
small U : ∫

R

‖〈Q〉−σe−sJH(U)Pc(U)ψ‖2 ds ≤ C‖ψ‖2.

Hence there is no eigenvector in the range of Pc(U). Using the inequalities (2.5); the
conservation law for H ; and Duhamel’s formula,

eJtH(U) = e−it(H−E(U)) +
∫ t

0

e−i(t−s)(H−E(U))Jd2∇F (S(U))eJsH(U) ds,

we prove estimate (2.6).
Since Hc(U) is closed and codimHc(U) = dim {H0(U) ⊕H1(U)} and Hc(U) ∩

{H0(U) ⊕H1(U)} = {0}, we obtain H0(U) ⊕ H1(U) ⊕ Hc(U) = L2(R3,C8) and the
following proposition.

Proposition 2.3. Suppose that Assumptions 1.1–1.5 hold. Then the space H0(U)
is the geometric null space of JH(U).
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2.2. Stable, unstable, and center manifolds. We can now obtain results
similar to those of Bates and Jones [3]. We note that we will not prove that the Cauchy
problem (1.8) is locally well-posed for an initial condition outside some manifolds
(built below). However, this can be proved with the methods we present here or by
generalizing to our case the results of Escobedo and Vega [19].

We have that JH(U) as an operator in L2(R3,R8) is a closed densely defined
operator that generates a continuous semigroup on L2(R3,R8). The spectrum of
JH(U) in L2(R3,R8) is the same as that of JH(U) in L2(R3,C8), and so it splits into
three parts,

σs(U) = {λ ∈ σ(JH(u)), �λ < 0} =
{
−E1

1(U),−E2
1(U),−E1

1(U),−E2
1(U)

}
,

σc(U) = {λ ∈ σ(JH(u)), �λ = 0} = {0} ∪ i {R \ (−c, c)} ,

where c = min{m+ E(U),m− E(U)},

σu(U) = {λ ∈ σ(JH(u)), �λ > 0} =
{
E1

1(U), E2
1 (U), E1

1(U), E2
1 (U)

}
,

each of which is associated with a spectral real subspace, respectively,

Xs(U) = spanR

{
�Φ1

−(U),�Φ1
−(U),�Φ2

−(U),�Φ2
−(U)

}
,

Xu(U) = spanR

{
�Φ1

+(U),�Φ1
+(U),�Φ2

+(U),�Φ2
+(U)

}
,

Xc(U) = �H0(U) ⊕�Hc(U),

where we used the notation �Ψ = (1/2)
(
Ψ + Ψ

)
, �Ψ = −(i/2)

(
Ψ − Ψ

)
, and �X =

{�Ψ,Ψ ∈ X}, the real part of the space X . The spaces Xs(U) and Xu(U) are finite
dimensional. Let us write πc(U), πs(U), and πu(U) for the projectors associated with
the decomposition Xc(U)⊕Xs(U)⊕Xu(U). Since the eigenvectors also belong to L2

σ

for any σ ∈ R, the projectors Pc(U) and πc(U) can be defined in L2
σ for any real σ.

We can extend, in this way, the spaces Hc(U) and Xc(U) to L2
σ for any σ ∈ R. We

have the following lemma.
Lemma 2.1. If Assumptions 1.1–1.5 hold, then, for any σ ∈ R, there exist positive

reals r, C1, C2 such that, for all t ∈ R, we have

C1
1

f+(t)
≤
∥∥∥etJH(U)πs(U)

∥∥∥
B(L2

σ)
≤ C2

1
f−(t)

,(2.7)

C1f−(t) ≤
∥∥∥etJH(U)πu(U)

∥∥∥
B(L2

σ)
≤ C2f+(t),(2.8)

∥∥∥etJH(U)πc(U)
∥∥∥
B(L2

σ)
≤ C2〈t〉r ,(2.9)

where

f±(t) =

{
eγ±t if t ≥ 0,
eγ∓t if t ≤ 0,

with

γ− < Γ−(U) = min{�E1
1(U),�E2

1(U)},

γ+ > Γ+(U) = max{�E1
1(U),�E2

1(U)}.
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Proof. The statements for the spaces Xs(U) and Xu(U) follow from (2.1).
The statement about Xc(U) is a little more complicated. We note that we are

not looking for an optimal r.
First, the result for e−it(Dm+V ) in L2

σ with σ ∈ 2N follows from [48, Theorem 8.5]
(see also Proposition 3.1 below), which is based on the charge conservation. The case
σ ∈ R follows by duality and interpolation.

Then for etJH(U)πc(U), we use Duhamel’s formula,

eJtH(U)πc(U) = e−it(H−E(U))πc(U)

+
∫ t

0

e−i(t−s)(H−E(U))Jd2∇F (S(U))eJsH(U)πc(U) ds;

then the assertion for etJH(U)πc(U) follows from the assertion for e−it(Dm+V ), the
charge conservation of etJH(U)Pc(U) (see (2.6)), the fact that etJH(U)S(U) = S(U),
etJH(U)∂β

US(U) = ∂β
US(U) + t∂β

UE(U)S(U), and Lemma 1.2.
By now we do not restrict our study to the space L2(R3,R8); we extend it to

L2
σ(R3,R8) for any σ ∈ R, but we still write Hc(U) and Xc(U) for the extensions of

these spaces to L2
σ(R3,R8) for any σ ∈ R.

We now study the behavior of the solutions in L2
σ of (1.8) centered around S(U):

∂tφ = JH(U)φ+ JN(U, φ),(2.10)

where H(U) = H + d2F (S(U)) − E(U), N(U, φ) = ∇F (S(U) + φ) − ∇F (S(U)) −
d2F (S(U))φ, and d2F is the differential of ∇F .

In this subsection, we study a modified equation which coincides with (2.10) as
long as the solution stays in a neighborhood of a small S(U):

∂tφ = JH(U)φ+ JNε(U, φ),(2.11)

where Nε(U, η) = ρ(ε−1η)N(U, η) and ρ is a smoothed version of the characteristic
function of the unit ball of R

8.
We state the following proposition.
Proposition 2.4 (center-stable manifold). If Assumptions 1.1–1.5 hold, then for

any sufficiently small nonzero U , there exists around S(U) a unique invariant smooth
center-stable manifold W cs(U) for (2.11) built as a graph with value in Xu(U) and
tangent to S(U) +Xc(U) ⊕Xs(U) at S(U).

Any solution φ ∈ L2
σ of (2.11) initially in the neighborhood of S(U) tends as

t→ −∞ to W cs(U) with

distL2
σ
(φ(t),W cs(U)) = O(eγt) as t→ −∞

for any γ ∈ (0,Γ−(U)) and any s, σ ∈ R, and for any sufficiently small neighborhood
V of S(U) any solution in V not in W cs(U) leaves V in finite positive time.

Remark 2.3. For any s ∈ R
+, due to the exponential decay of eigenvectors, if

φ /∈ Hs
σ, there exists ψ ∈ W cs(U) such that φ− ψ ∈ Hs

σ, and we have

distHs
σ
(φ(t),W cs(U)) = O(eγt) as t→ −∞,

as shown in the following proof.
If we consider only small solutions, we obtain a locally invariant manifold for

(2.10); that is to say, for any initial condition in the manifold there exists a corre-
sponding solution of (2.10) which stays in this manifold in a small interval of time
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around 0. We notice that in the following proofs the size of this invariant manifold,
which is given by ε, is a function of U and this function is O(Γ−(U)). From now on,
we call this function r.

Proof. Our proof is an adaptation of that of Bressan [8], and we refer to it for
more details. We make the proof only for the case σ = 0; the proof in the general
case is similar.

First we prove that there is a global solution of (2.11) which does not grow much
as t→ +∞. We look for the solution as a fixed point:

y(t) = Gε(y0, y)(t)

for any y0 ∈ Xs(U) ⊕Xc(U), where for small positive ε

Gε(y0, η)(t) = etJH(U)y0 +
∫ t

0

e(t−s)JH(U)πc(U)JNε(U, η(s)) ds

+
∫ t

0

e(t−s)JH(U)πs(U)JNε(U, η(s)) ds−
∫ +∞

t

e(t−s)JH(U)πu(U)JNε(U, η(s)) ds,

with π∗(U) the projector intoX∗(U) with respect to the decomposition ⊕∗∈{c,s,u}X
∗(U).

Let us introduce, for any Γ smaller than Γ−(U), the space

YΓ =
{
y : R �→ L2(R3,C4), ∃C > 0, ‖y(t)‖2 ≤ CeΓ|t| ∀t ∈ R

}
.

For sufficiently small ε > 0, the map Gε(y0, ·) leaves YΓ invariant and is continuous
for the norm

NΓ : y �→ sup
t∈R

{
‖y(t)‖2e

−Γ|t|
}
.

Moreover, it is a strict contraction for sufficiently small U and ε > 0. Actually we
choose ε as a function of Γ which is O(Γ). In fact, since YΓ ⊂ YΓ′ for Γ < Γ′, we
obtain that ε as a function of U is O(Γ−(U)). This proves the existence of the fixed
point y.

Then we fix hcs
U (y0) = y(0) − y0. The invariance of the graph of hcs

U by the flow
of (2.11) is immediate.

Now we prove the smoothness property. We have that Nε(U, η) is l times differ-
entiable in η from YΓ′ to YΓ if (l+ 1)Γ′ ≤ Γ and that Gε is l times differentiable from
Xc(U) ⊕Xs(U) × YΓ′′ to YΓ if 2lΓ′′ ≤ Γ (see [8]). We introduce the family (ηn)n∈N

satisfying

η0 = 0 and ηn+1 = Gε(y0, ηn).

This sequence converges to y (the fixed point) in YΓ. Moreover, as functions of y0,
the convergence is uniform in YΓ (endowed with the norm NΓ) on bounded sets of
Xs(U) ⊕Xc(U).

We want to prove that the sequence of their derivatives of order k with respect to
η also converges in YΓ on bounded sets for any Γ < γ(U). We prove it by induction
in k. So suppose that (∂jηn)n∈N is converging in YΓ for all j < k and any Γ < γ(U).
Then we have that for any k ≥ 2 (see [8])

∂ηn = ∂Gε(y0, ηn−1) = L+M (∂ηNε(U, ηn−1)∂ηn1) ,

∂kηn = ∂kGε(y0, ηn−1) = M
(
∂ηNε(U, ηn−1)∂kηn−1 + Ψk(ηn−1, . . . , ∂

k−1ηn−1)
)
,
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with L = etJH(U),

(Mη)(t) = −
∫ t

0

e(t−s)JH(U)πcs(U)Jη(s) ds+
∫ +∞

t

e(t−s)JH(U)πu(U)Jη(s) ds,

and Ψk a smooth function of k parameters. Hence since M ◦ ∂ηNε(U, yn−1) is a
strict contraction in YΓ for sufficiently small ε and U (once more ε is O(Γ−(U))), this
proves the convergence of the sequence of kth derivatives in YΓ on bounded sets for any
Γ < Γ−(U). Hence the sequences of derivatives of (ηn)n∈N converge in YΓ on bounded
sets for any Γ < Γ−(U). This gives the differentiability at any order of y(0) = h(y0).
This also gives, since N(U, η) = O(|η|2) around zero, that h(y0) = O(|y0|2) around
zero.

Now we want to prove that W cs(U) is attractive in negative time. In fact, W cs(U)
is the graph of a smooth function h : Xcs �→ Xu(U). Letting η be such that S(U) + η
is a solution of (1.8), we have

∂tη = JH(U)η + JNε(U, η),

where

η = y + r = y + h(y) + z

with y = πcs(U)η, and we have the following equation for z ∈ Xu(U):

∂tz = JH(U)z +M(U, y, z),

where

M(U, y, z) = πu(U) {JNε(U, η) − JNε(U, y + h(y))}

−Dh(y)πcs(U) {JNε(U, η) − JNε(U, y + h(y))} .

Using Duhamel’s formula, we obtain

z(t) = etJH(U)z(0) +
∫ t

0

e(t−s)JH(U)M(U, y(s), z(s)) ds.

We obtain, since z ∈ Xu(U),

‖z(t)‖ ≤ eγ(U)t ‖z(0)‖ + C

∫ t

0

e(t−s)γ(U) ‖M(U, y(s), z(s))‖ ds,

and so for γ ∈ (0,Γ−(U))

e−γt ‖z(t)‖ ≤ ‖z(0)‖ + C|U | sup
s∈[0,t]

{
e−γs ‖z(s)‖

}
+ o

(
sup

s∈[0,t]

{
e−γs ‖z(s)‖

})
,

where C does not depend on U and z. Hence if z(0) and U are small, we have
that there exists c > 0 such that ‖z(t)‖ ≤ ceγt for all t ≤ 0. We notice that, since
Xu(U) ⊂ Hs

σ for any s ∈ R
+ and is finite dimensional (see Lemma 2.1), the time

decay in L2
σ also gives a time decay in Hs

σ gives for any s ∈ R
+.
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Now choose V a sufficiently small neighborhood of 0 and φ a solution of (2.11)
initially in V but not in W cs(U). Suppose φ stays in V in positive time. We obtain
that φ ∈ YΓ. We have

φ(t) = etJH(U) (πs(U) + πc(U))φ(0)

+
∫ t

0

e(t−s)JH(U)πs(U)JNε(U, φ(s)) ds+
∫ t

0

e(t−s)JH(U)πc(U)JNε(U, φ(s)) ds

+ etJH(U)πu(U)
(
πu(U)φ(0) +

∫ ∞

0

e−sJH(U)πu(U)JNε(U, φ(s)) ds
)

−
∫ ∞

t

e(t−s)JH(U)πu(U)JNε(U, φ(s)) ds

with

πu(U)φ(0) +
∫ ∞

0

e−sJH(U)πu(U)JNε(U, φ(s)) ds �= 0.

Hence we obtain with (2.8) that φ(t) exponentially tends to infinity in norm. This is
a contradiction, so φ leaves V in finite time.

Then reversing the time direction, that is to say, replacing H by −H and F by
−F , we obtain with this theorem a locally invariant center-unstable manifold with
the following corresponding properties.

Proposition 2.5 (center-unstable manifold). If Assumptions 1.1–1.5 hold, then
for any sufficiently small nonzero U , there exists around S(U) a unique smooth in-
variant center-unstable manifold W cu(U) for (2.11), built as a graph with value in
XS(U) and tangent to S(U) +Xc(U) ⊕Xu(U) at S(U).

Any solution φ ∈ L2
σ of (2.11) initially in the neighborhood of S(U) tends as

t→ +∞ to W cu(U) with, for any s ∈ R
+,

distHs
σ
(φ(t),W cu(U)) = O(e−γt) as t→ +∞,

and for γ ∈ (0,Γ+(U)), any s, σ ∈ R, and for any V a sufficiently small neighborhood
of S(U), any solution in V not in W cu(U) leaves V in finite negative time.

We can build in the same way a center manifold which is the intersection of the
previous two manifolds.

Proposition 2.6 (center manifold). If Assumptions 1.1–1.5 hold, then for any
sufficiently small nonzero U , there exists around S(U) a unique smooth invariant
center manifold W c(U) for (2.11), built as a graph with value in Xs(U)⊕Xu(U) and
tangent to S(U) +Xc(U) at S(U).

Moreover, we have that W c(U) = W cs(U) ∩ W cu(U) and W c(U) contains the
part of the PLS manifold which is in a small neighborhood of S(U).

Proof. We build the center manifold with the same method as in the previous
cases. We can also build a center-unstable manifold inside a center-stable manifold.
More precisely, let hs

U : Xc(U) ⊕ Xs(U) �→ Xu(U) be the map defining the center-
stable manifold and let hu

U : Xc(U) ⊕ Xu(U) �→ Xs(U) be the map defining the
center-unstable manifold. A solution y = S(U) + yc + ys + yu with y∗ ∈ X∗(U) for
∗ ∈ {c, s, u} is in the center-stable manifold if yu = hs

U (yc, ys). Hence to obtain a
center-unstable manifold inside a center-stable manifold one has to solve, for each yc,
the equation

ys = hu
U (yc, h

s
U (yc, ys)),
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which can be solved inside a small ball for small yc and small U by means of the fixed
point theorem, since h∗U (yc, z) is O(|yc|2 + |z|2) around zero for ∗ ∈ {s, u}.

In the same way, we can also build a center-stable manifold inside the center-
unstable manifold.

Using the uniqueness of the center manifold, we obtain that these two manifolds
are equal to the center manifold and W c(U) = W cs(U) ∩W cu(U).

Then any stationary states in a small neighborhood of S(U) converge to W cs(U)
and W cu(U) using the stabilization results of Propositions 2.4 and 2.5. Hence, we
have that it belongs to W cs(U) ∩W cu(U) = W c(U).

In the following two sections, we study the dynamics inside and outside the center
manifold, respectively.

3. The dynamics inside the center manifold. In this section, we prove that
the dynamics inside the center manifold around S(V0), for small nonzero V0, relaxes
towards the PLS manifold. To this end, we use Theorems 1.1 and 1.2 regarding the
time decay of the propagator associated with H .

3.1. Decomposition of the system. As in [7], we decompose a solution φ ∈
W c(V0) of (1.8) with respect to the spectrum of JH(U), with U specified in what
follows, and we study the equations for these different parts of the decomposition.
We introduce

H⊥J
0 (u1, u2) =

{
η ∈ L2(R3,C8),

〈
Jη,

∂

∂�u1
S(u1, u2)

〉
=
〈
Jη,

∂

∂�u1
S(u1, u2)

〉

=
〈
Jη,

∂

∂�u2
S(u1, u2)

〉
=
〈
Jη,

∂

∂�u2
S(u1, u2)

〉
= 0

}
.

In fact, we have

H⊥J
0 (U) = H1(U) ⊕Hc(U),

which is invariant under the action of JH(U). We recall that H1(U) is defined in
Proposition 2.1 and Hc(U) in Proposition 2.2. We have the following lemma.

Lemma 3.1. If Assumptions 1.1–1.4 hold, let s, σ ∈ R. Then there exist ε, ε′ > 0
such that, for the manifold

Σ =
{

(U, η), U ∈ BC2(0, ε′), η ∈ H⊥J
0 (U)

}
endowed with the metric of C

2 ×Hs
σ and any function φ ∈ BHs

σ
(0, ε), there exists a

unique (U, η) ∈ Σ with

φ = S(U) + η.

Moreover, there exists a neighborhood O of (0, 0) ∈ Σ such that the mapping φ �→
(U, η) ∈ O is smooth.

Proof. To prove that Σ is a manifold, we use Proposition 2.2, which gives that
it is locally isomorphic to some open subset of C

2 × Hc endowed with the metric
of C

2 × Hs
σ. Then we work as in [22, Lemma 2.3]. Indeed we are looking, for all

φ ∈ BHs
σ
(0, ε), for a solution U in C

2 = R
4 of the equation

F (φ,U) = (0, 0, 0, 0),
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where

F (φ,U) =

(〈
J (φ− S(U)) ,

∂

∂�u1
S(u1, u2)

〉
,

〈
J (φ− S(U)) ,

∂

∂�u1
S(u1, u2)

〉
,

〈
J (φ− S(U)) ,

∂

∂�u2
S(u1, u2)

〉
,

〈
J (φ− S(U)) ,

∂

∂�u2
S(u1, u2)

〉)

is smooth and satisfies F (0, 0) = 0 and

DUF (0, 0) =

⎛⎜⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎟⎠ ,

which is invertible in R
4. Hence we apply the implicit function theorem.

For any solution φ of (1.8) on an interval of time I containing 0, we write for t ∈ I

φ(t) = e−i
∫ t
0

E(U(s)) ds (S(U(t)) + η(t)) ,

where η(t) ∈ H⊥J
0 (U(t)), and we want to solve the equation

i∂tη = {H − E(U)} η + {∇F (S(U) + η) −∇F (S(U))} − idS(U)U̇

=
{
H + d2F (S(U)) − E(U)

}
η +N(U, η) − idS(U)U̇

(3.1)

for η(t) ∈ H⊥J
0 (U(t)). Here d2F is the differential of ∇F and dS is the differential

of S in R
2. To close the system, we need the equation for U . This follows from the

condition

〈η(t), JdS(U(t))〉 = 0.

After a time derivation (as in [7]), we obtain the equation

U̇(t) = −A(U(t), η(t))〈N(U(t), η(t)), dS(U(t))〉,

where

A(U, η) = [〈JdS(U), dS(U)〉 − 〈Jη, d2S(U)〉]−1;

indeed the matrix [〈JdS(U(t)), dS(U(t))〉−〈Jη(t), d2S(U(t))〉] is invertible for small |U(t)|
and ‖η(t)‖2 since we have

[〈JdS(U(t)), dS(U(t))〉 − 〈Jη(t), d2S(U(t))〉] =

(
J 02

02 J

)
+O(|U(t)| + ‖η(t)‖2).

We will need the following lemma.
Lemma 3.2. For any s, s′, σ ∈ R, any p, q ∈ [1,∞], and any V0 ∈ C

2 \ {0}
sufficiently small, there exist ε, ε′ > 0 such that, for the manifold

S(V0, ε) =
{

(U, z); U ∈ BC2(V0, ε), z ∈ Hc(U) ∩BHs′
σ

(0, ε′)
}
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endowed with the metric of C
2 × Hs′

σ , there exists a unique map g : S(V0, ε) �→
Bs

p,q(R3,C4) which is smooth and satisfies g(U, z) ∈ H1(U), z + g(U, z) ∈ H⊥J
0 (U),

and S(U) + z + g(U, z) ∈ W c(V0) for all (U, z) ∈ S(V0, ε). Moreover, we have
‖g(U, z)‖Bs

p,q
= O(‖z‖2

Hs′ ).
Proof. The fact that S(V0, ε) is a manifold here is proved as in Lemma 3.1.
Let hc be the function for which W c(V0) is the graph. Any φ ∈ L2(R3,R8) can be

written in the form S(V0)+Ũ ·DS(V0)+ξ+ρ with ρ ∈ H1(V0) and ξ ∈ Hc(V0). It can
also be written in the form S(U) + z + r with r ∈ H1(U) and z ∈ Hc(U). These two
decompositions in fact define two bijective smooth maps in sufficiently small sets (for
the first we have a linear decomposition; for the second see Lemma 3.1). We write Ψ
for the first and Φ for the second. Then f = Ψ ◦Φ−1 has three components following
the decomposition H0(V0) ⊕H1(V0) ⊕Hc(V0); we write them as (f1, f2, f3). Then g
is the solution of the implicit equation in r,

F (U, z, r) = f2(U, z, r) − hc(f1(U, z, r), f3(U, z, r)) = 0,

which can be solved by the implicit function theorem in Hs′

σ since ∂rF (V0, 0, 0) is
invertible from H1(V0) to itself because ∂rf2(V0, 0, 0) (f2(V0, r, 0) = r) is invertible
from H1(V0) to itself and Dhc(0, 0) = 0.

The smoothness of g in the Besov spaces follows from the fact that g(U, z) ∈
H1(U), and the exponential decay for excited states and their derivatives is given
by (2.1).

Then we note that, for any U close to V0, the previous proof can be applied
to W c(U). It shows that W c(U), W c(V0) are, in a neighborhood of S(V0), graphs
of two functions on S(V0, ε), which are equal up to a translation in C

2 of the first
parameter. Hence their graphs are equal, so locally W c(U) = W c(V0). The last
assertion then follows from the fact that at S(U), W c(U) is tangent to S(U) +Xc(U)
and Xc(U) ∩H1(U) = {0}.

Hence decomposing η with respect to the spectrum of JH(U), we write

η(t) = g(U(t), z(t)) + z(t)

with z ∈ Hc(U) ∩ L2(R3,R8). We obtain the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U̇ = −A(U, η)〈N(U, η), dS(U)〉,

∂tz = JH(U)z + Pc(U)JN(U, η)

+ Pc(U(v))dS(U(v))A(U(v), η(v))〈N(U(v), η(v)), dS(U(v))〉

+ (dPc(U))A(U, η)〈N(U, η), dS(U)〉η

with

η(t) = z(t) + g (U(t), z(t)) .

We note that this equation is defined only for z small with real values and U small.
We now study this system.

3.2. The stabilization towards the PLS manifold. We now show that any
solution of (1.8) which belongs to the center manifold W c(V0), for a small nonzero
V0, stabilizes as t→ ±∞ towards the manifold of the stationary states inside W c(V0).
To this end, we will use Theorems 1.1 and 1.2 to prove that z tends to zero in some
sense.
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Let us define for any ε, δ > 0

U(ε, δ) =
{
U ∈ C1(R, BC2(V0, ε)), ‖U̇‖L1(R)∩L∞(R) ≤ δ2

}
,

and for any U ∈ U(ε, δ), let s, β be such that s > β + 2 > 2 and σ > 3/2,

Z(U, δ) =
{
z ∈ C(R, L2(R3,R8)), z(t) ∈ Hc(U(t)),

max
[
‖z‖L∞(R,Hs), ‖z‖L2(R,Hs

−σ), ‖z‖L2(R,Bβ
∞,2)

]
≤ δ

}
,

and ε, δ are small enough to ensure that for U ∈ U(ε, δ) and z ∈ Z(U, δ)

S(U) + z + g(U, z) ∈W c(V0) ∩BHs(S(V0), r(V0)),

where g is defined in Lemma 3.2 and r is defined in Remark 2.3. It will appear later
that δ is of the same order as ‖z0‖Hs (see Lemma 3.8).

3.2.1. Some useful lemmas. In the rest of our study, we will need some tech-
nical lemmas, which we collect here.

Lemma 3.3. If Assumptions 1.1–1.4 hold, let σ, σ′ ∈ R, s > 1, and p, p̃1, p1, p2, q
in [1,∞] be such that

1
p

+
s

3
≥ 1
p1

+
1
p2

≥ 1
p

and

1
p

+
s

3
≥ 1
p̃1
.

Then there exist ε > 0 and C > 0 such that, for all U ∈ BC(0, ε) and η ∈ Bs
p2,q(R3,R8)∩

L∞(R3,R8) with 〈Q〉ση ∈ Bs
p1,q(R3,R8) and 〈Q〉σ′

η ∈ Bs
p̃1,q(R3,R8), we have

‖〈Q〉σN(U, η)‖Bs
p,q

≤ C (s, F, |U | + ‖η‖L∞) |U | ‖η‖L∞

∥∥∥〈Q〉σ′
η
∥∥∥

Bs

p̃1,q

(3.2)

+ C
(
s, F, |U | + ‖η‖L∞∩Bs

p2,q

)
‖η‖2

L∞ ‖〈Q〉ση‖Bs
p1,q

.

Proof. We recall the definition

N(U, η) = ∇F (S(U) + η) −∇F (S(U)) − d2F (S(U))η.

We have

N(U, η) =
∫ 1

0

∫ 1

0

d3F (S(U) + θ′θη) · η · θη dθ′dθ

or

N(U, η) =
1
2
d3F (S(U)) · η · η +

∫ 1

0

∫ 1

0

d4F (S(U) + θ′′θ′θη) · θ′θη · η · θη dθ′′dθ′dθ.

Then we use, for s ∈ R
∗
+ and p, p1, p2, q ∈ [1,∞] such that 1

p + s
3 ≥ 1

p1
+ 1

p2
≥ 1

p ,

‖uv‖Bs
p,q

≤ C‖u‖Bs
p1,q

‖v‖Bs
p2,q

,
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and for s > 1, we use [19, Proposition 2.1]

‖dkF (ψ)‖Bs
p2,q

≤ C (s, F, ‖ψ‖L∞) ‖ψ‖Bs
p2,q

for k = 3 or k = 4 and d4F (z) = O(|z|); otherwise we decompose d4F (z) = A+O(|z|),
where A is a constant operator.

Eventually using Lemma 1.2 and∥∥∥〈Q〉σ |η|l
∥∥∥

Bs
p1,q

≤ C ‖η‖l−1
L∞ ‖〈Q〉ση‖Bs

p1,q

for l ∈ N, we conclude the proof.
Lemma 3.4. If Assumptions 1.1–1.4 hold, let σ ∈ R, s > 1, p, p1, p2, q ∈ [1,∞],

and σ1, σ2 ∈ R such that

1
p

+
s

3
≥ 1
p1

+
1
p2

≥ 1
p
.

Then there exist ε > 0 and C > 0 such that, for all U ∈ BC(0, ε) and η ∈ Bs
p,q(R3,R8)∩

L∞(R3,R8) with 〈Q〉σ1η ∈ Bs
p1,q(R3,R8) and 〈Q〉σ2η ∈ Bs

p2,q(R3,R8), we have

‖〈Q〉σ (∇F (S(U) + η) −∇F (S(U)) −∇F (η))‖Bs
p,q

≤ C(s, F, |U | + ‖η‖L∞)
(
|U | + ‖〈Q〉σ1η‖Bs

p1,q

)
|U | ‖〈Q〉σ2η‖Bs

p2,q
.

Proof. The proof is similar to that of Lemma 3.3.
Lemma 3.5. If Assumptions 1.1–1.4 hold, let σ ∈ R, s > 1, and p, q ∈ [1,∞] such

that sp ≥ 3. Then there exist ε > 0 and C > 0 such that, for all U, U ′ ∈ BC2(0, ε)
and η, η′ ∈ Bs

p,q(R3,R8), we have

‖〈Q〉σ {N(U, η) −N(U ′, η′)}‖Bs
p,q

≤ C
(
s, F, |U | + |U ′| + ‖η‖Bs

p,q
+ ‖η′‖Bs

p,q

)
×
{(

‖〈Q〉σ1η‖Bs
p,q

+ ‖〈Q〉σ1η′‖Bs
p,q

)2 (
|U − U ′| + ‖〈Q〉σ2 (η − η′)‖Bs

p,q

)
+
(
|U | + |U ′| +

∥∥∥〈Q〉σ
′
1η
∥∥∥

Bs
p,q

+
∥∥∥〈Q〉σ

′
1η′
∥∥∥

Bs
p,q

)
×
(
‖〈Q〉σ′

2η‖Bs
p,q

+ ‖〈Q〉σ′
2η′‖Bs

p,q

)
‖〈Q〉σ′

3 (η − η′) ‖Bs
p,q

}
,

with 2σ1+σ2 = σ′
1+σ′

2+σ′
3 = σ if 〈Q〉wη, 〈Q〉wη′ ∈ Bs

p,q(R3,R8) for w ∈ {σ1, σ2, σ
′
1, σ

′
2, σ

′
3}.

Proof. Using the identity

N(u, η) =
∫ 1

0

∫ 1

0

d3F (S(u) + θ′θη) · η · θη dθ′dθ,

we can restrict our study to d3F (φ) − d3F (φ′). If F = O(|z|5), we have

‖〈Q〉σ
(
d3F (φ) − d3F (φ′)

)
‖Bs

p,q
≤
∫ 1

0

‖d4F (φ+ t(φ− φ′))‖Bs
p,q

‖〈Q〉σ(φ− φ′)‖Bs
p,q
dt.

Then since s > 1 and sp ≥ 3, we use

‖d4F (ψ)‖Bs
p,q

≤ C(s, F, ‖ψ‖Bs
p,q

).
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Using Lemma 1.2, we conclude the proof when F = O(|z|5).
Otherwise, if F is a homogeneous polynomial of order 4, the proof is easily adapt-

able since d4F is a constant tensor.
The case F = O(|z|4) follows by summing the two previous cases since, as a

function of u ∈ R
8, F (u) = Au⊗4 +O(|u|5).

Lemma 3.6. If Assumptions 1.1–1.4 hold, let σ ∈ R, s ∈ R, and p, q ∈ [1,∞].
Then there exist ε > 0, M > 0, and C > 0 such that, for all U, U ′ ∈ BC2(0, ε)
and η, η′ ∈ BL2(R3,R8)(0,M) with 〈Q〉σ {η − η′} ∈ Bs

p,q(R3,R8), one has

|A(U, η) −A(U ′, η′)| ≤ C
{
|U − U ′| + ‖〈Q〉σ {η − η′}‖Bs

p,q

}
.(3.3)

Proof. We recall that

A(U, η) = [〈JdS(U), dS(U)〉 − 〈Jη, d2S(U)〉]−1.

We have

A(U, η) −A(u′, η′) = −[〈JdS(U), dS(U)〉 − 〈Jη, d2S(U)〉]−1

×
{
〈JdS(U), dS(U)〉 − 〈Jη, d2S(U)〉 − 〈JdS(U ′), dS(U ′)〉 + 〈Jη′, d2S(U ′)〉

}
× [〈JdS(U ′), dS(U ′)〉 − 〈Jη′, d2S(U ′)〉]−1.

The lemma then follows from Lemma 1.2.

3.2.2. Global well-posedness for z. Let U ∈ U(ε, δ) and z0 ∈ Hc(U(0))∩Hs.
Let us write U∞ = limt→+∞ U(t); then we define TU,z0(z) by

TU,z0(z)(t) = e−itH+i
∫

t
0

E(U(r)) drz0

+
∫ t

0

e−i(t−v)H+i
∫ t

v
E(U(r)) drPc(U(v))J∇F (η(v)) dv

+
∫ t

0

e−i(t−v)H+i
∫

t
v

E(U(r)) dr

× Pc(U(v))J{∇F (S(U(v)) + η(v)) −∇F (S(U(v)) −∇F (η(v))} dv

+
∫ t

0

e−i(t−v)H+i
∫ t

v
E(U(r)) dr

× Pc(U(v))dS(U(v))A(U(v), η(v))〈N(U(v), η(v)), dS(U(v))〉 dv

−
∫ t

0

e−i(t−v)H+i
∫

t
v

E(U(r)) drdPc(U(v))U̇ (v)η(v) dv

with

η(t) = z(t) + g (U(t), z(t)) .

First, we have a local well-posedness result for z with the following lemma.
Lemma 3.7. If Assumptions 1.1–1.5 hold, then there exist ε0 > 0 and δ0 > 0

such that for any ε ∈ (0, ε0), δ ∈ (0, δ0), U ∈ U(δ, ε), and z0 ∈ BHs(0,δ) ∩ Hc(U(0))
there are T±(z0, U) > 0 and a solution

z ∈ ∩2
k=0Ck((−T−(z0, U); +T+(z0, U)), Hs−k(0, δ))
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of the equation {
∂tz = JH(U)z + Pc(U)JN(u, η) − (dPc(U))U̇η,
z(0) = z0,

(3.4)

where η(t) = z(t) + g (U(t), z(t)).
Moreover, z is unique in L∞((−T ′, T ), Hs) for any T ∈ (0, T+(z0, U)) and T ′ ∈

(0, T−(z0, U)), and we have that if T+(z0, U) < +∞, then

lim
t→T+(z0,U)

‖z(t)‖Hs ≥ δ,

and if T−(z0, U) = +∞, then

lim
t→−T−(z0,U)

‖z(t)‖Hs ≥ δ.

Proof. The proof is a consequence of the fixed point theorem applied to TU,z0 .
Using Lemmas 3.3, 3.5, and 3.6 with the estimate (2.7)–(2.9) and the properties

of g given by Lemma 3.2, we obtain that TU,z0 leaves a small ball in Hs invariant and
is a contraction inside this ball.

Hence there exists a unique solution defined on the interval [−T, T ]. Classical ar-
guments permit us to extend the solution over a maximal interval (−T−(z0, U), T+(z0, U))
such that if T+(z0, U) < ∞, then necessarily the solution should leave a small ball
in Hs at time T+(z0, U).

We now have a global well-posedness result as stated in the following lemma.
Lemma 3.8. If Assumptions 1.1–1.5 hold, there exist ε0 > 0, δ0 > 0, and C > 0

such that for any ε ∈ (0, ε0), δ ∈ (0, δ0), U ∈ U(ε, δ), and z0 ∈ BHs(0, δ) ∩ Hc(U(0))
we obtain, for the Cauchy problem (3.4), T+(U, z0) = +∞, T−(U, z0) = +∞, z ∈
Z(U, δ), and

max
[
‖z‖L∞(R,Hs), ‖z‖L2(R,Hs

−σ), ‖z‖L2(R,Bβ
∞,2)

]
≤ C ‖z0‖Hs .

Proof. We have (1 − Pc(U))z ≡ 0 because (1 − Pc(U(0)))z(0) = 0 and its time
derivative is zero.

Let us introduce for any 0 < T < T+(U, z0) the function

m(T ) = sup
t∈(−T,T )

{
‖z‖L∞((−T,T ),Hs) , ‖z‖L2((−T,T ),Hs

−σ) , ‖z‖L2((−T,T ),Bβ
∞,2)

}
.

First, we study the estimation of L2((−T, T ), Hs
−σ) . We use estimate (2.4) and

the estimates of Theorem 1.1:

‖z‖L2((−T,T ),Hs
−σ)

≤ C0 ‖z0‖Hs + C

∥∥∥∥Pc

∫ t

0

e−i(t−v)H+i
∫

t
v

E(U(r)) drPc(U(v))J∇F (η(v)) dv
∥∥∥∥
L2((−T,T ),Hs

−σ)

+ C ‖∇F (S(U) + η) −∇F (S(U) −∇F (η)‖L2((−T,T ),Hs
σ)

+ C ‖dS(U)A(U, η)〈N(U, η), dS(U)〉‖L2((−T,T ),Hs
σ)

+ C
∥∥∥(dPc(U)U̇η

∥∥∥
L2((−T,T ),Hs

σ)
.
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We now study the estimation of the third term of the right-hand side:∥∥∥∥∫ t

0

e−i(t−v)H+i
∫ t

v
E(U(r)) drPcPc(U(v))J∇F (η(v)) dv

∥∥∥∥
L2

t ((−T,T ),Hs
−σ)

≤
∫ T

−T

∥∥∥e−i(t−v)H+i
∫

t
v

E(U(r)) drPcPc(U(v))J∇F (η(v))
∥∥∥

L2
t ((−T,T ),Hs

−σ)
dv

≤ C(U) ‖∇F (η)‖L1((−T,T ),Hs)

≤ C(U) ‖η‖2
L2((−T,T ),L∞) ‖η‖L∞((−T,T ),Hs) ,

where we used Theorem 1.1, estimate (1.2). Hence for the L2Hs
−σ estimate, we obtain

‖z‖L2((−T,T ),Hs
−σ) ≤ C0 ‖z0‖Hs + C ‖η‖2

L2((−T,T ),L∞) ‖η‖L∞((−T,T ),Hs)

+ C
(
‖U‖∞ + ‖η‖L∞((−T,T ),Hs

−σ)

)
‖U‖∞ ‖η‖L2((−T,T ),Hs

−σ)

+ C ‖η‖2
L2((−T,T ),L∞) + C

∥∥U̇∥∥
L2 ‖η‖L∞((−T,T ),Hs) .

Using Lemma 3.2, we obtain

‖z‖L2((−T,T ),Hs
−σ) ≤ C0 ‖z0‖Hs + Cm(T )3 + Cm(T )2 + Cεm(T ) + Cδ2m(T ),

where C depends on ‖U‖∞ and ‖η‖L∞((−T,T ),Hs).
Then, we estimate the Hs norm. Using estimate (2.4), we have

‖z(t)‖Hs ≤ ‖z0‖Hs +
∫ T

−T

‖∇F (η(v))‖Hs dv

+
∥∥∥∥∫ t

0

e−i(t−v)H+i
∫

t
v

E(U(r)) drPc(U(v))

×J{∇F (S(U(v)) + η(v)) −∇F (S(U(v))) −∇F (η(v))} dv
∥∥∥∥

Hs

+
∫ T

−T

‖dS(U(v))A(U(v), η(v))〈N(U(v), η(v)), dS(U(v))〉‖Hs dv

+
∫ T

−T

∥∥∥dPc(U(v))U̇ (v)η(v)
∥∥∥

Hs
dv.

To estimate the third term of the right-hand side, we use the H-smoothness estimates,
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more precisely, Theorem 1.1, estimate (1.1), and then we use Lemma 3.4:∥∥∥∥∫ t

0

e−i(t−v)H+i
∫ t

v
E(U(r)) dr

× Pc(U(v))J{∇F (S(U(v)) + η(v)) −∇F (S(U(v))) −∇F (η(v))} dv
∥∥∥∥

Hs

≤
∥∥∥∥∫ t

0

eivH−i
∫ v
0

E(U(r)) dr

× Pc(U(v))J{∇F (S(U(v)) + η(v)) −∇F (S(U(v))) −∇F (η(v))} dv
∥∥∥∥

Hs

≤ C ‖∇F (S(U) + η) −∇F (S(U)) −∇F (η)‖L2((−T,T ),Hs
σ)

≤ C
(
‖U‖∞ + ‖η(v)‖L∞((−T,T ),Hs)

)
‖U‖∞ ‖η‖L2((−T,T ),Hs

−σ) .

Hence for the L∞Hs estimate, we obtain

‖z(t)‖Hs ≤ ‖z0‖Hs + C ‖η‖L∞((−T,T ),Hs) ‖η‖
2
L2((−T,T ),L∞)

+C
(
‖U‖L∞((−T,T )) + ‖η(v)‖L∞((−T,T ),Hs)

)
‖U‖L∞((−T,T )) ‖η‖L2((−T,T ),Hs

−σ)

+C ‖η‖2
L2((−T,T ),L∞) +

∥∥U̇∥∥
L1((−T,T ))

‖η‖L∞((−T,T ),Hs) .

Using Lemma 3.2, we obtain

‖z(t)‖Hs ≤ ‖z0‖Hs + Cm(T )3 + Cm(T )2 + Cεm(T ) + Cδ2m(T ),

where C depends on ‖U‖∞ and ‖η‖L∞((−T,T ),Hs).

For the L2Bβ
∞,2 estimate, by Proposition 2.2 and Theorem 1.2, we have for any

δ > 0, any pδ > 3/δ, and θδ = 4
pδ−2

‖z‖L2((−T,T ),Bβ
∞,2)

≤ ‖z‖L2((−T,T ),Bβ+δ
pδ,2)

≤ C0‖z0‖Hβ+1+δ+θδ/2 + C
∥∥d2F (S(U)) · η

∥∥
L2((−T,T ),B

β+2+δ+θδ
p′

δ
,2

)

+ C ‖N(U, η)‖L1((−T,T ),Hβ+1+δ+θδ/2)

+ C ‖dS(U)A(U, η)〈N(U, η), dS(U)〉‖L1((−T,T ),Hβ+1+δ+θδ/2)

+ C
∥∥∥(dPc(U))U̇η

∥∥∥
L1((−T,T ),Hβ+1+δ+θδ/2)

dv.

With Lemmas 3.3 and 3.4, we infer that

‖z‖L2(R,Bβ
∞,2)

≤ C0‖z0‖Hβ+1+δ+θδ/2 + C|U |∞ ‖η‖
L2((−T,T ),H

β+2+δ+θδ
−σ )

+ C|U |∞ ‖z‖L2((−T,T ),L∞) ‖z‖L2((−T,T ),Hβ+1+δ+θδ/2)

+ C(|U |∞ + ‖η‖L∞((−T,T ),Hβ+1+δ+θδ/2)) ‖η‖
2
L2((−T,T ),L∞) ‖z‖L∞((−T,T ),Hβ+1+δ+θδ/2)
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+ C(|U |∞ + ‖η‖L∞((−T,T ),Hβ+1+δ+θδ/2)) ‖η‖L2((−T,T ),H
β+1+δ+θδ/2

−σ )

×‖η‖L∞((−T,T ),Hβ+1+δ+θδ/2)

+ C‖U̇‖L1 ‖η‖L∞((−T,T ),Hβ+1+δ+θδ/2) .

Since for small δ > 0, s ≥ β + 2 + δ + θδ and using Lemma 3.2, we infer that

‖z‖L2((−T,T ),Bβ
∞,2)

≤ C0‖z0‖Hβ+1+δ+θδ/2

+ Cm(T )3 + Cm(T )2 + Cεm(T ) + Cδ2m(T ).

Hence we obtain

m(T ) ≤ C0‖z0‖Hβ+1+δ+θδ/2 + Cεm(T ) + Cδ2m(T ) + Cm(T )3 + Cm(T )2,

where C0 does not depend on m and C is a nondecreasing function of ‖z‖L∞((−T,T ),Hs)

and ‖U‖∞ and hence can be bounded by a nondecreasing function of m.
If ‖z0‖Hs is small, then m(0) is small and m(T ) stays small. Therefore we have

that z ∈ Z(U, δ) if ‖z0‖Hs , δ, and ε are small enough; moreover,

max
[
‖z‖L∞(R,Hs), ‖z‖L2(R,Hs

−σ), ‖z‖L2(R,Bβ
∞,2)

]
≤ f(‖z0‖Hs),

where f is such that there exists C > 0 with

f(‖z0‖Hs) ≤ C ‖z0‖Hs .

The solution z just found is a function of z0 and U ; writing it z[z0, U ], we have
the following important property given by the following lemma.

Lemma 3.9. If Assumptions 1.1–1.5 hold, then for any T > 0, there exist ε0 > 0,
δ0 > 0, C > 0, and κ ∈ (0, 1) such that for any ε ∈ (0, ε0), δ ∈ (0, δ0), U, U ′ ∈ U(ε, δ),
z0 ∈ Hc(U(0)), z′0 ∈ Hc(U ′(0)), z ∈ Z(U, δ), and z′ ∈ Z(U ′, δ), one has

‖z[z′0, U
′] − z[z0, U ]‖L∞((−T ;T ),Hs)∩L2((−T ;T ),L∞)∩L2((−T ;T ),Hs

−σ)

≤ C ‖z0 − z′0‖Hs + κ

{
‖U − U ′‖L∞((−T ;T )) +

∥∥∥U̇ − U̇ ′
∥∥∥

L∞((−T ;T ))

}
.

Proof. We use the techniques of the previous lemma.

3.2.3. Global well-posedness for U and its stabilization. Here we want to
solve the equation for U . We note that z has been built in the previous section and
is a function of U and z0 ∈ Hc(U(0)). Let us introduce for any U0 ∈ BC(0, ε) the
function on U(ε, δ):

fU0(U)(t) = U0 −
∫ t

0

A(U(v), η(v))〈N(U(v), η(v)), dS(U(v))〉 dv,

where η = z(t) + g [U(t), z(t)]. We have the following lemma.
Lemma 3.10. If Assumptions 1.1–1.5 hold, there exist ε0 > 0 and δ0 > 0 such

that, for any ε ∈ (0, ε0), δ ∈ (0, δ0), the function fU0 maps U(ε, δ) into itself if U0

and z0 ∈ Hs ∩Hc(U0) are small enough.
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Proof. By means of Lemma 3.3, we obtain

‖∂tfU0(U)‖L1(R)∩L∞(R) ≤ C ‖N(U(v), η(v))‖L1(R,Hs
−σ)∩L∞(R,Hs) ≤ δ2

and

‖fU0(U)‖L∞(R) ≤ |U0| + C ‖N(U(v), η(v))‖L1(R,Hs) ≤ |U0| + δ2;

hence for sufficiently small U0 and δ, we obtain the lemma.
The function fU0 also has a local Lipschitz property, as stated by the following

lemma.
Lemma 3.11. If Assumptions 1.1–1.5 hold, for any T > 0, there exist ε0 >

0, δ0 > 0, and κ ∈ (0, 1) such that for any ε ∈ (0, ε0), δ ∈ (0, δ0), U, U ′ ∈ U(ε, δ), for
any z0 ∈ Hc(U(0)) ∩Hs, for any z′0 ∈ Hc(U ′(0)) ∩Hs small enough, and for U0, U

′
0

small enough, one has∣∣fU0(U) − fU ′
0
(U ′)

∣∣
L∞((−T ;T ))

+
∣∣∂tfU0(U) − ∂tfU ′

0
(U ′)

∣∣
L1((−T ;T ))

≤ |U0 − U ′
0| + κ

(
‖U − U ′‖L∞((−T ;T )) + ‖U̇ − U̇ ′‖L1((−T ;T )) + ‖z0 − z′0‖Hs

)
.

Proof. The proof is a straightforward consequence of Lemmas 3.5, 3.6, and
3.9.

We now obtain the following lemma.
Lemma 3.12. If Assumptions 1.1–1.5 hold, there exist ε > 0 and δ > 0 such that,

for any U0 ∈ C small and z0 ∈ Hc(U0) ∩Hs
σ small, the equation{

U̇ = −A(U, η)〈N(U, η), dS(U)〉,
U(0) = U0,

(3.5)

where η(t) = z(t) + g [U(t), z(t)], has a unique solution in U(δ, ε). Moreover, there
exists C > 0 such that

|U±∞ − U0| ≤ C ‖z0‖2
Hs .

Proof. This is also a fixed point result for fU0 . Let us fix T > 0 and consider, for
any V ∈ U(δ, ε) with sufficiently small δ > 0 and ε > 0, the sequence{

Vn+1 = fU0(Vn) ∀n ∈ N,

V0 = V

for any n ∈ N, Vn ∈ U(δ, ε). With Lemma 3.11, the fixed point theorem gives us the
convergence for the norms of L∞((−T, T )) and Ẇ 1,1((−T, T )) of (Vn)n∈N

.
Then we notice that, for any T ′ ∈ R, we have

Vn+1(t) = ffU0 (Vn)(T ′)(Vn)(t− T ′).

Since for T ′ ∈ (−T ;T ), (fU0(Vn)(T ′)) is a Cauchy sequence, Lemma 3.11 gives us the
convergence of (Vn) for the norms of L∞((T ′−T ;T ′+T )) and Ẇ 1,1((T ′−T ;T ′+T )).

Iterating this process, we obtain that the sequence converges uniformly locally in
time and we prove the lemma since the other statements are classical. We note just
that the last statement follows from the fact that there exists C > 0 such that∫

R±

∣∣∣U̇(v)
∣∣∣ dv ≤

∫
R±

|A(U(v), η(v))〈N(U(v), η(v)), dS(U(v))〉| dv ≤ C ‖z0‖2
Hs .
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3.2.4. The asymptotic profile of z. In this section, our aim is to specify the
asymptotic profile of z when z0 is localized. First we state the following proposition.

Proposition 3.1. There exists ε > 0 such that for all U ∈ BC2(0, ε) and α ∈ R
+

there exists C > 0 such that∥∥∥〈Q〉α eJtH(U)Pc(U)ψ
∥∥∥ ≤ Cα

α∑
β=0

〈t〉β
∥∥∥〈Q〉α−β

ψ
∥∥∥

for any ψ ∈ L2(R3,C8).
Proof. From Proposition 2.2, we obtain the lemma for α = 0; then we just need

the estimate ∥∥∥QαeJtH(U)ψ
∥∥∥2

≤ C2
α

∑
0≤β≤α

|t|2|β|
∥∥Qα−βψ

∥∥2

for any ψ ∈ L2(R3,C8), α ∈ N
3, and some C > 0 independent of ψ. The rest of the

proposition will follow by interpolation.
For U = 0, this follows by an iterated proof from the identity

d

dt
eitHQe−itH = eitHαe−itH ,

where α is the 3-vector of Dirac–Pauli matrices defined in the introduction. For U �= 0,
we use the same proof with the exponential decay of Proposition 1.1.

We can improve Lemma 3.13 if we use [7, Theorem 1.1] and [7, Theorem 1.2],
which we repeat in what follows.

Theorem 3.1 (Theorem 1.1 of [7]: propagation for perturbed Dirac dynamics).
Assume that Assumptions 1.1 and 1.2 hold, and let σ > 5

2 . Then one has

‖e−itHPc (H) ‖B(L2
σ,L2

−σ) ≤ C 〈t〉−
3
2 .

We also have the following proposition.
Proposition 3.2 (Proposition 2.2 of [7]: propagation far from thresholds). Sup-

pose that Assumption 1.1 holds. Then, for any χ ∈ C∞(R3,C4) bounded with support
in R \ (−m;m) and for any σ ≥ 0, there is C > 0 such that

‖e−itHχ (H) ‖B(L2
σ,L2

−σ) ≤ C 〈t〉−σ .

Using Duhamel’s formula as in Proposition 2.2 and interpolating with estimate
(2.6), we obtain the following corollary.

Corollary 3.1. Assume that Assumptions 1.1 and 1.2 hold, and let θ ≥ 0 and
σ > 5

2θ. Then there exists ε > 0 such that for all U ∈ BC2(0, ε) one has

‖eJtH(U)Pc (U) ‖B(L2
σ,L2

−σ) ≤ C 〈t〉−
3θ
2 .

Theorem 3.2 (Theorem 1.2 of [7]: dispersion for perturbed Dirac dynamics).
Assume that Assumptions 1.1 and 1.2 hold. Then for p ∈ [1, 2], θ ∈ [0, 1], s − s′ ≥
(2 + θ)( 2

p − 1), and q ∈ [1,∞] there exists a constant C > 0 such that

‖e−itHPc(H)‖Bs
p,q,Bs′

p′,q
≤ C (K(t))

2
p−1
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with 1
p + 1

p′ = 1, and

K(t) =

{
|t|−1+θ/2 if |t| ∈ (0, 1],

|t|−1−θ/2 if |t| ∈ [1,∞).

Using Duhamel’s formula once more, Theorem 3.1, and Corollary 3.1, we obtain
the following corollary.

Corollary 3.2. Assume that Assumptions 1.1 and 1.2 hold, and let p ∈ [1, 2],
θ ∈ [0, 1], s− s′ ≥ (2 + θ)( 2

p − 1), q ∈ [1,∞], and σ > max{ 3
2 , (

2
p − 1)(1 + θ

2 )}. Then
there exists ε > 0 such that for all U ∈ BC2(0, ε) one has

‖eJtH(U)Pc(U)‖Hs
σ ,Bs′

p′,q
≤ C (K(t))

2
p−1

with 1
p + 1

p′ = 1, and

K(t) =

{
|t|−1+θ/2 if |t| ∈ (0, 1],

|t|−1−θ/2 if |t| ∈ [1,∞).

Proof. We first prove this for U = 0. We have to study the high and low energy
parts in a different manner. For the low energy part, we iterate twice Duhamel’s
formula with respect to Dm in order to use Theorems 3.1 and 3.2 for the free case.

In the high energy part, we use also Duhamel’s formula but with Theorem 3.2 for
the free case and Proposition 3.2.

Then for U �= 0, we work as for estimate (2.6).
We obtain the following lemma.
Lemma 3.13. If Assumptions 1.1–1.5 hold, there exist ε0 > 0, δ0 > 0, and C > 0

such that for any ε ∈ (0, ε0), δ ∈ (0, δ0), U0 ∈ BC2(0, ε), and z0 ∈ BHs
σ
(0, δ)∩Hc(U0)

we obtain for the Cauchy problem (3.4) (with U the solution of (3.5)) a global solution
z such that

max
[

sup
t∈R

(‖z(t)‖Hs), sup
t∈R

(〈t〉3/2‖z(t)‖Hs
−σ

),

sup
t∈R

(〈t〉3/2‖z(t)‖Bβ
∞,2

), sup
t∈R

(〈t〉−3/2‖z(t)‖Hs
3/2

)
]
≤ C ‖z0‖Hs

σ
.

Proof. The proof is similar to that of Lemma 3.8 with some adaptations involving
the norm Hs

σ; we also refer to the proof of [7, Lemma 5.5]. Indeed, we work in the
spaces

Ũ(ε, δ) =
{
U ∈ C1(R, BC2(V0, ε)), ‖V̇ (t)‖ ≤ δ2

〈t〉3

}
and

Z(U, δ) =
{
z ∈ C(R, L2(R3,R8)), z(t) ∈ Hc(U(t)),

max
[

sup
t∈R

(‖z(t)‖Hs), sup
t∈R

(〈t〉3/2‖z(t)‖Hs
−σ

),

sup
t∈R

(〈t〉3/2‖z(t)‖Bβ
∞,2

), sup
t∈R

(〈t〉−3/2‖z(t)‖Hs
3/2

)
]
≤ δ

}
.



1662 NABILE BOUSSAID

Let

t �→ ξ±(t) = eJ
∫ t
0
(E(U(v))−E(U±∞)) dvz(t)

and

t �→ V±(t) = e−i
∫ t
0
(E(U(v))−E(U±∞)) dvU(t).

We have that V±∞ lim±∞ V±(t) exist and we use exactly the same method as that of
Lemma 3.8, applied to

ξ±(t) = eJtH(V±∞)z0

+
∫ t

0

eJ(t−s)H(V±∞)Pc(V±(v))J
(
d2F (S(V±(v))) − d2F (S(V±∞))

)
ξ±(v) dv

+
∫ t

0

eJ(t−s)H(V±∞)Pc(V±(v))JN(V±(v), η̃±(v)) dv

+
∫ t

0

eJ(t−s)H(V±∞)Pc(V±(v))dS(V (v))A(V±(v), η̃±(v))

×〈N(V±(v), η̃±(v)), dS(V±(v))〉 dv

−
∫ t

0

eJ(t−s)H(V±∞)(dPc(V±(v)))A(V±(v), η̃±(v))

×〈N(V±(v), η̃±(v)), dS(V±(v))〉η̃±(v) dv,

with η̃±(t) = eJ
∫ t
0
(E(U(v))−E(U±∞)) dv (z(t) + g(U(t), z(t))), but using the previous

time decay estimates.
There are two differences from the proof of Lemma 3.8:
One is in the estimate of the Hs

−σ norm. In fact, before using the time decay
estimates for e−itHPc(H), we split the space associated with the continuous spectrum
into two parts: one associated with energy close to the thresholds and one associated
with the rest of the spectrum. In the first part, we use the fact that σ > 3/2 to
estimate the Hs

−σ by the Bβ
∞,2 norm since we work with bounded energies. In the

second part, since we work far from thresholds, we use Proposition 3.2 after estimating
the Hs

−σ by the Hs
−3/2 norm.

The other difference is in the estimation of the Bβ
∞,2 norm. We use Corollary 3.2

for eJtH(V±∞)z0 and Theorem 3.2 for the integrals.
We have that lim±∞ U = U±∞ exist. If z0 ∈ Hs

σ, then the associated solution U
satisfies ∣∣U̇∣∣ ≤ C

〈t〉3 ‖z0‖Hs
σ
,

and we have ∫ t

0

(E(U(v)) − E(U±∞)) dv → E±∞ as t→ ±∞
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for some real E±∞. We introduce

V±(t) = e−i
∫ t
0
(E(U(v))−E(U±∞)) dvU(t),

which have a limit as t→ ±∞, respectively, as being

V±∞ = e−iE±∞U±∞.

Then we note that we can also obtain an asymptotic profile for eitH+itE(U∞)z(t) if z0
is localized. But we prefer to obtain a scattering result with respect to eJtH(V∞)). We
have the following lemma.

Lemma 3.14. If Assumptions 1.1–1.5 hold, then there exist ε0 > 0, δ0 > 0 such
that for any ε ∈ (0, ε0), δ ∈ (0, δ0), U0 ∈ BC2(0, ε), and z0 ∈ BHs

σ
(0, δ) ∩Hc(U0) and

for the solution z of (3.4) (with U the solution of (3.5)) given in Lemma 3.7, the limit

z±∞ = lim
t→±∞

e−JtH(V±∞)eJ
∫ t
0
(E(U(v))−E(U±∞)) dvz(t)

exists in Hs. Moreover, we have z±∞ ∈ Hc(V±∞) ∩Hs
σ, and there exists C > 0 such

that

max
{
‖e−J

∫
t
0
(E(U(v))−E(U±∞)) dveJtH(V±∞) drz±∞ − z(t)‖Hs ,

‖e−J
∫ t
0
(E(U(v))−E(U±∞)) dveJtH(V±∞) drz±∞ − z(t)‖Hs

−σ
,

‖e−J
∫

t
0
(E(U(v))−E(U±∞)) dveJtH(V±∞) drz±∞ − z(t)‖Bβ

∞,2

}
≤ C

〈t〉2 ‖z0‖
2
Hs

σ

and

‖z±∞ − e−JtH(V±∞)eJ
∫ t
0
(E(U(v))−E(U±∞)) dvz(t)‖Hs

3/2
≤ C

〈t〉 1
2

‖z0‖2
Hs

σ
.

Proof. Let

t �→ ξ±(t) = eJ
∫ t
0
(E(U(v))−E(U±∞)) dvz(t)

and

t �→ V±(t) = e−i
∫

t
0
(E(U(v))−E(U±∞)) dvU(t).

Using exactly the same method as that of Lemma 3.8, applied to

e−JtH(V±∞)ξ±(t) = z0

+
∫ t

0

e

−JsH(V±∞)

Pc(V±(v))J
(
d2F (S(V±(v))) − d2F (S(V±∞))

)
ξ±(v) dv

+
∫ t

0

e

−JsH(V±∞)

Pc(V±(v))JN(V±(v), η̃±(v)) dv

+
∫ t

0

e−JsH(V±∞)Pc(V±(v))dS(V (v))A(V±(v), η̃±(v))

×〈N(V±(v), η̃±(v)), dS(V±(v))〉 dv

−
∫ t

0

e−JsH(V±∞)(dPc(V±(v)))A(V±(v), η̃±(v))

×〈N(V±(v), η̃±(v)), dS(V±(v))〉η̃±(v) dv,
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with η̃±(t) = eJ
∫

t
0
(E(U(v))−E(U±∞)) dv (z(t) + g(U(t), z(t))), we prove that the limits

lim
t→±∞

e−JtH(V±∞)ξ±(t) = z±∞

exist. If we use the method of Lemma 3.13, we obtain the estimates on the convergence
of eJtH(V±∞)z±∞ − ξ±(t). Then multiplying by e−J

∫ t
0
(E(U(v))−E(U±∞)) dv, we obtain

the estimates and the convergence of

e−J
∫

t
0
(E(U(v))−E(U±∞)) dve−JtH(V±∞)z±∞ − z(t).

Then since (1 − Pc(U(t))) z(t) = 0, we have (1 − Pc(V±∞)) z±∞ = 0, and hence z±∞
belongs to Hc(V±∞).

4. The dynamics outside the center manifold. We can make the same
study in the center-stable manifold and the center-unstable manifold but only in one
direction of time. Let us explain it for the center-stable manifold in positive time since
it is similar for the center-unstable manifold. Actually it is equivalent if we revert the
time direction.

We give just a sketch of the proof since it is similar to the previous study. Using
the idea of the proof of exponential stabilization for Proposition 2.4, we write any
solution ψ in the form φ+ ρ+ f(φ, ρ) with φ in the center manifold, ρ ∈ Xs(V0), and
f a function to be specified and which ensures that φ is in the center stable manifold.

Indeed, W c(V0) is the graph of a smooth function hc : Xc(V0) �→ Xs(V0)⊕Xu(V0),
and W cs(V0) is the graph of a smooth function hu : Xc(V0) ⊕Xs(V0) �→ Xu(V0). Let
ν be such that ψ = S(V0) + ν satisfies (1.8); then we have

∂tν = JH(V0)ν + JN(V0, ν),

ν = y + hc(y) + ρ+ hu(y, hc(y) + ρ)

= φ(y) − S(V0) + (ρ− πs(V0)hc(y)) + (hu(y, hc(y) + ρ) − πu(V0)hc(y))

= φ(y) − S(V0) + ρ+ f(y, ρ)

with y = πc(V0)ν = πc(V0) (ψ − S(V0)), φ(y) = S(V0) + y + hc(y) in the center
manifold, and ρ ∈ Xs(V0). We have the following equation for ρ:

∂tρ = JH(V0)ρ+ M(V0, y, ρ),(4.1)

where

M(V0, y, ρ) = πs(V0) {JN(V0, y + hc(y) + ρ+ f(y, ρ)) − JN(V0, y + hc(y))}

− πs(V0)Dhc(y)πc(V0) {JN(V0, y + hc(y) + ρ+ f(y, ρ)) − JN(V0, y + hc(y))} .

Then we obtain for φ the equation

∂tφ = JHφ+ J∇F (φ) +R(φ, ρ),

R(φ, ρ) = J∇F (φ+ ρ+ f(y, ρ)) − J∇F (φ)

− Jd2F (S(V0))ρ−M(V0, π
c(V0)(φ − S(V0)), ρ),

noting that |R(φ, ρ)| ≤ C(‖φ‖Hs , ‖ρ‖L∞)|ρ|.
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Working as in section 3, we write φ = S(U) + η with η = z+ g (U, z) and we have
the following equations for U and z:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U̇ = −A(U, η)〈N(U, η) − JR(U, η, ρ), dS(U)〉,

∂tz = JH(U)z + Pc(U)JN(U, η)

+ Pc(U(v))dS(U(v))A(U(v), η(v))〈N(U(v), η(v)) − JR(U, η, ρ), dS(U(v))〉

+ (dPc(U))A(U, η)〈N(U, η) − JR(U, η, ρ), dS(U)〉η + Pc(U)R(U, η, ρ)

with

η(t) = z(t) + g (U(t), z(t)) ,

where g is defined by Lemma 3.2 and

R(U, η, ρ) = R(S(U) + η, ρ).

These equations are similar to those we have studied but with an extra term com-
ing from R which is exponentially decaying in positive time. Indeed, let us introduce
for any T0 < 0, γ ∈ (0, γ(V0)), and δ > 0 the set

RT0,γ(δ) =
{
ρ ∈ C((T0,+∞), Xs(V0)), |ρ(t)|Hs ≤ δe−γt ∀t > T0

}
.

We study (4.1) in RT0,γ(δ) with small initial condition ρ0. We also define for any ε > 0

UT0(ε, δ) =
{
U ∈ C1((T0,+∞), BC2(V0, ε)), ‖U̇‖L1((T0,+∞))∩L∞((T0,+∞)) ≤ δ2

}
,

and for any U ∈ UT0(ε), let s, β be such that s > β + 2 > 2 and σ > 3/2,

ZT0(U, δ) =
{
z ∈ C((T0,+∞), L2(R3,R8)), z(t) ∈ Hc(U(t)),

max
[
‖z‖L∞((T0,+∞),Hs), ‖z‖L2((T0,+∞),Hs

−σ), ‖z‖L2((T0,+∞),Bβ
∞,2)

]
≤ δ

}
,

and ε, δ are small enough to ensure that for U ∈ U(ε, δ) and z ∈ Z(U, δ)

S(U) + z + g(U, z) ∈W c(V0) ∩BHs(S(V0), r(V0)).

For a sufficiently small T0, we solve the equation for z first, then the one for ρ,
and eventually the one for U using the method of section 3. This gives us the desired
exponential decay for ρ as well as similar results for U and z.

We note that instead of Lemma 3.9, we obtain the following lemma.
Lemma 4.1. If Assumptions 1.1–1.5 hold, then for any T > 0, there exist T0 > 0,

ε0 > 0, δ0 > 0, C > 0, and κ ∈ (0, 1) such that for any ε ∈ (0, ε0), δ ∈ (0, δ0),
U, U ′ ∈ UT0(ε, δ), ρ, ρ′ ∈ RT0,γ, z0 ∈ Hc(U(0)), z′0 ∈ Hc(U ′(0)), z ∈ ZT0(U, δ), and
z′ ∈ ZT0(U ′, δ), one has

‖z[z′0, U ′, ρ′] − z[z0, U, ρ]‖L∞((T0,T ),Hs)∩L2((T0,T ),L∞)∩L2((T0,T ),Hs
−σ)

≤ C ‖z0 − z′0‖Hs + κ
{
‖U − U ′‖L∞((T0,T ),C2 +

∥∥U̇ − U̇ ′∥∥
L∞((T0,T ),C2)

+ ‖eγt(ρ− ρ′)(t)‖L∞
t ((T0,T ),Xs(V0))

}
.
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Then for ρ as a function of U , z0, and ρ0 (the initial condition for ρ), we obtain
the following lemma.

Lemma 4.2. If Assumptions 1.1–1.5 hold, then for any T > 0 there exist T0 > 0,
ε0 > 0, δ0 > 0, C > 0, and κ ∈ (0, 1) such that for any ε ∈ (0, ε0), δ ∈ (0, δ0),
U, U ′ ∈ UT0(ε, δ), r0, r′0 ∈ Xs(V0), z0 ∈ Hc(U(0)), z′0 ∈ Hc(U ′(0)), z ∈ ZT0(U, δ), and
z′ ∈ ZT0(U ′, δ) one has

‖eγt (ρ[z′0, U
′, ρ′0] − ρ[z0, U, ρ0])‖L∞

t ((T0,T ),Xs(V0))

≤C‖z0 − z′0‖Hs + κ
{
‖U − U ′‖L∞((T0,T ),C2)) +

∥∥U̇ − U̇ ′∥∥
L∞((T0,T ),C2)

+ ‖ρ0 − ρ′0‖L2

}
.

We also note that the proof gives the well-posedness of (4.1) in RT0,γ(δ) with
small initial condition ρ0 and that there exists C > 0 such that the solution ρ satisfies

‖ρ(t)‖Hs ≤ C ‖ρ±(0)‖ e−γt ∀t > T0.

The asymptotic behaviors of U and z are obtained as in the previous section when z0
is localized.

5. End of the proof of main theorems. We note that the small locally invari-
ant center manifold built in section 2.2 for (2.10) is now a small invariant (globally
in time) center manifold. Indeed, we have just proved the stabilization towards the
PLS manifold; this ensures that a solution in the center manifold will stay inside this
manifold in the two directions of time.

Now let us consider CM as being the union of all these small globally invariant
center manifolds and 0. Using the uniqueness of the center manifold and Lemma 3.2,
we prove that CM \ {0} is a manifold. Now we generalize Lemma 3.2 by the following
lemma.

Lemma 5.1. For any s, s′, σ ∈ R and p, q ∈ [1,∞], there exist ε > 0, a continuous
map r : B2

C
(0, ε) �→ R

+ with r(U) = O(Γ(U)), and a continuous map Ψ : S �→ CM ,
where

Sσ =
{

(U, z); U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs′
σ

(0, r(U))
}

is endowed with the metric of C
2 ×Hs′

σ .
Moreover, Ψ is bijective from S to an open neigborhood of (0, 0) in CM and

smooth on S \ {(0, 0)}. For all U ∈ BC2(0, ε), there exists C > 0 such that, for all
z ∈ Hc(U)∩BHs′ (0, r(U)), Ψ(U, z) ∈ H1(U), z+ Ψ(U, z) ∈ H0(U)⊥, and S(U) + z+
Ψ(U, z) ∈ CM . For sufficiently small nonzero U , we have ‖Ψ(U, z)‖Bs

p,q
= O(‖z‖2

Hs′ )

for z ∈ Hs′
such that (U, z) ∈ S.

Proof. The proof works like that of Lemma 3.2. The statements for r follow from
Remark 2.3.

The scattering result follows from a one-to-one correspondence of the initial profile
with the asymptotic profile as stated in the following proposition.

Proposition 5.1. If Assumptions 1.1–1.5 hold, there exist ε > 0 and a continu-
ous map r : B2

C
(0, ε) �→ R

+ with r(U) = O(Γ(U)) and Vσ, V± neighborhoods of (0, 0)
in

Sσ =
{

(U, z) ; U ∈ C
2, z ∈ Hc(U) ∩BHs

σ
(0, r(U))

}
endowed with the norm of C

2 ×Hs
σ such that the maps

P± :

(
U0

z0

)
∈ Vσ �→

(
V±∞

z±∞

)
∈ V±
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are bijections and are smooth on V0 \ {(0, 0)}.
Proof. We choose, for example,

Vσ =
{

(U, z) ; U ∈ BC2(0, ε), z ∈ Hc(U) ∩BHs
σ
(0, r(U))

}
for some positive ε, and we work on the manifold Vσ \ {( 0, 0)} which is locally iso-
morphic to an open set of C

2 ×Hc(U) ∩Hs
σ. We write

PU0
± (U, z) = (U, z) + RU0

± (U, z) .

Since

‖(U∞, z∞) − (U0, z0)‖Hs
σ

= O
(
|U0|2 + ‖z0‖2

Hs
σ

)
,

we need only prove the statement locally. Hence we prove that, in a neighborhood of
(U0, 0), the maps PU0

± (U, z) �→ (IdC2 , Pc(U0))P± (U,R(U,U0)z) are bijective (Pc and
R are defined in Proposition 2.2).

To prove that PU0
± is bijective (i.e., the scattering exists), let us prove it for PU0

+

(it is similar for PU0
− ). It is enough to prove that the following system has a unique

solution in an open neighborhood of (0, 0) in Sσ:

V±(t) = V±∞

+
∫ ∞

t

A(V±(v), eJsH(V±∞)η̃±(v))〈N(U(v), eJsH(V±∞)η̃±(v)), dS(V±(v))〉 dv

and

ξ̃+(t) = z∞ −
∫ ∞

t

e−JsH(V+∞)

× Pc(V+(v))J
(
d2F (S(V+(v))) − d2F (S(V+∞))

)
eJsH(V+∞)ξ̃+(v) dv

−
∫ ∞

t

e−JsH(V+∞)

× Pc(V+(v))JN(V+(v), eJsH(V+∞)η̃+(v)) dv

−
∫ ∞

t

e−JsH(V+∞)Pc(V+(v))dS(V (v))A(V+(v), eJsH(V+∞)η̃+(v))

×〈N(V+(v), eJsH(V+∞)η̃+(v)), dS(V+(v))〉 dv

+
∫ ∞

t

e−JsH(V+∞)(dPc(V+(v)))A(V+(v), eJsH(V+∞)η̃+(v))

×〈N(V+(v), eJsH(V+∞)η̃+(v)), dS(V+(v))〉eJsH(V+∞)η̃+(v) dv

with η̃+(t) = ξ̃+(t) + e−JsH(V+∞)g
(
V+(t), eJsH(V+∞)ξ̃+(t)

)
.

This system can be solved by a fixed point argument in the set of functions such
that

max
[

sup
t∈R

(‖z+∞ − ξ̃+(t)‖Hs), sup
t∈R

(〈t〉3/2‖z+∞ − ξ̃+(t)‖Hs
−σ

),

sup
t∈R

(〈t〉3/2‖z+∞ − ξ̃+(t)‖Bβ
∞,2

), sup
t∈R

(〈t〉−3/2‖z+∞ − ξ̃+(t)‖Hs
3/2

)
]
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and

〈t〉2 |V+(t) − V+∞|

are small with the method we used in Lemma 3.14.
For the same reasons, the small locally invariant center-stable manifold built in

section 2.2 is invariant in positive time. We can also consider the union of these
manifolds, and we can obtain a map Φ+ similar to the map Ψ built in Lemma 5.1.

The instability in negative time is, in fact, a consequence of Proposition 2.5.
The corresponding conclusion holds for the center-unstable manifold.
The statements on the instability outside these manifolds follow from Proposi-

tions 2.4 and 2.5.
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[37] B. Parisse, Résonances paires pour l’opérateur de Dirac, C. R. Acad. Sci. Paris Sér. I Math.,

310 (1990), pp. 265–268.
[38] C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian,

partial differential equations, J. Differential Equations, 141 (1997), pp. 310–326.
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ANALYSIS OF MODEL EQUATIONS FOR STRESS-ENHANCED
DIFFUSION IN COAL LAYERS. PART I: EXISTENCE OF A

WEAK SOLUTION∗

ANDRO MIKELIĆ† AND HANS BRUINING‡

Abstract. This paper is motivated by the study of the sorption processes in the coal. They
are modeled by a nonlinear degenerate pseudoparabolic equation for stress-enhanced diffusion of

carbon dioxide (CO2) in coal, ∂tφ = ∂x
{
D (φ) ∂xφ+ D(φ)φ

B
∂x
(
e−mφ∂tφ

)}
, where B,m are positive

constants and the diffusion coefficient D (φ) has a small value when the CO2 volume fraction φ
is 0 ≤ φ < φc, representative of coal in the glass state and orders of magnitude higher value
for φ > φc, when coal is in the rubber-like state. These types of equations arise in a number of
cases when nonequilibrium thermodynamics or extended nonequilibrium thermodynamics is used to
compute the flux. For this equation, existence of the travelling wave–type solutions was extensively
studied. Nevertheless, the existence seems to be known only for a sufficiently short time. We use the
corresponding entropy functional in order to get existence, for any time interval, of an appropriate
weak solution with square integrable first derivatives and satisfying uniform L∞-bounds. Due to the
degeneracy, we obtain square integrability of the mixed second order derivative only in the region
where the concentration φ is strictly positive. In obtaining the existence result it was crucial to have
the regularized entropy as unknown for the approximate problem and not the original unknown (the
concentration).

Key words. degenerate pseudoparabolic equation, entropy methods, stress-enhanced diffusion
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1. Introduction. One of the promising methods for reducing the discharge of
the “greenhouse gas” carbon dioxide (CO2) into the atmosphere is its sequestration in
unminable coal seams. A typical procedure is the injection of CO2 via deviated wells
drilled inside the coal seams. CO2 displaces the methane adsorbed on the internal
surface of the coal. A production well gathers the methane as free gas. This process,
known as CO2-enhanced coal bed methane production (CO2-ECBM), is a producer
of energy and at the same time reduces greenhouse concentrations as about two CO2

molecules displace one molecule of methane. Worldwide application of ECBM can
reduce greenhouse gas emissions by a few percent. Coal has an extensive fracturing
system called the cleat system. In fact, it is possible to discern a number of cleat

∗Received by the editors December 5, 2007; accepted for publication (in revised form) July 8,
2008; published electronically November 26, 2008.

http://www.siam.org/journals/sima/40-4/71017.html
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MOMAS (Modélisation mathématique et simulations numériques liées aux problèmes de gestion des
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systems at different scales. In the end, the matrix blocks between the smallest cleat
systems typically have diameters of a few tens of microns [13].

The matrix blocks have a polymeric structure (dehydrated cellulose [32]), which
provides the adsorption sites for the gases. At low temperatures or low sorption con-
centration the coal structure behaves like a rigid glassy polymer, in which movement
is difficult. At high temperatures or high sorption concentrations, the glassy structure
is converted to the less rigid and open rubber-like (swollen) structure [29], [30]. As
coal is less dense in the rubber-like state, a conversion from the glassy state to the
rubber-like state exhibits swelling. Therefore modeling of diffusion is not only relevant
for modeling transport into the matrix blocks, but also for the modeling of swelling,
which affects the permeability of the coal seam.

Ritger and Peppas [29], [30] distinguish between transport by Fickean diffusion
and a process that occurs on the interface between the glass state and the rubber-like
state. Ritger and Peppas state that the conversion process from the glass to the rubber
state is controlled by a rate-limiting relaxation phenomenon (see also [2]). Thomas
and Windle [31] (see also [16], [17], [19]), however, suggested in their classic paper
that the diffusion transport was enhanced by stress gradients that resulted from the
accommodation of large molecules in the small cavities providing the adsorption sites.
For this, Alfrey, Gurnee, and Lloyd [1] coined the term superdiffusion or case II diffu-
sion. At a critical concentration of the penetrants the glassy polymer is transformed
to a rubber state, where the diffusion coefficient is of the order of a factor 1000 larger
than in the glassy state.

This paper is the first of a series in which the model equations for case II diffusion
[31], [16], [17], [19] will be analyzed. Our longtime interest is to investigate the one-
dimensional sorption rate behavior, i.e., whether the equations indeed lead to a rate
faster than the square root of time. In this paper, we establish existence of a weak
solution for all times.

Nonlinear diffusion equations with a pseudoparabolic regularizing term being the
Laplacian of the time derivative are considered in [25] and [26]. Global existence of a
strong solution is proved by writing the problem as a linear elliptic operator, acting
on the time derivative, equal to the nonlinear diffusion term. Then the linear elliptic
operator, acting on the time derivative, is inverted, and the standard geometric theory
of nonlinear parabolic equations (see, e.g., [15]) is applicable.

In our situation the physical model leads to a degenerate nonlinear second or-
der elliptic operator, acting on the time derivative, in place of the Laplacian. The
invertibility of this nonlinear elliptic operator is not clear anymore and depends on
the solution itself. The same type of equation can occur in models that use classical
irreversible thermodynamics (CIT) or extended irreversible thermodynamics (EIT).
An important example is the model of the two-phase flow through porous media intro-
duced in [14], where the capillary pressure relation is extended with a dynamic term,
which contains the time derivative of the saturation. We also refer the reader to [5] for
the modeling. This application to multiphase and unsaturated flows through porous
media motivated a number of recent papers. In [18] one finds a detailed study of
possible travelling wave solutions and in particular of the behavior of such travelling
waves near fronts where the concentration is zero. Further studies of the travelling
waves are in [8] and [7]. The small- and waiting-time behavior of the equations is
studied in [20]. Study of the viscosity limit for the linear relaxation model of the
dynamic term is in [10]. Nevertheless, the study of existence of a solution to the
nonlinear model from [14] is undertaken only in [4] and [5], where the nondegeneracy
is supposed and existence is local in time. Another existence result, also local in
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time, is in the paper [9] by Düll, where a related pseudoparabolic equation modeling
solvent uptake in polymeric solids is studied. Düll proved the short-time existence of
a solution for the problem in R, supposing nonnegative compactly supported initial
datum. Contrary to our approach, the problem was written as a system containing
a linear elliptic equation and an evolution equation. With such an approach, we did
not manage to get estimates as good as those with the entropy approach undertaken
in this paper. For studies of travelling waves and sharp fronts in case II diffusion
models, we refer the reader to [17] and [33].

We consider the evolution problem

∂tφ = ∂x

{
D (φ) ∂xφ+

D (φ)φ
B

∂x

(
e−mφ∂tφ

)}
in (0, L) × (0, T ),(1)

D (φ) ∂xφ+
D (φ)φ
B

∂x

(
e−mφ∂tφ

)
= 0 on {x = L} × (0, T ),(2)

φ(0, t) = φg(t) on (0, T ), φ = 0 on (0, L) × {0}.(3)

Our goal is to obtain a global existence of a weak solution, for any time interval,
as was obtained in [3] for a degenerate pseudoparabolic regularization of a nonlinear
forward-backward heat equation. Our PDE allows a natural generalization of the
classic Kullback entropy, and its integrand is given by

(4) E(ϕ) =
∫ ϕ

0

ϕ− ξ

ξ

(
e−mξ 1

D(ξ)
− 1
D(0)

)
dξ +

1
D(0)

(ϕ logϕ− ϕ).

As in [24], we will use E ′(ϕ) as a test function, with the hope of obtaining a convenient
a priori estimate. Formal calculation gives the equality

∂t

∫ L

0

{
E(φ) − ϕE ′(ϕg) +

1
2B

(e−mφ∂xφ)2
}
dx

+
∫ L

0

(
1
φ
e−mφ(∂xφ)2 + φ∂tE ′(ϕg)

)
dx = 0.(5)

The presence of the initial and boundary conditions leads to unbounded nonintegrable
E ′. The equality (5) cannot be used directly, and we do not get the entropy estimates
as in [12]. We had to obtain an additional estimate for the time derivative, and our
calculations are more complicated than in the literature.

Existence is proved by showing that the “energy” of the system remains bounded
during the time evolution of the system. The “energy” equation is derived from the
differential equation by multiplying with an appropriate test function and integrating
over the domain. The choice of the test function depends strongly on the choice of
the nonlinearities. With an appropriate approximation, this can also be the basis of a
numerical scheme that leads to an implicit first order nonlinear system of ODEs. The
implicit dependence on the time derivative makes its solvability nontrivial. Solvability
of our system of ODEs depends strongly on the initial conditions. The fact that the
“energy” is bounded means that the numerical scheme is stable. If convergence can
be proved, it shows that at least one solution exists.

As already stated, in this case an appropriate test function is Φ (φ), where

Φ′ (ξ) =
e−mξ

ξD (ξ)
,
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is, however, singular for ξ = 0. Another problem of the test function is that for large
values of ξ, Φ′ is exponentially small. In order to prove existence we need Φ that is
bijective from R to R. Concerning the diffusion coefficient D, we extend it by setting
D (ξ) = D (−ξ) for ξ < 0.

We introduce Φδ by

(6) Φ′
δ :=

e−m min{|ξ|,1/δ}

(|ξ| + δ)D (ξ)
, δ > 0, ξ ∈ R,

and

(7) Φδ (φ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ φ

0

e−m min{ξ,1/δ}

(ξ+δ)D(ξ) dξ, φ > 0,

−
∫ 0

φ

e−m min{−ξ,1/δ}

(−ξ+δ)D(−ξ) dξ, φ < 0.

Obviously, Φδ is odd and strictly increasing on R+.
In order to obtain an existence result for problem (1)–(3) we study the following

regularized problem in QT = (0, L) × (0, T ):

(8) ∂tφ = ∂x

{
D (φ) ∂xφ+

D (φ) (|φ| + δ)
B

∂x

(
e−m min{|φ|,1/δ}∂tφ

)}
with boundary condition at x = L,

(9) D (φ) ∂xφ+
D (φ) (|φ| + δ)

B
∂x

(
e−mmin{|φ|,1/δ}∂tφ

)∣∣∣∣
x=L

= 0,

and boundary and initial conditions (3).
We start by introducing a variational solution for the problem (8), (9), and (3).
Definition 1. Let

(10) V := {z ∈ C∞ [0, L] , z|x=0 = 0} and H := {C∞ [0, T ] , h (T ) = 0} .

Then the variational formulation corresponding to the problem (3), (8), and (9) is

−
∫ T

0

∫ L

0

φ (x, t) g (x) ∂th (t) dx dt+
∫ T

0

∫ L

0

D (φ) ∂xφ(x, t) ∂xg(x)h(t) dx dt

+
∫ T

0

∫ L

0

D (φ) (|φ| + δ)
B

∂xg(x)h(t) ∂x

(
e−m min{|φ|,1/δ}∂tφ

)
dx dt = 0(11)

for all g ∈ V and for all h ∈ H, and at the boundary x = 0 we have

(12) φ− φg = 0.

Our goal is to prove existence for (11)–(12). In order to have the entropy estimate,
we should formulate the approximate problem in terms of it. Otherwise it would not
be possible to use it as a test function for the approximate problem, which is finite
dimensional. Getting a priori estimates without this approach is not clear.

Let z := Φδ (φ), φ = Φ−1
δ (z), z|x=0 = Φδ (φg (t)). We reformulate the problem

(3), (8), and (9) in terms of z:
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1
Φ′

δ

(
Φ−1

δ (z)
)∂tz = ∂x

{
D
(
Φ−1

δ (z)
)

Φ′
δ

(
Φ−1

δ (z)
)∂xz

+
D
(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣+ δ

)
B

∂x

(
D
(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣+ δ

)
∂tz
)}

in QT .(13)

Moreover we can express the boundary and initial conditions in z as

z (0, t) = Φδ (φg (t)) on (0, T ), z (x, t = 0) = Φδ (0) = 0 on (0, L),(14)

1
Φ′

δ

(
Φ−1

δ (z)
)∂xz +

(∣∣Φ−1
δ (z)

∣∣+ δ
)

B
∂x

(
D
(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣+ δ

)
∂tz
)

= 0 at x = L.

(15)

Our paper is organized as follows: section 2 describes the physical model, first
proposed in [31]. We repeat the derivations from [16], [17], [19] for reasons of easy
reference and unified notation.

In section 3 we introduce the discretization of the problem (13)–(15). We get the
Cauchy problem for an implicit first order system of ODEs. Next the solvability of
the discretized problem is proved, and the uniform L2 a priori estimates for the first
derivatives and the mixed second derivative are obtained for a small time interval
(0, T0). They imply the short-time existence for the regularized problem.

We continue with section 4 where we use the entropy to establish the existence
of a solution for the regularized problem for all times. Next, we establish L∞-bounds
independent of the regularization parameter.

The last section 5 concerns the existence for the original problem. Using the
entropy, the estimates for the time derivative, and the L∞-bounds again, we are able
to pass to the limit when the regularization parameter tends to zero and prove the
existence of at least one solution for the original problem.

2. Model equation for stress-induced diffusion. Consider a coal particle
between the fractured cleat systems in coal. The matrix block can be considered as
a small (30 μm diameter) cubical particle consisting of glassy coal. The coal face
is exposed to the penetrant, in our case CO2. The coal face of the particle and
the mechanism of the sorption process is shown schematically in Figure 1. The coal
originates from a cellulose-like polymeric structure [32], with the chemical formula
Cn (H2O)m, from which part of the hydrogen and oxygen have disappeared during the
coalification process, which took millions of years. The remaining structure behaves
like a glassy polymer, which contains holes (sites) that can accommodate CO2, CH4,
etc. In other words, sorption of gases by coal is more a dissolution process than
is adsorption of gases at a coal surface. The holes receiving the CO2 are originally
too small to accommodate the molecule and need to expand. Consequently, the
expanded hole exerts a stress on the neighboring molecules constituting the polymeric
coal. Therefore the penetration of CO2 will lead to both a stress gradient and a
concentration gradient. The concentration will be expressed as a volume fraction φ,
i.e., φ = c/Ω, where c is the molecular concentration and Ω is the molecular volume.
As the CO2 likes to move toward a region of smaller stress, the transport of the
molecule will be caused by both a concentration gradient and a stress gradient. When
the stresses become too high, a deformation occurs, in which the glassy polymeric
structure is converted to a rubber-like (swollen) structure, which is much more open.
Consequently the diffusion coefficient in the rubber-like structure is much higher (more
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Fig. 1. A coal face exposed to a sorbent (CO2). To the far right is the virgin coal, which
behaves as a glassy polymer. As the sorbent penetrates in the coal, a reorientation of the polymeric
coal structure occurs, and the coal becomes rubber-like. The diffusion coefficient in the rubber-like
structure is much higher (> 1000×) than in the glassy structure. The rubber-like structure has also
a lower density leading to swelling.

than 1000 times) than the diffusion coefficient in the glassy structure. The stresses
are considered to depend on the CO2 concentration in the coal, and conversion to the
rubber-like structure occurs instantaneously when a certain critical concentration is
exceeded.

These ideas were formulated for the first time by Thomas and Windle [31], and
the derivation of the model equations will be explained below.

2.1. Derivation of model equations. The salient features of the Thomas and
Windle model [31] are well summarized by Hui et al. [16], [17]. We summarize the
derivation here with the help of the article by Hui et al. and the book of Landau and
Lifshitz [21]; i.e., the molar (diffusive) flux J is not only driven by the volume fraction
(φ) (concentration) gradient, but also by the stress (Pxx) gradient, i.e.,

(16) J = −D
(
∂φ

∂x
+

Ωφ
kT

∂Pxx

∂x

)
,

where k is the Boltzmann constant. As opposed to the equation in [21], which contains
a scalar pressure gradient, the idea here is extended in [19] with the use of the stress
gradient ∂xPxx. Hui (see [16], [17]) interprets P as the osmotic pressure. Note that J
is the flux of a volume fraction and behaves as a velocity. The diffusion coefficient de-
pends on the concentration. Below a critical volume fraction φc, a diffusion coefficient
Dg > 0 characteristic of a glassy state is used, and above φc the diffusion coefficient
Dr > 0 characteristic of the rubber (swollen) state is used. It can be expected that
Dr/Dg � 1. In the model an abrupt change of the diffusion coefficients at φc is used,
but Dr and Dg are considered constant for φ > φc and φ < φc, respectively:
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(17) D (ξ) :=

⎧⎪⎨⎪⎩
Dg, 0 ≤ ξ < φc − κ,

Dg + (Dr −Dg)(ξ − φc + κ)/(2κ), φc − κ ≤ ξ ≤ φc + κ,

Dr, φc + κ < ξ < +∞,

where κ > 0 is a small parameter. Extended nonequilibrium thermodynamics [19]
suggests that vice versa also the stress (Pxx) is related to the volumetric flux gradient
as

(18) Pxx = −ηl
∂J

∂x
= ηl

∂φ

∂t
,

where the second equality follows from a mass conservation law that assumes incom-
pressible flow,

(19)
∂φ

∂t
+
∂J

∂x
= 0.

With ηl we denote the elongational velocity [6], i.e., the resistance of movement
due to a velocity gradient ∂J

∂x in the direction of flow. Elongational viscosity is caused
by a resistance force of a fluid to accelerate. Hence, the force is proportional to
the component of the gradient of the velocity in the flow direction. Elongational
viscosity ηl is always larger than the shear viscosity ηs, e.g., in Newtonian fluids
ηl = 3ηs. In this case the “fluid CO2” is moving in the coal medium. The resistance
to flow is largely determined by the coal-CO2 interaction and not, as in the usual
definition of viscosity, as CO2-CO2 interaction. Hence here we deal with an apparent
or pseudoviscosity. With increasing CO2 concentration the coal becomes more rubber-
like, i.e., it acquires a more open structure, and the apparent viscosity decreases
with increasing concentration (see (20)). The elongational viscosity ηl is supposed to
depend on the volume fraction of the penetrant as

(20) ηl = ηo exp (−mφ) ,

where m is a material constant and η0 is the volumetric viscosity of the unswollen
coal sample.

Substituting expression (16) for the flux into the mass balance equation (19),
where we also use (18), we obtain

(21) ∂tφ = ∂x

{
D (φ) ∂xφ+

D (φ)φ
B

∂x

(
e−mφ∂tφ

)}
,

where the constant B = kBT/ (ηoΩ). This equation is defined in QT = (0, L)× (0, T ).
As initial condition we have that the concentration is

(22) φ (x, t = 0) = 0 on (0, T ) .

The boundary condition at x = 0 must be derived from thermodynamic arguments.
The final equilibrium concentration is reached when the coal has swollen to make the
stress Pxx = P 0

xx equal to zero. In this case the volume fraction of CO2 in the coal
is in equilibrium with the CO2 in the fluid phase outside the coal. Also the CO2 in
the stressed coal is in equilibrium with the CO2 in the fluid phase. The change in
chemical potential is dμ = Ω dPxx + kBT d lnφ. Equating the chemical potential in
the unstressed and stressed state leads to

(23) ΩPxx + kBT lnφ = ΩP 0
xx + kBT lnφo,
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where φo is the volume fraction at the coal boundary that would be in equilibrium
with the CO2 in the gas phase if the coal has relaxed to the rubber state with P 0

xx = 0.
Substituting (18) and (20) into (23) leads to

(24) t = −φo
η0Ω
kBT

∫ φ/φo

0

exp(−mφoy)
ln y

dy,

where we use the initial condition that φ = 0 at t = 0. Singularity of the integrand
at y = 1 guarantees that φ remains bounded by φo for all times.

At x = L we have the boundary condition on (0, T ),

(25) D (φ)
(
∂xφ+

1
B
φ∂x (exp (−mφ) ∂tφ)

)
x=L

= 0.

In summary, we have one initial condition equation (22), one boundary condition at
x = L, viz. (25), and the implicit boundary condition equation (24), which specifies
φ (x = 0, t) as

(26) φ (0, t) = φg (t) .

φg satisfies the conditions

(27) 0 ≤ φg ≤ A0, φg (0) = 0.

Remark 2. Equations like (21) can occur in many transport problems in which the
flux is calculated using CIT or EIT. A well-known example for CIT in porous media
flow is that the deviation of the capillary pressure Pc from its equilibrium value at a
given oil saturation So, i.e., P o

c = P o
c (So), is a driving force leading to a rate of change

of the saturation (scalar flux). This leads [14], [27], [28], [22] to ∂tSo = L (Pc − P o
c )

and to the transport equation for counter current imbibition:

ϕ∂tSo = ∂x (Λ (So) ∂xPc)

= ∂x (Λ (So) ∂xP
o
c (So)) + ∂x

(
Λ (So) ∂x

1
L (So)

∂tSo

)
.

EIT [19] differs from CIT as it characterizes a system not only by its local thermody-
namic variables (pressure, temperature, and concentration) but also by its gradients.
The explanation in [19] is difficult to follow by nonspecialists as many thermodynamic
relations are considered to be known by the reader. In isothermal systems and in the
absence of other applied fields, e.g., electric fields, the volumetric flux J is, according
to EIT, given by the following system of equations:

τ1∂tJ + J = −D
(
∂φ

∂x
+

Ωφ
kT

∂Pxx

∂x

)
,(28)

τ2∂tPxx + Pxx = −ηl
∂J

∂x
.(29)

Reference [19] uses a mass flux instead of a volumetric flux and therefore uses a factor
υ1, being the partial volume per unit mass. Here τ1, τ2 are time constants, which are
small with respect to L2/D. The first terms on the left-hand sides of (28) and (29)
appear only in EIT and not in CIT. The first terms on the left are of interest for
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short-time behavior and are omitted from the model discussed here. Another example
from EIT is the Taylor dispersion problem (see equation 10.34 in [19]), where there is
an “xxt” derivative in the concentration, apart from many other terms. Hence, EIT
or CIT can lead to transport equations of the form of (21).

3. Short-time existence for the regularized problem. In this section, we
first introduce an approximate problem corresponding to (13)–(15). It is a first order
system of ODEs for expansion coefficients, with implicit dependence on the time
derivatives. First we prove the solvability on some interval (0, TN ), where N is the
parameter describing discretization in space. Then, we use the entropy to prove the
solvability on interval (0, T0), where T0 does not depend on N . Finally, we pass to the
limit N → +∞ and prove that the problem (13)–(15) itself has a solution on (0, T0).

Let V :=
{
g ∈ H1 (0, L) | g (0) = 0

}
be the closure of V in H1(0, L), and let

{αj}j∈N
be a C∞-basis for V . We set VN := span {α1, . . . , αN} and introduce the

following coefficients:

d1 (z) :=
1(

Φ′
δ

(
Φ−1

δ (z)
)) , d2 (z) :=

D
(
Φ−1

δ (z)
)(

Φ′
δ

(
Φ−1

δ (z)
)) , and

d (z) := D
(
Φ−1

δ (z)
) (∣∣Φ−1

δ (z)
∣∣+ δ

)
.(30)

The coefficients d1 and d2 are continuous, nonnegative, and bounded functions of z.
d is a continuous function of z, bounded away from zero.

We start study of the initial boundary problem (13)–(15) by constructing an
approximate solution for every N . It is defined as follows.

Approximate problem 3. For q ∈ (2,+∞), find zN =
∑N

j=1 cj (t)αj (x) +
Φδ (φg (t)) ∈ W 1,q([0, T ];VN) such that∫ L

0

∂tzNd1 (zN )αk dx+
∫ L

0

d2 (zN ) ∂xzN∂xαk dx

+
∫ L

0

1
B
d (zN) ∂x (d (zN) ∂tzN) ∂xαk dx = 0 for k = 1, . . . , N, and(31)

zN |t=0 = PN (z|t=0 − Φδ (φg (0))) = 0,(32)

where P : V → VN is the projector PN (f) (x) :=
∑N

j=1 αj(x) (f, αj)V .
Let the vector valued function F be given by Fκ (t, c, ∂tc) = left-hand side of (31)

and let c be the column vector consisting of elements (c1 (t) . . . cN (t)); then (31), (32)
are equivalent to the following Cauchy problem in R

N :

(33)

{
F (t, c, ∂tc) = 0,

c|t=0 = 0.

The Cauchy problem (33) is difficult to solve, since the dependence of F on ∂tc
is implicit. It is crucial to reduce it to an ordinary Cauchy problem of the form
∂tc = � (t, c).

We note that

Fk :=
N∑

j=1

{∫ L

0

d1 (zN )αkαj dx+
∫ L

0

1
B
d (zN) ∂x (d (zN)αj) ∂xαk dx

}
dcj
dt

+
N∑

j=1

{∫ L

0

d2 (zN) ∂xαj∂xαk dx

}
cj +

∫ L

0

d1 (zN)αk∂tΦδ (φg (t)) dx.(34)
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Then, after introducing the matrices A(c) and B(c) and the vector f(c) by

Akj(c) :=
∫ L

0

d1 (zN )αkαj dx+
∫ L

0

1
B
d (zN) ∂x (d (zN)αj) ∂xαk dx,(35)

Bkj(c) :=
∫ L

0

d2 (zN ) ∂xαj∂xαk dx, and fk(c) =
∫ L

0

d1 (zN )αk∂tΦδ (φg (t)) dx,

(36)

1 ≤ k, j ≤ N , we see that the problem (31)–(32) is equivalent to the following Cauchy
problem:

Find c ∈ W 1,q(0, T )N such that

A(c)
dc
dt

= −B(c)c− f(c) a.e. in (0, T ); c|t=0 = 0.(37)

Proposition 4. There is a TN > 0 such that the problem (31)–(32) has a unique
solution zN ∈W 1,q(0, TN ;VN ) for all q < +∞.

Proof. It is enough to prove that the Cauchy problem (37) has a solution.
Obviously, A, B, and f are smooth functions of c. Because of the singularity of

∂tϕg at t = 0, f(c) ∈ Lq(0, T ) for all q < +∞, but it is not bounded. Hence, the only
property to check is the invertibility of the matrix A. Let b be an arbitrary vector
from R

N and let bα(x) = b · α(x) =
∑N

j=1 bjαj(x). Then we have

(Ab) · b =
N∑

k,j=1

Ak,jbkbj =
∫ L

0

d1(zN )(bα)2 dx+
1
B

∫ L

0

d(zN )∂xbα∂x(d(zN )bα) dx

=
∫ L

0

d1(zN )(bα)2 dx+
1
B

∫ L

0

(d(zN )∂xbα)2 dx

+
1
B

∫ L

0

d(zN )∂xbαbαd
′(zN)∂xzN dx

≥
∫ L

0

{
d1(zN ) − 1

4B
(d′(zN ))2(∂xzN)2

}
(bα)2 dx.(38)

Since ∂xzN (x, 0) = 0 and functions {αj}j∈N are linearly independent, the matrix A
is by (38) invertible in a neighborhood of t = 0. Then by the classical theory, the
problem (37) has a unique solution on some interval (0, TN).

Next, we want to prove that the existence interval does not depend on N .
Proposition 5. There is a constant C, independent of N , such that

(39) ‖∂xzN‖L∞(0,TN ;L2(0,L)) ≤ C.

Consequently, the vector valued function c remains bounded at t = TN .
Proof. In (31) we can replace αk by zN − Φδ (φg). Then after using that

∂x (d (zN ) ∂tzN ) = ∂t (d (zN) ∂xzN ), we get∫ L

0

d1 (zN) zN∂tzN dx+
∫ L

0

d2 (zN ) (∂xzN)2 dx(40)

+
∫ L

0

1
B
∂t (d (zN ) ∂xzN) d (zN) ∂xzN dx
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=
∫ L

0

d1 (zN) Φδ (φg) ∂tzN dx = ∂t

∫ L

0

Φδ (φg) (t)
∫ zN

0

d1 (ξ) dξ dx

− ∂tΦδ (φg) (t)
∫ L

0

∫ zN

0

d1 (ξ) dξ dx.

Integrating over t leads to∫ L

0

(∫ zN (x,t)

0

d1 (ξ) ξ dξ

)
dx+

∫ t

0

∫ L

0

d2 (zN ) (∂xzN )2 dx dτ(41)

+
1

2B

∫ L

0

d (zN)2 (∂xzN)2 dx

=
∫ L

0

(∫ zN (x,t)

0

d1 (ξ) dξ

)
dxΦδ (φg) (t) −

∫ t

0

∂τΦδ (φg) (τ)

(∫ L

0

∫ zN

0

d1 (ξ) dξ dx

)
dτ.

We easily find out that

(42)
∫ z

0

d1 (ξ) ξ dξ =
∫ Φ−1

δ (z)

0

Φδ(η) dη and
∫ z

0

d1 (ξ) dξ = Φ−1
δ (z).

The growth of the terms in (42) indicates that it will be possible to control the two
terms on the right-hand side of (41) by the first term on the left-hand side of (41).

Let Mφ := max0≤t≤T |Φδ (φg (t))|. Then by the definition of Φδ(ϕ), we have
C0(δ) log(1 + ϕ/δ) ≤ Φδ(ϕ) for all ϕ ≥ 0. Hence

∫ z

0
d1 (ξ) ξ dξ ≥ C0(δ)((|Φ−1

δ (z)| +
δ) log(1+|Φ−1

δ (z)|/δ)−|Φ−1
δ (z)|), and there is a large enough constantCϕ = Cϕ(Mφ, δ)

such that g(z) = C0(δ)((|Φ−1
δ (z)|+ δ) log(1+ |Φ−1

δ (z)|/δ)− |Φ−1
δ (z)|)−Mφ|Φ−1

δ (z)|+
Cϕ > |Φ−1

δ (z)| for all z. The equality (41) now implies∫ L

0

g(zN(x, t)) dx +
∫ t

0

∫ L

0

d2 (zN) (∂xzN)2 dx dτ +
1

2B

∫ L

0

d (zN)2 (∂xzN (t))2 dx

≤ Cϕ (Mφ, δ)L+
∫ t

0

|∂τΦδ (φg) (τ)|
(∫ L

0

g(zN(x, τ)) dx

)
dτ.(43)

Since ∂τΦδ (φg) ∈ L1(0, T ), we apply Gronwall’s inequality, and estimate (39) follows.
Hence c remains bounded at t = TN .

Nevertheless, since the matrix A could degenerate, some components of ∂c
∂t could

blow up at t = TN . In order to exclude this possibility and to prove that the max-
imal solution for (33) exists on [0, T ], we need an estimate for the time derivatives.
Furthermore, if we want to pass to the limit N → +∞ in (31), estimate (39) is not
sufficient. Our strategy is to obtain an estimate, uniform with respect to N , for ∂xtzN

in L2 (QT ).
Theorem 6. There exists T0 > 0, independent of N , such that

‖∂xzN‖L∞(0,T0;L2(0,L)) ≤ C,(44)

‖∂tzN‖L2(0,T0;L2(0,L)) ≤ C,(45)

‖∂xtzN‖L2(0,T0;L2(0,L)) ≤ C,(46) ∥∥∥∥∂xt

∫ zN

0

d (ξ) dξ
∥∥∥∥

L2((0,T0)×(0,L))

≤ C,(47)



1682 ANDRO MIKELIĆ AND HANS BRUINING

with constants independent of N . Consequently, the maximal solution for (33) exists
on [0, T0].

Proof. We replace αk in (31) by ∂tzN − ∂tΦδ (φg). This yields∫ L

0

d1 (zN ) (∂tzN)2 dx +
∫ L

0

d2 (zN) ∂xzN∂xtzN dx

+
1
B

∫ L

0

d (zN) ∂t (d (zN ) ∂xzN) ∂xtzN dx =
∫ L

0

d1 (zN ) ∂tzN∂tΦδ (φg) dx.(48)

In the estimates which follow we will use the fact that integrability of higher order
derivatives implies continuity and boundedness in x or in t. We recall that for one-
dimensional Sobolev embeddings Morrey’s theorem applies and H1(0, t) (respectively,
H1(0, L)) is continuously embedded into the Hölder space C0,1/2 [0, t] (respectively,
into C0,1/2 [0, L]). See, e.g., [11] for more details. In our particular situation, we use
the explicit dependence of the embedding constant on the length of the time interval
and we prefer to derive the estimates directly.

First, as ∂xzN ∈ L2
(
0, L;H1 (0, t)

)
and ∂xzN |τ=0 = 0, we have for a.e. x ∈ (0, L)

and for every τ ∈ (0, t)

(49) |∂xzN (x, τ)| =
∣∣∣∣∫ τ

0

∂ξ∂xzN (x, ξ) dξ
∣∣∣∣ ≤ √

τ

√∫ τ

0

|∂ξ∂xzN (x, ξ)|2 dξ.

Next, as ∂τzN ∈ L2
(
0, t;H1 (0, L)

)
and ∂τzN |τ=0 = ∂τΦ(φg), we have for a.e. τ ∈

(0, t) and for every x ∈ (0, L)

|∂τzN (x, τ)| ≤ |∂τΦ(φg(τ))| +
∣∣∣∣∫ x

0

∂ξ∂τzN (ξ, τ) dξ
∣∣∣∣

≤ |∂τΦ(φg(τ))| +
√
L

√∫ L

0

|∂ξ∂τzN (ξ, τ)|2 dξ.(50)

Estimates (49)–(50) imply∫ L

0

∫ t

0

|∂τzN (x, τ)|2 |∂xzN (x, τ)|2 dx dτ

≤ 2
∫ L

0

∫ t

0

τ

(∫ t

0

|∂ξ∂xzN (x, ξ)|2 dξ
)(

|∂τΦ(φg(τ))|2 + L

∫ L

0

|∂ξ∂τzN (ξ, τ)|2 dξ
)
dτ dx

≤ 2Lt ‖∂xτzN‖4
L2((0,t)×(0,L)) + 2 ‖∂xτzN‖2

L2((0,t)×(0,L))

∫ t

0

τ |Φ′
δ(φg)|2|∂τφg|2 dτ

≤
(

2
√
L
√
t ‖∂xτzN‖2

L2((0,t)×(0,L)) +
1√
2L

∫ t

0

τ1/2|Φ′
δ(φg)|2|∂τφg|2 dτ

)2

.(51)

Now we integrate (48) with respect to time, over (0, t), and estimate the obtained
terms. The second term is estimated as follows:∣∣∣∣∣
∫ t

0

∫ L

0

d2 (zN) ∂xzN∂xτzN dx dτ

∣∣∣∣∣ ≤ C

∫ t

0

‖∂xτzN (τ)‖L2(0,L) ‖∂xzN (τ)‖L2(0,L) dτ

≤ C

√∫ t

0

‖∂xτzN (τ)‖2
L2(0,L) dτ

√∫ t

0

∫ L

0

(∂xzN)2 dx dτ ≤ C ‖∂xτzN‖L2((0,t)×(0,L)) ,

(52)
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where we have used the estimate (39). We rewrite the third term of (48), omitting
the 1/B factor, as∫ t

0

∫ L

0

d(zN )∂τ

(
d(zN )∂xzN

)
∂xτzN dx dτ =

∫ t

0

∫ L

0

d(zN ) (∂xτzN)2 dx dτ

+
∫ t

0

∫ L

0

d(zN )d′(zN )∂τzN∂xzN∂xτzN dx dτ.(53)

The last term in (53) is cubic in derivatives of zN . Our idea is to use the estimate (51),
showing that for small times it enters with a small coefficient and then controlling it
using other terms. Using the estimate (51), we find out that it satisfies the following
inequality:∣∣∣∣∣
∫ t

0

∫ L

0

d(zN )∂xτzN d′(zN )∂τzN∂xzN dx dτ

∣∣∣∣∣ ≤ C ‖∂xτzN‖L2(Qt)
‖∂τzN∂xzN‖L2(Qt)

≤ C
√
t

(
‖∂xτzN‖3

L2(Qt)
+
∥∥∥τ1/6Φ′

δ(φg)∂τφg

∥∥∥3

L3(0,t)

)
,(54)

where Qt = (0, t) × (0, L). Let X2 (t) :=
∫ t

0

∫ L

0 |∂xτzN |2 dx dτ . Since ∂τΦg (φg) ∈
L2 (0, t), estimates (39), (52), (53), and (54) imply

(55)
∥∥∥√d1(zN )∂τzN

∥∥∥2

L2((0,t)×(0,L))
+X2 (t) − C1

√
tX3 (t) ≤ Co,

where Co depends on ‖∂τΦδ (φg)‖L2(0,t) and on the constant from estimate (39). We
note that the last term on the left-hand side corresponds to the lower bound for the
cubic term, corresponding to the stress gradient part of the diffusive flux. Inequal-
ity (55) is satisfied for t = 0. The function � (X) = X2 − C1

√
tX3 has its maximum

on (0,+∞) in the point Xo = 3/
(
2C1

√
t
)
. If Co < � (Xo), then inequality (55)

gives an estimate for X (t). We note that Co < � (Xo) if t < 4
27C2

1Co
. Hence for

T ≤ 4
27C2

1Co
= T0 we have estimates (44)–(46).

From (44)–(46) it follows that ∂xzN∂tzN ∈ L2
(
0, T0;L2 (0, L)

)
≤ C, and we

have (47) as well.
The estimates (44)–(47) allow us to pass to the limit N → +∞. Using classical

compactness and weak compactness arguments and due to the a priori estimates
(44)–(47), we can extract a subsequence of zN , denoted by the same subscripts, which
converges to an element z ∈ H1 ((0, T0) × (0, L)), ∂xtz ∈ L2 ((0, T0) × (0, L)), in the
following sense:

zN → z strongly in L2 ((0, T0) × (0, L)) and a.e. on (0, T0) × (0, L) ,(56)

∂xzN ⇀ ∂xz weakly in L2 ((0, T0) × (0, L)) ,(57)

∂tzN ⇀ ∂tz weakly in L2 ((0, T0) × (0, L)) ,(58)

∂xtzN ⇀ ∂xtz weakly in L2 ((0, T0) × (0, L)) ,(59)

∂xt

∫ zN

0

d (ξ) dξ ⇀ ∂xt

∫ z

0

d (ξ) dξ weakly in L2 ((0, T0) × (0, L)) .(60)

Now passing to the limit N → ∞ in (31) does not pose problems, and we conclude
that z satisfies (13)–(15).
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We summarize the results in the following theorem.
Theorem 7. Let φg ∈ H1 (0, T ). Then there exists T0 > 0 such that prob-

lem (13)–(15) has at least one variational solution z ∈ H1 ((0, T0) × (0, L)), ∂xtz ∈
L2 ((0, T0) × (0, L)).

Corollary 8. Let φg ∈ H1 (0, T ). Then there exists T0 > 0 such that the
variational formulation (11)–(12) of the problem (8), (9), and (3) has at least one
solution φ = Φ−1

δ (z) ∈ H1 ((0, T0) × (0, L)), ∂xtφ ∈ L2 ((0, T0) × (0, L)).

4. Existence of the regularized problem. In this section, we first use the
regularized entropy function to prove the global existence for the problem (8), (9),
and (3) (i.e., for the regularized problem). Then we establish the L∞-bounds for the
solution, independent of the regularization parameter.

Let us prove that any solution φ for the problem (8), (9), and (3), constructed in
Corollary 8, could be extended from (0, T0) to arbitrary time interval (0, T ). First we
test (11) by Φδ (φ) − Φδ (φg (t)). We have∫ t

0

∫ L

0

∂τφΦδ (φ) dx dτ +
∫ t

0

∫ L

0

D (φ) ∂xφ∂xΦδ (φ) dx dτ

+
∫ t

0

∫ L

0

D (φ) (|φ| + δ)
B

∂x

(
e−mmin{|φ|,1/δ}∂τφ

)
∂xΦδ (φ) dx dτ

=
∫ t

0

∫ L

0

∂τφΦδ (φg) dx dτ,

and it follows that∫ L

0

(∫ φ(t)

0

Φδ (ξ) dξ

)
dx+

∫ t

0

∫ L

0

1
2B

∂τ

(
e−m min{|φ|,1/δ}∂xφ

)2

dx dτ

+
∫ t

0

∫ L

0

D (φ) Φ′
δ (φ) (∂xφ)2 dx dτ =

∫ L

0

φ (t)Φδ (φg(t)) dx

−
∫ t

0

∫ L

0

φ∂τΦδ (φg) dx dτ

and we get as in the proof of Proposition 5

(61) ‖∂xφ‖L∞(0,t;L2(0,L)) ≤ C.

This estimate implies the boundedness of φ. We note that C does not depend on the
smoothing of D at φ = φc.

Next we test (11) by

e−m min{|φ|,1/δ}∂tφ− e−mmin{|φg|,1/δ}∂tφg

and get ∫ t

0

∫ L

0

(∂τφ)2 e−m min{|φ|,1/δ} dx dτ

+
∫ t

0

∫ L

0

D (φ) ∂xφ∂x

(
e−mmin{|φ|,1/δ}∂τφ

)
dx dτ

+
∫ t

0

∫ L

0

D (φ) (|φ| + δ)
2B

(
∂xτ

∫ φ

0

e−m min{|ξ|,1/δ} dξ

)2

dx dτ
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=
∫ t

0

∫ L

0

∂τφ e
−m min{|φg|,1/δ}∂τφg dx dτ.

Then, as in the proof of Proposition 5, by estimating the second and the fourth terms
and after using (61), we conclude that

‖∂τφ‖L2((0,t)×(0,L)) ≤ C,(62) ∥∥∥∥∥∂xτ

∫ φ

0

e−m min{|ξ|,1/δ} dξ

∥∥∥∥∥
L2((0,t)×(0,L))

≤ C,(63)

and from this it follows that

(64) ‖∂xτφ‖L2((0,t)×(0,L)) ≤ C.

Therefore, we arrive at the following theorem.
Theorem 9. Let φg ∈ H1 (0, T ). Then for all T > 0 there exists a weak solution

φ ∈ H1 ((0, T ) × (0, L)), ∂xtφ ∈ L2 ((0, T ) × (0, L)) for the variational formulation
(11)–(12) of the problem (8), (9), and (3).

We conclude this section by establishing uniform L∞-bounds for φ. We have the
following proposition.

Proposition 10. Let φg ∈ H1(0, T ) and φg ≥ 0. Then any weak solution φ of
the problem (8), (9), and (3), obtained in Theorem 9, satisfies φ(x, t) ≥ 0 a.e. on QT .

Proof. Let a− = − inf {a, 0} and a+ = sup {a, 0}. Then a = a+ − a− and
Φδ

(
(φg)−

)
= Φδ (0) = 0. We test (11) by Φδ (φ−). Note that Φδ (φ−)|x=0 = 0 and

Φδ (φ−) ≥ 0. Then we have∫ t

0

∫ L

0

(∂τφ) Φδ (φ−) dx dτ +
∫ t

0

∫ L

0

D (φ) ∂xφ∂xΦδ (φ−) dx dτ

+
∫ t

0

∫ L

0

D (φ) (|φ| + δ)
B

∂x

(
e−m min{|φ|,1/δ}∂τφ

)
Φ′

δ (φ−) ∂xφ− dx dτ = 0.

Since φ−|t=0 = 0, φ+φ− = 0, and |φ|φ− = φ2
−, we get∫ L

0

(∫ φ−(x,t)

0

Φδ (ξ) dξ

)
dx+

∫ t

0

∫ L

0

D (φ−)Φ′
δ (φ−) (∂xφ−)2 dx dτ

+
∫ L

0

D (φ) (|φ| + δ)
2B

(
e−mmin{|φ|,1/δ}∂xφ−

)2

(t) dx = 0.

It follows that ∂xφ− = 0 and φ−|x=0 = 0. Therefore φ− = 0, and consequently
φ = φ+ ≥ 0.

In the uniform bounds which follow, we use, for given positive constants m and
δ, the function

(65) G(z) :=
∫ z

0

exp{−mmin{ξ, 1/δ}} dξ, z ≥ 0.

Then we have the following bounds.
Proposition 11. Let φg ∈ H1(0, T ), φg ≥ 0 and ∂tφg ≥ 0 a.e. on (0, T ). Then

any weak solution φ of the problem (8), (9), and (3), obtained in Theorem 9, satisfies
φg(t) ≥ φ(x, t) a.e. on QT .
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Proof. Let G be given by (65). We test (11) by (G (φ) − G (φg))+. Note that
(G (φ) −G (φg))+

∣∣
x=0

= 0. Then we have∫ t

0

∫ L

0

∂τφ (G (φ) −G (φg))+ dx dτ +
∫ t

0

∫ L

0

D (φ) ∂xφ∂x (G (φ) −G (φg))+ dx dτ

+
∫ t

0

∫ L

0

D (φ) (|φ| + δ)
B

∂x

(
e−m min{|φ|,1/δ}∂τφ

)
∂x (G (φ) −G (φg))+ dx dτ = 0.

(66)

Note that
(67)

∂τφ (G (φ) −G (φg))+ = ∂τ

(∫ φ

0

(G (ξ) −G (φg))+ dξ

)
+G′(φg)∂τφg (φ− φg)+

and
D (φ) (|φ| + δ)

B
∂τ∂xG(φ)∂x (G (φ) −G (φg))+ = ∂τ

(
D (φ) (|φ| + δ)

2B
(∂x (G (φ)

−G (φg))+)2
)
− (∂x (G (φ) −G (φg))+)2∂τ

(
D (φ) (|φ| + δ)

2B

)
.(68)

Then using the monotonicity of φg and G we obtain from (66), (67), and (68) the
following inequality:∫ L

0

(∫ φ(x,t)

0

(G (ξ) −G (φg))+ dξ

)
dx+

∫ t

0

∫ L

0

D (φ)
G′ (φ)

(
∂x (G (φ) −G (φg))+

)2

dx dτ

+
∫ L

0

D (φ) (|φ| + δ)
2B

(∂x (G (φ) −G (φg))+)2 dx

≤
∫ t

0

∫ L

0

(∂x (G (φ) −G (φg))+)2∂τ

(
D (φ) (|φ| + δ)

2B

)
dx dτ.

Since ∂τ

(D(φ)(|φ|+δ)
2B

)
∈ L2(0, T ;L∞(0, L)), we apply Gronwall’s lemma and conclude

that (G (φ) − G (φg))+ = 0, from which it follows that G (φ) ≤ G (φg). Inversion of
this equation leads to φ(x, t) ≤ φg (t) a.e. on QT .

Proposition 12. Let φg ∈ H1(0, T ), and let us suppose in addition that there
are constants A0 > 0, α > 0, and C0 > 0 such that

(69) A0 ≥ φg(t) ≥ C0t
α ∀t ∈ [0, T ].

Then any weak solution φ of the problem (8), (9), and (3), obtained in Theorem 9,
satisfies A0 ≥ φ(x, t) ≥ C0t

α a.e. on QT .
Proof. The proof follows the lines of Proposition 11. It is enough to prove the lower

bound. We test (11) by (G (C0t
α)−G (φ))−. Note that (G (C0t

α)−G (φ))−
∣∣
x=0

= 0.
Then as in the proof of Proposition 11 we have∫ t

0

∫ L

0

∂τφ (G (C0τ
α) −G (φ))− dx dτ(70)

+
∫ t

0

∫ L

0

D (φ) ∂xφ∂x (G (C0τ
α) −G (φ))− dx dτ

+
∫ t

0

∫ L

0

D (φ) (|φ| + δ)
B

∂x

(
e−m min{|φ|,1/δ}∂τφ

)
∂x (G (C0τ

α) −G (φ))− dx dτ = 0.
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Note that

G(φ) = G(C0t
α) − (G (C0t

α) −G (φ))+ + (G (C0t
α) −G (φ))− ,(71)

∂τφ (G (C0τ
α) −G (φ))− =

∂τG(C0τ
α)

G′(φ)
(G (C0τ

α) −G (φ))−

+
1

2G′(φ)
∂τ (G (C0τ

α) −G (φ))2− ≥ 1
2G′(φ)

∂τ (G (C0τ
α) −G (φ))2− ,(72)

and

D (φ) (|φ| + δ)
B

∂τ∂xG(φ) ∂x (G (C0τ
α) −G (φ))−

= ∂τ

(
D (φ) (|φ| + δ)

2B
(∂x (G (C0τ

α) −G (φ))−)2
)

− (∂x (G (C0τ
α) −G (φ))−)2∂τ

(
D (φ) (|φ| + δ)

2B

)
.(73)

Then using the monotonicity of G we obtain from (70), (72), and (73) the following
inequality:∫ L

0

(G (C0t
α) −G (φ))2−
2G′(φ)

dx+
∫ t

0

∫ L

0

D (φ)
G′ (φ)

(
∂x (G (C0τ

α) −G (φ))−
)2
dx dτ

+
∫ L

0

D (φ) (|φ| + δ)
2B

(∂x (G (C0t
α) −G (φ))−)2 dx

≤
∫ t

0

∫ L

0

(∂x (G (C0τ
α) −G (φ))−)2∂τ

1
2G′(φ)

dx dτ

+
∫ t

0

∫ L

0

(G (C0τ
α) −G (φ))2− ∂τ

(
D (φ) (|φ| + δ)

2B

)
dx dτ.

Since ∂t

(D(φ)(|φ|+δ)
2B

)
and ∂t

1
2G′(φ) are elements of L2(0, T ;L∞(0, L)), we apply Gron-

wall’s lemma to the function∫ t

0

‖∂τφ(τ)‖L∞(0,L)

∥∥(G (C0τ
α) −G (φ(τ)))−

∥∥2

H1(0,L)
dτ

and conclude that
(
G (C0t

α) − G (φ)
)
− = 0, from which it follows that G (φ) ≥

G (C0t
α). Inversion of G leads to φ(x, t) ≥ C0t

α a.e. on QT .
Theorem 13. Let φg ∈ H1 (0, T ), A0 = max0≤t≤T φg(t), A0 ≥ φg ≥ C0t

α,
and α > 1. Then there exists a weak solution φ, C0t

α ≤ φ (x, t) ≤ A0, ∂xtφ ∈
L2 ((0, T )× (0, L)), φ ∈ H1 ((0, T )× (0, L)), for the problem (8), (9), and (3).

Remark 14.

• By choosing δ < 1/A0, we can replace e−mmin{|φ|,1/δ} by e−mφ and |φ| + δ
by φ+ δ.

• In addition to the assumptions of Theorem 13 let us suppose that ∂tφg ≥
0. Then there exists a weak solution φ, C0t

α ≤ φ (x, t) ≤ φg(t), ∂xtφ ∈
L2 ((0, T )× (0, L)), φ ∈ H1 ((0, T )× (0, L)), for the problem (8), (9), and (3).

5. Existence for the original problem. It remains to pass to the limit δ → 0.
This limit will give us the solvability of the starting problem (1)–(3).
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After Theorem 13, we are free to replace the nonlinearity exp{−mφ} by h (ξ) =
e−m min {ξ, A0}, ξ ≥ 0. We have existence for the system (11)–(12); i.e., for every
g ∈ L2(0, T ;V ), V = {g ∈ H1 (0, L) | g (0) = 0}, we have

(74)∫ T

0

∫ L

0

∂tφδ g dx dt +
∫ T

0

∫ L

0

D (φδ)
{
∂xφδ +

(φδ + δ)
B

∂x (h (φδ) ∂tφδ)
}
∂xg dx dt = 0,

φδ|x=0 = φg (t) and φδ|t=0 = 0,(75)

and we want to pass to the limit δ → 0.
Let

(76) Ψ′
δ (ξ) :=

h (ξ)
D (ξ) (ξ + δ)

, ξ ≥ 0,

and

(77) Ψδ (φ) :=
∫ φ

0

1
ξ + δ

(
h (ξ)
D (ξ)

− h (0)
D (0)

)
dξ +

h (0)
D (0)

log (φ+ δ) for φ ≥ 0.

It should be noted that Ψδ (0) = h(0)
D(0) log δ < 0, which would cause some compli-

cations.
Theorem 15. Let α > 0, C0, and A0 be positive constants and let

(78) φg ∈ H1 (0, T ) , C0t
α ≤ φg ≤ A0 and logφg ∈ L2 (0, T ) .

Then problem (1)–(3) has at least one weak solution φ ∈ H1 ((0, T )× (0, L)) such that√
φ∂x

(
e−mφ∂tφ

)
∈ L2 ((0, T )× (0, L)) and C0t

α ≤ φ ≤ A0.
Proof.
Step 1 (a priori estimates uniform in δ). We test (74) by Ψδ (φδ) − Ψδ (φg) and

get ∫ t

0

∫ L

0

∂tφδ Ψδ (φδ) dx dτ +
∫ t

0

∫ L

0

h (φδ)
φδ + δ

(∂xφδ)
2 dx dτ

+
1
B

∫ t

0

∫ L

0

D (φδ) (φδ + δ) ∂t (h (φδ) ∂xφδ)
h (φδ) ∂xφδ

D (φδ) (φδ + δ)
dx dτ

=
∫ t

0

∫ L

0

∂tφδ Ψδ (φg) dx dτ.

This yields∫ L

0

(∫ φδ(t)

0

Ψδ (ξ) dξ +
1

2B
(h (φδ) ∂xφδ)

2

)
dx+

∫ t

0

∫ L

0

h (φδ)
φδ + δ

(∂xφδ)
2
dx dτ

=
∫ t

0

∫ L

0

∂tφδ Ψδ (φg) dx dτ.(79)

In order to get a useful estimate we should find a bound for the first term on the
left-hand side of (79). First we note that

∫ φδ

0

∫ ξ

0
1

η+δ

( h(η)
D(η) − h(0)

D(0)

)
dη dξ defines a

continuous function of φδ. Since φδ takes values between 0 and A0, it is bounded
independently of δ. Hence
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(80)∣∣∣∣∣
∫ L

0

∫ φδ(t)

0

Ψδ (ξ) dξ dx

∣∣∣∣∣ ≤
∫ L

0

h(0)
D(0)

|{φδ + δ} log{φδ + δ} − φδ − δ log δ|dx + C.

Next (φδ (t) + δ) log (φδ (t) + δ) − φ (t) − δ log δ takes value zero at t = 0. It is a
continuous function of φδ. Obviously |(φ (t) + δ) log (φ (t) + δ) − φ (t) − δ log δ| ≤
max {1− δ+ δ log δ, (A0 + δ) log (A0 + δ)−A0 − δ log δ}, and it is uniformly bounded
with respect to δ.

With (80), (79) leads to

(81)
∫ t

0

∫ L

0

h (φδ)
φδ + δ

(∂xφδ)
2
dx dτ ≤ C +

∣∣∣∣∣
∫ t

0

∫ L

0

∂tφδ Ψδ (φg) dx dτ

∣∣∣∣∣ .
Next we test (74) by h (φδ) ∂tφδ − h (φg) ∂tφg and get∫ t

0

∫ L

0

h (φδ) (∂τφδ)
2 dx dτ +

∫ t

0

∫ L

0

D (φδ) ∂xφδ∂x (h (φδ) ∂τφδ) dx dτ

+
1
B

∫ t

0

∫ L

0

D (φδ) (φδ + δ) (∂x (h (φδ) ∂τφδ))
2 dx dτ =

∫ t

0

∫ L

0

∂tφδ h (φg) ∂τφg dx dτ,

and from this∫ t

0

∫ L

0

h (φδ) (∂τφδ)
2
dx dτ +

1
B

∫ t

0

∫ L

0

D (φδ) (φδ + δ) (∂x (h (φδ) ∂τφδ))
2
dx dτ

≤ B

∫ t

0

∫ L

0

D (φδ)
φδ + δ

(∂xφδ)
2
dx dτ +

∫ t

0

∫ L

0

h2 (φg)
h (φδ)

(∂τφg)
2
dx dτ.(82)

Let hmin = e−mA0 . Then inserting (81) into (82) yields∫ t

0

∫ L

0

h (φδ) (∂τφδ)
2
dx dτ +

1
B

∫ t

0

∫ L

0

D (φδ) (φδ + δ) (∂x (h (φδ) ∂τφδ))
2
dx dτ

≤ C +
BDr

hmin

∣∣∣∣∣
∫ t

0

∫ L

0

∂τφδΨδ (φg) dx dτ

∣∣∣∣∣ +
∫ t

0

∫ L

0

h2 (φg)
h (φδ)

(∂τφg)
2 dx dτ ≤ C

+
1
2

∫ t

0

∫ L

0

h (φδ) (∂τφδ)
2
dx dτ +

B2 (Dr)
2

2h3
min

‖Ψδ (φg)‖2
L2((0,t)×(0,L))

+
1

hmin

∫ t

0

∫ L

0

(∂τφg)
2
dx dτ.

Step 2 (weak and strong compactness). From the above a priori estimate and
assumptions (78) on φg , we conclude that

‖∂tφδ‖L2((0,T )×(0,L)) +
∥∥∥∥ 1√

φδ + δ
∂xφδ

∥∥∥∥
L2((0,T )×(0,L))

≤ C,(83) ∥∥∥√φδ + δ ∂x (h (φδ) ∂tφδ)
∥∥∥

L2((0,T )×(0,L))
≤ C.(84)
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Hence there are a φ ∈ H1 ((0, T ) × (0, L)) and a subsequence {φδ}, denoted by the
same subscripts, such that

φδ → φ strongly in L2 ((0, T )× (0, L)) and a.e. on (0, T )× (0, L) ,(85)

∂tφδ ⇀ ∂tφ weakly in L2 ((0, T )× (0, L)) ,(86)

∂xφδ ⇀ ∂xφ weakly in L2 ((0, T )× (0, L)) .(87)

With the part of the flux containing the second order operator, the situation is more
complicated. Obviously, there is F ∈ L2 ((0, T )× (0, L)) such that

(88)
√
φδ + δ ∂xt

∫ φδ

0

h (ξ) dξ ⇀ F weakly in L2 ((0, T )× (0, L)) .

Using the lower bound φδ ≥ C0t
α, we get from the estimate (84) and convergence (85)

that

(89) ∂xt

∫ φδ

0

h (ξ) dξ ⇀ ∂xt

∫ φ

0

h (ξ) dξ weakly in L2 ((0, T )× (0, L)) .

The convergences (85) and (89) imply that F in (88) is given by F =
√
φ∂xt

∫ φ

0 h (ξ) dξ.
Step 3 (passing to the limit). Consequently for every g ∈ L2(0, T ;V ) we have∫ T

0

∫ L

0

∂tφδ g dx dt→
∫ T

0

∫ L

0

∂tφ g dx dt for δ → 0,(90) ∫ T

0

∫ L

0

D (φδ) ∂xφδ ∂xg dx dt→
∫ T

0

∫ L

0

D (φ) ∂xφ∂xg dx dt for δ → 0,(91) ∫ T

0

∫ L

0

D (φδ)
B

(φδ + δ) ∂x (h (φδ) ∂tφδ) ∂xg dx dt

→
∫ T

0

∫ L

0

D (φ)
B

φ∂x (h (φ) ∂tφ) ∂xg dx dt for δ → 0.

(92)

Furthermore, for every ζ ∈ C∞([0, L]× [0, T ]), such that ζ(L, t) = 0 on [0, T ], we have∫ T

0

φ|x=0ζ|x=0 dt =
∫ T

0

φg(t)ζ|x=0 dt−
∫ T

0

∫ L

0

∂x ((φ− φδ)ζ) dx dt,

and, using the convergences (85) and (87), we obtain that the trace of φ at x = 0
satisfies the boundary condition (26). Hence, we conclude that φ satisfies the system
(1)–(3).
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Abstract. In this paper we study the asymptotic behavior of solutions for a free boundary prob-
lem modeling the growth of tumors containing two species of cells: proliferating cells and quiescent
cells. This tumor model was proposed by Pettet, Please, and McElwain [Bull. Math. Biol., 63 (2001),
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stationary solution of this model ensured by the work of Cui and Friedman [Trans. Amer. Math. Soc.,
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1. Introduction. During the past thirty years, an increasing number of free
boundary problems of partial differential equations have been proposed by groups of
researchers to model the growth of various in vivo and in vitro tumors; cf. the review-
ing articles [1], [15], [16], and [22] and the references cited therein. Such free boundary
problems usually contain one or more reaction-diffusion equations describing the dis-
tribution of nutrient and inhibitory materials, and several first-order nonlinear partial
differential equations or nonlinear conservation laws with source terms describing the
evolution and movement of various tumor cells (proliferating cells, quiescent cells, and
dead cells). Rigorous analysis of such tumor models is evidently a significant topic of
research and has drawn great attention during the past few years. The main concern
of this topic is the dynamics or the long-term behavior of the solutions of such free
boundary problems.

Based on the applications of the well-established theories of elliptic and parabolic
partial differential equations, parabolic differential equations in Banach spaces (i.e.,
differential equations in Banach spaces that are treatable with the analytic semigroup
theory), and the bifurcation theory, rigorous analysis of models for the growth of
tumors containing only one species of tumor cells has achieved great success; cf. [2],
[3], [6], [7], [9], [10], [11], [17], [18], [19], [23], [24], and the references cited therein. As
far as models for tumors containing more than one species of tumor cells are concerned,
however, the results are much less. This is caused by the fact that such tumor models
are much more difficult to analyze because they contain nonlinear conservation laws
whose dynamical behavior is very hard to grasp.

In this paper we study the following free boundary problem modeling the growth
of an in vitro tumor containing two species of cells—proliferating cells and quiescent

∗Received by the editors March 5, 2008; accepted for publication (in revised form) July 23, 2008;
published electronically November 26, 2008. This work is supported by the China National Natural
Science Foundation under grant number 10471157 and funds in Sun Yat-Sen University.

http://www.siam.org/journals/sima/40-4/71777.html
†Institute of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, People’s

Republic of China (cuisb3@yahoo.com.cn).

1692



FREE BOUNDARY PROBLEM MODELING TUMOR GROWTH 1693

cells:

∇2C = F (C) for x ∈ Ω(t), t ≥ 0,(1.1)
C = C0 for x ∈ ∂Ω(t), t ≥ 0,(1.2)

∂P

∂t
+ ∇ · (�uP ) =

[
KB(C) −KQ(C)

]
P +KP (C)Q for x ∈ Ω(t), t ≥ 0,(1.3)

∂Q

∂t
+ ∇ · (�uQ) = KQ(C)P −

[
KD(C) +KP (C)

]
Q for x ∈ Ω(t), t ≥ 0,(1.4)

P +Q = N for x ∈ Ω(t), t ≥ 0,(1.5)
dR

dt
= �u · �ν for x ∈ ∂Ω(t), t ≥ 0.(1.6)

Here C denotes the concentration of nutrient (with all nutrient materials regarded as
one species), P and Q denote the densities of proliferating cells and quiescent cells,
respectively, whose mixture makes up the tumor tissue and has a constant density
N , �u denotes the velocity of the cell movement, R denotes the radius of the tumor,
Ω(t) = {x ∈ R

3 : r = |x| < R(t)} is the domain occupied by the tumor at time t, and
�ν is the unit outward normal of ∂Ω(t). Besides, C0 is a positive constant reflecting
the constant nutrient supply that the tumor receives from its surface, F (C) is the
nutrient consumption rate function, and KB(C), KD(C), KP (C), and KQ(C) are the
birth rate of proliferating cells, the death rate of quiescent cells, the transferring rate
of proliferating cells to quiescent cells, and the transferring rate of quiescent cells to
proliferating cells, respectively. We shall only consider radially symmetric solutions
of the above problem, so that C, P , and Q are functions of the radial space variable
r = |x| and the time variable t, and �u = u(r, t)r−1x, where u is a scalar function.
Note that in the above problem, the unknowns are C, P , Q, u, and R, and all of the
rest of the constants and functions are given.

The above tumor model was proposed by Pettet et al. in the literature [21]. Its
global well-posedness has been established by Cui and Friedman in [12]. A challenging
task concerning this free boundary problem is the study of the asymptotic behavior
of its solutions as time goes to infinity. For the corresponding model of the growth
of tumors with one species of cells, it is known that there exists a unique stationary
solution and that all time-dependent solutions converge to it as time goes to infinity,
or, in other words, this unique stationary solution is globally asymptotically stable;
cf. [7] and [18]. Since the above problem is a natural extension of such one species
tumor model to the two species case, we are naturally led to the conjecture that a
similar result holds for it. The advancement of the study toward this goal is as follows.
In [13], Cui and Friedman proved that the problem (1.1)–(1.6) has a unique station-
ary solution. In [5], Chen, Cui, and Friedman further proved that this stationary
solution is linearly asymptotically stable, namely, the trivial solution of the lineariza-
tion of (1.1)–(1.6) at the stationary solution is asymptotically stable. However, this
last-mentioned result does not imply that the stationary solution of (1.1)–(1.6) is
asymptotically stable. In fact, the asymptotic stability of this stationary solution
of (1.1)–(1.6), which is one of a number of interesting open problems raised in [15]
and [16], is a very difficult problem due to a number of reasons. Firstly, since the
problem (1.1)–(1.6) is of the hyperbolic type, not of the parabolic type, there is not a
well-developed geometric theory like that for parabolic problems used in [6], [7], [9],
[10], [11], [23], [24] to study this problem. Secondly, the stationary solution of this
problem does not have an explicit expression, and, in particular, it possibly possesses
a singularity at the point r = 0 (see Lemma 3.1 below for this point). It follows that
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the method of linearized stability as in [3] and [17] (tempted by [5]) does not work.
Thirdly, the commonly used characteristic method for hyperbolic conservation laws
also does not apply to this problem, because all of its characteristic curves approach
to the same point r = 0 as t → ∞, and, consequently, analysis along characteristic
curves does not give us much information of the asymptotic behavior of the solution.
Finally, it is our experience that the other commonly used methods for investigating
the asymptotic behavior of the solutions of partial differential equations, such as up-
per and lower solutions and so on (as either explicitly or implicitly discussed in [5]),
also do not work. In order to solve this problem, we have to use some new ideas and
develop some new techniques.

In this paper we shall prove that the unique stationary solution of (1.1)–(1.6)
ensured by [13] is locally asymptotically stable. Recall that conditions given in [13],
which ensure that (1.1)–(1.6) has a unique stationary solution are as follows:

F (C), KB(C), KD(C), KP (C) and KQ(C) are analytic for 0 ≤ C ≤ C0;(1.7)
F (0) = 0, F ′(C) > 0 for 0 ≤ C ≤ C0;(1.8) ⎧⎪⎪⎨⎪⎪⎩

K ′
B(C) > 0 and K ′

D(C) < 0 for 0 ≤ C ≤ C0, KB(0) = 0 and KD(C0) = 0;
KP (C) and KQ(C) satisfy the same conditions as KB(C) and KD(C),

respectively;
K ′

B(C) +K ′
D(C) > 0 for 0 ≤ C ≤ C0.

(1.9)

The main result of this paper is the following.
Theorem 1.1. Assume that the conditions (1.7)–(1.9) are satisfied. Let (C∗, P∗,

Q∗, �u∗, R∗) be the unique stationary solution of the problem (1.1)–(1.6), and let (C,P,
Q, �u,R) be a time-dependent solution of it such that P |t=0 = P0, Q|t=0 = Q0, and
R|t=0 = R0, where P0, Q0, and R0 are given initial data satisfying 0 ≤ P0 ≤ N ,
0 ≤ Q0 ≤ N , and P0 +Q0 = N . Then there exist positive constants μ, ε, and K such
that if P0, Q0, and R0 satisfy

max
0≤r≤1

{
|P0(rR0) − P∗(rR∗)| + |Q0(rR0) −Q∗(rR∗)|} < ε,

sup
0<r<1

r(1 − r)
{∣∣∣∣ ddr (P0(rR0) − P∗(rR∗))

∣∣∣∣ +
∣∣∣∣ ddr (Q0(rR0) −Q∗(rR∗))

∣∣∣∣} < ε,

and |R0 −R∗| < ε; then, for all t ≥ 0, we have

max
0≤r≤1

{|P (rR(t), t) − P∗(rR∗)| + |Q(rR(t), t) −Q∗(rR∗)|} < Kεe−μt,

sup
0<r<1

r(1−r)
{∣∣∣∣ ∂∂r (P (rR(t), t)−P∗(rR∗))

∣∣∣∣+∣∣∣∣ ∂∂r (Q(rR(t), t)−Q∗(rR∗))
∣∣∣∣}<Kεe−μt,

and |R(t) −R∗| < Kεe−μt.
We shall use a functional approach to prove the above theorem. More precisely, we

shall first reduce the problem (1.1)–(1.6) into a differential equation for the unknown
U = (p, z) in the Banach space X = C[0, 1] × R, where p = p(r, t) = P (rR(t), t) and
z = z(t) = logR(t). The reduced equation is of the hyperbolic type in the sense of
Pazy [20] and is quasi-linear. We next use the Banach fixed point theorem to prove
that, for any U0 = (p0, z0) sufficiently closed to the stationary point U∗ = (p∗, z∗),
where p∗ = p∗(r) = P∗(rR∗) and z∗ = logR∗, this differential equation imposed, with
the initial condition U |t=0 = U0 and the decay estimate supt≥0 e

μt‖U(t) − U∗‖X0 <
∞, where X0 is a subspace of X , has a unique solution in the space C([0,∞), X0)
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(endowed with the norm |‖U |‖ = supt≥0 e
μt‖U(t)‖X0). To attain this goal we shall use

some abstract results for hyperbolic differential equations in Banach spaces presented
in [20]. In particular, a family of evolution systems for the linear equations related
to the semilinearization of the reduced equation are obtained and applied to convert
the semilinearized equations into integral equations. The main difficult and key step
in the proof of Theorem 1.1 is the establishment of a uniform decay estimate for
the family of evolution systems. In order to obtain such an estimate, we first use a
localization technique to get an improvement of the linear estimate established in [5],
removing the singularities at r = 0 contained in that estimate, and next use a special
technique—similarity transformation—to extend this improved linear estimate to the
family of evolution systems mentioned above. The similarity transformation technique
is the core of this paper. It enables us to transform a transport equation of the form
∂u/∂t + w(r, t)∂u/∂r = f(r, t), where 0 < r < 1 and w(0, t) = w(1, t) = 0, into a
similar equation of the form ∂ũ/∂t+w∗(r)∂ũ/∂r = f̃(r, t), where w∗(0) = w∗(1) = 0.
See section 5 for details of this transformation.

An interesting question raised by one of the referees is: can the above result be ex-
tended to the radially nonsymmetric version of the problem (1.1)–(1.6)? Up to now we
do not have an answer to this question. A basic difficulty encountered in answering this
question is that P∗, Q∗, �u∗ are possibly singular at the center point r = 0. More pre-
cisely, we know only that P∗ is continuous at r = 0, but we do not know if it is smooth
at r = 0 (in fact, we even do not know if it is differentiable at r = 0). This possibly
existing singularity of the stationary solution induces many obstacles in the analysis of
its asymptotic stability for nonradial perturbations. Our conjecture is that P∗, Q∗, �u∗
are smooth for all r ≤ R∗, and a similar result as that in [11] proved for the one-species
model also holds for the radially nonsymmetric version of the problem (1.1)–(1.6).

The structure of the rest part is as follows. In the following section we reduce the
problem (1.1)–(1.6) into a differential equation in the Banach spaceX = C[0, 1]×R. In
section 3 we summarize some basic properties of the stationary solution. In section 4
we study a linear equation obtained from semilinearizing the reduced equation and
prove that its solution operator is an evolution system so that the semilinearized
equation can be converted into an integral equation. Section 5 aims at developing
the similarity transformation technique mentioned above. In section 6 we first derive
an improvement of the linear estimate established in [5] and next use the similarity
transformation technique to extend this estimate to the evolution systems obtained in
section 4. After these preparations, in the last section we use the Banach fixed point
theorem to prove Theorem 1.1.

Throughout this paper the notation “ ′ ” denotes both the ordinary derivatives of
functions in R and the Fréchet derivatives of mappings between Banach spaces.

Finally, to end this introduction, we would like to refer the reader to see [4], [8],
and [14] for other work related with the problem (1.1)–(1.6).

2. Reduction of the problem. In this section we reduce the system of equa-
tions (1.1)–(1.6) into a differential equation in the Banach space X = C[0, 1] × R.

We first note that, by summing up (1.3), (1.4), and using (1.5), we get the fol-
lowing equation:

(2.1) ∇ · �u =
1
N

[
KB(C)P −KD(C)Q

]
.

Conversely, from (1.3), (1.5), and (2.1) we immediately obtain (1.4). Hence, the two
groups of equations (1.3), (1.4), (1.5), and (1.3), (1.5), (2.1) are equivalent. We recall
that �u = u(r, t)r−1x for some scalar function u.
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By rescaling the space and time variables, setting

c̄(r̄, t) =
C
(
r̄ez(t), t

)
C0

, p̄(r̄, t) =
P
(
r̄ez(t), t

)
N

,

ū(r̄, t) = u
(
r̄ez(t), t

)
e−z(t), R(t) = ez(t),

and using the equivalence of (1.3), (1.4), and (1.5) with (1.3), (1.5), and (2.1), we see
that the problem (1.1)–(1.6) can be reformulated into the following problem (for the
simplicity of the notation we omit all bars):

∂2c

∂r2
+

2
r

∂c

∂r
= e2zF (c) for 0 < r ≤ 1, t ≥ 0,(2.2)

∂c

∂r

∣∣∣
r=0

= 0, c|r=1 = 1 for t ≥ 0,(2.3)

∂p

∂t
+ [u(r, t) − ru(1, t)]

∂p

∂r
= KP (c) +

[
KM (c)−KN(c)

]
p−KM (c)p2

for 0 ≤ r ≤ 1, t ≥ 0,(2.4)
∂u

∂r
+

2
r
u = −KD(c) +KM (c)p for 0 < r ≤ 1 and u|r=0 = 0, t ≥ 0,(2.5)

dz

dt
= u(1, t) for t ≥ 0,(2.6)

where KM (c) = KB(c) +KD(c), KN(c) = KP (c) +KQ(c), and F (c), KB(c), KD(c),
KP (c), and KQ(c) are the rescaled forms of the corresponding functions appearing in
(1.1)–(1.6).

Clearly, (2.2) and (2.3) can be solved to get c as a function of z. Thus, instead of
c(r, t), later on we use the notation c(r, z(t)), or simply c(r, z), to denote the solution
of (2.2) and (2.3). Similarly, (2.5) can be solved to get u as a functional of p and z.
Thus, later on we use the notation up,z to redenote u. By a simple computation, we
have

(2.7) up,z(r, t) =
1
r2

∫ r

0

[−KD(c(ρ, z(t))) +KM (c(ρ, z(t)))p(ρ, t)]ρ2dρ

for 0 < r ≤ 1, t ≥ 0, and up,z(0, t) = 0 for t ≥ 0. We also denote

(2.8) wp,z(r, t) = up,z(r, t) − rup,z(1, t).

Then (2.2)–(2.6) reduces into the following system of equations:

(2.9)

⎧⎪⎪⎨⎪⎪⎩
∂p

∂t
+ wp,z(r, t)

∂p

∂r
= f(r, p, z) for 0 ≤ r ≤ 1, t > 0,

dz

dt
= up,z(1, t) for t > 0,

where

f(r, p, z) = KP (c(r, z)) +
[
KM (c(r, z))−KN(c(r, z))

]
p−KM (c(r, z))p2.

In what follows we rewrite (2.9) as a differential equation in the Banach space
X = C[0, 1] × R. To this end we denote X0 = C1

V [0, 1] × R, where C1
V [0, 1] is the

function space

C1
V [0, 1] =

{
p ∈ C[0, 1] ∩ C1(0, 1) : r(1 − r)p′(r) ∈ C[0, 1]

}
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endowed with the norm

‖p‖C1
V [0,1] = max

0≤r≤1
|p(r)| + sup

0<r<1
|r(1 − r)p′(r)| for p ∈ C1

V [0, 1].

Clearly, endowed with the product norm, X0 is a Banach space densely and continu-
ously embedded into X . We introduce a mapping F : X0 → X as follows. First, for
given p ∈ C[0, 1] and z ∈ R, let A0(p, z) : C1

V [0, 1] → C(0, 1) be the following linear
operator: For any q ∈ C1

V [0, 1],

A0(p, z)q(r) = −wp,z(r)q′(r) for 0 < r < 1.

Here and hereafter, wp,z(r) represents the function defined by similar formulations
as in (2.7) and (2.8), with p(r, t) and z(t) there replaced by p(r) and z, respectively.
Later on we shall use the convention that, for a function f ∈ C(0, 1), if both limits
limr→0+ f(r) and limr→1− f(r) exist and are finite, then we write f ∈ C[0, 1]. Further-
more, when we are concerned with the values of f at r = 0 and r = 1, we mean that
f(0) = limr→0+ f(r) and f(1) = limr→1− f(r). Using this convention, we see easily
that, for any p ∈ C[0, 1] and z ∈ R, we have wp,z(r)/r(1−r) ∈ C[0, 1]. It follows that,
for any q ∈ C1

V [0, 1], both limits limr→0+ wp,z(r)q′(r) and limr→1− wp,z(r)q′(r) exist so
that A0(p, z)q ∈ C[0, 1]. It can also be easily seen that A0(p, z) ∈ L(C1

V [0, 1], C[0, 1]),
and

‖A0(p, z)‖L(C1
V [0,1],C[0,1]) ≤ sup

0<r<1

∣∣∣∣ wp,z(r)
r(1 − r)

∣∣∣∣ .
Next we denote by F : C[0, 1] × R → C[0, 1] and G : C[0, 1] × R → R, respectively,
the following nonlinear operators:

F(p, z)(r) = f(r, p(r), c(r, z)),

G(p, z) =
∫ 1

0

[−KD(c(r, z)) +KM (c(r, z))p(r)]r2dr.

We now define F : X0 → X to be the following nonlinear operator:

F(U) =
(
A0(p, z)p+ F(p, z),G(p, z)

)
for U = (p, z) ∈ X0.

It is obvious that F ∈ C∞(X0, X). Later on we shall also regard F as an unbounded
nonlinear operator in X with domain X0.

With the above notations, we see that (2.9) can be rewritten as the following
differential equation in the Banach space X :

(2.10)
dU

dt
= F(U).

Here U = U(t) represents an X0-valued unknown function for t ≥ 0, and the left-hand
side denotes the Fréchet derivative of U = U(t) regarded as a mapping from [0,∞) to
the X space.

The equation (2.10) has a quasi-linear structure. To see this we define A0 : X →
L(X0, X) and F0 : X → X as follows: For U = (p, z) ∈ X and V = (q, y) ∈ X0, we
let

A0(U)V =
(
A0(p, z)q, 0

)
and F0(U) =

(
F(p, z),G(p, z)

)
.
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Then we have

F(U) = A0(U)U + F0(U) for U ∈ X0.

Clearly, A0 ∈ C∞(X,L(X0, X)) and F0 ∈ C∞(X,X) ∩ C∞(X0, X0). Hence, the
desired assertion follows. Later on, for given U ∈ X , we shall also regard A0(U) as
an unbounded linear operator in X with domain X0.

From [13] we know that under the assumptions (1.7)–(1.9), the problem (2.2)–
(2.6) has a unique stationary solution which we denote as (c∗, p∗, u∗, z∗). By definition,
(c∗, p∗, u∗, z∗) = (c∗(r), p∗(r), u∗(r), z∗) (0 ≤ r ≤ 1) is the solution of the following
problem:

c′′∗ +
2
r
c′∗ = e2z∗F (c∗) for 0 < r ≤ 1,(2.11)

c′∗(0) = 0, c∗(1) = 1,(2.12)
u∗p

′
∗ = f(r, p∗, z∗) for 0 ≤ r ≤ 1,(2.13)

u′∗ +
2
r
u∗ = −KD(c∗) + KM (c∗)p∗ for 0 < r ≤ 1,(2.14)

u∗(0) = 0, u∗(1) = 0.(2.15)

Let U∗ = (p∗, z∗). Then U∗ ∈ X0 (see Lemma 2.1 below), and, by the equivalence
of the system (2.2)–(2.6) with the equation (2.10), it follows that U∗ is the unique
equilibrium of (2.10), i.e., F(U∗) = 0 or A0(U∗)U∗ + F0(U∗) = 0. Hence, to study the
asymptotic stability of the stationary solution (c∗, p∗, u∗, z∗) of the problem (2.2)–
(2.6), we need only to study the asymptotic stability of the stationary solution U∗
of (2.10). For this purpose, we rewrite (2.10) into an equivalent equation for the
difference V = U − U∗. Let A : X → L(X0, X) and G : X → X be the following
operators:

A(V )W = A0(U∗ + V )W + [A′
0(U∗)W ]U∗ + F

′
0(U∗)W for V ∈ X, W ∈ X0,

G(V ) = [A0(U∗ + V ) − A0(U∗) − A
′
0(U∗)V ]U∗

+ [F0(U∗ + V ) − F0(U∗) − F
′
0(U∗)V ] for V ∈ X.

Then clearly (2.10) is equivalent to the following equation for V = U − U∗:

(2.16)
dV

dt
= A(V )V + G(V ).

Later on we shall concentrate our attention on (2.16).
The above deduction leads to the following preliminary result.
Lemma 2.1. The system (2.2)–(2.6) is equivalent to (2.16), and the asymptotic

stability of the stationary solution (c∗, p∗, u∗, z∗) of (2.2)–(2.6) is equivalent to the
asymptotic stability of the trivial solution of (2.16). Moreover, the assertion of The-
orem 1.1 is equivalent to the following assertion for (2.16): There exist positive con-
stants K, μ, and ε such that if the solution V = V (t) of (2.16) satisfies ‖V (0)‖X0 ≤ ε,
then it also satisfies

(2.17) ‖V (t)‖X0 ≤ Kεe−μt for all t ≥ 0.

Since it has been proved (see [12]) that the initial value problem of the system
(2.2)–(2.6) is globally well-posed for any C1 initial data, by the equivalence of (2.2)–
(2.6) with (2.16), it follows that, for any V0 ∈ X0, (2.16) has a unique solution
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V = V (t) for all t ≥ 0 such that V (0) = V0. Our analysis later on is to prove that
(2.17) holds provided ‖V0‖X0 ≤ ε.

We note that A ∈ C∞(X,L(X0, X)), G ∈ C∞(X,X), and, by using the Taylor
expansions up to second-order for Fréchet derivatives of A0 and F0, we have

(2.18) ‖G(V )‖X = O
(
‖V ‖2

X

)
as ‖V ‖X → 0.

We also note that, by introducing an operator B : X → X by

BW = [A′
0(U∗)W ]U∗ + F

′
0(U∗)W for W ∈ X,

we have

A(0) = F
′(U∗) = A0(U∗) + B and A(V ) = A0(U∗ + V ) + B.

Note that as an immediate consequence of the facts that A0 ∈ C∞(X,L(X0, X)) and
F0 ∈ C∞(X,X), we have B ∈ L(X). Finally, we note that [V → A0(U∗ + V )] ∈
C∞(X,L(X0, X)). These facts will play an important role in later analysis.

A simple computation shows that if we denote

a(r) = KM (c∗(r)) −KN(c∗(r)) − 2KM (c∗(r))p∗(r),(2.19)
b(r) =

{
K ′

P (c∗(r)) + [K ′
M (c∗(r)) −K ′

N(c∗(r))]p∗(r) −K ′
M (c∗(r))p2

∗(r)
}
cz(r)

+ rp′∗(r)
[∫ 1

0

gc(ρ)cz(ρ)ρ2dρ− 1
r3

∫ r

0

gc(ρ)cz(ρ)ρ2dρ

]
,(2.20)

Bq(r) = rp′∗(r)
[∫ 1

0

gp(ρ)q(ρ)ρ2dρ− 1
r3

∫ r

0

gp(ρ)q(ρ)ρ2dρ

]
,(2.21)

F(q) =
∫ 1

0

gp(ρ)q(ρ)ρ2dρ,(2.22)

κ =
∫ 1

0

gc(ρ)cz(ρ)ρ2dρ,(2.23)

where

gp(r) = KM (c∗(r)), gc(r) = −K ′
D(c∗(r)) +K ′

M (c∗(r))p∗(r), cz(r) =
∂c

∂z
(r, z∗),

then we have

(2.24) B =
(
a(r) + B b(r)

F κ

)
.

Here and hereafter, when we write M =
(

M11 M12

M21 M22

)
for bounded linear operators

M11 ∈ L(X1, Y1), M12 ∈ L(X2, Y1), M21 ∈ L(X1, Y2), and M22 ∈ L(X2, Y2), where
X1, X2, Y1, and Y2 are Banach spaces, we mean that M is the bounded linear operator
from X1 ×X2 to Y1 × Y2 defined by M(x1, x2) = (M11x1 + M12x2,M21x1 + M22x2)
for (x1, x2) ∈ X1 ×X2. Using this notation we see that

(2.25) A0(U∗) =
(
L0 0
0 0

)
and A0(U∗ + V ) =

(
LV 0
0 0

)
,

where L0 = A0(p∗, z∗) and LV = A0(p∗ + ϕ, z∗ + ζ) for V = (ϕ, ζ) ∈ X . Finally, we
recall that a(r) < 0 for all 0 ≤ r ≤ 1; see (2.7) in section 2 of [5].
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3. Some basic facts. In this section we summarize some basic properties of the
functions c∗(r) = c(r, z∗), cz(r) = ∂c

∂z (r, z∗), p∗(r), and u∗(r). These properties will
play an important role in later discussions.

Lemma 3.1. We have the following assertions:
(1) c∗, cz ∈ C∞[0, 1], and

(3.1)
0 < c∗(0) ≤ c∗(r) ≤ 1 for 0 ≤ r ≤ 1, c′∗(r) > 0 for 0 < r ≤ 1, c′∗(0) = 0.

(2) p∗ ∈ C[0, 1] ∩ C∞(0, 1],

(3.2) 0 < p∗(0) ≤ p∗(r) ≤ 1 for 0 ≤ r ≤ 1, p′∗(r) > 0 for 0 < r ≤ 1,

and either p∗ ∈ C1[0, 1] or there exists 0 < γ < 1 such that limr→0+ rγp′∗(r) exists
and is finite, so that rγp′∗(r) ∈ C[0, 1]. Moreover,

(3.3) lim
r→0+

rp′∗(r) = 0, lim
r→0+

r2p′′∗(r) = 0, lim
r→0+

r3p′′′∗ (r) = 0.

(3) u∗ ∈ C1[0, 1] ∩ C∞(0, 1], and there exist positive constants C1, C2 such that

(3.4) −C1r(1 − r) ≤ u∗(r) ≤ −C2r(1 − r) for 0 ≤ r ≤ 1.

Besides, either u∗ ∈ C2[0, 1] or there exists 0 < γ < 1 such that limr→0+ rγu′′∗(r)
exists and is finite, so that rγu′′∗(r) ∈ C[0, 1]. Moreover,

(3.5) lim
r→0+

ru′′∗(r) = 0, lim
r→0+

r2u′′′∗ (r) = 0.

Proof. The assertions that c∗, cz ∈ C∞[0, 1] and relations in (3.1) are immediate.
The assertions that p∗ ∈ C[0, 1] ∩ C∞(0, 1], u∗ ∈ C1[0, 1] ∩ C∞(0, 1], and relations
in (3.2) follow from Theorem 2.1 of [13], by which we also know that u∗(r) < 0 for
0 < r < 1. The last assertion combined with the facts that u′∗(0) < 0 and u′∗(1) > 0
(see Theorem 7.1 of [13]) immediately yields (3.4). To prove (3.3) we compute

lim
r→0

u∗(r)p′∗(r) = KP (c∗(0)) + [KM (c∗(0)) −KN(c∗(0))]p∗(0) −KM (c∗(0))p2
∗(0) = 0

(see (8.4) in section 8 of [13]), so that

lim
r→0

rp′∗(r) = lim
r→0

r

u∗(r)
· lim

r→0
u∗(r)p′∗(r) = 0,

and

lim
r→0

u∗(r)rp′′∗ (r) = lim
r→0

r
{
K ′

P (c∗(r)) + [K ′
M (c∗(r)) −K ′

N (c∗(r))]p∗(r)

−K ′
M (c∗(r))p2

∗(r)
}
c′∗(r) + lim

r→0
{[KM(c∗(r)) −KN(c∗(r))]

− 2KM (c∗(r))p∗(r)}rp′∗(r) − lim
r→0

u′∗(r)rp′∗(r) = 0,

so that

lim
r→0

r2p′′∗(r) = lim
r→0

r

u∗(r)
· lim

r→0
u∗(r)rp′′∗ (r) = 0.
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This proves the first two relations in (3.3). The proof of the third relation is similar
and is omitted. Next, from (2.14) we can easily deduce that

u′′∗(r) = [−K ′
D(c∗(r)) +K ′

M (c∗(r))p∗(r)]c′∗(r)

+ KM (c∗(r))p′∗(r) +
2
r

[KD(c∗(r)) −KM (c∗(r))p∗(r)]

+
6
r4

∫ r

0

[−KD(c∗(ρ)) +KM (c∗(ρ))p∗(ρ)]ρ2dρ

= [−K ′
D(c∗(r)) +K ′

M (c∗(r))p∗(r)]c′∗(r) +
6
r4

∫ r

0

[KD(c∗(r)) −KD(c∗(ρ))]ρ2dρ

+ KM (c∗(r))p′∗(r) − 6
r4

∫ r

0

[KM (c∗(r))p∗(r) −KM (c∗(ρ))p∗(ρ)]ρ2dρ.(3.6)

From this expression and the first relation in (3.3) we readily obtain the first relation
in (3.5). The proof of the second relation in (3.5) is similar and is omitted. Finally,
by Theorems 5.3 and 5.4 of [13], we know that either p∗ ∈ C1[0, 1] or there exist
constants −1 < α < 0 and C such that1

(3.7) p′∗(r) = Crα +O(1) for r → 0.

Suppose that it is the second case. Then, by letting γ = |α|, we see that 0 < γ < 1
and rγp′∗(r) ∈ C[0, 1]. Finally, from (3.7) we see that

(3.8) p∗(r) = p∗(0) + C(1 + α)−1r1+α +O(r) for r → 0.

Substituting (3.7) and (3.8) into (3.6), we get rγu′′∗(r) ∈ C[0, 1]. This completes the
proof of Lemma 3.1.

Corollary 3.2. Let a, b,B,F , and B be as in (2.19)–(2.22) and (2.24). Then
we have a, b ∈ C1

V [0, 1],B ∈ L(C[0, 1], C1
V [0, 1]) ⊆ L(C[0, 1]) ∩ L(C1

V [0, 1]),F ∈
L(C[0, 1],R), and B ∈ L(X) ∩ L(X0). Moreover, we also have r2(1−r)2a′′(r), r2(1−
r)2b′′(r) ∈ C[0, 1].

Corollary 3.3. G ∈ C∞(X,X) ∩ C∞(X0, X0) and in addition to (2.18), we
also have

(3.9) ‖G(V )‖X0 = O
(
‖V ‖2

X0

)
as ‖V ‖X0 → 0.

Proof. We have G(V ) = G1(V ) + G2(V ), where G1(V ) = [A0(U∗ +V )−A0(U∗)−
A

′
0(U∗)V ]U∗ and G2(V ) = F0(U∗+V )−F0(U∗)−F

′
0(U∗)V . Since F0 ∈ C∞(X0, X0), it

is evident that G2 ∈ C∞(X0, X0) and ‖G2(V )‖X0 = O(‖V ‖2
X0

) as ‖V ‖X0 → 0. Next,
let V = (ϕ, ζ) and (p, z) = (p∗ +ϕ, z∗ + ζ). Then, by (2.25), we have A0(U∗ +V )U∗ =
(−wp,z(r)p′∗(r), 0). Using this expression and the first two relations in (3.3), we can
easily show that, for every V ∈ X , we have A0(U∗ + V )U∗ ∈ X0, and the mapping
V → A0(U∗ + V )U∗ belongs to C∞(X,X0). Hence we have G1 ∈ C∞(X,X0) ⊆
C∞(X0, X0) and ‖G1(V )‖X0 = O(‖V ‖2

X) = O(‖V ‖2
X0

) as ‖V ‖X0 → 0. Combining
these assertions together, we see that the desired assertion follows.

4. Evolution system. In this section we study the following initial value prob-
lem:

(4.1)
dU

dt
= A(V (t))U + F (t) for t > 0, U(0) = U0,

1In the notation of Theorem 5.4 of [13], we have α = α(λ) and C = (1 + α(λ))ω.
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where V ∈ C([0,∞), X), F ∈ C([0,∞), X0), and U0 ∈ X0 are given. For a small
ε > 0, we denote

Sε = {V = (ϕ, ζ) ∈ X = C[0, 1] × R : ‖ϕ‖∞ ≤ ε, |ζ| ≤ ε}.

We want to prove that given V ∈ C([0,∞), X) such that V (t) ∈ Sε for all t ≥ 0,
the problem (4.1) has a unique solution U ∈ C([0,∞), X0)∩C1([0,∞), X), and there
exists a family of bounded linear operators {U(t, s, V ) : t ≥ s ≥ 0} on X0, the so-
called evolution system determined by the family of operators {A(V (t)) : t ≥ 0}, such
that the solution of this problem is given by

(4.2) U(t) = U(t, 0, V )U0 +
∫ t

0

U(t, s, V )F (s)ds for t ≥ 0.

For this purpose we shall prove that the family of operators {A(V ) : V ∈ Sε} is a
stable family of the infinitesimal generators of C0 semigroups on X , and its part in
X0 is a stable family of the infinitesimal generators of C0 semigroups on X0. When
these assertions are proved, the desired assertion then follows from the results of
sections 5.2–5.5 and 6.4 of [20].

In what follows, for V ∈ Sε, we denote by Ã(V ) the part of A(V ) in X0. Re-
call that Dom(Ã(V )) = {U ∈ X0 : A(V )U ∈ X0}, and Ã(V )U = A(V )U for
U ∈ Dom(Ã(V )).

Let w ∈ C1[0, 1] and assume that it satisfies the following condition: There exist
positive constants C1 and C2 such that

(4.3) −C1r(1 − r) ≤ w(r) ≤ −C2r(1 − r) for 0 ≤ r ≤ 1.

Note that this assumption particularly implies that w(0) = w(1) = 0, w′(0) < 0 and
w′(1) > 0. For a such w, we denote by L0 the bounded linear operator from C1

V [0, 1]
to C[0, 1] defined by

L0q(r) = −w(r)q′(r) for 0 < r < 1, for q ∈ C1
V [0, 1].

Later on we shall also regard L0 as an unbounded linear operator in C[0, 1] with
domain C1

V [0, 1]. Note that if w = u∗, then L0 = A0(p∗, z∗).
Lemma 4.1. Let the notation and assumption be as above. Then L0 generates a

C0 semigroup of contractions etL0 on C[0, 1], i.e.,

(4.4) ‖etL0‖L(C[0,1]) ≤ 1 for t ≥ 0.

Moreover, C1
V [0, 1] is L0-admissible,2 and the restriction of etL0 on C1

V [0, 1] is a uni-
formly bounded C0 semigroup on C1

V [0, 1], i.e., there exists constant C > 0 depending
only on the constants C1 and C2 in (4.3) such that

(4.5) ‖etL0‖L(C1
V [0,1]) ≤ C for t ≥ 0.

2Recall that for a C0 semigroup T (t) (t ≥ 0) on a Banach space X generated by an unbounded
linear operator A in X, a linear subspace Y of X is called A-admissible if it is an invariant subspace
of T (t) for all t ≥ 0 and the restriction of T (t) (t ≥ 0) to Y is a C0 semigroup in Y . A necessary and
sufficient condition for Y to be A-admissible is that (1) Y is an invariant subspace of R(λ, A) for all
λ > ω, and (2) the part Ā of A in Y is an infinitesimal generator of a C0 semigroup on Y . In this

case we have etĀ = etA|Y . See Theorem 5.5 in Chapter 4 of [20].
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Proof. Let λ ∈ C be such that Reλ > 0, and let f ∈ C[0, 1]. Consider the equation

(4.6) −w(r)q′(r) − λq(r) = f(r) for 0 < r < 1.

By using some similar arguments as in section 2 of [8], we can easily show that this
equation has a unique solution defined and bounded for 0 < r < 1, given by

(4.7) q(r) = e
−λ

∫
r
r0

dρ
w(ρ)

∫ 1

r

f(η)
w(η)

e
λ
∫

η
r0

dρ
w(ρ) dη, 0 < r < 1,

where r0 is an arbitrarily chosen number in (0, 1). Clearly q ∈ C1(0, 1). By using
the L’Hospital’s rule, we can easily verify that q(r) has finite limits as r → 0+ and
r → 1−, so that q ∈ C[0, 1]∩C1(0, 1). Furthermore, since r(1−r)/w(r) ∈ C[0, 1], from
(4.6) we see that also r(1 − r)q′(r) ∈ C[0, 1], so that q ∈ C1

V [0, 1], and, moreover,

|q(r)| ≤ ‖f‖∞e(Reλ)
∫ r

r0

dρ
|w(ρ)|

∫ 1

r

1
|w(η)|e

−(Reλ)
∫ η

r0

dρ
|w(ρ)| dη

=
‖f‖∞
Reλ

[
1 − e−(Reλ)

∫
1
r

dρ
|w(ρ)|

]
≤ ‖f‖∞

Reλ
for 0 < r < 1.(4.8)

This proves that, for any λ ∈ C with Reλ > 0, we have λ ∈ ρ(L0) and ‖R(λ,L0)‖L(C[0,1])

≤ 1/Reλ. Thus, by the Hille–Yosida theorem, we see that L0 generates a strongly
continuous semigroup etL0 on C[0, 1], which satisfies the estimate (4.4).

Next we prove that C1
V [0, 1] is L0-admissible. Clearly, C1

V [0, 1] is an invariant
subspace of R(λ,L0) for all λ ∈ C, with Reλ > 0. Let L̃0 be the part of L0 in C1

V [0, 1].
Since r(1−r)/w(r), w(r)/r(1−r) ∈ C[0, 1], we see that, for q ∈ C[0, 1] ∩ C1(0, 1),
r(1− r)q′(r) ∈ C[0, 1] if and only if w(r)q′(r) ∈ C[0, 1], and there exist positive
constants C1 and C2 such that

C1 sup
0<r<1

|w(r)q′(r)| ≤ sup
0<r<1

|r(1−r)q′(r)| ≤ C2 sup
0<r<1

|w(r)q′(r)|.

By the above assertion, it follows easily that
(4.9)

Dom
(
L̃0

)
=
{
q ∈ C[0, 1] ∩C2(0, 1) : w(r)q′(r) ∈ C[0, 1], w2(r)q′′(r) ∈ C[0, 1]

}
,

and ‖q‖′
C1

V [0,1]
= ‖q‖∞ +‖wq′‖∞ is an equivalent norm in C1

V [0, 1]. For q ∈ Dom(L̃0),
we have, by definition, L̃0q = L0q. Now let f ∈ C1

V [0, 1] and Reλ > 0. Let q be the
solution of (4.6). Using (4.9) we can easily verify that q ∈ Dom(L̃0), so that it is the
solution of the equation L̃0q − λq = f . Moreover, a simple computation shows that
wq′ = R(L0, λ)(wf ′). Thus, by (4.8), we have

‖q‖′
C1

V [0,1]
= ‖q‖∞ + ‖wq′‖∞ = ‖R(L, λ)f‖∞ + ‖R(L, λ)(wf ′)‖∞
≤ 1

Reλ
‖f‖∞ +

1
Reλ

‖wf ′‖∞ =
1

Reλ
‖f‖′C1

V [0,1].

Hence, λ ∈ ρ(L̃0) and ‖R(λ, L̃0)‖′C1
V [0,1] ≤ (Reλ)−1. The desired assertion then follows

from the Hille–Yosida theorem and footnote 2.
Given V = (ϕ, ζ) ∈ Sε, we set p(r) = p∗(r) + ϕ(r), z = z∗ + ζ, and, as before, we

denote

up,z(r)=
1
r2

∫ r

0

[−KD(c(ρ, z))+KM (c(ρ, z))p(ρ)]ρ2dρ, wp,z(r)=up,z(r)−rup,z(1).
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Since ‖ϕ‖∞ ≤ ε and |ζ| ≤ ε, by a simple computation, we see that

(4.10) −Cεr(1 − r) ≤ wp,z(r) − u∗(r) ≤ Cεr(1 − r) for 0 ≤ r ≤ 1.

Since −C1r(1 − r) ≤ u∗(r) ≤ −C2r(1 − r), it follows that, for ε sufficiently small, we
have

(4.11) −C1r(1 − r) ≤ wp,z(r) ≤ −C2r(1 − r) for 0 ≤ r ≤ 1.

Later on we shall also use the notation wV (r) to redenote wp,z(r). We note that all
constants C, C1, and C2 that appear in (4.10)–(4.11) are independent of V and ε.

Lemma 4.2. {A(V ) : V ∈ Sε} is a stable family of the infinitesimal generators
of C0 semigroups on X = C[0, 1] × R, and {Ã(V ) : V ∈ Sε} is a stable family of the
infinitesimal generators of C0 semigroups on X0.

Proof. Let LV q(r) = −wV (r)q′(r). Then, by Lemma 4.1, we see that, for any
V ∈ Sε, LV is an infinitesimal generator of a C0 semigroup of contractions on C[0, 1].
From this assertion and the second expression in (2.25), we easily infer that, for any
V ∈ Sε, A0(U∗ +V ) is an infinitesimal generator of a C0 semigroup of contractions on
X = C[0, 1]×R. Hence, {A0(U∗ + V ) : V ∈ Sε} is a stable family of the infinitesimal
generators of C0 semigroups on X , with stability constants (M,ω) = (1, 0). Since
A(V ) = A0(U∗ + V ) + B and B is a bounded linear operator on X independent of V ,
by a standard perturbation result (see, e.g., Theorem 2.3 in section 5.2 of [20]), we see
immediately that {A(V ) : V ∈ Sε} is a stable family of the infinitesimal generators of
C0 semigroups on X = C[0, 1] × R, with stability constants (M,ω) = (1, ‖B‖).

In order to prove that {Ã(V ) : V ∈ Sε} is a stable family of the infinitesimal
generators of a C0 semigroup on X0 = C1

V [0, 1]×R, we first establish an estimate for
the semigroup etL̃V on C1

V [0, 1] different from (4.5), where L̃V represents the part of
LV in C1

V [0, 1]. Let q0 ∈ C1
V [0, 1] and q = etL̃V q0 = etLV q0. Then q is the solution of

the problem

∂q

∂t
+ wV (r)

∂q

∂r
= 0 for 0 ≤ r ≤ 1 and t > 0, q|t=0 = q0.

Let l(r, t) = r(1 − r)∂q(r,t)
∂r and l0(r) = r(1 − r)q′0(r). Formally differentiating the

above equation in r and multiplying it with r(1−r), we get

∂l

∂t
+ wV (r)

∂l

∂r
= aV (r)l for 0 ≤ r ≤ 1 and t > 0, l|t=0 = l0,

where aV (r) = (1 − 2r)wV (r)
r(1−r) − w′

V (r). Since wV ∈ C1[0, 1], wV (0) = wV (1) = 0,
and aV ∈ C[0, 1], by a standard characteristics argument, we can easily show that
this problem has a unique solution l ∈ C([0, 1] × [0,∞)) such that [ ∂

∂t + wV (r) ∂
∂r ]l ∈

C([0, 1] × [0,∞)). Thus, the above formal computation makes sense. Clearly, there
exists a nonnegative constant c0 independent of V such that aV (r) ≤ c0 for 0 < r < 1,
for all V ∈ Sε. Using this fact and the characteristics argument, we can easily obtain
‖l(·, t)‖∞ ≤ ‖l0‖∞ec0t for t ≥ 0. Combining this estimate with ‖q(·, t)‖∞ ≤ ‖q0‖∞
ensured by (4.4), we get ‖q(·, t)‖C1

V [0,1] ≤ ‖q0‖C1
V [0,1]e

c0t for t ≥ 0, or

‖etL̃V ‖L(C1
V [0,1]) ≤ ec0t for t ≥ 0, for all V ∈ Sε.

Hence, {L̃V : V ∈ Sε} is a stable family of the infinitesimal generators of C0 semi-
groups on C1

V [0, 1], with stability constants (M,ω) = (1, c0). Using this assertion and
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the second expression in (2.25), we see easily that {Ã0(U∗ + V ) : V ∈ Sε}, the part
of {A0(U∗ + V ) : V ∈ Sε} on X0 = C[0, 1] × R, is a stable family of the infinites-
imal generators of C0 semigroups on X0, with stability constants (M,ω) = (1, c0).
Since Ã(V ) = Ã0(U∗ + V ) + B, and, by Corollary 3.2, B is a bounded linear oper-
ator on X0 independent of V , we conclude, as before, that {A(V ) : V ∈ Sε} is a
stable family of the infinitesimal generators of C0 semigroups on X0 = C1

V [0, 1] × R,
with stability constants (M,ω) = (1, c0 + ‖B‖L(C1

V [0,1])). This completes the proof of
Lemma 4.2.

Since A ∈ C∞(X,L(X0, X)), by Lemma 4.2, we see that, for any V ∈ C([0,∞), X)
such that V (t) ∈ Sε for all t ≥ 0, {A(V (t)) : t ≥ 0} satisfies the conditions (H1)–(H3)
in section 5.3 of [20]. It follows by Theorem 3.1 in section 5.3 of [20] that given such a
function V = V (t), there exists an evolution system determined by {A(V (t)) : t ≥ 0},
which we denote as U(t, s, V ). By definition, this means that

(1) for any t ≥ s ≥ 0, U(t, s, V ) is a bounded linear operator on X ;
(2) U(s, s, V ) = id for all s ≥ 0, U(t, s, V )U(s, r, V ) = U(t, r, V ) for all t ≥ s ≥ r;

and
(3) the mapping (t, s) → U(t, s, V ) is strongly continuous for t ≥ s ≥ 0.

However, the theory developed in [20] does not ensure that U = U(t, s, V )U0 is a
solution of the problem

(4.12)
dU

dt
= A(V (t))U for t > s, U |t=s = U0,

even if U0 ∈ X0, unless some other conditions are satisfied by U(t, s, V ). These
conditions are as follows (see conditions (E4) and (E5) in Theorem 4.3 in section 5.4
of [20]):

(4) U(t, s, V )X0 ⊆ X0 for any t ≥ s ≥ 0; and
(5) For any U0 ∈ X0, the mapping (t, s) → U(t, s, V )U0 is continuous in X0 for

t ≥ s ≥ 0.
In the following lemma we shall directly prove that, for any U0 ∈ X0, the prob-
lem (4.12) has a unique solution U = Us(t) ∈ C([s,∞), X0) ∩ C1([s,∞), X). By
Theorem 4.2 in section 5.4 of [20], it then follows that Us(t) = U(t, s, V )U0, and
consequently, the conditions (4) and (5) above are satisfied.

Lemma 4.3. Given V ∈ C([0,∞), X) such that V (t) ∈ Sε for all t ≥ 0, for
any s ≥ 0 and any U0 ∈ X0, the problem (4.12) has a unique solution U = Us(t) ∈
C([s,∞), X0) ∩ C1([s,∞), X).

Proof. Let U = (q, y) and U0 = (q0, y0). Then (4.12) can be rewritten as follows:

(4.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂q

∂t
+ wV (r, t)

∂q

∂r
= a(r)q + B(q) + b(r)y for 0 ≤ r ≤ 1, t > s,

dy

dt
= F(q) + κy for t > s,

q|t=s = q0(r) for 0 ≤ r ≤ 1, and y|t=s = y0.

Using the characteristic method and the Banach fixed point theorem, we can easily
show that this problem has a unique local solution (q, y), with q ∈ C([0, 1]× [0, δ]) and
y ∈ C1[0, δ] for some δ > 0. Since wV (0, t) = wV (1, t) = 0 for all t ≥ 0, we see that the
two lines r = 0 and r = 1 are characteristic curves. It follows that all characteristic
curves starting from the open interval (0, 1) always lie in it, so that the solution of the
above problem exists for all t ≥ s. It remains to prove that q ∈ C([0,∞), C1

V [0, 1]).
To this end we formally differentiate the first equation in (4.13) in r and multiply it
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with r(1 − r), which gives, by letting l(r, t) = r(1−r)∂q(r,t)
∂r , that

(4.14)
∂l

∂t
+ wV (r, t)

∂l

∂r
= a1(r, t)u + f1(r, t) for 0 ≤ r ≤ 1, t > 0,

where a1(r, t) = a(r) + (1 − 2r)wV (r,t)
r(1−r) − ∂wV (r,t)

∂r , and

f1(r, t) = r(1−r)a′(r)q(r, t) + r(1−r)∂Bq(r, t)
∂r

+ r(1−r)b′(r)y(t).

Clearly, a1 ∈ C([0, 1]×[0,∞)). By Corollary 3.2, we see that also f1 ∈ C([0, 1]×[0,∞).
Thus, by using the characteristic method, we can easily prove that (4.14) imposed with
the initial condition l(r, 0) = r(1−r)q′0(r) has a unique solution l ∈ C([0, 1] × [0,∞))
such that [ ∂

∂t +wV (r, t) ∂
∂r ]l ∈ C([0, 1]× [0,∞)). Thus, the above formal computation

makes sense, and consequently, q ∈ C([0,∞), C1
V [0, 1]) ∩ C1([0,∞), C[0, 1]). The

desired assertion now becomes immediate.
By the above results and Theorems 4.2 and 5.2 in sections 5.4 and 5.5 of [20], we

get the following.
Corollary 4.4. Let V ∈ C([0,∞), X) be as in Lemma 4.3, and let F ∈

C([0,∞), X0). Then, for any U0 ∈ X0, the initial value problem (4.1) has a unique
solution U ∈ C([0,∞), X0) ∩ C1([0,∞), X), and it is given by (4.2).

5. Similarity transformation. In the previous section we proved that given
V ∈ C([0,∞), X) such that V (t) ∈ Sε for all t ≥ 0, the family of operators {A(V (t)) :
t ≥ 0} determines an evolution system U(t, s, V ) (t ≥ s ≥ 0), so that the solution
of (4.1) can be expressed as (4.2). However, the deduction in the previous section
does not provide us with an estimate of the form ‖U(t, s, V )‖ ≤ Ce−μ(t−s), which,
however, is essential in order to establish the estimate (2.17). To establish such an
estimate, we shall follow a different approach as follows: For V ≡ 0, the desired
estimate will be obtained by improving the linear estimate established in [5]. For
a general V = V (t), we shall use a special transformation, which we call similarity
transformation, to transform the problem into an equivalent problem which can be
estimated by using the estimate for the case V ≡ 0. The similarity transformation
is a family of C1 diffeomorphisms r̄ = T (r, t, s) of the unit interval 0 ≤ r ≤ 1 to
itself, where t ≥ s ≥ 0 are parameters. The aim of this section is to establish this
transformation.

Let w ∈ C([0,∞), C1[0, 1]). We assume that w satisfies the following condition:
For some small parameter ε > 0,

(5.1) −Cεr(1 − r)e−μt ≤ w(r, t) − u∗(r) ≤ Cεr(1 − r)e−μt for 0 ≤ r ≤ 1, t ≥ 0,

where C is a positive constant independent of ε and w. Since −C1r(1 − r) ≤ u∗(r) ≤
−C2r(1 − r), we see that

(5.2) sup
0<r<1

∣∣∣w(r, t)
u∗(r)

− 1
∣∣∣ ≤ Cεe−μt for 0 ≤ r ≤ 1, t ≥ 0,

and, for ε sufficiently small, w(r, t) satisfies (4.3) for all t ≥ 0.
Let 0 ≤ ξ ≤ 1 and s ≥ 0. Consider the following initial value problem:

(5.3)
dr

dt
= u∗(r) for t > s, r|t=s = ξ.
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Since u∗ ∈ C1[0, 1], u∗(r) < 0 for 0 < r < 1, and, in particular, u∗(0) = u∗(1) = 0,
it can be easily shown that this problem has a unique solution r = Φ∗(ξ, t, s) for all
t ≥ s ≥ 0, satisfying the following properties (A):

Φ∗(ξ, t, s) is continuously differentiable in (ξ, t, s),

Φ∗(0, t, s) = 0, Φ∗(1, t, s) = 1 for t ≥ s ≥ 0,

0 < Φ∗(ξ, t, s) < 1 for 0 < ξ < 1, t ≥ s ≥ 0,

∂Φ∗(ξ, t, s)
∂ξ

> 0,
∂Φ∗(ξ, t, s)

∂t
< 0 for 0 < ξ < 1, t ≥ s ≥ 0,

Φ∗(ξ, s, s) = ξ for 0 ≤ ξ ≤ 1, s ≥ 0.

From these properties we see that, for any s ≥ 0 and t ≥ s, the mapping ξ → r =
Φ∗(ξ, t, s) is a C1 diffeomorphism of [0, 1] to itself. Let ξ = Ψ∗(r, t, s) be the inverse
of this mapping. Clearly, Ψ∗ also satisfies the properties (A) (with ξ replaced by r).
Furthermore, from the relation Ψ∗(Φ∗(ξ, t, s), t, s) = ξ (for 0 ≤ ξ ≤ 1 and t ≥ s ≥ 0),
it can be easily shown that ξ = Ψ∗(r, t, s) is the unique solution of the following initial
value problem:

(5.4)
∂ξ

∂t
+ u∗(r)

∂ξ

∂r
= 0 for t > s, ξ|t=s = r.

Next, let r = Φ(ξ, t, s) (0 ≤ ξ ≤ 1, t ≥ s ≥ 0) be the solution of the following
problem:

(5.5)
dr

dt
= w(r, t) for t > s, r|t=s = ξ.

Similarly as before, Φ(ξ, t, s) is well-defined for all 0 ≤ ξ ≤ 1 and t ≥ s ≥ 0, and
it also satisfies the properties (A). It follows that, for any s ≥ 0 and t ≥ s, the
mapping ξ → r = Φ(ξ, t, s) is a C1 diffeomorphism of [0, 1] to itself. Let ξ = Ψ(r, t, s)
be the inverse of this mapping. Clearly, Ψ also satisfies the properties (A) (with ξ
replaced by r). Furthermore, from the relation Ψ(Φ(ξ, t, s), t, s) = ξ (for 0 ≤ ξ ≤ 1
and t ≥ s ≥ 0), it can be easily shown that ξ = Ψ(r, t, s) is the unique solution of the
following initial value problem:

(5.6)
∂ξ

∂t
+ w(r, t)

∂ξ

∂r
= 0 for t > s, ξ|t=s = r.

In what follows we consider the following initial value problem:

(5.7)

⎧⎨⎩
∂r̄

∂t
+ w(r, t)

∂r̄

∂r
= u∗(r̄) for 0 ≤ r ≤ 1, t > s,

r̄|t=s = r for 0 ≤ r ≤ 1.

Lemma 5.1. For any 0 ≤ r ≤ 1 and s ≥ 0, the problem (5.7) has a unique
solution r̄ = T (r, t, s) for all t ≥ s, and the following relation holds:

(5.8) T (r, t, s) = Φ∗(Ψ(r, t, s), t, s) for 0 ≤ r ≤ 1, t ≥ s ≥ 0.

Proof. Using (5.3) and (5.6) we can easily verify that r̄ = Φ∗(Ψ(r, t, s), t, s)
is a solution of the problem (5.7). Thus, (5.8) follows by the uniqueness of the
solution.



1708 SHANGBIN CUI

By (5.8), it is evident that, for any s ≥ 0 and t ≥ s, the mapping r → r̄ = T (r, t, s)
is a C1 diffeomorphism of [0, 1] to itself, satisfying T (0, t, s) = 0, T (1, t, s) = 1 for
t ≥ s ≥ 0, and ∂T (r, t, s)/∂r > 0 for 0 < r < 1, t ≥ s. We denote by r = S(r̄, t, s) the
inverse of this mapping. By (5.8), it is clear that

(5.9) S(r̄, t, s) = Φ(Ψ∗(r̄, t, s), t, s) for 0 ≤ r̄ ≤ 1, t ≥ s ≥ 0.

It is also clear that S(r̄, t, s) satisfies S(0, t, s) = 0, S(1, t, s) = 1 for t ≥ s ≥ 0 and
that ∂S(r̄, t, s)/∂r̄ > 0 for 0 < r̄ < 1, t ≥ s ≥ 0.

T and S can be expressed in more explicit formulations. To show this we introduce
a function F∗ as follows:

(5.10) F∗(r) = −
∫ r

1
2

dη

u∗(η)
=
∫ r

1
2

dη

|u∗(η)| for 0 < r < 1.

Clearly, F∗ ∈ C1(0, 1), F ′
∗(r) > 0 for all 0 < r < 1, and limr→0+ F∗(r) = −∞,

limr→1− F∗(r) = ∞. Hence, r̄ = F∗(r) is a C1 diffeomorphism of the open unit interval
(0, 1) onto the real line (−∞,∞). From (5.3) we easily obtain F∗(Φ∗(ξ, t, s))−F∗(ξ) =
−t+ s. Thus, we have

(5.11) Φ∗(ξ, t, s) = F−1
∗ (F∗(ξ) − t+ s),

and consequently,

(5.12) Ψ∗(r, t, s) = F−1
∗ (F∗(r) + t− s).

Next, let

g(ξ, t, s) = G(Φ(ξ, t, s), t), where G(r, t) =
w(r, t)
u∗(r)

− 1.

Since w(r, t) = [1 +G(r, t)]u∗(r), from (5.5) we see that r = Φ(ξ, t, s) is a solution of
the following problem:

(5.13)
dr

dt
= [1 + g(ξ, t, s)]u∗(r) for t > s, r|t=s = ξ.

Thus, similarly, as before, we have F∗(Φ(ξ, t, s))− F∗(ξ) = −t+ s−
∫ t

s
g(ξ, τ, s)dτ , so

that

Φ(ξ, t, s) = F−1
∗

(
F∗(ξ) − t+ s−

∫ t

s

g(ξ, τ, s)dτ
)
,(5.14)

Ψ(r, t, s) = F−1
∗

(
F∗(r) + t− s+

∫ t

s

g(Ψ(r, t, s), τ, s)dτ
)
.(5.15)

Combining (5.8), (5.9), (5.11), (5.12), (5.14), and (5.15), we see that

T (r, t, s) = F−1
∗

(
F∗(r) +

∫ t

s

g(Ψ(r, t, s), τ, s)dτ
)
,(5.16)

S(r̄, t, s) = F−1
∗

(
F∗(r̄) −

∫ t

s

g(Ψ∗(r̄, t, s), τ, s)dτ
)
.(5.17)
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Lemma 5.2. Assume that |ζ| ≤ C. Then there exist positive constants C1 and
C2 depending only on C such that, for any 0 < r < 1, we have

(5.18) C1r(1 − r) ≤ F−1
∗ (F∗(r) + ζ)

[
1 − F−1

∗ (F∗(r) + ζ)
]
≤ C2r(1 − r).

Proof. Since −C ≤ ζ ≤ C, by the monotonicity of F∗, we have

F−1
∗ (F∗(r) − C) ≤ F−1

∗ (F∗(r) + ζ) ≤ F−1
∗ (F∗(r) + C).

Thus,

F−1
∗ (F∗(r) + ζ)

r
≤ F−1

∗ (F∗(r) + C)
r

and

1 − F−1
∗ (F∗(r) + ζ)

1 − r
≤ 1 − F−1

∗ (F∗(r) − C)
1 − r

.

Moreover, using the facts that u∗(r) = u′∗(0)r[1+O(rβ)] as r → 0+ for some 0 < β ≤ 1
(see Assertion (3) of Lemma 3.1) and that u∗(r) = −u′∗(1)(1−r)[1+O(1−r)] as r → 1−,
we can easily show that

lim
r→0+

F−1
∗ (F∗(r) + C)

r
= eC|u′

∗(0)| and lim
r→1−

1 − F−1
∗ (F∗(r) − C)

1 − r
= eCu′

∗(1).

From these relations we immediately obtain the second inequality in (5.18). The proof
for the first inequality in (5.18) is similar.

Corollary 5.3. For ε sufficiently small, we have

C1r(1 − r) ≤ T (r, t, s)[1 − T (r, t, s)] ≤ C2r(1 − r),(5.19)
C1r̄(1 − r̄) ≤ S(r̄, t, s)[1 − S(r̄, t, s)] ≤ C2r̄(1 − r̄).(5.20)

Proof. Let ζ =
∫ t

s

g(Ψ(r, t, s), τ, s)dτ . By (5.2), we have

|ζ| ≤
∫ t

s

|g(Ψ(r, t, s), τ, s)|dτ ≤ Cε

∫ t

s

e−μτdτ ≤ Cε

∫ ∞

0

e−μτdτ ≤ Cε ≤ C.

Hence, (5.19) follows from (5.16) and (5.18). Similarly, (5.20) follows from (5.17) and
(5.18).

As an immediate consequence of Corollary 5.3, we see that there exists a constant
C > 1 such that, for ε sufficiently small, we have C−1 ≤ T (r, t, s)/r ≤ C and C−1 ≤
S(r̄, t, s)/r̄ ≤ C.

Corollary 5.4. For ε sufficiently small, we have the following inequalities:

(5.21)
C1Ψ∗(r, t, s)[1 − Ψ∗(r, t, s)] ≤ Ψ(r, t, s)[1 − Ψ(r, t, s)] ≤ C2Ψ∗(r, t, s)[1 − Ψ∗(r, t, s)],

(5.22)
C1Φ∗(r̄, t, s)[1 − Φ∗(r̄, t, s)] ≤ Φ(r̄, t, s)[1 − Φ(r̄, t, s)] ≤ C2Φ∗(r̄, t, s)[1 − Φ∗(r̄, t, s)].

Proof. Let r̄ = Ψ∗(r, t, s) and ζ =
∫ t

s g(Ψ(r, t, s), τ, s)dτ . Then, by (5.12) and
(5.15), we have Ψ(r, t, s) = F−1

∗ (F∗(r̄) + ζ). By this expression and (5.18), we imme-
diately obtain (5.21). The proof of (5.22) is similar.
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As an immediate consequence of Corollary 5.4, we see that there exists a constant
C > 1 such that, for ε sufficiently small, we have C−1 ≤ Ψ(r, t, s)/Ψ∗(r, t, s) ≤ C and
C−1 ≤ Φ(r̄, t, s)/Φ∗(r̄, t, s) ≤ C.

Lemma 5.5. We have the following inequalities:

|T (r, t, s) − r| ≤ Cε
(
e−μs − e−μt

)
r(1 − r),(5.23)

|S(r̄, t, s) − r̄| ≤ Cε
(
e−μs − e−μt

)
r̄(1 − r̄).(5.24)

Proof. Similarly as in the proof of Corollary 5.3, we have∫ t

s

|g(Ψ(r, t, s), τ, s)|dτ ≤ Cε

∫ t

s

e−μτ ≤ Cε
(
e−μs − e−μt

)
.

Thus, by noticing that dF−1
∗ (η)
dη = 1

F ′
∗(F−1

∗ (η))
= |u∗(F−1

∗ (η))|, we see that

|T (r, t, s) − r| =
∣∣∣∣F−1

∗

(
F∗(r) +

∫ t

s

g(Ψ(r, t, s), τ, s)dτ
)
− F−1

∗ (F∗(r))
∣∣∣∣

≤
∫ 1

0

∣∣u∗ (F−1
∗ (F∗(r) + ζθ)

)∣∣ dθ · ∫ t

s

|g(Ψ(r, t, s), τ, s)|dτ

≤ Cε
(
e−μs − e−μt

)
·
∫ 1

0

∣∣u∗ (F−1
∗ (F∗(r) + ζθ)

)∣∣ dθ,
where ζθ = θ

∫ t

s g(Ψ(r, t, s), τ, s)dτ . Since |ζθ| ≤ C and |u∗(η)| ≤ Cη(1 − η), by
Lemma 5.2, we have∣∣u∗ (F−1

∗ (F∗(r) + ζθ)
)∣∣ ≤ CF−1

∗ (F∗(r) + ζθ)
[
1 − F−1

∗ (F∗(r) + ζθ)
]
≤ Cr(1 − r).

Substituting this estimate into the above inequality, we see that (5.23) follows. The
proof of (5.24) is similar.

Corollary 5.6. We have the following inequalities:

|Φ(ξ, t, s) − Φ∗(ξ, t, s)| ≤ Cε
(
e−μs − e−μt

)
Φ∗(ξ, t, s)[1 − Φ∗(ξ, t, s)],(5.25)

|Ψ(r, t, s) − Ψ∗(r, t, s)| ≤ Cε
(
e−μs − e−μt

)
Ψ∗(r, t, s)[1 − Ψ∗(r, t, s)].(5.26)

Proof. Let r = Φ(ξ, t, s). Then ξ = Ψ(r, t, s) and Φ∗(ξ, t, s) = Φ∗(Ψ(r, t, s), t, s) =
T (r, t, s). Thus, by (5.23), we have

|Φ(ξ, t, s) − Φ∗(ξ, t, s)| = |r − T (r, t, s)| ≤ Cε
(
e−μs − e−μt

)
r(1 − r).

Substituting r = Φ(ξ, t, s) into the right-hand side of the last inequality and using
(5.22), we see that (5.25) follows. The proof of (5.26) is similar.

Lemma 5.7. Assume that, in addition to (5.2), there also holds

(5.27) max
0≤r≤1

∣∣∣∣∂w(r, t)
∂r

− u′∗(r)
∣∣∣∣ ≤ Cεe−μt.

Then we have the following estimates:

e−Cε(e−μs−e−μt) ≤ ∂T (r, t, s)
∂r

≤ eCε(e−μs−e−μt),(5.28)

e−Cε(e−μs−e−μt) ≤ ∂S(r̄, t, s)
∂r̄

≤ eCε(e−μs−e−μt).(5.29)
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Proof. Recalling that T (r, t, s) = Φ∗(Ψ(r, t, s), t, s), we have

∂T (r, t, s)
∂r

=
∂Φ∗
∂ξ

(Ψ(r, t, s), t, s)
∂Ψ(r, t, s)

∂r

=
∂Φ∗
∂ξ

(Ψ(r, t, s), t, s)
[
∂Φ
∂ξ

(Ψ(r, t, s), t, s)
]−1

= exp
(∫ t

s

[
u′∗(Φ∗(ξ, τ, s)) − ∂w

∂r
(Φ(ξ, τ, s), τ)

]
dτ

) ∣∣∣∣∣
ξ=Ψ(r,t,s)

.(5.30)

We write

u′∗(Φ∗(ξ, τ, s)) − ∂w

∂r
(Φ(ξ, τ, s), τ) = [u′∗(Φ∗(ξ, τ, s)) − u′∗(Φ(ξ, τ, s))]

+
[
u′∗(Φ(ξ, τ, s)) − ∂w

∂r
(Φ(ξ, τ, s), τ)

]
.

From assumption (5.27) we see that

sup
ξ∈R

∣∣∣∣u′∗(Φ(ξ, τ, s)) − ∂w

∂r
(Φ(ξ, τ, s), τ)

∣∣∣∣ ≤ sup
0<r<1

∣∣∣∣u′∗(r) − ∂w

∂r
(r, τ)

∣∣∣∣ ≤ Cεe−μτ .

Next, by assertion (3) of Lemma 3.1, we know that there exists 0 ≤ γ < 1 such that
rγu′′∗(r) ∈ C[0, 1]. With this fact in mind, we use the mean value theorem to compute

|u′∗(Φ∗(ξ, τ, s)) − u′∗(Φ(ξ, τ, s))|
∣∣
ξ=Ψ(r,t,s)

= |u′′∗(ζ)| |Φ∗(ξ, τ, s) − Φ(ξ, τ, s)|
∣∣
ξ=Ψ(r,t,s)

= |ζγu′′∗(ζ)| ·
[(

Φ(ξ, τ, s)
ζ

)γ

· (Φ(ξ, τ, s))−γ |Φ∗(ξ, τ, s) − Φ(ξ, τ, s)|
] ∣∣∣∣∣

ξ=Ψ(r,t,s)

,

where ζ = θΦ∗(ξ, τ, s) + (1−θ)Φ(ξ, τ, s) for some 0 < θ < 1 (depending on ξ, τ, s).
Since there exists a constant 0 < c < 1 such that Φ∗(ξ,τ,s)

Φ(ξ,τ,s) ≥ c for ε sufficiently small,
we have ζ ≥ cΦ(ξ, τ, s). Thus,∣∣∣u′∗(Φ∗(ξ, τ, s)) − u′∗(Φ(ξ, τ, s))

∣∣∣∣∣∣
ξ=Ψ(r,t,s)

≤ C
(
Φ(ξ, τ, s)

)−γ∣∣Φ∗(ξ, τ, s) − Φ(ξ, τ, s)
∣∣∣∣

ξ=Ψ(r,t,s)

≤ Cε
(
e−μs − e−μτ

)(
Φ(ξ, τ, s)

)−γΦ∗(ξ, τ, s)[1 − Φ∗(ξ, τ, s)]
∣∣
ξ=Ψ(r,t,s)

≤ Cε
(
e−μs − e−μτ

)(
Φ(ξ, τ, s)

)1−γ [1 − Φ(ξ, τ, s)]
∣∣
ξ=Ψ(r,t,s)

= Cε
(
e−μs − e−μτ

)(
Ψ(r, t, τ)

)1−γ [1 − Ψ(r, t, τ)].

In getting the last equality, we used the following relation:

(5.31) Φ(Ψ(r, t, s), τ, s) = Ψ(r, t, τ) for 0 ≤ r ≤ 1, s ≤ τ ≤ t.

The proof of this relation is as follows: From (5.6) we know that ρ = Ψ(r, t, τ) is a
solution of the following problem:

∂ρ

∂t
+ w(r, t)

∂ρ

∂r
= 0 for 0 ≤ r ≤ 1, t > τ, ρ|t=τ = r.
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But it is easy to verify that ρ = Φ(Ψ(r, t, s), τ, s) is also a solution of this problem.
Hence, by uniqueness, we have (5.31). Hence, using (5.21) and (5.12), we get∣∣∣u′∗(Φ∗(ξ, τ, s)) − ∂w

∂r
(Φ(ξ, τ, s), τ)

∣∣∣∣∣∣
ξ=Ψ(r,t,s)

≤ Cε
(
e−μs − e−μτ

)
(Ψ∗(r, t, τ))1−γ [1 − Ψ∗(r, t, τ)] + Cεe−μτ

= Cε
(
e−μs − e−μτ

) [
F−1
∗ (F∗(r) + t− τ)

]1−γ [
1 − F−1

∗ (F∗(r) + t− τ)
]

+ Cεe−μτ .

It follows that∫ t

s

∣∣∣u′∗(Φ∗(ξ, τ, s)) − ∂w

∂r
(Φ(ξ, τ, s), τ)

∣∣∣∣∣∣
ξ=Ψ(r,t,s)

dτ

≤ Cε
(
e−μs − e−μt

) ∫ t

s

[
F−1
∗ (F∗(r) + t− τ)

]1−γ [
1 − F−1

∗ (F∗(r) + t− τ)
]
dτ

+ Cε

∫ t

s

e−μτdτ

= Cε
(
e−μs − e−μt

) ∫ F∗(r)+t−s

F∗(r)

(
F−1
∗ (ξ)

)1−γ
[1 − F−1

∗ (ξ)]dξ + Cε
(
e−μs − e−μt

)
(
ξ = F∗(η), dξ = F ′

∗(η)dη =
dη

|u∗(η)|

)
= Cε

(
e−μs − e−μt

) ∫ F−1
∗ (F∗(r)+t−s)

r

η1−γ(1 − η)
|u∗(η)| dη + Cε

(
e−μs − e−μt

)
≤ Cε

(
e−μs − e−μt

) ∫ 1

0

η−γdη + Cε
(
e−μs − e−μt

)
= Cε

(
e−μs − e−μt

)
.

Combining this result with (5.30), we see that (5.28) follows. Finally, (5.29) is an
immediate consequence of (5.28).

Corollary 5.8. Under the assumption of Lemma 5.7, for ε sufficiently small,
we have∣∣∣∣∂T (r, t, s)

∂r
− 1

∣∣∣∣ ≤ Cε
(
e−μs − e−μt

)
,

∣∣∣∣∂S(r̄, t, s)
∂r̄

− 1
∣∣∣∣ ≤ Cε

(
e−μs − e−μt

)
,

and

C−1 ≤ ∂T (r, t, s)
∂r

≤ C, C−1 ≤ ∂S(r̄, t, s)
∂r̄

≤ C.

Lemma 5.9. Assume that a ∈ C1
V [0, 1], and the assumption of Lemma 5.7 holds.

Then

(5.32) ‖a(S(·, t, s)) − a‖∞ ≤ C‖a‖1ε
(
e−μs − e−μt

)
,

where ‖a‖1 = max0≤r≤1 r(1−r)|a′(r)|. If further r2(1−r)2a′′(r) ∈ C[0, 1], then we
also have

(5.33) ‖a(S(·, t, s)) − a‖C1
V [0,1] ≤ C‖a‖2ε

(
e−μs − e−μt

)
,

where ‖a‖2 = ‖a‖1 + max0≤r≤1 r
2(1−r)2|a′′(r)|.
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Proof. We have

|a(S(r, t, s)) − a(r)| = |a′(η)||S(r, t, s) − r|

≤ Cεη(1 − η)|a′(η)| · r(1 − r)
η(1 − η)

(
e−μs − e−μt

)
≤ C‖a‖1ε

(
e−μs − e−μt

)
,

where η = (1 − θ)r + θS(r, t, s) for some 0 < θ < 1 (depending on r, t, and s). In
getting the last inequality, we used the inequality η(1−η) ≥ Cr(1 − r) for 0 ≤ r ≤ 1,
which follows from (5.20) and the following identity:

η(1 − η) = (1 − θ)r(1 − r) + θS(r, t, s)[1 − S(r, t, s)] + θ(1 − θ)[r − S(r, t, s)]2.

Hence, (5.32) is proved. Next, we compute

r(1 − r)
∣∣∣∣∂a(S(r, t, s))

∂r
− a′(r)

∣∣∣∣ = r(1 − r)
∣∣∣∣a′(S(r, t, s))

∂S(r, t, s)
∂r

− a′(r)
∣∣∣∣

≤ r(1 − r)|a′(S(r, t, s))|
∣∣∣∣∂S(r, t, s)

∂r
− 1

∣∣∣∣
+ r(1 − r)|a′(S(r, t, s)) − a′(r)|.

By Corollaries 5.3 and 5.8, we see that the first term on the right-hand side is bounded
by C‖a‖1 · Cε(e−μs − e−μt), and, by a similar argument as before, we can easily
show that the second term on the right-hand side is bounded by C(max0≤r≤1 r

2(1 −
r)2|a′′(r)|)ε(e−μs − e−μt). Hence, (5.33) follows.

Lemma 5.10. Given a ∈ C[0, 1], we define a bounded linear operator L in C[0, 1]
by

L(q)(r) =
1
r3

∫ r

0

a(ρ)q(ρ)ρ2dρ for q ∈ C[0, 1], 0 < r ≤ 1,

and L(q)(0) = limr→0+ L(q)(r) = 1
3a(0)q(0). Let r̄ = T (r, t, s) and r = S(r̄, t, s) be as

before, and let L̃ be the following bounded linear operator in C[0, 1]:

L̃(q)(r̄) =
1
r3

∫ r

0

a(ρ)q(T (ρ, t, s))ρ2dρ
∣∣∣
r=S(r̄,t,s)

for q ∈ C[0, 1], 0 < r̄ ≤ 1,

and L̃(q)(0) = limr̄→0+ L̃(q)(r̄) = 1
3a(0)q(0). Assume that a ∈ C1

V [0, 1], and the
assumption of Lemma 5.7 holds. Then both L and L̃ are bounded linear operators
from C[0, 1] to C1

V [0, 1], and we have

(5.34)
∥∥∥L̃− L

∥∥∥
L(C[0,1],C1

V [0,1])
≤ C‖a‖C1

V [0,1]ε
(
e−μs − e−μt

)
.

Proof. We give only the proof of (5.34), because the proof of the assertion that
both L and L̃ are bounded linear operators from C[0, 1] to C1

V [0, 1] follows by a similar
argument.

We first note that, for q ∈ C[0, 1] and 0 < r̄ ≤ 1, L̃(q)(r̄) can be rewritten as
follows:

L̃(q)(r̄) =
1

[S(r̄, t, s)]3

∫ r̄

0

a(S(ρ, t, s))q(ρ)
[
S(ρ, t, s)

ρ

]2
∂S(ρ, t, s)

∂ρ
ρ2dρ.
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Thus,

L̃(q)(r̄) − L(q)(r̄) =
[

r̄

S(r̄, t, s)

]3

· 1
r̄3

∫ r̄

0

a(S(ρ, t, s))q(ρ)[
S(ρ, t, s)

ρ

]2 [
∂S(ρ, t, s)

∂ρ
− 1

]
ρ2dρ

+
[

r̄

S(r̄, t, s)

]3

· 1
r̄3

∫ r̄

0

a(S(ρ, t, s))q(ρ)

{[
S(ρ, t, s)

ρ

]2

− 1

}
ρ2dρ

+
[

r̄

S(r̄, t, s)

]3

· 1
r̄3

∫ r̄

0

[a(S(ρ, t, s)) − a(ρ)]q(ρ)ρ2dρ

+

{[
r̄

S(r̄, t, s)

]3

− 1

}
· 1
r̄3

∫ r̄

0

a(ρ)q(ρ)ρ2dρ.

From Corollary 5.3, Lemma 5.5, Corollary 5.8, and Lemma 5.9, we know that∣∣∣∣ r̄

S(r̄, t, s)

∣∣∣∣ ≤ C,

∣∣∣∣ r̄

S(r̄, t, s)
− 1

∣∣∣∣ ≤ Cε
(
e−μs − e−μt

)
,∣∣∣∣S(ρ, t, s)

ρ

∣∣∣∣ ≤ C,

∣∣∣∣∂S(ρ, t, s)
∂ρ

− 1
∣∣∣∣ ≤ Cε

(
e−μs − e−μt

)
,

|a(S(ρ, t, s)) − a(ρ)| ≤ C‖a‖1ε
(
e−μs − e−μt

)
.

Using the above estimates, we see easily that

(5.35) max
0≤r̄≤1

∣∣∣L̃(q)(r̄) − L(q)(r̄)
∣∣∣ ≤ Cε

(
e−μs − e−μt

)
‖a‖C1

V [0,1]‖q‖∞.

Next, by a simple computation, we have

r̄(1 − r̄)L(q)′(r̄) = (1 − r̄)a(r̄)q(r̄) − 3(1 − r̄)
r̄3

∫ r̄

0

a(ρ)q(ρ)ρ2dρ,

r̄(1 − r̄)L̃(q)′(r̄) =
r̄(1 − r̄)
S(r̄, t, s)

a(S(r̄, t, s))q(r̄)
∂S(r̄, t, s)

∂r̄

− 3r̄(1 − r̄)
[S(r̄, t, s)]4

∂S(r̄, t, s)
∂r̄

∫ r̄

0

a(S(ρ, t, s))q(ρ)[
S(ρ, t, s)

ρ

]2
∂S(ρ, t, s)

∂ρ
ρ2dρ.

Using these expressions and a similar argument as before, we have

(5.36) sup
0<r̄<1

r̄(1 − r̄)
∣∣∣L̃(q)′(r̄) − L(q)′(r̄)

∣∣∣ ≤ Cε
(
e−μs − e−μt

)
‖a‖C1

V [0,1]‖q‖∞.

To save space, we omit the details here. By (5.35) and (5.36), we see that (5.34)
follows.

6. Decay estimates. In this section we establish a decay estimate for the evo-
lution system {U(t, s, V ) : t ≥ s ≥ 0} obtained in section 4, where V = V (t) ∈
C([0,∞), Sε), under an additional assumption that V (t) is exponentially decaying as
t→ ∞.
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We first consider the special case where V = 0. In this case we have U(t, s, V ) =
e(t−s)A(0). The main result, Theorem 5.1 of [5], gives a decay estimate for etA(0) (see
(6.8) below). But that estimate contains some singularity at r = 0, so that it does not
meet our requirement. In what follows we use the fact that limr→0+ rp′∗(r) = 0 ensured
by Lemma 3.1 to establish an improved estimate. To this end we need a preliminary
lemma, which gives an estimate for the semigroup generated by the following operator
L = L0 + a:

Lq(r) = −w(r)q′(r) + a(r)q(r) for 0 ≤ r ≤ 1,

where w and a are given functions.
Lemma 6.1. Assume that w ∈ C1[0, 1] and satisfies (4.3), and a ∈ C1

V [0, 1]. Then
L generates a C0 semigroup etL on C[0, 1] satisfying the following estimate:

(6.1)
∥∥etL∥∥

L(C[0,1])
≤ eω0t for t ≥ 0,

where ω0 = max0≤r≤1 a(r). Moreover, C1
V [0, 1] is L-admissible, and, for any ω > ω0,

we have

(6.2)
∥∥etL∥∥

L(C1
V [0,1])

≤ Cωe
ωt for t ≥ 0.

Here, Cω is independent of the function w.
The proof is similar to that of Lemma 4.1, so that is omitted.
Lemma 6.2. There exists a constant μ∗ > 0 such that, for any 0 < μ < μ∗, the

semigroup etA(0) (t ≥ 0) generated by A(0) satisfies the following estimate:

(6.3)
∥∥etA(0)

∥∥
L(C[0,1])

≤ Ce−μt for t ≥ 0.

Proof. Given U0 = (φ0, ζ0) ∈ X , let U(t) = etA(0)U0 = (φ(r, t), ζ(t)). Then (φ, ζ)
is the unique solution of the following initial value problem:

∂tφ+ u∗(r)∂rφ = a(r)φ + B(φ) + b(r)ζ for 0 ≤ r ≤ 1, t > 0,(6.4)
dζ

dt
= F(φ) + κζ for t > 0,(6.5)

φ(r, 0) = φ0(r) for 0 ≤ r ≤ 1, ζ(0) = ζ0,(6.6)

where a(r), b(r),B(φ),F(φ), and κ are given in (2.19)–(2.23). By Theorem 5.1 of [5]
and the remark in the end of section 8 of [5], we know that there exists a constant
σ∗ > 0 and a function φ̂ ∈ C1(0, 1] satisfying

(6.7) φ̂(r) > 0 for 0 < r ≤ 1, φ̂(r) ∼ Cr−θ for r → 0

for some constants 1 ≤ θ < 3 and C > 0, such that the solution of the above problem
satisfies the following estimate:

(6.8) |ζ(t)| + sup
0<r≤1

∣∣∣∣∣φ(r, t)

φ̂(r)

∣∣∣∣∣ ≤ C

(
|ζ0| + sup

0<r≤1

∣∣∣∣∣φ0(r)

φ̂(r)

∣∣∣∣∣
)

(1 + t)2e−σ∗t for t ≥ 0.

This particularly implies that, for any 0 < σ < σ∗ and δ ∈ (0, 1), we have

(6.9) |ζ(t)| + sup
δ≤r≤1

|φ(r, t)| ≤ C

(
|ζ0| + sup

0≤r≤1
|φ0(r)|

)
e−σt for t ≥ 0,



1716 SHANGBIN CUI

because 1/φ̂(r) has a positive lower bound for δ ≤ r ≤ 1 and a finite upper bound for
0 ≤ r ≤ 1. In what follows we prove that, for δ sufficiently small, there also holds

(6.10) sup
0≤r≤δ

|φ(r, t)| ≤ Ce−μt for t ≥ 0

for some μ > 0.
Take a nonnegative cut-off function ϕ ∈ C[0, 1] such that

ϕ(r) ≤ 1 for 0 ≤ r ≤ 1, ϕ(r) = 1 for 0 ≤ r ≤ δ, ϕ(r) = 0 for 2δ ≤ r ≤ 1.

We split B into a sum of two operators as follows:

(6.11) B(q) = B1(q) + B2(q) for q ∈ C[0, 1],

where

B1(q) = −rp′∗(r)ϕ(r) · 1
r3

∫ min{r,δ}

0

gp(ρ)q(ρ)ρ2dρ,

B2(q) = rp′∗(r)
∫ 1

0

gp(ρ)q(ρ)ρ2dρ− r−2p′∗(r)[1 − ϕ(r)]
∫ min{r,δ}

0

gp(ρ)q(ρ)ρ2dρ

− r−2p′∗(r)
∫ r

min{r,δ}
gp(ρ)q(ρ)ρ2dρ

and introduce f(r, t) = B2(φ(·, t))(r) + b(r)ζ(t). By (6.4) and (6.11), we see that φ is
the solution of the equation

(6.12) ∂tφ+ u∗(r)∂rφ = a(r)φ + B1(φ) + f(r, t) for 0 ≤ r ≤ 1, t > 0

subject to the initial condition φ(r, 0) = φ0(r). Introducing operators L(q) = −u∗q′ +
aq, we see that (6.12) can be rewritten as the following differential equation in C[0, 1]:

(6.13)
dφ(·, t)
dt

= (L + B1)(φ(·, t)) + f(·, t).

Using Lemma 6.1 we see that the operator L generates a strongly continuous semi-
group etL on C[0, 1], and ‖etL‖ ≤ e−ωt for all t ≥ 0 where ω = min0≤r≤1 |a(r)| > 0
and using the facts that limr→0 rp

′
∗(r) = 0 and ϕ(r) = 0 for r ≥ 2δ, we can eas-

ily deduce that, for any given ε > 0, there exists corresponding δ > 0 such that
‖B1(q)‖∞ ≤ ε‖q‖∞, or, in other words, B1 is a bounded linear operator on C[0, 1],
with norm dorminated by ε. Thus, the operator L + B1 also generates a strongly
continuous semigroup et(L+B1) on C[0, 1], and it satisfies

(6.14) ‖et(L+B1)‖ ≤ e−(ω−ε)t for all t ≥ 0.

In what follows we assume that ε is sufficiently small such that ω− ε > 0. By (6.13),
we have

(6.15) φ(·, t) = et(L+B1)φ0 +
∫ t

0

e(t−τ)(L+B1)f(·, τ)dτ.

Using (6.7), (6.8), and (6.9), we can easily show that ‖f(·, t)‖∞ ≤ Cδ‖U0‖e−σt for
t ≥ 0. Hence, from (6.15) and (6.14) we see that, for any 0 < μ < min{σ, ω − ε},
there holds

‖φ(·, t)‖∞ ≤ ‖φ0‖∞e−(ω−ε)t + C‖U0‖e−μt for t ≥ 0,

from which (6.10) immediately follows.
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Combining (6.9) and (6.10), we get (6.3). This completes the proof.
Lemma 6.3. Let μ∗ be as in Lemma 6.2. Then, for any 0 < μ < μ∗, in addition

to (6.3), we also have the following estimate:

(6.16)
∥∥etA(0)

∥∥
L(C1

V [0,1])
≤ Ce−μt for t ≥ 0.

Proof. We first show that B and F satisfy the following properties: For any
q ∈ C1

V [0, 1],

‖B(u∗q′)‖∞ + ‖u∗B(q)′‖∞ ≤ C‖q‖∞,(6.17)
|F(u∗q′)| ≤ C‖q‖∞.(6.18)

Using the facts that limr→0 rp
′
∗(r) = 0 and limr→0 r

2p′′∗(r) = 0 (see (3.3)), we can
easily prove that ‖u∗B(q)′‖∞ ≤ C‖q‖∞ for q ∈ C[0, 1]. To estimate ‖B(u∗q′)‖∞, we
compute

1
r3

∫ r

0

gp(ρ)u∗(ρ)q′(ρ)ρ2dρ =
1
r
u∗(r)gp(r)q(r) − 1

r3

∫ r

0

m(ρ)q(ρ)ρ2dρ,

where m(ρ) = g′p(ρ)u∗(ρ) + gp(ρ)u′∗(ρ) + 2
ρu∗(ρ)gp(ρ). Taking r = 1 we particularly

obtain ∫ 1

0

gp(ρ)u∗(ρ)q′(ρ)ρ2dρ = u∗(1)gp(1)q(1) −
∫ 1

0

m(ρ)q(ρ)ρ2dρ.

Since gp ∈ C1[0, 1], u∗ ∈ C1[0, 1], and u∗(0) = 0, we see that 1
ru∗gp and m both

belong to C[0, 1]. Hence, from the above expressions we see immediately that

‖B(u∗q′)‖∞ = sup
0<r<1

∣∣∣∣rp′∗(r)
[∫ 1

0

gp(ρ)u∗(ρ)q′(ρ)ρ2dρ− 1
r3

∫ r

0

gp(ρ)u∗(ρ)q′(ρ)ρ2dρ

]∣∣∣∣
≤ C‖q‖∞.

Similarly we have |F(u∗q′)| = |
∫ 1

0
gp(ρ)u∗(ρ)q′(ρ)ρ2dρ| ≤ C‖q‖∞. This proves (6.17)

and (6.18).
We now proceed to prove (6.16). Let U0 ∈ X0 and U = etA(0)U0. From the proof

of Lemma 4.2 we know that U ∈ C([0,∞), X0)∩C1([0,∞), X). Let U0 = (q0, y0) and
U = (q, y). Then (q, y) is the solution of the following problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂q

∂t
+ u∗(r)

∂q

∂r
= a(r)q + B(q) + b(r)y for 0 ≤ r ≤ 1, t > 0,

dy

dt
= F(q) + κy for t > 0,

q|t=0 = q0(r) for 0 ≤ r ≤ 1, and y|t=0 = y0.

Let l(r, t) = u∗(r)∂q(r,t)
∂r . By formally differentiating the first equation above in r

and multiplying it with u∗(r), we see that (l, y) is a formal solution of the following
problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂l

∂t
+ u∗(r)

∂l

∂r
= a(r)l + B(l) + b(r)y + f1(r, t) for 0 ≤ r ≤ 1, t > 0,

dy

dt
= F(l) + κy + c1(t) for t > 0,

l|t=0 = l0(r) for 0 ≤ r ≤ 1, and y|t=0 = y0,
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where l0(r) = u∗(r)q′0(r), c1(t) = F(q) −F(u∗ ∂q
∂r ), and

f1(r, t) = u∗(r)a′(r)q(r, t) − B
(
u∗
∂q

∂r

)
+ u∗(r)

∂B(q)
∂r

+ [u∗(r)b′(r) − b(r)]y(t).

We denote W (t) = (l(·, t), y(t)), W0 = (l0, y0), and F1(t) = (f1(·, t), c1(t)). Then the
above problem can be rewritten as follows:

dW

dt
= A(0)W + F1(t) for t > 0, W (0) = W0.

Using the fact that U ∈ C1([0,∞), X), Corollary 3.2, (6.17), and (6.18), we can easily
prove that F1 ∈ C1([0,∞), X). Thus, by a standard result, we see that the above
problem has a unique mild solution, and consequently, the above formal computation
makes sense. Moreover, we have

W (t) = etA(0)W0 +
∫ t

0

e(t−s)A(0)F1(s)ds for t ≥ 0.

From this expression and Lemma 6.2 we see that, for any given 0 < μ < μ∗, we have

‖W (t)‖X ≤ Ce−μt‖W0‖X + C

∫ t

0

e−μ(t−s)‖F1(s)‖Xds for t ≥ 0.

Using (6.17), (6.18), and the fact that ‖U(t)‖X ≤ Ce−μt‖U0‖X ensured by (6.3), we
see that

‖F1(t)‖X ≤ C‖U(t)‖X ≤ Ce−μt‖U0‖X for t ≥ 0.

Substituting this estimate into the above inequality and noticing that W (t) =
(u∗

∂q(·,t)
∂r , y(t)) and W0 = (u∗q′0, y0), we obtain

‖U(t)‖X0 ≤ C(1 + t)e−μt‖U0‖X0 for t ≥ 0.

Now, for any given 0 < μ < μ∗, we arbitrarily take a μ̄ ∈ (μ, μ∗) and first use the
above estimate to μ̄ and next use the elementary inequality (1 + t)e−μ̄t ≤ Ce−μt, we
see that (6.16) follows. This completes the proof.

In what follows we consider the evolution system U(t, s, V ) for a general V =
V (t) ∈ C([0,∞), X) satisfying the following condition: For some positive constants
μ̄, ε and C0,

(6.19) ‖V (t)‖X ≤ C0εe
−μ̄t for t ≥ 0.

Lemma 6.4. Assume that V = V (t) ∈ C([0,∞), X), and it satisfies (6.19). Let
μ∗ be as in Lemma 6.2. Then, for any 0 < μ < μ∗, there exists corresponding ε0 > 0
(depending on μ, μ̄, and C0) such that if 0 < ε ≤ ε0, then the following estimates
hold:

‖U(t, s, V )‖L(X) ≤ C1e
−μt for t ≥ 0,(6.20)

‖U(t, s, V )‖L(X0) ≤ C2e
−μt for t ≥ 0,(6.21)

where C1 and C2 are positive constants depending only on μ and independent of μ̄
and C0.
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Proof. Given 0 < μ < μ∗ we take a μ1 ∈ (μ, μ∗) and fix it. By Lemmas 6.2 and
6.3, we have the following estimates:∥∥etA(0)

∥∥
L(C[0,1])

≤ C1e
−μ1t for t ≥ 0,(6.22) ∥∥etA(0)

∥∥
L(C1

V [0,1])
≤ C2e

−μ1t for t ≥ 0.(6.23)

Let U0 = (q0, s0) be an arbitrary point in X , and let U = U(t, s, V )U0. By definition,
U is the solution of the problem (4.12). Let U = (q, y). Then (4.12) can be rewritten
as follows:

(6.24)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂q

∂t
+ wV (r, t)

∂q

∂r
= a(r)q + Bq + b(r)y for 0 ≤ r ≤ 1, t > s,

dy

dt
= F(q) + κy for t > s,

q|t=s = q0(r) for 0 ≤ r ≤ 1, and y|t=s = y0.

Let r̄ = T (r, t, s) and r = S(r̄, t, s) be as defined in section 5, and let q̃(r̄, t, s) =
q(S(r̄, t, s), t), or, equivalently, q(r, t) = q̃(T (r, t, s), t, s). Then by using (5.7), we see
that (6.24) is transformed into the following problem:

(6.25)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂q̃

∂t
+ u∗(r̄)

∂q̃

∂r̄
= ã(r̄, t, s)q̃ + B̃q̃ + b̃(r̄, t, s)s for 0 ≤ r̄ ≤ 1, t > s,

ds

dt
= F̃(q̃)(t, s) + κs for t > s,

q̃|t=s = q0(r̄) for 0 ≤ r̄ ≤ 1, and s|t=s = s0,

where ã(r̄, t, s) = a(S(r̄, t, s)), b̃(r̄, t, s) = b(S(r̄, t, s)),

B̃q̃ = rp′∗(r)

[ ∫ 1

0

gp(ρ)q̃(T (ρ, t, s), t, s)ρ2dρ

− 1
r3

∫ r

0

gp(ρ)q̃(T (ρ, t, s), t, s)ρ2dρ

]∣∣∣∣∣
r=S(r̄,t,s)

,

and F̃(q̃)(t, s) =
∫ 1

0 gp(ρ)q̃(T (ρ, t, s), t, s)ρ2dρ. We define a family of bounded linear
operators B̃(t, s, V ) : X → X (t ≥ s ≥ 0) as follows:

B̃(t, s, V ) =

(
ã(·, t, s) + B̃ b̃(·, t, s)

F̃ κ

)
.

We also denote Ũ = (q̃, y). Then (6.25) can be rewritten as follows:

(6.26)
dŨ

dt
= A0(U∗)Ũ + B̃(t, s, V )Ũ for t > s, Ũ |t=s = U0.

Recalling that A(0) = A0(U∗) + B and denoting

Ẽ(t, s, V ) = B̃(t, s, V ) − B =

(
ã(·, t, s) − a+ B̃ − B b̃(·, t, s) − b

F̃ − F 0

)
,
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we see that

A0(U∗) + B̃(t, s, V ) = A0(U∗) + B + Ẽ(t, s, V ) = A(0) + Ẽ(t, s, V ).

Hence, (6.26) can be further rewritten as follows:

(6.27)
dŨ

dt
= A(0)Ũ + Ẽ(t, s, V )Ũ for t > s, Ũ |t=s = U0.

We know that (6.27) is equivalent to the following integral equation:

(6.28) Ũ(t, s) = e(t−s)A(0)U0 +
∫ t

s

e(t−τ)A(0)
Ẽ(τ, s, V )Ũ (τ, s) for t ≥ s.

It can be easily shown that, under the assumption (6.19), wV satisfies the estimates
(5.1) and (5.27) (with μ replaced by μ̄). Hence, by Corollary 3.2 and Lemma 5.9, we
have

‖ã(·, t, s) − a‖C1
V [0,1] ≤ Cε,

∥∥b̃(·, t, s) − b
∥∥

C1
V [0,1]

≤ Cε,

and by Corollary 3.2, Lemma 5.9, and Lemma 5.10, we have∥∥B̃ − B
∥∥

L(C[0,1])
≤ Cε,

∥∥B̃ − B
∥∥

L(C1
V [0,1])

≤ Cε,
∥∥F̃ − F

∥∥
L(C[0,1],R)

≤ Cε.

It follows that

(6.29)
∥∥Ẽ(τ, s, V )

∥∥
L(X)

≤ Cε,
∥∥Ẽ(τ, s, V )

∥∥
L(X0)

≤ Cε.

From (6.22), (6.23), (6.28), and (6.29) we obtain

∥∥Ũ(t, s)
∥∥

X
≤ C1e

−μ1(t−s)‖U0‖X + Cε

∫ t

s

e−μ1(t−τ)
∥∥Ũ(τ, s)

∥∥
X
,

∥∥Ũ(t, s)
∥∥

X0
≤ C2e

−μ1(t−s)‖U0‖X0 + Cε

∫ t

s

e−μ1(t−τ)
∥∥Ũ(τ, s)

∥∥
X0
.

By the Gronwall lemma, these inequalities yield∥∥Ũ(t, s)
∥∥

X
≤ C1e

−(μ1−Cε)t‖U0‖X ,
∥∥Ũ(t, s)

∥∥
X0

≤ C2e
−(μ1−Cε)t‖U0‖X0 .

Hence, by taking ε sufficiently small such that μ1 − Cε ≥ μ, we obtain (6.20) and
(6.21). This completes the proof.

7. The proof of Theorem 1.1. In order to prove Theorem 1.1, we let μ∗ be as
in Lemma 6.2 and arbitrarily fix a number 0 < μ < μ∗. Let ε be a positive number
to be specified later. For any fixed U0 ∈ X0 satisfying ‖U0‖X0 ≤ ε, we denote by M
the set of all functions V = V (t) ∈ C([0,∞), X) satisfying the following conditions:

(7.1) V (0) = U0, ‖V (t)‖X ≤ 2C1εe
−μt for t ≥ 0,

where C1 is the constant appearing in (6.20). We introduce a metric d on M by
defining d(V1, V2) = supt≥0 e

μt‖V1(t) − V2(t)‖X for V1, V2 ∈ M. It is evident that
(M, d) is a complete metric space. Given V ∈ M, we consider the following initial
value problem:

(7.2)
dU(t)
dt

= A(V (t))U(t) + G(U(t)) for t > 0, U(0) = U0.
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Lemma 7.1. If ε is sufficiently small, then, for any V ∈ M, problem (7.2) has
a unique solution U ∈ C([0,∞), X0) ∩ C1([0,∞), X), which satisfies the following
estimates:
(7.3)

‖U(t)‖X ≤ 2C1εe
−μt, ‖U(t)‖X0 ≤ Cεe−μt, ‖U ′(t)‖X ≤ Cεe−μt for t ≥ 0,

where C1 is as before, and C is another constant independent of V .
Proof. We denote

M̃={U ∈C([0,∞), X0) : ‖U(t)‖X ≤ 2C1εe
−μt and ‖U(t)‖X0 ≤ 2C2εe

−μt for t ≥ 0}

and introduce a metric d on it by defining d(U1, U2) = supt≥0 e
μt‖U1(t)−U2(t)‖X0 for

U1, U2 ∈ M̃. Here, C1 and C2 are positive constants appearing in (6.20) and (6.21),
respectively. (M̃, d) is clearly a complete metric space. Given U ∈ M̃, we consider
the following initial value problem:

(7.4)
dŨ(t)
dt

= A(V (t))Ũ (t) + G(U(t)) for t > 0, Ũ(0) = U0.

Since U(t) ∈ C([0,∞), X0), by Corollary 3.3, we have G(U(t)) ∈ C([0,∞), X0). It fol-
lows by Corollary 4.4 that the above problem has a unique solution Ũ ∈ C([0,∞), X0)∩
C1([0,∞), X) and is given by

(7.5) Ũ(t) = U(t, 0, V )U0 +
∫ t

0

U(t, s, V )G(U(s))ds.

Using this expression and Lemma 6.4 and (2.18) we have∥∥Ũ(t)
∥∥

X
≤ C1e

−μt‖U0‖X + C1

∫ t

0

e−μ(t−s)‖G(U(s))‖Xds

≤ C1εe
−μt + C

∫ t

0

e−μ(t−s)‖U(s)‖2
Xds ≤ 2C1εe

−μt,

when ε is sufficiently small. Similarly, by using Lemma 6.4 and (3.9), we also have
‖Ũ(t)‖X0 ≤ 2C2εe

−μt, when ε is sufficiently small. Hence, Ũ ∈ M̃. We now define a
mapping S̃ : M̃ → M̃ by setting S̃(U) = Ũ for every U ∈ M̃. We claim that S̃ is a
contraction mapping. Indeed, for any U1, U2 ∈ M̃, let Ũ1 = S(U1), Ũ2 = S(U2), and
W = Ũ1 − Ũ2. Then W satisfies

dW (t)
dt

= A(V (t))W (t) + [G(U1(t)) − G(U2(t))] for t > 0, W (0) = 0,

so that W (t) =
∫ t

0
U(t, s, V )[G(U1(s)) − G(U2(s))]ds. It follows that

‖W (t)‖X0 ≤ C2

∫ t

0

e−μ(t−s)‖G(U1(s) − G(U2(s)))‖X0ds

≤ C2

∫ t

0

e−μ(t−s)‖U1(s) − U2(s)‖X0(∫ 1

0

‖G
′(θU1(s) + (1 − θ)U2(s))‖L(X0)dθ

)
ds

≤ C

∫ t

0

e−μ(t−s)‖U1(s) − U2(s)‖X0

(∫ 1

0

‖θU1(s) + (1 − θ)U2(s)‖X0dθ

)
ds,
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which yields ‖W (t)‖X0 ≤ Cεd(U1, U2)e−μt. Thus, for ε sufficiently small, we have
d(Ũ1, Ũ2) = supt≥0 e

μt‖W (t)‖X0 ≤ 1
2d(U1, U2), showing that S̃ is a contraction map-

ping, as we claimed. Thus, by the Banach fixed point theorem, we see that S̃
has a unique fixed point in M̃, which is clearly a solution of the problem (7.2) in
C([0,∞), X0). The uniqueness of the solution follows from a standard argument.

From the above argument we see that the solution U of (7.2) satisfies the first two
inequalities in (7.3), and U ∈ C1([0,∞), X). It remains to prove that U also satisfies
the last inequality in (7.3). The argument is as follows. First, it is straightforward to
deduce from condition (7.1) that, for sufficiently small ε > 0, we have wV (r, t)/r(1 −
r) ∈ C[0, 1], and there exist positive constants C1 and C2 independent of V such that

(7.6) −C1r(1 − r) ≤ wV (r, t) ≤ −C2r(1 − r) for 0 ≤ r ≤ 1 and t ≥ 0.

It follows that, for the solution U = (q, s) of (7.2), we have

sup
0≤r≤1

∣∣∣∣wV (r, t)
∂q(r, t)
∂r

∣∣∣∣ ≤ C sup
0≤r≤1

∣∣∣∣r(1 − r)
∂q(r, t)
∂r

∣∣∣∣ ≤ C‖q(·, t)‖C1
V [0,1].

Using this result and (7.2), we see that

‖U ′(t)‖X ≤ ‖A(V (t))U(t)‖X + ‖G(U(t)‖X ≤ C‖U(t)‖X0 + C‖U(t)‖2
X ≤ Cεe−μt

for all t ≥ 0. This completes the proof of Lemma 7.1.
Lemma 7.1, in particular, implies that, for every V in M, the solution U of (7.2)

also belongs to M. Thus we can define a mapping S : M → M as follows: For any
V ∈ M,

S(V ) = U = the solution of (7.2).

Lemma 7.2. For ε sufficiently small, S is a contraction mapping.
Proof. Let V1, V2 ∈ M and denote U1 = S(V1), U2 = S(V2), and W = U1 − U2.

Then W satisfies

dW (t)
dt

= A(V1(t))W (t) + [A(V1(t)) − A(V2(t))]U2(t) + [G(U1(t)) − G(U2(t))]

for t > 0, and W (0) = 0. Thus

W (t) =
∫ t

0

U(t, s, V1)[A(V1(s)) − A(V2(s))]U2(s)ds

+
∫ t

0

U(t, s, V1)[G(U1(s)) − G(U2(s))]ds.(7.7)

Since the first component of [A(V1(s))−A(V2(s))]U2(s) is [wV2(r, s)−wV1 (r, s)]q′2(r, s)
and the second component is zero, we have

‖[A(V1(s)) − A(V2(s))]U2(s)‖X = max
0≤r≤1

|[wV1(r, s) − wV2(r, s)]q′2(r, s)|

≤ sup
0≤r≤1

∣∣∣∣wV1(r, s) − wV2 (r, s)
r(1 − r)

∣∣∣∣ max
0≤r≤1

|r(1 − r)q′2(r, s)|

≤ C‖V1(s) − V2(s)‖X‖U2(s)‖X0 .(7.8)
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Besides, from (2.18) we have

‖G(U1(s)) − G(U2(s))‖X =
∥∥∥∥∫ 1

0

G
′(θU1(s) + (1 − θ)U2(s))[U1(s) − U2(s)]dθ

∥∥∥∥
X

≤ C (‖U1(s)‖X + ‖U2(s)‖X) ‖U1(s) − U2(s)‖X .(7.9)

From (7.7)–(7.9) and Lemma 6.4 we get

‖U1(t) − U2(t)‖X ≤ C

∫ t

0

e−μ(t−s)‖V1(s) − V2(s)‖X‖U2(s)‖X0ds

+ C

∫ t

0

e−μ(t−s) (‖U1(s)‖X + ‖U2(s)‖X) ‖U1(s) − U2(s)‖Xds

≤ Cεe−μtd(V1, V2) + Cεe−μtd(U1, U2),

which yields d(U1, U2) ≤ Cεd(V1, V2) +Cεd(U1, U2). From this inequality the desired
assertion easily follows.

By Lemma 7.2, if ε is sufficiently small, then the mapping S has a unique fixed
point U in M. Clearly, U is a global solution of (2.16) subject to the initial condition
U(0) = U0. Moreover, by Lemma 7.1, we know that the image of S is contained in M̃
so that U satisfies (7.3). From this result and Lemma 2.1 we see that the assertion of
Theorem 1.1 follows. This completes the proof of Theorem 1.1.
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WELL-POSEDNESS AND CONVERGENCE TO THE STEADY
STATE FOR A MODEL OF MORPHOGEN TRANSPORT∗
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Abstract. Well-posedness and large time convergence to the unique steady state are shown for
a model which describes the spreading of morphogens by a nonlinear transport mechanism (transcy-
tosis) and couples a quasilinear parabolic partial differential equation with an ordinary differential
equation. A simpler model which assumes linear transport is also investigated for comparison. The
analysis of both models requires the construction of specific Liapunov functionals. The study is
supplemented by numerical simulations of the sensitivity of the models to the variation of their
parameters.

Key words. degenerate parabolic system, Liapunov functional, steady state
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1. Introduction. Morphogens are signaling molecules that play an important
role in the process of cell differentiation, as different morphogen concentrations induce
distinct cell fates. In fact, during cell development, spatial gradients of morphogen
concentration form while the morphogens move away from a spatially localized source.
It is, however, yet unclear whether the spreading of morphogens occurs by passive
diffusion in the extracellular medium or by more complex mechanisms such as planar
transcytosis (see, e.g., [5, 11] and the references therein). Planar transcytosis explains
the transport of morphogens across the tissue as the consequence of repeated cycles of
internalization of morphogens inside the cell (endocytosis) and release of morphogens
outside the cell (exocytosis) together with the binding and unbinding of morphogens
to receptors located at the surface of the cell. A related model accounting only for
the latter mechanism was introduced in [6].

A model for the transport of morphogens by passive diffusion was recently derived
in [8, Model B] and describes the space and time evolution of the concentrations of
free morphogens � and bound receptors s: in dimensionless form, it reads

∂t� = D ∂2
x� + δ s− � (1 − s), (t, x) ∈ (0,∞) × (0, 1),(1.1)

∂ts = � (1 − s) − (δ + ε) s, (t, x) ∈ (0,∞) × (0, 1),(1.2)

supplemented by suitable boundary and initial conditions. In this model, the total
number of receptors (free + bound) per cell is assumed to be constant and normalized
to one. The reaction terms account for the depletion of free morphogens resulting
from the binding with free receptors (−� (1 − s)), the release of free morphogens
after unbinding from the receptors (δ s), and the degradation of bound receptors
(−ε s), respectively. An attempt to take into account planar transcytosis is made in
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[3, 7]: it gives a system of two equations similar to (1.1)–(1.2), with the noticeable
difference that it includes a nonconstant diffusion coefficient in the equation for the
free morphogens. It describes the fact that free receptors have to be available for the
transport of morphogens to take place. Depending on the assumptions made during
the derivation, the equation for the free morphogens might also contain an additional
drift term of the form ∂x (χ(�, s) ∂xs). Let us mention here that such a drift term also
shows up in the related model proposed in [9]. We will, however, focus in this paper on
a model which does not include an additional drift term of the above-mentioned form
but accounts for transcytosis by a nonconstant diffusion coefficient which depends
on the concentration of bound receptors and vanishes if no free receptor is available
(s = 1).

More precisely, the model derived in [7] reads, in dimensionless form,

∂t� = D ∂x ((1 − s) ∂x�) + δ s− � (1 − s), (t, x) ∈ (0,∞) × (0, 1),(1.3)

∂ts = � (1 − s) − (δ + ε) s, (t, x) ∈ (0,∞) × (0, 1),(1.4)

D (1 − s(t, 0)) ∂x�(t, 0) + ν = �(t, 1) = 0, t ∈ (0,∞),(1.5)

(�, s)(0, x) = (�0, s0)(x), x ∈ (0, 1),(1.6)

with D > 0, δ > 0, ε ≥ 0, and ν > 0. The strength of the diffusion is clearly related
to the concentration of bound receptors s and no diffusion takes place in the absence
of free receptors. As for the reaction terms, they are the same as for (1.1)–(1.2)
though their biological meaning is different: Indeed, the term (−� (1 − s)) accounts
for the endocytosis process, which combines the binding of a free morphogen with a
receptor followed by its internalization, and the term (δs) for the exocytosis process,
which includes an externalization step and a dissociation step. Finally, the boundary
condition at x = 0 accounts for a source of morphogens localized on one side of the
tissue. We refer to [7] for a complete derivation of the model, and some additional
information as well.

The aim of this paper is to supplement the qualitative study of (1.3)–(1.6) per-
formed in [7] with that of mathematical properties, namely, well-posedness and large
time behavior. We first point out that, as (1.3)–(1.6) couples a quasilinear parabolic
partial differential equation with an ordinary differential equation, it cannot be stud-
ied with the usual techniques for systems of parabolic partial differential equations.
Nevertheless, a general theory has been developed in [1] to study this kind of system:
applying this theory in a suitable functional framework allows us to establish the local
well-posedness of (1.3)–(1.6). A Liapunov functional is then constructed from which
we deduce the global well-posedness.

More precisely, we assume that

(1.7) (�0, s0) ∈ V × V with �0 ≥ 0 and 0 ≤ s0 < 1,

where V := {v ∈ H1(0, 1) such that v(1) = 0} and V ′ denotes the topological dual
of V .

Theorem 1. Given initial data (�0, s0) satisfying (1.7) the initial-boundary value
problem (1.3)–(1.6) possesses a unique weak solution

(�, s) ∈ C([0,∞);V × V ) ∩ C1([0,∞);V ′ × V )

such that ∂t� ∈ L2((0, T ) × (0, 1)) for every T > 0,

0 ≤ �(t, x) and 0 ≤ s(t, x) < 1 for (t, x) ∈ [0,∞) × [0, 1],
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and

〈∂t�(t), ψ〉V ′,V + D

∫ 1

0

(1 − s(t)) ∂x�(t) ∂xψ dx

= ν ψ(0) +

∫ 1

0

(δs(t) − �(t)(1 − s(t))) ψ dx,

∂ts(t) = −(δ + ε)s(t) + �(t)(1 − s(t))

for ψ ∈ V and t ∈ [0,∞). Furthermore, for each t > 0,

(1.8) L(s(t), ∂tσ(t)) +

∫ t

0

D(s(τ), ∂tσ(τ)) dτ = L(s0, ∂tσ(0)),

where σ := − ln (1 − s) and

L(v, w) := L0(v) +
1

2

∫ 1

0

w(x)2 dx,(1.9)

L0(v) :=

∫ 1

0

{
D(δ + ε)

2
|∂xΣI(v)(x)|2 + ε (ΣI(v) − v)(x) − ν ΣI(v)(0)

}
dx,(1.10)

D(v, w) :=

∫ 1

0

(
1 − v(x) +

δ + ε

1 − v(x)

)
w(x)2 dx(1.11)

+ D

∫ 1

0

(1 − v(x)) |∂xw(x)|2 dx,

the function ΣI being defined by ΣI(r) := − ln (1 − r) for r ∈ [0, 1).
We now turn to the behavior for large times of weak solutions to (1.3)–(1.6) and

first recall from [7] that (1.3)–(1.5) has a single stationary solution.
Proposition 2. There is a unique stationary solution (�∞, s∞) ∈ C([0, 1]; R2) to

(1.3)–(1.5) satisfying the natural constraints

(1.12) �∞(x) ≥ 0 and 0 ≤ s∞(x) < 1 for x ∈ [0, 1].

The function s∞ is the unique solution to the boundary value problem

−D ∂2
xΣI(s∞) +

ε

δ + ε
s∞ = 0 in (0, 1),

(1.13)
D ∂xΣI(s∞)(0) +

ν

δ + ε
= s∞(1) = 0,

while �∞ is given by �∞(x) = (δ + ε)s∞(x)/(1 − s∞(x)) for x ∈ [0, 1].
With this notation, our second result reads as follows.
Theorem 3. Consider (�0, s0) satisfying (1.7) and let (�, s) be the correspond-

ing weak solution to the initial-boundary value problem (1.3)–(1.6). Then (�(t), s(t))
converges (strongly) towards (�∞, s∞) in L2(0, 1) ×H1(0, 1) as t → ∞.

Roughly speaking, the only piece of information on the convergence that can be
retrieved from (1.8) is that ∂tΣI(s) vanishes as t → ∞ and so does ∂ts. Therefore, by
(1.4), �(1 − s) − (δ + ε)s vanishes for large times, which somehow means that s gets
closer and closer to �/(�+ δ+ε) as time goes by. However, no information is available
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on � at this stage. Nevertheless, it seems reasonable to guess that � behaves as the
solution λ to

∂tλ = ∂x

(
δ + ε

λ + δ + ε
∂xλ

)
− ε

δ + ε

λ

λ + δ + ε
, (t, x) ∈ (0,∞) × (0, 1),(1.14)

D
∂xλ(t, 0)

λ(t, 0) + δ + ε
+

ν

δ + ε
= λ(t, 1) = 0, t ∈ (0,∞),(1.15)

obtained from (1.3)–(1.5) by replacing s by �/(� + δ + ε). Noting that �∞ is also a
stationary solution to (1.14)–(1.15) allows us to construct another Liapunov functional
for (1.3)–(1.6) resembling that available for (1.14)–(1.15) and providing the needed
information on �.

The large time convergence towards the steady state is proved in section 3 after
establishing the well-posedness in V × V in section 2. In section 4, we return to the
model (1.1)–(1.2) of morphogen transport by passive diffusion and show that it is also
well-posed in V ×V once supplemented by the boundary and initial conditions (1.5)–
(1.6). To this end we construct a Liapunov function for this problem which turns out
to provide much more information than L. In particular, exponential convergence
to the steady state can be proved for (1.1)–(1.2). Finally, we devote section 5 to
numerical simulations, where we show that the solutions of both models converge to
the steady state at an exponential rate and that this rate cannot be arbitrarily large
regardless of the choice of the parameters.

Throughout the paper, Ci, i ≥ 1, denotes any positive constant depending only
on �0, s0, D, δ, ε, and ν. For a real number r ∈ R, r+ := max {r, 0} denotes the
positive part of r and we set sign+(r) := 1 for r > 0 and sign+(r) := 0 for r ≤ 0.

2. Well-posedness. We first show that the Liapunov functional L is bounded
from below.

Lemma 4. For v ∈ V , 0 ≤ v < 1, we have

(2.1) L0(v) ≥ L0(s∞) +
D(δ + ε)

2

∫ 1

0

|∂x (ΣI(v) − ΣI(s∞)) (x)|2 dx.

In particular,

L0(s∞) = min
v∈V

{L0(v)}.

Proof. Let v ∈ V , 0 ≤ v < 1. It follows from (1.13) by a straightforward compu-
tation that

L0(v) − L0(s∞) =
D(δ + ε)

2

∫ 1

0

|∂x (ΣI(v) − ΣI(s∞)) (x)|2 dx

+ ε

∫ 1

0

{(1 − s∞) (ΣI(v) − ΣI(s∞)) − v + s∞} (x) dx.

Since s∞ < 1 by Proposition 2 we observe that

(1−s∞) (ΣI(v)−ΣI(s∞))−v+s∞ = (1−s∞) [ΣI(v)−ΣI(s∞)−Σ′
I(s∞) (v−s∞)] ≥ 0

by the convexity of ΣI , and (2.1) follows.
Proof of Theorem 1. By [1, Theorem 6.4] (with G = R × (−∞, 1)) the initial-

boundary value problem (1.3)–(1.6) possesses a unique maximal weak solution

(2.2) (�, s) ∈ C([0, Tm);V ×H1(0, 1)) ∩ C1([0, Tm);V ′ ×H1(0, 1))
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such that

(2.3) s(t, x) < 1, (t, x) ∈ [0, Tm) × [0, 1],

and

〈∂t�(t), ψ〉V ′,V + D

∫ 1

0

(1 − s(t)) ∂x�(t) ∂xψ dx

= ν ψ(0) +

∫ 1

0

(δs(t) − �(t)(1 − s(t))) ψ dx,(2.4)

(2.5) ∂ts(t) = −(δ + ε)s(t) + �(t)(1 − s(t))

for ψ ∈ V and t ∈ [0, Tm). In addition, Tm = ∞ if, for each T > 0,

(2.6) (�, s) ∈ BUC([0, T ] ∩ [0, Tm);V ×H1(0, 1))

and there is ϑT ∈ (0, 1) such that

(2.7) max
x∈[0,1]

{s(t, x)} ≤ ϑT for every t ∈ [0, T ] ∩ [0, Tm).

We first establish the nonnegativity of (�, s). For that purpose we notice that
since 1 − s ≥ 0, the right-hand side of (1.3)–(1.4) satisfies

[δs− �(1 − s)] sign+(−�) + [�(1 − s) − (δ + ε)s] sign+(−s)

≥ −δ(−s)+ + (1 − s)(−�)+ − (1 − s)(−�)+ + (δ + ε)(−s)+

≥ 0.

We may then use classical approximations of r 
→ r+ to deduce from (2.4) and (2.5)
that ∫ 1

0

[(−�)+(t) + (−s)+(t)] dx ≤
∫ 1

0

[(−�0)+ + (−s0)+] dx = 0

for t ∈ [0, Tm). Consequently

(2.8) �(t, x) ≥ 0 and s(t, x) ≥ 0, (t, x) ∈ [0, Tm) × [0, 1].

It also follows from (1.7), (2.2), and (2.5) that ∂ts(t, 1) =−(δ+ε)s(t, 1) with s(0, 1) = 0,
whence

(2.9) s(t, 1) = 0 and s(t) ∈ V for t ∈ [0, Tm).

We next turn to the identity (1.8): owing to (2.2), (2.3), and (2.9), the function
σ := ΣI(s) = − ln (1 − s) is well-defined in [0, Tm)×[0, 1] and belongs to C1([0, Tm);V )
with

∂tσ =
∂ts

1 − s
and ∂xσ =

∂xs

1 − s
.

Furthermore (2.5) also reads

(2.10) ∂tσ = �− (δ + ε)
s

1 − s
,
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which, together with (2.2), ensures that ∂tσ belongs to C([0, Tm);V ) and C1([0, Tm);V ′).
For t ∈ [0, Tm), ∂tσ(t) is then an admissible test function in (2.4) and it follows from
(2.4) and (2.5) that

〈∂t�(t), ∂tσ(t)〉V ′,V + D

∫ 1

0

(1 − s(t)) ∂x�(t) ∂x∂tσ(t) dx

= −
∫ 1

0

(∂ts(t) + ε s(t)) ∂tσ(t) dx + ν ∂tσ(t, 0).

On the one hand, expressing � in terms of σ and s with the help of (2.10) yields

〈∂t�(t), ∂tσ(t)〉V ′,V =
1

2

d

dt

∫ 1

0

|∂tσ(t)|2 dx + (δ + ε)

∫ 1

0

|∂tσ(t)|2
1 − s(t)

dx.

On the other hand, using once more (2.10), we obtain

D

∫ 1

0

(1 − s(t)) ∂x�(t) ∂x∂tσ(t) dx = D

∫ 1

0

(1 − s(t)) |∂x∂tσ(t)|2 dx

+
D(δ + ε)

2

d

dt

∫ 1

0

|∂xσ(t)|2 dx.

Combining the above three identities we end up with

d

dt
L(s(t), ∂tσ(t)) + D(s(t), ∂tσ(t)) = 0, t ∈ [0, Tm),

whence

(2.11) L(s(t), ∂tσ(t)) +

∫ t

0

D(s(τ), ∂tσ(τ)) dτ = L(s0, ∂tσ(0)), t ∈ [0, Tm).

We then deduce from (1.9), (2.11), (2.1), and the nonnegativity of D(s, ∂tσ) that

(2.12)
D(δ + ε)

2

∫ 1

0

|∂x (σ(t) − ΣI(s∞))|2 dx +
1

2

∫ 1

0

|∂tσ(t)|2 dx ≤ C0,

with C0 := −L0(s∞) + L(s0, ∂tσ(0)). Since σ(t) ∈ V for t ∈ [0, Tm) it follows from
(2.12) and the Poincaré inequality

(2.13) ‖v‖2 ≤ ‖v‖∞ ≤ ‖∂xv‖2, v ∈ V,

that there is a constant C1 > 0 such that

(2.14) ‖σ(t)‖H1 ≤ C1, t ∈ [0, Tm).

In particular, ‖σ(t)‖∞ ≤ C1, from which we readily deduce that

(2.15) s(t, x) ≤ 1 − e−C1 , (t, x) ∈ [0, Tm) × [0, 1].

Since ∂xs = e−σ ∂xσ and σ ≥ 0 we further obtain from (2.14) and (2.15) that

(2.16) ‖s(t)‖H1 ≤ 1 + C1, t ∈ [0, Tm).
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We next establish a similar estimate for � and first proceed in a formal way. A
rigorous proof based on an approximation argument will be sketched at the end of
the proof of Theorem 1. We take ψ = ∂t� in (2.4) and use (2.3), (2.5), (2.12), (2.15),
and the nonnegativity of � to obtain∫ 1

0

|∂t�|2 dx +
D

2

d

dt

∫ 1

0

(1 − s) |∂x�|2 dx− ν ∂t�(0)

= −D

2

∫ 1

0

∂ts |∂x�|2 dx−
∫ 1

0

(∂ts + ε s) ∂t� dx

≤ D

2
(δ + ε)

∫ 1

0

s |∂x�|2 dx +
1

2
‖∂t�‖2

2 +
1

2
‖(1 − s) ∂tσ + ε s‖2

2

≤ D(δ + ε)eC1

2

∫ 1

0

(1 − s) |∂x�|2 dx +
1

2
‖∂t�‖2

2 + ‖∂tσ‖2
2 + ε

≤ D(δ + ε)eC1

2

∫ 1

0

(1 − s) |∂x�|2 dx +
1

2
‖∂t�‖2

2 + 2C0 + ε.

Consequently, there is a constant C2 > 0 such that∫ 1

0

|∂t�|2 dx+
d

dt

{∫ 1

0

D (1 − s) |∂x�|2 dx− ν �(0)

}
≤ C2

(
1 +

∫ 1

0

(1 − s) |∂x�|2 dx

)
,

whence

D

∫ 1

0

(1 − s(t)) |∂x�(t)|2 dx− ν �(t, 0) +

∫ t

0

∫ 1

0

|∂t�(τ)|2 dxdτ

(2.17)
≤ (1 + D ‖�0‖2

H1) eC2t

for t ∈ [0, Tm). Recalling (2.15) we readily deduce from (2.17) and the Poincaré
inequality (2.13) that

(2.18) ‖�(t)‖2
H1 +

∫ t

0

‖∂t�(τ)‖2
2 dτ ≤ C3 eC3t

for t ∈ [0, Tm). According to (2.16) and (2.18), we have shown so far that, given
T > 0, there is a positive constant MT depending only on �0, s0, D, δ, ε, ν, and T
such that

‖�(t)‖H1 + ‖s(t)‖H1 ≤ MT for t ∈ [0, T ] ∩ [0, Tm).

It remains to improve this estimate to a uniform bound on the modulus of continuity
with respect to time for � and s in H1(0, 1) as required by (2.6). To this end, we first
notice that (2.5) and (2.18) entail that

‖∂ts(t)‖H1 ≤ 2 ‖�(t)‖H1 ‖(1 − s)(t)‖H1 + (δ + ε) ‖s(t)‖H1 ≤ C4 eC4t(2.19)

for t ∈ [0, Tm).

It next follows from (2.4) that ξ := ∂t� formally solves

∂tξ = D ∂x ((1 − s) ∂xξ − ∂ts ∂x�)

+(� + δ) ∂ts− ξ (1 − s), (t, x) ∈ (0, Tm) × (0, 1),(2.20)

(1 − s(t, 0)) ∂xξ(t, 0) − ∂ts(t, 0) ∂x�(t, 0) = ξ(t, 1) = 0, t ∈ (0, Tm).(2.21)
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We multiply (2.20) by ξ and integrate over (0, 1) to obtain, thanks to (2.21),

1

2

d

dt
‖ξ(t)‖2

2 = −D

∫ 1

0

∂xξ ((1 − s) ∂xξ − ∂ts ∂x�) dx

+

∫ 1

0

(� + δ) ∂ts ξ dx−
∫ 1

0

(1 − s) ξ2 dx

≤ −D

∫ 1

0

(1 − s) |∂xξ|2 dx−
∫ 1

0

(1 − s) ξ2 dx

+ D ‖∂ts‖∞ ‖∂x�‖2 ‖∂xξ‖2 + (‖�‖∞ + δ) ‖∂ts‖2 ‖ξ‖2.

Recalling (2.15), (2.18), (2.19), and the continuous embedding of H1(0, 1) in L∞(0, 1),
we deduce from the Young inequality that

1

2

d

dt
‖ξ(t)‖2

2 ≤ −D e−C1 ‖∂xξ‖2
2 − e−C1 ‖ξ‖2

2 + D e−C1 ‖∂xξ‖2
2

+ e−C1 ‖ξ‖2
2 + C5 ‖∂ts‖2

H1 (‖�‖H1 + δ)
2

≤ C6 eC6t,

whence

‖ξ(t)‖2
2 ≤ ‖ξ(τ)‖2

2 + 2 eC6t, 0 ≤ τ ≤ t < Tm.

Integrating with respect to τ over (0, t) and using (2.18), we end up with

t ‖ξ(t)‖2
2 ≤

∫ t

0

‖ξ(τ)‖2
2 dτ + 2 t eC6t,

‖ξ(t)‖2
2 ≤ C7

(
1 +

1

t

)
eC7t, t ∈ (0, Tm).(2.22)

We next infer from (1.3) and (2.16) that

∂2
x� =

∂t�

D (1 − s)
+

�

D
− δ

D

s

1 − s
+ ∂xσ ∂x�.

Therefore, by (2.14), (2.15), (2.18), (2.22), and the interpolation inequality

‖∂xw‖∞ ≤ C8 ‖w‖3/4
H2 ‖w‖1/4

2 , w ∈ H2(0, 1),

we have

‖∂2
x�(t)‖2 ≤ eC1

D
‖∂t�(t)‖2 +

‖�(t)‖2

D
+

δ eC1

D
+ ‖∂xσ(t)‖2 ‖∂x�(t)‖∞

≤
√
C7 eC1

D

(
1 +

1

t

)1/2

eC7t/2 +

√
C3 eC3t/2

D

+
δ eC1

D
+ C1 C8 ‖�(t)‖3/4

H2 ‖�(t)‖1/4
2

≤ C9

(
1 +

1√
t

)
eC9t +

1

2
‖�(t)‖H2

≤ C9

(
1 +

1√
t

)
eC9t +

1

2

√
C3 eC3t/2 +

1

2
‖∂2

x�(t)‖2,
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whence

(2.23) ‖�(t)‖H2 ≤ C10

(
1 +

1√
t

)
eC10t, t ∈ (0, Tm).

Consider next t1 ∈ (0, Tm) and t2 ∈ (t1, Tm). It follows from (2.18), (2.23), and the
interpolation inequality

‖∂xw‖2 ≤ C11 ‖w‖1/2
H2 ‖w‖1/2

2 , w ∈ H2(0, 1),

that

‖�(t2) − �(t1)‖2
H1 ≤ C2

11 ‖�(t2) − �(t1)‖H2 ‖�(t2) − �(t1)‖2

≤ C2
11 (‖�(t2)‖H2 + ‖�(t1)‖H2)

∫ t2

t1

‖∂t�(τ)‖2 dτ

≤ 2 C10 C2
11

(
1 +

1√
t1

)
eC10t2 (t2 − t1)

1/2

(∫ t2

t1

‖∂t�(τ)‖2
2 dτ

)1/2

≤ C12

(
1 +

1√
t1

)
eC12t2 (t2 − t1)

1/2,

(2.24) ‖�(t2) − �(t1)‖H1 ≤ C13

(
1 + t

−1/4
1

)
eC13t2 (t2 − t1)

1/4.

Since � belongs to BC([0, T ] ∩ [0, Tm);H1(0, 1)) for any T > 0 by (2.2) and (2.18), it
readily follows from (2.24) that

(2.25) � ∈ BUC([0, T ] ∩ [0, Tm);H1(0, 1)) for any T > 0.

Recalling (2.16) and (2.19), we also have

s ∈ BUC([0, T ] ∩ [0, Tm);H1(0, 1)) for any T > 0,

which, together with (2.15) and (2.25), allows us to conclude that Tm = ∞ by (2.6)
and (2.7). The proof of Theorem 1 is then complete, provided we can justify the
above computations.

To this end we note that s belongs to C1([0, Tm);H1(0, 1)) by (2.2). Setting
α1 := e−C1/2, classical approximation arguments ensure that, for each α ∈ (0, α1)
and T ∈ (0, Tm), there is a function sα,T ∈ C∞([0, T ] × [0, 1]) such that

(2.26) ‖sα,T − s‖C1([0,T ];H1(0,1)) + ‖sα,T − s‖C([0,T ]×[0,1]) ≤ α.

Owing to (2.15) and (2.26) we have 1− sα,T ≥ α1 > 0 and the initial-boundary value
problem

∂t�α,T −D ∂x ((1 − sα,T ) ∂x�α,T ) = δ sα,T − (1 − sα,T ) �α,T , (t, x) ∈ (0, T ) × (0, 1),

D (1 − sα,T (t, 0)) ∂x�α,T (t, 0) + ν = �α,T (t, 1) = 0, t ∈ (0, T ),

�α,T (0, x) = �0(x), x ∈ (0, 1),

has a unique nonnegative classical solution �α,T ∈ C([0, T ]× [0, 1])∩C∞((0, T ]× [0, 1]).
On the one hand it is rather straightforward to check that

(2.27) sup
t∈[0,T ]

{‖(�α,T − �)(t)‖2
2} ≤ α

∫ T

0

(
D2 ‖∂x�(t)‖2

2 + δ2 + ‖�(t)‖2
2

)
dt.
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On the other hand, the smoothness of �α,T allows us to proceed as in the derivation
of (2.17) and obtain that

(2.28) ‖∂x�α,T (t)‖2
2 +

∫ t

0

‖∂t�α,T (τ)‖2
2 dτ ≤ C14 eC14t, t ∈ [0, T ].

Owing to (2.27) we may let α → 0 in (2.28) and deduce by weak convergence argu-
ments that � ∈ L∞(0, T ;V ) and ∂t� ∈ L2((0, T ) × (0, 1)) and satisfy an inequality
similar to (2.18). Still proceeding as above, we next show that �α,T enjoys the proper-
ties (2.22) and (2.23), and we use once more weak compactness arguments to provide
a rigorous proof of the BUC-estimate (2.25).

3. Convergence to the steady state. As a first step towards the proof of
Theorem 3, we derive the following information on s and σ := ΣI(s) from (1.8).

Lemma 5. There is a real number ϑ ∈ (0, 1) such that

(3.1) 0 ≤ s(t, x) ≤ 1 − ϑ for all (t, x) ∈ [0,∞) × [0, 1]

and

(3.2) σ ∈ L∞(0,∞;H1(0, 1)), ∂tσ ∈ L2(0,∞;H1(0, 1)).

Proof. By (1.8) and (2.1) we have

L0(s∞) +
D(δ + ε)

2
‖∂xσ(t) − ∂xΣI(s∞)‖2

2 ≤ L(s(t), ∂tσ(t)) ≤ L(s0, ∂tσ(0))

for all t ≥ 0, from which we readily conclude that ∂xσ belongs to L∞(0,∞;L2(0, 1)).
Since σ(t, 1) = 0 for every t ≥ 0, the Poincaré inequality (2.13) entails that σ
belongs to L∞(0,∞;H1(0, 1)), which gives the first assertion in (3.2). The space
H1(0, 1) being continuously embedded in L∞(0, 1), we further deduce that σ belongs
to L∞((0,∞) × (0, 1)), whence (3.1).

Next, since r + (δ + ε)/r ≥ 2(δ + ε)1/2 ≥ 2δ1/2 for r ≥ 0 and 1 − s ≥ ϑ > 0 by
(3.1), we have

D(s, ∂tσ) ≥ 2δ1/2 ‖∂tσ‖2
2 + ϑD ‖∂x∂tσ‖2

2,

and we infer from (1.8) and (2.1) that

L0(s∞) +

∫ t

0

(
2δ1/2 ‖∂tσ‖2

2 + ϑD ‖∂x∂tσ‖2
2

)
dτ ≤ L(s0, ∂tσ(0))

for all t ≥ 0, which gives the second assertion in (3.2).
We next turn to � and establish the following inequality.
Lemma 6. For t ≥ 0 we have

(3.3) L1(�(t))+

∫ t

0

D1(�, s) dτ ≤ L1(�0)+C15

∫ t

0

∥∥∥∥∂x ln

(
� + δ + ε

�∞ + δ + ε

)∥∥∥∥
2

‖∂tσ‖2 dτ

with

L1(u) :=

∫ 1

0

[
(u + δ + ε)

(
ln

(
u + δ + ε

�∞ + δ + ε

)
− 1

)
+ �∞ + δ + ε

]
dx ≥ 0
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and

D1(u, v) := D

∫ 1

0

(1 − v) (u + δ + ε)

∣∣∣∣∂x ln

(
u + δ + ε

�∞ + δ + ε

)∣∣∣∣
2

dx

+ ε(δ + ε)

∫ 1

0

u− �∞
(u + δ + ε)(�∞ + δ + ε)

ln

(
u + δ + ε

�∞ + δ + ε

)
dx ≥ 0.

Proof. We put Λ := ln (� + δ + ε) and Λ∞ := ln (�∞ + δ + ε). By (1.4) we have

(3.4) 1 − s = (δ + ε + ∂ts) e−Λ and s = (�− ∂ts) e−Λ.

Let ψ ∈ V . Using (1.4) and (3.4) the weak formulation of (1.3) reads

〈∂t�, ψ〉V ′,V + D

∫ 1

0

(δ + ε + ∂ts) e−Λ ∂x� ∂xψ dx

= ν ψ(0) −
∫ 1

0

(∂ts + ε s) ψ dx

= ν ψ(0) −
∫ 1

0

(
∂ts + ε (�− ∂ts) e−Λ

)
ψ dx

= ν ψ(0) −
∫ 1

0

(
1 − ε e−Λ

)
∂ts ψ dx− ε

∫ 1

0

(
1 − (δ + ε) e−Λ

)
ψ dx.

Similarly, as (�∞, s∞) is also a weak solution to (1.3)–(1.5), we have

D

∫ 1

0

(δ + ε) e−Λ∞ ∂x�∞ ∂xψ dx

= ν ψ(0) − ε

∫ 1

0

(
1 − (δ + ε) e−Λ∞

)
ψ dx.

Subtracting the above two identities gives

〈∂t�, ψ〉V ′,V + D

∫ 1

0

(δ + ε + ∂ts) ∂x(Λ − Λ∞) ∂xψ dx

+ ε(δ + ε)

∫ 1

0

(
e−Λ∞ − e−Λ

)
ψ dx

= −D

∫ 1

0

∂ts ∂xΛ∞ ∂xψ dx−
∫ 1

0

(
1 − ε e−Λ

)
∂ts ψ dx.(3.5)

Clearly, Λ − Λ∞ belongs to V and we may thus take ψ = Λ − Λ∞ in (3.5) to obtain

〈∂t�,Λ − Λ∞〉V ′,V + D

∫ 1

0

(δ + ε + ∂ts) |∂x(Λ − Λ∞)|2 dx

+ ε(δ + ε)

∫ 1

0

(
e−Λ∞ − e−Λ

)
(Λ − Λ∞) dx

= −D

∫ 1

0

∂ts ∂xΛ∞ ∂x(Λ − Λ∞) dx−
∫ 1

0

(
1 − ε e−Λ

)
∂ts (Λ − Λ∞) dx.

On the one hand, we have

〈∂t�,Λ − Λ∞〉V ′,V =
d

dt

∫ 1

0

(� + δ + ε) (ln (� + δ + ε) − 1 − Λ∞) dx =
d

dt
L1(�).
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On the other hand, ∂xΛ∞ clearly belongs to L∞(0, 1) and

−D

∫ 1

0

∂ts ∂xΛ∞ ∂x(Λ − Λ∞) dx−
∫ 1

0

(
1 − ε e−Λ

)
∂ts (Λ − Λ∞) dx

≤ D ‖∂xΛ∞‖∞ ‖∂ts‖2 ‖∂x(Λ − Λ∞)‖2 + ‖∂ts‖2 ‖Λ − Λ∞‖2

≤ C16 ‖∂ts‖2 ‖∂x(Λ − Λ∞)‖2,

the last inequality being a consequence of the Poincaré inequality (2.13) which can
be applied here since Λ(t) − Λ∞ ∈ V for all t ≥ 0. Therefore,

d

dt
L1(�) + D1(�, s) ≤ C16 ‖∂ts‖2 ‖∂x(Λ − Λ∞)‖2.

Integrating the above inequality with respect to time and using the fact that |∂ts| =
|(1 − s) ∂tσ| ≤ |∂tσ| complete the proof of (3.3).

Several bounds on � may be deduced from (3.3) and are listed now.
Lemma 7. Introducing the space W := H2(0, 1) ∩ V and denoting its topological

dual by W ′, we have

� ln (1 + �) ∈ L∞(0,∞;L1(0, 1)),(3.6)

(� + δ + ε)1/2 ∂x ln

(
� + δ + ε

�∞ + δ + ε

)
∈ L2((0,∞) × (0, 1)),(3.7)

1

� + δ + ε
− 1

�∞ + δ + ε
∈ L2((0,∞) × (0, 1)),(3.8)

∂t� ∈ L2(0,∞;W ′).(3.9)

Proof. Keeping the notation Λ := ln (� + δ + ε) and Λ∞ := ln (�∞ + δ + ε), we
infer from (3.1), the nonnegativity of �, and the inequalities

∣∣e−Λ∞ − e−Λ
∣∣ ≤ |Λ−Λ∞|

and � + δ + ε ≥ (� + 2δ + ε)/2 that

D1(�, s) ≥
ϑD

2

∫ 1

0

(� + 2δ + ε) |∂x(Λ − Λ∞)|22 dx + ε(δ + ε)
∥∥e−Λ∞ − e−Λ

∥∥2

2
.

It then follows from (3.3) and the Young inequality that

L1(�(t)) +
ϑD

2

∫ t

0

∫ 1

0

(� + 2δ + ε) |∂x(Λ − Λ∞)|22 dxdτ

+ ε(δ + ε)

∫ t

0

∥∥e−Λ∞ − e−Λ
∥∥2

2
dτ

≤ L1(�(t)) +

∫ t

0

D1(�, s) dτ

≤ L1(�0) +
ϑDδ

2

∫ t

0

‖∂x(Λ − Λ∞)‖2
2 dτ + C17

∫ t

0

‖∂tσ‖2
2 dτ,

hence

L1(�(t)) +
ϑD

2

∫ t

0

∫ 1

0

(� + δ + ε) |∂x(Λ − Λ∞)|22 dxdτ

+ ε(δ + ε)

∫ t

0

∥∥e−Λ∞ − e−Λ
∥∥2

2
dτ

≤ C18

(
1 +

∫ t

0

‖∂tσ‖2
2 dτ

)
.



A MODEL OF MORPHOGEN TRANSPORT 1737

Recalling that ∂tσ ∈ L2((0,∞) × (0, 1)) by Lemma 5, we readily deduce from the
previous inequality, the Poincaré inequality (2.13), and the nonnegativity of L1 that
L1(�) belongs to L∞(0,∞) and that (3.7) and (3.8) hold true. In turn, the L∞-bound
on L1(�) gives (3.6).

It remains to check (3.9). For that purpose, consider ψ ∈ W . Since δ + ε+ ∂ts =
(1 − s)(� + δ + ε) by (1.4), it follows from (3.5) and the Hölder inequality that

|〈∂t�, ψ〉V ′,V | ≤ D

∫ 1

0

(1 − s)(� + δ + ε) |∂x(Λ − Λ∞)| |∂xψ| dx

+ ε(δ + ε)
∥∥e−Λ∞ − e−Λ

∥∥
2
‖ψ‖2 + ‖∂ts‖2 (D ‖∂xΛ∞‖∞ + 1) ‖ψ‖H1

≤ D

(∫ 1

0

(�+ δ+ ε)|∂x(Λ−Λ∞)|2 dx

)1/2(∫ 1

0

(�+ δ+ ε) dx

)1/2

‖∂xψ‖∞

+ ε(δ + ε)
∥∥e−Λ∞ − e−Λ

∥∥
2
‖ψ‖2 + C19 ‖∂tσ‖2 ‖ψ‖H1 .

Thanks to (3.2), (3.6), (3.7), (3.8), and the continuous embedding of W in W 1,∞(0, 1),
we deduce from the above inequality that∫ t

0

|〈∂t�, ψ〉V ′,V |2 dτ ≤ C20 ‖ψ‖H2 ,

which implies the claim (3.9).
Proof of Theorem 3. Let (tn)n≥1 be a sequence of positive times such that tn → ∞

as n → ∞. It follows from (3.1), (3.2), (3.6), and the Dunford–Pettis theorem that
(�(tn))n≥1 is weakly compact in L1(0, 1) and (s(tn))n≥1 is weakly compact in H1(0, 1).
There are thus �∗ ∈ L1(0, 1), s∗ ∈ H1(0, 1), and a subsequence of (�(tn), s(tn))n≥1

(not relabeled) such that

(3.10) �(tn) ⇀ �∗ in L1(0, 1),

(3.11) s(tn) ⇀ s∗ in H1(0, 1).

Owing to the compactness of the embedding of H1(0, 1) in C([0, 1]), we further obtain

(3.12) s(tn) −→ s∗ in C([0, 1]).

We now aim at showing that (�∗, s∗) = (�∞, s∞). For that purpose, we introduce
as usual the functions (�n, sn) ∈ C([0, 1];V × V ) defined by

(�n(t, x), sn(t, x)) := (�(tn + t, x), s(tn + t, x)) for (t, x) ∈ [0, 1]2 and n ≥ 1,

and claim that

(3.13) �n −→ �∗ in C([0, 1];L1
w(0, 1)),

(3.14) sn −→ s∗ in C([0, 1] × [0, 1]),

L1
w(0, 1) denoting the usual space L1(0, 1) endowed with its weak topology. Indeed,

on the one hand, the continuous embedding of H1(0, 1) in L∞(0, 1) and the Hölder
inequality entail that

‖sn(t) − sn(0)‖∞ ≤
∫ tn+t

tn

‖∂ts‖∞ dτ ≤
∫ tn+t

tn

‖∂tσ‖∞ dτ

≤
(∫ tn+t

tn

‖∂tσ‖2
H1 dτ

)1/2
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for t ∈ [0, 1], so that

sup
t∈[0,1]

‖sn(t) − sn(0)‖∞ ≤
(∫ ∞

tn

‖∂tσ‖2
H1 dτ

)1/2

.

By (3.2), the right-hand side of the above inequality converges to zero as n → ∞,
which, together with (3.12), gives the claim (3.14). On the other hand, if ψ ∈ W =
H2(0, 1) ∩ V (defined in Lemma 7) and t ∈ [0, 1],∣∣∣∣

∫ 1

0

(�n(t) − �n(0)) ψ dx

∣∣∣∣ =

∣∣∣∣
∫ tn+1

tn

〈∂t�(τ), ψ〉V ′,V dτ

∣∣∣∣
≤

∫ tn+1

tn

‖∂t�(τ)‖W ′ ‖ψ‖W dτ

≤ ‖ψ‖W
(∫ tn+1

tn

‖∂t�(τ)‖2
W ′ dτ

)1/2

≤ ‖ψ‖W
(∫ ∞

tn

‖∂t�(τ)‖2
W ′ dτ

)1/2

.

Owing to (3.9) and (3.10), we pass to the limit as n → ∞ in the above inequality to
conclude that

lim
n→∞

sup
t∈[0,1]

∣∣∣∣
∫ 1

0

(�n(t) − �∗) ψ dx

∣∣∣∣ = 0 for all ψ ∈ W.

A classical approximation combined with (3.6) allows us to extend the above conver-
gence to every ψ ∈ L∞(0, 1) and completes the proof of (3.13).

We next infer from (3.8) that

lim
n→∞

∫ 1

0

∥∥∥∥ 1

�n(t) + δ + ε
− 1

�∞ + δ + ε

∥∥∥∥
2

2

dt

= lim
n→∞

∫ tn+1

tn

∥∥∥∥ 1

�(t) + δ + ε
− 1

�∞ + δ + ε

∥∥∥∥
2

2

dt

= 0.

Consequently, after extracting a further subsequence if necessary, we may assume that

(3.15) �n −→ �∞ a.e. in (0, 1) × (0, 1).

Recalling (3.13) we readily conclude from (3.15) that �∗ = �∞.
Next, (3.1) and (3.14) imply that 0 ≤ s∗(x) ≤ 1 − ϑ < 1 for x ∈ [0, 1], and we

infer from (1.4), (3.2), (3.13), and (3.14) that, if ψ ∈ L∞(0, 1),∣∣∣∣
∫ 1

0

(
�∗ − (δ + ε)

s∗
1− s∗

)
ψ dx

∣∣∣∣ =

∣∣∣∣ lim
n→∞

∫ 1

0

∫ 1

0

(
�n(t) − (δ+ ε)

sn(t)

1− sn(t)

)
ψ(x) dxdt

∣∣∣∣
=

∣∣∣∣ lim
n→∞

∫ 1

0

∂tσ(tn + t) ψ dxdt

∣∣∣∣
≤ ‖ψ‖∞

(
lim
n→∞

∫ tn+1

tn

‖∂tσ(t)‖2
2 dt

)1/2

= 0.

Therefore, (δ + ε)s∗/(1 − s∗) = �∗ = �∞ a.e. in (0, 1) and thus s∗ = s∞.
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We have actually shown that (�∞, s∞) is the unique cluster point of (�(t), s(t)) as
t → ∞ for the weak topology of L1(0, 1)×H1(0, 1). The trajectory {(�(t), s(t)); t ≥ 0}
being relatively compact for that topology by (3.2), (3.6), and the Dunford–Pettis
theorem, we conclude that

(�(t), s(t)) ⇀ (�∞, s∞) in L1(0, 1) ×H1(0, 1)

as t → ∞. The embedding of H1(0, 1) in L2(0, 1) being compact, we further obtain
that

(3.16) s(t) −→ s∞ in L2(0, 1).

Let us finally improve the topology in which the convergence to the steady state
takes place. For ψ ∈ V it follows from the weak formulation of (1.3) and Proposition 2
that

〈∂t�, ψ〉V ′,V + D

∫ 1

0

(1 − s) ∂x(�− �∞) ∂xψ dx

= D

∫ 1

0

(s− s∞) ∂x�∞ ∂xψ dx +

∫ 1

0

[(�∞ + δ) (s− s∞) − (1 − s) (�− �∞)] ψ dx.

Since � − �∞ belongs to V , we may take ψ = � − �∞ and use the fact that �∞ does
not depend on time to obtain

1

2

d

dt
‖�− �∞‖2

2 +

∫ 1

0

(1 − s)
(
D |∂x (�− �∞)|2 + |�− �∞|2

)
dx

≤ ‖s− s∞‖2 (‖∂x�∞‖∞ ‖∂x (�− �∞)‖2 + (δ + ‖�∞‖∞) ‖�− �∞‖2)

≤ Dϑ

2
‖∂x (�− �∞)‖2

2 +
ϑ

2
‖�− �∞‖2

2 + C21 ‖s− s∞‖2
2 ,

the last inequality following from the boundedness of �∞ and ∂x�∞ and the parameter
ϑ being defined in Lemma 5. Using (3.1) to bound from below (1 − s) in the second
term on the left-hand side of the above inequality we get

(3.17)
d

dt
‖�− �∞‖2

2 + Dϑ ‖∂x (�− �∞)‖2
2 + ϑ ‖�− �∞‖2

2 ≤ 2C21 ‖s− s∞‖2
2 .

We next infer from (1.4) and Proposition 2 that

∂ts = (1 − s) (�− �∞) − (�∞ + δ + ε) (s− s∞).

We differentiate the above identity with respect to x and take the scalar product in
L2(0, 1) of the result with ∂x(s − s∞). Recalling the Poincaré inequality (2.13) and
the bound (3.2) we obtain

1

2

d

dt
‖∂x (s− s∞)‖2

2 +

∫ 1

0

(�∞ + δ + ε) |∂x (s− s∞)|22 dx

≤ ‖∂xs‖2 ‖�− �∞‖∞ ‖∂x (s− s∞)‖2 + ‖∂x (�− �∞)‖2 ‖∂x (s− s∞)‖2

+ ‖∂x�∞‖∞ ‖s− s∞‖2 ‖∂x (s− s∞)‖2

≤ ‖(1 − s) ∂xσ‖2 ‖∂x (�− �∞)‖2 ‖∂x (s− s∞)‖2 + ‖∂x (�− �∞)‖2 ‖∂x (s− s∞)‖2

+ ‖∂x�∞‖∞ ‖s− s∞‖2 ‖∂x (s− s∞)‖2

≤ C22 (‖∂x (�− �∞)‖2 + ‖s− s∞‖2) ‖∂x (s− s∞)‖2

≤ δ

2
‖∂x (s− s∞)‖2

2 +
C23

2

(
‖∂x (�− �∞)‖2

2 + ‖s− s∞‖2
2

)
.
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Since �∞ and ε are nonnegative we end up with

(3.18)
d

dt
‖∂x (s− s∞)‖2

2 + δ ‖∂x (s− s∞)‖2
2 ≤ C23

(
‖∂x (�− �∞)‖2

2 + ‖s− s∞‖2
2

)
.

We now multiply (3.18) by Dϑ/C23 and add the result to (3.17) to obtain

d

dt

(
‖�− �∞‖2

2 +
Dϑ

C23
‖∂x (s− s∞)‖2

2

)
+ ϑ ‖�− �∞‖2

2

+
Dϑδ

C23
‖∂x (s− s∞)‖2

2 ≤ C24 ‖s− s∞‖2
2 .

Introducing ω := min {ϑ, δ} > 0 and integrating the above differential inequality give(
‖�(t) − �∞‖2

2 +
Dϑ

C23
‖∂x (s(t) − s∞)‖2

2

)
≤

(
‖�0 − �∞‖2

2 +
Dϑ

C23
‖∂x (s0 − s∞)‖2

2

)
e−ωt

+ C24

∫ t

0

‖s(τ) − s∞‖2
2 eω(τ−t) dτ

for t ≥ 0. Since ‖s(τ) − s∞‖2 −→ 0 as τ → ∞ by (3.16), we deduce from the above
inequality that both ‖�(t) − �∞‖2 and ‖∂x (s(t) − s∞)‖2 converge to zero as t → ∞,
and the proof of Theorem 3 is complete.

4. Well-posedness of (1.1)–(1.2). In this section, we consider the initial-
boundary value problem

∂t� = D ∂2
x� + δ s− � (1 − s), (t, x) ∈ (0,∞) × (0, 1),(4.1)

∂ts = � (1 − s) − (δ + ε) s, (t, x) ∈ (0,∞) × (0, 1),(4.2)

D ∂x�(t, 0) + ν = �(t, 1) = 0, t ∈ (0,∞),(4.3)

(�, s)(0, x) = (�0, s0)(x), x ∈ (0, 1),(4.4)

with D > 0, δ > 0, ε ≥ 0, and ν > 0.
Theorem 8. Given initial data (�0, s0) satisfying (1.7) the initial-boundary value

problem (4.1)–(4.4) possesses a unique weak solution

(�, s) ∈ C([0,∞);V × V ) ∩ C1([0,∞);V ′ × V )

such that ∂t� ∈ L2((0, T ) × (0, 1)) for every T > 0,

(4.5) 0 ≤ �(t, x) and 0 ≤ s(t, x) < 1 for (t, x) ∈ [0,∞) × [0, 1],

and

〈∂t�(t), ψ〉V ′,V + D

∫ 1

0

∂x�(t) ∂xψ dx

= ν ψ(0) +

∫ 1

0

(δs(t) − �(t)(1 − s(t))) ψ dx,

∂ts(t) = −(δ + ε)s(t) + �(t)(1 − s(t))

for ψ ∈ V and t ∈ [0,∞). Furthermore, for each t > 0,

(4.6) Λ(�(t), s(t)) +

∫ t

0

DΛ(�(τ), s(τ)) dτ = Λ(�0, s0),
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where

Λ(u, v) :=
1

2
‖u− �∞‖2

2 + Λ0(u, v),

Λ0(u, v) :=

∫ 1

0

(1 − s∞) (�∞ + δ + 2ε)

[
ΣI(v) − ΣI(s∞) − v − s∞

1 − s∞

]
dx ≥ 0,

DΛ(u, v) := D ‖∂x(u− �∞)‖2
2 +

∫ 1

0

|∂tv|2 + ε (�∞ + δ + ε) (v − s∞)2

1 − v
dx,

s∞ := �∞/(�∞ + δ + ε), and �∞ denotes the unique solution to the boundary-value
problem

(4.7) −D ∂2
x�∞ +

ε �∞
�∞ + δ + ε

= 0 in (0, 1), D ∂x�∞(0) + ν = �∞(1) = 0.

We first point out that the nonnegativity of Λ0 is a consequence of the convexity of
ΣI . We next observe that Λ differs strongly from L and provide valuable information
on the large time behavior. In fact, exponential convergence to the steady state can
be shown; see Proposition 9 below.

Proof. The local well-posedness of (4.1)–(4.4) in V × V and the bounds (4.5) for
(�, s) on the maximal existence time interval [0, Tm) are established as in the proof
of Theorem 1 by employing the abstract theory developed in [1]. In addition, since
u 
−→ εu/(u+ δ + ε) is a nondecreasing function, the existence and uniqueness of the
solution �∞ to (4.7) are proved by classical arguments [2, 4].

We next turn to the proof of the identity (4.6) for t ∈ [0, Tm). For that purpose,
we take ψ = �− �∞ in the weak formulation of (4.1) and (4.7) for � and �∞ and use
(4.2) for s and s∞ to obtain

(4.8)
1

2

d

dt
‖�− �∞‖2

2 + D ‖∂x(�− �∞)‖2
2 = −

∫ 1

0

(∂ts + ε (s− s∞)) (�− �∞) dx.

Owing to (4.2) we have

�− �∞ =
∂ts

1 − s
+ (δ + ε)

s− s∞
(1 − s) (1 − s∞)

.

Consequently,

−
∫ 1

0

(∂ts + ε (s− s∞)) (�− �∞) dx

= −
∫ 1

0

|∂ts|2
1 − s

dx−
∫ 1

0

[
ε +

δ + ε

1 − s∞

]
(s− s∞)

∂ts

1 − s
dx

− ε(δ + ε)

∫ 1

0

(s− s∞)2

(1 − s) (1 − s∞)
dx

= −
∫ 1

0

|∂ts|2
1 − s

dx−
∫ 1

0

(�∞ + δ + 2ε) ∂t ((1 − s∞) ΣI(s) − s) dx

− ε

∫ 1

0

(�∞ + δ + ε)
(s− s∞)2

1 − s
dx,

where we have used (δ+ε)/(1−s∞) = �∞+δ+ε to deduce the last equality. Inserting
the previous equality in (4.8) gives (4.6) for t ∈ [0, Tm) after integration with respect
to time.
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A useful consequence of (4.6) is that

(4.9) ‖�(t)‖2 ≤ ‖�∞‖2 +
√

2 Λ(�0, s0), t ∈ [0, Tm).

We next proceed as in the proof of (2.18) and take ψ = ∂t� in the weak formulation
of (4.1) (recall that a regularization procedure has to be used to justify this step as
∂t� 
∈ V ). This gives

‖∂t�‖2
2 +

D

2

d

dt
‖∂x�‖2

2 =

∫ 1

0

∂t� (δ s− � (1 − s)) dx ≤ 1

2
‖∂t�‖2

2 +
(
δ + ‖�‖2

2

)
.

We then infer from (4.9) that

(4.10)

∫ t

0

‖∂t�(τ)‖2
2 dτ + D ‖∂x�(t)‖2

2 ≤ C25 (1 + t), t ∈ [0, Tm).

We next differentiate (4.2) to obtain the equation solved by ∂xs and deduce from
(4.10) that

(4.11) ‖∂xs(t)‖2 ≤ C26 (1 + t), t ∈ [0, Tm).

Finally, we infer from (4.2), (4.5), (4.9), (4.10), (4.11), and the continuous embedding
of H1(0, 1) in L∞(0, 1) that

s ∈ W 1,∞([0, T ]∩[0, Tm);H1(0, 1)) and δ s−� (1−s) ∈ L2((0, T )∩(0, Tm);H1(0, 1))

for all T > 0. Combining this last property with (4.1) and [10, Theorem 4.3.1] ensures
that

� ∈ C1/2((0, T ] × (0, Tm);H1(0, 1)) for all T > 0.

Collecting the above information allows us to conclude that Tm = ∞ and complete
the proof.

We next turn to the large time behavior and prove the following result.
Proposition 9. Consider initial data (�0, s0) satisfying (1.7) and denote by (�, s)

the corresponding weak solution to (4.1)–(4.4) given by Theorem 8. Then, for t ≥ 0,

‖�(t) − �∞‖2
2 + (δ + ε) ‖s(t) − s∞‖2

2 ≤ 2 Λ(�0, s0) e−χt(4.12)

with

χ := min

{
D,

D (δ + ε)

2(D + 2)
+

ε

2

}
.(4.13)

Proposition 9 is a simple consequence of (4.6) and the following two functional
inequalities.

Lemma 10. Under the assumptions and notation of Proposition 9 we have for
all t ≥ 0

DΛ(�(t), s(t)) ≥ χ Λ(�(t), s(t)),(4.14)

Λ0(s(t)) ≥
δ + ε

2
‖s(t) − s∞‖2

2.(4.15)
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Proof. By the elementary inequality a2 ≤ ((D + 2)/D) (a− b)2 + ((D + 2)/2) b2

we have ∫ 1

0

(
δ + ε

1 − s∞

)2
(s− s∞)2

1 − s
dx

≤ D + 2

D

∫ 1

0

(1 − s)

[
δ + ε

1 − s∞

s− s∞
1 − s

− (�− �∞)

]2

dx

+
D + 2

2

∫ 1

0

(1 − s) (�− �∞)2 dx

≤ D + 2

D

{∫ 1

0

(1 − s)

(
∂ts

1 − s

)2

dx +
D

2
‖�− �∞‖2

2

}
,(4.16)

the last inequality following from the identities � + δ + ε = (∂ts + δ + ε)/(1 − s) and

(4.17)
δ + ε

1 − s∞
= �∞ + δ + ε ≥ δ + ε.

We next infer from the Poincaré inequality (2.13), (4.16), and (4.17) that

DΛ(�, s) ≥ D ‖�− �∞‖2
2 +

∫ 1

0

|∂ts|2
1 − s

dx + ε (δ + ε)

∫ 1

0

(s− s∞)2

(1 − s)(1 − s∞)
dx

≥ D

2
‖�− �∞‖2

2 +
D

D + 2

∫ 1

0

(
δ + ε

1 − s∞

)2
(s− s∞)2

1 − s
dx

+ ε (δ + ε)

∫ 1

0

(s− s∞)2

(1 − s)(1 − s∞)
dx,

(4.18) DΛ(�, s) ≥ D

2
‖�− �∞‖2

2 + (δ + ε)

(
D(δ + ε)

D + 2
+ ε

) ∫ 1

0

(s− s∞)2

(1 − s)(1 − s∞)
dx.

We next claim that

(4.19)
(z − a)2

2
≤ ΣI(z)−ΣI(a)−

z − a

1 − a
≤ 1

2

1 + a

1 − a

(z − a)2

1 − z
, (a, z) ∈ [0, 1)×[0, 1).

Indeed, the first inequality in (4.19) follows from the convexity of ΣI , while the second
can be shown by studying the variation of the function

z 
−→ (1 − z)

[
ΣI(z) − ΣI(a) −

z − a

1 − a

]
− 1

2

1 + a

1 − a
(z − a)2,

the real number a being fixed in [0, 1). Using the second inequality in (4.19) with
z = s(t, x) and a = s∞(x) gives∫ 1

0

(s− s∞)2

(1 − s)(1 − s∞)
dx ≥

∫ 1

0

2(δ + ε)

1 + s∞

(
ΣI(s) − ΣI(s∞) − s− s∞

1 − s∞

)
dx.

Using once more (4.17) we realize that

2(δ + ε)

1 + s∞
=

2(δ + ε)

1 + s∞

(1 − s∞) (�∞ + δ + 2ε)

δ + ε + ε(1 − s∞)

≥ (δ + ε)
(1 − s∞) (�∞ + δ + 2ε)

δ + 2ε

≥ (1 − s∞) (�∞ + δ + 2ε)

2
,
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so that ∫ 1

0

(s− s∞)2

(1 − s)(1 − s∞)
dx ≥ 1

2
Λ0(s).

Inserting the previous inequality in (4.18) gives

DΛ(�, s) ≥ D

2
‖�− �∞‖2

2 +
1

2

(
D(δ + ε)

D + 2
+ ε

)
Λ0(s) ≥ χ Λ(�, s),

and hence (4.14).
Inequality (4.15) readily follows from (4.17) and the first inequality in (4.19).

5. Numerical simulations. Above, we have developed a theory which provides
insight into the stationary states and large time behavior of two models of morphogen
transport. It is therefore interesting to verify the dependence on the parameters
of both the properties of these stationary solutions and the convergence rate to the
equilibrium. For this, we have performed numerical simulations on an x86-64 machine
under MATLAB 7.2. All source files are available upon request.

We discuss certain qualitative properties of (1.3)–(1.6) and (4.1)–(4.4) for a range
of their parameters with default values D = ν = δ = 1 and ε = 0. For an evaluation of
the two models for biologically relevant parameter values, see [7]. In all experiments,
we supply zero initial data, �0(x) = s0(x) = 0. For clarity, in what follows we shall
refer to (1.3)–(1.6) as the nonlinear diffusion (ND) model and to (4.1)–(4.4) as the
linear diffusion (LD) model.

Discretization. To discretize the system (1.3)–(1.6) we employ a finite difference
scheme in the spatial variable on a regular mesh with N = 240 nodes. Introducing
�i(t) ≈ �(t, ih), si(t) ≈ s(t, ih), where h is the mesh size and using the first order flux
approximation,

ji =

(
1 − si+1 + si

2

)
�i+1 − �i

h
,

we arrive at a system of 2N ordinary differential equations (ODEs)

d�i
dt

=
ji − ji−1

h
+ δsi − �i (1 − si) ,(5.1a)

dsi
dt

= −(δ + ε)si + �i (1 − si)(5.1b)

for i = 1, . . . , N . This discretization has the truncation error of second order with
respect to h and is supplemented by a first order approximation of the flux boundary
condition. In order to solve (5.1) we use a stiff ODE solver ode15s from MATLAB.
Since we trace the behavior of the solution up to very small time derivatives, we adjust
the absolute and relative error tolerance parameters in ode15s to the value of 10−13.
Model LD is discretized and solved analogously.

Steady state computation. As observed in [7], without degradation (ε = 0) one
has explicit formulas for the stationary states, since from (1.13) it follows that for the
ND model there holds

�∞(x) = δ
(
exp

( ν

δD
(1 − x)

)
− 1

)
,(5.2)

s∞(x) = 1 − exp
(
− ν

δ D
(1 − x)

)
,(5.3)
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while for the LD model, according to Theorem 8,

�∞(x) =
ν

D
(1 − x),(5.4)

s∞(x) = 1 − 1

1 + (ν/(δ D)) (1 − x)
.(5.5)

But when ε > 0 there is no closed formula and we have to approximate the steady
states numerically. To this end, we either run the simulation until the L2 norm of the
right-hand side of the discrete ODE system drops (unless otherwise stated) below 10−6

or we solve the nonlinear system (5.1), where we replace time derivatives with zeros.
Note, however, that although in practice the first procedure turns out to be more
robust, none of these procedures guarantees that the obtained solution is sufficiently
close to the stationary state, particularly when s∞ is too close to 1; see [7] for a more
detailed discussion.

5.1. Dependence of the convergence rate on the parameters. According
to Theorem 3, the solutions of the ND model converge to the stationary state. From
Proposition 9 we know that for the LD model the distance between the solution and
the equilibrium decays at least at an exponential rate. It may therefore be interesting
to identify the actual convergence rate of the two models under consideration for
several values of the parameters. In order to do so, we investigate the L2 norm of
the relative difference between the stationary solution (�∞, s∞) and the solution at
time t,

drel(t) =
||(�, s)(t) − (�∞, s∞)||2

||(�∞, s∞)||2
.

We stop the analysis when drel drops below 10−5; otherwise the results would have
been polluted with the discretization error.

We consider four cases, when only one of the parameters ε, ν, D, or δ is allowed
to vary, while the others are kept at their default values.

The convergence to the stationary state seems to occur indeed at an exponential
rate; see the top plots in Figures 1–4. Therefore, we can next compare the dependence
of the rates on various parameters of the models. To this end, we introduce an
approximate measure of the convergence rate ζ as the mean value of the ratios

ζi = − ln(drel(ti+1)) − ln(drel(ti))

ti+1 − ti

for several subsequent ti at which drel was measured.
As could be expected by comparing the diffusive parts, the LD model always

converges faster than the ND model for the same parameter set. From the modeling
point of view, as the constants D and δ have different interpretation in each of the two
models [7], it is worth mentioning that for moderate values of D, an approximately
tenfold increase of D in the nonlinear diffusion model is needed to recover the conver-
gence speed of the linear diffusion model (see Figure 3). Although in the absence of
degradation the stationary states of the two models depend only on the ratio ν/(δ D),
the convergence rate may be different for the same ratios of ν/(δ D), as indicated in
Figures 2–4.

Both models show similar dependence of the convergence speed ζ on the degra-
dation rate ε, the unbinding parameter δ, and the diffusion coefficient D. However,
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Fig. 1. Convergence to the equilibrium for different values of ε. The ND model (top left) vs. the
LD model (top right) for ε = 2k, k = −2, . . . , 2. The comparison of the convergence rates ζ for a
broader range of ε (bottom).
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Fig. 2. Convergence to the equilibrium for different values of ν. The ND model (top left) vs. the
LD model (top right) for ν = 2k, k = −2, . . . , 2. The comparison of the convergence rates ζ for a
broader range of ν (bottom).
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Fig. 3. Convergence to the equilibrium for different values of D. The ND model (top left)
vs. the LD model (top right) for D = 2k, k = −2, . . . , 2. The comparison of the convergence rates ζ
for a broader range of D (bottom).
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Fig. 4. Convergence to the equilibrium for different values of δ. The ND model (top left) vs. the
LD model (top right) for δ = 2k, k = −2, . . . , 2. The comparison of the convergence rates ζ for a
broader range of δ (bottom).
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Fig. 5. Stationary states of the ND model, ν = 2k, k = −2,−1, 0, 1, 2, without degradation.
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Fig. 6. Difference between the stationary states of the ND and LD models, ν = 2k, k =
−2,−1, 0, 1, 2, without degradation.

the two models differ significantly with respect to their sensitivity to the injection
parameter ν: the convergence speed increases with ν for the LD model, while the
effect of ν on the convergence of the ND model is opposite; cf. Figure 2 (bottom).
This is explained by looking at the stationary states of the latter model; see Figures 5
and 6. The stationary solution reaches, in the case of nonlinear diffusion, higher
values than in the linear diffusion case. Indeed, from (5.2) and (5.4) it follows that
‖�∞‖∞ = δ (exp (ν/(δD)) − 1) for the ND model which clearly exceeds by far the
L∞ norm ν/D of �∞ of the LD model. The closer s∞ gets to 1, the smaller the
diffusion, and thus it takes more time for the solution to evolve to the steady state.

It is important to notice that due to the nonlinear effects, both models cannot
converge to (�∞, s∞) arbitrarily fast, as can be concluded from the bottom parts of
Figures 1–4. For each of varying parameters, there is some threshold value of ζ, which
cannot be surpassed regardless of the value of the parameter.

Let us observe that for sufficiently large values of D, ε, δ, or 1/ν, the conver-
gence speed of both models stabilizes at almost an identical level. On one hand,
the similarity in the convergence rates can easily be explained by noticing that the
s∞-component of the steady state of the nonlinear model is so close to zero that the
fluxes for both models are nearly the same. On the other hand, the convergence rate
stabilization effect is in full agreement with our previous discussion of the Liapunov
function for the LD model in the case of varying D. Indeed, denoting by (�D, sD) the
solution to the LD model for some prescribed D, it follows from (4.6) and (4.7) that
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�D → 0 in L2(0, T ;H1(0, 1)) as D → ∞. Hence we deduce that sD converges towards
S, solving ∂tS = −(δ + ε)S, which exponentially decays to zero at rate δ + ε (cf. Fig-
ure 3, where δ+ε = 1), to be compared with the L2 norm decay rate χ/2 = δ/4+ε/2
obtained in the limit D → ∞ from (4.13).

5.2. Dependence of the stationary solutions on the parameters. As con-
firmed by Figures 5–6 and experiments for other parameters not reported here (see
also [7]), for identical set of parameters, the two models produce stationary solutions
of quite similar shape. There is a difference in how the ν parameter affects the station-
ary states of the two models; cf. Figures 5–6. The �∞-component of the stationary
solution of the nonlinear diffusion model shows more sensitivity to large values of ν
than its linear diffusion counterpart. This is because for large ν, the x-derivative of
� is much larger in the nonlinear diffusion case, due to higher saturation level of s.
The stationary states of the two models are much less sensitive to the changes in the
degradation rate ε. There is only a limited range of ε, close to 1, for which large
relative change in ε results in a similar large change in the stationary solutions.
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ON THE WHITHAM EQUATIONS FOR THE DEFOCUSING
COMPLEX MODIFIED KDV EQUATION∗
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Abstract. We study the Whitham equations for the defocusing complex modified KdV (mKdV)
equation. These Whitham equations are quasi-linear hyperbolic equations and describe the averaged
dynamics of the rapid oscillations which appear in the solution of the mKdV equation when the
dispersive parameter is small. The oscillations are referred to as dispersive shocks. The Whitham
equations for the mKdV equation are neither strictly hyperbolic nor genuinely nonlinear. We are
interested in the solutions of the Whitham equations when the initial values are given by a step-like
function. We also compare the results with those of the defocusing nonlinear Schrödinger (NLS)
equation. For the NLS equation, the Whitham equations are strictly hyperbolic and genuinely
nonlinear. We show that the weak hyperbolicity of the mKdV–Whitham equations is responsible for
some new structure in the dispersive shocks which has not been found in the NLS case.

Key words. Whitham equations, non-strictly hyperbolic equations, dispersive shocks
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1. Introduction. In [11, 12], Pierce and Tian studied the self-similar solutions of
the Whitham equations which describe the zero dispersion limits of the KdV hierarchy.
The main feature of the Whitham equations for the higher members of the hierarchy,
of which the KdV equation is the first member, is that these Whitham equations
are neither strictly hyperbolic nor genuinely nonlinear. This is in sharp contrast
to the case of the KdV equation whose Whitham equations are strictly hyperbolic
and genuinely nonlinear [8]. In this paper, we extend their studies to the case of
the complex modified KdV (mKdV) equation, which is the second member of the
defocusing nonlinear Schrödinger (NLS) hierarchy. The Whitham equations for the
defocusing NLS equation are strictly hyperbolic and genuinely nonlinear, and they
have been studied extensively (see, for example, [4, 6, 7, 10, 14]). However, for the
mKdV equation, the Whitham equations are neither strictly hyperbolic nor genuinely
nonlinear.

Let us begin with a brief description of the zero dispersion limit of the solution
of the NLS equation

(1.1)
√
−1 ε

∂ψ

∂t
+ 2ε2

∂2ψ

∂x2
− 4|ψ|2ψ = 0,

with the initial data

ψ(x, 0) = A0(x) exp

(√
−1

S0(x)

ε

)
.

Here A0(x) and S0(x) are real functions that are independent of ε. Writing the solution

ψ(x, t; ε) = A(x, t; ε) exp(
√
−1 S(x,t;ε)

ε ) and using the notation ρ(x, t; ε) = A2(x, t; ε),
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v(x, t; ε) = ∂S(x, t; ε)/∂x, one obtains the conservation form of the defocusing NLS
equation,

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

∂ρ

∂t
+

∂

∂x
(4ρv) = 0,

∂

∂t
(ρv) +

∂

∂x

(
4ρv2 + 2ρ2

)
= ε2

∂

∂x

(
ρ
∂2

∂x2
ln ρ

)
.

The mass density ρ = |ψ|2 and momentum density ρv =
√
−1
2 (ψψ∗

x − ψ∗ψx) have
weak limits as ε → 0 [6]. These limits satisfy a 2 × 2 system of hyperbolic equations

(1.3)

⎧⎪⎪⎨
⎪⎪⎩

∂ρ

∂t
+

∂

∂x
(4ρv) = 0,

∂

∂t
(ρv) +

∂

∂x

(
4ρv2 + 2ρ2

)
= 0

until its solution develops a shock. System (1.3) can be rewritten in the diagonal form
for ρ �= 0,

(1.4)
∂

∂t

(
α

β

)
+ 2

(
3α + β 0

0 α + 3β

)
∂

∂x

(
α

β

)
= 0,

where the Riemann invariants α and β are given by

(1.5) α =
v

2
+
√
ρ, β =

v

2
−√

ρ.

As a simple example, we consider the case with α = a = constant. System (1.4)
reduces to a single equation

(1.6)
∂β

∂t
+ 2(a + 3β)

∂β

∂x
= 0.

The solution is given by the implicit form

β(x, t) = h(x− 2(a + 3β)t),

where h(x) = β(x, 0) is the initial function for β. One can easily see that if β(x, 0)
decreases in some region, then β(x, t) develops a shock in a finite time; i.e., ∂β/∂x
becomes singular.

After the shock formation in the solution of (1.3) or (1.4), the weak limits are
described by the NLS–Whitham equations, which can also be put in the Riemann
invariant form [4, 6, 7, 10]

(1.7)
∂ui

∂t
+ λg,i(u1, . . . , u2g+2)

∂ui

∂x
= 0, i = 1, 2, . . . , 2g + 2,

where λg,i are expressed in terms of complete hyperelliptic integrals of genus g [8].
Here the number g is exactly the number of phases in the NLS oscillations with small
dispersion. Accordingly, the zero phase g = 0 corresponds to no oscillations, and
single and higher phases g ≥ 1 correspond to the NLS oscillations. System (1.4) is
viewed as the zero phase Whitham equations. The solution of the Whitham equations
(1.7) for g ≥ 1 then describes the averaged motion of the oscillations appearing in the
solution of (1.1) (see, e.g., [7]).
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Let us discuss the most important g = 1 case in more detail. We note that it
is well known that the KdV oscillatory solution, in the single phase regime, can be
approximately described by the KdV periodic solution when the dispersive parameter
is small [1, 5, 16]. It is very possible to use the method of [1, 16] to show that the
solution of the NLS equation (1.1) for small ε can be approximately described, in the
single phase regime, by the periodic solution of the NLS equation. The NLS periodic
solution has the form

(1.8) ρ̃(x, t; ε) = ρ3 + (ρ2 − ρ3) sn2

(√
ρ1 − ρ3

θ(x, t)

ε
, s

)

with θ(x, t) = x − V1t − Q, where V1 = V1(ρ1, ρ2, ρ3) and Q is the phase shift. Here
ρi’s are determined by the equation obtained from (1.2)

ε2

4

(
dρ

dθ

)2

= (ρ− ρ1)(ρ− ρ2)(ρ− ρ3)

with ρ1 > ρ2 > ρ3, and sn(z, s) is the Jacobi elliptic function with the modulus
s = (ρ2 − ρ3)/(ρ1 − ρ3). We can also write ρi’s as [3]

(1.9)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ1 =
1

4
(u1 + u2 − u3 − u4)

2,

ρ2 =
1

4
(u1 − u2 + u3 − u4)

2,

ρ3 =
1

4
(u1 − u2 − u3 + u4)

2

with u1 > u2 > u3 > u4. The velocity V1 is then given by

V1 = 2(u1 + u2 + u3 + u4).

It can also be shown that the flow velocity of the periodic solution (1.8) is given
by [3]

(1.10) ṽ(x, t; ε) =
V1

4
+

√
ρ1ρ2

2ρ
(u1 − u2 − u3 + u4).

For constants u1, u2, u3, and u4, formula (1.8) gives the well-known elliptic
solution of the NLS equation. To describe the solution ρ(x, t; ε) of the NLS equation
(1.2), the quantities u1, u2, u3, and u4, are instead functions of x and t and evolve
according to the single phase Whitham equations (1.7) for g = 1. The phase shift Q
is also a function of u1, u2, u3, u4, and depends on the initial values of system (1.2).
Suppose the initial function for system (1.4) is given by

(1.11) α(x, 0) = a, β(x, 0) = β0(x),

where a is a constant and β0(x) is a monotone function. The Whitham solution of
(1.7) has the property that u1 = a and that only u2, u3, u4 are nontrivial functions of
(x, t). Then the phase shift Q(u1, u2, u3, u4) with u1 = a is the unique solution of the
boundary value problem for the Euler–Poisson–Darboux equations

2(ui − uj)
∂2Q

∂ui∂uj
=

∂Q

∂ui
− ∂Q

∂uj
, i, j = 2, 3, 4,(1.12)

Q(a, u, u, u) = f(u),(1.13)
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where boundary value f(u) is the inverse of the initial function β0(x) (see Appendix C
for details). If, instead, β(x, 0) is a constant and α(x, 0) is given by a monotone
function, the phase shift Q is determined by a similar boundary value problem for the
Euler–Poisson–Darboux equations.

The weak limit of ρ(x, t; ε) of the NLS equation (1.1) as ε → 0 can be expressed
in terms of ρ1, ρ2, ρ3, and ρ4 [6] as

(1.14) ρ(x, t) = ρ1 − (ρ1 − ρ3)
E(s)

K(s)
,

where K(s) and E(s) are the complete elliptic integrals of the first and second kind,
respectively. This weak limit can also be viewed as the average value of the periodic
solution ρ̃(x, t; ε) of (1.8) over its period L = 2εK(s)/

√
ρ1 − ρ3.

In order to see how a single phase Whitham solution appears, we consider the
following step-like initial data for system (1.4):

(1.15) α(x, 0) = a, β(x, 0) =

{
b, x < 0,

c, x > 0,

where a > b, a > c, b �= c. The solution of (1.4) develops a shock if and only if b > c
(cf. (1.6)). After the formation of a shock, the Whitham equations (1.7) with g = 1
kick in. For instance, we consider the Whitham equations with the initial data [7]

(1.16) u1(x, 0) = a, u2(x, 0) = b, u3(x, 0) =

{
b, x < 0,

c, x > 0,
u4(x, 0) = c.

Now notice that the Whitham equations (1.7) for g = 1 with the initial data (1.16)
can be reduced to a single equation u3t + λ1,3(a, b, u3, c)u3x = 0. The equation has a
global self-similar solution, which is implicitly given by x/t = λ3(a, b, u3, c). The x-t
plane is then divided into three parts:

(1)
x

t
< γ, (2) γ <

x

t
< 2a + 4b + 2c, (3)

x

t
> 2a + 4b + 2c,

where γ = 2(a + b + 2c) − 8(a − c)(b − c)/(a + b − 2c) (see (2.7) and (2.8) for the
derivation). The solution of system (1.4) occupies the first and third parts; i.e.,

(1) for x/t < γ,

α(x, t) = a, β(x, t) = b,

(3) for x/t > 2a + 4b + 2c,

α(x, t) = a, β(x, t) = c.

The Whitham solution of (1.7) with g = 1 lives in the second part; i.e.,
(2) for γ < x/t < 2a + 4b + 2c,

u1(x, t) = a, u2(x, t) = b,
x

t
= λ1,3(a, b, u3, c), u4(x, t) = c,

where the solution u3 can be obtained as a function of the self-similarity variable x/t
if

∂λ1,3

∂u3
(a, b, u3, c) �= 0.
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Indeed, it has been shown that the Whitham equations (1.7) are genuinely nonlinear
[6, 7]; i.e.,

(1.17)
∂λ1,i

∂ui
(u1, u2, u3, u4) > 0, i = 1, 2, 3, 4,

for u1 > u2 > u3 > u4.
In Figure 1.1, we plot the self-similar solution of the Whitham equations (1.7)

with g = 1 for the NLS equation and the corresponding periodic oscillatory solution
(1.8) for the initial data (1.15) with a = 4, b = 1, and c = −1. The oscillations
describe a dispersive shock of the NLS equation under a small dispersion. Note here
that the oscillations have uniform structure, which is due to an almost linear profile
of the Whitham solution u3. This will be seen to be in sharp contrast to the case of
the mKdV equation, which we will discuss later (cf. Figure 1.2).

Fig. 1.1. Self-similar solution of the NLS–Whitham equation (1.7) with g = 1 and the corre-
sponding oscillatory solution (1.8) of the NLS equation with ε = 0.3 at t = 1. The dark line in the

middle of the oscillations is the weak limit ρ(x, t) given by (1.14) at t = 1. The initial data are given
by (1.15) with a = 4, b = 1, and c = −1.

Most of the figures in this paper have the same form: On the left-hand side is
a plot of the solution of the Whitham equations as a function of the self-similarity
variable x/t, which is exact, other than a numerical method used to implement the
inverse function theorem. On the right-hand side is the oscillatory solution given by
(1.8) at t = 1 (respectively, (1.25) for mKdV), while the dark plot is the weak limit
(1.14) of the oscillatory solution; both plots on the right are also exact. For all the
step-like initial data that we study in this paper, the resulting phase shift Q, which is
determined by (1.12) and (1.13), is always zero for both NLS and mKdV. This is due
to the fact that our step-like initial function has a jump discontinuity at the origin,
which implies that f ≡ 0.

In the plots on the left-hand sides of Figures 1.1 and 1.2, we demark the region
where the single phase Whitham equations govern the solution and label the four
functions u1 > u2 > u3 > u4. The demarcation and labeling are similar in the other
figures, and we will omit them for brevity.

The defocusing NLS equation is just the first member of the defocusing NLS
hierarchy; the second is the (defocusing) complex mKdV equation

(1.18)
∂ψ

∂t
+

3

2
|ψ|2 ∂ψ

∂x
− ε2

4

∂3ψ

∂x3
= 0.

We again use ψ(x, t; ε) = A(x, t; ε) exp(
√
−1 S(x,t;ε)

ε ) and notation ρ(x, t; ε) = A2

(x, t; ε), v(x, t; ε) = ∂S(x, t; ε)/∂x to obtain the conservation form of the mKdV
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equation

(1.19)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ

∂t
+

∂

∂x

(
3

4
ρ2 +

3

4
ρv2

)
= ε2

∂

∂x

(
ρ3/4 ∂2

∂x2
ρ1/4

)
,

∂

∂t
(ρv) +

∂

∂x

(
3

2
ρ2v +

3

4
ρv3

)
=

ε2

4

∂

∂x

[
∂2

∂x2
(ρv) − 3

2
R

]
,

where

R =
3v

2ρ

(
∂ρ

∂x

)2

+
∂v

∂x

∂ρ

∂x
− v

∂2ρ

∂x2
.

The mass density ρ and momentum density ρv for the mKdV equation also have
weak limits as ε → 0 [6]. As in the NLS case, the weak limits satisfy

(1.20)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂t
ρ +

∂

∂x

(
3

4
ρ2 +

3

4
ρv2

)
= 0,

∂

∂t
(ρv) +

∂

∂x

(
3

2
ρ2v +

3

4
ρv3

)
= 0,

until the solution of (1.20) forms a shock. One can rewrite equations (1.20) as

(1.21)
∂

∂t

(
α

β

)
+

3

8

(
5α2 + 2αβ + β2 0

0 α2 + 2αβ + 5β2

)
∂

∂x

(
α

β

)
= 0,

where the Riemann invariants α and β are again given by formula (1.5).
Let us again consider the simplest case α(x, 0) = a, where a is constant, to see

how the solution of system (1.21) develops a shock. In this case, the system reduces
to a single equation

∂β

∂t
+

3

8

(
a2 + 2aβ + 5β2

) ∂β
∂x

= 0.

As in the NLS case, we consider the initial function given by β(x, 0) = b for x < 0
and β(x, 0) = c for x > 0. We recall that, in the NLS case, the zero phase solution of
(1.4) develops a shock if and only if b > c. However, the solution in the mKdV case
develops a shock for b > c if and only if a+5b > 0. In addition, if b < c, the solution in
the mKdV case develops a shock if and only if a+ 5b < 0. These differences between
the mKdV and NLS cases are due to the weak hyperbolicity of the system (1.21) (note
that, for the eigenspeed λ = 3

8 (α2 + 2αβ + 5β2) for β, we have ∂λ/∂β = 3
4 (α + 5β)

which can change sign). As will be shown below, this leads to new structure in the
dispersive shocks for the mKdV case.

As in the case of the NLS equation, immediately after the shock formation in the
solution of (1.20), the weak limits are described by the mKdV–Whitham equations

(1.22)
∂ui

∂t
+ μg,i(u1, . . . , u2g+2)

∂ui

∂x
= 0, i = 1, 2, . . . , 2g + 2,

where μg,i can also be expressed in terms of complete hyperelliptic integrals of genus g [6].
In this paper, we study the solution of the Whitham equations (1.22) with

g = 1 when the initial mass density ρ(x, 0) and momentum density ρ(x, 0)v(x, 0) are
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step-like functions. In view of (1.5), this amounts to requiring α and β of system (1.21)
to have step-like initial data. We are interested in the following two cases:

(i) α(x, 0) is a constant, and

(1.23) α(x, 0) = a, β(x, 0) =

{
b, x < 0,

c, x > 0,
a > b, a > c, b �= c,

(ii) β(x, 0) is a constant, and

(1.24) α(x, 0) =

{
b, x < 0,

c, x > 0,
β(x, 0) = a, b > a, c > a, b �= c.

In the case of the NLS equation, the genuine nonlinearity of the single phase
Whitham equations (see (1.17)) warrants that the solution is found by the implicit
function theorem. However, the mKdV–Whitham equations (1.22) generally are not
genuinely nonlinear; that is, a property like (1.17) is not available (see Appendix B).
Our construction of solutions of the Whitham equations (1.22) with g = 1 makes use
of the non-strict hyperbolicity of the equations. For the NLS case, it is known from
[6, 7] that the Whitham equations (1.7) with g = 1 are strictly hyperbolic; that is,

λ1,1 > λ1,2 > λ1,3 > λ1,4

for u1 > u2 > u3 > u4. For the mKdV–Whitham equations (1.22) with g = 1, the
eigenspeeds μ1,i(u1, u2, u3, u4) may coalesce in the region u1 > u2 > u3 > u4.

Let us now describe one of our main results (see Theorem 3.1) for the single phase
mKdV–Whitham equations with step-like initial function (1.23) for a = 4, b = 1, and
c = −1. In this case, the space time is divided into four regions (see Figure 1.2)
instead of three in the case of the NLS equation (cf. Figure 1.1):

(1)
x

t
< c1, (2) c1 <

x

t
< c2, (3) c2 <

x

t
< c3, (4)

x

t
> c3,

where c1, c2, and c3 are some constants. In the first and fourth regions, the solution
of the 2 × 2 system (1.21) governs the evolution:

(1) for x/t < c1,

α(x, t) = 4, β(x, t) = 1;

(4) for x/t > c3,

α(x, t) = 4, β(x, t) = −1.

The Whitham solution of the 4 × 4 system (1.22) with g = 1 lives in the second and
third regions:

(2) for c1 < x/t < c2,

u1(x, t) = 4, u2(x, t) = 1,
x

t
= μ1,3(4, 1, u3, u4),

x

t
= μ1,4(4, 1, u3, u4);

(3) for c2 < x/t < c3,

u1(x, t) = 4, u2(x, t) = 1,
x

t
= μ1,3(4, 1, u3,−1), u4(x, t) = −1.
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Note that, in the second region, we have

μ1,3(4, 1, u3, u4) = μ1,4(4, 1, u3, u4)

on a curve in the region −1 < u4 < u3 < 1. This implies the non-strict hyperbolicity
of the mKdV–Whitham equations (1.22) for g = 1.

It is again possible to use the method of [1, 16] to show that the solution of the
mKdV equation (1.18) can be approximately described, in the single phase regime,
by the periodic solution of the mKdV when ε is small. The periodic solution has the
same form as (1.8) of the NLS, i.e.,

(1.25) ρ̃(x, t; ε) = ρ3 + (ρ2 − ρ3) sn2

(√
ρ1 − ρ3

θ(x, t)

ε
, s

)
.

However, θ(x, t) is now given by θ = x− V2t−Q with the velocity V2 (see, e.g., [9]):

V2 =
3

8
σ2

1 − 1

2
σ2,

where σ1 =
∑4

j=1 uj and σ2 =
∑

i<j uiuj are the elementary symmetric functions
of degree one and two, respectively. The functions ρ1, ρ2, and ρ3 are also given by
formula (1.9), and the flow velocity formula (1.10) is still valid for the mKdV. If
u1, u2, u3, and u4 are constants, formula (1.25) gives the periodic solution of the
mKdV equation. To describe the solution ρ(x, t; ε) of the mKdV equation (1.18), the
quantities u1, u2, u3, and u4 must satisfy the single phase mKdV-Whitham equations
(1.22) for g = 1. The phase shift Q is still determined by (1.12) and (1.13) if the
initial function of system (1.21) is given by (1.11). The weak limit of ρ(x, t; ε) of the
mKdV equation is also given by formula (1.14).

In Figure 1.2, we plot the self-similar solution of the Whitham equations (1.22)
for g = 1 and the corresponding periodic oscillatory solution (1.25). We note here
that the pattern of the oscillations in this case has two different kinds of structure:
one corresponds to the region (2), c1 < x/t < c2, and the other corresponds to the
region (3), c2 < x/t < c3. In Figure 1.2, those regions are separated by a dashed-
dotted line. This is in sharp contrast to the NLS case where the oscillations have
uniform structure (cf. Figure 1.1). We also note that the weak limit ρ(x, t) and the
envelope of the oscillations are not C1 smooth at x/t = c2 ≈ 3.67, while they are
smooth (even analytic) everywhere within the oscillatory region in the NLS case.
Finally, the shapes of the envelopes of the oscillations are quite different: the one on
the right of Figure 1.2 looks like a Bordeaux glass and that of Figure 1.1 resembles a
martini glass.

As we will show below, for other values of a, b, and c, the solutions of (1.21) and
(1.22) with g = 1 will be seen to be quite different from the above.

The Whitham equations (1.22) with g = 1 for the mKdV equation are analogous
to the Whitham equations for the fifth order KdV equation [11]; both Whitham
equations are neither strictly hyperbolic nor genuinely nonlinear. For all the step-like
initial shock data, the single phase Whitham solutions for the fifth order KdV are
also constructed using the non-strict hyperbolicity of the equations. In the case of
KdV, the Whitham equations are strictly hyperbolic and genuinely nonlinear, and
the oscillations (dispersive shock) have uniform structure. However, in the case of the
fifth order KdV, new structure has been found in the dispersive shocks. This structure
is similar to the one found here in the dispersive shocks of the mKdV equation.
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Fig. 1.2. Self-similar solution of the mKdV–Whitham equation (1.22) with g = 1 and the
corresponding oscillatory solution (1.25) of the mKdV equation with ε = 0.1. The initial data are
given by (1.23) with a = 4, b = 1, and c = −1. There are two different kinds of structure in the
oscillations, and they are separated by x/t ≈ 3.67. Both the weak limit and the envelope of the
oscillations have a drastic change at x/t ≈ 3.67.

There are still some significant differences between the mKdV oscillations and the
fifth order KdV oscillations. The biggest difference lies in the fact that, in the former
case, the zero phase Whitham equations (1.21) form a system of two equations, while
in the latter case, the zero phase Whitham equation is a scalar equation. In this
paper, we consider initial functions (1.23) and (1.24) in which either α(x, 0) or β(x, 0)
is a constant; thus equations (1.21) reduce to a single equation. However, the constant
initial function α(x, 0) = a of (1.23) or β(x, 0) = a of (1.24) still has a significant effect
on the behavior of the Whitham solutions (cf. Figures 3.1 and 4.1). Another difference
is that mKdV solution ρ can have points (x, t) at which ρ(x, t; ε) = 0 for a sequence
of vanishing ε (see section 5). These points put the mKdV dispersive approximation
(1.19) at stake. This phenomenon does not occur in the fifth order KdV case.

The Whitham equations for the higher members of the KdV hierarchy are again
neither strictly hyperbolic nor genuinely nonlinear. However, step-like initial shock
data will, in general, generate a mixture of single, double, or even higher phases in
the higher order KdV oscillations. It has been an open problem to construct such
multiphase Whitham solutions. Only rather special step-like initial shock data will
produce merely single phase oscillations in the higher order KdV case. Some of these
initial data have been studied in [12]. The analogues of inequalities (2.15) and (2.16),
which play a crucial role in the fifth order KdV case, are not valid anymore in the
higher order KdV case. As a consequence, the approach in [12] is quite different
from that in [11]. Indeed, the calculations in [12] are considerably more difficult than
in [11].

The Whitham equations for the higher members of the KdV hierarchy are sup-
posed to be analogous to the Whitham equations for the higher members of the
(defocusing) NLS hierarchy. It would be very interesting to see how step-like initial
shock data generate multiphases in the higher order NLS oscillations.

The organization of the paper is as follows. In section 2, we will study the
eigenspeeds μg,1, μg,2, μg,3, and μg,4 of the Whitham equations (1.22) for g = 1. In
section 3, we will construct the self-similar solutions of the single phase Whitham
equations for the initial function (1.23) with a > b > c. In section 4, we will construct
the self-similar solution of the Whitham equations for the initial function (1.23) with
a > c > b. In section 5, we will study those points (x, t) at which the mKdV solution
ρ(x, t; ε) = 0 for a sequence of vanishing ε. In section 6, we will briefly discuss how to
handle the other step-like initial data (1.24).
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2. The Whitham equations. In this section we define the eigenspeeds λg,i

and μg,i of the Whitham equations (1.7) and (1.22) with g = 1 for the NLS and the
mKdV equations. For simplicity, we suppress the subscript g = 1 in the notation λg,i

and μg,i in the rest of the paper.
We first introduce the polynomials of ξ for n = 0, 1, 2, . . . [2, 4, 10]:

(2.1) Pn(ξ, u1, u2, u3, u4) = ξn+2 + an,1ξ
n+1 + · · · + an,n+2,

where the coefficients an,1, an,2, . . . , an,n+2 are uniquely determined by the two con-
ditions

Pn(ξ, u1, u2, u3, u4)√
(ξ − u1)(ξ − u2)(ξ − u3)(ξ − u4)

= ξn + O(ξ−2) for large |ξ|

and ∫ u1

u2

Pn(ξ, u1, u2, u3, u4)√
(u1 − ξ)(ξ − u2)(ξ − u3)(ξ − u4)

dξ = 0.

The coefficients of Pn can be expressed in terms of complete elliptic integrals.
The eigenspeeds of the Whitham equations (1.7) with g = 1 for the NLS equation

are defined in terms of P0 and P1 of (2.1) [4, 6, 10],

λi(u1, u2, u3, u4) = 8
P1(ui, u1, u2, u3, u4)

P0(ui, u1, u2, u3, u4)
, i = 1, 2, 3, 4,

which give

(2.2) λi(u1, u2, u3, u4) = 2

(
σ1(u1, u2, u3, u4) −

I(u1, u2, u3, u4)

∂uiI(u1, u2, u3, u4)

)
.

Here σ1 :=
∑4

j=1 uj , and I(u1, u2, u3, u4) is given by a complete elliptic integral [14]

(2.3) I(u1, u2, u3, u4) =

∫ u1

u2

dη√
(u1 − η)(η − u2)(η − u3)(η − u4)

.

The function I can be rewritten as a contour integral. Hence,

(2.4) 2(ui − uj)
∂2I

∂ui∂uj
=

∂I

∂ui
− ∂I

∂uj
, i, j = 1, 2, 3, 4,

since the integrand satisfies the same equations for each η �= ui (cf. (1.12)). This
contour integral connection also allows us to give another formulation of I,

(2.5) I(u1, u2, u3, u4) =

∫ u3

u4

dη√
(u1 − η)(u2 − η)(u3 − η)(η − u4)

.

It follows from (2.2), (2.3), and (2.5) that

(2.6) λ4 − 2σ1 < λ3 − 2σ1 < 0 < λ2 − 2σ1 < λ1 − 2σ1

for u4 < u3 < u2 < u1. This implies the strict hyperbolicity of the NLS–Whitham
equation (1.7) for g = 1.
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The eigenspeeds λi have the following values [14]: At u3 = u4, we have

⎧⎪⎨
⎪⎩

λ1 = 6u1 + 2u2,

λ2 = 2u1 + 6u2,

λ3 = λ4 = 2(u1 + u2 + 2u4) − 8(u1−u4)(u2−u4)
u1+u2−2u4

,

(2.7)

and at u2 = u3, ⎧⎪⎨
⎪⎩

λ1 = 6u1 + 2u4,

λ2 = λ3 = 2u1 + 4u3 + 2u4,

λ4 = 2u1 + 6u4.

(2.8)

Notice that the eigenspeed λ2 = λ3 at u2 = u3 is the same as the velocity of the
periodic solution (1.8), i.e., V1 = 2σ1 = 2(u1 + 2u3 + u4).

The eigenspeeds of the mKdV–Whitham equations (1.22) with g = 1 are [6]

(2.9) μi(u1, u2, u3, u4) = 3
P2(ui, u1, u2, u3, u4)

P0(ui, u1, u2, u3, u4)
, i = 1, 2, 3, 4.

They can be expressed in terms of λ1, λ2, λ3, and λ4 of the NLS–Whitham equations
(1.7) with g = 1.

Lemma 2.1. The eigenspeeds μi(u1, u2, u3, u4) of (2.9) can be expressed in the
form

(2.10) μi =
1

2
(λi − 2σ1)

∂q

∂ui
+ q, i = 1, 2, 3, 4,

where σ1 =
∑4

j=1 uj and q = q(u1, u2, u3, u4) is the solution of the boundary value
problem of the Euler–Poisson–Darboux equations (cf. (1.12) and (2.4))

2(ui − uj)
∂2q

∂ui∂uj
=

∂q

∂ui
− ∂q

∂uj
, i, j = 1, 2, 3, 4,(2.11)

q(u, u, u) = 3u2.

Also the μi satisfy the overdetermined systems

(2.12)
1

μi − μj

∂μi

∂uj
=

1

λi − λj

∂λi

∂uj
, i �= j.

We omit the proof since it is very similar to the proof of an analogous result for
the KdV hierarchy [13].

The boundary value problem (2.11) has a unique solution. The solution is a
symmetric quadratic function of u1, u2, u3, and u4:

(2.13) q =
3

8
σ2

1 − 1

2
σ2,

where σ2 =
∑

i>j uiuj is the elementary symmetric polynomial of degree two. Notice
that q gives the velocity of the periodic solution (1.25) for the mKdV equation, i.e.,
V2 = q.
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For NLS, λi satisfy [14]

(2.14)
∂λ4

∂u4
<

3

2

λ3 − λ4

u3 − u4
<

∂λ3

∂u3

for u4 < u3 < u2 < u1. Similar results also hold for the mKdV–Whitham equations
(1.22) with g = 1.

Lemma 2.2.

∂μ3

∂u3
>

3

2

μ3 − μ4

u3 − u4
if

∂q

∂u3
> 0,(2.15)

∂μ4

∂u4
<

3

2

μ3 − μ4

u3 − u4
if

∂q

∂u4
> 0(2.16)

for u4 < u3 < u2 < u1.
Proof. We use (2.10) and (2.14) to obtain

∂μ3

∂u3
=

1

2

∂λ3

∂u3

∂q

∂u3
+

1

2
(λ3 − 2σ1)

∂2q

∂u2
3

>
3

4

λ3 − λ4

u3 − u4

∂q

∂u3
+

1

2
(λ4 − 2σ1)

∂2q

∂u2
3

(2.17)

and

μ3 − μ4 =
1

2
(λ3 − λ4)

∂q

∂u3
+

1

2
(λ4 − 2σ1)

(
∂q

∂u3
− ∂q

∂u4

)

=
1

2
(λ3 − λ4)

∂q

∂u3
+ (λ4 − 2σ1)(u3 − u4)

∂2q

∂u3∂u4

=
2

3
(u3 − u4)

(
3

4

λ3 − λ4

u2 − u3

∂q

∂u3
+

3

2
(λ4 − 2σ1)

∂2q

∂u3∂u4

)
,(2.18)

where we have used (2.11)

∂q

∂u3
− ∂q

∂u4
= 2(u3 − u4)

∂2q

∂u3∂u4
.

Differentiating this equation with respect to u3 yields

∂2q

∂u2
3

− 3
∂2q

∂u3∂u4
= 2(u3 − u4)

∂3q

∂u2
3∂u4

.

It is here we exploit the fact that q is a quadratic polynomial and conclude that

3
∂2q

∂u3∂u4
=

∂2q

∂u2
3

,

which, along with (2.17) and (2.18), proves (2.15). Inequality (2.16) can be proved in
the same way.
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The following calculations will be useful in the subsequent sections. Using formula
(2.10) for μ3 and μ4 and formula (2.2) for λ3 and λ4, we obtain

μ3 − μ4 =
I

(∂u3
I)(∂u4I)

[
∂q

∂u4

∂I

∂u3
− ∂q

∂u3

∂I

∂u4

]

=
I

(∂u3I)(∂u4I)

[
∂q

∂u4

(
∂I

∂u3
− ∂I

∂u4

)
−
(

∂q

∂u3
− ∂q

∂u4

)
∂I

∂u4

]

=
2I(u3 − u4)

(∂u3I)(∂u4I)
M,(2.19)

where

M =
∂q

∂u4

∂2I

∂u3∂u4
− ∂2q

∂u3∂u4

∂I

∂u4
.

Here we have used equations (2.4) for I and equations (2.11) for q in equality (2.19).
Since q of (2.13) is quadratic, we obtain

(2.20)
∂M

∂u3
=

∂q

∂u4

∂3I

∂u2
3∂u4

.

We note that another expression for M is

M =
∂q

∂u3

∂2I

∂u3∂u4
− ∂2q

∂u3∂u4

∂I

∂u3
.

Hence, we get

(2.21)
∂M

∂u4
=

∂q

∂u3

∂3I

∂u3∂u2
4

.

We next evaluate M(u1, u2, u3, u4) when u3 = u4. Using the integral formula
(2.3) for the function I and applying the change of variable η = (u1 − u2)ν + u2, we
obtain

M
∣∣∣
u3=u4

=

∂q
∂u4

4(u2 − u4)3

∫ 1

0

dν

(1 + u1−u2

u2−u4
ν)3

√
ν(1 − ν)

−
∂2q

∂u3∂u4

2(u2 − u4)2

∫ 1

0

dν

(1 + u1−u2

u2−u4
ν)2

√
ν(1 − ν)

.

The two integrals can be evaluated exactly as

∫ 1

0

dν

(1 + γν)3
√
ν(1 − ν)

=
π(8 + 8γ + 3γ2)

8(1 + γ)
5
2

,

∫ 1

0

dν

(1 + γν)2
√
ν(1 − ν)

=
π(2 + γ)

2(1 + γ)
3
2

for γ > −1. We finally get

(2.22) M
∣∣∣
u3=u4

=
πU(u1, u2, u4)

128[(u2 − u4)(u1 − u4)]
5
2

,
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where

U(u1, u2, ξ) = [8(u2 − ξ)2 + 8(u2 − ξ)(u1 − u2) + 3(u1 − u2)
2](u1 + u2 + 4ξ)

− 8(u1 − ξ)(u2 − ξ)(u1 + u2 − 2ξ).(2.23)

Similarly to (2.19) for μ3 and μ4, we have

(2.24) μ2 − μ3 =
2I(u2 − u3)

(∂u2
I)(∂u3

I)
N,

where

N =
∂q

∂u2

∂2I

∂u2∂u3
− ∂2q

∂u2∂u3

∂I

∂u2
.

Since q of (2.13) is quadratic, we obtain

(2.25)
∂N

∂u3
=

∂q

∂u2

∂3I

∂u2∂u2
3

.

Finally, we use (2.7) and (2.10) to calculate

(μ2 − μ3)
∣∣∣
u3=u4

=
1

2
[λ2 − 2(u1 + u2 + 2u4)]

∂q

∂u2
− 1

2
[λ3 − 2(u1 + u2 + 2u4)]

∂q

∂u3

=
(u2 − u4)

2(u1 + u2 − 2u4)
V (u1, u2, u4),(2.26)

where

(2.27) V (u1, u2, u4) = 3u2
1 + 3u2

2 − 12u2
4 + 6u1u2 + 6u1u4 − 6u2u4.

3. Self-similar solutions. In this section, we construct self-similar solutions of
the Whitham equations (1.22) with g = 1 for the initial function (1.23) with a > b > c.
The case with a > c > b will be studied in next section. The solution of the zero
phase Whitham equations (1.21) does not develop a shock when a + 5b ≤ 0. We are
therefore interested only in the case a + 5b > 0.

We first study the ξ-zero of the cubic polynomial equation

(3.1) U(a, b, ξ) = 0,

where U is given by (2.23). It is easy to prove that, for each pair of a and b satisfying
a > b and a+ 5b > 0, U(a, b, ξ) = 0 has only one simple real root. Denoting this zero
by ξ(a, b), we then deduce that U(a, b, ξ) is positive for ξ > ξ(a, b) and negative for
ξ < ξ(a, b). Since U(a, b,−(a + b)/4) < 0 in view of (2.23), we must have

(3.2) ξ(a, b) > −a + b

4
.

For initial function (1.23) with a > b > c and a+5b > 0, we now classify the resulting
Whitham solutions into four types:

I. ξ(a, b) ≤ c with any a > b > c,
II. ξ(a, b) > c with a + 5b > 3(b− c) > 0,

III. ξ(a, b) > c with a + 5b = 3(b− c) > 0,
IV. ξ(a, b) > c with 0 < a + 5b < 3(b− c).

In Figure 3.1, we illustrate this classification by scaling a > 0 to a = 4 and plotting
regions for types I–IV in the b-c plane.

We will study the second type first.
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Fig. 3.1. Graph of the step-like initial shock data (1.23) with a > b > c and a + 5b > 0, and
diagram of regions for types I–IV, where a > 0 has been scaled to a = 4. The region for type IV is
unbounded from the left.

3.1. Type II. Here we consider the step-like initial function (1.23) satisfying
ξ(a, b) > c and a + 5b > 3(b− c) > 0.

Theorem 3.1 (see Figure 1.2). For the step-like initial data (1.23) with a > b >
c, a + 5b > 3(b − c), and ξ(a, b) > c, the solution (α, β) of the zero phase Whitham
equations (1.21) and the solution (u1, u2, u3, u4) of the single phase Whitham equations
(1.22) with g = 1 are given as follows:

(1) For x/t ≤ μ3(a, b, ξ(a, b), ξ(a, b)),

(3.3) α = a, β = b.

(2) For μ3(a, b, ξ(a, b), ξ(a, b)) < x/t < μ3(a, b, u
∗∗, c),

(3.4) u1 = a, u2 = b,
x

t
= μ3(a, b, u3, u4),

x

t
= μ4(a, b, u3, u4),

where u∗∗ is the unique solution u3 of μ3(a, b, u3, c) = μ4(a, b, u3, c) in the
interval c < u3 < b.

(3) For μ3(a, b, u
∗∗, c) ≤ x/t < μ3(a, b, b, c),

(3.5) u1 = a, u2 = b,
x

t
= μ3(a, b, u3, c), u4 = c.

(4) For x/t ≥ μ3(a, b, b, c),

(3.6) α = a, β = c.

The boundaries x/t = μ3(a, b, ξ(a, b), ξ(a, b)) and x/t = μ3(a, b, b, c) are called
the trailing and leading edges, respectively. They separate the solutions of the single
phase Whitham equations (1.22) with g = 1 and the zero phase Whitham equations
(1.21). The single phase Whitham solution matches the zero phase Whitham solution
in the following fashion (see Figure 1.2):

(u1, u2) = the solution (α, β) of (1.21) defined outside the region,(3.7)

u3 = u4,(3.8)

at the trailing edge;

(u1, u4) = the solution (α, β) of (1.21) defined outside the region,(3.9)

u2 = u3,(3.10)

at the leading edge.
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The proof of Theorem 3.1 is based on a series of lemmas: We first show that the
solutions defined by formulae (3.4) and (3.5) indeed satisfy the Whitham equations
(1.22) for g = 1 [2, 15].

Lemma 3.2.

(1) The functions u1, u2, u3, and u4 determined by equations (3.4) give a solution
of the Whitham equations (1.22) with g = 1 as long as u3 and u4 can be solved
from (3.4) as functions of x and t.

(2) The functions u1, u2, u3, and u4 determined by equations (3.5) give a solution
of the Whitham equations (1.22) with g = 1 as long as u3 can be solved from
(3.5) as a function of x and t.

Proof. (1) u1 and u2 obviously satisfy the first two equations of (1.22) for g = 1.
To verify the third and fourth equations, we observe that

(3.11)
∂μ3

∂u4
=

∂μ4

∂u3
= 0

on the solution of (3.4). To see this, we use (2.12) to calculate

∂μ3

∂u4
=

∂λ3

∂u4

λ3 − λ4
(μ3 − μ4) = 0.

The second part of (3.11) can be shown in the same way. We then calculate the partial
derivatives of the third equation of (3.4) with respect to x and t,

1 =
∂μ3

∂u3
tu3x, 0 =

∂μ3

∂u3
tu3t + μ3,

which give the third equation of (1.22) with g = 1. The fourth equation of (1.22) with
g = 1 can be verified in the same way.

(2) The second part of Lemma 3.2 can easily be proved.
We now determine the trailing edge. Eliminating x and t from the last two

equations of (3.4) yields

(3.12) μ3(a, b, u3, u4) − μ4(a, b, u3, u4) = 0.

Since it degenerates at u3 = u4, we replace (3.12) by

(3.13) F (a, b, u3, u4) :=
μ3(a, b, u3, u4) − μ4(a, b, u3, u4)

u3 − u4
= 0.

Therefore, at the trailing edge where u3 = u4, (3.13), in view of formulae (2.19) and
(2.22), reduces to

(3.14) U(a, b, u4) = 0.

Noting that ξ(a, b) is the unique solution of (3.1), we then deduce that u4 = ξ(a, b).
Lemma 3.3. Equation (3.13) has a unique solution satisfying u3 = u4. The

solution is u3 = u4 = ξ(a, b). The rest of equations (3.4) at the trailing edge are
u1 = a, u2 = b, and x/t = μ3(a, b, ξ(a, b), ξ(a, b)).

Having located the trailing edge, we now solve equations (3.4) in the neighborhood
of the trailing edge. We first consider (3.13). We use (2.19) to write F of (3.13) as

F (a, b, u3, u4) =
2I

(∂u3I)(∂u3I)
M(a, b, u3, u4).
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We note that, at the trailing edge u3 = u4 = ξ(a, b), we have M(a, b, ξ(a, b), ξ(a, b)) =
0 because of (2.22) and (3.14). We then use (2.20) and (2.21) to differentiate F at
the trailing edge

∂F (a, b, ξ(a, b), ξ(a, b))

∂u3
=

∂F (a, b, ξ(a, b), ξ(a, b))

∂u4

=
I

2(∂u3
I)(∂u3

I)
[a + b + 4ξ(a, b)]

∂3I

∂u2
3∂u4

> 0,

where we have used the expression (2.13) for q in the last equation and (3.2) in the
inequality. These show that (3.13) or, equivalently, (3.12) can be inverted to give u4

as a decreasing function of u3,

(3.15) u4 = A(u3),

in a neighborhood of u3 = u4 = ξ(a, b).
We now extend the solution A(u3) of (3.12) in the region c < u4 < ξ(a, b) < u3 < b

as far as possible. We first claim that

(3.16)
∂q(a, b, u3, u4)

∂u3
> 0,

∂q(a, b, u3, u4)

∂u4
> 0

on the extension. To see this, we first observe that inequalities (3.16) are true at
the trailing edge u3 = u4 = ξ(a, b). This follows from (2.13) and (3.2). Therefore,
inequalities (3.16) hold in a neighborhood of the trailing edge. To prove that (3.16)
remains true on the extension, we use formula (2.10) for μ3 and μ4 to rewrite (3.12)
as

1

2
[λ3 − 2(a + b + u3 + u4)]

∂q

∂u3
=

1

2
[λ4 − 2(a + b + u3 + u4)]

∂q

∂u4
.

Since the two terms in the two sets of parentheses are both negative in view of (2.6)
and since ∂q

∂u3
− ∂q

∂u4
= (u3 − u4)/4 > 0 in view of (2.13), neither ∂q

∂u3
nor ∂q

∂u4
can

vanish on the extension. This proves inequalities (3.16).
We deduce from Lemma 2.2 that

(3.17)
∂μ3

∂u3
> 0,

∂μ4

∂u4
< 0

on the solution of (3.12). Because of (3.11) and (3.17), solution (3.15) of (3.12) can
be extended as long as c < u4 < ξ(a, b) < u3 < b.

There are two possibilities: (1) u3 touches b before or simultaneously as u4 reaches
c and (2) u4 touches c before u3 reaches b. It follows from (2.8), (2.10), and (2.13)
that

(3.18) μ3(a, b, b, u4)− μ4(a, b, b, u4) =
1

2
(b− u4)(a+ 2b+ 3u4) > 0 for c ≤ u4 < b,

where we have used a+2b+3c > 0 in the inequality. This shows that (1) is unattain-
able. Hence, u4 will touch c before u3 reaches b. When this happens, (3.12) becomes

(3.19) μ3(a, b, u3, c) = μ4(a, b, u3, c).
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Lemma 3.4. Equation (3.19) has a simple zero in the interval c < u3 < b,
counting multiplicities. If we denote the zero by u∗∗, then μ3(a, b, u3, c)−μ4(a, b, u3, c)
is positive for u3 > u∗∗ and negative for u3 < u∗∗.

Proof. We use (2.19) and (2.20) to prove the lemma. In both formulae, ∂u3I,
∂u4I, and ∂2

u3u4
I are all positive functions. By (2.20),

(3.20)
∂M(a, b, u3, c)

∂u3
=

(a + b + u3 + 3c)

4

∂3I

∂u2
3∂u4

for c < u3 < b.

We claim that

M(a, b, u3, c) < 0 when u3 = c and M(a, b, u3, c) > 0 for u3 near b.

The second inequality follows from (2.19) and (3.18). The first inequality can be
deduced from formula (2.22):

M(a, b, c, c) =
πU(a, b, c)

128[(b− c)(a− c)]
5
2

< 0 for c < ξ(a, b).

Therefore, M(a, b, u3, c) has a zero in the interval c < u3 < b. The uniqueness of the
zero follows from (3.20) in that M(a, b, u3, c) increases or changes from decreasing to
increasing as u3 increases. This zero is exactly u∗∗, and the rest of the theorem can
be proved easily.

Having solved (3.12) for u4 as a decreasing function of u3 for c < u4 < ξ(a, b) <
u3 < b, we turn to equations (3.4). Because of (3.11) and (3.17), the third equation
of (3.4) gives u3 as an increasing function of x/t for μ3(a, b, ξ(a, b), ξ(a, b)) < x/t <
μ3(a, b, u

∗∗, c). Consequently, u4 is a decreasing function of x/t in the same interval.
Lemma 3.5. The last two equations of (3.4) can be inverted to give u3 and u4

as increasing and decreasing functions, respectively, of the self-similarity variable x/t
in the interval μ3(a, b, ξ(a, b), ξ(a, b)) < x/t < μ3(a, b, u

∗∗, c), where u∗∗ is given in
Lemma 3.4.

We now turn to equations (3.5). We want to solve the third equation when
x/t > μ3(a, b, u

∗∗, c) or, equivalently, when u3 > u∗∗. According to Lemma 3.4,
μ3(a, b, u3, c)−μ4(a, b, u3, c) > 0 for u∗∗ < u3 < b. In view of (3.16), ∂u3

q(a, b, u3, c) =
(a+b+3u3 +c)/4 is positive at u3 = u∗∗, and, hence, it remains positive for u3 > u∗∗.
By (2.15), we have

∂μ3(a, b, u3, c)

∂u3
> 0.

Hence, the third equation of (3.5) can be solved for u3 as an increasing function of
x/t as long as u∗∗ < u3 < b. When u3 reaches b, we have x/t = μ3(a, b, b, c). We have
therefore proved the following result.

Lemma 3.6. The third equation of (3.5) can be inverted to give u3 as an increasing
function of x/t in the interval μ3(a, b, u

∗∗, c) ≤ x/t ≤ μ3(a, b, b, c).
We are ready to conclude the proof of Theorem 3.1. The solutions (3.3) and (3.6)

are obvious. According to Lemma 3.5, the last two equations of (3.4) determine u3

and u4 as functions of x/t in the region μ3(a, b, ξ(a, b), ξ(a, b)) ≤ x/t ≤ μ3(a, b, u
∗∗, c).

By the first part of Lemma 3.2, the resulting u1, u2, u3, and u4 satisfy the Whitham
equations (1.22) with g = 1. Furthermore, the boundary conditions (3.7) and (3.8)
are satisfied at the trailing edge x = μ3(a, b, ξ(a, b), ξ(a, b)).
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Fig. 3.2. Self-similar solution of the Whitham equations (1.22) with g = 1 and the corresponding
oscillatory solution (1.25) of the mKdV equation with ε = 0.07. The initial data are given by (1.23)
with a = 4, b = 1, and c = 0 of type I.

Similarly, by Lemma 3.6, the third equation of (3.5) determines u3 as a function
of x/t in the region μ3(a, b, u

∗∗, c) ≤ x/t ≤ μ3(a, b, b, c). It then follows from the
second part of Lemma 3.2 that u1, u2, u3, and u4 of (3.5) satisfy the Whitham
equations (1.22) for g = 1. They also satisfy the boundary conditions (3.9) and (3.10)
at the leading edge x/t = μ3(a, b, b, c). We have therefore completed the proof of
Theorem 3.1.

A graph of the Whitham solution (u1, u2, u3, u4) is given in Figure 1.2. It is
obtained by plotting the exact solutions of (3.4) and (3.5).

3.2. Type I. Here we consider the initial function (1.23) satisfying ξ(a, b) ≤ c
with b > c and a + 5b > 0.

We will present our proofs only briefly, since they are, more or less, similar to
those in section 3.1. The main feature of this case is that the ξ-zero point does not
appear in the solution u3, and the Whitham equations (1.22) with g = 1 are strictly
hyperbolic on the solution.

Theorem 3.7 (see Figure 3.2). For the step-like initial data (1.23) with a > b >
c, a+5b > 0, and ξ(a, b) ≤ c, the solution of the Whitham equations (1.22) with g = 1
is given by

u1 = a, u2 = b,
x

t
= μ3(a, b, u3, c), u4 = c

for μ3(a, b, c, c) < x/t < μ3(a, b, b, c). Outside this interval, the solution of (1.21) is
given by

α = a, β = b for
x

t
≤ μ3(a, b, c, c)

and

α = a, β = c for
x

t
≥ μ3(a, b, b, c).

Proof. It suffices to show that μ3(a, b, u3, c) is an increasing function of u3 for
c < u3 < b. Substituting (2.13) for q into (2.20) yields

∂M(a, b, u3, c)

∂u3
=

1

4
[a + b + u3 + 3c]

∂3I

∂u2
3∂u4

≥ 1

4
[a + b + 4ξ(a, b)]

∂3I

∂u2
3∂u4

> 0

for c < u3 < b, where we have used ξ(a, b) ≤ c in the first inequality and (3.2) in
the second. We now use formula (2.22) to calculate the value of M(a, b, u3, c) at
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Fig. 3.3. Self-similar solution of the Whitham equations (1.22) with g = 1 and the corresponding
oscillatory solution (1.25) of the mKdV equation with ε = 0.1. The initial data are given by (1.23)
with a = 4, b = 1, c = −2 of type III.

u3 = c:

M(a, b, c, c) =
πU(a, b, c)

128[(b− c)(a− c)]
5
2

≥ 0 for ξ(a, b) ≤ c

because U(a, b, ξ) ≥ 0 for ξ ≥ ξ(a, b). Therefore, M(a, b, u3, c) > 0 for c < u3 < b. It
then follows from (2.19) that μ3(a, b, u3, c)−μ4(a, b, u3, c) > 0. Since ∂q

∂u3
(a, b, u3, c) =

(a + b + 3u3 + c)/4 > (a + b + 3ξ(a, b))/4 > 0 because of (3.2), we conclude from
Lemma 2.2 that

dμ3(a, b, u3, c)

du3
> 0

for c < u3 < b.

3.3. Type III. Here we consider the step-like initial function (1.23) satisfying
ξ(a, b) > c with a + 5b = 3(b− c) > 0.

Theorem 3.8 (see Figure 3.3). For the step-like initial data (1.23) with a > b >
c, ξ(a, b) > c, and a + 5b = 3(b − c), the solution of the g = 1 Whitham equations
(1.22) with g = 1 is given by

u1 = a, u2 = b,
x

t
= μ3(a, b, u3, u4),

x

t
= μ4(a, b, u3, u4)

for μ3(a, b, ξ(a, b), ξ(a, b)) < x/t < μ3(a, b, b, c). Outside the region, the solution of
(1.21) is given by

α = a, β = b for
x

t
≤ μ3(a, b, ξ(a, b), ξ(a, b))

and

α = a, β = c for
x

t
≥ μ3(a, b, b, c).

Proof. It suffices to show that u3 and u4 of μ2(a, b, u3, u4) − μ3(a, b, u3, u4) = 0
reaches b and c, respectively, simultaneously. To see this, we deduce from calculation
(3.18) that

(3.21) μ3(a, b, b, u4) − μ4(a, b, b, u4) =
1

2
(b− u4)(a + 2b + 3u4)

vanishes at u4 = (−a− 2b)/3 = c.
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Fig. 3.4. Self-similar solution of the Whitham equations (1.22) with g = 1 and the corresponding
oscillatory solution (1.25) of the mKdV equation with ε = 0.1. The initial data are given by (1.23)
with a = 4, b = 1, and c = −3 of type IV. The solution in the region 7.5 < x/t < 111/8 represents

a rarefaction wave. The weak limit ρ(x, t) is not C1 smooth at x/t = 111/8.

3.4. Type IV. Here we consider the step-like initial function (1.23) satisfying
ξ(a, b) > c with 0 < a + 5b < 3(b− c).

Theorem 3.9 (see Figure 3.4). For the step-like initial data (1.23) with a > b >
c, ξ(a, b) > c, and 0 < a+5b < 3(b− c), the solution of the Whitham equations (1.18)
is given by

u1 = a, u2 = b,
x

t
= μ2(a, b, u3, u4), x = μ3(a, b, u3, u4) t

for μ3(a, b, ξ(a, b), ξ(a, b)) < x/t < μ3(a, b, b,−(a + 2b)/3). Outside the region, the
solution of (1.21) is divided into the three regions:

(1) For x/t ≤ μ3(a, b, ξ(a, b), ξ(a, b)),

α = a, β = b.

(2) For μ3(a, b, b,−(a + 2b)/3) ≤ x
t ≤ 3

8

(
a2 + 2ac + 5c2

)
,

α = a, β = −1

5
a−

√
8

15

x

t
− 4

25
a2.

(3) For x/t ≥ 3
8

(
a2 + 2ac + 5c2

)
,

α = a, β = c.

Proof. By calculation (3.21), when u3 of μ3(a, b, u3, u4) − μ4(a, b, u3, u4) = 0
touches b, the corresponding u4 reaches −(a + 2b)/3, which is above c. Hence, the
equations

x

t
= μ3(a, b, u3, u4),

x

t
= μ4(a, b, u3, u4)

can be inverted to give u3 and u4 as functions of x/t in the region μ3(a, b, ξ(a, b),
ξ(a, b)) < x/t < μ3(a, b, b,−(a + 2b)/3). In region (2), (1.21) has a rarefaction wave
solution.

4. More self-similar solutions. In this section, we construct self-similar so-
lutions of the g = 1 Whitham equations (1.22) for the initial function (1.23) with
a > c > b. The solution of (1.21) does not develop a shock for a + 5b ≥ 0. We are
therefore interested only in the case a + 5b < 0. We classify the resulting Whitham
solution into four types:
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Fig. 4.1. Graph of the step-like initial shock data (1.23) with a > c > b and a + 5b < 0, and
diagram of regions for types V–VIII, where b < 0 has been scaled to b = −1.

Fig. 4.2. Self-similar solution of the Whitham equations (1.22) with g = 1 and the corresponding
oscillatory solution (1.25) of the mKdV equation with ε = 0.014. The initial data are given by (1.23)
with a = 2, b = −1, and c = −1/2 of type V.

V. a + 5b ≤ −4(c− b) < 0,
VI. 0 > a + 5b > −4(c− b) with V (a, c, b) < 0,

VII. 0 > a + 5b > −4(c− b) with V (a, c, b) = 0,
VIII. 0 > a + 5b > −4(c− b) with V (a, c, b) > 0,

where V is a quadratic polynomial given by (2.27). In Figure 4.1, we illustrate this
classification by scaling b < 0 to b = −1 and plotting regions for types V–VIII in the
a-c plane.

4.1. Type V. Here we consider the step-like initial function (1.23) satisfying
a + 5b ≤ −4(c− b) < 0.

Theorem 4.1 (see Figure 4.2). For the step-like initial data (1.23) with a > c >
b, a+5b ≤ −4(c−b), the solution of the Whitham equations (1.22) with g = 1 is given
by

u1 = a, u2 = c,
x

t
= μ3(a, c, u3, b), u4 = b

for μ3(a, c, c, b) < x/t < μ3(a, c, b, b). Outside this interval, the solution of (1.21) is
given by

α = a, β = b for
x

t
≤ μ3(a, c, c, b)

and

α = a, β = c for
x

t
≥ μ3(a, c, b, b).
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Fig. 4.3. Self-similar solution of the Whitham equations (1.22) with g = 1 and the corresponding
periodic oscillatory solution (1.25) of the mKdV equation with ε = 0.018. The initial data are given
by (1.23) with a = 2, b = −1, and c = 0 of type VI. The oscillations have two different kinds

of structure, which are separated by x/t ≈ 1.51. The weak limit ρ(x, t) and the envelope of the
oscillations have noticeable corners at x/t ≈ 1.51.

Proof. It suffices to show that μ3(a, c, u3, b) is a decreasing function of u3 for
b < u3 < c. By (2.10), we have

∂μ3(a, c, u3, b)

∂u3
=

1

2

∂λ3

∂u3

∂q

∂u3
+

1

2
[λ3 − 2(a + c + u3 + b)]

∂2q

∂u2
3

.

The second term is negative because of (2.6) and ∂2q
∂u2

2
= 3/8 > 0. The first term is

also negative: Its first factor is positive in view of (1.17), while its second factor is

∂q

∂u3
=

1

4
(a + c + 3u3 + b) < 0

for b < u3 < c, as we have that a + b + 4c ≤ 0.

4.2. Type VI. Here we consider the step-like initial function (1.23) satisfying
0 > a + 5b > −4(c− b) with V (a, c, b) < 0.

Theorem 4.2 (see Figure 4.3). For the step-like initial data (1.23) with 0 >
a + 5b > −4(c − b) and V (a, c, b) < 0, the solution of the Whitham equations (1.22)
with g = 1 is given by

(4.1) u1 = a,
x

t
= μ2(a, u2, u3, b),

x

t
= μ3(a, u2, u3, b), u4 = b

for μ3(a,−(a + b)/4,−(a + b)/4, b) < x/t ≤ μ3(a, u
∗∗∗, u∗∗∗, b) and by

(4.2) u1 = a, u2 = c,
x

t
= μ3(a, c, u3, b), u4 = b

for μ3(a, u
∗∗∗, u∗∗∗, b) ≤ x/t < μ3(a, c, b, b), where u∗∗∗ is the unique solution u3

of μ2(a, c, u3, b) = μ3(a, c, u3, b) in the interval b < u3 < c. Outside the region
μ3(a,−(a+ b)/4,−(a+ b)/4, b) < x/t < μ3(a, c, b, b), the solution of (1.21) is given by

α = a, β = b for
x

t
≤ μ3(a,−(a + b)/4,−(a + b)/4, b)

and

α = a, β = c for
x

t
≥ μ3(a, c, b, b).
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Proof. We first locate the “leading” edge, i.e., the solution of (4.1) at u2 = u3.
Eliminating x/t from the first two equations of (4.1) yields

(4.3) μ2(a, u2, u3, b) − μ3(a, u2, u3, b) = 0.

Since it degenerates at u2 = u3, we replace (4.3) by

(4.4) G(a, u2, u3, b) :=
μ2(a, u2, u3, b) − μ3(a, u2, u3, b)

(u2 − u3)
√

(u1 − u3)(u2 − u4)I(a, u2, u3, b)
= 0.

In Appendix A, we show that, at the “leading” edge u2 = u3, we have

G(a, u3, u3, b) = 2

(
∂q

∂u2
+

∂q

∂u3

)
= 0

in view of (A.6), which along with (2.13) gives u2 = u3 = −(a+ b)/4. Having located
the “leading” edge, we solve (4.4) near u2 = u3 = −(a + b)/4. We use formula (A.8)
to obtain

∂G(a,−(a + b)/4,−(a + b)/4, b)

∂u2
=

∂G(a,−(a + b)/4,−(a + b)/4, b)

∂u3
= 2.

These show that (4.4) gives u2 as a decreasing function of u3,

(4.5) u2 = B(u3),

in a neighborhood of u2 = u3 = −(a + b)/4.
We now extend the solution (4.5) of (4.3) as far as possible in the region b < u3 <

−(a + b)/4 < u2 < c. We use formula (2.10) to obtain

∂μ2

∂u2
=

1

2

∂λ2

∂u2

∂q

∂u2
+

1

2
[λ2 − 2(a + u2 + u3 + b)]

∂2q

∂u2
2

,

∂μ3

∂u3
=

1

2

∂λ3

∂u3

∂q

∂u3
+

1

2
[λ3 − 2(a + u2 + u3 + b)]

∂2q

∂u2
3

.

In view of (1.17) and (2.6), we have

∂μ2

∂u2
> 0 if

∂q

∂u2
> 0,

∂μ3

∂u3
< 0 if

∂q

∂u3
< 0.

We claim that

(4.6)
∂q

∂u2
> 0,

∂q

∂u3
< 0

on the solution of (4.3) in the region b < u3 < −(a + b)/4 < u2 < c. To see this, we
use formula (2.10) to rewrite (4.3) as

1

2
[λ2 − 2(a + u2 + u3 + b)]

∂q

∂u2
=

1

2
[λ3 − 2(a + u2 + u3 + b)]

∂q

∂u3
.
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This, together with

∂q

∂u2
− ∂q

∂u3
= 2(u2 − u3)

∂2q

∂u2∂u3
=

1

2
(u2 − u3) > 0

for u2 > u3 and inequalities (2.6), proves (4.6).
Hence, the solution (4.5) can be extended as long as b < u3 < −(a+b)/4 < u2 < c.

There are two possibilities: (1) u2 touches c before u3 reaches b, and (2) u3 touches
b before or simultaneously as u2 reaches c.

Possibility (2) is unattainable. To see this, we use (2.26) to write

(4.7) μ2(a, u2, b, b) − μ3(a, u2, b, b) =
(u2 − b)

2(a + u2 − 2b)
V (a, u2, b),

which is negative for b < u2 ≤ c since V (a, u2, b) of (2.27) is an increasing function of
u2 and since V (a, c, b) < 0. Therefore, u2 will touch c before u3 reaches b. When this
happens, we have

(4.8) μ2(a, c, u3, b) − μ3(a, c, u3, b) = 0.

Lemma 4.3. Equation (4.8) has a simple zero, counting multiplicities, in the
interval b < u3 < c. If we denote this zero by u∗∗∗, then μ2(a, c, u3, b)− μ3(a, c, u3, b)
is positive for u3 > u∗∗∗ and negative for u3 < u∗∗∗.

The proof, which involves formulae (2.24) and (2.25), is rather similar to the proof
of Lemma 3.19. We will omit it.

We now continue to prove Theorem 4.2. Having solved (4.3) for u2 as a decreasing
function of u3 for u∗∗∗ < u3 < −(a+b)/4, we can then use the middle two equations of
(4.1) to determine u2 and u3 as functions of x/t in the interval μ2(a,−(a+b)/4,−(a+
b)/4, b) < x/t < μ2(a, c, u

∗∗∗, b).
We finally turn to equations (4.2). We want to solve the third equation of (4.2),

x/t = μ3(a, c, u3, b), for u3 < u∗∗∗. It is enough to show that μ3(a, c, u3, b) is a
decreasing function of u3 for u3 < u∗∗∗. According to Lemma 4.3, μ2(a, c, u3, b) −
μ3(a, c, u3, b) < 0 for u3 < u∗∗∗. Using formula (2.10) for μ2 and μ3, we have

1

2
[λ2 − 2(a + c + u3 + b)]

∂q

∂u2
<

1

2
[λ3 − 2(a + c + u3 + b)]

∂q

∂u3
.

This, together with

∂q

∂u2
− ∂q

∂u3
=

1

2
(c− u3) > 0

for u3 < c and inequalities (2.6), proves that

∂q(a, c, u3, b)

∂u3
< 0

for u3 < u∗∗∗. Hence,

∂μ3

∂u3
=

1

2

∂λ3

∂u3

∂q

∂u3
+

1

2
[λ3 − 2(a + c + u3 + b)]

∂2q

∂u2
3

< 0,

where we have used inequality (1.17).
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Fig. 4.4. Self-similar solution of the Whitham equations (1.22) with g = 1 and the corresponding
oscillatory solution (1.25) of the mKdV equation with ε = 0.03. The initial data are given by (1.23)
with a = 2, b = −1, and c = −3 +

√
13 of type VII.

4.3. Type VII. Here we consider the step-like initial function (1.23) satisfying
0 > a + 5b > −4(c− b) with V (a, c, b) = 0.

Theorem 4.4 (see Figure 4.4). For the step-like initial data (1.23) with 0 >
a + 5b > −4(c − b) and V (a, c, b) = 0, the solution of the Whitham equations (1.22)
with g = 1 is given by

u1 = a,
x

t
= μ2(a, u2, u3, b),

x

t
= μ3(a, u2, u3, b), u4 = c

for μ3(a,−(a + b)/4,−(a + b)/4, b) < x/t < μ3(a, c, b, b). Outside the region, the
solution of (1.21) is given by

α = a, β = b for
x

t
≤ μ3(a,−(a + b)/4,−(a + b)/4, b)

and

α = a, β = c for
x

t
≥ μ3(a, c, b, b).

Proof. It suffices to show that u2 and u3 of μ2(a, u2, u3, b) − μ3(a, u2, u3, b) = 0
reaches c and b, respectively, simultaneously. To see this, we deduce from (4.7) that

(4.9) μ2(a, c, b, b) − μ3(a, c, b, b) =
(c− b)

2(a + c− 2b)
V (a, c, b)

vanishes when V (a, c, b) = 0.

4.4. Type VIII. Here we consider the step-like initial function (1.23) satisfying
0 > a + 5b > −4(c− b) with V (a, c, b) > 0.

Theorem 4.5 (see Figure 4.5). For the step-like initial data (1.23) with 0 >
a + 5b > −4(c − b) and V (a, c, b) > 0, the solution of the Whitham equations (1.22)
with g = 1 is given by

u1 = a,
x

t
= μ2(a, u2, u3, b),

x

t
= μ3(a, u2, u3, b), u4 = b

for μ3(a,−(a+b)/4,−(a+b)/4, b) < x/t < μ3(a, û, û, b), where û is the unique u2-zero
of the quadratic polynomial V (a, u2, b) in the interval −(a + b)/4 < u2 < c. Outside
the region, the solution of (1.21) is divided into the following three regions:
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Fig. 4.5. Self-similar solution of the Whitham equations and the corresponding oscillatory
solution (1.25) of the mKdV equation with ε = 0.05. The initial data are given by (1.23) with a = 2,
b = −1, and c = 1 of type VIII. The solution in the region 3.10 < x/t < 39/8 represents a rarefaction

wave. The weak limit ρ(x, t) is not C1 smooth at x/t = 39/8.

(1) For x/t ≤ μ3(a,−(a + b)/4,−(a + b)/4, b),

α = a, β = b.

(2) For μ2(a, û, b, b) ≤ x/t ≤ 3
8

(
a2 + 2ac + 5c2

)
,

α = a, β = −1

5
a +

√
8

15

x

t
− 4

25
a2.

(3) For x/t ≥ 3
8

(
a2 + 2ac + 5c2

)
,

α = a, β = c.

Proof. By the calculation (4.9), when u3 of μ2(a, u2, u3, b) − μ3(a, u2, u3, b) = 0
touches b, the corresponding u2 reaches û, where V (a, û, b) = 0. Obviously, û < c.
Hence, equations

x

t
= μ2(a, u2, u3, b),

x

t
= μ3(a, u2, u3, b)

can be inverted to give u2 and u3 as functions of x/t in the region μ2(a,−(a +
b)/4,−(a+ b)/4, b) < x/t < μ2(a, û, û, b). To the right of this region, equations (1.21)
have a rarefaction wave solution.

5. Vacuum points. The nonnegative function ρ(x, t; ε) has to be positive in
order for the mKdV dispersive approximation (1.19) (or (1.2) for NLS) to make sense.
It is therefore interesting to study those points (x, t) at which ρ(x, t; ε) = 0 for a
sequence of vanishing ε. These points are referred to as the vacuum points in [3].

Since the solution ρ(x, t; ε) of (1.19) can be approximated by the periodic solution
(1.25) in the single phase regime, we instead study the vacuum points of the latter
solution.

Since ρ2 ≥ ρ3 because of (1.9) for u1 ≥ u2 ≥ u3 ≥ u4, it follows from formula
(1.25) that (x, t) is a vacuum point if and only if ρ3(x, t) = 0, which, in view of (1.9),
is equivalent to

(5.1) u1(x, t) − u2(x, t) − u3(x, t) + u4(x, t) = 0.

For types I–IV, equality (5.1) can occur only if u1 − u2 ≤ u3 − u4 at the leading
edge of the Whitham solution (see Figures 1.2, 3.2, 3.3, and 3.4). This inequality
leads to a + b ≤ 2b for types I and II and gives a ≤ 4b for types III and IV. Hence,
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Fig. 5.1. Diagram of regions for the initial data (1.23) which generate oscillatory solutions
with vacuum points. The parameters (c, b) or (c, a) form the shaded region.

Fig. 5.2. Self-similar solution of the Whitham equations (1.22) with g = 1 and the flow velocity
(1.10) of the oscillatory solution of the mKdV equation with ε = 0.014. The initial data are given
by (1.24) of type V with parameters a = 0.5, b = −1, and c = 0. A vacuum point is located at
x/t ≈ 1.16.

step-like initial shock data of types I–IV with 4b ≥ a > b > c and a + c ≤ 2b will
generate mKdV oscillatory solutions with vacuum points (cf. Figure 5.1).

Similarly, step-like initial shock data of types V and VI with −b ≥ a > c > b and
a + b ≤ 2c will produce mKdV oscillatory solutions with vacuum points. Types VII
and VIII oscillatory solutions cannot have any vacuum point (cf. Figure 5.1).

Types I–V oscillatory solutions have at most one vacuum point. To see this,
note that the corresponding Whitham solutions have the property that u1(x, t) and
u2(x, t) are constants and that u3(x, t) − u4(x, t) are strictly monotone functions of
x/t in the single phase region; so is the left-hand side of (5.1). Hence, (5.1) has at
most one solution x/t. Figure 5.2 shows an example of oscillatory solutions with a
unique vacuum point. Notice that the velocity v(x, t; ε) has a huge change at this
point.

Type VI oscillatory solutions can have more than one vacuum point. They can
even have a continuum of vacuum points. Namely, there exists an interval such that
(5.1) holds at each point of the interval.

Theorem 5.1. For step-like initial data (1.24) of type VI satisfying condition
a+ b = 0, all the points on the closed interval μ3(a,−(a+ b)/4,−(a+ b)/4, b) ≤ x/t ≤
μ3(a, u

∗∗∗, u∗∗∗, b), where u∗∗∗ is given in Theorem 4.2, are vacuum points.
Proof. According to Theorem 4.2, the Whitham solution has the property that

u1 = a and u4 = b. Since a + b = 0, it follows from (5.1) that it suffices to show that
u2 = −u3 over the closed interval mentioned in Theorem 5.1.

The functions u2 and u3 of the Whitham solution satisfies (4.3), which has a
unique solution (4.5) with the property that B(0) = 0 in the case of a + b = 0. It
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Fig. 5.3. Self-similar solution of the Whitham equations (1.22) with g = 1 and the oscillatory
solutions (1.25) of the mKdV equation with ε = 0.04. The initial data are given by (1.23) with a = 1,
b = −1, and c = 0.6 of type VI. The vacuum points occupy the whole interval 0.5 ≤ x

t
≤ 1.50.

follows from formula (2.10) for μ2 and μ3, formula (2.13) for q, and formulae (A.2–
A.3) for λ2 and λ3 that μ2(a,−u3, u3, b) = μ3(a,−u3, u3, b). Hence, u2 = −u3 is the
unique solution of (4.3).

Figure 5.3 is an illustration of such a solution, where rather than a vacuum point
we now have a vacuum interval. It follows from formula (1.10) that V (x, t; ε) =
(u1 + u2 + u3 + u4)/4 = 0 at each point of the interval.

We close this section with a remark on the NLS case, which has been used to
describe the nonlinear pulse propagation in an optical fiber [7]. The NLS oscillations
with step-like initial shock data (1.15), b > c, have at most one vacuum point [3].
For more complicated step-like initial shock data, the NLS oscillations can also have
a continuum of vacuum points. Indeed, consider the initial data

α(x, 0) =

{
a, x < 0,

b, x > 0,
β(x, 0) =

{
c, x < 0,

d, x > 0,

with a > c > b > d and a − b = c − d. It can easily be shown that there is an
interval within the single phase regime where all the ui of the Whitham solution of
(1.7) with g = 1 are constants. More precisely, u1 = a, u2 = c, u3 = b, and u4 = d
for λ3(a, c, b, d) ≤ x/t ≤ λ2(a, c, b, d), where λ2 and λ3 are the second and third
eigenspeeds of the NLS–Whitham equations (1.7) for g = 1. Since a− b = c− d, (5.1)
holds at each point of the interval; hence, this is a vacuum interval. From the point
of view of nonlinear optics, the optical wave has trivial frequency chirp in this region,
and the region may be considered as a vacuum.

6. Other initial data. We conclude the paper by showing how to handle the
initial data (1.24). Inequalities (2.14) are replaced by

∂λ2

∂u2
<

3

2

λ1 − λ2

u1 − u2
<

∂λ1

∂u1
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for u4 < u3 < u2 < u1. Results similar to those of Lemma 2.2 can then be easily
proved. The rest of the calculations are similar to those in sections 3 and 4.

Appendix A. Leading edge calculations. The function I(u1, u2, u3, u4) of
(2.3) can be written in terms of the complete elliptic integral of the first kind K(s);
i.e.,

(A.1) I =
K(s)√

(u1 − u3)(u2 − u4)
,

where

s =
(u1 − u2)(u3 − u4)

(u1 − u3)(u2 − u4)
.

Using the derivative formula

dK(s)

ds
=

E(s) − (1 − s)K(s)

2s(1 − s)
,

where E(s) is the complete elliptic integral of the second kind, we calculate λ2 and
λ3 of (2.2):

λ2 = 2σ1 − 4
u1 − u2

1 − u1−u3

u2−u3

E
K

,(A.2)

λ3 = 2σ1 + 4
u3 − u4

1 − u2−u4

u2−u3

E
K

.(A.3)

We then use (2.10) to write μ2 − μ3 as

−2(u2−u3)K(s)

[
u1 − u2

(u2 − u3)K − (u1 − u3)E

∂q

∂u2
+

u3 − u4

(u2 − u3)K − (u2 − u4)E

∂q

∂u3

]
.

Hence, G(u1, u2, u3, u4) of (4.4) becomes

(A.4) G = −2

[
u1 − u2

(u2 − u3)K − (u1 − u3)E

∂q

∂u2
+

u3 − u4

(u2 − u3)K − (u2 − u4)E

∂q

∂u3

]
.

We now use the asymptotics of K(s) and E(s) as s is close to 1,

(A.5) K(s) ≈ 1

2
log

16

1 − s
, E(s) ≈ 1 +

1

4
(1 − s)

(
log

16

1 − s
− 1

)
,

to calculate the u2 = u3 limit

(A.6) G = 2

(
∂q

∂u2
+

∂q

∂u3

)
.

Finally, we can also use the expression (2.13) and the derivative formulae

(A.7)
dE(s)

ds
=

E(s) −K(s)

2s
,

dK(s)

ds
=

E(s) − (1 − s)K(s)

2s(1 − s)
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to evaluate the partial derivatives of G in the u2 = u3 limit

∂G

∂u2

∣∣∣
u2=u3

= 2 +
(u1 − u4)(u1 + 4u3 + u4)

4(u1 − u3)(u4 − u3)
,(A.8)

∂G

∂u3

∣∣∣
u2=u3

= 2 − (u1 − u4)(u1 + 4u3 + u4)

4(u1 − u3)(u4 − u3)
.

Appendix B. Loss of genuine nonlinearity. In this appendix, we will show
that the Whitham equations (1.22) with g = 1 are not genuinely nonlinear. Again,
we suppress the subscript g = 1 in the notation λg,i and μg,i.

Proposition B.1. For fixed u1 > u2 > u4 satisfying conditions

u1 + 4u2 + u4 > 0, U(u1, u2, u4) < 0,

where the function U is given in (2.23), the derivative

∂μ3(u1, u2, u3, u4)

∂u3

changes sign as u3 increases from u4 to u2.
Proof. We first use formula (A.3) for λ3, derivative formulae (A.7), and asymp-

totics (A.5) to calculate

∂λ3

∂u3

∣∣∣
u3=u2

= +∞,(B.1)

∂λ3

∂u3

∣∣∣
u3=u4

=
24(u2 − u4)

2 + 24(u1 − u2)(u2 − u4) + 9(u1 − u2)
2

(u1 + u2 − 2u4)2
.(B.2)

In the calculation of the last equation, we have also used the asymptotics of K(s) and
E(s) near s = 0,

K(s) =
π

2

[
1 +

s

4
+

9

64
s2 + · · · +

(
1 · 3 · · · (2n− 1)

2 · 4 · · · 2n

)2

sn + · · ·
]
,

E(s) =
π

2

[
1 − s

4
− 3

64
s2 − · · · − 1

2n− 1

(
1 · 3 · · · (2n− 1)

2 · 4 · · · 2n

)2

sn − · · ·
]
.

Differentiating formula (2.10) for μ3 and using formula (2.13) for q, we obtain

∂μ3(u1, u2, u3, u4)

∂u3
=

1

8
(u1 + u2 + 3u3 + u4)

∂λ3

∂u3
+

3

8
[λ3 − 2σ1].

We then use the boundary values (2.7) and (2.8) for λ3 and boundary values (B.1)
and (B.2) for ∂u3λ3 to calculate

∂μ3

∂u3

∣∣∣
u3=u2

= +∞ if u1 + 4u2 + u4 > 0,

and

∂μ3

∂u3

∣∣∣
u3=u4

=
3U(u1, u2, u4)

8(u1 + u2 − 2u4)
< 0 if U(u1, u2, u4) < 0.
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These two boundary values for ∂u3
μ3 prove the proposition.

The conditions of the proposition can easily be verified. For example, for the
initial data (1.23) of types II and III, we have ξ(a, b) > c and a + 5b ≥ 3(b − c) > 0,
which imply U(a, b, c) < 0 and a + 4b + c > 0. By Proposition B.1, the derivative

∂μ3(a, b, u3, c)

∂u3

must change sign as u3 increases from c to b.

Appendix C. Phase shift. In this appendix, we will verify that Q given by
(1.12) and (1.13) is the right phase shift for both the NLS and mKdV. We will study
only the NLS case; the mKdV case can be handled in the same way.

For the NLS periodic wave train (1.8), the wave number and frequency are

k =
π
√
ρ1 − ρ3

εK(s)
, w = kV1.

The rapid phase is then given by

(C.1) Θ(x, t; ε) = kθ(x, t) = k[x− V1 t−Q].

To verify that Q of (1.12) and (1.13) is indeed the phase shift, it suffices to show
that Θ satisfies the generalized wave number and frequency relations

(C.2)
∂Θ

∂x
= k,

∂Θ

∂t
= −w.

We first observe that the compatibility condition for (C.2) is

∂k

∂t
+

∂w

∂x
= 0,

which is the conservation of waves. This equation can be viewed as an additional
conservation law satisfied by the solutions of the Whitham equations (1.7). Hence,
the eigenspeeds λi of the Whitham equations can be calculated using k and w; i.e.,

(C.3) λi =
∂uiw

∂uik
.

We can also rewrite the wave number k in terms of I of (A.1) as

k =
π

εI
,

which along with formula (2.2) for λi gives

(C.4)
k

∂uik
= − I

∂ui
I

=
1

2
(λi − 2σ1).

Differentiating (C.1) with respect to x and using the property that u1 = a, we
obtain

∂Θ

∂x
= k +

4∑
i=2

[
x
∂k

∂ui
− t

∂w

∂ui
− k

∂Q

∂ui
−Q

∂k

∂ui

]
uix

= k +

4∑
i=2

∂k

∂ui
uix

[
x− λit−

1

2
(λi − 2σ1)

∂Q

∂ui
−Q

]
,(C.5)

where we have used formulae (C.3) and (C.4) in the last equality.
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It is known that if Q(a, u2, u3, u4) satisfies (1.12) and (1.13), then

x = λit +
1

2
(λi − 2σ1)

∂Q

∂ui
+ Q

is the hodograph solution of the Whitham equations (1.7) [14]. Hence, we deduce
from (C.5) the first equation of (C.2). The second equation of (C.2) can be shown in
the same way.
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PERSISTENCE OF ROLL WAVES FOR THE SAINT VENANT
EQUATIONS∗

PASCAL NOBLE†

Abstract. The purpose of the article is to study the linear and nonlinear “stability” of roll-waves
that are periodic and discontinuous entropic travelling wave solutions of the Saint Venant equations.
More precisely, we prove that the Cauchy problem with initial data close to a roll-wave and satisfying
suitable compatibility conditions has a solution on a sufficiently small interval.
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1. Introduction. Roll-waves are well-known nonlinear patterns appearing in
shallow waters under the effect of gravity and bottom friction. This type of flow is
commonly modeled by the “shallow water equations” that can be formally derived
from the Navier–Stokes system. This is a hyperbolic system for the fluid height h and
the average velocity u that is similar to the isentropic Euler equations. An empiric
friction term, so-called Chezy friction term, is added to the momentum equation to
model the friction of the bottom; see [7] for more details on the derivation of such
models. In [3], Dressler proved the existence of periodic travelling waves that are
mathematical solutions of the shallow water equations: those travelling waves are
discontinuous, the discontinuity being a Lax shock. Similarly to shocks in hyper-
bolic systems, several questions arise at this stage: first, the existence of continuous
roll-wave solutions of a viscous perturbation of the shallow water equations, the con-
vergence to the inviscid roll-waves in the vanishing viscosity limit and their stability.
The existence of continuous travelling waves for viscous shallow water equations fol-
lows from a classical Hopf bifurcation argument [9]. More involved is the question
of the convergence of those solutions in the vanishing viscosity limit: one can prove,
using geometric singular perturbation arguments (Fenichel theorems) that continuous
roll-waves are ε close to an inviscid roll-wave with spatial period T and wave speed
c0 for a suitable wave speed c(ε, T ) with ε, the size of the viscosity [10], [11]. Only
partial results are known concerning the stability of viscous roll-waves: those patterns
are proved to be spectrally stable under large wavelength and small wavelength per-
turbations and are linearly stable provided that they are strongly spectrally stable;
see [12] for more details.

In order to obtain more information on stability of viscous roll-waves, at least in
the vanishing viscosity limit, we shall consider the inviscid case. In the case of a shock
wave, the connection between the viscous and inviscid shocks has been established
by Rousset [15] in the one-dimensional (1D) case and Gues and coworkers [6] in the
multidimensional case. In the hyperbolic setting, the question of the “stability” of
inviscid roll-waves then arises either under 1D or multidimensional perturbations.
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In that paper and in order to make the connection with the viscous case, we shall
focus on small smooth perturbations of roll-waves. Due to the presence of an infinite
number of shocks, even the formulation of the stability problem is a hard task. In
the case of a single shock, one formulates the stability problem among the piecewise
smooth functions with a single discontinuity that is close to the shock: working in the
reference frame attached to that discontinuity, one can reduce the stability problem
to the analysis of an initial boundary value problem. In the case of roll-waves, it is
natural to work among the functions that are piecewise regular with discontinuities
that are close to the discontinuities of the roll-waves. Here it is not sufficient to work in
the reference frame attached to one discontinuity; in that case, this would mean that
we restrict our attention to periodic perturbations of the roll-waves. In that setting,
Tamada and Tougou [17] proved that, for suitable large wavelength, roll-waves are
spectrally stable. In order to handle more general perturbations, we need to fix all
the discontinuities; this is done through a Lipschitz change of variable. The author
proved in that case that for large wavelength, the spectral problem has no unstable
eigenvalue [13]. Due to the hyperbolic nature of the problem, it seems hard to obtain
a stability result in that case; we shall consider here the question of the “persistence”
of roll-waves.

Similarly to the persistence of shocks, we shall prove here that the Cauchy prob-
lem with initial data that are close to a roll-wave and satisfy suitable compatibility
conditions is well posed. First, we formulate the “stability” problem among the space
of piecewise regular functions with discontinuities close to the roll-waves discontinu-
ities: the shocks are fixed through a Lipschitz change of variable, and we write both
the shallow water equations and the Rankine–Hugoniot jump conditions in that set-
ting. Then we linearize that set of equations and analyze the spectral problem. In
order to tackle the Cauchy problem, we shall only consider the high-frequency per-
turbations; we briefly analyze an analogous equation of the Lopatinskii determinant
for shocks. Then, following the approach for shocks, we derive a priori estimates
on the linear problem and for a linearized problem around an approximate solution.
For an initial data satisfying suitable compatibility conditions, we can construct an
approximate solution of the shallow water equations on a sufficiently small time in-
terval. We obtain the existence of a solution to the Cauchy problem through a fixed
point argument around the approximate solution with the a priori estimates on the
linearized problem.

This method introduced by Majda [4] for compact shocks and generalized by
Métivier [5] is suitable for multimensional perturbations. Though valid in the multi-
dimensional case, the principal results obtained in this paper are written in the 1D
setting. Indeed, in order to simplify the presentation, we have chosen to emphasize
the periodic nature of the problem and the new issues that have to be handled with, in
particular, the formulation of the stability problem and the presence of a sonic point
in the interior that complicates higher-order estimates. In this particular setting, the
energy estimates are derived easily without the microlocal analysis. We briefly discuss
at the end of the paper how to extend the analysis proposed here to multidimensional
perturbations. Moreover, this approach shall be generalized and developed in a forth-
coming paper to handle roll-waves in generalized hyperbolic systems obtained recently
by the author in [14].

The paper is organized as follows: in section 2, we recall the Dressler construction
of roll-waves and formulate the boundary value problem associated to the persistence
problem. In section 3, we linearize the equations around a roll-wave and perform
the spectral analysis of that linear problem. We also obtain a priori estimates for
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the solutions of that problem. We then consider the linearized problem around an
approximate solution: we first obtain a priori estimates on solutions of that linear
problem and deduce the well posedness of those equations in suitable functional spaces.
Section 4 is devoted to the analysis of the full nonlinear problem: we first obtain
compatibility conditions for initial data and construct an approximate solution of the
shallow water equations coupled with Rankine–Hugoniot jump conditions. The well
posedness of the Cauchy problem is then obtained through a fixed point argument.

2. Formulation of the problem. In this section, we give a short proof of the
existence of inviscid roll-waves. Then, we introduce the functional spaces adapted to
the stability analysis of that kind of pattern: these are piecewise regular functions
with discontinuities close to the discontinuities of a roll-wave. We then perform the
Lipschitz change of variable that fixes all the shocks and write the shallow water
equations and the Rankine–Hugoniot conditions in the reference frame.

2.1. Existence of roll-waves. We briefly recall Dressler analysis for the exis-
tence of roll-wave solutions of the Saint Venant system. Let us start with the nondi-
mensional Saint Venant equations

(1)

ht + (hu)x = 0,

(hu)t +

(
h2

2F
+ hu2

)
x

= h− u2,

where h is the height of the fluid, u is the average fluid speed, and F is the Froude
number. In [3], Dressler looks for periodic travelling wave solutions in the form

(h, u)(x, t) = (H,U)(x− ct)

of the inviscid Saint Venant equations: these yield a first order differential system.
Eliminating U from the system reduces the problem to finding periodic solutions of
the scalar equation

(2) H ′ =
H − (c− q

H )2

H
F − q2

H2

= P1(H),

where q = H(c − U) > 0, a constant, is the relative discharge rate. Integrating
(2) in the form ξ = ξ0 +

∫
dh

P1(h) , it is proved that (2) has no continuous periodic

solution [3]. Thus, we are looking for periodic solutions with discontinuities that
satisfy admissibility conditions. The hyperbolic part of the system being similar to
the isentropic Euler equations and the admissibility conditions for a discontinuity
located at x = x(t) are the Rankine–Hugoniot conditions

(3) [hu] = ẋ[h],

[
h2

2F
+ hu2

]
= ẋ[hu],

where [u] = limε→0 u(x(t) + ε) − u(x(t) − ε) and a Lax shock condition

u+ +

√
h+

F
< ẋ < u− +

√
h−
F

.

Dressler proved the following result.
Theorem 1. Given any F > 4, L > 0, and c > 0, there exists a piecewise C1

periodic travelling wave, with wave speed c and wavelength L, entropic solution of the
inviscid Saint Venant equations (1).
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We recall the proof for completeness.
Proof. Let H− (resp. H+) be the fluid height before (resp. after) a shock. The

entropic shock must satisfy the Rankine–Hugoniot jump conditions

(4)
H2

+

2F
+

q2

H+
=

H2
−

2F
+

q2

H−
.

The Saint Venant equations are similar to the isentropic Euler equations for an ideal
gas with γ = 2, where h plays the role of the density ρ. The entropy condition is
equivalent to the Lax shock condition (see [18] for more details):

U+ +

√
H+

F
< c < U− +

√
H−
F

.

Since the relative discharge rate H(c− U) = q is a constant, we obtain√
H+

F
− q

H+
< 0 <

√
H−
F

− q

H−
.

Hence, H+ < H− and there exists a “sonic” point H0 so that H+ < H0 < H− and

H0

F
− q2

H2
0

= 0.

In order to satisfy the entropy condition, we must have dH
dξ |H0 > 0 or equivalently,

F > 4. The denominator of the fraction in (2) vanishes at point H0. To pass
continuously through this value, the numerator must also vanish at this point H0:

H0 −
(
c− q

H0

)2

= 0.

We simplify the fraction in (2):

(5)
dH

dξ
= F

H2 +
(
H0 − c2

)
H +

H2
0

F

H2 + H0H + H2
0

= P1(H).

The construction of a periodic solution with an arbitrary wavelength L is, at this
point, straightforward. Let H(ξ) be the special solution of (5) so that H(0) = H0: it
is defined implicitly by H(ξ) = h ⇔ ξ = f1(h), where f1 is the primitive of 1

P1
such

that f1(H0) = 0. The function f1 is given by

Ff1(h) = h−H0 +
H2

a + H0Ha + H2
0

Ha −Hb
ln

(
h−Ha

H0 −Ha

)

− H2
b + H0Hb + H2

0

Ha −Hb
ln

(
h−Hb

H0 −Hb

)
,

and Ha > Hb are the zeros of P1. Define Hn(ξ) = H(ξ − nL). We fit Hn and Hn+1

together by means of an entropic shock. Eliminating the solution H+ = H−, the
Rankine–Hugoniot condition (4) now reads

(6) H+ + H− =
2H3

0

H+H−
.
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We determine the position of the nth shock ξnc , with Hn(ξnc ) = H− and Hn+1(ξ
n
c ) =

H+. This is equivalent to the relation

(7)

∫ H−

H0

dh

P1(h)
= L +

∫ H+

H0

dh

P1(h)
.

Now, eliminating H+ between (6) and (7) yields L as a function of H−. Then we have
obtained periodic and entropic solutions of the Saint Venant equations (1).

In what follows, we rescale space variables and unknowns by H0 in the variable
H := H0h and ξ := H0ξ: we get the nondimensional equation of profile

h′ = F

h2 +

(
1 −

(
1 + 1√

F

)2
)
h + 1

F

h2 + h + 1
= P (h).

Denote H+ = H0h+ and H− = H0h−. The nondimensional Rankine–Hugoniot con-
ditions reads

h+ + h− =
2

h+ h−
.

We can easily describe the asymptotic profile of the roll-waves as L → ∞. Indeed,
when L → ∞, the minimum height h+ converges to ha given by

ha =
Ha

H0
=

1

2F

(
1 + 2

√
F +

√
1 + 4

√
F

)
.

Then the family of roll-waves converges to a solitary wave with a single shock as
L → ∞. Denote hm > ha so that ha + hm = 2

ha hm
. Before the shock, the profile h̃ of

the solitary wave is given by the special solution h̃ = h, h ∈ (ha, hm), and after the
shock, it is a constant h̃ = ha. The description of the roll-wave solutions of the Saint
Venant system is complete, and we are now in a position to formulate the stability
problem.

2.2. Formulation of the stability problem. In this section, we recall the
method, introduced in [13], of studying the stability of Dressler roll-waves that possess
an infinite number of shocks . These roll-waves are parametrized by the wavelength
L and the wave speed c. When these parameters are fixed, denote H+ (resp. H−)
the minimum (resp. maximum) height of the roll-wave. This is also the height after
(resp. before) a shock. We first write the Saint Venant system (1) into a diagonalized
form and introduce the Riemann invariants

r = u + 2

√
h

F
, s = u− 2

√
h

F
.

The shallow water equations (1) read

(8) rt + λ1(r, s)rx = Q(r, s), st + λ2(r, s)sx = Q(r, s),

where λk, k = 1, 2 and Q are defined by

λ1(r, s) =
3r

4
+

s

4
, λ2(r, s) =

3s

4
+

r

4
, Q(r, s) = 1 − 4

F

(
r + s

r − s

)2

.
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For a discontinuity located at x = x(t), the Rankine–Hugoniot conditions in these
variables reads

(9)

[
(r + s)(r − s)2)

]
= 2 ẋ

[
(r − s)2

]
,

[
(r − s)4 + 8(r − s)2(r + s)2

]
= 16 ẋ

[
(r + s)(r − s)2

]
.

The derivation of the spectral problem is inspired by the method introduced by Ma-
jda for studying the stability of multidimensional shocks in hyperbolic systems [4].
In what follows, we consider a Dressler roll-wave (H,U) (or equivalently, R,S) with
wavespeed c and wavelength L: the location of the shocks are given by xi(t) = ct +
iL, i ∈ Z. We consider small perturbations of that solution: we can suppose it is piece-
wise C1 functions with discontinuities at positions Xi(t) = ct+ iL+ εi(t), i ∈ Z. The
εi are supposed to be small. The Rankine–Hugoniot conditions (9) are then given by

(10)

[
(r + s)(r − s)2)

]
Xi

= 2Ẋi

[
(r − s)2

]
Xi

,[
(r − s)4 + 8(r − s)2(r + s)2

]
Xi

= 16Ẋi

[
(r + s)(r − s)2

]
Xi

∀i ∈ Z.

In [4], working in the reference frame attached to the discontinuity made the shock
steady. In our case, because of the existence of an infinite distribution of shocks, we
have to fix all the discontinuities in order to make the roll-wave steady, just as Majda
did in the case of the stability of planar shocks [4]. In that case, a perturbation of a
planar shock has a discontinuity front at points xn = ψ(y, t), with y = (x1, . . . , xn−1)
the transverse variable, and one introduces a new variable ξ = xn−ψ(y, t) that fixes all
the front shock and not only a variable ξ = xn−ψ(t) that fixes only the shock at y = 0.
In the case of roll-waves, we fix all the shocks by working in the new system of coor-
dinates (ξ = ξ(x, t), t) such that ξ(Xi(t), t) = iL ∀i ∈ Z. The function ξ has the form

(11) ∀x ∈]Xi(t), Xi+1(t)[, ξ(x, t) =
x−Xi(t)

Xi+1(t) −Xi(t)
L + iL ∀i ∈ Z.

Remark. Considering |εi| << 1, we prove that ξ(x, t) ≈ x − ct up to first order;
it looks like a change of reference frame.

Note that in the case of the stability of roll-waves, we have a sort of multidi-
mensional stability issue where the transverse “variable” is i ∈ Z. The function ξ is
Lipschitz and the system is of order one, so this change of coordinates is licit and
does not change the Rankine–Hugoniot jump conditions. We make the change of
coordinates (r, s)(x, t) = (r, s)(ξ(x, t), t), where (r, s) are piecewise C1 functions with
discontinuities located at points {iL, i ∈ Z}. The derivation rules are given by

∂r

∂x
=

∂r

∂ξ

L

Xi+1 −Xi
,

∂r

∂t
=

∂r

∂t
− L

Xi+1 −Xi

(
Ẋi +

ξ − iL

L

(
Ẋi+1 − Ẋi

)) ∂r

∂ξ
.

(12)

Substituting (12) into the shallow water equations (8) and dropping the overlines into
the equations, the system (8) reads for all x ∈ (iL, (i + 1)L),

(13)

rt +
L

Xi+1 −Xi

(
λ1(r, s) −

(
Ẋi + γi(x)

(
Ẋi+1 − Ẋi

)))
rx = Q(r, s),

st +
L

Xi+1 −Xi

(
λ2(r, s) −

(
Ẋi + γi(x)

(
Ẋi+1 − Ẋi

)))
sx = Q(r, s),
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with γi(x) = x−iL
L ∈ (0, 1). The Rankine–Hugoniot conditions (10) remain unchanged

and are given by

(14) [hu]Xi = Ẋi[h]Xi ,

[
h2

2F
+ hu2

]
Xi

= Ẋi[hu]Xi ,

where h, u have to be understood as functions of r, s. The particular solution (R,S,Xi

(t) = ct + iL) computed by Dressler is now a steady solution of (13) and (14).
In this paper, we deal with the problem of the persistence of a roll-wave solu-

tion: Given any initial condition (r0, s0) which has the same structure as a roll-wave
solution with discontinuities at points x0

i , i ∈ Z, we are going to prove that, for
initial conditions close to a roll-wave solution and satisfying suitable compatibility
conditions, there exists a solution of the Cauchy problem (13), (14) with the initial
conditions (r, s)(., 0) = (r0, s0) on a sufficiently small interval (0, T ∗) that conserves
a structure similar to the roll-wave structure. This result is in some sense a result of
the stability of roll waves. Due to the hyperbolic nature of the problem, we expect the
apparition of new discontinuities that breaks the roll-wave structure. To deal with
this problem, we follow the approach initiated by Majda [4] to prove the existence
of compact shocks and developed by Metivier [5] for the stability of multidimensonal
shocks: In order to deal with the full nonlinear problem, the first task is to prove the
well posedness of the linearized equations around an approximate solution, which will
be assumed to be close to a roll wave solution. Then, under suitable compatibility
conditions, we are able to prove the existence of an approximate solution of (13), (14),
and using a fixed point argument in the neighborhood of this approximate solution,
we prove the existence of a solution of the full Cauchy problem.

3. Well posedness of the linearized equations. In this section, we prove
the well posedness of the linear equations obtained by the linearization of (13), (14)
in the neighborhood of an approximate solution close to a roll-wave. This is done by
energy estimates on the linear problem and on an adjoint problem. We start with
the analysis of the spectral problem associated to the linear equations obtained by
linearization of (13), (14) around the roll-wave solution and then perform a priori
estimates of solutions of that problem and the adjoint of that problem. We prove
that these estimates remain true for the solutions of the linear equations obtained by
linearization around a function “close” to a roll-wave. We deduce from the energy
estimates that the linearized problem around an approximate solution is well posed
in suitable functional spaces.

3.1. Energy estimates on the “exact” linearized problem. In what fol-
lows, we linearize shallow water equations and Rankine–Hugoniot conditions around
an exact roll-wave solution and obtain energy estimates for that linearized problem:
we shall deduce estimates for the linearized problem around an approximate solution.

3.1.1. Formulation of the linearized problem. The linearization of the
equation in the neighborhood of the roll-wave solution yields the following, after time
rescaling t := H0 t:

(15)
∂t ri + a(h)∂x ri
∂t si + b(h)∂x si

+ L0(h)

(
ri
si

)
= Fi ∀(x, i) ∈ (0, L) × Z,
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with a(h) =
√
h− h−1, b(h) = −

√
h− h−1, (ri, si) = (r, s)|(iL,iL+L),

Fi =
(
ε̇i +

x

L
(ε̇i+1 − ε̇i)

)
P (h)

(
h−2 + h− 1

2

h−2 − h− 1
2

)
− c(εi+1 − εi)P (h)

L
(
1 +

√
F
) (

1
1

)

and

L0
11 =

3

4

(
h−2 + h− 1

2

)
P (h) − h− 3

2

(
1 +

√
F − h−1

)(
1 +

√
F − h−1 − 2h

1
2

)
,

L0
12 =

1

4

(
h−2 + h− 1

2

)
P (h) + h− 3

2

(
1 +

√
F − h−1

)(
1 +

√
F − h−1 + 2h

1
2

)
,

L0
21 =

1

4

(
h−2 − h− 1

2

)
P (h) − h− 3

2

(
1 +

√
F − h−1

)(
1 +

√
F − h−1 − 2h

1
2

)
,

L0
22 =

3

4

(
h−2 − h− 1

2

)
P (h) + h− 3

2

(
1 +

√
F − h−1

)(
1 +

√
F − h−1 + 2h

1
2

)
.

Here h has to be understood as h = h(x), the equation of profile of the roll-wave. The
linearized Rankine–Hugoniot conditions are given by

2[h]iLε̇i =
[(

h− h− 1
2

)
r +

(
h + h− 1

2

)
s
]
iL

,

2[h]iLε̇i =

[(
h− h− 1

2 +
1

1 +
√
F

(
h

3
2 + h− 3

2 − 2
))

r

+

(
h + h− 1

2 − 1

1 +
√
F

(
h

3
2 + h− 3

2 + 2
))

s

]
iL

∀i ∈ Z,(16)

with [h]iL = h+ − h−. In order to simplify the notations, we introduce the matrix
M(h) so that (16) reads

2[h]ε̇

(
1
1

)
=

[
M(h)

(
r
s

)]
iL

.

Equivalently, system (16) can be written

(17)

2[h]ε̇i =
[(

h− h− 1
2

)
r +

(
h + h− 1

2

)
s
]
iL

,

0 =
[(

h
3
2 + h− 3

2 − 2
)
r −

(
h

3
2 + h− 3

2 + 2
)
s
]
iL

∀i ∈ Z.

In order to eliminate the derivatives of εi in the interior equations (15), one can, as
usual, introduce the “good” unknowns:

ri = ri +
(
εi +

x

L
(εi+1 − εi)

)
P (h)

(
h−2 + h− 1

2

)
,

si = si +
(
εi +

x

L
(εi+1 − εi)

)
P (h)

(
h−2 − h− 1

2

)
.

Dropping the overlines, this yields the system

(18)
∂t ri + a(h)∂x ri
∂t si + b(h)∂x si

= F i ∀(x, i) ∈ (0, L) × Z,
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where F i contains only zeroth order terms. More precisely, F i is written

F i = − L0

(
ri
si

)
− εiP (h)L0

(
h−2 + h− 1

2

h−2 − h− 1
2

)

− x

L
(εi+1 − εi)P (h)L0

(
h−2 + h− 1

2

h−2 − h− 1
2

)

− εidiag (a(h), b(h)) ∂x

(
P (h)

(
h−2 + h− 1

2

)
P (h)

(
h−2 − h− 1

2

)
)

− (εi+1 − εi)diag(a(h), b(h))∂x

(
xP (h)

L

(
h−2 + h− 1

2

)
xP (h)

L

(
h−2 − h− 1

2

)
)
.

The Rankine–Hugoniot jump conditions are given by

2[h]ε̇i =
[(

h− h− 1
2

)
r +

(
h + h− 1

2

)
s
]
iL

,

−
[
P (h)

(
h− h−2

)]
εi =

[(
h

3
2 + h− 3

2 − 2
)
r −

(
h

3
2 + h− 3

2 + 2
)
s
]
iL

.(19)

As usual, we consider the linear boundary value problem dropping the zeroth
order term from (18, 19):

(20)
∂t ri + a(h)∂x ri = F 1

i ,

∂t si + b(h)∂x si = F 2
i

∀i ∈ Z, x ∈ (0, L),

with the linearized Rankine–Hugoniot conditions

(21)

2[h]ε̇i =
[(

h− h− 1
2

)
r +

(
h + h− 1

2

)
s
]
iL

+ a1,i,[(
h

3
2 + h− 3

2 − 2
)
r −

(
h

3
2 + h− 3

2 + 2
)
s
]
iL

= a2,i

∀i ∈ Z.

These conditions can be interpreted as transmission conditions at the point of dis-
continuities between (ri, si) and (ri+1, si+1). Indeed, a jump of a function f of r, s at
point x = iL can be written

[f(r, s)]iL = f(ri(0), si(0)) − f(ri−1(L), si−1(L)).

3.1.2. Normal mode analysis. We carry out a similar analysis made in the
stability of multidimensional shocks and search for possible unstable eigenmodes. We
make a Laplace transform in time and Fourier transform in discrete space (that yields
Fourier series) of (20, 21):

λr + a(h)r′ = 0, λs + b(h)s′ = 0 ∀x ∈ (0, L),

with

r(λ, θ, x) =
∑
k∈Z

eikθ
∫ ∞

−∞
eλtrk(x, t) dt.

The linearized Rankine–Hugoniot conditions reads

2λ(h− − h+)ε

(
1
1

)
= eiθM(h−)

(
r(L)
s(L)

)
−M(h+)

(
r(0)
s(0)

)
.
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Here the space E
s of functions decreasing to 0 at infinity used in the analysis of

multidimensional shocks is replaced by the space E
a of bounded functions at the point

of singularity x0 such that h(x0) = 1. A basis of solutions for the differential system
(3.1.2) is given by

V1 =
(
(x− x0)

− λ
a′(x0)Z(x), 0

)
, V2 =

(
0, e

−λ
∫ x
x0

ds
b(h(s))

)
,

where Z is an analytic (thus bounded) function on the interval (0, L) that is unique
if we choose Z(0) = 1. When 	(λ) > 0, it is easily seen that E

a = 〈V2〉 so that the
analogous equation of the Lopatinskii determinant is an Evans function given by

Δ(λ, θ) =
2[h]

1 +
√
F
λ
((

h
3
2
+ + h

− 3
2

+ + 2
)
−
(
h

3
2
− + h

− 3
2

− + 2
)
eiθ−λ

∫L
0

ds
b(h(s))

)
.

The function h �→ h
3
2 + h− 3

2 + 2 is decreasing on the interval (0, 1), is increasing
on (1, +∞), and is invariant under the function �→ 1

h . The Rankine–Hugoniot jump

conditions for the roll-wave h++h− = 2
h+ h−

imply that h− = ∗10 1
2 (
√
h2

+ + 8
h+

−h+) <
1
h+

for any h+ < 1. Then we find that h
3
2
++h

− 3
2

+ +2 > h
3
2
−+h

− 3
2

− +2. As a consequence,

on the half plane 	(λ) > 0, the Evans function Δ vanishes either when λ = 0 (for any
θ) and for

−	(λ)

∫ L

0

ds

b(h(s))
= log

(
h

3
2
+ + h

− 3
2

+ + 2

h
3
2
− + h

− 3
2

− + 2

)
, θ = �(λ)

∫ L

0

ds

b(h(s))
[2π].

We obtain a full line of unstable eigenmodes with a positive growth rate 	(λ) in time,

since b(h) < 0 and h
3
2
+ + h

− 3
2

+ + 2 > h
3
2
− + h

− 3
2

− + 2.
Contrary to the case of multidimensional shocks where there is only one shock,

this does not imply strong instability since the Evans function is not homogeneous;
the growth rate of the unstable eigenmodes is bounded, whereas in the case of a single
shocks, a full line of eigenvalues with an arbitrary large real part is found. This is due
to the fact that in the case of shocks, the equations are invariant under the hyperbolic
scaling (x, t) �→ (μx, μt) for any μ > 0. As a consequence, an unstable mode is
accompanied with a full line of unstable modes that are more and more unstable as
the frequency goes to infinity. This is not the case here due to the periodic nature of
the problem. Moreover, it is easily seen that when L → ∞, Re(λ) → 0: the zeroth
order terms have an importance in the stability issue as pointed out in [13].

3.1.3. Energy estimates. In this section, we obtain energy estimates for solu-
tions of the linear problem (20), (21). We multiply the first (resp. second) equation
of (20) by ri (resp. si), integrate on (0, L), and sum for i ∈ Z:

∂t
∑
i∈Z

∫ L

0

(
r2
i + s2

i

)
dx +

∑
i∈Z

∫ L

0

a(h)∂xr
2
i + b(h)∂xs

2
i = 2

∑
i∈Z

∫ L

0

F 1
i ri + F 2

i ridx.

An integration by parts on the second integral yields

∫ L

0

a(h)∂xr
2
i + b(h)∂xs

2
i =

[
a(h)r2

i + b(h)s2
i

]L
0
−
∫ L

0

∂xa r
2
i + ∂xb s

2
i dx.
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We change the indices of summation in the boundary terms and find that

(22) ∂t
∑
i∈Z

∫ L

0

(
r2
i + s2

i

)
dx−

∑
i∈Z

[
a(h)r2 + b(h)s2

]
iL

= 2
∑
i∈Z

∫ L

0

F 1
i ri + F 2

i sidx +
∑
i∈Z

∫ L

0

∂xa(h) r2
i + ∂xb(h) s2

i .

Equation (22) can be written in the form

(23) ∂t

∫
R

r2 + s2 dx−
∑
i∈Z

[
a(r) r2 + b(h) s2

]
iL

= 2

∫
R

F r + Gsdx +

∫
R

∂x a(h) r2 + ∂x b(h) s2 dx.

Next, we have to obtain an estimate on the boundary terms. For that purpose, we
show that the boundary condition

f−r
−
i − f+r

+
i = g−s

−
i − g+s

+
i ,

with

f± = f(h±), g± = g(h±), f(h) = h
3
2 + h− 3

2 − 2, g(h) = h
3
2 + h− 3

2 + 2,

is maximal dissipative. More precisely, we prove that

B
(
r+
i , r

−
i , s

+
i , s

−
i

)
= 0 ⇒ Q

(
r+
i , r

−
i , s

+
i , s

−
i

)
≥ 0,

with Bu = 〈rh, u〉, rh being the vector rh =t (f+,−f−,−g+, g−) and Q is the
quadratic form

Q
(
r+
i , r

−
i , s

+
i , s

−
i

)
= a−

(
r−i
)2

+ b−
(
s−i
)2 − a+

(
r+
i

)2 − b+
(
s+
i

)2
,

with a± = a(h±), bk = b(h±). This property is necessarily maximal, since dim(KerB) =
3 and b− < 0, whereas −b+, a−,−a+ > 0. The restriction of the quadratic form Q to
KerB is represented by the symmetric matrix A:

A =

⎛
⎝ a−g

2
+ − b+f

2
− b+f−g− b+f+f−

b+f−g− b−g
2
+ − b+g

2
− −b+f+g−

b+f+f− −b+f+g− −a+g
2
+ − b+f

2
+

⎞
⎠ .

The matrix A is definite positive provided that all the principal determinants
Δi, i = 1, 2, 3 are strictly nonnegative. Let us check that condition. First, Δ1 =
a−g

2
+ − b+f

2
− ≥ 0 since a−,−b+ ≥ 0, and Δ1 �= 0 provided that there is a real

shock h+ < 1 < h− (otherwise, it is just the stationary solution). A straightforward
computation shows that

Δ2 = g2
+

(
a−b−g

2
+ − b+

(
a−g

2
− + b−f

2
−
))

,

and Δ2 > 0 if and only if the following condition is satisfied:

(24) h+

(
1 + h

3
2
+

)(
1 + h

− 3
2

+

)2

< 6h− +
2

h2
−
.
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It is easily proved that this relation is satisfied for small amplitude roll-waves
when h+ < 1 < h− lie in the neighborhood of h = 1. In the large amplitude case,
recall that ha < h+ < 1, where ha = 1

2F (1+2
√
F +

√
1 + 4

√
F ) and h++h− = 2

h+ h−
.

We write the Rankine–Hugoniot jump condition for the roll wave as

h− = RH(h+) =
1

2

(√
h2

+ +
8

h+
− h+

)

and inserting that relation into (24), the problem is reduced to the analysis of the
sign of

C(h+) = 6RH(h+) +
2

RH(h+)2
− h+

(
1 + h

3
2
+

)(
1 + h

− 3
2

+

)2

when h+ ∈ (ha, 1). It is a lengthly but straightforward computation to prove that
C(h+) > 0 for all h+ ∈ (ha, 1) provided that 4 < F ≤ Fc, with Fc ≥ 18. Thus,
when 4 < F ≤ Fc, the relation Δ2 > 0 is satisfied for all roll-wave solutions and for
larger Froude numbers; there exists hc(F ) > ha so that Δ2 > 0 is satisfied for all
h+ ∈ (hc(F ), 1). Next, we consider the last condition Δ3 > 0. One can show that

Δ3 = g4
+

((
a−g

2
− + b−f

2
−
)
a+b+ −

(
a+g

2
+ + b+f

2
+

)
a−b−

)
and Δ3 > 0 if and only if

3h− +
1

h2
−

> 3h+ +
1

h2
+

.

Then it is an easy calculation to prove that this condition is satisfied for all roll-wave
solutions if 4 < F ≤ Fc, with Fc ≥ 12. As a conclusion, the matrix A is definite
positive if 4 < F ≤ Fc (Fc ≥ 12). Suppose that this assumption is satisfied. The
quadratic form Q|KerB is definite positive. Denote w = (r+

i , r
−
i , s

+
i , s

−
i ). We deduce

that there exist κ > 0 and C > 0 so that

Q(w) ≥ κ‖w‖2 − C‖Bw‖2

and substituting that relation into (23), we deduce the estimate

∂t‖(r, s)‖2
2 + κ

∑
i∈Z

∣∣(r±i , s±i )∣∣2
≤ 2

∫
R

F 1 r + F 2 s dx + C‖(r, s)‖2 + ‖a2‖2
l2(Z),(25)

where ‖(r, s)‖2
2 =

∫
R
r2 + s2 dx is the classical

(
L2(R)

)2
-norm. From the Rankine–

Hugoniot condition, one can easily estimate εi, ε̇i:

|ε̇i|2 ≤ C
(∣∣(r±i , s±i )∣∣2 + a2

1,i

)
.

We compute estimates in weighted functional spaces. For γ > 0 sufficiently large
(that depends on ‖(R,S)‖W 1,∞(0,L)) and using Young’s type inequalities, we obtain
the following proposition.
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Proposition 1. Assume that the Froude number F satisfies 0 < F < Fc (with
Fc > 12). Then there exists γc (depending on ‖(R,S)‖W 1,∞(0,L)) such that for all
γ > γc, the following estimate holds true:

γ

∫
R

e−2γt‖(r, s)‖2
2 +

∫
R

e−2γt
∑
i∈Z

∣∣(r±i , s±i )∣∣2 +
(
ε2
i + ε̇2

i

)
dt

≤ C

(
1

γ

∫
R

e−2γt
∥∥(F 1, F 2

)∥∥2

2
dt +

∫
R

e−2γt
(
‖a1‖2

l2(Z) + ‖a2‖2
l2(Z)

)
dt

)
.(26)

We are now in a position to make the energy estimates on the linearized problem
around an approximate solution close to a roll-wave. In what follows, we shall assume
that the assumption 0 < F < Fc is satisfied.

3.2. Energy estimates for the “approximate” linearized problem. In
order to tackle the full nonlinear problem, we consider the linearization of the Saint
Venant system (13) in the neighborhood of an approximate solution (Ri, Si, Xi) that
is close to the original roll-wave (R,S, ct+iL). In what follows, we shall prove that the
estimates (26) obtained in the previous section remain true for (Ri, Si, Xi) sufficiently
“close” to the roll-wave solution (R,S, ct + iL).

3.2.1. Formulation of the problem. We consider an approximate “solution”
(Ri, Si, Xi) ≈ (R,S, ct + iL) and linearize the shallow water equations and Rankine–
Hugoniot jump conditions around that function:

(27)
∂t ri +

L

Xi+1 −Xi
Λi

1∂x ri = F
1

i ,

∂t si +
L

Xi+1 −Xi
Λi

2∂x si = F
2

i

∀(x, i) ∈ (0, L) × Z,

where the function F i
k, k = 1, 2 are defined by

F
1

i =
∂Q

∂r
(Ri, Si)ri +

∂Q

∂s
(Ri, Si)si +

L(εi+1 − εi)

(Xi+1 −Xi)2
Λi

1

− L

Xi+1 −Xi

(
λ1(ri, si) −

(
ε̇i +

x

L
(ε̇i+1 − ε̇i)

))
∂xRi

F
2

i =
∂Q

∂r
(Ri, Si)ri +

∂Q

∂s
(Ri, Si)si +

L(εi+1 − εi)

(Xi+1 −Xi)2
Λi

2

− L

Xi+1 −Xi

(
λ2(ri, si) −

(
ε̇i +

x

L
(ε̇i+1 − ε̇i)

))
∂xSi

and Λi
k, k = 1, 2, i ∈ Z denotes Λi

k = λk(Ri, Si)− (Ẋi +
x
L (Ẋi+1−Ẋi)). The linearized

Rankine–Hugoniot jump conditions are given by

[Q(Ri, Si)]ε̇i =

[(
∂F

∂R
− Ẋi

∂Q

∂R

)
r +

(
∂F

∂S
− Ẋi

∂Q

∂S

)
s

]
iL

+
Lεi

Xi+1 −Xi

[
∂x

(
F − ẊiQ

)]
iL

,

[H(Ri, Si)]ε̇i =

[(
∂Q

∂R
− Ẋi

∂H

∂R

)
r +

(
∂Q

∂S
− Ẋi

∂H

∂S

)
s

]
iL

+
Lεi

Xi+1 −Xi

[
∂x

(
Q − ẊiH

)]
iL

,(28)
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where the functions Q = HU,F = H2

2F + HU2 shall be considered as functions of
R,S. One can introduce the “good” unknowns to drop the derivatives of εi in the
interior equation (27). Similarly to the previous section, we analyse the linear problem
obtained after dropping zeroth order terms in (27), (28):

(29)
∂t ri +

L

Xi+1 −Xi
Λi

1 ∂x ri = F 1
i ,

∂t si +
L

Xi+1 −Xi
Λi

2 ∂x si = F 2
i

∀x ∈ (0, L) ∀i ∈ Z.

The system (29) is completed with the linearized Rankine–Hugoniot conditions

(30)

[Q(Ri, Si)]ε̇i =

[(
∂F

∂R
− Ẋi

∂Q

∂R

)
r +

(
∂F

∂S
− Ẋi

∂Q

∂S

)
s

]
iL

+ a1,i,

[H(Ri, Si)]ε̇i =

[(
∂Q

∂R
− Ẋi

∂H

∂R

)
r +

(
∂Q

∂S
− Ẋi

∂H

∂S

)
s

]
iL

+ a2,i

∀i ∈ Z.

3.2.2. Energy estimates. In what follows, we shall prove the following result.
Proposition 2. There exists η > 0 so that for all m > 0, there exists a constant

C and γ0 depending on m and for any Lipschitz continuous and bounded function
(Ri, Si, Xi)i∈Z satisfying

max
i∈Z

(∥∥∥Ẋi − c
∥∥∥
∞

+ ‖Xi+1 −Xi − L‖∞ + ‖Ri −R,Si − S‖∞
)
≤ η,

max
i∈Z

(
|∂x(Ri, Si)|∞ +

∣∣∣Ẋi

∣∣∣
∞

)
≤ m,

and for all γ ≥ γ0, (F 1, F 2) ∈ D(R/{iL}×R), (a1, a2) ∈ l2(Z,D(R)), then a solution
(ri, si, εi)i∈Z of (29), (30) satisfies

γ
∥∥e−γt(r, s)

∥∥2

L2(R/{iL}×R)
+
∥∥e−γt

(
r±i , s

±
i

) ∥∥2

l2(Z,L2(R))
+
∥∥e−γtεi

∥∥
l2(Z,H1(R))

≤ C

(
1

γ
‖e−γt

(
F 1, F 2

)
‖2
L2(R/{iL}×R) +

∥∥e−γt(a1, a2)
∥∥
l2(Z,L2(R))

)
.

Proof. Similarly to the previous case, we multiply the first (resp. second) equation
of (29) by ri (resp. si), integrate on (0, L), and sum for i ∈ Z:

∂t

∫
R

r2 + s2 dx +
∑
i∈Z

L

Xi+1 −Xi

[
Λi

1 r
2
i + Λi

2 s
2
i

]L
0

= 2

∫
R

F 1 r + F 2 s dx +
∑
i∈Z

L

Xi+1 −Xi

∫ L

0

∂xΛi
1 r2

i + ∂xΛi
2 s2

i dx.

It is a straightforward computation to prove that the boundary terms satisfy

∑
i∈Z

L

Xi+1 −Xi

[
Λi

1 r
2
i + Λi

2 s
2
i

]L
0
≥ −

∑
i∈Z

[
a(h) r2 + b(h) s2

]
iL

−‖δ‖l∞(Z)

∑
i

∣∣(r±i , s±i )∣∣2 ,
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where (r±i , s
±
i ) denotes the vector (r+

i , r
−
i , s

+
i , s

−
i ) and (δi)i∈Z satisfies

δi = O
(∥∥Ẋi − c

∥∥
∞ + ‖Xi+1 −Xi − L‖∞ + ‖Ri −R,Si − S‖∞

)
.

On the other hand, for maxi(‖R−Ri, S−Si‖∞) sufficiently small, we obtain [H(Ri, Si)]
�= 0, and we can write the Rankine–Hugoniot jump conditions in the form

ε̇i = [Li
1(r, s)]iL + Li

1(ai, bi), [Li
2(r, s)]iL = Li

2(ai, bi),

so that

[Li
2(r, s)]iL =

[(
h

3
2 + h− 3

2 − 2
)
r +

(
h

3
2 + h− 3

2 + 2
)
s
]
iL

+ μi

∣∣(r±i , s±i )∣∣ ,
and the real numbers μi are estimated by

μi = O
(∥∥Ẋi − c

∥∥
∞ + ‖Xi+1 −Xi − L‖∞ + ‖Ri −R,Si − S‖∞

)
.

Moreover, the linear operators Li
k are uniformly bounded:

|Li
k(a, b)| ≤ C|(a, b)| ∀i ∈ Z, k = 1, 2.

Choosing μi, δi sufficiently small and for

max
i∈Z

(
‖Ri, Si‖W 1,∞(0,L)

)
< m, max

i∈Z

(∣∣Ẋi

∣∣) < m, m < ∞,

we deduce the following estimate:

γ

∫
R

e−2γt‖(r, s)‖2
2 dt +

∫
R

e−2γt
∑
i

∣∣(r±i , s±i )∣∣2 + ε̇2
i + ε2

i dt

≤ C

(
1

γ

∫
R

e−2γt
∥∥(F 1, F 2

)∥∥2

2
dt +

∫
R

e−2γt
(
‖a1‖2

l2(Z) + ‖a2‖2
l2(Z)

)
dt

)

for any γ ≥ γ0 > 0, where γ0 depends on ‖δ‖l∞(Z) and m. This completes the proof
of the proposition.

3.3. The adjoint problem. In this section, we formulate the adjoint problem
of the linearized equations around the roll-wave and around an approximate solution
that is close to a roll-wave. We obtain energy estimates for that adjoint problem that
shall be useful to prove the existence of weak solutions to the linearized equations.

3.3.1. The adjoint problem of the “exact” linearized equations. We mul-
tiply the first equation (resp. second) of (20) by pi (resp. qi), integrate over (0, L)×R,
and sum on i ∈ Z:∫

R

∑
i

∫ L

0

∂t ri pi + ∂t si qi + a(h)∂x ri pi + b(h)∂x si qi dxdt

=

∫
R

∑
i

∫ L

0

F 1
i pi + F 2

i qi.

An integration by parts on the interval (0, L) and t ∈ R yields

−
∫

R

∑
i

∫ L

0

(pi,t + (a(h)pi)x)ri + (qi,t + (b(h)qi)x)si dx

−
∫

R

∑
i

[a(h)p r + b(h)q s]iL =

∫
R

∑
i

∫ L

0

F 1
i pi + F 2

i qi dxdt.
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The boundary terms can be written

−[a(h)p r + b(h)q s]iL =t
(
p±i , q

±
i

)
A
(
r±i , s

±
i

)
,

with A = diag(−a+, a−,−b+, b−). We write the Rankine–Hugoniot conditions (21)
in the form (

ε̇i
0

)
= B

(
r±i , s

±
i

)
+

(
a1,i

a2,i

)
,

with εi = 2[h]εi and B is defined by

B =

(
h+ − h

− 1
2

+ −h− + h
− 1

2
− h+ + h

1
2
+ −h− − h

− 1
2

−

2 − h
3
2
+ − h

− 3
2

+ h
3
2
− + h

− 3
2

− − 2 h
3
2
+ + h

− 3
2

+ + 2 −h
3
2
− − h

− 3
2

− − 2

)
.

We decompose B in the form B = (A1 A2) =
(
B1

B2

)
, with Ai ∈ M2(R) and

t Bi ∈ R
4. It is a straightforward computation to prove that

det(A1) =
(
h− − h

− 1
2

−

)(
h+ − h

− 1
2

+

)((
h

1
2
+ − h−1

+

)
−
(
h

1
2
− − h−1

−

))
�= 0,

provided that h+ < 1 < h−. This condition is clearly satisfied for roll-wave solutions
(otherwise, there is no roll-wave). Thus, KerB is two-dimensional (2D) and possesses
a basis of vectors: 〈tB⊥

1 , t B⊥
2 〉. We can apply Lemma 9.4, p. 255 in [1]: there exists

N1 ∈ M2,4(R) so that R
4 = KerB ⊕ KerN1 and there exist C ,N2 ∈ M2,4(R) so that

R
4 = KerC⊕KerN2 and A =t N2 B+t C N1. As a consequence, the boundary terms

can be written in the form∫
R

∑
i

t
(
p±i ,q

±
i

)
A
(
r±i , s

±
i

)

=

∫
R

∑
i

t
(
N2

(
p±i , q

±
i

))
B
(
r±i , s

±
i

)
+ t

(
C
(
p±i , q

±
i

))
N1

(
r±i , s

±
i

)

=

∫
R

∑
i

t
(
C
(
p±i , q

±
i

))
N1

(
r±i , s

±
i

)
+ t

(
N2

(
p±i , q

±
i

))( a1,i − ε̇i
a2,i

)

=

∫
R

∑
i

t
(
N2

(
p±i , q

±
i

))( a1,i

a2,i

)
dt + ∂t

(
N2

(
p±i , q

±
i

)
1

)
εi dt

+

∫
R

∑
i

t
(
C
(
p±i , q

±
i

))
N1

(
r±i , s

±
i

)
dt.

The adjoint problem of the linearized equations around a roll-wave is written in
the form

−∂t pi − ∂x(a(h)pi) = 0,
−∂t qi − ∂x(b(h)qi) = 0,

∀(x, i) ∈ (0, L) × Z,

with the boundary conditions

∂t
(
N2

(
p±i , q

±
i

)
1

)
= 0, C

(
p±i , q

±
i

)
= 0 ∀i ∈ Z.

In what follows, we compute energy estimates for solutions of the linear problem:

(31)
−∂t pi − ∂x (a(h)pi) = F 1

i ,
−∂t qi − ∂x (b(h)qi) = F 2

i
∀i ∈ Z, x ∈ (0, L),
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with the boundary equations

(32) ∂t
(
N2

(
p±i , q

±
i

)
1

)
= a1,i, C

(
p±i , q

±
i

)
= a2,i ∀i ∈ Z.

We multiply the first equation of (31) by pi and the second by qi:

−∂t

∫
R

p2 + q2 dx +
∑
i

[
a(h) p2 + b(h) q2

]
iL

= 2

∫
R

F 1 p + F 2 q dxdt

+

∫
R

∂xa(h) p2 + ∂xb(h) q2 dx,(33)

where (p, q) is the function (p, q) =
∑

i∈Z
(pi, qi)1(iL,(i+1)L. We note ã1,i, the unique

exponentially decreasing solution of ∂t ã1,i = a1,i. The boundary conditions (32) now
read

(34)

N2

(
p±i , q

±
i

)
1

= ã1,i,

N2

(
p±i , q

±
i

)
2

= N2

(
p±i , q

±
i

)
2

C
(
p±i , q

±
i

)
= a2,i.

∀ i ∈ Z,

We recall that A =t N2B +t C1, and (34) is written

A
(
p±i , q

±
i

)
=
(
N2

(
p±i , q

±
i

)
2

)t
B2 + ã1,i

tB1 +t N1 ai,2.

The matrix A is invertible with a bounded inverse so that∣∣(p±i , q±i )∣∣2 ≤ C
(∣∣N2

(
p±i , q

±
i

)
2

∣∣2 + |(ã1,i, 0, a2,i)|2
)
.

As a consequence, there remains to estimate the term N2(p
±
i , q

±
i )2. For that purpose,

we write the boundary terms in (33) in the form

−Q
(
p±i , q

±
i

)
= −

∣∣N2

(
p±i , q

±
i

)
2

∣∣2 B2 A
−1 tB2

− 2N2

(
p±i , q

±
i

)
2

⎛
⎝A−1 tB2;A

−1
(
t B,t N1

)⎛⎝ ã1,i

0
a2,i

⎞
⎠
⎞
⎠

−

⎛
⎝A−1

(
t B,t N1

)⎛⎝ ã1,i

0
a2,i

⎞
⎠ ;
(
t B,t N1

)⎛⎝ ã1,i

0
a2,i

⎞
⎠
⎞
⎠ .

Then, we deduce from (33) that

−∂t

∫
R

p2 + q2 −
∑
i

∣∣N2

(
p±i , q

±
i

)
2

∣∣2 B2 A
−1 tB2

= 2

∫
R

F 1 p + F 2 q + O
(∑

i

ã2
1,i + |a2,i|2

)

+ O
(∑

i

∣∣N2

(
p±i , q

±
i

)
2

∣∣ |(ã1,i, 0, a2,i)|
)
.

Next, we show that B2 A
−1 tB2 < 0. It is an easy commputation to prove that

B2 A
−1 tB2 = 2

((
3h+ +

1

h2
+

)
−
(

3h− +
1

h2
−

))
< 0.
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The inequality is satisfied, since we have already assumed that the Froude number F
is such that 0 < F < Fc, and thus

3h− +
1

h−
> 3h+ +

1

h+

(see the proof of Proposition 1) so that the boundary conditions are maximal dissi-
pative and obtain energy estimates on the linearized problem. We work in weighted
spaces in time: integrating on t ∈ R and using Young’s inequalities, we get for γ ≥ γ0

(γ0 depending on ‖(R,S)‖W 1,∞(0,L)) that

γ

∫
R

e2γt‖(p, q)‖2
2 dt + κ

∫
R

e2γt
∑
i

∣∣(p±i , q±i )∣∣2

≤ C

(
1

γ

∫
R

e2γt
∥∥(F 1, F 2

)∥∥2
dt +

∫
R

e2γt
∑
i

|a1,i|2 + |a2,i|2
)
,(35)

with κ,C > 0 constant.

3.3.2. The “approximate” adjoint problem. In this section, we compute
the adjoint problem of the linearized problem around an approximate solution and a
priori estimates on that linear problem. Recall that the linearized equations around
an approximate solution are given by

(36)

∂t ri +
L

Xi+1 −Xi
Λi

1∂x ri = Fi

∂t si +
L

Xi+1 −Xi
Λi

2∂x si = Gi

∀x ∈ (0, L), i ∈ Z,

with Λi
k = λk(R

i, Si) − (Ẋi + x
L (Ẋi+1 − Ẋi)). We multiply the first (resp. second)

equation of (36) by pi (resp. qi), integrate on (0, L) × R, and sum on i ∈ Z:

∫
R

∑
i

∫ L

0

Fi pi + Gi qi = −
∫

R

∑
i

∫ L

0

∂t pi ri + ∂t qi si

−
∫

R

∑
i

∫ L

0

∂x
(
Λi

1 pi
)
ri + ∂x

(
Λi

2 qi
)
si

+

∫
R

∑
i

t
(
p±i , q

±
i

)
Ai

(
r±i , s

±
i

)
,(37)

with

Ai = diag

(
− L

Xi+1 −Xi

(
λ1

(
R+

i , S
+
i

)
− Ẋi

)
,

L

Xi −Xi−1

(
λ1(R

−
i , S

−
i ) − Ẋi

)
,

− L

Xi+1 −Xi

(
λ2

(
R+

i , S
+
i

)
− Ẋi

)
,

L

Xi −Xi−1

(
λ2

(
R−

i , S
−
i

)
− Ẋi

))
.

It is a straightforward computation to prove that Ai = A+O(η), where η is given by

η = max
i∈Z

(∣∣Ẋi − x
∣∣
∞, |Xi+1 −Xi − L|∞, |(R−Ri, S − Si)|∞

)
.
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We consider the boundary terms in (37): recall that, under the assumption of Propo-
sition 2, the linearized Rankine–Hugoniot conditions can be written in the form(

ε̇i
0

)
= Bi

(
r±i , s

±
i

)
+

(
a1,i

a2,i

)
.

We can prove easily that Bi = B + O(η). Following the computation of the dual
problem in the previous section, we decompose Bi in the form Bi = (A1,i A2,i) =(
B1,i

B2,i

)
, with Ak,i ∈ M2(R) and t Bk,i ∈ R

4. It is a straightforward computation to

prove that, for η sufficiently small,

det(A1,i) = det(A1) + O(η) �= 0.

Thus, KerBi is 2D and possesses a basis of vectors: 〈tB⊥
1,i,

t B⊥
2,i〉. We can apply

Lemma 9.4, p. 255 in [1]: there exists N1,i ∈ M2,4(R) so that R
4 = KerBi ⊕ KerN1,i

and there exist Ci , N2,i ∈ M2,4(R) so that R
4 = KerCi⊕KerN2,i and Ai =t N2,i Bi+

t

Ci N1,i. At this stage, the formulation of the adjoint problem is straightforward, and
one finds

−∂tpi −
L

Xi+1 −Xi
∂x
(
Λ1
i pi
)

= 0,

− ∂tqi −
L

Xi+1 −Xi
∂x
(
Λ2
i qi
)

= 0
∀(x, i) ∈ (0, L) × Z,

with the boundary conditions

∂t
(
N2,i

(
p±i , q

±
i

)
1

)
= 0 Ci

(
p±i , q

±
i

)
= 0 ∀i ∈ Z.

Next we consider the linear problem

(38)
−∂tpi −

L

Xi+1 −Xi
∂x(Λ1

i pi) = F 1
i ,

− ∂tqi −
L

Xi+1 −Xi
∂x(Λ2

i qi) = F 2
i

∀(x, i) ∈ (0, L) × Z,

with the boundary conditions

(39) ∂t
(
N2,i(p

±
i , q

±
i )1
)

= a1,i Ci(p
±
i , q

±
i ) = a2,i ∀i ∈ Z.

Following the method of proof of the energy estimates for the adjoint problem associ-
ated to the linearization of shallow water equations around roll-waves, one can prove
the following result.

Proposition 3. Under the hypothesis 0 < F < Fc, there exists η > 0 so that for
all m > 0, there exists a constant C and γ0 depending on m and for any Lipschitz
continuous and bounded function (Ri, Si, Xi)i∈Z satisfying

max
i∈Z

(∥∥Ẋi − c
∥∥
∞ + ‖Xi+1 −Xi − L‖∞ + ‖Ri −R,Si − S‖∞

)
≤ η,

max
i∈Z

(
|∂x(Ri, Si)|∞ +

∣∣Ẋi

∣∣
∞

)
≤ m,

and for all γ ≥ γ0, (F 1, F 2) ∈ D(R/{iL}×R), (a1, a2) ∈ l2(Z,D(R)), then a solution
(pi, qi)i∈Z of (38), (39) satisfies

γ‖eγt(p, q)‖2
L2(R/{iL}×R) + ‖e−γt(p±i , q

±
i )‖2

l2(Z,L2(R))

≤ C

(
1

γ

∥∥eγt (F 1, F 2
) ∥∥2

L2(R/{iL}×R)
+ ‖eγt(a1, a2)‖l2(Z,L2(R))

)
.
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As a conclusion, we have obtained energy estimates for the linearized problem
around an approximate solution, we have formulated an adjoint problem, and we
computed estimates on that problem. This is the first step towards the well posedness
of the linearized equations.

3.4. Well posedness of the linear differential boundary value problem.
In what follows, we prove the well posedness of the linear boundary value problem
without any initial condition: The method of proof is based on a weak formulation of
the linearized equations that define an adjoint problem. Using the Riesz representation
theorem, we prove the existence of a weak solution that is proved to enjoy more reg-
ularity using a mollifying operator in the “transverse” t-direction. At this step, there
is a difference with the shock case. In that latter case, the convection matrix in front
of the x-derivatives is nonsingular, and we easily get estimates on those derivatives.
In the case of roll-waves, the matrix that is in front of the x-derivatives is singular in
the neighborhood of the sonic point. As a consequence, we also need a regularization
step in the interior equations in the neighborhood of the sonic point. In what follows,
the presentation of the well posedness results for a linearized problem follows the pre-
sentation made in [1] for the persistence of shocks: in the proofs of those results, we
shall emphasize the difference between the shock case and the roll-wave case.

In order to simplify the notations, we introduce Λ̃k
i = L

Xi+1−Xi
Λk
i and denote

Ω = R \ {iL, i ∈ Z} × R. We shall also note L2
γ(Ω) the Hilbert space of functions f

so that e−γtf ∈ L2(Ω). We first prove the following result (see Theorem 12.4, p. 360
in [1] for the shock case).

Proposition 4. There exists η > 0 and γ0 = γ0(m) such that if

max
i∈Z

(∥∥Ẋi − c
∥∥
∞, ‖Xi+1 −Xi − L‖∞,

∥∥Ri −R
∥∥
∞,
∥∥Si − S

∥∥
∞

)
≤ η,

max
i∈Z

(∥∥Ẋi+1 − Ẋi

∥∥
∞, ‖Ri‖W 1,∞ , ‖Si‖W 1,∞

)
≤ m,

then for all γ ≥ γ0, f ∈ L2
γ(Ω)2, g ∈ l2(Z, L2

γ(R))2, there is one and only one

((r, s), ε) ∈ L2
γ(Ω)2 × l2(Z, H

1
2
γ (R)) such that

L(r, s) =

{
∂t ri + Λ̃1

i ∂x ri = f1
i ,

∂t si + Λ̃2
i ∂x si = f2

i

∀ i ∈ Z, (x, t) ∈]0, L[×R

and satisfies the boundary conditions(
ε̇i
0

)
= Bi

(
r±i , s

±
i

)
+

(
g1
i

g2
i

)
∀ i ∈ Z, t ∈ R.

Furthermore, (r±i , s
±
i )i∈Z ∈ l2(Z, L2

γ(R)4) and ε ∈ l2(Z, H1
γ(R)), and we have the

estimate

γ‖(r, s)‖2
L2

γ(Ω)2 +
∥∥ (r±, s±) ∥∥2

l2(Z,L2
γ(R)4)

+ ‖ε‖2
l2(Z,H1

γ(R))

≤ C

(
1

γ
‖f‖2

L2
γ(Ω) + ‖g‖2

l2(Z,L2
γ(R))

)
.

Proof. Let us first prove the existence of a weak solution with a duality argument.
With the notations of Proposition 3, denote E the space of functions (p, q) ∈ D(Ω)2

so that

∂t N
t
2,i(p

±
i , q

±
i )1 − γ N t

2,i(p
±
i , q

±
i )1 = 0, Ci(p

±
i , q

±
i ) = 0.
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We define the adjoint operator L∗
γ of Lγ = L + γ Id as

L∗
γ(p, q) =

⎧⎨
⎩
−∂t pi − ∂x

(
Λ̃1
i pi

)
+ γ pi,

−∂t qi − ∂x

(
Λ̃2
i qi

)
+ γ qi.

Let (f, g) ∈ L2(Ω)2 × l2(Z, L2(R)) and define a bounded linear form l on L∗
γE as

l
(
L∗
γ(p, q)

)
=
∑
i∈Z

∫
R

∫ L

0

pi f
1
i + qi f

2
i dx +

(
N2,i(p

±
i , q

±
i )
)( g1

i

g2
i

)
dt.

We deduce from Proposition 3 on the adjoint problem that ∀(p, q) ∈ E ,∣∣l (L∗
γ(p, q)

)∣∣ ≤ C(‖f‖, ‖g‖)
(
‖(p, q)‖L2(Ω) + ‖(p±, q±)‖l2(Z,L2(R))4

)
≤ C

(
1

γ
‖f‖ +

1
√
γ
‖g‖
)
‖L∗

γ(p, q)‖L2(Ω).

Therefore, by the Hahn–Banach theorem, the linear form l extends to a continuous
form on L2(Ω)2 and using the Riesz representation theorem, there exists (r, s) ∈
L2(Ω)2 so that

l
(
L∗
γ(p, q)

)
=
∑
i∈Z

∫
R

∫ L

0

(ri, si)
t L∗

γ(pi, qi)dxdt ∀(p, q) ∈ E .

Then, by the definition of l, we find that

∑
i∈Z

∫
R

∫ L

0

(ri, si)
t L∗

γ(pi, qi) −
(
f1
i , f

2
i

)t
(pi, qi)dxdt = 0 ∀(p, q) ∈ D(Ω)2,

and Lγ(r, s) = (f1, f2) in the sense of distribution. For all (p, q) ∈ E , one can prove
that

∑
i∈Z

∫
R

∫ L

0

(ri, si)
t.L∗

γ(pi, qi) − Lγ(ri, si)
t.

(
pi
qi

)
dx dt

=
∑
i∈Z

∫
R

N2,i(p
±
i , q

±
i )t.

(
g1
i

g2
i

)
dt

=
∑
i∈Z

∫
R

N2,i(p
±
i , q

±
i )t.Bi

(
r±i
s±i

)
dt.

As a consequence, we find that

(40)
∑
i∈Z

∫
R

N2,i(p
±
i , q

±
i )t

(
Bi

(
r±i , s

±
i

)
−
(

g1
i

g2
i

))
dt = 0 ∀(p, q) ∈ E .

By density, this property holds true for all (p, q) ∈ H1(Ω) such that

Ct
i (p

±
i , q

±
i ) = 0, ∂t N2,i(p

±
i , q

±
i )1 − γ N2,i(p

±
i , q

±
i )1 = 0.
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Let (θ1, θ2) ∈ l2(Z, H
1
2 (R)2) and (p±i , q

±
i )i∈Z ∈ l2(Z, H

1
2 (R)2) so that

N t
2,i(p

±
i , q

±
i ) =

(
θ1
i

θ2
i

)
, Ct

i (p
±
i , q

±
i ) =

(
0
0

)
∀i ∈ Z, t ∈ R.

The sequence (p±i , q
±
i )i∈Z exists, is unique, and lies in l2(Z, H

1
2 (R)2), since the matrix

(N2,i, Ci) is invertible under the assumption of Proposition 3. Now with a standard
trace-lifting argument, choose (p, q) ∈, H1(Ω) so that p(iL)± = p±i , q(iL)± = q±i .

Then we deduce from (40) that for all θ ∈ l2(Z, H
1
2 (R)2) such that

dθ1
i

dt − γθ1
i = 0,

∑
i∈Z

〈(
θ1
i

θ2
i

)
, Bi

(
r±i , s

±
i

)
−
(

g1
i

g2
i

)〉
(
H

1
2 (R),H− 1

2 (R)
) = 0.

Thus, there exists ε ∈ l2(Z, H
1
2 (R)) so that(

ε̇i + γεi
0

)
= Bi

(
r±i , s

±
i

)
+

(
g1
i

g2
i

)
∀i ∈ Z.

Let us now prove that (r, s), ε is a strong solution. This is just a matter of smoothing
the solution and using the estimates of the first part. We consider a mollifying operator
Rt

δ in the t-direction, and we define a regularization (rδ, sδ), εδ of (r, s, ε). Let us first
deal with the equation on s. Denote sδi = Rt

δ si, we easily obtain

∂t s
δ
i + Λ̃2

i ∂x s
δ
i = Λ̃2

i

(
Rt

δ

(
f2
i

Λ̃2
i

)
+

[
1

Λ̃2
i

∂t, R
t
δ

]
si

)
.

Due to the presence of a sonic point xi(t) so that Λ̃i
1(xi(t), t) = 0, we cannot directly

do the same regularization on ri. In that case, we do not obtain any information
on the derivatives of ri in the x-direction. Nevertheless, under the assumptions of
Proposition 3, there exists L1 > 0 and a constant C(m) so that for all i ∈ Z, iL+2L1 ≤
xi(t) ≤ (i + 1)L − 2L1 and |Λ̃i

1(x, t)|−1 ≤ C(m) ∀ x ∈ [0, L1]
⋃

[L − L1, L]. Let
φ ∈, C∞

c (0, L) so that φ = 1 on [2L1, L− 2L1] and φ = 0 on [0, L1]
⋃

[L− L1, L] and
define φ = 1 − φ. We multiply the equation on ri by φ. We find

∂t(φ ri) + Λ̃1
i ∂x(φ ri) = φf1

i + Λ̃1
i ∂xφ ri.

Then we regularize that equation the same way we did with the equation on si:

∂t (φ ri)
δ + Λ̃1

i ∂x (φ ri)
δ = Λ̃1

i

(
Rt

δ

(
φ f1

i

Λ̃1
i

+ ∂xφ ri

)
+

[
1

Λ̃1
i

∂t, R
t
δ

]
(φ ri)

)
.

We multiply the equation on ri by (1−φ) and choose a mollifying operator Rx
δ in the

x direction with δ ≤ L1:

∂t R
x
δ ((1 − φ)ri) + Λ̃1

i ∂x R
x
δ ((1 − φ)ri) = Rx

δ

(
(1 − φ)f i

1 − Λ̃1
i ∂xφ ri1

)
+
[
Λ̃1
i ∂x, R

x
δ

]
((1 − φ)ri).

We define rδ so that rδ|[iL,(i+1)L] = Rt
δ(φ ri) + Rx

δ ((1 − φ)ri). By construction, both

rδ and sδ lie in H1(Ω). On the other hand, we find that rδ, sδ, and εδ satisfy the
boundary conditions(

ε̇δi
0

)
= Bi

(
rδ,±i , sδ,±i

)
+

(
Rt

δ g
1
i

Rt
δ g

2
i

)
+
[
Bi, R

t
δ

] (
r±i , s

±
i

)
.
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We can apply Proposition 2 as follows:

γ
∥∥ (rδ, sδ) ∥∥2

L2
γ(Ω)2

+
∥∥ (rδ,±, sδ,±) ∥∥2

l2(Z,L2
γ(R)4)

+
∥∥εδ∥∥2

l2(Z,H1
γ(R))

≤ C

(
1

γ

∥∥fδ
∥∥2

L2
γ(Ω)

+
∥∥gδ∥∥2

l2(Z,L2
γ(R))

)
,(41)

with

fδ
i,1 = Rx

δ

(
(1 − φ)f1

i − Λ̃1
i ∂xφ ri

)
+
[
Λ̃1
i ∂x, R

x
δ

]
((1 − φ)ri)

+ Λ̃1
i

(
Rt

δ

(
φ f1

i

Λ̃1
i

+ ∂xφ ri

)
+

[
1

Λ̃1
i

∂t, R
t
δ

]
(φ ri)

)
,

fδ
i,2 = Λ̃2

i

(
Rt

δ

(
f2
i

Λ̃2
i

)
+

[
1

Λ̃2
i

∂t, R
t
δ

]
(s)

)

gδi =

(
Rt

δ g
1
i

Rt
δ g

2
i

)
+
[
Bi, R

t
δ

] (
r±i , s

±
i

)
.

One can prove the following convergence properties (see [1] for more details):

lim
δ→0

∥∥fδ − f
∥∥
L2

γ(Ω)
+
∥∥gδ − g

∥∥
l2(Z,L2

γ(R))
= 0.

By linearity of the equations, these estimates also apply to

rδ − rδ
′
, sδ − sδ

′
, εδ − εδ

′
.

Together with the convergence properties, this shows that rδ,±, sδ,±, and εδ are, re-
spectively, Cauchy sequences in l2(Z, L2

γ(R)4) and l2(Z, H1
γ(R)). By uniqueness of the

limit in the sense of distribution, the sequences (rδ,±, sδ,±) and εδ converge to r±, s±,
and ε in these norms. Then passing to the limit δ → 0 in (41), one finds

γ‖(r, s)‖2
L2

γ(Ω)2 +
∥∥ (r±, s±) ∥∥2

l2(Z,L2
γ(R)4)

+ ‖ε‖2
l2(Z,H1

γ(R))

≤ C

(
1

γ
‖f‖2

L2
γ(Ω) + ‖g‖2

l2(Z,L2
γ(R))

)
.

This completes the proof of the proposition.
We can prove more regularity on the solution (r, s, ε) under the condition that f, g,

and the coefficients Ri, Si, Xi enjoy more regularity. Similarly to the L2 estimates,
we introduce weighted Sobolev norms:

‖u‖Hk
γ

=
∑
|α|≤k

γ2(k−|α|)‖e−γtu‖L2 .

The regularity result on (r, s, ε) is formulated as follows (see Theorem 12.5, p. 364 in
[1] in the shock case).

Proposition 5. Under the assumptions of Proposition 4 and that Ri, Si, Xi

enjoy more regularity,

‖R−Ri, S − Si‖l2(Z,Hk((0,L)×R)) ≤ μ,

‖R±
i −R±, S±

i − S±‖l2(Z,Hk(R)) ≤ μ,

‖Ẋi − c,Xi+1 −Xi − L‖l2(Z,Hk(R)) ≤ μ,
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with k > 2, the solution (r, s, ε) found in Proposition 4 is such that (r, s) ∈ Hk(Ω),
(r±, s±) ∈ l2(Z, Hk(R)), and ε ∈ l2(Z, Hk+1(R)) and, for any γ ≥ γk(μ) ≥ 1, satisfy
the estimate

γ‖(r, s)‖2
Hk

γ(Ω) +
∥∥(r±, s±)∥∥2

l2(Z,Hk
γ(R))

+ ‖ε‖2
l2(Z,Hk+1

γ (Ω))

≤ C(k, μ)

(
1

γ
‖f‖2

Hk
γ(Ω) + ‖g‖2

l2(Z,Hk
γ(R))

)
.(42)

Proof. We prove that proposition in two steps. The first step is to extend the a
priori L2 estimates obtained in Proposition 2. For all (r, s) and ε compactly supported
and smooth functions, the following estimate holds true:

γ‖(r, s)‖2
Hk

γ(Ω) +
∥∥(r±, s±)∥∥2

l2(Z,Hk
γ(R))

+ ‖ε‖2
l2(Z,Hk+1

γ (Ω))

≤ C(k, μ)

(
1

γ
‖f‖2

Hk
γ(Ω) + ‖g‖2

l2(Z,Hk
γ(R))

)
,(43)

where f = L(r, s) and g is defined by

gi =

(
ε̇i
0

)
−Bi

(
r±i , s

±
i

)
.

In order to prove that estimate, we decompose in the form ri = φ ri + (1− φ)ri, with
φ defined in Proposition 4. Deriving the equation satisfied by φri, si in the t-direction
and applying Proposition 2, we get estimates for derivatives in the t-direction. We
recover the derivatives in the x-direction with

∂x(φri) =
1

λ̃1
i

(
f1
i + ∂xφri − ∂t(φri)

)
, ∂xsi =

1

Λ̃2
i

(
f2
i − ∂tsi

)
.

The obtention of estimates for (1−φ)ri is straightforward, since it is trace-free on the
discontinuity points iL, i ∈ Z.

Now we come back to the solution obtained in Proposition 4. The next step is
to prove enough regularity on (r, s, ε) in order to apply the a priori estimate (43).
We first consider that the coefficients Ri − R,Si − S,Xi − (ct + iL) are smooth and
compactly supported: the regularity of (r, s, ε) is then obtained by induction (see
[1, p. 366] for the details of the proof). We then construct a family (rδ, sδ, εδ) of
compactly supported functions that converges to (r, s, ε) in Sobolev Hk

γ norms. The

regularized functions (rδ, sδ, εδ) satisfy the a priori estimate (43) and passing to the
limit δ → 0 as in Proposition 4, we prove that (r, s, ε) satisfies the energy estimates
(42). For the more general case, Ri−R,Si−S,Xi−(ct+iL) lying in Sobolev spaces, it
is just a matter of smoothing the coefficients and passing to the limit. This completes
the proof of that proposition.

Next, we consider the well posedness of the linearized equation with zero initial
data. Let T ∈ R, IT the interval IT =]−∞, T ], and ΩT = R \ {iL, i ∈ Z}× IT . One
can prove that, under the assumptions of Proposition 4 and for all f ∈ L2(R\{iL, i ∈
Z} × IT ,R

2) and g ∈ l2(Z, L2(IT )2) such that f|t<0 = 0, g|t<0 = 0, there exists a
unique function (r, s) ∈ L2(ΩT ) and ε ∈ l2(Z, H1(IT )) so that

∂t ri + Λ̃1
i ∂x ri = f1

i ,

∂t si + Λ̃2
i ∂x si = f2

i

∀ i ∈ Z, (x, t) ∈]0, L[× IT ,
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and (
ε̇i
0

)
= Bi

(
r±i , s

±
i

)
+

(
g1
i

g2
i

)
∀ i ∈ Z, t ∈ IT .

Furthermore, we have r|t<0 = s|t<0 = 0, ε|t<0 = 0, (r±i , s
±
i )i∈Z belongs l2(Z, L2

γ(IT )4),
and the solution (r, s, ε) satisfies the following estimate,

γ‖(r, s)‖2
L2

γ(ΩT )2 +
∥∥(r±, s±)∥∥2

l2(Z,L2
γ(IT )4)

+ ‖ε‖2
l2(Z,H1

γ(IT ))

≤ C

(
1

γ
‖f‖2

L2
γ(ΩT ) + ‖g‖2

l2(Z,L2
γ(IT ))

)
.

In the case of smoother coefficients, the solution (r, s, ε) of the linearized problem
with zero initial data enjoys more regularity. One can prove the following result that
shall be useful in the proof of the well posedness of the Cauchy problem for the full
nonlinear problem.

Proposition 6. Assume that the hypotheses of Proposition 4 are satisfied, and
the coefficients enjoy the following regularity properties:

‖(Ri −R,Si − S)‖l2(Z,Hk((0,L)× IT )) ≤ μ,∥∥ (R±
i −R±, S±

i − S±) ∥∥
l2(Z,Hk(IT ))

≤ μ,∥∥Ẋi − c,Xi+1 −Xi − L
∥∥
l2(Z,Hk(IT ))

≤ μ.

Furthermore, suppose that, for some τ < T ,

Ri −R|t<τ = Si − S|t<τ = 0,
(
Ẋi − c,Xi+1 −Xi − L

)
|t<τ

= 0.

Then, for any f ∈ Hk(ΩT ) and g ∈ l2(Z, Hk(IT )) such that f|t<0 = 0, g|t<0 =

0, the solution (r, s) belongs to Hk(ΩT ), (r±, s±) belongs to l2(Z, Hk(IT )) and ε to
l2(Z, Hk+1(IT )) with the estimate

1

T
‖(r, s)‖2

Hk(ΩT ) +
∥∥r±, s±∥∥

l2(Z,Hk(IT ))
+ ‖ε‖2

l2(Z,Hk+1(IT ))

≤ C(k, μ)
(
T ‖f‖2

Hk(ΩT ) + ‖g‖2
l2(Z,Hk(IT ))

)
.

4. The nonlinear problem. In this section, we solve the full nonlinear Cauchy
problem with prescribed initial data (r0, s0, X0). To actually solve that problem, we
need compatibility conditions on (r0, s0, X0). Under suitable compatibility conditions,
we shall prove the existence of an approximate solution (r(a), s(a), X(a)) on a time
interval (0, T 0) for a sufficiently small interval. We can prove the well posedness of
the full Cauchy problem through an iterative scheme based on the approximate linear
problem introduced in the previous section. That scheme is proved to converge to a
solution of the Cauchy problem with the energy estimates obtained previously.

4.1. Construction of an approximate solution. In what follows, we shall
construct an approximate solution of the shallow water equations coupled with the
Rankine–Hugoniot jump condition for an initial data (r0, s0, X0) that satisfies some
compatibility conditions. In what follows, we write compatibility conditions for the
shallow water equations.
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4.1.1. Compatibility conditions. After the change of variable introduced in
section 2, the shallow water system is written as

(44)
∂t ri + Λ1

i ∂x ri = Q(ri, si),
∂t si + Λ2

i ∂x s
i = Q(ri, si)

∀(x, i) ∈ (0, L) × Z,

where the Λk
i are defined by

Λk
i =

L

Xi+1 −Xi

(
λk(ri, si) −

(
Ẋi +

x

L

(
Ẋi+1 − Ẋi

)))
,

whereas the Rankine–Hugoniot jump conditions are given by

(45) Ẋi = F
(
r+
i , r

−
i , s

+
i , s

−
i

)
, G

(
r+
i , r

−
i , s

+
i , s

−
i

)
= 0 ∀i ∈ Z,

with

F
(
r±i , s

±
i

)
=
[
(r − s)4 + 8(r − s)2(r + s)2

]
iL

[
(r − s)2

]
iL

− 8
[
(r + s)(r − s)2

]2
iL

,

G
(
r±i , s

±
i

)
=

1

2

[
(r + s)(r − s)2

]
iL

[
(r − s)2

]−1

iL
.

Suppose that both (r, s) and X are smooth enough: applying Faa di Bruno’s formula
to the jump conditions (45), we obtain

(46)

dp+1Xi

dtp+1
=

p∑
i=1

∑
i1+···+im=p

ci1...imdmF
(
r±i , s

±
i

)
.

(
di1

dti1

(
r±i
s±i

)
, . . . ,

dim

dtim

(
r±i
s±i

))
.

Furthermore, we derive the interior equations (44) with the Faa di Bruno formula:

(47)

∂p+1
t ri = ∂p

t Q(ri, si) −
p∑

l=0

Cl
p ∂

l
t Λ1

i ∂x∂
p−l
t ri,

∂p+1
t si = ∂p

t Q(ri, si) −
p∑

l=0

Cl
p ∂

l
t Λ2

i ∂x∂
p−l
t si.

It is a straightforward computation to prove that

∂p
t Q(ri, si) =

p∑
m=1

∑
i1+···im=p

ci1...imdmQ(ri, si).

(
∂i1
t

(
ri
si

)
, . . . , ∂im

t

(
ri
si

))
.

Moreover, for l = 1, . . . , p− 1, we easily obtain

∂l
tΛ

k
i =

l∑
m=1

∑
i1+···+im=l

ci1...imdm1,4Λ
k
i .

⎛
⎜⎜⎝∂i1

t

⎛
⎜⎜⎝

ri
si
Xi

Xi+1

⎞
⎟⎟⎠ , . . . , ∂im

t

⎛
⎜⎜⎝

ri
si
Xi

Xi+1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

+
l∑

m=1

∑
i1+···+im=l

ci1...imdm5,6Λ
k
i .

(
∂i1
t

(
Ẋi

Ẋi+1

)
, . . . , ∂im

t

(
Ẋi

Ẋi+1

))
,

where d1,4Λ
k
i denotes the differential of Λk

i with respect to (r, s,Xi, Xi+1) and d5,6Λ
k
i

denotes the differential with respect to (Ẋi, Ẋi+1). Here, the derivatives in Xi are no
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larger than p. For l = p, one finds

∂p
t Λi

k =

p∑
m=1

∑
i1+···+im=p

ci1...imdm1,4Λk.

⎛
⎜⎜⎝∂i1

t

⎛
⎜⎜⎝

ri
si
Xi

Xi+1

⎞
⎟⎟⎠ , . . . , ∂im

t

⎛
⎜⎜⎝

ri
si
Xi

Xi+1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

+

p∑
m=2

∑
i1+···+im=p

ci1...imdm5,6Λk.

(
∂i1
t

(
Ẋi

Ẋi+1

)
, . . . , ∂im

t

(
Ẋi

Ẋi+1

))

+∇5,6Λk.∂
p+1
t

(
Xi

Xi+1

)
.

The derivatives of Xi up to order p + 1 are replaced by the expressions found in
(46) involving derivatives of order j ≤ p. Following the definitions of compatibility
conditions introduced in [1, p. 370] (see the definition of “compatibility conditions to
order s”), we define the compatibility conditions for a pair of initial data (r0, s0, X0).

We fix (r0, s0, X0) an initial data and define the functions (rp, sp) and Xp so that

(48)

X1,i = F
(
r±0,i, s

±
0,i

)
,

r1,i = Q(r0,i, s0,i) − Λ1
0,i∂x r0,i,

s1,i = Q(r0,i, s0,i) − Λ2
0,i∂x s0,i,

and

Xp+1,i =

p∑
i=1

∑
i1+···+im=p

ci1...imdm F
(
r±0,i, s

±
0,i

)
.

((
r±i1,i
s±i1,i

)
, . . . ,

(
r±im,i

s±im,i

))
,

rp+1,i =

p∑
m=1

∑
i1+···im=p

ci1...imdmQ(r0,i, s0,i).

((
ri1,i
si1,i

)
, . . . ,

(
rim,i

sim,i

))

−
p∑

l=0

Cl
p Λ1

l,i∂x rp−l,i,

sp+1,i =

p∑
m=1

∑
i1+···im=p

ci1...imdmQ(r0,i, s0,i).

((
ri1,i
si1,i

)
, . . . ,

(
rim,i

sim,i

))

−
p∑

l=0

Cl
p Λ2

l,i∂x sp−l,i,(49)

where Λk
l,i are defined, for any l = 0, . . . , p− 1, by

Λk
0,i =

L

X0,i+1 −X0,i

(
λk(r0,i, s0,i) −

(
X1,i +

x

L
(X1,i+1 −X1,i)

))
,

Λk
l,i =

l∑
m=1

∑
i1+···+im=l

ci1...imdm1,4Λ
k
i .

⎛
⎜⎜⎝
⎛
⎜⎜⎝

ri1,i
si1,i
Xi1,i

Xi1,i+1

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

rim,i

sim,i

Xim,i

Xim,i+1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

+
l∑

m=1

∑
i1+···+im=l

ci1...imdm5,6Λ
k
i .

((
Xi1+1,i

Xi1+1,i+1

)
, . . . ,

(
Xim+1,i

Xim+1,i+1

))
,



1810 PASCAL NOBLE

and, for l = p,

Λk
p,i =

p∑
m=1

∑
i1+···+im=p

ci1...imdm1,4Λ
k
i .

⎛
⎜⎜⎝
⎛
⎜⎜⎝

ri1,i
si1,i
Xi1,i

Xi1,i+1

⎞
⎟⎟⎠ , . . . ,

⎛
⎜⎜⎝

rim,i

sim,i

Xim,i

Xim,i+1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

+

p∑
m=2

∑
i1+···+im=p

ci1...imdm5,6Λ
k
i .

((
Xi1+1,i

Xi1+1,i+1

)
, . . . ,

(
Xim+1,i

Xim+1,i+1

))

+∇5,6Λ
k
i .

(
Xp+1,i

Xp+1,i+1

)
.

For the definition of the sequence (rp, sp, Xp), we have not used the jump condition
G(r±i , s

±
i ) = 0. In order to obtain a solution to the Cauchy problem, the sequence

(rp, sp, Xp) shall satisfy some compatible conditions. We define here those compati-
bility conditions.

Definition 1. A pair of initial data (r0, s0) and X0 is said to be compatible up
to order s if, for all p ∈ {0, . . . , s}, the functions (rp, sp, Xp) defined by (49) satisfy

0 =

p∑
m=1

∑
i1+···+im=p

ci1,...,imdm G
(
r±0,i, s

±
0,i

)
.

((
r±i1,i
s±i1,i

)
, . . . ,

(
r±im,i

s±im,i

))
.

4.1.2. Approximate solution. The purpose of this section is to prove that,
under the compatibility conditions defined above, one can construct an approximate
solution of the full Cauchy problem. Denote Ω = R \ {iL, i ∈ Z}. We show the
following result.

Proposition 7. Let (r0, s0) and X0 be an initial data so that (r0, s0) ∈ (R,S) +

Hm+ 1
2 (Ω) and (X0,i − iL)i∈Z ∈ l2(Z), with m > 2 an integer that is compatible up to

order m− 1 and such that

‖(r0, s0) − (R,S)‖L∞(Ω) ≤ ρ, max
i∈Z

(
|X0,i+1 −X0,i − L|

)
≤ ρ.

Then for ρ sufficiently small, there exists T0 > 0 and

(ra, sa) ∈ (R,S) + Hm+1(Ω), (Xa,i − (ct + iL)) ∈ l2
(
Z, Hm+1(R)

)
,

with both (ra, sa) − (R,S) and Xa,i − (ct + iL) vanishing for |t| ≥ 2T0, so that
(ra, sa)|t=0 = (r0, s0), Xa,i(0) = X0,i and for all (x, t) ∈ Ω × [−T0, T0],

‖(ra − r0, sa − s0)‖ ≤ ρ

2
, |Xa,i −X0,i| ≤

ρ

2
.

Furthermore, the functions fa and ga defined as

f1
a,i = ∂t ra,i + Λ1

a,i∂x ra,i −Q(ra,i, sa,i),

f2
a,i = ∂t sa,i + Λ2

a,i∂x sa,i −Q(ra,i, sa,i),

and g1
a,i = Ẋa,i − F (r±a,i, s

±
a,i), g2

a,i = G(r±a,i, s
±
a,i) are such that

∂p
t fa|t=0 = 0, ∂p

t ga|t=0 = 0 ∀p ∈ {0, . . . ,m− 1}.
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The function fa belongs to Hm(Ω × R), ga lies in l2(Z, Hm(R)), and both vanish for
|t| ≥ 2T0.

Proof. For k = 1 . . .m − 1, we construct a sequence (rk, sk) ∈ Hm+ 1
2−k(Ω), Xk

so that X1,i − c ∈ l2(Z) and Xk,i ∈ l2(Z) (k ≥ 2) that satisfies the compatibility
conditions (49). Then, by trace lifting, we find (ra, sa) ∈ (R,S) + Hm+1(Ω × R) and
Xa ∈ (ct + iL) + l2(Z, Hm+1(R)) so that

‖ra −R, sa − S‖Hm+1(Ω×R) ≤ C‖r0 −R, s0 − S‖Hm+1(Ω),
‖Xa − (ct + iL)‖l2(Z,Hm+1(R)) ≤ C‖X0 − iL‖l2(Z),

and ∂k
t (ra,i, sa,i)|t=0 = (rk,i, sk,i), ∂

k
t (Xa,i)|t=0 = Xk,i∀k ∈ {0, . . . ,m−1}. By Sobolev

embeddings, we find T0 > 0 so that

‖(ra − r0, sa − s0)‖ ≤ ρ

2
, ‖Xa −X0‖ ≤ ρ

2

for |t| ≤ T0. In order to obtain functions fa, ga that vanish for |t| ≥ 2T0, we choose
φ ∈ D(R) a cut-off function so that φ(t) = 1 if |t| ≤ T0 and φ(t) = 0 if |t| ≥
2T0. Then, substitute (ra, sa) and Xa, respectively, by φ(ra, sa) + (1 − φ)(R,S) and
φXa,i + (1 − φ)(ct + iL). Then, one can prove that fa belongs to Hm(Ω × R) and
g(a) lies in l2(Z, Hm(R)), and both vanish for |t| ≥ 2T0. Finally, according to the
compatibility conditions that are satisfied up to order m− 1, the derivatives of these
functions vanish at t = 0. The proof of the proposition is then completed.

4.2. The fixed point argument. In this section, we prove the main theorem
of this paper on the persistence of roll-waves.

Theorem 2. Assume that the Froude number F satisfies 0 < F < Fc. There
exists ρ > 0 so that for any (r0, s0) ∈ (R,S) + Hm+ 1

2 (Ω), with m > 2 and (X0,i −
iL)i∈Z ∈ l2(Z), compatible up to order m− 1 and such that

‖(r0, s0) − (R,S)‖L∞(Ω) ≤ ρ, ‖X0,i+1 −X0,i − L‖l∞(Z) ≤ ρ,

there is T > 0 and a solution (r, s) and X of the shallow water system (8) coupled
with the Rankine–Hugoniot jump conditions (9) so that

(r, s)|t=0 = (r0, s0), Xi(t = 0) = X0,i,

and (r, s) belongs to (R,S) + Hm(Ω × [0, T ]), whereas (Xi − (ct + iL))i∈Z lies in
l2(Z, Hm+1(0, T )).

Proof. The method of proof is based on an interative scheme: We search the
solution in the form (r, s) = (ra, sa) + (r, s), X = Xa + ε, where (ra, sa, Xa) is
the approximate solution associated to the initial data (r0, s0, X0) and defined in
Proposition (7). For that purpose, we introduce the iterative scheme r(0) = s(0) = 0,
ε(0) = 0, and (r(k), s(k)), ε(k) is defined inductively as the unique solution, with zero
initial data, of the system

(50) ∂tr
(k)
i + Λ

1,(k−1)
i ∂xr

(k)
i = f

1,(k−1)
i , ∂ts

(k)
i + Λ

2,(k−1)
i ∂xs

(k)
i = f

2,(k−1)
i ,

where the functions f
n,(k−1)
i , n = 1, 2 are defined by

f
1,(k−1)
i = Q

(k−1)
i − ∂tr

(k−1)
i − Λ

1,(k−1)
i ∂xr

(k−1)
i ,

f
2,(k−1)
i = Q

(k−1)
i − ∂ts

(k−1)
i − Λ

2,(k−1)
i ∂xs

(k−1)
i ,
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with Q
(k)
i = Q(ra,i + r(k), sa,i + s(k)) and

Λ
n,(k)
i =

L

Xa,i+1 −Xa,i + ε
(k)
i+1 − ε

(k)
i

(
λn
(
ra,i + r(k)sa,i + s(k)

)

−
(
Ẋa,i + ε̇

(k)
i +

x

L

(
Ẋa,i+1 − Ẋa,i + ε̇

(k)
i+1 − ε̇

(k)
i

)))
.

Equations (50) are supplemented by boundary conditions that read

(51)

(
ε̇
(k)
i

0

)
= B

(k−1)
i

(
r
(k),±
i , s

(k),±
i

)
+

(
g
1,(k−1)
i

g
2,(k−1)
i

)
,

where the functions g
n,(k)
i are defined by(

g
1,(k)
i

g
2,(k)
i

)
=

⎛
⎝ −Ẋa,i + F

(
r±a,i + r

(k),±
i , s±a,i + s

(k),±
i

)
G
(
r±a,i + r

(k),±
i , s±a,i + s

(k),±
i

)
⎞
⎠−B

(k)
i

(
r
(k),±
i , s

(k),±
i

)
.

We estimate the nonlinear terms f
n,(k−1)
i and g

n,(k−1)
i . One can prove that there

exists M > 0 so that for any T ∈ (0, T0), and if r(k−1), s(k−1) belongs to Hm(Ω)×IT ),
r(k−1),±, s(k−1),± lies in l2(Z, Hm(IT )) and ε(k−1) to l2(Z, Hm+1(IT )), vanish for t < 0
and are such that

(52)

∥∥r(k−1), s(k−1)
∥∥
Hm(Ω×IT )

≤ M,∥∥r(k−1),±, s(k−1),±∥∥
l2(Z,Hm(IT ))

≤ M,∥∥ε(k−1)
∥∥
l2(Z,Hm+1(IT ))

≤ M,

then fn,(k−1) lies in Hm(Ω× IT ), gn,(k−1) in l2(Z, Hm(IT )) and satisfy the estimates∥∥fn,(k−1)
∥∥
Hm(Ω×IT )

≤ C(M),
∥∥gn,(k−1)

∥∥
l2(Z,Hm(IT ))

≤ C(M)T + η(T ),

with η(T ) → 0 as T → 0 and M �−→ C(M) is a continuous function. The function
(r(0), s(0)), ε(0) satisfies all the assumptions. We can apply the Proposition 6: There
exists a unique solution (r(1), s(1)) ∈ Hm(Ω×IT ) and ε(1) ∈ l2(Z, Hm+1(IT )) solution
of (50), (51) with k = 1. Moreover, diminishing T if necessary, one can prove, using
the energy estimate in Proposition 6, that∥∥r(1), s(1)

∥∥
Hm(Ω×IT )

≤ M,∥∥r(1),±, s(1),±∥∥
l2(Z,Hm(IT ))

≤ M,∥∥ε(1)
∥∥
l2(Z,Hm+1(IT ))

≤ M.

By induction, one can construct (r(k), s(k)) ∈ Hm(Ω×IT ) and ε(k) ∈ l2(Z, Hm+1(IT ))
that satisfy (52) for k ≥ 1. Now using the fact that W 1,∞(R) ↪→ Hm(R), we obtain
uniform estimates on ‖(r(k), s(k)‖W 1,∞(R). We write the equations satisfied by (r(k)−
r(k−1), s(k) − s(k−1)) that is denoted u(k) in what follows, and ε(k) − ε(k−1). Using the
L2 energy estimate of Proposition 4, we prove that, for T sufficiently small,∥∥u(k+1)

∥∥
L2(Ω×IT )

≤ 1

2

∥∥u(k)
∥∥
L2(Ω×IT )

,

∥∥u(k+1),±∥∥
l2(Z,L2(IT ))

≤ 1

2

∥∥u(k),±∥∥
l2(Z,L2(IT ))

,

∥∥ε(k+1) − ε(k)
∥∥
l2(Z,H1(IT ))

≤ 1

2

∥∥ε(k) − ε(k−1)
∥∥
l2(Z,H1(IT ))

.
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Then, (r(k), s(k)), (r(k),±, s(k),±), and ε(k) are, respectively, Cauchy sequences in
L2(Ω × IT ), l2(Z, L2(IT )), and l2(Z, H1(IT )) and converge in that space. We denote
r, s, and ε the limits of (r(k), s(k)) and ε(k) as k → ∞. Necessarily, (r, s) lies in
Hm(Ω × IT ), (r±, s±) in l2(Z, Hm(IT )), and ε belongs to l2(Z, Hm+1(IT )). By stan-
dard interpolation arguments, we obtain strong convergence in appropriate Sobolev
spaces so that we can make k → ∞ in (50),(51). As a result, the function (ra+r, sa+s)
and Xa + ε solves the full Cauchy problem (8), (9) on the interval (0, T ). This con-
ludes the proof of the theorem and the persistence of roll-waves for suitable initial
data.

5. Conclusion. In this paper, we proved the well posedness of the shallow water
equations in the neighborhood of roll-wave solutions for initial conditions that satisfy
suitable compatibility conditions. The main issue here is to formulate the stability
problem in the presence of an infinite number of shocks. This is done through a
Lipschitz change of variable that fixes all the discontinuities of functions that are
close to roll-waves. Writing the shallow water equations with Riemann invariants, we
diagonalize the shallow water system; in that case, it is easier to obtain estimates on
the linearized problems. We prove the existence of weak solutions to the linearized
problem through the formulation of an adjoint problem just as in the shock case. We
then prove regularity properties on that solution. The main difference with the shock
case is the presence of a singularity in the interior equations due to the presence of
a sonic point: a regularization in the transverse direction is not sufficient here, and
we regularize the solution also in the direction of propagation. The existence of a
solution to the full nonlinear problem is then obtain through a fixed point argument.
A key assumption is that the Froude number F (that measures whether a the flow
of the channel is fluvial or torrential) has to be smaller than a critical value Fc: this
suggests that in the super critical regime F > Fc, the roll-wave structure may be
destroyed. This would be an interesting question to see what happens in that regime
even from a numerical point of view.

Though written in a 1D setting, we claim that the results obtained in this paper
hold true in the multidimensional setting. We briefly discuss the method of proof.
Indeed, in the 2D case, one shall consider a transverse coordinate y and a transverse
speed v; the hyperbolic part of the equations is nothing but the isentropic Euler
equations. Here we shall assume that the shocks are located at the positions Ψi(t, y) ≈
iT, i ∈ Z. Next we perform a change of variable similar to the one used in this paper,
and one can easily formulate the linearized equations. The main difference with the 1D
case is the obtention of energy estimates for the linearized (exact and approximated)
equations. However, once the linearization procedure is performed, we are left with an
infinite but discrete number of Lax shocks that can be treated separately. For each Lax
shock, one can use Kreiss symmetrizers to obtain energy estimates and then sum all
the contributions over i ∈ Z. The end of the proof is then completely similar to the 1D
case presented here. This method shall be developped in a forthcoming paper on the
persistence of roll-waves in general hyperbolic systems with discontinuities satisfying
Lax shock conditions obtained recently by the author[14]. We shall also consider the
persistence of roll-waves with characteristic discontinuities. This is of interest from
a physical point of view, since they may appear when the pressure term in shallow
water equations is not convex like in stratified flows (see [2] for more details).

At this stage, several questions arise. First, we have restricted our analysis to
smooth perturbations: in the 1D case, because of the progress made in the analysis of
the 1D problem, it seems relevant to consider more general perturbations. In the case
of shock waves, the persistence of shocks satisfying the Majda–Liu stability condition
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under small perturbations with a bounded variation (BV) using the Glimm scheme
or the front tracking method has been established (see [16], [8] for more details). It
is thus a natural question whether roll-waves persist under BV perturbations, though
it may be a very difficult problem in the case of roll-waves. Another interesting ques-
tion is the stability of viscous roll-waves that are close to Dressler roll-waves in the
vanishing viscosity limit [10, 11]; that question has been treated recently in the shock
case for multidimensional perturbations [6]. Moreover, the linear stability of viscous
roll-waves has been proved under strong spectral stability [12]. Energy estimates have
been obtained through Green functions that blow up in the vanishing viscosity case,
just as in the shock case. It would be interesting here to adapt the method introduced
by Metivier and coworkers [6] to the roll-wave case: the main issue would be the pres-
ence of an infinite number of viscous shocks. This question is an open problem that
is postponed to a forthcoming work.

Acknowledgment. The author wishes to thank Prof. Sylvie Benzoni for many
useful discussions on the multidimensional stability of shock waves.
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Abstract. In this paper we study the nonlocal p-Laplacian-type diffusion equation ut(t, x) =∫
RN J(x−y)|u(t, y)−u(t, x)|p−2(u(t, y)−u(t, x)) dy, (t, x) ∈]0, T [×Ω, with u(t, x) = ψ(x) for (t, x) ∈

]0, T [×(RN \Ω). If p > 1, this is the nonlocal analogous problem to the well-known local p-Laplacian
evolution equation ut = div(|∇u|p−2∇u) with Dirichlet boundary condition u(t, x) = ψ(x) on (t, x) ∈
]0, T [×∂Ω. If p = 1, this is the nonlocal analogous to the total variation flow. When p = +∞ (this
has to be interpreted as the limit as p → +∞ in the previous model) we find an evolution problem
that can be seen as a nonlocal model for the formation of sandpiles (here u(t, x) stands for the height
of the sandpile) with prescribed height of sand outside of Ω. We prove, as main results, existence,
uniqueness, a contraction property that gives well posedness of the problem, and the convergence of
the solutions to solutions of the local analogous problem when a rescaling parameter goes to zero.
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1. Introduction. In this paper we study the nonlocal diffusion equation

ut(t, x) =

∫
RN

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy (t, x) ∈]0, T [×Ω,

where Ω is a bounded domain and u is prescribed in R
N \ Ω as u(t, x) = ψ(x) for

(t, x) ∈]0, T [×(RN \ Ω). We consider 1 < p < +∞ as well as the extreme cases p = 1
and the limit p ↗ +∞. Throughout the paper, we assume that J : R

N → R is
a nonnegative, radial, continuous function, strictly positive in B(0, 1), vanishing in
R

N \B(0, 1) and such that
∫

RN J(z) dz = 1.
First, let us briefly introduce the prototype of nonlocal problem that will be

considered along this work. Nonlocal evolution equations of the form

(1.1) ut(t, x) = (J ∗ u− u)(t, x) =

∫
RN

J(x− y)u(t, y) dy − u(t, x),

and variations of it, have been recently widely used to model diffusion processes. More
precisely, as stated in [31], if u(t, x) is thought of as a density at the point x at time t
and J(x−y) is thought of as the probability distribution of jumping from location y to
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de Matemáticas, FCEyN Universidad de Buenos Aires, 1428 Buenos Aires, Argentina (jrossi@dm.
uba.ar). This author was partially supported by ANPCyT PICT 5009, UBA X066, CONICET
(Argentina).

1815
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location x, then
∫

RN J(y−x)u(t, y) dy = (J∗u)(t, x) is the rate at which individuals are
arriving at position x from all other places and −u(t, x) = −

∫
RN J(y − x)u(t, x) dy

is the rate at which they are leaving location x to travel to all other sites. This
consideration, in the absence of external or internal sources, leads immediately to the
fact that the density u satisfies (1.1). For recent references on nonlocal diffusion, see
[4], [5], [6], [9], [11], [12], [20], [21], [22], [23], [24], [25], [26], [27], [31], [33], [36] and
references therein.

The first goal of this paper is to study the following nonlocal nonlinear diffusion
problem:

P J
p (u0, ψ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, x) =

∫
Ω

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy

+

∫
ΩJ\Ω

J(x− y)|ψ(y) − u(t, x)|p−2(ψ(y) − u(t, x)) dy,

(t, x) ∈]0, T [×Ω,

u(0, x) = u0(x), x ∈ Ω.

Here ΩJ = Ω + supp(J) and ψ is a given function ψ : ΩJ \ Ω → R.
Observe that we can rewrite P J

p (u0, ψ), setting u(t, x) = ψ(x) in ΩJ \ Ω, as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut(t, x) =

∫
ΩJ

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy, (t, x) ∈]0, T [×Ω,

u(t, x) = ψ(x), (t, x) ∈]0, T [×
(
ΩJ \ Ω

)
,

u(0, x) = u0(x), x ∈ Ω,

and we call it the nonlocal p-Laplacian problem with Dirichlet boundary condition.
Note that we are prescribing the values of u outside the domain Ω and not only on
its boundary. This is due to the nonlocal character of the problem.

Let us state the precise definition of solution. Solutions to P J
p (u0, ψ) will be

understood in the following sense.
Definition 1.1. Let 1 < p < +∞. A solution of P J

p (u0, ψ) in [0, T ] is a function

u ∈ C
(
[0, T ];L1(Ω)

)
∩W 1,1

(
]0, T [;L1(Ω)

)
,

which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
Ω

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy

+

∫
ΩJ\Ω

J(x− y)|ψ(y) − u(t, x)|p−2(ψ(y) − u(t, x)) dy,

for a.e. t ∈]0, T [ and a.e. x ∈ Ω.
Our first result shows existence and uniqueness of a global solution for this prob-

lem. Moreover, a contraction principle holds.
Theorem 1.2. Assume p > 1 and let u0 ∈ Lp(Ω), ψ ∈ Lp(ΩJ \ Ω). Then,

there exists a unique solution to P J
p (u0, ψ) in the sense of Definition 1.1. Moreover,

if ui0 ∈ L1(Ω) and ui is a solution in [0, T ] of P J
p (ui0, ψ), i = 1, 2, respectively. Then∫

Ω

(u1(t) − u2(t))
+ ≤

∫
Ω

(u10 − u20)
+ for every t ∈ [0, T ].
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If ui0 ∈ Lp(Ω), i = 1, 2, then

‖u1(t) − u2(t)‖Lp(Ω) ≤ ‖u10 − u20‖Lp(Ω) for every t ∈ [0, T ].

Our next step is to rescale the kernel J appropriately and take the limit as the
scaling parameter goes to zero. To be more precise, for p > 1, we consider the local
p-Laplace evolution equation with Dirichlet boundary condition

Dp(u0, ψ̃)

⎧⎪⎨
⎪⎩
ut = Δpu in ]0, T [×Ω,

u = ψ̃ on ]0, T [×∂Ω,

u(0, x) = u0(x) in Ω,

where the boundary datum ψ̃ is assumed to be the trace of a function defined in a
larger domain and the operator in the equation, Δpu = div(|∇u|p−2∇u), is the usual
local p-Laplacian.

We prove that the solutions of this local problem can be approximated by solutions
of a sequence of nonlocal p-Laplacian problems of the form P J

p . Indeed, for given p ≥ 1
and J we consider the rescaled kernels

(1.2) Jp,ε(x) :=
CJ,p

εp+N
J
(x
ε

)
, where C−1

J,p :=
1

2

∫
RN

J(z)|zN |p dz

is a normalizing constant in order to obtain the p-Laplacian in the limit instead of a
multiple of it, and we obtain the following result.

Theorem 1.3. Let Ω be a smooth bounded domain in R
N and ψ̃ ∈ W 1/p′,p(∂Ω)∩

L∞(∂Ω). Let ψ ∈ W 1,p(ΩJ) ∩ L∞(ΩJ) such that the trace ψ|∂Ω = ψ̃. Assume
J(x) ≥ J(y) if |x| ≤ |y|. Let T > 0 and u0 ∈ Lp(Ω). Let uε be the unique solution of

P
Jp,ε
p (u0, ψ) and u the unique solution of Dp(u0, ψ̃) (see section 2.2). Then

(1.3) lim
ε→0

sup
t∈[0,T ]

‖uε(t, .) − u(t, .)‖Lp(Ω) = 0.

Note that the above result says that P J
p is a nonlocal problem analogous to the

p-Laplacian with Dirichlet boundary condition.
The second goal of this paper is to study the Dirichlet problem for p = 1, called

the nonlocal total variation flow, which can be written formally as

P J
1 (u0, ψ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(t, x) =

∫
Ω

J(x− y)
u(t, y) − u(t, x)

|u(t, y) − u(t, x)| dy

+

∫
ΩJ\Ω

J(x− y)
ψ(t, y) − u(t, x)

|ψ(t, y) − u(t, x)| dy, (t, x) ∈]0, T [×Ω,

u(0, x) = u0(x), x ∈ Ω.

We give the following definition of what we understand by a solution of P J
1 (u0, ψ).

Definition 1.4. A solution of P J
1 (u0, ψ) in [0, T ] is a function

u ∈ C
(
[0, T ];L1(Ω)

)
∩W 1,1

(
]0, T [;L1(Ω)

)
,

which satisfies u(0, x) = u0(x) a.e. x ∈ Ω and

ut(t, x) =

∫
ΩJ

J(x− y)g(t, x, y) dy a.e. in ]0, T [×Ω,
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for some g ∈ L∞(0, T ;L∞(ΩJ × Ω)) with ‖g‖∞ ≤ 1 such that for almost every t ∈
]0, T [, g(t, x, y) = −g(t, y, x) and

J(x− y)g(t, x, y) ∈ J(x− y)sign(u(t, y) − u(t, x)), (x, y) ∈ Ω × Ω,

J(x− y)g(t, x, y) ∈ J(x− y)sign(ψ(y) − u(t, x)), (x, y) ∈ Ω ×
(
ΩJ \ Ω

)
.

Here, sign is the multivalued function defined by

sign(r) :=

⎧⎨
⎩

1 if r > 0
[−1, 1] if r = 0
−1 if r < 0.

We use sign0 to denote the univalued function

sign0(r) :=

⎧⎨
⎩

1 if r > 0
0 if r = 0
−1 if r < 0.

To get the existence and uniqueness of these kinds of solutions, the idea is to take
the limit as p ↘ 1 of solutions to P J

p with p > 1.

Theorem 1.5. Let u0 ∈ L1(Ω) and ψ ∈ L1(ΩJ \Ω). Then, there exists a unique
solution to P J

1 (u0) in the sense of Definition 1.4. Moreover, if ui0 ∈ L1(Ω) and ui

are solutions in [0, T ] of P J
1 (ui0), i = 1, 2. Then∫

Ω

(u1(t) − u2(t))
+ ≤

∫
Ω

(u10 − u20)
+ for every t ∈ [0, T ].

In this case we can rescale the kernel as in (1.2) in order to obtain convergence
of the solutions of the corresponding rescaled problem to the solution of the Dirichlet
problem for the total variational flow, that is,

D1(u0, ψ̃)

⎧⎪⎪⎨
⎪⎪⎩
ut = div

(
Du
|Du|

)
in ]0, T [×Ω,

u = ψ̃ on ]0, T [×∂Ω,

u(0, x) = u0(x) in Ω.

Theorem 1.6. Let Ω be a smooth bounded domain in R
N . Assume J(x) ≥ J(y)

if |x| ≤ |y|. Let T > 0, u0 ∈ L1(Ω), ψ̃ ∈ L∞(∂Ω), and ψ ∈ W 1,1(ΩJ \Ω)∩L∞(ΩJ \Ω)

such that the trace ψ|∂Ω = ψ̃. Let uε be the unique solution of P
J1,ε

1 (u0, ψ). Then, if
u is the unique solution of D1(u0, ψ̃) (see section 3.2),

lim
ε→0

sup
t∈[0,T ]

‖uε(t, .) − u(t, .)‖L1(Ω) = 0.

Finally, the third goal of this paper is to study the limit case p = +∞, which has
to be understood as the limit of our nonlocal evolution problems as p → +∞ (see
section 4). In this case we recover a nonlocal model for the evolution of sandpiles
which is the nonlocal version of the Prigozhin model [35]. Then, the nonlocal limit
problem with source for p = +∞ can be written as

P J
∞(u0, ψ, f)

{
f(t, ·) − ut(t, ·) ∈ ∂GJ

∞,ψ(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x),
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where GJ
∞,ψ is the functional

GJ
∞,ψ(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |u(x) − u(y)| ≤ 1, for x, y ∈ Ω
and |ψ(y) − u(x)| ≤ 1, for x ∈ Ω, y ∈ ΩJ \ Ω,
with x− y ∈ supp(J)

+∞ in the other case,

that is, GJ
∞,ψ = IKJ

∞,ψ
, the indicator function of the set

KJ
∞,ψ :=

⎧⎨
⎩u ∈ L2(Ω) :

|u(x) − u(y)| ≤ 1, x, y ∈ Ω
and |ψ(y) − u(x)| ≤ 1, for x ∈ Ω, y ∈ ΩJ \ Ω,
with x− y ∈ supp(J)

⎫⎬
⎭ .

More precisely, we obtain the following result.
Theorem 1.7. Let ψ ∈ L∞(ΩJ \ Ω) such that KJ

∞,ψ 
= ∅. Let T > 0, f ∈
L2(0, T ;∩q≥2L

q(Ω)), u0 ∈ ∩q≥2L
q(Ω) such that u0 ∈ KJ

∞,ψ, and up, p ≥ 2, the unique

solution of the nonlocal p-Laplacian with a source term f , P J
p (u0, ψ, f) (see section 4).

Then, if u∞ is the unique solution to P J
∞(u0, ψ, f),

lim
p→∞

sup
t∈[0,T ]

‖up(t, ·) − u∞(t, ·)‖L2(Ω) = 0.

Our next step is to rescale the kernel J appropriately and take the limit as the
scaling parameter goes to zero. We will suppose that Ω is convex and ψ verifies
‖∇ψ‖∞ ≤ 1. For ε > 0, we rescale the functional GJ

∞,ψ as follows:

Gε
∞,ψ(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |u(x) − u(y)| ≤ ε, for x, y ∈ Ω
and |ψ(y) − u(x)| ≤ ε, for x ∈ Ω, y ∈ ΩJ \ Ω,
with |x− y| ≤ ε

+∞ in the other case,

that is, Gε
∞,ψ = IKε

∞,ψ
, where

Kε
∞,ψ :=

⎧⎨
⎩u ∈ L2(Ω) :

|u(x) − u(y)| ≤ ε, x, y ∈ Ω
and |ψ(y) − u(x)| ≤ ε, for x ∈ Ω, y ∈ ΩJ \ Ω,
with |x− y| ≤ ε

⎫⎬
⎭ .

Consider the gradient flow associated to the functional Gε
∞,ψ

P ε
∞(u0, ψ, f)

{
f(t, ·) − ut(t, ·) ∈ ∂IKε

∞,ψ
(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x), in Ω,

and the limit problem

P∞(u0, ψ, f)

{
f(t, ·) − u∞,t ∈ ∂IKψ

(u∞), a.e. t ∈]0, T [,

u∞(0, x) = u0(x), in Ω,

where

Kψ :=
{
u ∈ W 1,∞(Ω) : ‖∇u‖∞ ≤ 1, u|∂Ω = ψ|∂Ω

}
.
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Now we state our result concerning the limit as ε → 0 for the sandpile model
(p = +∞).

Theorem 1.8. Assume Ω is a convex bounded domain in R
N . Let T > 0,

f ∈ L2(0, T ;L2(Ω)), ψ ∈ W 1,∞(ΩJ \ Ω) such that ‖∇ψ‖∞ ≤ 1, u0 ∈ W 1,∞(Ω) such
that ‖∇u0‖∞ ≤ 1 and u0|∂Ω = ψ|∂Ω (this means u0 ∈ Kψ), and consider u∞,ε the
unique solution of P ε

∞(u0, ψ, f). Then, if v∞ is the unique solution of P∞(u0, ψ, f),
we have

lim
ε→0

sup
t∈[0,T ]

‖u∞,ε(t, ·) − v∞(t, ·)‖L2(Ω) = 0.

Closely related to the present work are [5] and [6] where the homogeneous Neu-
mann problem and its limit as p goes to infinity or to one are considered. The
difference here is that we are now considering Dirichlet boundary conditions, not only
the homogeneous case, but also the nonhomogeneous case, and this introduces new
difficulties specially when one tries to recover the local models when ε → 0. Remark
that in our nonlocal formulation we are not imposing any continuity between the val-
ues of u inside Ω and outside it, ψ. However, when dealing with local problems usually
the boundary datum is taken in the sense of traces, that is, u|∂Ω = ψ. Recovering
this condition as ε → 0 is one of the main contributions of the present work.

Note that, as it happens for the local p-Laplacian, the Dirichlet problem can be
written as a Neumann problem with a particular flux that depends on the solution
itself. Indeed, the problem P J

p (u0, ψ) can be written as

⎧⎪⎪⎨
⎪⎪⎩
ut(t, x) =

∫
Ω

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x)) dy + ϕ(x, u(x))

(t, x) ∈]0, T [×Ω,

u(0, x) = u0(x), x ∈ Ω,

where

ϕ(x, u(x)) =

∫
ΩJ\Ω

J(x− y)|ψ(t, y) − u(t, x)|p−2(ψ(t, y) − u(t, x)) dy.

In the homogeneous case, ψ ≡ 0,

ϕ(x, u(x)) = −
(∫

ΩJ\Ω
J(x− y) dy

)
|u(t, x)|p−2u(t, x).

This problem is a nonhomogeneous Neumann problem (see [5]) with a prescribed flux
given by ϕ.

Let us finish the introduction by collecting some notations and results that will
be used in the sequel. Following [7] (see also [2]), let

(1.4) X(Ω) =
{
z ∈ L∞(Ω,Rn) : div(z) ∈ L1(Ω)

}
.

If z ∈ X(Ω) and w ∈ BV (Ω)∩L∞(Ω), we define the functional (z,Dw) : C∞
0 (Ω) → R

by the formula

(1.5) 〈(z,Dw), ϕ〉 = −
∫

Ω

wϕdiv(z) dx−
∫

Ω

w z · ∇ϕdx.
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Then (z,Dw) is a Radon measure in Ω,

(1.6)

∫
Ω

(z,Dw) =

∫
Ω

z · ∇w dx

for all w ∈ W 1,1(Ω) ∩ L∞(Ω) and

(1.7)

∣∣∣∣
∫
B

(z,Dw)

∣∣∣∣ ≤
∫
B

|(z,Dw)| ≤ ‖z‖∞
∫
B

‖Dw‖

for any Borel set B ⊆ Ω.
In [7], a weak trace on ∂Ω of the normal component of z ∈ X(Ω) is defined.

Concretely, it is proved that there exists a linear operator γ : X(Ω) → L∞(∂Ω) such
that

‖γ(z)‖∞ ≤ ‖z‖∞,

and

γ(z)(x) = z(x) · ν(x) for all x ∈ ∂Ω if z ∈ C1
(
Ω,RN

)
.

We shall denote γ(z)(x) by [z, ν](x). Moreover, the following Green’s formula, relating
the function [z, ν] and the measure (z,Dw), for z ∈ X(Ω) and w ∈ BV (Ω)∩L∞(Ω),
is established:

(1.8)

∫
Ω

w div(z) dx +

∫
Ω

(z,Dw) =

∫
∂Ω

[z, ν]w dHN−1.

Organization of the paper. The rest of the paper is organized as follows. In
the second section we prove the existence and uniqueness of strong solutions for the
nonlocal p-Laplacian problem with Dirichlet boundary conditions for p > 1 and we
show that our model approaches local p-Laplacian evolution equation with Dirichlet
boundary condition. In section 3 we study the Dirichlet problem for the nonlocal total
variation flow, proving convergence to the local model when the problem is rescaled
appropriately as well. Finally, in section 4 we study the case p = ∞, obtaining a
model for sandpiles with Dirichlet boundary conditions.

2. The case p > 1.

2.1. Existence of solutions for the nonlocal problems. We first study
P J
p (u0, ψ) from the point of view of nonlinear semigroup theory ([15], [28]). For

that we introduce in L1(Ω) the following operator associated with our problem.
Definition 2.1. For 1 < p < +∞ and ψ : ΩJ \ Ω → R, such that |ψ|p−1 ∈

L1(ΩJ \ Ω), we define in L1(Ω) the operator BJ
p,ψ by

BJ
p,ψ(u)(x) = −

∫
Ω

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x)) dy

−
∫

ΩJ\Ω
J(x− y)|ψ(y) − u(x)|p−2(ψ(y) − u(x)) dy, x ∈ Ω.

Remark 2.2. (i). We will set overall the section,

uψ(x) :=

⎧⎪⎨
⎪⎩
u(x) if x ∈ Ω,

ψ(x) if x ∈ ΩJ \ Ω,

0 if x /∈ ΩJ .
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Therefore, we can rewrite

BJ
p,ψ(u)(x) = −

∫
ΩJ

J(x− y)|uψ(y) − u(x)|p−2(uψ(y) − u(x)) dy, x ∈ Ω.

(ii) If ψ = 0, then

BJ
p,0(u)(x) = −

∫
Ω

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x)) dy

+

(∫
ΩJ\Ω

J(x− y)dy

)
|u(x)|p−2u(x) , x ∈ Ω.

Remark 2.3. It is easy to see that
(i) If ψ = 0, BJ

p,0 is positively homogeneous of degree p− 1,

(ii) Lp−1(Ω) ⊂ Dom(BJ
p,ψ), if p > 2.

(iii) For 1 < p ≤ 2, Dom(BJ
p,ψ) = L1(Ω) and BJ

p,ψ is closed in L1(Ω) × L1(Ω).
We have the following monotonicity lemma, whose proof is straightforward.
Lemma 2.4. Let 1 < p < +∞, ψ : ΩJ \ Ω → R, |ψ|p−1 ∈ L1(ΩJ \ Ω), and

T : R → R a nondecreasing function. Then,
(i) for every u, v ∈ Lp(Ω) such that T (u− v) ∈ Lp(Ω), it holds

(2.1)

∫
Ω

(
BJ

p,ψu(x) −BJ
p,ψv(x)

)
T (u(x) − v(x))dx

=
1

2

∫
ΩJ

∫
ΩJ

J(x− y) (T (uψ(y) − vψ(y)) − T (uψ(x) − vψ(x)))

×
(
|uψ(y) − uψ(x)|p−2(uψ(y) − uψ(x))

− |vψ(y) − vψ(x)|p−2(vψ(y) − vψ(x))
)
dydx.

(ii) Moreover, if T is bounded, (2.1) holds for u, v ∈ Dom(BJ
p,ψ).

We have the following Poincaré’s type inequality.
Proposition 2.5. Given Ω a bounded domain in R

N , J : R
N → R a nonnegative,

radial, continuous function, such that
∫

RN J(z) dz > 0, p ≥ 1 and ψ ∈ Lp(ΩJ \ Ω),
there exists λ = λ(J,Ω, p) > 0 such that

(2.2) λ

∫
Ω

|u(x)|p dx ≤
∫

Ω

∫
ΩJ

J(x− y)|uψ(y) − u(x)|p dy dx +

∫
ΩJ\Ω

|ψ(y)|p dy

for all u ∈ Lp(Ω).
Proof. First, let us assume that there exist r, α > 0 such that J(x) ≥ α in B(0, r).

Let

B0 = {x ∈ ΩJ \ Ω : d(x,Ω) ≤ r/2},

B1 = {x ∈ Ω : d(x,B0) ≤ r/2} ,

Bj =
{
x ∈ Ω \ ∪j−1

k=1Bk : d(x,Bj−1) ≤ r/2
}
, j = 2, 3, . . .

Observe that we can cover Ω by a finite number of nonnull sets {Bj}lrj=1. Now∫
Ω

∫
ΩJ

J(x− y)|uψ(y) − u(x)|p dy dx ≥
∫
Bj

∫
Bj−1

J(x− y)|uψ(y) − u(x)|p dy dx,
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j = 1, . . . , lr, and∫
Bj

∫
Bj−1

J(x− y)|uψ(y) − u(x)|p dy dx

≥ 1

2p

∫
Bj

∫
Bj−1

J(x− y)|u(x)|p dy dx−
∫
Bj

∫
Bj−1

J(x− y)|uψ(y)|p dy dx

=
1

2p

∫
Bj

(∫
Bj−1

J(x− y) dy

)
|u(x)|p dx−

∫
Bj−1

(∫
Bj

J(x− y) dx

)
|uψ(y)|p dy

≥ 1

2p
min
x∈Bj

∫
Bj−1

J(x− y)dy

∫
Bj

|u(x)|p dx− β

∫
Bj−1

|uψ(y)|p dy,

where β =
∫

RN J(x)dx. Hence∫
Ω

∫
ΩJ

J(x− y)|uψ(y) − u(x)|p dy dx ≥ αj

∫
Bj

|u(x)|p dx− β

∫
Bj−1

|uψ(y)|p dy,

where

αj =
1

2p
min
x∈Bj

∫
Bj−1

J(x− y)dy > 0.

Therefore, since uψ(y) = ψ(y) if y ∈ B0, uψ(y) = u(y) if y ∈ Bj , j = 1, . . . , lr,

Bj ∩ Bi = ∅, for all i 
= j and |Ω \ ∪jr
j=1Bj | = 0, it is easy to see that there exists

λ̂ = λ̂(J,Ω, p) > 0 such that∫
Ω

|u|p ≤ λ̂

∫
Ω

∫
ΩJ

J(x− y)|uψ(y) − u(x)|p dy dx + λ̂

∫
B0

|ψ|p.

The proof is finished by taking λ = λ̂−1.
In the general case we have that there exist a ≥ 0 and r, α > 0 such that

(2.3) J(x) ≥ α in the annulus A(0, a, r).

In this case we proceed as before with the same choice of the sets Bj for j ≥ 0 and

B−j =
{
x ∈ ΩJ \

(
Ω ∪ ∪j−1

k=0B−k

)
: d(x,B−j+1) ≤ r/2

}
, j = 1, 2, 3, . . .

Observe that for each Bj , j ≥ 1, there exists Bje with je < j and such that

(2.4) |(x + A(0, a, r)) ∩Bje | > 0 ∀x ∈ Bj .

With this choice of Bj and taking into account (2.3) and (2.4), as before, we obtain∫
Ω

∫
ΩJ

J(x− y)|uψ(y) − u(x)|p dy dx ≥
∫
Bj

∫
Bje

J(x− y)|uψ(y) − u(x)|p dy dx

≥ αj

∫
Bj

|u(x)|p dx− β

∫
Bje

|uψ(y)|p dy,

j = 1, . . . , lr, where

αj =
1

2p
min
x∈Bj

∫
Bje

J(x− y)dy > 0

and β =
∫

RN J(x)dx. And we conclude as before.
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Remark 2.6. Note that in [5] it is proved a Poincare’s type inequality for Neumann
boundary conditions, but assuming that J(0) > 0 (otherwise there is a counterexam-
ple). Surprisingly, for the Dirichlet problem we do not need positivity at the origin for
J . This is due to the fact that for the Dirichlet problem the outside values influence
the inside values.

In the next result we prove that BJ
p,ψ is a completely accretive operator (see [14])

and verifies a range condition. In short, this means that for any φ ∈ Lp(Ω) there is
a unique solution of the problem u + BJ

p,ψu = φ and the resolvent (I + BJ
p,ψ)−1 is a

contraction in Lq(Ω) for all 1 ≤ q ≤ +∞.
Theorem 2.7. Let 1 < p < +∞. For ψ ∈ Lp(ΩJ \ Ω), the operator BJ

p,ψ is
completely accretive and verifies the range condition

(2.5) Lp(Ω) ⊂ Ran
(
I + BJ

p,ψ

)
.

Proof. Given ui ∈ Dom(BJ
p,ψ), i = 1, 2, by the monotonicity Lemma 2.4, for any

q ∈ C∞(R), 0 ≤ q′ ≤ 1, supp(q′) compact, 0 /∈ supp(q), we have that∫
Ω

(
BJ

p,ψu1(x) −BJ
p,ψu2(x)

)
q(u1(x) − u2(x)) dx ≥ 0,

from where it follows that BJ
p,ψ is a completely accretive operator (see [14]).

To show that BJ
p,ψ satisfies the range condition we have to prove that for any

φ ∈ Lp(Ω) there exists u ∈ Dom(BJ
p,ψ) such that φ = u + BJ

p,ψu.
Assume first p ≥ 2. Let φ ∈ Lp(Ω) and set

K =
{
w ∈ Lp(ΩJ) : w = ψ in ΩJ \ Ω

}
.

We consider the continuous monotone operator A : K → Lp′
(ΩJ) defined by

A(w)(x) := w(x) −
∫

ΩJ

J(x− y)|w(y) − w(x)|p−2(w(y) − w(x)) dy.

A is coercive in Lp(ΩJ). In fact, by Proposition 2.5, for any w ∈ K,∫
ΩJ

A(w)w =

∫
ΩJ

w2 −
∫

ΩJ

∫
ΩJ

J(x− y)|w(y) − w(x)|p−2(w(y) − w(x)) dyw(x)dx

≥ 1

2

∫
ΩJ

∫
ΩJ

J(x− y)|w(y) − w(x)|p dydx

≥ 1

2

∫
Ω

∫
ΩJ

J(x− y)|wψ(y) − w(x)|p dydx ≥ λ

2
‖w‖pLp(Ω) −

1

2

∫
ΩJ\Ω

|ψ|p.

Therefore,

lim
‖w‖Lp(ΩJ ) → +∞

w ∈ K

∫
ΩJ

A(w)w

‖w‖Lp(ΩJ )
= +∞.

Now, since p ≥ 2, we have the function φψ ∈ Lp′
(ΩJ). Then, applying [32, Corol-

lary III.1.8] to the operator B(w) := A(w) − φψ, we get there exists w ∈ K, such
that

w(x) −
∫

ΩJ

J(x− y)|w(y) − w(x)|p−2(w(y) − w(x)) dy = φψ(x) for all x ∈ ΩJ .
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Hence, u := w|Ω satisfies

u(x) −
∫

ΩJ

J(x− y)|uψ(y) − u(x)|p−2(uψ(y) − u(x)) dy = φ(x) for all x ∈ Ω,

and, consequently, φ = u + BJ
p,ψu.

Suppose now 1 < p < 2. By the results in [5], we know that the operator

BJ
p u(x) = −

∫
Ω

J(x− y)|u(y) − u(x)|p−2(u(y) − u(x)) dy

is m-accretive in L1(Ω) and satisfies what is called property (M0); that is, for any
q ∈ C∞(R), 0 ≤ q′ ≤ 1, supp(q′) compact, 0 /∈ supp(q), and (u, v) ∈ BJ

p ,∫
Ω

q(u)v ≥ 0.

On the other hand,

ϕ(x, r) = −
∫

ΩJ\Ω
J(x− y)|ψ(y) − r|p−2(ψ(y) − r) dy

is continuous and nondecreasing in r for almost every x ∈ Ω, and an L1(Ω) function for
all r. Therefore, by [3, Theorem 3.1], BJ

p,ψu(x) = BJ
p u(x) + ϕ(x, u(x)) is m-accretive

in L1(Ω).
Remark 2.8. If BJ

p,ψ denotes the closure of BJ
p,ψ in L1(Ω), by Theorem 2.7, we

have BJ
p,ψ is m-completely accretive in L1(Ω) (see [14]). Therefore, by the nonlin-

ear semigroup theory (see [15] and [14]), there exists an unique mild-solution of the
abstract Cauchy problem

(2.6)

{
u′(t) + BJ

p,ψu(t) = 0, t ∈ (0, T ),

u(0) = u0,

given by the Crandall–Liggett exponential formula

e−tBJ
p,ψu0 = lim

n

(
I +

t

n
BJ
p,ψ

)−n

u0.

Now, due to regularity results for mild solutions, under certain hypothesis, this mild
solution is a strong solution of the abstract Cauchy problem (2.6) (see [14]) which
means, for our problem P J

p (u0, ψ), a solution in the sense of Definition 1.1.

The following result states the existence and uniqueness results for P J
p (u0, ψ).

From it, Theorem 1.2 can be derived.
Theorem 2.9. Assume p > 1. Let T > 0, ψ ∈ Lp(ΩJ \ Ω), and u0 ∈ L1(Ω).

Then, there exists a unique mild-solution u of (2.6). Moreover,
(1) if u0 ∈ Lp(Ω), the unique mild solution u of (2.6) is a solution of P J

p (u0, ψ)
in the sense of Definition 1.1. If 1 < p ≤ 2, this is true for any u0 ∈ L1(Ω) and any
ψ such that |ψ|p−1 ∈ L1(ΩJ \ Ω).

(2) Let ui0 ∈ L1(Ω) and ui a solution in [0, T ] of P J
p (ui0), i = 1, 2. Then∫

Ω

(u1(t) − u2(t))
+ ≤

∫
Ω

(u10 − u20)
+ for every t ∈]0, T [.
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Moreover, for q ∈ [1,+∞], if ui0 ∈ Lq(Ω), i = 1, 2, then

‖u1(t) − u2(t)‖Lq(Ω) ≤ ‖u10 − u20‖Lq(Ω) for every t ∈]0, T [.

Proof. As a consequence of Theorem 2.7 we get the existence of mild solution of
(2.6) (see Remark 2.8). Now, due to the complete accretivity of BJ

p,ψ and the range
condition (2.5), by regularity results for mild solutions (see [14]), u(t) is a strong
solution, that is, a solution of P J

p (u0, ψ) in the sense of Definition 1.1. Moreover, in

the case 1 < p ≤ 2, since Dom(BJ
p,ψ) = L1(Ω) and BJ

p,ψ is closed in L1(Ω) × L1(Ω),

the result holds for L1-data. Finally, the contraction principle is a consequence of the
general nonlinear semigroup theory ([15], [28]).

2.2. Convergence to the p-Laplacian. Our main goal in this section is to
show that the solution to the Dirichlet problem for the p-Laplacian equation Dp(u0, ψ̃)
can be approximated by solutions to suitable nonlocal Dirichlet problems P J

p (u0, ψ).
Let us first recall the following result from [5]. For a function g defined in a set

D, we define

g(x) =

{
g(x) if x ∈ D,

0 otherwise,

and we denote by χ
D the characteristic function of D.

Proposition 2.10 ([5]). Let 1 ≤ q < +∞, D a bounded domain in R
N ,

ρ : R
N → R a nonnegative continuous radial function with compact support, noniden-

tically zero, and ρn(x) := nNρ(nx). Let {fn} be a sequence of functions in Lq(D)
such that

(2.7)

∫
D

∫
D

|fn(y) − fn(x)|qρn(y − x) dx dy ≤ M
1

nq
.

1. If {fn} is weakly convergent in Lq(D) to f , then
(i) if q > 1, f ∈ W 1,q(D) and moreover

(ρ(z))
1/q χD

(
x +

1

n
z

)
fn

(
x + 1

nz
)
− f

n
(x)

1/n
⇀ (ρ(z))

1/q
z · ∇f(x)

weakly in Lq(D) × Lq(RN );
(ii) if q = 1, f ∈ BV (D) and moreover

ρ(z)χD

(
· + 1

n
z

)
fn

(
· + 1

nz
)
− fn(·)

1/n
⇀ ρ(z)z ·Df

weakly as measures.
2. Assume D is a smooth bounded domain in R

N and ρ(x) ≥ ρ(y) if |x| ≤ |y|. Then
{fn} is relatively compact in Lq(D) and, consequently, there exists a subsequence
{fnk

} such that
(i) if q > 1, fnk

→ f in Lq(D) with f ∈ W 1,q(D);
(ii) If q = 1, fnk

→ f in L1(D) with f ∈ BV (D).
Let us now recall some results about the p-Laplacian equation

Dp(u0, ψ̃)

⎧⎪⎨
⎪⎩
ut = Δpu in ]0, T [×Ω,

u = ψ̃ on ]0, T [×∂Ω,

u(0, x) = u0(x) in Ω.
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In the case ψ̃ ∈ W 1/p′,p(∂Ω), associated to the p-Laplacian with nonhomogeneous
Dirichlet boundary condition, in [2] it is defined the operator Ap,ψ ⊂ L1(Ω) × L1(Ω)

as (u, û) ∈ Ap,ψ̃ if and only if û ∈ L1(Ω), u ∈ W 1,p

ψ̃
(Ω) := {u ∈ W 1,p(Ω) : u|∂Ω =

ψ̃ HN−1 − a.e. on ∂Ω} and∫
Ω

|∇u|p−2∇u · ∇(u− v) ≤
∫

Ω

û(u− v) for every v ∈ W 1,p

ψ̃
(Ω) ∩ L∞(Ω).

This inequality is equivalent to∫
Ω

|∇u|p−2∇u · ∇w =

∫
Ω

ûw for every w ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Moreover, for ψ̃ ∈ W 1/p′,p(∂Ω)∩L∞(∂Ω), Ap,ψ̃ is proved to be a completely accretive

operator in L1(Ω), satisfying the range condition L∞(Ω) ⊂ Ran(I + Ap,ψ̃), and it is

easy to see that D(Ap,ψ̃)
L1(Ω)

= L1(Ω). Therefore, its closure Ap,ψ̃ in L1(Ω)×L1(Ω)

is an m-completely accretive operator in L1(Ω). Consequently, for any u0 ∈ L1(Ω)
there exists a unique mild solution u(t) = e−tAp,ψ̃u0 of the abstract Cauchy problem
associated to Dp(u0, ψ̃), given by Crandall–Liggett’s exponential formula. Due to the
complete accretivity of the operator Ap,ψ̃, in the case u0 ∈ D(Ap,ψ̃) this mild solution

is the unique strong solution of problem Dp(u0, ψ̃).

In the homogeneous case ψ̃ = 0, due to the results in [13], we can say that for
any u0 ∈ L1(Ω), the mild solution u(t) = e−tAp,0u0 is the unique entropy solution of
problem Dp(u0, 0).

For given p > 1 and J , we consider the rescaled kernels

Jp,ε(x) :=
CJ,p

εp+N
J
(x
ε

)
, where C−1

J,p :=
1

2

∫
RN

J(z)|zN |p dz

is a normalizing constant in order to obtain the p-Laplacian in the limit instead of a
multiple of it.

Proposition 2.11. Let Ω be a smooth bounded domain in R
N and let ψ̃ ∈

W 1/p′,p(∂Ω) ∩ L∞(∂Ω). Let ψ ∈ W 1,p(ΩJ) ∩ L∞(ΩJ) such that ψ|∂Ω = ψ̃. Assume
J(x) ≥ J(y) if |x| ≤ |y|. Then, for any φ ∈ L∞(Ω),

(2.8)
(
I + B

Jp,ε

p,ψ

)−1

φ →
(
I + Ap,ψ̃

)−1

φ in Lp(Ω) as ε → 0.

Proof. We denote

Ωε := ΩJp,ε = Ω + supp(Jp,ε).

For ε > 0 small, let uε =
(
I + B

Jp,ε

p,ψ

)−1

φ. Then,

(2.9)

∫
Ω

uεv −
CJ,p

εp+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − uε(x)|p−2

× ((uε)ψ(y) − uε(x)) dy v(x) dx =

∫
Ω

φv

for every v ∈ L∞(Ω).
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Let M := max{‖φ‖L∞(Ω), ‖ψ‖L∞(ΩJ )}. Taking v = (uε −M)+ in (2.9), we get∫
Ω

uε(x)(uε(x) −M)+dx− CJ,p

εp+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − uε(x)|p−2

× ((uε)ψ(y) − uε(x)) dy(uε(x) −M)+ dx

=

∫
Ω

φ(x)(uε(x) −M)+ dx.

Now,

− CJ,p

εp+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − uε(x)|p−2((uε)ψ(y) − uε(x)) dy

× (uε(x) −M)+dx

= − CJ,p

εp+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)|p−2((uε)ψ(y) − (uε)ψ(x)) dy

× ((uε)ψ(x) −M)+dx

=
CJ,p

2εp+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)|p−2((uε)ψ(y) − (uε)ψ(x))

× (((uε)ψ(y) −M)+ − ((uε)ψ(x) −M)+) dy dx

≥ 0.

Therefore, ∫
Ω

uε(x)(uε(x) −M)+dx ≤
∫

Ω

φ(x)(uε(x) −M)+ dx.

Consequently, we have∫
Ω

(uε(x) −M)(uε(x) −M)+dx ≤
∫

Ω

(φ(x) −M)(uε(x) −M)+ dx ≤ 0,

and uε(x) ≤ M for almost all x ∈ Ω. Analogously, we can obtain −M ≤ uε(x) for
almost all x ∈ Ω. Thus

(2.10) ‖uε‖L∞(Ω) ≤ M for all ε > 0,

and, therefore, there exists a sequence εn → 0 such that

uεn ⇀ u weakly in L1(Ω).

Taking v = uε − ψ in (2.9) we get

(2.11)

∫
Ω

uε(uε − ψ) − CJ,p

εp+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)|p−2

× ((uε)ψ(y) − (uε)ψ(x)) dy ((uε)ψ(x) − ψ(x)) dx =

∫
Ω

φ(uε − ψ).

Now, by (2.11) and (2.10),

CJ,p

2εN

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)|p

εp
dy dx

≤ CJ,p

2εN

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)|p−1

εp−1

|ψ(y) − ψ(x)|
ε

dy dx + M1.
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Since ψ ∈ W 1,p(ΩJ), using Young’s inequality, we obtain

1

εN

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)|p

εp
dy dx ≤ M2.

Moreover,

(2.12)

∫
ΩJ

∫
ΩJ

1

εN
J

(
x− y

ε

) ∣∣∣∣ (uε)ψ(y) − (uε)ψ(x)

ε

∣∣∣∣
p

dx dy

=

∫
Ωε

∫
Ωε

1

εN
J

(
x− y

ε

) ∣∣∣∣ (uε)ψ(y) − (uε)ψ(x)

ε

∣∣∣∣
p

dx dy

+ 2

∫
ΩJ\Ωε

∫
Ωε

1

εN
J

(
x− y

ε

) ∣∣∣∣ψ(y) − (uε)ψ(x)

ε

∣∣∣∣
p

dx dy

+

∫
ΩJ\Ωε

∫
ΩJ\Ωε

1

εN
J

(
x− y

ε

) ∣∣∣∣ψ(y) − ψ(x)

ε

∣∣∣∣
p

dx dy

=

∫
Ωε

∫
Ωε

1

εN
J

(
x− y

ε

) ∣∣∣∣ (uε)ψ(y) − (uε)ψ(x)

ε

∣∣∣∣
p

dx dy

+ 2

∫
ΩJ\Ωε

∫
Ωε\Ω

1

εN
J

(
x− y

ε

) ∣∣∣∣ψ(y) − ψ(x)

ε

∣∣∣∣
p

dx dy

+

∫
ΩJ\Ωε

∫
ΩJ\Ωε

1

εN
J

(
x− y

ε

) ∣∣∣∣ψ(y) − ψ(x)

ε

∣∣∣∣
p

dx dy ≤ M3.

Therefore, by Proposition 2.10, there exists a subsequence, denoted as above, and
w ∈ W 1,p(ΩJ) such that

(uεn)ψ → w strongly in Lp(ΩJ).

Hence, w = u in Ω and, by [18, Proposition IX.18] and the properties of the trace,
u ∈ W 1,p

ψ̃
(Ω). Moreover, by Proposition 2.10,

(2.13)(
CJ,p

2
J(z)

)1/p

χΩ(x+εnz)
(uεn)ψ(x + εnz) − (uεn)ψ(x)

εn
⇀

(
CJ,p

2
J(z)

)1/p

z ·∇u(x)

weakly in Lp(Ω) × Lp(RN ) (observe that χΩ(x + εnz)(uεn)ψ(x + εnz) = χΩ(x +
εnz)uεn(x + εnz)). We can also assume that

(J(z))
1/p′

∣∣∣∣ (uεn)ψ(x + εnz) − (uεn)ψ(x)

εn

∣∣∣∣
p−2

χΩεn
(x + εnz)

× (uεn)ψ(x + εnz) − (uεn)ψ(x)

εn
⇀ (J(z))

1/p′
χ(x, z)

weakly in Lp′
(ΩJ) × Lp′

(RN ), for some function χ ∈ Lp′
(ΩJ) × Lp′

(RN ).
Passing to the limit in (2.9) for ε = εn, we get

(2.14)

∫
Ω

uv +

∫
RN

∫
Ω

CJ,p

2
J(z)χ(x, z) z · ∇v(x) dx dz =

∫
Ω

φv

for every v smooth with support in Ω and by approximation for every v ∈ W 1,p
0 (Ω).
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Finally, working as in Proposition 3.3. of [5], we can prove

(2.15)

∫
RN

∫
Ω

CJ,p

2
J(z)χ(x, z)z · ∇v(x) dx dz =

∫
Ω

|∇u|p−2 ∇u · ∇v

and the proof is finished.
From the above Proposition, by the standard results of the nonlinear semigroup

theory (see [19] or [15]), we obtain Theorem 1.3.

3. The nonlocal total variation flow. The case p = 1.

3.1. Existence of solutions for the nonlocal problem. This section deals
with the existence and uniqueness of solutions for the nonlocal 1-Laplacian problem
with Dirichlet boundary condition,

P J
1 (u0, ψ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut(t, x) =

∫
Ω

J(x− y)
u(t, y) − u(t, x)

|u(t, y) − u(t, x)| dy.

+

∫
ΩJ\Ω

J(x− y)
ψ(y) − u(t, x)

|ψ(y) − u(t, x)| dy, x ∈ Ω.

u(0, x) = u0(x).

As in the case p > 1, to prove existence and uniqueness of solutions of P J
1 (u0, ψ)

we use the Nonlinear Semigroup Theory, so we start by introducing the following
operator in L1(Ω).

Definition 3.1. Given ψ ∈ L1(ΩJ \Ω), we define the operator BJ
1,ψ in L1(Ω)×

L1(Ω) by û ∈ BJ
1,ψu if and only if u, û ∈ L1(Ω), there exists g ∈ L∞(ΩJ × ΩJ),

g(x, y) = −g(y, x) for almost all (x, y) ∈ ΩJ × ΩJ , ‖g‖∞ ≤ 1,

(3.1) û(x) = −
∫

ΩJ

J(x− y)g(x, y) dy a.e. x ∈ Ω,

and

(3.2) J(x− y)g(x, y) ∈ J(x− y) sign(u(y) − u(x)) a.e. (x, y) ∈ Ω × Ω,

(3.3) J(x− y)g(x, y) ∈ J(x− y) sign(ψ(y) − u(x)) a.e. (x, y) ∈ Ω × (ΩJ \ Ω).

Remark 3.2. Observe that
(i) we can rewrite (3.2) + (3.3) as

(3.4) J(x− y)g(x, y) ∈ J(x− y) sign(uψ(y) − u(x)) a.e. (x, y) ∈ Ω × ΩJ ,

where we set as above, and overall the section,

uψ(x) :=

⎧⎪⎨
⎪⎩
u(x) if x ∈ Ω,

ψ(x) if x ∈ ΩJ \ Ω,

0 if x /∈ ΩJ .

(ii) It holds L1(Ω) = Dom(BJ
1,ψ) and BJ

1,ψ is closed in L1(Ω) × L1(Ω).
(iii) It is not difficult to see that, if g ∈ L∞(ΩJ × ΩJ), g(x, y) = −g(y, x) for

almost all (x, y) ∈ ΩJ × ΩJ , ‖g‖∞ ≤ 1,

J(x− y)g(x, y) ∈ J(x− y) sign(z(y) − z(x)) a.e. (x, y) ∈ ΩJ × ΩJ
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is equivalent to

−
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dy z(x) dx =
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|z(y) − z(x)| dy dx.

Theorem 3.3. Let ψ ∈ L1(ΩJ \ Ω). The operator BJ
1,ψ is completely accretive

and satisfies the range condition

L∞(Ω) ⊂ Ran
(
I + BJ

1,ψ

)
.

Proof. Let ûi ∈ BJ
1,ψui, i = 1, 2, and set ui(y) = ψ(y) in ΩJ \ Ω. Then, there

exist gi ∈ L∞(ΩJ × ΩJ), ‖gi‖∞ ≤ 1, gi(x, y) = −gi(y, x), J(x − y)gi(x, y) ∈ J(x −
y)sign(ui(y) − ui(x)) for almost all (x, y) ∈ Ω × ΩJ , such that

ûi(x) = −
∫

ΩJ

J(x− y)gi(x, y) dy a.e. x ∈ Ω

for i = 1, 2. Given q ∈ C∞(R), 0 ≤ q′ ≤ 1, supp(q′) compact, 0 /∈ supp(q), we have∫
Ω

(û1(x) − û2(x))q(u1(x) − u2(x)) dx

=
1

2

∫
Ω

∫
Ω

J(x− y)(g1(x, y) − g2(x, y)) (q(u1(y) − u2(y)) − q(u1(x) − u2(x))) dxdy

−
∫

Ω

∫
ΩJ\Ω

J(x− y)(g1(x, y) − g2(x, y) (q(u1(x) − u2(x))) dx dy

≥ 1

2

∫
Ω

∫
Ω

J(x− y)(g1(x, y) − g2(x, y)) (q(u1(y) − u2(y)) − q(u1(x) − u2(x))) dxdy.

Now, by the mean value theorem

J(x− y)(g1(x, y) − g2(x, y)) [q(u1(y) − u2(y)) − q(u1(x) − u2(x))]

= J(x− y)(g1(x, y) − g2(x, y))q
′(ξ) [(u1(y) − u2(y)) − (u1(x) − u2(x))]

= J(x− y)q′(ξ) [g1(x, y)(u1(y) − u1(x)) − g1(x, y)(u2(y) − u2(x))]

−J(x− y)q′(ξ) [g2(x, y)(u1(y) − u1(x)) − g1(x, y)(u2(y) − u2(x))] ≥ 0,

since

J(x− y)gi(x, y)(ui(y) − ui(x)) = J(x− y)|ui(y) − ui(x)|, i = 1, 2,

and

−J(x− y)gi(x, y)(uj(y) − uj(x)) ≥ −J(x− y)|uj(y) − uj(x)|, i 
= j.

Hence ∫
Ω

(û1(x) − û2(x))q(u1(x) − u2(x)) dx ≥ 0,

from which it follows that BJ
1,ψ is a completely accretive operator.

To show that BJ
1,ψ satisfies the range condition, let us see that for any φ ∈ L∞(Ω),

lim
p→1+

(
I + BJ

p,ψ

)−1
φ =

(
I + BJ

1,ψ

)−1
φ weakly in L1(Ω).

We prove this in several steps.
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Step 1. Let us first suppose that ψ ∈ L∞(ΩJ \Ω). For 1 < p < +∞, by Theorem
2.7, there is up such that up = (I + BJ

p,ψ)−1φ, that is,

(3.5) up(x) −
∫

ΩJ

J (x− y) |(up)ψ(y) − up(x)|p−2((up)ψ(y) − up(x)) dy = φ(x),

a.e. x ∈ Ω. It is easy to see that ‖up‖∞ ≤ sup{‖φ‖∞, ‖ψ‖∞}. Therefore, there exists
a sequence pn → 1 such that

upn ⇀ u weakly in L2(Ω).

On the other hand, we also have

1

2

∫
ΩJ

∫
ΩJ

J(x− y) |(upn
)ψ(y) − (upn

)ψ(x)|pn dy dx ≤ M2, ∀n ∈ N.

Consequently, for any measurable subset E ⊂ ΩJ × ΩJ , we have

∣∣∣∣
∫ ∫

E

J(x− y)|(upn)ψ(y) − (upn)ψ(x)|pn−2 ((upn(y))ψ − (upn)ψ(x))

∣∣∣∣
≤

∫ ∫
E

J(x− y)|(upn
)ψ(y) − (upn)ψ(x)|pn−1 ≤ M2|E|

1
pn .

Hence, by the Dunford–Pettis theorem we may assume that there exists g(x, y) such
that

J(x− y)|(upn)ψ(y) − (upn)ψ(x)|pn−2 ((upn)ψ(y) − (upn)ψ(x)) ⇀ J(x− y)g(x, y),

weakly in L1(ΩJ × ΩJ), g(x, y) = −g(y, x) for almost all (x, y) ∈ ΩJ × ΩJ , and
‖g‖∞ ≤ 1.

Therefore, by (3.5),

(3.6) u(x) −
∫

ΩJ

J(x− y)g(x, y) dy = φ(x) a.e. x ∈ Ω.

Then, to finish the proof it is enough to show that

(3.7)

−
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dy uψ(x) dx

=
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|uψ(y) − uψ(x)| dy dx.
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In fact, by (3.5) and (3.6),

1

2

∫
ΩJ

∫
ΩJ

J(x− y) |(upn)ψ(y) − (upn)ψ(x)|pn dy dx =

∫
Ω

φupn −
∫

Ω

upnupn

−
∫

ΩJ\Ω

∫
ΩJ

J(x− y) |ψ(y) − (upn)ψ(x)|pn−2
(ψ(y) − (upn)ψ(x)) dy ψ(x) dx

=

∫
Ω

φu−
∫

Ω

uu−
∫

Ω

φ(u− upn
) +

∫
Ω

2u(u− upn) −
∫

Ω

(u− upn
)(u− upn

)

−
∫

ΩJ\Ω

∫
ΩJ

J(x− y) |ψ(y) − (upn)ψ(x)|pn−2
(ψ(y) − (upn)ψ(x)) dy ψ(x) dx

≤ −
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dy u(x) dx−
∫

Ω

φ(u− upn
) +

∫
Ω

2u(u− upn
)

+

∫
ΩJ\Ω

∫
ΩJ

J(x− y)g(x, y) dy ψ(x) dx

−
∫

ΩJ\Ω

∫
ΩJ

J(x− y) |ψ(y) − (upn
)ψ(x)|pn−2

(ψ(y) − (upn)ψ(x)) dy ψ(x) dx,

and so,

lim sup
n→+∞

1

2

∫
ΩJ

∫
ΩJ

J(x− y) |upn
(y) − upn

(x)|pn dy dx

≤ −
∫

Ω

∫
Ω

J(x− y)g(x, y) dy u(x) dx.

Now, by the monotonicity Lemma 2.4, for all ρ ∈ L∞(Ω),

−
∫

ΩJ

∫
ΩJ

J(x− y)|ρ(y) − ρ(x)|pn−2(ρ(y) − ρ(x)) dy (upn(x) − ρ(x)) dx

≤ −
∫

ΩJ

∫
ΩJ

J(x− y)|upn(y) − upn(x)|pn−2(upn(y) − upn(x))dy(upn(x) − ρ(x))dx.

Taking limits,

−
∫

ΩJ

∫
ΩJ

J(x− y) sign0(ρ(y) − ρ(x)) dy (u(x) − ρ(x)) dx

≤ −
∫

ΩJ

∫
ΩJ

J(x− y)g(x, y) dy (u(x) − ρ(x)) dx.

Taking now, ρ = u ± λu, λ > 0, and letting λ → 0, we get (3.7), and the proof is
finished for this class of data.

Step 2. Let us now suppose that ψ− is bounded. Let ψn = Tn(ψ), n large enough
such that ψ−

n = ψ−. Then, {ψn} is a nondecreasing sequence that converges in L1 to
ψ. By Step 1, there exists un = (I+BJ

1,ψn
)−1φ, that is, there exists gn ∈ L∞(ΩJ×ΩJ),

gn(x, y) = −gn(y, x) for almost all (x, y) ∈ ΩJ × ΩJ , ‖gn‖∞ ≤ 1,

(3.8) un(x) −
∫

ΩJ

J(x− y)gn(x, y) dy = φ(x) a.e. x ∈ Ω

and

(3.9)

−
∫

ΩJ

∫
ΩJ

J(x− y)gn(x, y) dy (un)ψn(x) dx

=
1

2

∫
ΩJ

∫
ΩJ

J(x− y)|(un)ψn
(y) − (un)ψn

(x)| dy dx.
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Therefore, by monotonicity,∫
ΩJ

∫
ΩJ

(
(un)ψn

− (un+1)ψn+1

) (
(un)ψn

− (un+1)ψn+1

)+ ≤ 0,

which implies un ≤ un+1. Since {un} is bounded in L∞ we have {un} converges to a
function u in L2. On the other hand, we can suppose that J(x− y)gn(x, y) converges
weakly in L2 to J(x−y)g(x, y), g(x, y) = −g(y, x) for almost all (x, y) ∈ ΩJ×ΩJ , and
‖g‖∞ ≤ 1. Hence, passing to the limit in (3.8) and (3.9) we obtain u = (I+BJ

1,ψ)−1φ.

Step 3. For a general ψ ∈ L1(ΩJ \ Ω), apply Step 2 to ψn = sup{ψ,−n} and use
monotonicity in a similar way to finish the proof.

Proof of Theorem 1.5. As a consequence of the above results, we have that the
abstract Cauchy problem

(3.10)

{
u′(t) + BJ

1,ψu(t) � 0, t ∈ (0, T ),

u(0) = u0

has a unique mild solution u for every initial datum u0 ∈ L1(Ω) and T > 0 (see [15]).
Moreover, due to the complete accretivity of the operator BJ

1,ψ, the mild solution of
(3.10) is a strong solution ([14]). Consequently, the proof is concluded.

3.2. Convergence to the total variation flow. Let us start recalling some
results from [1] (see also [2]) about the Dirichlet problem for the total variational flow,
that is,

D1(u0, ψ̃)

⎧⎪⎨
⎪⎩
ut = div

(
Du
|Du|

)
in ]0, T [×Ω,

u = ψ̃ on ]0, T [×∂Ω,

u(0, x) = u0(x) in Ω,

with ψ̃ ∈ L1(∂Ω).
Theorem 3.4 ([1]). Let T > 0 and ψ̃ ∈ L1(∂Ω). For any u0 ∈ L1(Ω) (L2(Ω))

there exists a unique entropy (strong) solution u(t) of D1(u0, ψ̃).
Associated to −div( Du

|Du| ) with Dirichlet boundary conditions, in [1] it is defined

the operator Aψ̃ ⊂ L1(Ω) × L1(Ω) as follows: (u, v) ∈ Aψ̃ if and only if u, v ∈ L1(Ω),

q(u) ∈ BV (Ω) for all q ∈ P := {q ∈ W 1,∞(R) : q′ ≥ 0, supp(q′) is compact}, and
there exists ζ ∈ X(Ω) (where X(Ω) is defined by (1.4)), with ‖ζ‖∞ ≤ 1, v = −div(ζ)
in D′(Ω) such that

(3.11)

∫
Ω

(w− q(u))v ≤
∫

Ω

(ζ,Dw)− |Dq(u)|+
∫
∂Ω

|w− q
(
ψ̃
)
| −

∫
∂Ω

|q(u)− q
(
ψ̃
)
|

for every w ∈ BV (Ω) ∩ L∞(Ω) and every q ∈ P. Also in [1] it is proved that the
following assertions are equivalent:

(a) (u, v) ∈ Aψ̃,

(b) u, v ∈ L1(Ω), q(u) ∈ BV (Ω) for all q ∈ P, and there exists ζ ∈ X(Ω), with
‖ζ‖∞ ≤ 1, v = −div(ζ) in D′(Ω) such that

(3.12)

∫
Ω

(ζ,Dq(u)) = |Dq(u)| ∀ q ∈ P,

(3.13) [ζ, ν] ∈ sign
(
q
(
ψ̃
)
− q(u)

)
HN−1 − a.e. on ∂Ω, ∀ q ∈ P.
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Moreover, it is shown that Aψ̃ is an m-completely accretive operator in L1(Ω) with
dense domain and that for any u0 ∈ L1(Ω), the unique entropy solution u(t) of problem
D1(u0, ψ̃) coincides with the unique mild solution e−tAψ̃u0 given by Crandall–Liggett’s
exponential formula.

Now, given J , we consider the rescaled kernels

J1,ε(x) :=
CJ,1

ε1+N
J
(x
ε

)
, with C−1

J,1 :=
1

2

∫
RN

J(z)|zN | dz,

that is, a normalizing constant in order to obtain the 1-Laplacian in the limit instead
of a multiple of it.

Proposition 3.5. Let Ω be a smooth bounded domain in R
N and ψ̃ ∈ L∞(∂Ω).

Let ψ ∈ W 1,1(ΩJ \ Ω) ∩ L∞(ΩJ \ Ω) such that ψ|∂Ω = ψ̃. Assume J(x) ≥ J(y) if
|x| ≤ |y|. Then, for any φ ∈ L∞(Ω),

(3.14)
(
I + B

J1,ε

1,ψ

)−1

φ →
(
I + Aψ̃

)−1

φ strongly in L1(Ω) as ε → 0.

Proof. Given ε > 0 small, we set uε = (I + B
J1,ε

1,ψ )−1φ and denote

Ωε := ΩJ1,ε
= Ω + supp(J1,ε).

Then, there exists gε ∈ L∞(Ωε × Ωε), gε(x, y) = −gε(y, x) for almost all (x, y) ∈
Ωε × Ωε, ‖gε‖∞ ≤ 1, such that

J

(
x− y

ε

)
gε(x, y) ∈ J

(
x− y

ε

)
sign(uε(y) − uε(x)) a.e. (x, y) ∈ Ω × Ω,

J

(
x− y

ε

)
gε(x, y) ∈ J

(
x− y

ε

)
sign(ψ̃(y) − uε(x)) a.e. (x, y) ∈ Ω × (Ωε \ Ω)

and

(3.15) uε(x) − CJ,1

ε1+N

∫
Ωε

J

(
x− y

ε

)
gε(x, y) dy = φ(x) a.e. x ∈ Ω.

Therefore, for v ∈ L∞(ΩJ), we can write

(3.16)

∫
Ω

uε(x)v(x) dx− CJ,1

ε1+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
gε(x, y)v(x) dy dx

=

∫
Ω

φ(x)v(x) dx.

Observe that we can extend gε to a function in L∞(ΩJ×ΩJ), gε(x, y) = −gε(y, x)
for almost all (x, y) ∈ ΩJ × ΩJ , ‖gε‖L∞(ΩJ ) ≤ 1, such that

J

(
x− y

ε

)
gε(x, y) ∈ J

(
x− y

ε

)
sign((uε)ψ(y) − (uε)ψ(x)) a.e. (x, y) ∈ ΩJ × ΩJ .

Let M := max{‖φ‖L∞(Ω), ‖ψ‖L∞(ΩJ\Ω)}. Taking v = (uε−M)+ in (3.16), we get

∫
Ω

uε(x)(uε(x) −M)+dx− CJ,1

ε1+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
gε(x, y)(uε(x) −M)+ dy dx

=

∫
Ω

φ(x)(uε(x) −M)+ dx.
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Now

− CJ,1

ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
gε(x, y)((uε)ψ(x) −M)+ dy dx

=
CJ,1

2ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
gε(x, y)(((uε)ψ(y) −M)+ −

(
(uε)ψ(x) −M)+

)
dy dx

≥ 0.

Hence, we get ∫
Ω

uε(x)(uε(x) −M)+dx ≤
∫

Ω

φ(x)(uε(x) −M)+dx.

Consequently,

0 ≤
∫

Ω

(uε(x) −M)(uε(x) −M)+dx ≤
∫

Ω

(φ(x) −M)(uε(x) −M)+dx ≤ 0,

and we deduce uε(x) ≤ M for almost all x ∈ Ω. Analogously, we can obtain −M ≤
uε(x) for almost all x ∈ Ω. Thus

(3.17) ‖uε‖L∞(Ω) ≤ M for all ε > 0;

from here, we can assume there exists a sequence εn → 0 such that

uεn ⇀ u weakly in L1(Ω).

Taking v = uε in (3.16), we have
(3.18)∫

Ω

uε(x)uε(x) dx− CJ,1

ε1+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
gε(x, y) dyuε(x) dx =

∫
Ω

φ(x)uε(x)dx.

Observe that

− CJ,1

ε1+N

∫
Ω

∫
Ωε

J

(
x− y

ε

)
gε(x, y)dyuε(x) dx

= − CJ,1

ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
gε(x, y)dy(uε)ψ(x) dx

+
CJ,1

ε1+N

∫
Ωε\Ω

∫
Ωε

J

(
x− y

ε

)
gε(x, y)dyψ(x) dx.

Then ∣∣∣∣∣ CJ,1

ε1+N

∫
Ωε\Ω

∫
Ωε

J

(
x− y

ε

)
gε(x, y)dyψ(x)dx

∣∣∣∣∣
≤ CJ,1

ε1+N

∫
Ωε\Ω

∫
Ωε

J

(
x− y

ε

)
dy|ψ(x)|dx

≤ CJ,1

ε
M

∫
Ωε\Ω

(
1

εN

∫
Ωε

J

(
x− y

ε

)
dy

)
dx

≤ CJ,1

ε
M |Ωε \ Ω| ≤ M1.
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On the other hand,

− CJ,1

ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
gε(x, y)dy(uε)ψ(x)dx

=
CJ,1

2ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx.

Consequently, from (3.17) and (3.18), it follows that

(3.19)
CJ,1

2ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx ≤ M2.

Let us compute,

CJ,1

2ε1+N

∫
ΩJ

∫
ΩJ

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx

=
CJ,1

2ε1+N

∫
Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx

+
CJ,1

2ε1+N

∫
Ωε

∫
ΩJ\Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx

+
CJ,1

2ε1+N

∫
ΩJ\Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx

+
CJ,1

2ε1+N

∫
ΩJ\Ωε

∫
ΩJ\Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx.

Now, since ψ ∈ W 1,1(ΩJ \ Ω), we get

CJ,1

2ε1+N

∫
ΩJ\Ωε

∫
ΩJ\Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx

=
CJ,1

2εN

∫
ΩJ\Ωε

∫
ΩJ\Ωε

J

(
x− y

ε

)
|ψ(y) − ψ(x)|

ε
dydx ≤ M3.

On the other hand, we have

CJ,1

2ε1+N

∫
ΩJ\Ωε

∫
Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx

=
CJ,1

2εN

∫
ΩJ\Ωε

∫
Ωε\Ω

J

(
x− y

ε

)
|ψ(y) − ψ(x)|

ε
dy dx

≤ M4
CJ,1

2

∫
ΩJ\Ωε

(
1

εN

∫
Ωε

J

(
x− y

ε

)
dy

)
dx ≤ M5.

With similar arguments we obtain

CJ,1

2ε1+N

∫
Ωε

∫
ΩJ\Ωε

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx ≤ M6.

Therefore,

(3.20)
CJ,1

2ε1+N

∫
ΩJ

∫
ΩJ

J

(
x− y

ε

)
|(uε)ψ(y) − (uε)ψ(x)| dy dx ≤ M7.
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In particular, we get∫
ΩJ

∫
ΩJ

1

2

CJ,1

εN
J

(
x− y

ε

) ∣∣∣∣ (uε)ψ(y) − (uε)ψ(x)

ε

∣∣∣∣ dx dy ≤ M7 ∀n ∈ N.

By Proposition 2.10, there exists a subsequence, denote equal, and w ∈ BV (ΩJ) such
that

(uεn)ψ → w strongly in L1(ΩJ)

and

(3.21)
CJ,1

2
J(z)χΩ(· + εnz)

(uεn)ψ(· + εnz) − (uεn)ψ(·)
εn

⇀
CJ,1

2
J(z)z ·Dw

weakly as measures. Hence, it is easy to obtain that

w(x) = uψ(x) =

{
u(x) in x ∈ Ω,

ψ(x) in x ∈ ΩJ \ Ω,

and u ∈ BV (Ω).
Moreover, we can also assume that

(3.22) J(z)χΩJ
(x + εnz)gεn(x, x + εnz) ⇀ Λ(x, z)

weakly∗ in L∞(ΩJ) × L∞(RN ) for some function Λ ∈ L∞(ΩJ) × L∞(RN ), Λ(x, z) ≤
J(z) almost everywhere in ΩJ × R

N . Taking in (3.16) v ∈ D(Ω), we get for ε = εn
small enough

(3.23)

∫
Ω

uεn(x)v(x)dx− CJ,1

εn1+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
gεn(x, y)v(x) dy dx

=

∫
Ω

φ(x)v(x) dx.

Changing variables and taking into account (3.23), we can write

(3.24)

CJ,1

2

∫
RN

∫
Ω

J(z)χΩ(x + εnz)gεn(x, x + εnz) dz
v(x + εnz) − v(x)

εn
dx

= −CJ,1

εn

∫
RN

∫
Ω

J(z)χΩ(x + εnz)gεn(x, x + εnz) dz v(x) dx

=

∫
Ω

(φ(x) − uεn(x))v(x) dx.

By (3.22), passing to the limit in (3.24), we get

(3.25)
CJ,1

2

∫
RN

∫
Ω

Λ(x, z)z · ∇v(x) dx dz =

∫
Ω

(φ(x) − u(x))v(x) dx

for all v ∈ D(Ω). We set ζ = (ζ1, . . . , ζN ), the vector field defined by

ζi(x) :=
CJ,1

2

∫
RN

Λ(x, z)zi dz, i = 1, . . . , N.
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Then, ζ ∈ L∞(ΩJ ,R
N ), and from (3.25),

−div(ζ) = φ− u in D′(Ω).

Let us see that

‖ζ‖L∞(ΩJ ) ≤ 1.

Given ξ ∈ R
N \ {0}, let Rξ be the rotation such that Rt

ξ(ξ) = e1|ξ|. If we make the
change of variables z = Rξ(y), we obtain

ζ(x) · ξ =
CJ,1

2

∫
RN

Λ(x, z)z · ξ dz =
CJ,1

2

∫
RN

Λ(x,Rξ(y))Rξ(y) · ξ dy

=
CJ,1

2

∫
RN

Λ(x,Rξ(y))y1|ξ| dy.

On the other hand, since J is a radial function and Λ(x, z) ≤ J(z) almost everywhere,

CJ,1
−1 =

1

2

∫
RN

J(z)|z1| dz

and

|ζ(x) · ξ| ≤ CJ,1

2

∫
RN

J(y)|y1| dy|ξ| = |ξ| a.e. x ∈ ΩJ .

Therefore, ‖ζ‖L∞(ΩJ ) ≤ 1.
To finish the proof, that is, to show that u = (I +Aψ̃)−1φ, since u ∈ L∞(Ω) and

ψ̃ ∈ L∞(∂Ω), we need only to prove that

(3.26) (ζ,Du) = |Du| as measures in Ω

and

(3.27) [ζ, ν] ∈ sign
(
ψ̃ − u

)
HN−1 − a.e. on ∂Ω.

Given 0 ≤ ϕ ∈ D(Ω), taking ε = εn and v = ϕuεn in (3.16), we get

(3.28)

− CJ,1

εn1+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
gεn(x, y)uεn(x)ϕ(x) dy dx

=
CJ,1

2εn1+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
gεn(x, y)(uεn(y)ϕ(y) − uεn(x)ϕ(x)) dy dx

=

∫
Ω

(φ(x) − uεn(x))uεn(x)ϕ(x) dx.

Now, we decompose the double integral as follows,

In :=
CJ,1

2εn1+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
gεn(x, y)(uεn(y)ϕ(y) − uεn(x)ϕ(x)) dy dx = I1

n + I2
n,

where

I1
n :=

CJ,1

2εn1+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
|uεn(y) − uεn(x)|ϕ(y) dy dx

=
CJ,1

2

∫
Ω

∫
Ω

J (z)χΩ(x + εnz)
|uεn(x + εnz) − uεn(x)|

εn
ϕ(x + εnz) dz dx
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and

I2
n :=

CJ,1

2εn1+N

∫
Ω

∫
Ω

J

(
x− y

εn

)
gεn(x, y)uεn(x)(ϕ(y) − ϕ(x)) dy dx

=
CJ,1

2

∫
Ω

∫
Ω

J(z)χΩ(x + εnz)gεn(x, x + εnz)uεn(x)
ϕ(x + εnz) − ϕ(x)

εn
dz dx.

Having in mind (3.21), it follows that

lim
n→∞

I1
n ≥ CJ,1

2

∫
Ω

∫
Ω

J (z)ϕ(x)|z ·Du| =

∫
Ω

ϕ |Du|.

On the other hand, since

uεn → u strongly in L1(Ω),

by (3.22), we get

lim
n→∞

I2
n =

CJ,1

2

∫
Ω

∫
RN

u(x)Λ(x, z)z · ∇ϕ(x) dz dx =

∫
Ω

u(x)ζ(x) · ∇ϕ(x) dx.

Therefore, taking n → +∞ in (3.28), we obtain

(3.29)

∫
Ω

ϕ |Du| +
∫

Ω

u(x)ζ(x) · ∇ϕ(x) dx ≤
∫

Ω

(φ(x) − u(x))u(x)ϕ(x) dx.

By Green’s formula,∫
Ω

(φ(x) − u(x))u(x)ϕ(x)dx = −
∫

Ω

div(ζ)uϕdx =

∫
Ω

(ζ,D(ϕu))

=

∫
Ω

ϕ(ζ,Du) +

∫
Ω

u(x)ζ(x) · ∇ϕ(x) dx.

Since |(ζ,Du)| ≤ |Du|, the last identity and (3.29) give (3.26).
Finally, we show that (3.27) holds. We take wm ∈ W 1,1(Ω) ∩ C(Ω) such that

wm = ψ̃ HN−1-a.e. on ∂Ω, and wm → u in L1(Ω). Taking v = vm,n := (uεn)ψ−(wm)ψ
in (3.16), we get

(3.30)

∫
Ω

(φ(x) − uεn(x))(uεn(x) − wm(x)) dx

= − CJ,1

εn1+N

∫
ΩJ

∫
ΩJ

J

(
x− y

εn

)
gεn(x, y)vm,n(x) dy dx

=
CJ,1

2εn1+N

∫
ΩJ

∫
ΩJ

J

(
x− y

εn

)
gεn(x, y)(vm,n(x) − vm,n(x)) dy dx

= H1
n + H1

m,n,

where

H1
n =

CJ,1

2

∫
ΩJ

∫
RN

J(z)χΩJ
(x + εnz)

∣∣∣∣ (uεn)ψ(x + εnz) − (uεn)ψ(x)

εn

∣∣∣∣ dz dx
and

H2
m,n = −CJ,1

2

∫
ΩJ

∫
RN

J(z)χΩJ
(x + εnz)gεn(x, x + εnz)

× (wm)ψ(x + εnz) − (wm)ψ(x)

εn
dz dx.
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Arguing as before,

lim
n→∞

H1
n ≥

∫
ΩJ

|Duψ| =

∫
Ω

|Du| +
∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1 +

∫
ΩJ\Ω

|∇ψ|.

On the other hand, since (wm)ψ ∈ W 1,1(ΩJ), by (3.22),

lim
n→∞

H2
m,n = −CJ,1

2

∫
ΩJ

∫
RN

Λ(x, z)z · ∇(wm)ψ(x) dz dx = −
∫

ΩJ

ζ(x) · ∇(wm)ψ(x) dx.

Consequently, taking n → ∞ in (3.30), we get

(3.31)

∫
Ω

(φ(x) − u(x))(u(x) − wm(x)) dx

≥
∫

Ω

|Du| +
∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1 +

∫
ΩJ\Ω

|∇ψ| −
∫

ΩJ

ζ(x) · ∇(wm)ψ(x) dx.

Now,

−
∫

ΩJ

ζ(x) · ∇(wm)ψ(x) dx = −
∫

Ω

ζ(x) · ∇wm(x) dx−
∫

ΩJ\Ω
ζ(x) · ∇ψ(x) dx

=

∫
Ω

divζ(x)wm(x) dx−
∫
∂Ω

[ζ, ν]ψ̃ dHN−1 −
∫

ΩJ\Ω
ζ(x) · ∇ψ(x) dx.

Since ∫
ΩJ\Ω

|∇ψ| −
∫

ΩJ\Ω
ζ(x) · ∇ψ(x) dx ≥ 0,

from (3.31), we have∫
Ω

(φ(x) − u(x))(u(x) − wm(x)) dx

≥
∫

Ω

|Du| +
∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1 +

∫
Ω

divζ(x)wm(x) dx−
∫
∂Ω

[ζ, ν]ψ̃ dHN−1.

Letting m → ∞, and using Green’s formula, we deduce

0 ≥
∫

Ω

|Du| +
∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1 +

∫
Ω

divζ(x)u(x) dx−
∫
∂Ω

[ζ, ν]ψ̃ dHN−1

=

∫
Ω

|Du| +
∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1 −

∫
Ω

(ζ,Du) +

∫
∂Ω

[ζ, ν]u dHN−1

−
∫
∂Ω

[ζ, ν]ψ̃ dHN−1.

By (3.26), we obtain∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1 ≤

∫
∂Ω

[ζ, ν]
(
ψ̃ − u

)
dHN−1 ≤

∫
∂Ω

∣∣u− ψ̃
∣∣ dHN−1.

Therefore,

[ζ, ν] ∈ sign
(
ψ̃ − u

)
HN−1 − a.e. on ∂Ω,

and the proof is finished.
From the above Proposition, by standard results of the Nonlinear Semigroup

Theory (see, [19] or [15]), we obtain Theorem 1.6.
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4. Limit as p → +∞. A model for sandpiles.

4.1. A model for sandpiles. Let sand be poured out onto a rigid surface,
y = u0(x), given in a bounded open subset Ω of R

2 with Lipschitz boundary ∂Ω. If
the support boundary is open and we assume that the angle of stability is equal to
π
4 , a model for pile surface evolution was proposed by Prigozhin [35] as

(4.1) ∂tu + div q = f, u|t=0 = u0, u|∂Ω = u0|∂Ω,

where u(t, x) is the unknown pile surface, f(t, x) ≥ 0 is the given source density,
and q(t, x) is the unknown horizontal projection of the flux of sand pouring down
the pile surface. If the support has no slopes steeper than the sand angle of repose,
‖∇u0‖∞ ≤ 1, Prigozhin ([35], see also [10], [29], and the references therein) proposed
to take q = −m∇u, where m ≥ 0 is the Lagrange multiplier related to the constraint
‖∇u‖∞ ≤ 1 and satisfies m(‖∇u‖2 − 1) = 0 and reformulated this model as the
following variational inequality:

(4.2)

{
f(t, ·) − ut(t) ∈ ∂IK(u0)(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x),

where

K(u0) :=
{
v ∈ W 1,∞(Ω) : ‖∇v‖∞ ≤ 1, v|∂Ω = u0|∂Ω

}
.

Our aim is to approximate the Prigozhin model for the sandpile by a nonlocal
model (Theorem 1.8) obtained as the limit as p → +∞ of the nonlocal p-Laplacian
problem with Dirichlet boundary condition (Theorem 1.7).

To identify the limit as p → +∞ of the solutions up of problem P J
p (u0, ψ) we

will use the methods of convex analysis, and so we first recall some terminology (see
[30], [17], and [8]). If H is a real Hilbert space with inner product ( , ) and Ψ :
H → (−∞,+∞] is convex, then the subdifferential of Ψ is defined as the multivalued
operator ∂Ψ given by

v ∈ ∂Ψ(u) ⇐⇒ Ψ(w) − Ψ(u) ≥ (v, w − u) ∀w ∈ H.

The epigraph of Ψ is defined by Epi(Ψ) = {(u, λ) ∈ H × R : λ ≥ Ψ(u)}.
Given K a closed convex subset of H, the indicator function of K is defined by

IK(u) =

{
0 if u ∈ K,

+∞ if u 
∈ K.

Then it is easy to see that the subdifferential is characterized as follows:

v ∈ ∂IK(u) ⇐⇒ u ∈ K and (v, w − u) ≤ 0 ∀w ∈ K.

In case the convex functional Ψ : H → (−∞,+∞] is proper, lower-semicontinuous,
and min Ψ = 0 , it is well known (see [17]) that the abstract Cauchy problem{

u′(t) + ∂Ψ(u(t)) � f(t), a.e. t ∈]0, T [,

u(0) = u0,

has a unique strong solution for any f ∈ L2(0, T ;H) and u0 ∈ D(∂Ψ).
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The following convergence was studied by Mosco in [34] (see [8]). Suppose X is
a metric space and An ⊂ X. We define

lim inf
n→∞

An = {x ∈ X : ∃xn ∈ An, xn → x}

and

lim sup
n→∞

An = {x ∈ X : ∃xnk
∈ Ank

, xnk
→ x}.

In the case X is a normed space, we note by s − lim and w − lim the above limits
associated, respectively, to the strong and to the weak topology of X.

Given a sequence Ψn,Ψ : H → (−∞,+∞] of convex lower-semicontinuous func-
tionals, we say that Ψn converges to Ψ in the sense of Mosco if

(4.3) w − lim sup
n→∞

Epi(Ψn) ⊂ Epi(Ψ) ⊂ s− lim inf
n→∞

Epi(Ψn).

It is easy to see that (4.3) is equivalent to the two following conditions:

(4.4) ∀u ∈ D(Ψ) ∃un ∈ D(Ψn) : un → u and Ψ(u) ≥ lim sup
n→∞

Ψn(un);

(4.5) for every subsequence nk, when uk ⇀ u, it holds Ψ(u) ≤ lim inf
k

Ψnk
(uk).

As a consequence of the results in [19] and [8] we can write the following result.
Theorem 4.1. Let Ψn,Ψ : H → (−∞,+∞] convex lower-semicontinuous func-

tionals. Then the following statements are equivalent.
(i) Ψn converges to Ψ in the sense of Mosco.
(ii) (I + λ∂Ψn)−1u → (I + λ∂Ψ)−1u, ∀λ > 0, u ∈ H.

Moreover, any of these two conditions (i) or (ii) imply that
(iii) for every u0 ∈ D(∂Ψ) and u0,n ∈ D(∂Ψn) such that u0,n → u0, and every

fn, f ∈ L2(0, T ;H) with fn → f , if un(t), u(t) are the strong solutions of the abstract
Cauchy problems {

u′
n(t) + ∂Ψn(un(t)) � fn, a.e. t ∈]0, T [,

un(0) = u0,n,

and {
u′(t) + ∂Ψ(u(t)) � f, a.e. t ∈]0, T [,

u(0) = u0,

respectively, then

un → u in C([0, T ] : H).

4.2. Limit as p → +∞. Let us consider the nonlocal p-Laplacian evolution
problem with source

P J
p (u0, ψ, f)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, x)=

∫
Ω

J(x− y)|u(t, y) − u(t, x)|p−2(u(t, y) − u(t, x))dy + f(t, x),

(t, x) ∈]0, T [×Ω,

u(t, x) = ψ(x), (t, x) ∈]0, T [×(ΩJ \ Ω),

u(0, x) = u0(x), x ∈ Ω.
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This problem is associated to the energy functional

GJ
p,ψ(u) =

1

2p

∫
Ω

∫
Ω

J(x− y)|u(y) − u(x)|p dy dx

+
1

p

∫
Ω

∫
ΩJ\Ω

J(x− y)|ψ(y) − u(x)|p dy dx.

With a formal calculation, taking limit as p → +∞, we arrive to the functional

GJ
∞,ψ(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |u(x) − u(y)| ≤ 1, for x, y ∈ Ω
and |ψ(y) − u(x)| ≤ 1, for x ∈ Ω, y ∈ ΩJ \ Ω,
with x− y ∈ supp(J)

+∞ in the other case.

Hence, if we define

KJ
∞,ψ :=

⎧⎨
⎩u ∈ L2(Ω) :

|u(x) − u(y)| ≤ 1, x, y ∈ Ω
and |ψ(y) − u(x)| ≤ 1, for x ∈ Ω, y ∈ ΩJ \ Ω,
with x− y ∈ supp(J)

⎫⎬
⎭ ,

we have that the functional GJ
∞,ψ is given by the indicator function of KJ

∞,ψ; that is,

GJ
∞,ψ = IKJ

∞,ψ
. Then, the nonlocal limit problem can be written as

P J
∞(u0, ψ, f)

{
f(t, ·) − ut(t) ∈ ∂IKJ

∞,ψ
(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x).

Proof of Theorem 1.7. Let T > 0. By Theorem 4.1, to prove the result it is
enough to show that the functionals

GJ
p,ψ(u) =

1

2p

∫
Ω

∫
Ω

J(x− y)|u(y) − u(x)|p dy dx

+
1

p

∫
Ω

∫
ΩJ\Ω

J(x− y)|ψ(y) − u(x)|p dy dx

converge to

GJ
∞,ψ(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |u(x) − u(y)| ≤ 1, for x, y ∈ Ω
and |ψ(y) − u(x)| ≤ 1, for x ∈ Ω, y ∈ ΩJ \ Ω,
with x− y ∈ supp(J)

+∞ in the other case

as p → +∞, in the sense of Mosco. First, let us check that

(4.6) Epi
(
GJ

∞,ψ

)
⊂ s− lim inf

p→+∞
Epi

(
GJ

p,ψ

)
.

To this end let (u, λ) ∈ Epi(GJ
∞,ψ). We can assume that u ∈ KJ

∞,ψ and λ ≥ 0 (as

GJ
∞,ψ(u) = 0). Now take

(4.7) vp = u and λp = GJ
p,ψ(u) + λ.
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Then, as λ ≥ 0 we have (vp, λp) ∈ Epi(GJ
p,ψ). Obviously, vp = u → u in L2(Ω), and

as u ∈ KJ
∞,ψ,

GJ
p,ψ(u) =

1

2p

∫
Ω

∫
Ω

J(x− y)|u(y) − u(x)|p dydx

+
1

p

∫
Ω

∫
ΩJ\Ω

J(x− y)|ψ(y) − u(x)|p dy dx

≤ 1

2p

∫
Ω

∫
Ω

J(x− y) dydx +
1

p

∫
Ω

∫
ΩJ\Ω

J(x− y) dy dx → 0

as p → +∞. Therefore, we get (4.6). Finally, let us prove that

(4.8) w − lim sup
p→+∞

Epi
(
GJ

p,ψ

)
⊂ Epi

(
GJ

∞,ψ

)
.

To this end, let us consider a sequence (upj , λpj
) ∈ Epi(GJ

pj ,ψ
); that is, GJ

pj ,ψ
(upj

) ≤
λpj

, with

upj ⇀ u, and λpj → λ.

Since, 0 ≤ GJ
pj ,ψ

(upj ) ≤ λpj → λ, 0 ≤ λ. On the other hand, we have that there
exists a constant C > 0 such that

(pjC)
1/pj ≥

(
pjG

J
p,ψ(upj

)
)1/pj

=

(
1

2

∫
Ω

∫
Ω

J(x− y)|upj
(y) − upj

(x)|pj dy dx

+

∫
Ω

∫
ΩJ\Ω

J(x− y)|ψ(y) − upj
(x)|pj dy dx

)1/pj

.

Then, by the above inequality,(∫
Ω

∫
Ω

J (x− y)
∣∣upj

(y) − upj
(x)

∣∣q dy dx

)1/q

≤
(∫

Ω

∫
Ω

J (x− y) dy dx

)(pj−q)/pjq

×
(∫

Ω

∫
Ω

J (x− y)
∣∣upj (y) − upj (x)

∣∣pj
dy dx

)1/pj

≤
(∫

Ω

∫
Ω

J (x− y) dy dx

)(pj−q)/pjq

(Cpj)
1/pj .

Hence, we can extract a subsequence (if necessary) and let pj → +∞ to obtain(∫
Ω

∫
Ω

J (x− y) |u(y) − u(x)|q dy dx

)1/q

≤
(∫

Ω

∫
Ω

J (x− y) dy dx

)1/q

.

Now, just taking q → +∞, we get

|u(x) − u(y)| ≤ 1 a.e. (x, y) ∈ Ω × Ω, x− y ∈ supp(J).

With a similar argument we obtain

|u(x) − ψ(y)| ≤ 1 a.e. x ∈ Ω, y ∈ ΩJ \ Ω, with x− y ∈ supp(J).

Hence, we conclude that u ∈ KJ
∞,ψ. This ends the proof.
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4.3. Rescaling. We will assume now that Ω is convex and ψ verifies ‖∇ψ‖∞ ≤ 1.
For ε > 0, we rescale the functional GJ

∞,ψ as follows:

Gε
∞,ψ(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |u(x) − u(y)| ≤ ε, for x, y ∈ Ω
and |ψ(y) − u(x)| ≤ ε, for x ∈ Ω, y ∈ ΩJ \ Ω,
with |x− y| ≤ ε

+∞ in the other case.

In other words, Gε
∞,ψ = IKε

∞,ψ
, where

Kε
∞,ψ :=

⎧⎨
⎩u ∈ L2(Ω) :

|u(x) − u(y)| ≤ ε, x, y ∈ Ω
and |ψ(y) − u(x)| ≤ ε, for x ∈ Ω, y ∈ ΩJ \ Ω,
with |x− y| ≤ ε

⎫⎬
⎭ .

Consider the gradient flow associated to the functional Gε
∞,ψ

P ε
∞(u0, ψ, f)

{
f(t, ·) − ut(t, ·) ∈ ∂IKε

∞,ψ
(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x), in Ω,

and the problem

P∞(u0, ψ, f)

{
f(t, ·) − u∞,t ∈ ∂IKψ

(u∞), a.e. t ∈]0, T [,

u∞(0, x) = u0(x), in Ω,

where

Kψ :=
{
u ∈ W 1,∞(Ω) : ‖∇u‖∞ ≤ 1, u|∂Ω = ψ|∂Ω

}
.

Observe that if u ∈ Kψ, ‖∇u‖∞ ≤ 1. Then, since ‖∇ψ‖∞ ≤ 1 and Ω is convex,
we have |u(x)−u(y)| ≤ |x− y| and |u(x)−ψ(y)| ≤ |x− y|, from where it follows that
u ∈ Kε

∞,ψ, that is, Kψ ⊂ Kε
∞,ψ.

With all these definitions and notations, we can proceed with the limit as ε → 0
for the sandpile model (p = +∞).

Proof of Theorem 1.8. Since u0 ∈ Kψ, u0 ∈ Kε
∞,ψ for all ε > 0. Again we

are using that ‖∇ψ‖∞ ≤ 1. Consequently, there exists u∞,ε the unique solution of
P ε
∞(u0, ψ, f).

By Theorem 4.1, to prove the result it is enough to show that IKε
∞,ψ

converges to

IKψ
in the sense of Mosco. Using that ‖∇ψ‖∞ ≤ 1 it is easy to obtain that

(4.9) Kε1
∞,ψ ⊂ Kε2

∞,ψ, if ε1 ≤ ε2.

Since Kψ ⊂ Kε
∞,ψ for all ε > 0, we have

Kψ ⊂
⋂
ε>0

Kε
∞,ψ.

On the other hand, if

u ∈
⋂
ε>0

Kε
∞,ψ,
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we have

|u(y) − u(x)| ≤ |y − x|, a.e. x, y ∈ Ω,

and moreover

|u(y) − ψ(x)| ≤ |y − x|, a.e. x ∈ ΩJ \ Ω, y ∈ Ω,

from where it follows that u ∈ Kψ. Therefore, we have

(4.10) Kψ =
⋂
ε>0

Kε
∞,ψ.

Note that

(4.11) Epi(IKψ
) = Kψ × [0,∞[, Epi

(
IKε

∞,ψ

)
= Kε

∞,ψ × [0,∞[ ∀ ε > 0.

By (4.10) and (4.11),

(4.12) Epi
(
IKψ

)
⊂ s− lim inf

ε→0
Epi

(
IKε

∞,ψ

)
.

On the other hand, given (u, λ) ∈ w − lim supε→0 Epi(IKε
∞,ψ

) there exists (uεk , λk) ∈
Kεk,ψ × [0,∞[, such that εk → 0 and

uεk ⇀ u in L2(Ω), λk → λ in R.

By (4.9), given ε > 0, there exists k0, such that uεk ∈ Kε
∞,ψ for all k ≥ k0. Then,

since Kε
∞,ψ is a closed convex set, we get u ∈ Kε

∞,ψ, and, by (4.10), we obtain that
u ∈ K0. Consequently,

(4.13) w − lim sup
n→∞

Epi
(
IKε

∞,ψ

)
⊂ Epi

(
IKψ

)
.

Finally, by (4.12), (4.13), and having in mind (4.3), we obtain that IKε
∞,ψ

converges
to IKψ

in the sense of Mosco.

4.4. Explicit solutions. Our goal now is to show some explicit examples that
illustrate the behavior of the solutions when p = +∞.

Remark 4.2. There is a natural upper bound (and of course also a natural lower
bound) for the solutions with boundary datum ψ outside Ω (regardless the source
term f). Indeed, given a bounded domain Ω ⊂ R

N let us define inductively

Ω1 =
{
x ∈ Ω : |x− y| < 1 for some y ∈ ΩJ \ Ω

}
and, for j ≥ 2,

Ωj =
{
x ∈ Ω \ ∪j−1

i=1Ωi : |x− y| < 1 for some y ∈ Ωj−1

}
.

Then, since u(t) ∈ KJ
∞,ψ we must have

u(t, x) ≤ ψ(y) + 1 if |x− y| ≤ 1, x ∈ Ω1, y ∈ ΩJ \ Ω,

and for any j ≥ 2

u(t, x) ≤ u(t, y) + 1 if |x− y| ≤ 1, x ∈ Ωj , y ∈ Ωj−1 \ Ωj .
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Therefore we have an upper bound for u(t, x) in the whole Ω,

u(t, x) ≤ Ψ1(x),

where Ψ1 is defined by the inductive formula,

Ψ1(x) = max
{
ψ(y) + 1 : y ∈ ΩJ \ Ω, |x− y| ≤ 1

}
, for x ∈ Ω1,

and

Ψ1(x) = max {Ψ1(y) + 1 : y ∈ Ωj−1, |x− y| ≤ 1} , for x ∈ Ωj , if j ≥ 2.

Analogously, we can obtain a lower bound for u(t, x),

u(t, x) ≥ Φ1(x),

where Φ1 is defined by the inductive formula,

Φ1(x) = min
{
ψ(y) − 1 : y ∈ ΩJ \ Ω, |x− y| ≤ 1

}
, for x ∈ Ω1,

and

Φ1(x) = min {Φ1(y) − 1 : y ∈ Ωj−1, |x− y| ≤ 1} , for x ∈ Ωj , if j ≥ 2.

With this remark in mind we show some explicit examples of solutions to

P J
∞(u0, ψ, f)

{
f(t, x) − ut(t, x) ∈ ∂GJ

∞,ψ(u(t)), a.e. t ∈]0, T [,

u(0, x) = u0(x), in Ω,

where

GJ
∞,ψ(u) =

⎧⎪⎨
⎪⎩

0 if u ∈ L2(Ω), |u(x) − u(y)| ≤ 1, for x, y ∈ Ω, |x− y| ≤ 1,

and |u(x) − ψ(y)| ≤ 1, for x ∈ Ω, y ∈ ΩJ \ Ω, |x− y| ≤ 1,

+∞ in the other case.

In order to verify that a function u(t, x) is a solution to P J
∞(u0, ψ, f), we need to

check that

(4.14) GJ
∞,ψ(v) ≥ GJ

∞,ψ(u) + 〈f − ut, v − u〉, for all v ∈ L2(Ω).

To this end we can assume that v ∈ KJ
∞,ψ (otherwise GJ

∞,ψ(v) = +∞ and then (4.14)
becomes trivial). Therefore, we need to check that

(4.15) u(t, ·) ∈ KJ
∞,ψ

and, by (4.14), that

(4.16)

∫
Ω

(f(t, x) − ut(t, x))(v(x) − u(t, x)) dx ≤ 0

for every v ∈ KJ
∞,ψ.

Example 1. Let us consider a nonnegative source f and as initial condition the
upper bound defined in the previous remark, u0(x) = Ψ1(x). Then the solution to
P J
∞(u0, ψ, f) is given by

u(t, x) ≡ Ψ1(x)
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for every t > 0. Indeed, Ψ1(x) ∈ KJ
∞,ψ and for every v ∈ KJ

∞,ψ we have that
v(x) ≤ Ψ1(x), and therefore∫

Ω

(f(t, x) − ut(t, x))(v(x) − u(t, x)) dx =

∫
Ω

f(t, x)(v(x) − Ψ1(x)) dx ≤ 0,

as we have to show.
In general, given a nonnegative source f supported in D ⊂ Ω, any initial condition

u0 ∈ KJ
∞,ψ that verifies u0(x) = Ψ1(x) in D produces a stationary solution u(t, x) ≡

u0(x).
Analogously, it can be shown that u(t, x) ≡ Φ1(x) when u0(x) = Φ1(x) and

f(t, x) ≤ 0.
Example 2. Now, let us assume that we are in an interval Ω = (−L,L), ψ = 0,

ε = L/n, n ∈ N, u0 = 0 which belongs to Kε,0, and the source f is an approximation
of a delta function,

f(t, x) = fη(t, x) =
1

η
χ

[− η
2 ,

η
2 ](x), 0 < η ≤ 2ε.

Using the same ideas of [6], it is easy to verify the following general formula that
describes the solution of P ε

∞(u0, ψ, f) for every t ≥ 0. For any given integer l ≥ 0 we
have

u(t, x)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lε + kl(t− tl), x∈ [−η
2 ,

η
2 ],

(l − 1)ε + kl(t− tl), x∈ [−η
2 − ε, η

2 + ε] \ [−η
2 ,

η
2 ],

. . .

kl(t− tl), x∈ [−η
2 − lε, η

2 + lε] \ [−η
2 − (l − 1)ε, η

2 + (l − 1)ε],

0, x /∈ [−η
2 − lε, η

2 + lε],

for t ∈ [tl, tl+1), where

kl =
1

2lε + η
and tl+1 = tl +

ε

kl
, t0 = 0.

This general formula is valid until the time at which the solution verifies u(t, x) =
Ψε(x) for x ∈ [−η

2 ,
η
2 ] (the support of f), that is, until T = tl∗+1, where

l∗ is the first l such that lε + kl(tl+1 − tl) = Ψε(0)

and

Ψε is the natural upper bound defined in Remark 4.2

for the corresponding rescaled kernel. Observe that for this l∗, η
2 + l∗ε ≤ L. From

that time on the solution is stationary, that is, u(t, x) = u(T, x) for all t > T .
From the above formula, taking limits as η → 0, we get that the expected solution

to P ε
∞(u0, ψ, δ0) is given, for any given integer l ≥ 1, by

(4.17) u(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(l − 1)ε + kl(t− tl), x ∈ [−ε, ε],

(l − 2)ε + kl(t− tl), x ∈ [−2ε, 2ε] \ [−ε, ε],

. . .

kl(t− tl), x ∈ [−lε, lε] \ [−(l − 1)ε, (l − 1)ε],

0, x /∈ [−lε, lε],
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for t ∈ [tl, tl+1), where kl = 1
2lε , tl+1 = tl + ε

kl
, t1 = 0, until T = tl∗+1, where

l∗ is the first l such that lε + kl(tl+1 − tl) = Ψε(0).

And from that time on the solution is stationary, that is, u(t, x) = u(T, x) for all
t > T .

Remark that, since the space of functions Kε
∞,ψ is not contained into C(R), the

formulation (4.16) with f = δ0 does not make sense. Hence the function u(t, x)
described by (4.17) is to be understood as a generalized solution to P ε

∞(u0, ψ, δ0) (it
is obtained as a limit of solutions to approximating problems).

Note that the function u(T, x) is a “regular and symmetric pyramid” composed
by squares of side ε which is one step below the upper profile Ψε.

Recovering the sandpile model as ε → 0. Now, to recover the sandpile
model, take the limit as ε → 0 in the previous example to get that u(t, x) → v(t, x),
where

v(t, x) = (l − |x|)+ for t = l2,

until the time at which t = L2, and from that time the solution is stationary.
A similar argument shows that, for any a ∈ (0, L), the generalized solution to

P ε
∞(0, 0, δa) converges as ε → 0 to v(t, x), where

v(t, x) = (l − |x− a|)+ for t = l2,

until the time at which t = (L− a)2, and from that time the solution is stationary.
These concrete examples illustrate the general convergence result in Theorem 1.8.
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GROW-UP RATE AND REFINED ASYMPTOTICS FOR A
TWO-DIMENSIONAL PATLAK–KELLER–SEGEL MODEL IN A DISK∗

NIKOS I. KAVALLARIS† AND PHILIPPE SOUPLET‡

Abstract. We consider a special case of the Patlak–Keller–Segel system in a disc, which arises
in the modeling of chemotaxis phenomena. For a critical value of the total mass, the solutions are
known to be global in time but with density becoming unbounded, leading to a phenomenon of mass-
concentration in infinite time. We establish the precise grow-up rate and obtain refined asymptotic
estimates of the solutions. Unlike in most of the similar, recently studied, grow-up problems, the

rate is neither polynomial nor exponential. In fact, the maximum of the density behaves like e
√

2t

for large time. In particular, our study provides a rigorous proof of a behavior suggested by Sire and
Chavanis [Phys. Rev. E (3), 66 (2002), 046133] on the basis of formal arguments.
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1. Introduction.

1.1. The complete Patlak–Keller–Segel model. Out of the many mathe-
matical models that have been proposed to deal with particular aspects of chemotaxis,
that proposed by Patlak in 1953 (cf. [40]) and Keller and Segel in 1970 (cf. [32]) has
received particular attention. The so-called (two-dimensional) Patlak–Keller–Segel
model consists of two equations, describing the evolution of the population density
ρ(x, t) of bacteria and the concentration c(x, t) of a chemical attracting substance in
a bounded domain Ω ⊂ R

2 and in a time interval [0, T ]:

∂ρ

∂t
= ∇ · (D1∇ρ− χρ∇c),(1.1)

θ
∂c

∂t
= Δc− ac + ρ.(1.2)

More precisely, the first equation describes the random (Brownian) diffusion of the
population of cells, which is biased in the direction of a drift velocity, proportional to
the gradient of the concentration of the chemoattractant. The diffusion coefficient is
denoted by D1 > 0, and the proportionality coefficient of the drift (mobility param-
eter) is denoted by χ > 0. According to the second equation, the chemoattractant,
which is directly emitted by the cells, diffuses with a diffusion coefficient D2 = 1/θ > 0
on the substrate, while it is generated proportionally to the density of cells and at the
same time is degraded with a rate equal to a/θ ≥ 0. In order for system (1.1)–(1.2)
to be well posed, it should be supplemented with some initial conditions

(1.3) ρ(x, 0) = ρ0(x) ≥ 0, c(x, 0) = c0(x) ≥ 0,

∗Received by the editors April 23, 2008; accepted for publication (in revised form) September 15,
2008; published electronically January 7, 2009.

http://www.siam.org/journals/sima/40-5/72222.html
†Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Vourli-

oti Building, Gr-83200 Karlovassi, Samos, Greece (nkaval@aegean.gr).
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Paris-Nord, 99 av. J.-B. Clément, 93430 Villetaneuse, France (souplet@math.univ-paris13.fr).

1852



GROW-UP RATE FOR PATLAK–KELLER–SEGEL MODEL 1853

along with conditions on the boundary ∂Ω. A natural boundary condition, since it
guarantees the conservation of total mass, is the no-flux–type condition for ρ, namely,

(1.4)
∂ρ

∂ν
− ρ

∂c

∂ν
= 0 on ∂Ω,

where ν stands for the outer unit normal vector at ∂Ω. As for c, a Dirichlet-type
boundary condition is assumed, i.e.,

(1.5) c = 0 on ∂Ω;

cf. [7, 46]. Note that the parabolic system (1.1)–(1.2) preserves the nonnegativity of
the initial conditions, i.e., ρ, c ≥ 0 for t > 0, which is also expected to be true for
the physical problem. For simplicity, D1, χ are considered to be constant and under
suitable scaling can be taken as D1 = χ = 1.

In view of experimental facts, the coefficients θ and a are assumed to be small,
and a simplified form of the Patlak–Keller–Segel system is obtained (in fact, this
corresponds to the case when the diffusion and production of c are much faster than
the dynamics of ρ and the degradation of c). Namely, by considering the limiting
case θ, a → 0+, the parabolic-parabolic system (1.1)–(1.5) is reduced to the elliptic-
parabolic system

∂ρ

∂t
= ∇ · (∇ρ− ρ∇c), x ∈ Ω, t ∈ (0, T ),(1.6)

−Δc = ρ, x ∈ Ω, t ∈ (0, T ),(1.7)

∂ρ

∂ν
− ρ

∂c

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),(1.8)

c = 0, x ∈ ∂Ω, t ∈ (0, T ),(1.9)

ρ(x, 0) = ρ0(x) ≥ 0, x ∈ Ω.(1.10)

Note that in order for (1.6)–(1.10) to be well posed, only the initial data ρ(x, 0) =
ρ0(x) must be prescribed. Moreover, owing to the boundary condition (1.8), the total
(mass) population of cells is conserved; that is,

||ρ(·, t)||1 = ||ρ0||1 =: Λ for t > 0.

For a more detailed analysis regarding the modeling as well as the behavior of
solutions of chemotaxis systems, see the review papers [24, 28, 29] as well as the
monograph [48]. Here, it should be noticed that system (1.6)–(1.10) is also known as
the Smoluchowski–Poisson system and can describe the motion of the mean field of
many self-gravitating particles [13, 1, 2, 7, 46, 49, 50] or that of polymer molecules [16].
The behavior of the solution to (1.6)–(1.10) strongly depends on the parameter Λ. In
fact, if Λ > 8π and Ω = B(0, R), R > 0, then solutions of (1.6)–(1.10) blow up in a
finite time T ∗(ρ0); that is,

lim
t→T∗

||ρ(·, t)||H1 = lim
t→T∗

||ρ(·, t)||Lp = lim
t→T∗

∫
Ω

(ρ log ρ)(x, t) dx = ∞

for every p > 1; see [9, Theorem 2(i)], [2, Theorem 2]. On the other hand, for Λ < 8π,
all solutions of system (1.6)–(1.10) are global in time; cf. [7, Theorem 2 (iv)]. In the
critical case Λ = 8π an infinite-time blow-up (grow-up) occurs, i.e., ||ρ(·, t)||∞ → ∞ as
t → ∞; cf. [39, Theorem 3], [5, Proposition 3.2]. Finite- or infinite-time blow-up can
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be accompanied by the occurrence of a δ-function formation in the blow-up set (this
represents the trend of populations to concentrate to form sporae) and is known in
the literature as chemotactic collapse. This phenomenon was conjectured by Childress
and Percus [14] and Nanjundiah [38] and was first verified, via matched asymptotics
arguments, for a radially symmetric simplified Patlak–Keller–Segel system in [25]. A
result regarding the infinite-time Dirac mass formation for ρ can be found in [39],
where some characterization of grow-up (mass-concentration) points together with
more grow-up results for different types of boundary conditions are also obtained [39,
Theorems 2 and 3]. For blow-up results concerning a variation of system (1.6)–(1.10)
but with Neumann boundary conditions for both ρ and c, see [30, 35, 3, 36, 44].

1.2. The simplified Patlak–Keller–Segel model in the radial case. In
the case when Ω is the ball B(0, R), R > 0, and the initial data ρ0(x) = ρ0(r) is
radially symmetric, the solution of system (1.6)–(1.10) is radially symmetric, i.e.,
ρ(x, t) = ρ(r, t), with r = |x|. In this case the elliptic-parabolic system (1.6)–(1.10)
can be greatly simplified. Namely, by introducing the cumulative mass distribution

Q(r, t) :=

∫
B(0,r)

ρ(x, t) dx = 2π

∫ r

0

sρ(s, t) ds,

which is equal to the mass contained in the sphere B(0, r), the system reduces to a
single equation

Qt = Qrr −
1

r
Qr +

1

2πr
QQr, 0 < r < R, t > 0,(1.11)

Q(0, t) = 0, Q(R, t) = Λ.(1.12)

By the definition of Q, the function

(1.13) Q(r, 0) = Q0(r)

is positive nondecreasing and satisfies the compatibility conditions Q0(0) = 0 and
Q0(R) = Λ.

As mentioned in [4, 7], the formulation (1.11)–(1.13) allows the consideration of
some initial data for the density ρ which could be either unbounded or singular (such
as measures)—a case that seems rather realistic. This means that the initial data Q0

for problem (1.11)–(1.13) could have unbounded derivatives Q0,r or even be discon-
tinuous. Moreover, using formulation (1.11)–(1.13), we have the comparison principle
at hand, which is not available for system (1.6)–(1.10). Due to the scaling proper-
ties of (1.11), we can assume without loss of generality that problem (1.11)–(1.13) is
posed in the unit ball B(0, 1). (Indeed, it is easily seen that if Q(r, t) is a solution of
(1.11)–(1.13), then Q(Rr,R2t) is also a solution.)

Using the new variable x = r2 (no confusion with the original variable x in
(1.6)–(1.10) should occur) and defining N(x, t) = Q(r, t), we are led to the problem

Nt = 4xNxx +
1

π
NNx, 0 < x < 1, t > 0,(1.14)

N(0, t) = 0, N(1, t) = Λ,(1.15)

N(x, 0) = N0(x), 0 < x < 1.(1.16)

Note that (1.14) differs from the Burgers equation only by the variable coefficient x
in the diffusion term. The above problem, although it degenerates at x = 0, may be
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handled more easily than (1.11)–(1.13) since it contains fewer terms and at the same
time does not have any singular coefficients in the first order terms.

As expected, the behavior of the solution of problem (1.14)–(1.16) (which is well
defined for suitable initial data) depends on Λ. For Λ > 8π the solution N ceases to ex-
ist in a finite time T ∗; more precisely, the boundary condition N(0, t) = 0 is no longer
fulfilled at t = T ∗. Moreover, a “gradient blow-up” occurs at t = T ∗ in the sense that
Nx(0, t) → ∞ as t → T ∗ and the density ρ also becomes unbounded at time T ∗; cf. [8,
Theorem 2(i)]. On the other hand, for 0 < Λ < 8π and any (admissible) initial data
there is a unique global-in-time solution N ∈ C([0,∞);L2(0, 1))∩C2,1((0, 1)×(0,∞)).
Furthermore, N converges to the unique steady state solution:

(1.17) N(·, t) → Nd = 8π
x

x + d
as t → ∞

in Lp(Ω), p ≥ 1, and even in L∞(Ω) provided that supt≥0 |Nx|∞ < ∞, where d =
8π
Λ − 1 > 0; cf. [5]. In this case the rate of the L1-convergence of N(·, t) to Nd is
shown to be exponential.

In the borderline case Λ = 8π, the situation is still different and the problem
exhibits a typical critical behavior. Namely, it is proved in [5] that there exists a

global-in-time solution N , which converges to the “singular” steady state Ñ(x) ≡ 8π

(note that Ñ does not satisfy the boundary condition at x = 0). Actually, as was
proven in [39, Theorem 3], an infinite-time Dirac mass formation at the origin r = 0
of the ball occurs in this case. However, neither an estimation of the grow-up rate
nor the asymptotic profile of the grow-up are provided in [39]. On the other hand,
the authors in [5, Proposition 3.2] obtain the decay estimate

(1.18) ||N(·, t) − 8π||L1 ≤ 8π

t
for t ≥ 1.

Estimate (1.18) seems to be far from optimal since formal asymptotics performed
in [46] suggest a temporal decay estimate of order

(1.19) ||N(·, t) − 8π||L1 ≈ O
(
e−

√
2t
)

as t → ∞.

Remarks 1.1. (a) The (nonradial) Patlak–Keller–Segel system has also been
studied in the whole plane R

2. Again, the behavior of solutions depends on the initial
mass of the system, and a dichotomy is found [11, 17]. More precisely, assuming
0 ≤ (1 + |x|2)ρ0 and ρ0 log ρ0 ∈ L1, there exists a critical value of the mass Nc := 8π
such that if 0 < ||ρ0||1 < Nc (subcritical case), only global-in-time solutions exist,
while if ||ρ0||1 > Nc (supercritical case), the solutions blow up in finite time [11, 41].
Moreover, in the subcritical case, solutions converge to a self-similar profile as t → ∞
[6, 11]. Finally, for the critical case N = Nc, which was studied in [10], the solution
is global-in-time and grows up as a Dirac mass at the center of mass as t → ∞.

(b) The only previous mathematical study of grow-up rates for a system of Patlak–
Keller–Segel type concerns high dimensions, namely, n ≥ 11, and was performed
recently in [45]. There, some radial global unbounded solutions were constructed in a
ball and an infinite sequence of polynomial grow-up rates was obtained (for a suitable
sequence of initial data). On the contrary, our results in the present paper for n = 2
exhibit a grow-up rate independent of the initial data.

(c) Concerning the parabolic-parabolic Patlak–Keller–Segel system in a bounded
domain with Neumann conditions, interesting results can be found in [26, 27] and [19,
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37], respectively, on the asymptotics of finite-time blow-up and on global existence
and the convergence of global bounded solutions.

(d) Problem (1.14)–(1.16) is in fact independent of the boundary condition (1.9)
for c. Of course the boundary condition for c has to be taken into account if one
wants to determine c, and not only ρ, from N .

(e) In the case where the diffusion of cells is very slow as compared to the diffusion
of the chemoattractant, i.e., when D1 � D2 in (1.1)–(1.2), the complete system
(1.1)–(1.5) is reduced to a single but nonlocal equation; cf. [51]. The global existence
(subcritical case) and the finite-time blow-up (supercritical case) of solutions of the
derived nonlocal equation in the two-dimensional case are studied in [31].

1.3. Heuristic description of the results and methods. Our aim is to prove
rigorously the decay rate (1.19) as well as to provide a refined asymptotic profile for
N(x, t) as t → ∞. To normalize the constants arising in the calculations we shall
work with the equivalent problem

ut = xuxx + 2uux, 0 < x < 1, t > 0,(1.20)

u(0, t) = 0, u(1, t) = ξ :=
Λ

8π
, t > 0,(1.21)

u(x, 0) = u0(x), 0 < x < 1,(1.22)

which is obtained from (1.14)–(1.16) by setting N(x, t) = 8πu(x, 4t).

It is clear that the stationary part xuxx + 2uux = 0 of the parabolic equation
(1.20) is invariant under the rescaling u(x) 
→ u(kx) (k > 0). Moreover, the steady
state solution for ξ < 1 is given by

Ua(x) = 1 − 1

ax + 1
=

ax

ax + 1

for a = U ′
a(0) = ξ

1−ξ > 0. Rewriting (1.17) in terms of u, we have

u(x, t) → Ua(x) as t → ∞.

Also, observe that Ua(x) converges in a monotone increasing way to the “singular”
steady state U ≡ 1 as a → ∞ (ξ → 1).

Motivated by the above considerations, we shall look for sub- and supersolutions
of problem (1.20)–(1.22), which are perturbations of a moving family of steady states

(1.23) Ua(t)(x),

the perturbation being defined in terms of the self-similar variable y = a(t)x. Here,
a is a function of time, diverging to infinity, which is a priori unknown and will be
eventually identified by a suitable “matching” procedure (see Remark 1.3). Note that
such a form was used in [46] to construct “approximate solutions” leading to the
formal asymptotics mentioned above. However, the expansions in [46] contained only
a correction term at the first order, while those that we here construct involve first
and second order terms (see Lemmas 4.1 and 4.2). This seems necessary to obtain
(rigorous) sub- and supersolutions living “close” to the actual solution and eventually
provides us with the desired decay rate as well as a good description of the asymptotic
profile.
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As a consequence of this construction, we shall derive an infinite-time boundary
gradient grow-up result, with the grow-up rate
(1.24)

ux(0, t) = A(t)
(
1 + O

(
t−1/2 log t

))
as t → ∞, where A(t) = exp

[
5

2
+
√

2t

]
.

In terms of the solution of the original system (1.6)–(1.10), (1.24) gives an estimate
of the central density of bacteria, since ρ(0, t) = 8ux(0, 4t). Note that (1.24) was also
predicted by formal arguments in [46]. At the same time, we show the C1 regularity
of u up to the boundary for all finite time intervals, hence ruling out the possibility
of supx∈[0,1] ux(x, t) blowing up in finite time. This problem was left open in [5].
Moreover, we obtain a precise asymptotic expansion of the solution (see formula (2.8)
in Theorem 2.1). It expresses the solution as the sum of a quasi-stationary profile
(cf. (1.23)) and a correction term which becomes significant only for x bounded away
from 0. As a consequence, we obtain the decay

‖u(·, t) − 1‖L1(0,1) =
(
1 + O

(
t−1/2 log t

))√
2t exp

[
−5

2
−
√

2t

]
as t → ∞,

again in accordance with the predictions in [46].
Remark 1.2. The study of unbounded global classical solutions of superlinear

parabolic problems and their asymptotic behavior has recently attracted substantial
mathematical interest. Particular effort has been devoted to the reaction-diffusion
equation

(1.25) ut − Δu = up,

where such solutions are known to exist for suitable p > 1. Let us mention the
works [33, 18, 22] for the Dirichlet problem in a ball and [42, 20, 21, 34] for the
Cauchy problem. See also [43, sections 22 and 29] for related questions. The case of
the Frank–Kamenetskii equation (with nonlinearity eu instead of up) is also studied
in [18]. As for the diffusive Hamilton–Jacobi equation

(1.26) ut − uxx = |ux|p,

with p > 2, results of this kind can be found in [47]. A common feature in all these
examples is the stabilization of the solution to a singular steady state, the growing-up
quantity being ‖u(t)‖∞ (resp., ‖ux(t)‖∞) for (1.25) (resp., (1.26)). It has to be noted
that the grow-up rates, as t → ∞, usually behave like either eμt or tk. The only known
exception (see [22]) seems to be the case of (1.25) with zero boundary conditions, in
a ball of R

4 with critical Sobolev exponent (p = 3). In this situation, unlike in spatial
dimensions n �= 4, there holds log ‖u(t)‖∞ ∼ 2

√
t, thus leading to a rate similar to

that in our problem.
Remark 1.3. Let us point out that our determination of the grow-up rate for

problem (1.20)–(1.22) is achieved through the matching of (sub- or super-) solutions
with the imposed boundary condition at the right endpoint x = 1, an idea also present
in [22]. This is different from what is done in [18, 20, 21, 47], where the grow-up rate
is determined by the matching between inner and outer (sub-/super-) solutions. In
those works, the inner solution corresponds to a self-similar, quasi-stationary evolution
along a continuum of regular steady states (similar to (1.23)), but the outer solution
is obtained by a linearization around the singular steady state. Here, on the contrary,
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the behavior of u in the inner and outer regions is unified through a single self-similar
variable y = a(t)x (cf. formulae (4.1) and (4.27) below). Moreover, we point out that,
in our case, a linearization around the “singular” steady state U ≡ 1 would not give
the desired grow-up rate (1.24) but only a nonoptimal exponential upper bound based
on an associated eigenvalue problem.

The paper is organized as follows. In section 2 we state the main results. Section 3
contains a number of preliminary results: In subsection 3.1, we recall the basic facts
concerning local existence and comparison. In subsections 3.2 and 3.3, we show that a
control on the slope at x = 0 is enough to prevent gradient blow-up (Lemma 3.2), and
we obtain preliminary estimates of solutions for small time, which will be useful in
section 4 to initialize the comparison with the main sub-/supersolutions (Lemmas 3.3
and 3.4). Subsection 3.4 is devoted to the study of a second order ordinary differential
operator which plays a key role in the subsequent construction of sub-/supersolutions.
The proofs of the main results are given in section 4: Subsections 4.1 and 4.2 are
devoted to the construction of the main sub- and supersolutions, respectively; the
proofs of Theorem 2.1 and Corollary 2.2 are finally completed in subsection 4.3.

2. Main results. Consider the problem

ut − xuxx = 2uux, 0 < x < 1, t > 0,(2.1)

u(0, t) = 0, t > 0,(2.2)

u(1, t) = 1, t > 0,(2.3)

u(x, 0) = u0(x), 0 ≤ x ≤ 1.(2.4)

Concerning the initial data, we assume that

(2.5) u0 ∈ C([0, 1]), u0(0) = 0, u0(1) = 1, u0 is nondecreasing,

and that

(2.6) u0(x) ≤ Kx, 0 < x < 1, for some K ≥ 1.

Problem (2.1)–(2.4) admits a unique global solution, with u ∈ C([0, 1] × [0,∞)),
u ∈ C2,1((0, 1]× (0,∞)) (see [5] and section 3.1 below). Moreover, it was shown in [5]
that 0 ≤ u ≤ 1, u is nondecreasing in x, and

(2.7) lim
t→∞

u(x, t) = 1, uniformly for x in compact subsets of (0, 1].

Our main results are the following.
Theorem 2.1. Let u0 satisfy (2.5) and (2.6), and denote by u the global solution

of problem (2.1)–(2.4). Then there holds

(2.8) 1 − u(x, t) =
1 − x + O

(
t−1/2 log t

)
1 + A(t)x

uniformly in [0, 1], as t → ∞,

with

(2.9) A(t) = exp

[
5

2
+
√

2t

]
.

Moreover, we have the regularity property

(2.10) ux ∈ C
(
[0, 1] × (0,∞)

)
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and the estimate

(2.11) ux(0, t) = A(t)
(
1 + O

(
t−1/2 log t

))
as t → ∞.

Corollary 2.2. Let u0 satisfy (2.5) and (2.6), denote by u the global solution
of problem (2.1)–(2.4), and let A(t) be given by (2.9).

(i) The solution u satisfies the inner layer expansion (quasi-stationary behavior)

1 − u(x, t) =
1 + o(1)

1 + A(t)x
uniformly in any region x ≤ o(1), as t → ∞.

(ii) We have the L1-decay rate

‖u(·, t) − 1‖L1(0,1) =
(
1 + O

(
t−1/2 log t

))√
2t exp

[
−5

2
−
√

2t

]
as t → ∞.

3. Preliminaries.

3.1. Local existence and comparison principle. By [5, Theorem 2.1], we
know that for any u0 satisfying (2.5), problem (2.1)–(2.4) admits a global solution u
in the following sense:

u ∈ C
(
[0,∞);L1(0, 1)

)
,(3.1)

u ∈ C2,1
(
(0, 1] × (0,∞)

)
,(3.2)

ux ≥ 0, 0 < x ≤ 1, t > 0,(3.3)

and

ut − xuxx = 2uux, 0 < x < 1, t > 0,(3.4)

lim
x→0+

u(x, t) = 0 for a.e. t > 0,(3.5)

u(1, t) = 1, t > 0,(3.6)

u(·, 0) = u0 in L1(0, 1).(3.7)

Note that the solution is obtained in [5] as a limit of solutions of regularized problems,
where xuxx is replaced by (x + ε)uxx, ε > 0. Also, for each T > 0, u is the unique
local solution of (3.1)–(3.7) on (0, T ). If, moreover, u0 satisfies (2.6), then

u ∈ C
(
[0, 1] × [0,∞)

)
;

see also [8, Theorem 1 (i)]. The continuity for t > 0 and x = 0 follows from [5,
Propositions 2.4 and 2.5]. For t = 0 and x ∈ [0, 1], the continuity can be established
by comparison with simple barrier functions.

The following proposition provides a comparison principle suitable to our needs.
Proposition 3.1. Let τ > 0 and the functions u, v satisfy the following regularity

conditions:

u, v ∈ C
(
[0, τ);L1(0, 1)

)
,(3.8)

u, v ∈ C2,1
(
(0, 1] × (0, τ)

)
,(3.9)

ux, vx ∈ L1
loc

(
[0, 1] × (0, τ)

)
,(3.10)

u, v ∈ L∞
loc

(
[0, 1] × (0, τ)

)
.(3.11)



1860 NIKOS I. KAVALLARIS AND PHILIPPE SOUPLET

Assume that

ut − xuxx − 2uux ≤ vt − xvxx − 2vvx, 0 < x < 1, 0 < t < τ,(3.12)

lim
x→0+

u(x, t) ≤ lim
x→0+

v(x, t) for a.e. t ∈ (0, τ),(3.13)

u(1, t) ≤ v(1, t), 0 < t < τ,(3.14)

u(·, 0) ≤ v(·, 0) a.e. in (0, 1).(3.15)

Then u ≤ v in (0, 1) × (0, τ).
Observe that (3.10) implies that the limits in (3.13) exist for a.e. t ∈ (0, τ). Note

also that for any u0 satisfying (2.5), the solution u of problem (3.1)–(3.7) satisfies
conditions (3.10) and (3.11) as a consequence of (3.3), (3.5), and (3.6).

Proof of Proposition 3.1. The proof is a modification of the stability proof in [5,
Theorem 3.1]. Let z = u− v. By (3.12), we have

(3.16) zt ≤ xzxx + 2uux − 2vvx = ∂x
(
xzx + z(u + v − 1)

)
, 0 < x < 1, 0 < t < τ.

For δ ∈ (0, 1) we define the following C1 (and piecewise C2) convex approximations
of the function s → s+ = max(s, 0):

φδ(s) =

⎧⎪⎨
⎪⎩

0 if −∞ < s ≤ δ,

(2δ)−1(s− δ)2 if δ ≤ s ≤ 2δ,

s− 3δ/2 if 2δ < s < ∞.

Fix 0 < t1 < t2 < τ and δ ∈ (0, 1). Then, for any ε ∈ (0, 1), multiplying (3.16) by
φ′
δ(z), integrating by parts, and using (3.11), (3.14), 0 ≤ φ′

δ ≤ 1, and φ′′
δ ≥ 0, we

obtain∫ 1

ε

φδ(z(x, t2)) dx−
∫ 1

ε

φδ(z(x, t1)) dx

=

∫ t2

t1

∫ 1

ε

φ′
δ(z)zt dx dt ≤

∫ t2

t1

∫ 1

ε

φ′
δ(z)∂x

(
xzx + z(u + v − 1)

)
dx dt

=

∫ t2

t1

[
φ′
δ(z)

(
xzx + z(u + v − 1)

)]1

ε
dt−

∫ t2

t1

∫ 1

ε

φ′′
δ (z)

(
xzx + z(u + v − 1)

)
zx dx dt

≤ ε

∫ t2

t1

|zx(ε, t)| dt + C

∫ t2

t1

φ′
δ(z(ε, t)) dt−

∫ t2

t1

∫ 1

ε

φ′′
δ (z)(u + v − 1)zzx dx dt

≡ Iε + Jε + Kε,

where C depends on t1, t2 but is independent of ε (and δ). Owing to (3.10), there exists
a sequence εn → 0+ such that limn→∞ Iεn = 0. Next, since limn→∞ φ′

δ(z(εn, t)) = 0
for a.e. t ∈ (t1, t2) due to (3.13) and the definition of φδ, we deduce that limn→∞ Jεn =
0 by dominated convergence. Consequently,∫ 1

0

φδ(z(x, t2)) dx−
∫ 1

0

φδ(z(x, t1)) dx ≤ −
∫ t2

t1

∫ 1

0

φ′′
δ (z)(u + v − 1)zzx dx dt

≤ C

∫ t2

t1

∫ 1

0

|zφ′′
δ (z)||zx| dx dt.

Now, observe that limδ→0 φδ(s) = s+ and limδ→0 sφ
′′
δ (s) = 0 for each s ∈ R. Using

0 ≤ φδ(s) ≤ s+, (3.10), and (3.11), we may pass to the limit δ → 0 by dominated
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convergence in the preceding inequality, and we obtain∫ 1

0

z+(x, t2) dx−
∫ 1

0

z+(x, t1) dx ≤ 0.

Letting t1 → 0+ and using (3.8) and (3.15), we conclude that
∫ 1

0
z+(x, t2) dx = 0 for

all t2 ∈ (0, τ); hence u ≤ v in (0, 1) × (0, τ).

3.2. Sufficient condition for C1 regularity. As noted in, e.g., [12, section 2.2]
and [23, section 2], by means of the transformation

w(r, t) :=
8

r2
u(r2, 4t) =

1

πr2

∫
Br

ρ(y, 4t) dy

(and w0(r) := 8r−2u0(r
2)), problem (2.1)–(2.4) becomes equivalent to

wt − Δ̃w = w2 + r
2 wwr, 0 < r < 1, t > 0,(3.17)

wr(0, t) = 0, t > 0,(3.18)

w(1, t) = 8, t > 0,(3.19)

w(r, 0) = w0(r), 0 < r < 1,(3.20)

where Δ̃w := wrr + 3
rwr, which in turn corresponds to the radial Laplacian in four

space dimensions. It should be noticed that w has the same scale invariance as ρ but
is smoother than ρ. Problem (3.17)–(3.20) turns out to be convenient regarding the
study of C1 regularity of u up to the boundary, which was left open in [5]. Namely,
using this transformation, one can show the following additional properties for u.

Lemma 3.2. Let u0 satisfy (2.5) and (2.6), and denote by u the global solution
of problem (2.1)–(2.4). For any given T > 0, if

(3.21) sup
0<x<1, 0<t<T

u(x, t)

x
< ∞,

then

(3.22) ux ∈ C
(
[0, 1] × (0, T ]

)
and

(3.23) ux(0, t) > 0, 0 < t ≤ T.

Note that the assumption (3.21) (for all T > 0) will be shown in section 4 (see
Lemma 4.3(ii)) as a consequence of our main supersolution construction, hence leading
to the global C1 regularity property (2.10) in Theorem 2.1.

Proof of Lemma 3.2. Since the semilinear parabolic equation in (3.17) has only
linear growth with respect to the gradient, standard arguments based on the variation-
of-constants formula (see, e.g., [43, Example 51.30] or [15, p. 889]) show that problem
(3.17)–(3.20) is locally well posed in the space of (radial, nonnegative) L∞-functions.
More precisely, for any 0 ≤ w0 ∈ L∞(0, 1), there exists a unique, maximal (radial,
nonnegative) classical solution w of (3.17)–(3.20), with w ∈ C2,1

(
[0, 1]× (0, Tm)

)
and

w ∈ C
(
[0, Tm);Lq(0, 1)

)
for all finite q ≤ 1. Moreover,

(3.24) Tm < ∞ =⇒ lim
t→Tm

‖w(t)‖∞ = ∞.
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Now, if u0 satisfies (2.5)–(2.6), then w0(r) := 8r−2u0(r
2) verifies 0 ≤ w0 ∈

L∞(0, 1). Denote by w the corresponding maximal solution of (3.17)–(3.20), and let

ũ(x, t) =
x

8
w(

√
x, t/4), 0 ≤ x ≤ 1, 0 ≤ t < 4Tm.

We see that ũ satisfies the regularity conditions in (3.8), (3.9), and (3.11) with
τ = 4Tm. Also, since

ũx(x, t) =
1

8
w(

√
x, t/4) +

√
x

16
wr(

√
x, t/4), 0 < x ≤ 1, 0 < t < 4Tm,

we have

(3.25) ũ ∈ C1,0([0, 1] × (0, 4Tm))

and hence in particular (3.10) with τ = 4Tm. Then one easily checks that ũ solves
(2.1)–(2.3) on [0, 4Tm), along with (3.7). We may thus apply Proposition 3.1 to deduce
that ũ = u on (0, T0) with T0 = min(T, 4Tm).

We claim that Tm > T/4. Indeed, if Tm ≤ T/4, then (3.24) implies

lim
t→4Tm

sup
0<x<1

u(x, t)

x
= ∞,

contradicting (3.21). Consequently, property (3.22) follows from (3.25). Moreover,
w > 0 in [0, 1] × (0, Tm) by the strong maximum principle, which readily implies
(3.23).

3.3. Small time estimates. Throughout the paper, we denote by P the para-
bolic operator defined by

(3.26) Pv := vt − xvxx − 2vvx.

The following two lemmas will be useful to initialize the comparison between u
and the main sub-/supersolutions constructed in section 4.

Lemma 3.3. Let u0 satisfy (2.5) and (2.6), and denote by u the global solution
of problem (2.1)–(2.4). Then there exist τ, η > 0 such that

(3.27) u(x, t) ≤ 2Kx, 0 ≤ x ≤ 1, 0 ≤ t ≤ τ,

and

u(x, τ) ≤ 1 − η(1 − x), 0 ≤ x ≤ 1.

Proof. Define

v(x, t) =
Kx

1 − 2Kt
, 0 ≤ x ≤ 1, 0 ≤ t < 1/2K.

Since

Pv =
2K2x

(1 − 2Kt)2
− 2K2x

(1 − 2Kt)2
= 0

and v(1, t) ≥ K ≥ 1, the comparison principle guarantees that

u(x, t) ≤ v(x, t) ≤ 2Kx, 0 ≤ x ≤ 1, 0 < t ≤ 1/4K.
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Fix τ = 1/4K. By Hopf’s lemma, we have ux(1, τ) > 0. Since u(·, τ) is nondecreasing
in x, this implies u(x, τ) ≤ 1 − η(1 − x), 0 ≤ x ≤ 1, for η > 0 sufficiently small, and
the conclusion follows.

Lemma 3.4. Let u0 satisfy (2.5) and (2.6), and denote by u the global solution
of problem (2.1)–(2.4). For any given δ ∈ (0, 1), there exists Tδ > 0 such that

u(x, Tδ) ≥ min(1 − δ, x/δ), 0 ≤ x ≤ 1.

Proof. By Lemma 3.2, we may fix a small τ > 0 such that ux(·, τ) ∈ C([0, 1])
and ux(0, τ) > 0. Therefore, u(x, τ) ≥ ηx for all x ∈ [0, 1] and some η ∈ (0, 1). Since
P[ηx] ≤ 0 and η < 1 = u(1, t), the comparison principle implies that

(3.28) u(x, t) ≥ ηx, 0 ≤ x ≤ 1, t ≥ τ.

On the other hand, by (2.7), there exists T > τ such that

(3.29) u(x, t) ≥ 1 − δ, (1 − δ)δ ≤ x ≤ 1, t ≥ T.

Define

(3.30) v(x, t) =
(
η + 2η2(t− T )

)
x, 0 ≤ x ≤ 1, t ≥ T.

We have

(3.31) Pv = 2η2x− 2
(
η + 2η2(t− T )

)2
x ≤ 0

and, due to (3.28),

(3.32) u(x, T ) ≥ v(x, T ), 0 ≤ x ≤ 1.

Since η < 1 < 1/δ, we may find Tδ > T such that

(3.33) η + 2η2(Tδ − T ) = 1/δ.

In view of (3.29), (3.30), and (3.33), we have

(3.34) u
(
(1 − δ)δ, t

)
≥ 1 − δ ≥ v

(
(1 − δ)δ, t

)
, T ≤ t ≤ Tδ.

It then follows from (3.31), (3.32), (3.34), and the comparison principle that

u(x, Tδ) ≥ x/δ, 0 ≤ x ≤ (1 − δ)δ.

Using P[x/δ] ≤ 0 and (3.29), we deduce that

u(x, t) ≥ x/δ, 0 ≤ x ≤ (1 − δ)δ, t ≥ Tδ.

This combined with (3.29) yields the desired conclusion.

3.4. ODE lemmas. We consider the differential operator

Lw := yw′′ +
2yw′

1 + y
+

2w

(1 + y)2
.

First, the expression for the operator L reads

Lw =

[(
y

y + 1

)2 (
(y + 1)2

y
w

)′]′

.
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If ψ ∈ C([0,∞)) satisfies ψ(y) = O(y) as y → 0, then the problem

Lw = ψ, y > 0,

w(0) = 0, w′(0) = 0

admits a unique solution w, and w can be represented as

w(y) = L−1
0 ψ :=

y

(y + 1)2

∫ y

0

(
t + 1

t

)2 ∫ t

0

ψ(s) ds dt

(note that the integral is convergent due to the assumption on ψ). In particular,

(3.35) ψ ≥ 0 on [0,∞) =⇒ L−1
0 ψ ≥ 0 on [0,∞).

On the other hand, w0(y) = y
(y+1)2 solves

Lw = 0, y > 0,

w(0) = 0, w′(0) = 1.

In the next section, to construct our main sub- and supersolutions, we will need to
know the asymptotic behavior of the action of the operator L0 on some particular
functions as y → ∞. More precisely, let us define

f =
(
I + L−1

0

)( y

(y + 1)2

)
,

f̃ = 2ff ′ − yf ′ + f,

g = L−1
0 f̃ ,

and

h = L−1
0 (f̃ + Mϕ) = g + ML−1

0 ϕ,

where M > 0 and

ϕ ∈ C1([0,∞)), ϕ(0) = 0, ϕ(y) =
1

log y
, y ≥ 2.

We have the following lemmas.
Lemma 3.5. As y → ∞, the function f satisfies

(i) f(y) = log y − 2 + O

(
log2 y

y

)
;

(ii) f ′(y) =
1

y
+ O

(
log2 y

y2

)
.

Lemma 3.6. As y → ∞, the functions g and h satisfy

(i) g(y) =
y log y

2
− 9y

4
+ O

(
log3 y

)
;

(ii) g′(y) =
log y

2
− 7

4
+ O

(
log3 y

y

)
;

(iii) h(y) =
y log y

2
− 9y

4
+ O

(
y

log y

)
;

(iv) h′(y) =
log y

2
− 7

4
+ O

(
1

log y

)
.
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Proof of Lemma 3.5.
(i) Using

(3.36) log(y + 1) = log y + O(1/y) as y → ∞,

we obtain

f(y) =
y

(y + 1)2

[
1 +

∫ y

0

(
t + 1

t

)2 ∫ t

0

(
1

s + 1
− 1

(s + 1)2

)
ds dt

]

=
y

(1 + y)2

[
1 +

∫ y

0

{(
1 +

2

t
+

1

t2

)(
log(t + 1) − t

t + 1

)}
dt

]

=
y

(1 + y)2
[
y log y − 2y + O

(
log2 y

)]
= log y − 2 + O

(
log2 y

y

)
as y → ∞.

(ii) Now, using (i), we deduce

f ′(y) =

[
1

y
− 2

y + 1

]
f(y) +

1

y

(
log(y + 1) − y

y + 1

)

=

(
−1

y
+ O

(
1

y2

))(
log y − 2 + O

(
log2 y

y

))
+

log(y + 1)

y
− 1

y + 1

=
1

y
+ O

(
log2 y

y2

)
as y → ∞.

To show Lemma 3.6, we first note that, due to Lemma 3.5 and (3.36), we have

f̃(y) = f1(y) − 3f2(y) + O(f3(y)) as y → ∞,

where

f1(y) = log(y + 1), f3(y) =
log2(y + 1)

y + 1
,

and

f2 ∈ C1([0,∞)), f2(0) = 0, f2(y) = 1, y ≥ 1.

Denote gi = L−1
0 fi for i = 1, 2, 3 and g4 = L−1

0 ϕ. Lemma 3.6 will then be an
immediate consequence of the following lemma.

Lemma 3.7. As y → ∞, the functions gi satisfy

(i) g1(y) =
y log y

2
− 3y

4
+ O (log y) and g′1(y) =

log y

2
− 1

4
+ O

(
log y

y

)
;

(ii) g2(y) =
y

2
+ O(1) and g′2(y) =

1

2
+ O

(
1

y

)
;

(iii) g3(y) = O
(
log3 y

)
and g′3(y) = O

(
log3 y

y

)
;

(iv) g4(y) = O

(
y

log y

)
and g′4(y) = O

(
1

log y

)
.
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Proof.
(i) As y → ∞, we have

g1(y) =
y

(y + 1)2

∫ y

0

(
t + 1

t

)2 (
(t + 1) log(t + 1) − t

)
dt

=
y

(1 + y)2

∫ y

0

[
(t + 1) log(t + 1) − t + O (log(t + 1))

]
dt

=

[
1

y
+ O

(
1

y2

)][
y2 log y

2
− 3y2

4
+ O (y log y)

]

=
y log y

2
− 3y

4
+ O (log y) ;

hence

g′1(y) =

[
1

y
− 2

y + 1

]
g1(y) +

1

y

∫ y

0

log(s + 1) ds

=

(
−1

y
+ O

(
1

y2

))(
y log y

2
− 3y

4
+ O (log y)

)
+

(y + 1) log(y + 1) − y

y

=
log y

2
− 1

4
+ O

(
log y

y

)
.

(ii) Due to the definition of g2, there exist constants C1, C2 ∈ R such that, for
y > 1,

g2(y) =
y

(y + 1)2

[∫ 1

0

(
t + 1

t

)2 ∫ t

0

f2(s) ds dt +

∫ y

1

(
t + 1

t

)2

(C1 + t) dt

]

=
y

(y + 1)2

[
C2 +

y2

2
+ O(y)

]
=

y

2
+ O(1) as y → ∞.

Therefore, for y > 1,

g′2(y) =

[
1

y
− 2

y + 1

]
g2(y) +

y

(y + 1)2

(
y + 1

y

)2

(C1 + y)

=

[
1

y
− 2

y + 1

]
g2(y) + 1 + O

(
1

y

)
=

1

2
+ O

(
1

y

)
as y → ∞.

(iii) As y → ∞, we have

g3(y) =
y

3(y + 1)2

∫ y

0

(
t + 1

t

)2

log3(t + 1) dt

=
y

3(1 + y)2

∫ y

0

O
(
log3(t + 1)

)
dt

=
y

3(1 + y)2
O
(
(y + 1) log3(y + 1)

)
= O

(
log3 y

)
;

hence

g′3(y) =

[
1

y
− 2

y + 1

]
g3(y) +

1

y

∫ y

0

log2(t + 1)

(t + 1)
dt

=

(
−1

y
+ O

(
1

y2

))
O
(
log3 y

)
+

log3(y + 1)

3y
= O

(
log3 y

y

)
.
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(iv) Similarly to (ii), in this case we have, for y > 2,

g4(y) =
y

(y + 1)2

[∫ 2

0

(
t + 1

t

)2 ∫ t

0

ϕ(s) ds dt +

∫ y

2

(
t + 1

t

)2 (
C1 +

∫ t

2

ds

log s

)
dt

]

=
y

(y + 1)2

[
C2 +

∫ y

2

(
t + 1

t

)2

O

(
t

log t

)
dt

]

=
y

(y + 1)2
O

(
y2

log y

)
= O

(
y

log y

)
as y → ∞.

Therefore, for y > 2,

g′4(y) =

[
1

y
− 2

y + 1

]
g4(y) +

y

(y + 1)2

(
y + 1

y

)2 (
C1 +

∫ y

2

ds

log s

)

= O

(
1

log y

)
as y → ∞.

4. Proof of the main results.

4.1. Construction of a subsolution. Motivated by the idea of an asymptotic
expansion around (moving) steady states and based on a self-similar variable (see
subsection 1.3), we make the following ansatz:

u(x, t) = 1 − 1

y + 1
+ b(t)f(y) − b2(t)g(y), y = a(t)x,

where the functions a, b, f, g have to be determined. Note that the variable y now
ranges into the time-dependent interval [0, a(t)]. Here, a and b are expected to satisfy

a(t) ∼ ux(0, t), lim
t→∞

a(t) = ∞, and lim
t→∞

b(t) = 0.

Lemma 4.1. The problem

ut − xuxx ≤ 2uux, 0 < x < 1, t > 0,

u(0, t) = 0, t ≥ 0,

u(1, t) < 1, t ≥ 0,

admits a solution of the form

(4.1) u(x, t) = 1 − 1

y + 1
+ b(t)f(y) − b2(t)g(y), y = a(t)x,

where the smooth functions a > 0, b > 0, f ≥ 0, and g have the following properties:

f(y) ∼ log y, g(y) ∼ y log y

2
as y → ∞,

f(0) = g(0) = f ′(0) = g′(0) = 0,(4.2)

a(t) =
(
1 + O

(
t−1/2 log t

))
exp

[
5

2
+
√

2t

]
as t → ∞,(4.3)

b(t) =
1 + O

(
t−1/2

)
a(t) log a(t)

as t → ∞,(4.4)
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and, moreover,

(4.5) ux > 0, 0 ≤ x ≤ 1, t ≥ 0.

Proof. Step 1. Construction of the subsolution. In what follows we shall omit
the variables t and/or y when no confusion is likely. We take u as in (4.1) where we
assume

(4.6) a > 0 and lim
t→∞

a(t) = ∞.

We compute

ux =
a

(1 + y)2
+ baf ′(y) − b2ag′(y),(4.7)

uxx =
−2a2

(1 + y)3
+ ba2f ′′(y) − b2a2g′′(y),

and

ut =
a′x

(1 + y)2
+
[
b′f(y) + ba′xf ′(y) − 2bb′g(y) − b2a′xg′(y)

]
;

hence

ut =
a′

a

y

(1 + y)2
+

[
b′f(y) +

ba′

a
yf ′(y) − 2bb′g(y) − b2a′

a
yg′(y)

]
.

Recall that the operator P is defined in (3.26). It follows that

Pu =
a′

a

y

(1 + y)2
+

[
b′f +

ba′

a
yf ′ − 2bb′g − b2a′

a
yg′

]

+ 2a
y

(1 + y)3
− ba yf ′′ + b2a yg′′

− 2a

[
y

1 + y
+ bf − b2g

] [
1

(1 + y)2
+ bf ′ − b2g′

]
.

Collecting terms of the same order in b yields

Pu =
a′

a

y

(1 + y)2
+

[
b′f +

ba′

a
yf ′ − 2bb′g − b2a′

a
yg′

]
− ab

[
yf ′′ +

2f

(1 + y)2
+

2yf ′

1 + y

]

+ ab2
[
yg′′ +

2g

(1 + y)2
+

2yg′

1 + y
− 2ff ′

]
+ 2ab3

[
f ′g + fg′

]
− 2ab4gg′.(4.8)

The natural scaling of the equation leads to the choice

(4.9) b :=
a′

a2
,

so that in the right-hand side (RHS) of (4.8), the first term will be of the same order
as the terms in the second bracket. Assuming

(4.10) a′ > 0,
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we also denote

(4.11) γ :=
( a

a′

)′

and observe that

(4.12)
a′

a
= ab, b′ = −(1 + γ)ab2,

where the last equality comes from

γ =
( a

a′

)′
=

(
1

ab

)′
= − b′

ab2
− a′

a2b
= − b′

ab2
− 1.

To make things clear, let us already stress that the final choice of a will guarantee

γ ≥ 0 and lim
t→∞

γ(t) = 0.

Using (4.12), we can recast identity (4.8) in the form

Pu = ab

[
y

(1 + y)2
− yf ′′ − 2f

(1 + y)2
− 2yf ′

1 + y

]

+ ab2
[
yg′′ +

2g

(1 + y)2
+

2yg′

1 + y
− 2ff ′ + yf ′ − (1 + γ)f

]

+ ab3
[
2f ′g + 2fg′ − yg′ + 2(1 + γ)g

]
− 2ab4gg′;

hence

Pu = ab

[
y

(1 + y)2
− Lf

]
+ ab2

[
Lg − 2ff ′ + yf ′ − (1 + γ)f

]
+ ab3

[
2f ′g + 2fg′ − yg′ + 2(1 + γ)g

]
− 2ab4gg′.(4.13)

Let us now choose

(4.14) f := (I + L−1
0 )

(
y

(1 + y)2

)
≥ y

(1 + y)2
≥ 0,

which solves Lf = y/(1 + y)2 for y > 0, with f(0) = 0 and f ′(0) = 1 (cf. subsec-
tion 3.4). Dividing by ab2, we see that Pu has the same sign as the quantity

A :=
[
Lg − 2ff ′ + yf ′ − (1 + γ)f

]
+ b

[
2f ′g + 2fg′ − yg′ + 2(1 + γ)g

]
− 2b2gg′.

Next we choose

g := L−1
0

(
2ff ′ − yf ′ + f

)
.

Therefore,

A = −γf + b
[
2f ′g + 2fg′ − yg′ + 2(1 + γ)g

]
− 2b2gg′.
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We now proceed to show that the quantity A is nonpositive for large t by consider-
ing separately the regions y0 ≤ y ≤ a(t) and 0 ≤ y ≤ y0 for some large y0 independent
of t. At this point, we make the additional assumptions that

(4.15) γ ∼ 1

log a
as t → ∞

and

(4.16) a′ ∼ a

log a
; hence b ∼ 1

a log a
as t → ∞

(which will be verified on the final choice of the function a; actually more precise
expansions of γ and b will be needed in the final matching process). By Lemmas 3.5
and 3.6, we have

f ∼ log y, f ′g = o(g), fg′ = o(g), and yg′ ∼ g ∼ y log y

2
as y → ∞.

Consequently, fixing δ > 0 and taking y0 and t0 large enough, we have, for y0 ≤ y ≤
a(t) and t ≥ t0,

−γf ≤ (−1 + δ)
log y

log a
, g, g′ ≥ 0,

and

2f ′g + 2fg′ − yg′ + 2(1 + γ)g ≤ δ y log y − 1

2
y log y + 2(1 + γ)

(
1

2
+ δ

)
y log y

≤
(

1

2
+ 4δ

)
y log y.

Taking δ = 1/12 and also using (4.16), we thus obtain

A ≤ (−1 + δ)
log y

log a
+

1

a log a

(
1

2
+ 5δ

)
y log y =

log y

log a

(
−1 + δ +

(
1

2
+ 5δ

)
y

a

)
≤ 0

for y0 ≤ y ≤ a(t) and t ≥ t0 (possibly larger). Next, for 0 ≤ y ≤ y0, (4.14) implies

f(y) ≥ c1y, 0 ≤ y ≤ y0,

whereas f(0) = g(0) = 0 yields

|2f ′g + 2fg′ − yg′| + 4|g| + |gg′| ≤ c2y, 0 ≤ y ≤ y0,

with c1, c2 > 0. Consequently,

A ≤ −c1γ(t)y + c2b(t)y =

[
−c1 + c2

b(t)

γ(t)

]
γ(t)y ≤ 0

on [0, y0] for t large enough, due to (4.15) and (4.16).
We have thus proved that, under conditions (4.6), (4.10), (4.15), and (4.16), there

holds Pu ≤ 0 in (0, 1)× (T,∞) for T large enough. By a time shift we may obviously
take T = 0.
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Step 2. Determination of a(t) by matching at the outer boundary. Next, the
determination of a(t) will be done by “matching” with the boundary condition at
x = 1, i.e., by writing

u(1, t) < 1,

which is equivalent to

(4.17) bf(a) − b2g(a) <
1

a + 1
.

It is of course sufficient to check (4.17) for large t (thanks to the possibility of shifting
time). Let us first sketch the resolution of (4.17) in a rough way. Using (4.9) and
applying Lemmas 3.5(i) and 3.6(i) at leading order, we are left with

(4.18)
a′

a2

(
log a− a′

a2

a log a

2

)
� 1

a + 1
as t → ∞.

We expect the second term in the bracket of the left-hand side (LHS) of the preceding
relation to be much smaller than the first one as a → ∞. If we ignore it, we obtain
the differential inequality

(4.19) a′ � a

log a
as t → ∞,

which implies that

a(t) � e
√

2t as t → ∞.

However, the latter estimation is not accurate enough to show the desired estimate,
and we thus add a correction term in (4.19). More precisely, we look for a(t) as the
solution of

(4.20) a′ =
a

log a
(1 + η), t > 0, a(0) = 2,

where the correction term η = η(a) has the form

(4.21) η =
5

2 log a
+

K

log2 a
, K > 0.

Now plugging (4.20) into (4.17), recalling also (4.9), and using the exact asymp-
totic behavior of f(a), g(a) as a → ∞, provided by Lemmas 3.5(i) and 3.6(i), we are
reduced to the condition

1 + η

a log a

[
log a− 2 + O

(
log2 a

a

)
− 1 + η

a log a

(
a log a

2
− 9a

4
+ O

(
log3 a

))]
<

1

a + 1

as t → ∞ or

(4.22) (1 + η)

[
1 − 5 + η

2 log a
+

9

4 log2 a
+

9η

4 log2 a
+ O

(
log a

a

)]
<

a

a + 1
as t → ∞.

Plugging (4.21) into (4.22), we first obtain(
1 +

5

2 log a
+

K

log2 a

)[
1 − 5

2 log a
+

1

log2 a
+ O

(
1

log3 a

)]
< 1 − 1

a + 1
as t → ∞
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and finally

(4.23) 1 +
4K − 21

4 log2 a
+ O

(
1

log3 a

)
< 1 − 1

a + 1
as t → ∞.

In order for (4.23) to be satisfied, we choose K < 21
4 , and we then obtain the following

ODE for a:

(4.24) a′ =
a

log a

(
1 +

5

2 log a
+

K

log2 a

)
, t > 0, a(0) = 2.

Here we should mention that the same form for η, given by (4.21), will also be con-
sidered for the supersolution, with a different constant K; see the next subsection.
Equation (4.24) implies that

a′ =
a

log a− 5/2

(
1 + O

(
log−2 a

))
as t → ∞,

and, integrating with respect to t, we get

log2 a− 5 log a = 2t + O

(∫ t

0

ds

log2(a(s))

)
as t → ∞.

Solving the quadratic polynomial in log a and noting that log a(s) ≥
√

2s by (4.24),
we end up with (4.3). As for (4.4), it follows from

b =
a′

a2
=

1

a log a

(
1 +

5

2 log a
+

K

log2 a

)
=

1 + O
(
log−1 a

)
a log a

=
1 + O

(
t−1/2

)
a log a

as t → ∞,(4.25)

where we used (4.24) and log a ≥
√

2t as t → ∞. On the other hand, denoting
G(s) = s + (5/2)s2 + Ks3 and using (4.24), we see that γ = (a/a′)′ satisfies
(4.26)

γ =

[
1

G
(
1/ log a

)
]′

=
a′

a log2 a

G′(1/ log a
)

G2
(
1/ log a

) =
G′(1/ log a

)
log2 aG

(
1/ log a

) = H
(
1/ log a

)
,

where H(s) = s(1+5s+3Ks2)(1+ (5/2)s+Ks2)−1. Finally, the assumed properties
(4.6), (4.10), (4.15), and (4.16) of a, b, γ are immediate consequences of (4.24), (4.25),
and (4.26).

Step 3. Proof of (4.5). By (4.7) we have

a−1ux =
1

(1 + y)2
+ bf ′(y) − b2g′(y).

By Lemma 3.6 and (4.16), taking y1 and t1 large enough, we have, for t ≥ t1 and
y1 ≤ y ≤ a(t),

a−1ux ≥ 1

2a2
− log y

a2 log2 a
≥ 1

a2

(
1

2
− 1

log a

)
> 0.

Now, for 0 ≤ y ≤ y1 and t ≥ t1 possibly larger, we get

a−1ux ≥ 1

(1 + y1)2
− Cb(t) − Cb2(t) > 0.
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By a time shift we may obviously take t1 = 0, and (4.5) is proved.
Remark 4.1. It is still possible to obtain a qualitatively correct subsolution with

just a two-term expansion, for instance, by making the simple choice f(y) = log(1+y),
g = 0 in (4.1). However, this yields only the lower grow-up rate up to a multiplicative

constant, i.e., ux(0, t) ≥ Ce
√

2t, and does not enable one to deduce an expansion of
the form (2.8).

4.2. Construction of a supersolution. The form (4.1) does not seem to be
sufficient to construct an accurate supersolution (i.e., leading to a function a(t) ful-
filling (4.3)). We need a slight perturbation, corresponding to the modified ansatz

(4.27) u(x, t) = 1 − 1

y + 1
+ b(t)f(y) − b2(t)g̃(y, t), y = a(t)x,

where

(4.28) g̃(y, t) = (1 + ε(t))h(y),

and ε(t) goes to 0 as t → ∞.
Lemma 4.2. The problem

ut − xuxx ≥ 2uux, 0 < x < 1, t > 0,

u(0, t) = 0, t ≥ 0,

u(1, t) ≥ 1, t ≥ 0,

admits a solution of the form

u(x, t) = 1 − 1

y + 1
+ b(t)f(y) − (1 + ε(t))b2(t)h(y), y = a(t)x,

where the smooth functions a(t), b(t), f(y), h(y) have the following properties:

f(y) ∼ log y, h(y) ∼ y log y

2
as y → ∞,

f(0) = h(0) = f ′(0) = h′(0) = 0,

a(t) =
(
1 + O

(
t−1/2 log t

))
exp

[
5

2
+
√

2t

]
as t → ∞,(4.29)

b(t) =
1 + O

(
t−1/2

)
a(t) log a(t)

as t → ∞,(4.30)

ε(t) ∼ (2t)−1/2 as t → ∞.(4.31)

Proof. Step 1. Construction of the supersolution. Taking u as defined in (4.27),
(4.28), the expression for Pu is similar to (4.13), except that g, g′, g′′ are now replaced
with g̃, g̃y, g̃yy and an additional term −b2ε′h is added, which is inherited from ut.
As in the proof of Lemma 4.1, b and γ are defined through (4.9) and (4.11), and we
assume (4.6), (4.10), (4.15), and (4.16). This leads to

Pu = ab

[
y

(1 + y)2
− Lf

]
+ ab2

[
Lg̃ − 2ff ′ + yf ′ − (1 + γ)f − ε′

a
h

]

+ ab3
[
2f ′g̃ + 2fg̃y − yg̃y + 2(1 + γ)g̃

]
− 2ab4g̃g̃y.
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Replacing g̃(y, t) with (1 + ε(t))h(y), we obtain

Pu = ab

[
y

(1 + y)2
− Lf

]
+ ab2

[
(1 + ε)Lh− 2ff ′ + yf ′ − (1 + γ)f − ε′

a
h

]
(4.32)

+ (1 + ε)ab3
[
2f ′h + 2fh′ − yh′ + 2(1 + γ)h

]
− 2(1 + ε)2ab4hh′.

Denote

B0 := (1 + ε)Lh− 2ff ′ + yf ′ − (1 + γ)f − ε′

a
h.

As in Lemma 4.1, we first choose

f := (I + L−1
0 )

(
y

(1 + y)2

)
.

Dividing identity (4.32) by ab2, we see that Pu has the same sign as the quantity

B := B0 + (1 + ε)b
[
2f ′h + 2fh′ − yh′ + 2(1 + γ)h

]
− 2(1 + ε)2b2hh′.

Next we choose

h = L−1
0

(
2ff ′ − yf ′ + f + Mϕ

)
,

where ϕ satisfies
(4.33)
ϕ(0) = 0, ϕ′(0) > 0, ϕ(y) > 0 for 0 < y < 2, ϕ(y) = 1/ log y for y ≥ 2.

Note that, taking M > 2 suitably large, we have

2ff ′ − yf ′ + f + Mϕ ≥ 0, y ≥ 0,

by Lemma 3.5; hence

(4.34) h(y) ≥ 0, y ≥ 0,

due to (3.35). We compute

B0 = (1 + ε)
(
2ff ′ − yf ′ + f + Mϕ

)
− 2ff ′ + yf ′ − (1 + γ)f − ε′

a
h

= ε
(
2ff ′ − yf ′) + M(1 + ε)ϕ + (ε− γ)f − ε′

a
h.

At this point, we choose

(4.35) ε = γ,

where γ is defined by (4.11), and we assume again (4.15) and (4.16) along with

(4.36) γ′ ≤ 0

(these assumptions will be verified on the final choice of the function a). By (4.34)
and (4.36) we have

B0 ≥ γ
(
2ff ′ − yf ′) + M(1 + γ)ϕ,
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and it follows that
(4.37)

(1+γ)−1B ≥
[

γ

1 + γ

(
2ff ′−yf ′)+Mϕ

]
+b

[
2f ′h+2fh′−yh′+2(1+γ)h

]
−2(1+γ)b2hh′.

To show that the RHS of (4.37) is nonnegative for large t, we again consider
separately the regions y0 ≤ y ≤ a(t) and 0 ≤ y ≤ y0 for some large y0 independent of
t. By the estimates in Lemma 3.5, we have

(4.38) f ∼ log y, f ′ ∼ 1

y
, and yh′ ∼ h ∼ y log y

2
as y → ∞.

Consequently, fixing δ > 0, using (4.15), and taking y0 and t0 large enough, we have,
for y0 ≤ y ≤ a(t) and t ≥ t0,

γ

1 + γ

(
2ff ′ − yf ′) + Mϕ ≥ −3

2
γ +

M

log y
≥ − 2

log a
+

M

log y
≥ M − 2

log y
,

2f ′h+2fh′−yh′+2(1+γ)h ≥ −
(

1

2
+δ

)
y log y+2(1+γ)

(
1

2
−δ

)
y log y ≥

(
1

2
−4δ

)
y log y,

and

2(1 + γ)hh′ ≤ y log2 y.

Assuming M ≥ 3, taking δ = 1/8, and also using (4.16), we infer that

(1 + γ)−1B ≥ 1

log a
− y log2 y

a2 log2 a
=

1

log a

(
1 − y log2 y

a2 log a

)
≥ 1

log a

(
1 − log a

a

)
≥ 0

for y0 ≤ y ≤ a(t) and t ≥ t0. Next, for 0 ≤ y ≤ y0, (4.33) implies

Mϕ(y) ≥ c1y,

whereas f(0) = h(0) = 0 yields

2ff ′ − yf ′ ≥ −c2y, 2f ′h + 2fh′ − yh′ + 2(1 + γ)h ≥ −c2y, 2(1 + γ)hh′ ≤ c2y,

with c1, c2 > 0. Therefore,

(1+γ)−1B ≥ −γ(t)c2y+ c1y− b(t)c2y− b2(t)c2y =
[
c1 − c2

(
γ(t)+ b(t)+ b2(t)

)]
y ≥ 0

on [0, y0] for t large enough.
We have thus proved that Pu ≥ 0 in (0, 1) × (T,∞) for T large enough. By a

time shift we may obviously take T = 0.
Step 2. Determination of a(t) by matching at the outer boundary. The deter-

mination of a(t) will be done again by “matching” with the boundary condition at
x = 1. Imposing that

u(1, t) ≥ 1,

we obtain

bf(a) − b2(1 + ε)h(a) ≥ 1

a + 1
,
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and taking (4.9) into account, we end up with

(4.39)
a′

a2

(
f(a) − a′

a2
(1 + ε)h(a)

)
≥ 1

a + 1
.

Again it suffices to check (4.39) for large t. Following the same reasoning as in the
case of a subsolution, we again look for a(t) as a solution of

(4.40) a′ =
a

log a
(1 + η) as t → ∞,

where the correction term η = η(a) is given by (4.21) with K a constant to be
determined.

Plugging (4.40) into (4.39) and using the exact asymptotic behavior of f(a), h(a)
as a → ∞, given by Lemmas 3.5 and 3.6, we arrive at

1 + η

a log a

[
log a−2+O

(
log2 a

a

)
− (1 + η)(1 + ε)

a log a

(
a log a

2
− 9a

4
+O

(
a

log a

))]
≥ 1

a + 1

or
(4.41)

(1+η)

[
1− 2

log a
+O

(
log a

a

)
− (1 + η)(1 + ε)

log a

(
1

2
− 9

4 log a
+O

(
1

log2 a

))]
≥ a

a + 1

as t → ∞. Denote by Γ the quantity in the bracket in the LHS of (4.41). Using (4.21)
and (4.41), we obtain

Γ = 1 − 2

log a
+ O

(
log a

a

)

−
(

1 +
5

2 log a
+

K

log2 a

)(
1 +

1

log a
+

5

2 log2 a

)(
1

2 log a
− 9

4 log2 a
+ O

(
1

log3 a

))

= 1 − 5

2 log a
+

1

2 log2 a
+ O

(
1

log3 a

)
as t → ∞.

Then (4.41) becomes equivalent to(
1+

5

2 log a
+

K

log2 a

)(
1− 5

2 log a
+

1

2 log2 a
+O

(
1

log3 a

))
≥ 1− 1

a + 1
as t → ∞;

that is,

(4.42) 1 +
4K − 23

4 log2 a
+ O

(
1

log3 a

)
≥ 1 − 1

a + 1
as t → ∞.

For (4.42) to be satisfied we choose K > 23
4 , and we again take a to be the solution

of the ODE (4.24). Then, by the end of step 2 of the proof of Lemma 4.1, we obtain
(4.29) and (4.30) as well as the assumed properties (4.6), (4.10), (4.15), and (4.16)
of a, b, γ. Finally, we note that (4.15), (4.29), and (4.35) guarantee (4.31), and that
(4.26) implies

γ′ =
−a′

a log2 a
H ′(1/ log a

)
=

−1

log2 a
(H ′G)

(
1/ log a

)
∼ −1

log3 a
as t → ∞

and hence (4.36) (after a further time shift).
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4.3. Proofs of Theorem 2.1 and Corollary 2.2. Let u be the solution of
(2.1)–(2.4) and let u, u be the sub-/supersolutions provided by Lemmas 4.1 and 4.2.
The asymptotic expansion (2.8)–(2.9) in Theorem 2.1 will be an immediate conse-
quence of the following two Lemmas. The first one guarantees that u lies between
suitable time-shifts of u and u. The second one shows that (shifted versions of) u and
u satisfy the required asymptotic behavior.

Lemma 4.3.

(i) There exists T1 > 0 such that

(4.43) u(·, t) ≥ u(·, t− T1), t ≥ T1.

(ii) Let τ be as in Lemma 3.3. Then there exists T2 > 0 such that

u(·, t) ≤ u(·, t + T2), t ≥ τ.

Proof. (i) Since u(·, 0) ∈ C1([0, 1]) with u(0, 0) = 0, u(1, 0) < 1, and ux(·, 0) > 0,
it follows from Lemma 3.4 that u(·, T1) ≥ u(·, 0) for some T1 > 0. The assertion then
follows from the comparison principle.

(ii) Due to (4.38), (4.14), and h(0) = 0, we have

f(y) ≥ c1 log(y + 1) and h(y) ≤ c2 (y + 1) log(y + 1), y ≥ 0,

for some c1, c2 > 0. This along with (4.29)–(4.31) implies that, for all t ≥ t2 large
enough and all x ∈ [0, 1],

u(x, t) =
ax

ax + 1
+ bf(ax) − (1 + ε(t))b2h(ax)

≥ ax

ax + 1
+ b log(ax + 1)

(
c1 − 2c2(ax + 1)b

)
≥ ax

ax + 1
+ b log(ax + 1)

(
c1 − 3c2

a + 1

a log a

)
≥ ax

ax + 1
.

Take τ, η as in Lemma 3.3 and set x0 = 1/4K. For all x ∈ [0, x0] and t ≥ t2, with
t2 ≥ τ possibly larger, we have a/2K ≥ ax + 1; hence

u(x, t) ≥ ax

ax + 1
≥ 2Kx ≥ u(x, τ), 0 ≤ x ≤ x0, t ≥ t2.

On the other hand, (4.38) implies that

f ′(y) ≤ c3 and |h′(y)| ≤ c3 + log(y + 1), y ≥ 0,

for some c3 > 0. For all x ∈ (x0, 1] and t ≥ t2 (possibly larger), we thus have

ux =
a

(1 + ax)2
+ baf ′(ax) − (1 + ε(t))b2ah′(ax)

≤ a

(1 + ax0)2
+ c3ba + 2(c3 + log(a + 1))b2a ≤ η,

due to (4.29) and (4.30); hence

u(x, t) ≥ 1 − η(1 − x) ≥ u(x, τ), x0 < x ≤ 1, t ≥ t2.

Therefore, u(·, t2) ≥ u(·, τ) in [0, 1]. The assertion, with T2 = t2−τ , thus follows from
the comparison principle.
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Lemma 4.4. Let

A(t) = exp

[
5

2
+
√

2t

]
.

Then, for any T ∈ R, each of the functions w = u and w = u satisfies

1 − w(x, t + T ) =
1

1 + A(t)x

[
1 − x + O

(
t−1/2 log t

)]

as t → ∞, uniformly in [0, 1].
Proof. We shall give the proof for w = u, the other case being completely similar.

Set ã(t) = a(t + T ) and b̃(t) = b(t + T ). We first note that, by (4.3), we have

ã(t) =
(
1 + O

(
t−1/2 log t

))
A(t)

and

(4.44) log ã(t) = logA(t) + O
(
t−1/2 log t

)
=

(
1 + O

(
t−1 log t

))
logA(t).

Also, by (4.4), we have

(4.45) b̃(t) =
1 + O

(
t−1/2

)
ã log ã

.

Moreover, due to Lemma 3.5, there exists C > 0 such that

(4.46) |f(y) − log(1 + y)| ≤ C, y ≥ 0.

Now, using (4.45), (4.46), and (4.44), we compute

1

1 + ãx
− b̃f(ãx) =

1

1 + ãx

[
1 − (1 + ãx)f(ãx)

ã log ã

(
1 + O

(
t−1/2

))]

=
1

1 + ãx

[
1 − (1 + ãx) log(1 + ãx)

ã log ã

(
1 + O

(
t−1/2

))]

=
1

1 + ãx

[
1 − x log(1 + ãx)

log ã
+ O

(
t−1/2

)]

=
1

1 + ãx

[
1 − x + R(x, t) + O

(
t−1/2

)]
,

where

R(x, t) :=
x
(
log ã− log(1 + ãx)

)
log ã

.

Here and in what follows, the O’s are uniform in [0, 1]. To control R we note that, if
ãx ≥ 1, then

log(ãx) ≤ log(1 + ãx) ≤ log(ãx) + log 2,

and hence

|R(x, t)| ≤
x
(
|log x| + log 2

)
log ã

≤ C

log ã
,
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whereas, if ãx < 1, then |R(x, t)| ≤ x ≤ 1/ã. It follows that supx∈[0,1] |R(x, t)| =

O(t−1/2) as t → ∞. Since, by (4.3), we have

1 + ãx = (1 + Ax)

[
1 +

(ã−A)x

1 + Ax

]
= (1 + Ax)

[
1 +

O
(
t−1/2 log t

)
Ax

1 + Ax

]

= (1 + Ax)
(
1 + O

(
t−1/2 log t

))
,

we deduce that

1

1 + ãx
− b̃f(ãx) =

1 + O
(
t−1/2 log t

)
1 + Ax

(
1 − x + O

(
t−1/2

))
,

and hence

(4.47)
1

1 + ãx
− b̃f(ãx) =

1 − x + O
(
t−1/2 log t

)
1 + Ax

.

On the other hand, due to Lemma 3.6 and g(0) = 0, there exists C1 > 0 such that

|g(y)| ≤ C1(1 + y) log(1 + y), y ≥ 0.

Consequently, using also (4.45), we obtain, for t → ∞,

(4.48) (1 + Ax)b̃2|g(ãx)| ≤ 2C1
(1 + ãx)2 log(1 + ãx)

ã2 log2 ã
≤ 3C1

log ã
= O

(
t−1/2

)
.

Combining (4.47) and (4.48) finally yields

1 − u(x, t + T ) =
1

1 + ãx
− b̃f(ãx) + b̃2g(ãx) =

1 − x + O
(
t−1/2 log t

)
1 + Ax

.

Proof of (2.10) and (2.11). First notice that estimate (3.27) in Lemma 3.3 and
Lemma 4.3(ii) guarantee the control of the slope at x = 1, namely, (3.22), for any
finite T > 0. The C1 regularity property (2.10) is then a consequence of Lemma 3.2.
To show (2.11), note that ux(0, t) = a(t) due to (4.7) and (4.2). The lower estimate
corresponding to (2.11) is then a consequence of (4.43) and (4.3). The proof of the
upper part is similar by using u.

Proof of Corollary 2.2. Assertion (i) is an immediate consequence of (2.8) and
(2.9). To show (ii), it suffices to observe that, due to (2.9),

∫ 1

0

dx

1 + A(t)x
=

[
log

(
1 + A(t)x

)
A(t)

]1

0

=
log(1 + A(t))

A(t)

=
(
1 + O

(
t−1/2

))√
2t exp

[
−5

2
−
√

2t

]

as t → ∞ and to use ∫ 1

0

x dx

1 + A(t)x
≤ 1

A(t)
.
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Abstract. This paper focuses on a damped wave equation and the evolution of a Kelvin–
Voigt viscoelastic material, both problems being subject to unilateral boundary conditions. Under
appropriate regularity assumptions on the initial data, both problems possess a weak solution which
is obtained as the limit of a sequence of solutions of penalized problems; the functional properties
of all the traces are precisely identified through Fourier analysis, and this enables us to infer the
existence of a strong solution, i.e., a solution satisfying almost everywhere the unilateral conditions.
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1. Introduction and notation. This paper aims to give some new mathe-
matical results on existence for a damped wave equation with an obstacle and for
full viscoelasticity in the particular case of a Kelvin–Voigt material with unilateral
boundary conditions.

We consider in section 2 a damped wave equation taking place in a half-space,
with an obstacle at the boundary. Let u(x, t) be the displacement at time t of the
material point of spatial coordinate x = (x1, x

′) ∈ (−∞, 0]×R
d−1 at rest with d ≥ 2.

We will agree that if we write a function of space and time as a function of three
variables, then the first variable is the normal space variable x1, the second variable is
the tangential space variable x′, and the last variable is time. Let f(x1, x

′, t) denote a

density of external forces, depending on space and time. Define Ω
def
= (−∞, 0]×R

d−1,
and let α be a positive number. The mathematical problem is formulated as follows:

(1.1) utt − Δu− αΔut = f, x ∈ Ω, t > 0,

with Cauchy initial data

(1.2) u(·, 0) = u0 and ut(·, 0) = u1

and Signorini boundary conditions at x1 = 0, t > 0,

(1.3) 0 ≤ u ⊥ ux1 + αux1t ≥ 0,

where (·)t
def
= ∂

∂t (·) and (·)x1

def
= ∂

∂x1
(·). The orthogonality has the natural meaning: if

we have enough regularity, it means that the product u(ux1 +αux1t) vanishes almost
everywhere on the boundary. If we do not have enough regularity, the above inequality
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is integrated on an appropriate set of test functions, yielding a weak formulation for
the unilateral condition. The main result of section 2 is that, indeed, (1.3) holds
almost everywhere on the boundary; i.e., we have a strong solution to our problem.

We suppose that the initial position u0 belongs to the Sobolev space H2(Ω) and
satisfies the compatibility condition u0(0, ·, ·) ≥ 0, the initial velocity u1 belongs
to H1(Ω), and the density of forces f belongs to L2

loc([0,∞); L2(Ω)). The choice of a
function f defined for all nonnegative time is justified by the use of a Fourier transform
in the latter part of the article. This is not a significant restriction as we can always
extend f by 0 if it is defined only for finite times.

Let us describe the weak formulation of the problem. Denote by K the convex
set

K
def
=

{
v ∈ H1

loc(Ω × [0,∞)) : ∇vt ∈ L2
loc([0,∞); L2(Ω)), v|{0}×Rd−1 ≥ 0

}
.

This unusual convex set has been devised in order to write a weak formulation of our
problem. Since we expect to find a scalar product (∇ut,∇w), we require ∇ut to be
square integrable. Thus, the weak formulation associated to (1.1)–(1.3) is obtained
by multiplying (1.1) by v − u, v ∈ K, and by integrating formally over Ω × (0, τ).
Then, we get

(1.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find u ∈ K such that for all v ∈ K and for all τ ∈ (0,∞),∫
Ω

(ut(v − u))
∣∣τ
0

dx−
∫ τ

0

∫
Ω

ut(vt − ut) dxdt

+

∫ τ

0

∫
Ω

(∇u + α∇ut)(∇v −∇u) dxdt ≥
∫ τ

0

∫
Ω

f(v − u) dxdt.

We approximate this problem by a regularized problem, and the bulk of our work
is to get enough regularity to obtain traces of the tangential first derivatives of the
solution on the boundary. This is done essentially through an analysis of the Dirichlet
to Neumann operator for the damped wave equation. For this purpose, one must go
to tangential Fourier variables and perform an estimate on a pseudodifferential term.

In section 3, we treat the evolution of a Kelvin–Voigt material (see [DaL90]) occu-
pying a three dimensional half-space, satisfying Signorini conditions at the boundary
and Cauchy data at t = 0. We make the assumptions of small deformations. Let

εij(u)
def
= (uj,xi + ui,xj )/2 be the strain tensor, and let there be given two Hooke ten-

sors, anijkl, n = 0, 1. We define the two stress tensors σn
ij corresponding, respectively,

to the elastic and the viscous parts of the stress:

(1.5) σn
ij(u)

def
= anijklεkl(u);

here, we have used the summation convention on repeated indices. The displacement
field u satisfies the system

(1.6) ρui,tt = σ0
ij,xj

(u) + σ1
ij,xj

(ut) + fi, x ∈ Ω, t > 0.

The initial data are given by

(1.7) u(·, 0) = v0 and ut(·, 0) = v1.

The components of the unit external normal are δ1j (δ is the Kronecker symbol),
and a basis of tangential vectors can be taken as τj = δ2j and τ ′j = δ3j . Denote by
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Σ = {0}×R
d−1 the boundary of Ω. Then, the boundary conditions on Σ× [0,∞) are

0 ≥ u1 ⊥ σ0
11(u) + σ1

11(ut) ≤ 0,(1.8a)

σ0
12(u) + σ1

12(ut) = 0, and σ0
13(u) + σ1

13(ut) = 0.(1.8b)

One of the main results of section 3 is to show that (1.8a) holds almost everywhere,
because the relevant traces exist.

In order to simplify the problem, we have considered a homogeneous and isotropic
material; then, the Hooke tensors anijkl are defined with the help of Lamé constants
λn and μn:

anijkl
def
= λnδijδkl + 2μnδikδjl, n = 0, 1.

We define two elasticity operators An by

Anu
def
= anijkl∂jεkl(u), n = 0, 1.

Then, the problem (1.6)–(1.8) can be rewritten as follows:

ρutt −A0u−A1ut = f, x ∈ Ω, t > 0,(1.9a)

0 ≥ u1 ⊥
(
σ0

11(u) + σ1
11(ut)

)
≤ 0 on Σ × [0,∞),(1.9b)

σ0
12(u) + σ1

12(ut) = 0 and σ0
13(u) + σ1

13(ut) = 0 on Σ × [0,∞),(1.9c)

u(·, 0) = v0 and ut(·, 0) = v1.(1.9d)

Let us describe now the functional hypotheses on the data; if X is a space of scalar
functions, the bold-face notation X denotes the space Xd. For the final result, we
require v0 to belong to H5/2(Ω), v1 to H3/2(Ω), and f to H1

loc([0,∞); L2(Ω)). The
initial data must satisfy the compatibility condition (v0)1(0, x

′) ≤ 0 for all x′ ∈ Σ.
Let K be the convex set defined by

K
def
=

{
v ∈ H1(Ω × (0, τ)) : ∇vt ∈ L2(Ω × (0, τ)), v(0, ·) ≤ 0

}
.

Define two bilinear forms by

a0(u, v)
def
=

∫
Ω

a0
ijklεij(u)εkl(v) dx and a1(u, v)

def
=

∫
Ω

a1
ijklεij(u)εkl(v) dx.

We obtain a weak formulation of the problem (1.9) as follows: we multiply (1.9a) by
v− u, v ∈ K, and we formally integrate the result over Ω× (0, τ); we obtain then the
variational inequality

(1.10)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find u ∈ K such that for all v ∈ K and for all τ ∈ (0,∞),∫ τ

0

∫
Ω

ρutt · (v − u) dxdt +

∫ τ

0

a0(u, u− v) dt

+

∫ τ

0

a1(ut, v − u) dt ≥
∫ τ

0

∫
Ω

f · (v − u) dxdt.

The existence result for (1.1)–(1.3) is easily established by the penalty method
and was already proved by Jarušek et al. [JM*92] in the case of distributed constraints.

Jarušek has also proved in [Jar96] an existence result for (1.9), in a much more
general and complicated case, since it allows for contact, a given friction at the bound-
ary, a nonlinear constitutive law for viscoelasticity, and a general geometry. However,
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the boundary conditions must be understood in the sense of duality, since the traces
themselves are defined by duality. The reader can also refer to [KuS04a]. Moreover,
notice that [KuS04b] contains some regularity results for a Signorini problem with
normal compliance.

The reader may wonder why our proofs of existence for weak solutions are longer
than other known proofs; the reason is that we prove more estimates in order to get
more information. Hence, we cannot reuse previous proofs of existence of weak solu-
tions. In particular, we need stronger results on the regularity of solutions, and these
cannot be deduced from former results on regularity, which use stronger assumptions.

In the present paper, for both problems, we penalize the obstacle constraint, we
construct a solution of the penalized problem, and we show the existence of a weak
solution by passing to the limit with respect to the penalty parameter. Then, under
appropriate regularity conditions on the data, we prove that the penalized solution
has traces, which can be estimated, and therefore the limiting weak solution that we
obtained is a strong solution.

We have chosen to limit ourselves to homogeneous and, in the case of viscoelas-
ticity, isotropic media, since we use a Fourier transform and some calculus in the
dual variables for obtaining the traces. We believe that more general cases could be
considered, namely, variable coefficients and curved boundary. The method is proba-
bly straightforward, but it is exacting, since one would probably have to use the full
technology of pseudodifferential operators.

Observe that nothing is known about uniqueness.
These two problems are treated in the same article, because they are quite close.

Proofs for the second problem are shortened when very close to proofs for the first one.
Nevertheless, there are substantial differences in detail, since the second problem is
much more complicated than the first. In particular, the bulk of the proof in section 3
consists in obtaining a solution of a linear system through Fourier–Laplace transform
and then in estimating this solution in anisotropic Sobolev spaces.

2. The damped wave equation with Signorini boundary conditions.

2.1. The penalized problem. We approximate (1.1)–(1.3) by the penalty me-
thod. This means that we replace the rigid constraint (1.3) by a very stiff response.
When the constraint is active, the response is linear, and it vanishes when the con-

straint is not active. More precisely, letting r−
def
= −min(r, 0), we replace u by uε,

which satisfies

(2.1) uε
tt − Δuε − αΔuε

t = f, x ∈ Ω, t > 0,

with initial data

(2.2) uε(·, 0) = u0 and uε
t(·, 0) = u1

and boundary condition

(2.3) (uε
x1

+ αuε
x1t)(0, ·, ·) = (uε(0, ·, ·))−/ε.

Notice that (2.3) is the so-called normal compliance condition introduced by Martins
and Oden [MaO88].

Define the following sets:

(2.4) ∀τ ∈ (0,∞), Qτ
def
= Ω × (0, τ) and Iτ

def
= Σ × (0, τ).
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Theorem 2.1. Let Wloc
def
= {u ∈ H1

loc([0,∞) × Ω) : ∇ut ∈ L2
loc([0,∞); L2(Ω))}.

Assume that u0 and u1 belong to H1(Ω), and f belongs to L2
loc([0,∞); L2(Ω)); then for

every ε > 0 there exists a unique weak solution uε ∈ Wloc of the problem (2.1)–(2.3)
such that

uε ∈ L∞
loc([0,∞); H1(Ω)),(2.5a)

uε
t ∈ L2

loc([0,∞); H1(Ω)),(2.5b)

uε
tt ∈ L2

loc([0,∞); L2(Ω)),(2.5c)

and for every τ ∈ (0, T ) and for all v ∈ Wloc, the following variational equality is
satisfied: ∫

Ω

((uε
tv)(·, τ) − u1v(·, 0)) dx−

∫
Qτ

uε
tvt dxdt +

∫
Qτ

∇uε∇v dxdt

+ α

∫
Qτ

∇uε
t∇v dxdt− 1

ε

∫
Iτ

(uε)−v dx′ dt =

∫
Qτ

fv dxdt.

(2.6)

Proof. The theorem is proved by the standard Galerkin method, and the reader
can refer to [GGZ74] or the appendix of [JM*92].

2.2. A priori estimates. We establish here estimates up to the boundary and
interior estimates which will enable us later to infer the existence of a weak solution
to (1.1)–(1.3).

Lemma 2.2. Assume that f belongs to L2
loc([0,∞); L2(Ω)), u0 to H1(Ω), and u1

to L2(Ω). Then uε
t and ∇uε are bounded in L∞

loc([0,∞); L2(Ω)), ∇uε
t is bounded in

L2
loc([0,∞); L2(Ω)), and (uε(0, ·, ·))−/

√
ε is bounded in L∞

loc([0,∞); L2(R−)) indepen-
dently of ε > 0. If, moreover, u0 belongs to H2(Ω), Δuε is bounded in L∞

loc(0,∞;L2(Ω))
independently of ε.

Proof. These estimates result from an application of the Gronwall lemma to the
energy identity. We multiply (2.1) by uε

t, and we integrate this expression over Qτ to
get ∫

Qτ

uε
ttu

ε
t dxdt−

∫
Qτ

Δuεuε
t dxdt− α

∫
Qτ

Δuε
tu

ε
t dxdt =

∫
Qτ

fuε
t dxdt.

We integrate the first integral in time in the above relation, we use Green’s formula
for the second and third, and, with the help of the boundary conditions (2.3), we
obtain

1

2

∫
Ω

(
|uε

t(·, τ)|2 + |∇uε(·, τ)|2
)
dx + α

∫
Qτ

|∇uε
t|2 dxdt +

1

2ε

∫
Σ

(
(uε(0, ·, ·))−

)2∣∣τ
0

dx′

=

∫
Qτ

fuε
t dxdt +

1

2

∫
Ω

(
|∇u0|2 + |u1|2

)
dx.

We may deduce from the classical Gronwall lemma that uε
t and ∇uε are bounded

in L∞
loc([0,∞); L2(Ω)), ∇uε

t is bounded in L2
loc([0,∞); L2(Ω)), and (uε(0, ·, ·))−/

√
ε is

bounded in L∞
loc([0,∞); L2(Rd−1)) independently of ε > 0.

For the bound on Δuε, we multiply (2.1) by et/α, and we integrate from 0 to τ .
After an integration by parts on the term∫ τ

0

uε
tte

t/α dt,
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we find the identity

Δuε(·, τ) = Δu0e
−τ/α + α−1

(
uε
t(·, τ) − u1e

−τ/α
)

− α−2

∫ τ

0

uε
t(·, t)e(t−τ)/α dt− α−1

∫ τ

0

fe(t−τ)/α dt.
(2.7)

The end of the proof is straightforward.
Remark 2.3. If we suppose that f vanishes for t large, then, independently of

ε > 0, uε
t, ∇uε, and Δuε are bounded in L∞([0,∞); L2(Ω)) and ∇uε

t is bounded in
L2([0,∞); L2(Ω)). These properties can be proved using the arguments given in the
proof of Lemma 2.2, with the origin of time moved to T if f(·, t) vanishes for t ≥ T ;
since the integral involving f vanishes, the conclusion is clear for uε

t, ∇uε, and ∇uε
t.

For Δuε, we use the identity (2.7), with 0 replaced by T ≤ τ , and the conclusion is
clear.

Lemma 2.4. Assume the hypotheses of Lemma 2.2. Then for all nonnegative,
continuously differentiable, and compactly supported ψ on R

d−1 and for all τ ∈ [0, T ],

∫
Iτ

(uε)

ε

−
ψ dx′ dt

is bounded independently of ε > 0. In particular, (uε(0, ·, ·))−/ε is a bounded measure
on Iτ .

Proof. Let φ be a continuous function with compact support in R
d; we multiply

(2.1) by φ and integrate over Qτ ; thanks to the boundary conditions (2.3) and Green’s
formula, we obtain∫

Ω

φuε
t(·, t)

∣∣τ
0

dx +

∫
Qτ

∇φ(∇uε + α∇uε
t) dxdt− 1

ε

∫
Iτ

(uε)−φdx′ dt =

∫
Qτ

φf dxdt.

Since the product |zy| can be estimated by |z|2/2 + |y|2/2, we get the following
inequality:

1

ε

∫
Iτ

(uε)−φdx′ dt ≤ 1

2

∫
Ω

(
|uε

t(·, τ)|2 + |u1|2
)
dx +

∫
Ω

|φ|2 dx

+

∫
Qτ

|∇φ∇uε| dxdt + α

∫
Qτ

|∇φ∇uε
t| dxdt +

∫
Qτ

|φf | dxdt.

(2.8)

The right-hand side of (2.8) is bounded since f belongs to L2
loc([0,∞); L2(Ω)), u1

to L2(Ω), and uε
t, ∇uε, and ∇uε

t to L2
loc([0,∞); L2(Ω)). Moreover, (uε(0, ·, ·))− is

nonnegative; if the trace ψ of φ over Σ is nonnegative, the inequality is clear. The last
statement of the theorem is obtained by a classical approximation argument. Write
με = (uε(0, ·, ·))−/ε. Let ψn be an increasing sequence of nonnegative, continuously
differentiable, and compactly supported functions on Σ, which are at most equal to ψ.
Then the integrals of ψn against με converge to the integral of limn ψn against με, so
that the integral of any nonnegative, continuous, and compactly supported function
against με is nonnegative, and this is precisely the definition of a nonnegative measure
on Σ.

Let us turn now to interior estimates.
Lemma 2.5. Assume the hypotheses of Lemma 2.2. Then for all β > 0, uε

tt and
Δuε

t are bounded in L2
loc([0,∞); L2((−∞,−β) × Σ)), independently of ε > 0.
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Proof. The idea of the proof is twofold: we multiply uε by a truncation function

ϕ ∈ C∞
0 (R), and we define vε

def
= ϕuε; we will observe that wε def

= vεt satisfies a heat
equation, whose right-hand side will be estimated thanks to the previous lemmas. Let
us now go into the details.

Let ϕ be a truncation function which is equal to 1 if x1 ≤ −β and to 0 if x1 ≥ −β/2
(β > 0). Then, we multiply uε by ϕ, which enables us to forget about the strongly
nonlinear boundary conditions. Define

(2.9) vε(x1, ·, ·)
def
= ϕ(x1)u

ε(x1, ·, ·).

The derivatives of vε are given by

vεtt = ϕuε
tt,(2.10a)

Δvε = ϕΔuε + 2ϕx1∇uε + ϕx1x1u
ε,(2.10b)

Δvεt = ϕΔuε
t + 2ϕx1∇uε

t + ϕx1x1u
ε
t.(2.10c)

Observe that, thanks to relations (2.1) and (2.10), we have

(2.11) vεtt − Δvε − αΔvεt = g̃ε,

where g̃ε
def
= ϕf −2ϕx1

(∇uε +α∇uε
t)−ϕx1x1

(uε +αuε
t). Since f , uε

t, ∇uε, ∇uε
t, and uε

are bounded in L2
loc([0,∞); L2(Ω)), g̃ε is bounded in L2

loc([0,∞); L2(Ω)). Let us define

(2.12) wε def
= vεt and gε

def
= g̃ε + Δvε.

Substituting (2.12) into (2.11), we obtain

(2.13) wε
t − αΔwε = gε.

Let us prove now that wε
t is bounded in L2

loc([0,∞); L2(Ω)). For this purpose, we
multiply (2.13) by wε

t ; we integrate this expression over Ω:∫
Ω

|wε
t |2 dx− α

∫
Ω

Δwεwε
t dx =

∫
Ω

gε wε
t dx.

We use Green’s formula in the second term on the left-hand side of the above expres-
sion, thus getting the following equality:

(2.14)

∫
Ω

|wε
t |2 dx + α

∫
Ω

∇wε
t∇wε dx =

∫
Ω

gεwε
t dx.

We integrate (2.14) over (0, τ), we observe that the product |gεwε
t | can be estimated

by |gε|2/2 + |wε
t |2/2, and we obtain

1

2

∫
Qτ

|wε
t |2 dxdt + α

∫
Ω

|∇wε(·, τ)|2 dx

≤ α

∫
Ω

|∇wε(·, 0)|2 dx +
1

2

∫
Qτ

|gε|2 dxdt.

(2.15)

Since u1 belongs to H1(Ω) and ϕ belongs to C∞
0 (R), ∇wε(·, 0) = ϕx1u1 + ϕ∇u1 is

bounded in L2(Ω). Moreover, gε is bounded in L2
loc([0,∞); L2(Ω)) because Δvε and g̃ε

are bounded in L2
loc([0,∞); L2(Ω)). Therefore, (2.9), (2.12), and (2.15) enable us to
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deduce that uε
tt is bounded in L2

loc([0,∞); L2((−∞,−β) × Σ)). We use analogous ar-
guments to show that Δuε

t is bounded in L2
loc([0,∞); L2((−∞,−β)×Σ)). We multiply

(2.13) by Δwε, we integrate over Qτ , and, thanks to Green’s formula, we obtain

(2.16) −1

2

∫
Ω

|∇wε|2
∣∣τ
0

dx− α

∫
Qτ

|Δwε|2 dxdt =

∫
Qτ

gεΔwε dxdt.

The product |gεΔwε| can be estimated by |gε|2/(2γ) + γ|Δwε|2/2, and if we choose
γ ∈ (0, 2α), we obtain the following inequality:

(2.17)
(
α− γ

2

)∫
Qτ

|Δwε|2 dxdt ≤ 1

2γ

∫
Qτ

|gε|2 dxdt +
1

2

∫
Ω

|∇wε(·, 0)|2 dx.

Since gε and ∇wε(·, 0) are, respectively, bounded in L2
loc([0,∞); L2(Ω)) and L2(Ω),

according to (2.9), (2.12), and (2.17), we infer that Δuε
t is bounded in the space

L2
loc([0,∞); L2((−∞,−β) × Σ)).

2.3. Existence of a weak solution. In this section, we show that it is possible
to pass to the limit in the variational formulation of the penalized problem to obtain
a weak solution of (1.1)–(1.3). There is a minor subtlety due to the unboundedness
of Ω.

Theorem 2.6. Assume the hypotheses of Lemma 2.2. Then there exists a solu-
tion of the variational inequality (1.4); this solution can be obtained as a limit of a
subsequence of the penalty approximation defined by (2.1)–(2.3).

Proof. Let v belong to K and ϕ be a function belonging to C∞
0 (Ω̄× [0,∞)), which

takes its values in [0, 1]. Multiplying (2.1) by (v − uε)ϕ and integrating over Qτ and
then observing that∫

Iτ

(
(uε)−ϕ(v − uε)

)
dx′ dt =

∫
Iτ

((
(uε)−

)2
ϕ
)
dx′ dt +

∫
Iτ

(
(uε)−ϕv

)
dx′ dt

is nonnegative, we may deduce the following inequality:∫
Ω

uε
tϕ(v − uε)

∣∣τ
0

dx−
∫
Qτ

uε
t(ϕ(v − uε))t dxdt

+

∫
Qτ

(∇uε + α∇uε
t)∇(ϕ(v − uε)) dxdt ≥

∫
Qτ

fϕ(v − uε) dxdt.

(2.18)

We infer from Lemmas 2.2 and 2.4 that it is possible to extract a subsequence, still
denoted by uε, such that

uε ⇀ u in L∞
loc([0,∞); L2(Ω)) weak ∗,(2.19a)

uε
t ⇀ ut in L∞

loc([0,∞); L2(Ω)) weak ∗,(2.19b)

∇uε ⇀ ∇u in L∞
loc([0,∞); L2(Ω)) weak ∗,(2.19c)

Δuε ⇀ Δu in L∞
loc([0,∞); L2(Ω)) weak ∗,(2.19d)

∇uε
t ⇀ ∇ut in L2

loc([0,∞); L2(Ω)) weak.(2.19e)

Define the set QR
def
= {x : x1 < 0, |x′| ≤ R} × [0, R]. Thanks to the classical

compactness properties of injections of Sobolev spaces on bounded open sets, we see
that for all R > 0, the restrictions of uε and ∇uε to QR converge strongly to their
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respective limits in L2(QR); therefore, we can pass to the limit in all the terms of
(2.18) except possibly the first two terms.

Let us prove that ut is continuous from [0,∞) to L2(Ω) equipped with the weak
topology: we infer from the estimates of Lemma 2.5 that for all β > 0, uε

tt re-
stricted to x1 < −β is bounded in L2

loc([0,∞); L2((−∞,−β] × Σ)); therefore, uε
t

converges to a function ut whose restriction to x1 < −β is continuous from [0,∞) to
L2((−∞,−β]×Σ). Let tj ∈ [0,∞) be a sequence converging to t∞ < ∞; as ut belongs
to L2

loc([0,∞); L2(Ω)), we may extract a subsequence, still denoted by tj , such that

uε
t(·, tj) ⇀ z in L2(Ω) weak.

But since, for all β > 0,

uε
t(·, tj)1{x1<−β} → ut(·, t∞)1{x1<−β} in L2(Ω),

we see that z must coincide with ut(·, t∞) and that the whole sequence converges
strongly to ut(·, t∞); this proves that ut is continuous from [0,∞) to L2(Ω) weak.

Let us prove now that uε
t(·, t) converges weakly to ut(·, t) for all t > 0: let γ be an

arbitrary positive number; let z belong to L2(Ω); and denote by C1 an upper bound
for |uε

t|L∞([0,T ];L2(Ω)) with T fixed. We choose β so small that

(∫
−β<x1<0

|z|2 dx

)1/2

≤ γ

4C1
;

then, for t ∈ [0, T ],∣∣∣∣
∫

Ω

(uε
t(·, t) − ut(·, t))z dx

∣∣∣∣ ≤
∣∣∣∣
∫
x1<−β

(uε
t(·, t) − ut(·, t))z dx

∣∣∣∣
+

(∫
−β<x1<0

|z|2 dx

)1/2 (∫
−β<x1<0

|uε
t(·, t) − ut(·, t)|2 dx

)1/2

.

(2.20)

By definition of C1, the second term on the right-hand side of (2.20) is estimated by
C1γ/(2C1) = γ/2. As uε

t|(−∞,−β)×IT is bounded in H1((−∞,−β) × IT ), we see that

∫ −β

−∞

∫
Σ

uε
tz dx converges to

∫ −β

−∞

∫
Σ

utz dx

uniformly with respect to t ∈ [0, T ]. It suffices therefore to choose ε so small that
the first term on the right-hand side of (2.20) is estimated by γ/2. This proves that
the convergence of

∫
Ω
uε
tz dx to

∫
Ω
utz dx is uniform on compact sets in time. In

particular, as ε tends to 0, it is plain that for all τ > 0,∫
Ω

uε
tϕ(v − uε) dx →

∫
Ω

utϕ(v − u) dx.

Let us turn now to the term∫
Qτ

uε
t(ϕt(v − uε) + ϕ(vt − uε

t)) dxdt.

It is clear that∫
Qτ

uε
t(ϕt(v − uε) + ϕvt) dxdt →

∫
Qτ

ut(ϕt(v − u) + ϕvt) dxdt.
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There remains to prove the convergence∫
Qτ

|uε
t|2ϕ dxdt →

∫
Qτ

|ut|2ϕdxdt.

We observe that∫
Qτ

|uε
t − ut|2ϕ dxdt ≤

∫ τ

0

∫
Σ

∫
x1≤−β

|uε
t − ut|2ϕdxdt

+

∫ τ

0

∫
Σ

∫
−β≤x1≤0

|uε
t − ut|2ϕdxdt.

Let γ be any positive number. One can deduce from the estimates of |uε
t|L2(Iτ ) and

|∇uε
t|L2(Qτ ) that there exists a constant C2 independent from ε such that

|uε
t(x1, ·, ·)|L2(Σ×(0,τ)) ≤ C2.

Therefore, ∫ τ

0

∫
Σ

∫
−β≤x1≤0

|uε
t − ut|2ϕdxdt ≤ C2

2β.

We choose β so small that C2
2β ≤ γ/2; then we know from the estimates of Lemmas

2.2 and 2.5 that the restriction of uε to {x1 < −β} intersected with a ball containing
the support of ϕ is bounded in H2 of that set; therefore, for ε small enough,∫

Qτ

|uε
t − ut|2ϕdxdt ≤ γ

2
,

and the convergence of the first two terms of (2.18) is proved. We observe now that
since u, ut, ∇u, and ∇ut belong to L2

loc([0,∞); L2(Ω)), we may replace ϕ by ϕR in
the variational inequality where ϕR is equal to 1 over the set QR and vanishes outside
of QR+1. It is plain that as R → ∞ all the terms in (2.18) converge to their limit;
thus we have proved the existence of the desired weak solution.

Remark 2.7. Nothing is known about uniqueness.

2.4. Auxiliary results on the damped wave equation with Dirichlet
boundary conditions. We establish a priori estimates on the damped wave equa-
tion with Dirichlet boundary conditions. These estimates will enable us to give some
properties on the trace spaces which we use in the next subsection.

Lemma 2.8. Assume u0 belongs to H5/2(Ω); then, there exists a function z ∈
H3(Ω× [0,∞)) with compact support in t such that the trace of z on Ω is equal to u0.

Proof. We extend u0 into a function belonging to H5/2(Rd): as the boundary of
Ω is smooth, this extension is a consequence of classical results on Sobolev spaces.
Then there exists a function Z belonging to H3(Rd × [0,∞)) whose trace is u0. It
suffices now to select a cut-off function ϕ ∈ C∞([0,∞)) which is equal to 1 on [0, 1]
and to 0 on [2,∞) and to define z as the restriction of ϕZ to Ω × [0,∞).

Lemma 2.9. Assume u0 belongs to H5/2(Ω), u1 belongs to H1(Ω), and f belongs
to L2

loc([0,∞); L2(Ω)). Define z as in Lemma 2.8, and let ū be the solution of (1.1)
with the initial data (1.2) and boundary condition ū(0, ·, ·) = z(0, ·, ·). Then the

trace ḡ
def
= −(ūx1 + αūx1t)(0, ·, ·) is well defined and belongs to L2

loc([0,∞); L2(Rd−1)).
Moreover, if f is compactly supported in time,∫ τ

0

|ḡ(·, t)|2L2(Σ) dt
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increases at most polynomially with respect to τ .

Proof. The function ζ
def
= ū− z satisfies the equation

(2.21) ζtt − Δζ − αΔζt = F, x ∈ Ω, t > 0,

where F
def
= f − ztt + Δz + αΔzt, with initial data

ζ(·, 0) = 0 and ζt(·, 0) = u1

and the Dirichlet boundary condition ζ(0, ·, ·) = 0. If we multiply (2.21) by ζt and
integrate, and if we suppose that f and F are compactly supported in time, we may
easily deduce that ζt, ∇ζ are bounded in L∞

loc([0,∞); L2(Ω)) and ∇ζt is bounded in
L2

loc([0,∞); L2(Ω)). In order to get more information, we multiply (2.21) by Δζt; since
the boundary term vanishes, we get immediately the identity

α

∫
Qτ

|Δζt|2 dxdt +
1

2

∫
Ω

|Δζ(·, τ)|2 dx +

∫
Ω

|∇ζt(·, τ)|2 dx

=

∫
Ω

|∇ζt(·, 0)|2 dx−
∫
Qτ

FΔζt dxdt.

The product FΔζt can be estimated by α|Δζt|2/2 + |F |2/(2α); then Δζt is bounded
in L2

loc([0,∞); L2(Ω)), and Δζ and ∇ζt are bounded in L∞
loc([0,∞); L2(Ω)). In par-

ticular, if the support in time of F is bounded, Δζt is bounded in L2([0,∞); L2(Ω))
and Δζ and ∇ζt are bounded in L∞([0,∞); L2(Ω)). Hence ζx1t(0, ·, ·) and ζx1(0, ·, ·)
belong, respectively, to L2

loc([0,∞); H1/2(Rd−1)) and to L∞
loc([0,∞); H1/2(Rd−1)), and

if the support in time of f is bounded, the local character of these spaces may be
removed.

2.5. Regularity of the trace. We characterize the trace spaces using Fourier
analysis, and we prove that u is a strong solution of (1.1)–(1.3). Here, we mean by
strong solution that all the traces can be defined.

Let ν be a positive number. Denote by vε
def
= e−νt(uε − ū) a solution of

(ν + ∂t)
2vε − (1 + α(ν + ∂t))Δvε = 0, x ∈ Ω, t > 0,(2.22a)

(1 + α(ν + ∂t))v
ε
x1

(0, ·, ·) = e−νtḡ − (vε(0, ·, ·) + e−νtū(0, ·, ·))−/ε,(2.22b)

vε(·, 0) = 0 and vεt (·, 0) = 0.(2.22c)

We denote by ξ
def
= (ξ2, . . . , ξd)

T and ω, respectively, the dual variables to x′ def
=

(x2, . . . , xd)
T and t. The Fourier transform of u(0, x′, t) is û(0, ξ, ω), where the con-

vention for the Fourier transform is

û(0, ξ, ω) =

∫
Rd

e−i(ξ·x′+ωt)u(0, x′, t) dx′ dt.

Then u(0, x′, t) belongs to the Sobolev space Ha,b
loc(R

d−1×[0,∞)), (a, b) ∈ R
2, iff

|ξ|aû(0, ξ, ω) and |ω|bû(0, ξ, ω) belong to L2(Rd).
We apply a partial Fourier transform in the tangential variable to (2.22a), and

we get the following differential equation:

(2.23) v̂εx1x1
=

(
|ξ|2 +

(ν + iω)2

1 + α(ν + iω)

)
v̂ε.
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Define λ̂ to be

λ̂(ξ, ω)
def
=

√
|ξ|2 +

(ν + iω)2

1 + α(ν + iω)
;

thus λ̂ is holomorphic in the lower half-plane �(ω) < 0 and 
λ̂ ≥ 0 for �(ω) = 0. The

general solution of (2.23) is given by âεeλ̂x1 + b̂εe−λ̂x1 ; since we performed a Fourier
transform on vε, we assumed implicitly that vε and v̂ε are tempered, respectively,

in (x′, t) and (ξ, ω). We remark that the term b̂εe−λ̂x1 can be tempered only if b̂ε

decays at infinity very quickly, and since this must be true for all x1, it implies that
b̂ε vanishes; the proof is similar to that given in [PeS02]. We deduce that the solution

of (2.23) is âεeλ̂x1 . In particular,

(2.24) ((1 + α(ν + ∂t))v
ε
x1

)̂(0, ξ, ω) = λ̂1v̂
ε(0, ξ, ω),

where λ̂1
def
= (1 + α(ν + iω))λ̂. Define

g(x′, t)
def
= e−νtḡ(x′, t) and h(x′, t)

def
= e−νtū(0, x′, t).

If we let wε(x′, t) be the trace vε(0, x′, t), (2.22) can now be written as

(2.25) λ1 ∗ wε = g + (wε + h)−/ε,

where wε vanishes for all t ≤ 0.
Remark 2.10. It is clear that λ̂ is a holomorphic function in �(ω) < 0, and thus

we may deduce that λ1 is a causal distribution.
Lemma 2.11. Let uε be the solution of (2.1)–(2.3). Then we may extract a

subsequence, still denoted by uε, such that

uε(0, ·, ·) ⇀ u(0, ·, ·) weakly in H
1/2,5/4
loc (Rd−1 × [0,∞)).

Moreover, u is a strong solution of (1.1)–(1.3).
Proof. Formally, we multiply (2.25) by α(νwε + wε

t) + wε, and we estimate the
pseudodifferential term in the Fourier variable; we obtain

1

(2π)d


∫

Rd

λ̂1ŵ
ε(1 + α(ν + iω))ŵε dω dξ

=
1

(2π)d


∫

Rd

ĝ(1 + α(ν + iω))ŵε dω dξ

+
1

ε

∫ ∞

0

∫
Rd−1

(wε + h)−(1 + α(ν + ∂t))w
ε dx′ dt.

(2.26)

Since (uε(0, ·, ·))−/
√
ε is bounded in L∞

loc([0,∞); L2(Rd−1)), the absolute value of the
second integral in the right-hand side of (2.26) is bounded, and we infer that there
exists C1 > 0 such that

(2.27) 

∫

Rd

λ̂1|ŵε|2(1 + α(ν + iω)) dω dξ ≤ C1 + 

∫

Rd

ĝ(1 + α(ν + iω))ŵε dω dξ.

On the other hand, we have


λ̂2 = |ξ|2 +
ν2(1 + αν) + (−1 + αν)ω2

|1 + α(ν + iω)|2 and �λ̂2 =
2νω + αω(ν2 + ω2)

|1 + α(ν + iω)|2 .
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We may choose ν such that να = 1; we get then

(2.28) 
λ̂2 = |ξ|2 +
2

α2|2 + iαω|2 and �λ̂2 =
ω(3 + α2ω2)

α|2 + iαω|2 .

Therefore, we infer that

arg λ̂ =
1

2
arctan

(
|ξ|2|2 + iαω|2 + 2

αω(3 + α2ω2)

)
.

According to (2.28), arg λ̂ belongs to [0, π/4], and since λ̂ is never equal to zero, we
get for |ξ| + |ω| � 1 the following inequality:

(2.29) 
λ̂ ≥ C
(
1 + |ξ| +

√
|ω|

)
.

Therefore, we obtain

C

∫
Rd

|2 + iαω|2
(
1 + |ξ| +

√
|ω|

)
|ŵε|2 dω dξ ≤ C1 +

∫
Rd

|2 + iαω||ĝ||ŵε| dω dξ.

We estimate the product |zy| by |z|2/(2γ) + γ|y|2/2, γ > 0; we see that(
C − γ

2

)∫
Rd

|2 + iαω|2
(
1 + |ξ| +

√
|ω|

)
|ŵε|2 dω dξ

≤ C1 +
1

2γ

∫
Rd

|ĝ|2

1 + |ξ| +
√

|ω|
dω dξ.

(2.30)

We choose γ such that γ < 2C; since g belongs to L2([0,∞); H1/2(Rd−1)), then

it is easy to deduce from (2.30) that uε(0, ·, ·) is bounded in H
1/2,5/4
loc (Rd−1 × [0,∞)).

Moreover, it is clear that (ux1
+αux1t)(0, ·, ·) is bounded in H

−1/2,−1/4
loc (Rd−1×[0,∞)).

Therefore, all the traces are defined, and we may deduce that u is a strong solution
of (2.1)–(2.3).

Remark 2.12. We have been unable to establish that the energy loss is purely
viscous as in the case of the one dimensional viscously damped wave equation on the
half-line and with unilateral boundary conditions [PeS02, PeS08].

3. The evolution of a Kelvin–Voigt material with Signorini boundary
conditions. As for the damped wave equation with unilateral boundary conditions,
a priori estimates on the penalized problem and care relative due to the unbound-
edness of Ω enable us to pass to the limit in the penalized variational formulation
and to deduce the existence of a solution to (1.9). Korn’s inequality plays an impor-
tant role here. If we denote by ū the solution of (1.9a) with initial data (1.9d) and
Dirichlet boundary data at x1 = 0, then we establish that the trace −(a0

11klεkl(ū) +
a1
11klεkl(ūt))|Σ×[0,∞) increases exponentially with time in L2

loc(Σ × [0,∞)) and not
polynomially as in the case of the damped wave equation with Dirichlet boundary
conditions studied in subsection 2.4. We determine the trace spaces using analogous
techniques already developed in section 2.5, but here we perform a Fourier transform
in the tangential variables (x2, x3, t) and a Laplace transform in x1.

3.1. The penalized problem. We approximate (1.9) as in section 2.1. More

precisely, letting r+ def
= max(r, 0), we replace u by uε which is a solution of the following

penalized problem:

(3.1) ρuε
tt −A0uε −A1uε

t = f, x ∈ Ω, t > 0,



VISCOELASTODYNAMICS WITH UNILATERAL CONSTRAINTS 1895

with initial data

(3.2) uε(·, 0) = v0 and uε
t(·, 0) = v1

and boundary conditions

a0
11klεkl(u

ε) + a1
11klεkl(u

ε
t) = −(uε

1)
+/ε,(3.3a)

a0
12klεkl(u

ε) + a1
12klεkl(u

ε
t) = 0, and a0

13klεkl(u
ε) + a1

13klεkl(u
ε
t) = 0.(3.3b)

Recall that Qτ and Iτ were defined by (2.4).

Theorem 3.1. Let W
def
= {u ∈ H1

loc([0,∞) × Ω) : ∇ut ∈ L2
loc([0,∞); L2(Ω))}.

Then for each ε > 0 there exists a unique weak solution uε ∈ W of the problem
(3.1)–(3.3) such that

uε ∈ L∞
loc([0,∞); H1(Ω)),

uε
t ∈ L2

loc([0,∞); H1(Ω)),

uε
tt ∈ L2

loc([0,∞); L2(Ω)),

and for every τ ∈ (0, T ) and for all v ∈ W, the following variational equality is
satisfied: ∫

Qτ

ρuε
tt · v dxdt +

∫ τ

0

(a0(uε, v) + a1(uε
t, v)) dt

+

∫
Iτ

(uε
1)

ε

+

v1 dx′ dt ≥
∫
Qτ

f · v dxdt.

(3.4)

Proof. We leave the verification of the proof to the reader as it is analogous to
the one developed in [Jar96].

3.2. Estimates on the penalized solution. We establish a priori estimates
which are essential to prove the existence of a weak solution to (3.1)–(3.3). These
estimates are obtained thanks to the techniques already developed in section 2.2 for
the damped wave equation and to Korn’s inequality.

Lemma 3.2. Assume that f belongs to L2
loc

(
[0,∞); L2(Ω)

)
, v0 to H1(Ω), and v1

to L2(Ω). Then uε
t and ∇uε are bounded in L∞

loc([0,∞); L2(Ω)), ∇uε
t is bounded in

L2
loc([0,∞); L2(Ω)), and (uε

1(0, ·, ·))+/
√
ε is bounded in L∞

loc([0,∞); L2(Rd−1)), inde-
pendently of ε > 0.

Proof. These estimates are a simple application of the Gronwall lemma to the
energy estimate. We multiply (3.1) by uε

t and integrate this expression over Qτ to get

1

2

∫
Ω

(
ρ|uε

t|2 + a0
ijklεij(u

ε)εkl(u
ε)
)∣∣τ

0
dx +

∫
Qτ

a1
ijklεij(u

ε
t)εkl(u

ε
t) dxdt

+
1

2ε

∫
Σ

(
(uε

1)
+
)2∣∣τ

0
dx′ =

∫
Qτ

f · uε dxdt.

(3.5)

According to Korn’s inequality, it is possible to infer that there exist two positive
constants C1 and C2 such that∫

Ω

anijklεkl(z)εij(z) dz ≥ C1

∫
Ω

|∇z|2 dz − C2

∫
Ω

|z|2 dz, n = 0, 1.
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As fuε
t can be estimated by |f |2/(2γ)+γ|uε

t|2/2, γ > 0, and using the above inequality,
we deduce from (3.5) that

1

2

∫
Ω

(
ρ|uε

t|2 + C1|∇uε|2
)
(·, τ) dx + C1

∫
Qτ

|∇uε
t|2 dxdt +

1

2ε

∫
Σ

(
(uε

1)
+
)∣∣τ

0
dx′

≤ C2

2

∫
Ω

|uε(·, τ)|2 dx +
(
C2 +

γ

2

)∫
Qτ

|uε
t|2 dxdt +

1

2γ

∫
Qτ

|f |2 dxdt

+
1

2

∫
Ω

(
ρ|v1|2 + a0

ijklεij(v0)εkl(v0)
)
dx.

A classical Gronwall lemma enables us to deduce that uε
t and ∇uε are bounded in the

space L∞
loc([0,∞); L2(Ω)), ∇uε

t is bounded in L2
loc([0,∞); L2(Ω)), and (uε

1(0, ·, ·))+/
√
ε

is bounded in L∞
loc([0,∞); L2(Rd−1)).

Remark 3.3. If we suppose that f vanishes for large t, then, independently of
ε > 0,

ess sup
0≤t≤T

|uε(·, t)|H1 ≤ C(1 + T )

and (∫ T

0

|uε
t(·, t)|2H1 dt

)1/2

≤ C(1 + T ).

These properties can be proved using the arguments given in the proof of Lemma 3.2,
with the origin of time moved to T if f vanishes for t ≥ T ; since the integral involving
f vanishes, the conclusion is clear.

Lemma 3.4. Assume that f belongs to L2
loc([0,∞); L2(Ω)), v0 to H1(Ω), and v1

to L2(Ω). Then, independently of ε > 0, the trace (uε
1(0, ·, ·))+/ε is bounded in the

space of measures on IT .
Proof. Let ϕ be a cut-off function which belongs to C1(Rd−1), is equal to 1 in the

sphere of center 0 and radius R > 0, and vanishes outside of a sphere of radius R+ 1.
We multiply (3.1) by ϕ and we integrate over Qτ ; due to the boundary conditions
(3.3), we obtain∫

Ω

ρuε
t · ϕ

∣∣τ
0

dx +
1

ε

∫
Iτ

(uε
1)

+ϕ1 dx′ dt +

∫
Qτ

σ0
ij(u

ε)εij(ϕ) dxdt

+

∫
Qτ

σ1
ij(u

ε
t)εij(ϕ) dxdt =

∫
Qτ

f · ϕdxdt.

As the product |zy| can be estimated by |z|2/2+|y|2/2, we get the following inequality:

1

ε

∫
Iτ

(uε
1)

+ϕ1 dx′ dt ≤ ρ

2

∫
Ω

(
|uε

t(·, τ)|2 + |v1|2
)
dx + ρ

∫
Ω

|ϕ|2 dx

+

∫
Qτ

∣∣(σ0
ij(u

ε) + σ1
ij(u

ε
t)
)
εij(ϕ)

∣∣ dxdt +

∫
Qτ

|f · ϕ| dxdt.

(3.6)

We may deduce that the right-hand side of (3.6) is bounded using the Lemma 3.2.
Since (uε

1(0, ·, ·))+ is nonnegative, the conclusion is clear.
Lemma 3.5. Assume that f , v0, and v1 belong, respectively, to L2

loc([0,∞); L2(Ω)),
H2(Ω), and L2(Ω). Then A0uε and A1uε are bounded in L∞

loc([0,∞),L2(Ω)), inde-
pendently of ε > 0.
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Proof. Once again, we use energy techniques, but now we multiply relation (3.1)
by A1uε and we integrate over Qτ to obtain

1

2

∫
Ω

|A1uε(·, τ)|2 dx =
1

2

∫
Ω

|A1v0|2 dx +

∫
Qτ

ρuε
tt · (A1uε) dxdt

−
∫
Qτ

(A0uε) · (A1uε) dxdt−
∫
Qτ

f · (A1uε) dxdt.

(3.7)

Notice that ∫
Qτ

ρuε
tt · (A1uε) dxdt = ρ

∫
Ω

uε
t · (A1uε)

∣∣τ
0

dx

− ρ

∫
Iτ

uε
1,tσ

1
1j(u

ε) dx′ dt +

∫
Qτ

a1
ijklεij(u

ε
t)εkl(u

ε
t) dxdt.

(3.8)

Carrying (3.8) into (3.7) and using the boundary conditions (3.3), we obtain

1

2

∫
Ω

|A1uε(·, τ)|2 dx =
1

2

∫
Ω

|A1v0|2 dx−
∫
Qτ

(A0uε) · (A1uε) dxdt

−
∫
Qτ

f · (A1uε) dxdt + ρ

∫
Ω

uε
t · (A1uε)

∣∣τ
0

dx +
ρ

ε

∫
Iτ

uε
1,t(u

ε
1)

+ dx′ dt

+ ρ

∫
Iτ

uε
1,tσ

0
1j(u

ε) dx′ dt +

∫
Qτ

a1
ijklεij(u

ε
t)εkl(u

ε
t) dxdt.

(3.9)

On the other hand, we observe that

(3.10)

∫
Iτ

|σ0
1j(u

ε)|2 dx′ dt ≤ C

(∫
Qτ

|uε|2 dxdt +

∫
Qτ

|A1uε|2 dxdt

)
,

and for all v belonging to H1(Ω) and A1v belonging to L2(Ω), we get

(3.11) |A0v|L2(Ω) ≤ C|v|L2(Ω) + |A1v|L2(Ω).

Define

(3.12) F (t)
def
=

∫
Ω

|A1uε(·, t)|2 dx.

According to (3.10)–(3.12) and since uε
t · (A1uε) can be estimated by |uε

t|2/(2γ) +
γ|A1uε|2/2, γ > 0, it is possible to infer from (3.9) the following inequality:(

1

2
− ργ

2

)
F (τ) ≤ 1

2
F (0) + (2 + C)

∫ τ

0

F (t) dt +
1

2

∫
Qτ

|f |2 dxdt

+
ρ

2γ

∫
Ω

|uε
t(·, τ)|2 dx + ρ

∫
Ω

|v1 · (A1v0)| dx +

∫
Qτ

a1
ijklεij(u

ε
t)εkl(u

ε
t) dxdt

+
ρ

2ε

∫
Σ

(
uε

1(·, τ)
)+

dx′ + (1 + C)

∫
Qτ

|uε|2 dxdt +

∫
Iτ

|uε
t|2 dx′ dt.

If we choose γ such that ργ < 1, we may infer using Lemma 3.2 and a classical
Gronwall inequality that F is bounded in L∞

loc([0,∞)). This proves the lemma.
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Remark 3.6. If we suppose that f vanishes for t large, then, independently of
ε > 0, A0uε and A1uε increase polynomially. These properties can be proved using
the arguments given in Remark 3.3.

Let us turn now to interior estimates.
Lemma 3.7. Assume that f belongs to L2

loc([0,∞); L2(Ω)), v0 to H2(Ω), and v1 to
L2(Ω). Then for all β > 0, uε

tt and A1uε
t are bounded in L2([0,∞); L2((−∞,−β)×Σ)),

independently of ε > 0.
Proof. As for the proof of Lemma 2.5, we use a truncation function which enables

us to forget about the strongly nonlinear boundary conditions. More precisely, we
multiply uε by a cut-off function ϕ(x1) ∈ C∞([0,∞)) which is equal to 0 on x1 ≤ −β
and to 1 on x1 ≥ −β/2, β > 0. Define

(3.13) vε(x1, ·, ·)
def
= ϕ(x1)u

ε(x1, ·, ·).

The derivatives of vε are given by

vεtt = ϕuε
tt,(3.14a)

εkl,xj (v
ε) = ϕεkl,xj (u

ε) + 2ϕx1εkl(u
ε) + ϕx1x1u

ε
k,(3.14b)

εkl,xj
(vεt ) = ϕεkl,xj

(uε
t) + 2ϕx1

εkl(u
ε
t) + ϕx1x1

uε
k,t.(3.14c)

Notice that thanks to relations (3.1) and (3.14), we have

(3.15) vεtt −A0vε −A1vε = g̃ε,

where g̃εi
def
= ϕfi−2ϕx1(a

0
ijklεkl(u

ε)+a1
ijklεkl(u

ε
t))−ϕx1x1

(a0
ijklu

ε
k +a1

ijklu
ε
k,t). Thanks

to Lemma 3.2, we deduce that g̃ε is bounded in L2
loc([0,∞); L2(Ω)). Define

(3.16) wε def
= vεt and gε

def
= g̃ε + A0vε.

We substitute (3.16) into (3.15) and obtain

(3.17) wε
t −A1wε = gε.

We will prove that wε
t is bounded in L2

loc([0,∞); L2(Ω)). For this purpose, we multiply
(3.17) by wε

t ; we integrate this expression over Qτ to obtain∫
Qτ

|wε
t |2 dxdt−

∫
Qτ

(A1wε) · wε
t dxdt =

∫
Qτ

gε · wε
t dxdt.

As

(3.18)

∫
Qτ

(A1wε) · wε
t dxdt = −1

2

∫
Ω

a1
ijklεij(w

ε)εkl(w
ε)
∣∣τ
0

dx,

we infer that ∫
Qτ

|wε
t |2 dxdt +

1

2

∫
Ω

a1
ijklεij(w

ε)εkl(w
ε)
∣∣
t=τ

dx

=
1

2

∫
Ω

a1
ijklεij(w

ε)εkl(w
ε)
∣∣
t=0

dx +

∫
Qτ

gε · wε
t dxdt.

(3.19)

According to Korn’s inequality, we infer that there exist C1 and C2 such that

(3.20)

∫
Ω

a1
ijklεij(w

ε)εkl(w
ε) dx ≥ C1

∫
Ω

|∇wε|2 dx− C2

∫
Ω

|wε|2 dx.
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Carrying the above inequality into (3.19) and observing that gε ·wε
t can be estimated

by |gε|2/2 + |wε
t |2/2, we get∫

Qτ

|wε
t |2 dxdt + C1

∫
Ω

|∇wε(·, τ)|2 dx

≤
∫

Ω

a1
ijklεij(w

ε)εkl(w
ε)
∣∣
t=0

dx + C2

∫
Ω

|wε(·, τ)|2 dx +

∫
Qτ

|gε|2 dxdt.

(3.21)

As v0 belongs to H2(Ω), v1 belongs to H1(Ω), ϕ belongs to C∞
0 (R), and gε is bounded

in L2
loc([0,∞); L2(Ω)), we infer that the right-hand side of (3.21) is bounded. There-

fore, using identities (3.13) and (3.16), it is possible to deduce that uε
tt is bounded in

L2
loc([0,∞); L2((−∞,−β) × Σ)).

We will show that A1wε is bounded in L2
loc([0,∞); L2(Ω)) using an analogous

method. We multiply (3.17) by A1wε, we integrate over Qτ , and we obtain

(3.22)

∫
Qτ

wε
t · (A1wε) dxdt−

∫
Qτ

|A1wε|2 dxdt =

∫
Qτ

gε · (A1wε) dxdt.

Carrying (3.18) and (3.20) into (3.22), gε · (A1wε) being estimated by |gε|2/2 +
|A1wε|2/2, we obtain∫

Qτ

|A1wε|2 dxdt + C1

∫
Ω

|∇wε(·, τ)|2 dx

≤
∫

Ω

a1
ijklεij(w

ε)εkl(w
ε)
∣∣
t=0

dx + C2

∫
Ω

|wε(·, τ)|2 dx +

∫
Qτ

|gε|2 dxdt.

(3.23)

Thanks to (3.13) and (3.16), we may deduce from (3.23) that A1uε
t is bounded in

L2
loc([0,∞); L2((−∞,−β) × Σ)).

3.3. Existence of a weak solution. Thanks to the estimates obtained in sec-
tion 3.2, we are able to pass to the limit in the variational formulation associated to
the penalized problem (3.1)–(3.3). Therefore, it is routine to deduce that there exists
a solution to (1.9).

Because Ω is an unbounded set, the proof will be technical but similar to the one
developed in section 2.3.

Theorem 3.8. Assume that f belongs to L2
loc([0,∞); L2(Ω)), v0 to H2(Ω), and

v1 to L2(Ω). Then there exists a solution to the variational inequality (1.10); this
solution is the limit of a subsequence of the penalty approximation defined by (3.1)–
(3.3).

Proof. Let ϕ ∈ C∞
0 (Ω̄ × [0,∞)) be a function which takes its values between

0 and 1. We suppose here that v belongs to K. Multiplying (3.1) by (v − uε)ϕ and
integrating over Qτ ,∫

Iτ

(uε
1)

+(ϕ(v1 − uε
1)) dx′ dt = −

∫
Iτ

(
(uε

1)
+
)2
ϕdx′ dt +

∫
Iτ

(uε
1)

+ϕv1 dx′ dt

being negative, we get the following inequality:∫
Ω

ρuε
t · (ϕ(v − uε))|τ0 dx−

∫
Qτ

ρuε
t · (ϕ(v − uε))t dxdt

+

∫
Qτ

(a0
ijklεkl(u

ε)εij(u
ε) + a1

ijklεkl(u
ε
t)εij(u

ε))(ϕ(vi − uε
i)) dxdt

≥
∫
Qτ

f ·
(
ϕ(v − uε)

)
dxdt.

(3.24)
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We may deduce from Lemmas 3.2 and 3.5 that there exists a subsequence, still
denoted by uε, such that

uε ⇀ u in L2
loc([0,∞); L2(Ω)) weak ∗,(3.25a)

uε
t ⇀ ut in L∞

loc([0,∞); L2(Ω)) weak ∗,(3.25b)

∇uε ⇀ ∇u in L2
loc([0,∞); L2(Ω)) weak ∗,(3.25c)

Anuε ⇀ Anu in L∞
loc([0,∞); L2(Ω)) weak ∗, n = 0, 1,(3.25d)

∇uε
t ⇀ ∇ut in L2

loc([0,∞); L2(Ω)) weak ∗.(3.25e)

Thanks to the classical compactness properties of Sobolev space injections on bounded
open sets, we see that for all R > 0, the restrictions of uε and anijklεkl(u

ε), n = 0, 1,
to QR = {x : x1 < 0, |x′| ≤ R} × [0, R] (a set which has already been defined in
section 2.3) converge strongly to their respective limits in L2(QR). On the other hand,
using the same techniques as those of section 2.3, we may prove that uε converges
strongly to u in L2

loc([0,∞); L2(Ω)). The complete proof can be found in [Pet02,
pp. 113–115].

We observe now that since u and ut belong to L2
loc([0,∞); L2(Ω)), we may replace

ϕ by ϕR in the variational inequality where ϕR is equal to 1 over the set QR and
vanishes outside of QR+1. When R tends to infinity all the terms in (3.24) converge
to their limit; thus we have proved the existence of a weak solution.

Remark 3.9. As for the damped wave equation with Signorini boundary condi-
tions, the uniqueness is still an open problem.

3.4. Preliminary results. In this section, we establish estimates on the prob-
lem (1.9a) with initial data (1.9d) and the Dirichlet boundary condition which enable
us to characterize the trace spaces in the next section.

Lemma 3.10. Assume v0 and v1 belong, respectively, to H5/2(Ω) and H3/2(Ω);
then, there exists a function with compact support in t such that the traces of z and
zt on Σ are, respectively, v0 and v1.

Proof. We extend v0 and v1 into functions belonging, respectively, to H5/2(Rd)
and H3/2(Rd). Then there exists a function Z belonging to H3(Rd × [0,∞)) such
that Z|Rd×{0} = v0 and Zt|Rd×{0} = v1. We select a cut-off function ϕ ∈ C∞([0,∞))
which is equal to 1 on [0, 1] and to 0 on [2,∞), and we define z as the restriction of
ϕ(x)Z(x, t) to Ω × [0,∞).

Lemma 3.11. Assume v0 belongs to H5/2(Ω), v1 belongs to H1(Ω), and f belongs
to L2

loc([0,∞); L2(Ω)). Define z as in Lemma 3.10, and let ū be the solution of (1.9a)
with initial data (1.9d) and boundary condition ū(0, ·, ·) = z(0, ·, ·). Then the trace

ḡ
def
= −(a0

11klεkl(ū) + a1
11klεkl(ūt))

∣∣
Σ×[0,∞)

is well defined and belongs to the space

L2
loc([0,∞); L2(Σ)). Moreover, there exists K > 0 such that e−Ktḡ ∈ L2(Σ × [0,∞)).

Proof. Let ζ
def
= ū− z be the solution of the following problem:

(3.26) ρζtt −A0ζ −A1ζt = F, x ∈ Ω, t > 0,

where F
def
= f − ρztt +A0z +A1zt with initial data ζ(·, 0) = ζt(·, 0) = 0 and boundary

condition ζ(0, ·, ·) = 0. Multiplying (3.26) by ζt and integrating over Qτ , Korn’s
inequality enables us to deduce that ζt and ∇ζ are bounded in L∞

loc([0,∞); L2(Ω))
and ∇ζt is bounded in L2

loc([0,∞); L2(Ω)). If we multiply (3.26) by A1ζ, we may
deduce that A0ζ and A1ζ are bounded in L∞

loc([0,∞); L2(Ω)), arguing as in the proof
of Lemma 3.5. On the other hand, we have
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Qτ

ζtt · (A1ζt) dxdt = −1

2

∫
Ω

a1
ijklεkl(ζt)εij(ζt)

∣∣τ
0

dx.

Therefore, we multiply (3.26) by A1ζt, we integrate over Qτ , and, thanks to the above
identity, we get

ρ

2

∫
Ω

a1
ijklεkl(ζtt)εij(ζt)

∣∣
t=τ

dx +

∫
Qτ

|A1ζt|2 dxdt +
1

2

∫
Ω

(A0ζ) · (A1ζ)
∣∣τ
0

dx

=
ρ

2

∫
Ω

a1
ijklεkl(ζt)εij(ζt)

∣∣
t=0

dx−
∫
Qτ

F · (A1ζt) dxdt.

According to Gronwall’s lemma, there exists K > 0 such that∫
Qτ

|A1ζt|2 dxdt ≤ CeKτ
(
|F |2L2(0,τ ;L2(Ω)) + |ξt(·, 0)|2H1(Ω) + |ξ|2L2(0,τ ;L2(Ω))

)
.

The lemma is now clear.

3.5. The trace spaces. We proceed as in section 2.5. A Fourier–Laplace trans-
form and Lemma 3.11 enable us to infer that all the traces can be defined. Therefore,
it is plain that a weak solution of (1.9) is also a strong one.

Let us remark first that the problem (3.3) can be written under an equivalent

form: let us extend by 0 for t ≤ 0 the difference vε
def
= e−νt(uε − ū); then it satisfies

ρ(ν + ∂t)
2vεi − ((λ0 + μ0) + (λ1 + ν1)(ν + ∂t)) div vε

− (μ0 + μ1(ν + ∂t))Δvεi = 0, x ∈ Ω, t > 0,
(3.27)

with boundary conditions at {x1 = 0}

(μ0 + νμ1)(vεj,x1
+ vε1,xj

) + μ1(vεj,x1t + vε1,xjt) = 0, j = 2, 3,(3.28a)

(λ0 + λ1(ν + ∂t)) div vε + 2(μ0 + μ1(ν + ∂t))v
ε
x1

= e−νtḡ − (vε1 − e−νtū)

ε

+

(3.28b)

and with initial data

(3.29) vε(·, 0) = 0 and vεt (·, 0) = 0.

If vε is a tempered distribution, we may perform a Fourier transform in the tangential
variable (x′, t) and a Laplace transform in x1. Denoting by ξ and ω the dual variables
of x′ and t and by η the dual variable of x1, we are led to the system

ρ(ν + iω)2v̂ε − ((λ0 + μ0) + (λ1 + μ1)(ν + iω))

(
η
iξ

)
(η, iξT)ṽε

+ (μ0 + μ1(ν + iω))(|ξ|2 − η2)ṽε = 0.

(3.30)

Equation (3.30) is a linear system of equations; we seek its eigenvalues ηi and its
eigenvectors φi:

η2
1 = |ξ|2 +

ρ(ν + iω)2

μ0 + μ1(ν + iω)
and φ1 =

(
0

iξ⊥

)
,(3.31a)

η2
2 = |ξ|2 +

ρ(ν + iω)2

μ0 + μ1(ν + iω)
and φ2 =

(
1
0

)
,(3.31b)

η2
3 = |ξ|2 +

ρ(ν + iω)2

λ0 + 2μ0 + (λ1 + 2μ1)(ν + iω)
and φ3 =

(
η3

iξ

)
,(3.31c)
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where ξ⊥ is obtained from ξ by a rotation of π/2. We choose ηi to be the causal
determination of the square root of η2

i ; therefore, ηi is holomorphic in the lower half-
plane �(ω) < 0. Let us denote by v̂ε the partial Fourier transform of vε with respect to
the tangential variables. As vε and ṽε are tempered distributions, v̂ε is also tempered;
therefore, it can include only factors of the form eηix1 , and thus, it must be of the
form

(3.32) v̂ε(x1, ξ, ω) =

3∑
i=1

θi(ξ, ω)φie
ηix1 .

Our goal now is to determine the θi’s. Define vε
def
= (vε1, (v

ε)′). If we apply a partial
Fourier transform in the tangential variable to the boundary condition (3.28a), we
obtain

(3.33) (v̂ε)′x1
(0, ξ, ω) = −iξv̂ε1(0, ξ, ω).

Carrying (3.32) into (3.33), we infer that at x1 = 0,

iξ⊥η2θ1 + iξη3θ3 = −iξ(θ2 + η3θ3);

thus it is clear that θ1 = 0 and θ2 = −2η3θ3. Furthermore, relation (3.32) taken at
x1 = 0 enables us to deduce that θ3 = −v̂ε1(0, ξ, ω)/η3. Finally, we obtain

(3.34) v̂ε(x1, ξ, ω) = 2v̂ε1(0, ξ, ω)φ2e
η2x1 − v̂ε1(0, ξ, ω)φ3e

η3x1/η3.

At last, using (3.34), we can write the left-hand side of (3.28b) as a product of
convolution: if we perform a Fourier transform of the left-hand side of (3.28b) and
since

v̂ε1,x1
(0, ξ, ω) = (2η2 − η3)v̂

ε
1(0, ξ, ω) and (v̂ε)′(0, ξ, ω) = −iξv̂ε1(0, ξ, ω)/η3,

we obtain

((λ0 + λ1(ν + ∂t)) div vε + 2(μ0 + μ1(ν + ∂t))v
ε
1,x1

)̂(0, ξ, ω) = b̂v̂ε1(0, ξ, ω),

where

b̂
def
= (λ0 + 2μ0 + (λ1 + 2μ1)(ν + iω))(2η2 − η3) + (λ0 + λ1(ν + iω))|ξ|2/η3.

Let wε(x′, t) be the trace vε(0, x′, t); then (3.28b) can now be written as

(3.35) b ∗ wε
1 = e−νtḡ −

(
wε

1 − e−νtū1(0, ·, ·)
)

ε

+

.

Lemma 3.12. Let uε = (uε
1, u

ε
2, u

ε
3)

T be the solution of (3.1)–(3.3a). Then we
may extract a subsequence, still denoted by uε

1, such that

uε
1(0, ·, ·) ⇀ u1(0, ·, ·) weakly in H

1/2,5/4
loc (Rd−1 × [0,∞)).

Moreover, u is a strong solution of (1.9).
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Proof. We denote by ψ̂ and ĝ the respective Fourier transforms of ψ
def
= λ0 +2μ0 +

(λ1+2μ1)(ν+∂t) and g
def
= e−νtḡ. Multiplying (3.35) by ψwε

1 and using the Plancherel
identity, we obtain

1

(2π)d


∫

Rd

ψ̂ b̂|ŵε
1|2 dξ dω

=
1

(2π)d


∫

Rd

ĝψ̂ŵε
1 dξ dω −

∫ ∞

0

∫
Rd−1

(
wε

1 − e−νtū1(0, ·, ·)
)

ε

+

ψwε
1 dx′ dt.

According to the Cauchy–Schwarz inequality and since (uε
1(0, ·, ·))+/

√
ε is bounded

in L∞
loc([0,∞); L2(Rd−1)), the absolute value of the second integral on the right-hand

side of the above inequality is bounded by C1; therefore, we get

(3.36)
1

(2π)d


∫

Rd

ψ̂ b̂|ŵε
1|2 dξ dω ≤ C1 +

1

(2π)d


∫

Rd

ĝψ̂ŵε
1 dξ dω.

Define

κ
def
=

−ρ(ν + iω)2 − 2|ξ|2(μ0 + (ν + iω)μ1)

−ρ(ν + iω)2 − |ξ|2
(
λ0 + 2μ0 + (ν + iω)(λ1 + 2μ1)

) ,
x0

def
=

√
2ρ(λ0 + νλ1)

4λ1μ1 + (λ1)2
.

Then b̂ = ψ̂(2η2 − κη3), and we remark also that it is sufficient to find a function h
which depends on ξ and ω such that 
(2η2−κη3) ≥ |h|. If we assume that |ξ|+|ω| � 1,
we have two cases to consider according to the values taken by |ξ|. We suppose first
that |ξ|2 + 2ρ(νμ1 − μ0)/(μ1)2 ≥ 0; then η2 can be approximated by η̃2 defined as
follows:

|η̃2
2 |2 =

(
|ξ|2 +

ρ(νμ1 − μ0)

(μ1)2

)2

+

(
ρμ1ω

(μ1)2

)2

.

Therefore, it is easy to deduce that |η̃2
2 |2 ≥ |ξ|4/4 + ρ2ω2/(μ1)2, and then, in the case

|ξ|2 + 2ρ(νμ1 − μ0)/(μ1)2 ≥ 0, we obtain the following estimate:

(3.37) 
η2 ≥ cos
(
π/4

)
|η2| ≥

1√
2

(
|ξ|4
4

+
ρ2ω2

(μ1)2

)1/4

.

In the other case, we suppose |ξ|2 + 2ρ(νμ1 − μ0)/(μ1)2 ≤ 0; then, it is plain that

|
η2
2 | ≤

3ρ(νμ1 + μ0)

(μ1)2
and |�η2

2 | ≥
ρμ1|ω|

(μ1 + νμ0)2 + (μ0)2
,

which implies that there exists C > 0 such that

|arc cotan η2
2 | ≤

3(νμ1 + μ0)
(
(μ1 + νμ0)2 + (μ0)2

)
(μ1)3|ω| ≤ C

|ω| .

We deduce from the above inequality and from |η2|2 ≥ C|ω| that |arg η2
2 | ≤ π/2+C/|ω|

and thus cos(arg η2) ≥ 1/2. In the case |ξ|2 + 2ρ(νμ1 − μ0)/(μ1)2 ≤ 0, we get

(3.38) 
η2 ≥ C
√
|ω|/2.
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Therefore, in both cases, we infer from (3.37) and (3.38) that there exists M > 0 such
that

(3.39) 
η2 ≥ M
(
ω2 + |ξ|4

)1/4
.

Furthermore, there exists C > 0 such that |κ|2 ≤ 1+C1{|ξ|≤x0}/|ω|2 and for |ξ| large
enough, |η2| ≥ |η3|. Then (3.39) enables us to deduce

(3.40) 
(2η2 − κη3) ≥ M
(
ω2 + |ξ|4

)1/4
.

Carrying (3.40) into (3.36), we obtain

(3.41) M

∫
Rd

|ψ̂|2
(
ω2 + |ξ|4

)1/4 |ŵε
1|2 dξ dω ≤ C1 +

∫
Rd

|ĝ||ψ̂||ŵε
1| dξ dω.

We estimate the product zy by |z|2/(2γ) + γ|y|2/2, γ > 0, and we see that

(
M − γ

2

)∫
Rd

|ω|2
(
ω2 + |ξ|4

)1/4 |ŵε
1|2 dξ dω ≤ C1 +

1

2γ

∫
Rd

|ĝ|2(
ω2 + |ξ|4

)1/4 dξ dω.

We choose γ such that γ < 2M . On the other hand, e−Ktḡ(·, t) is bounded in
L2(Σ × [0,∞)), so that g(·, t) is bounded in L2(Σ × [0,∞)) if we choose ν > K.

Therefore, uε
1 is bounded in H

1/2,5/4
loc (Σ×[0,∞)). In particular, (λ0+λ1(ν+∂t)) div vε+

2(μ0 + μ1(ν + ∂t))v
ε
x1

is bounded in H
−1/2,−1/4
loc (Σ × [0,∞)). We conclude that u is a

strong solution of (1.9) because all the traces can be defined.
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L2 DECAY OF SOLUTIONS TO A MICRO-MACRO MODEL FOR
POLYMERIC FLUIDS NEAR EQUILIBRIUM∗

LINGBING HE† AND PING ZHANG‡

Abstract. In this paper, we consider the long time decay of the L2 norm to the global solutions
(u, ψ) constructed in [F.-H. Lin, C. Liu, and P. Zhang, Comm. Pure Appl. Math., 60 (2007), pp.
838–866] for a micro-macro model of polymeric fluids near equilibrium (0,M). Under the additional
assumption that u0 ∈ Ḣ−κ(R3), (ψ0 − M)/

√
M ∈ L2(R3

q ; Ḣ−κ(R3
x)), we prove that (u(t), ψ(t))

tends to (0,M) as t goes to infinity with decaying rate ‖u(t)‖L2 ≤ C(1 + t)−
b
2 and ‖ψ(t)−M√

M
‖L2 ≤

C(1 + t)−
b+1
2 for b = min(κ, 3

2
). In general, without this additional assumption, we shall present an

explicit long time decaying formula for ‖u(t)‖L2 and ‖ψ(t)−M√
M

‖L2 .

Key words. L2 decay, micro-macro model, Fourier transform
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1. Introduction. In this paper, we consider the long time behavior to the global
solutions constructed in [10] for a coupled microscopic-macroscopic model for poly-
meric fluid near equilibrium. The micro-mechanical models for polymeric liquids usu-
ally consist of beads joined by springs or rods [1, 6]. In the simplest case, a molecule
configuration can be described by its end-to-end vector q. Taking into account the
elastic effect together with the thermo-fluctuation, the distribution function ψ(t, x, q)
of molecule orientations q satisfies a Fokker–Planck equation. The convection veloc-
ity u satisfies the Navier–Stokes equations with an elastic stress which reflects the
microscopic contribution of the polymer molecules to the overall macroscopic flow
fields. Mathematically, this system reads (one may check [10] for a formal energetic
variational derivation) as

(1.1)

⎧⎪⎪⎨⎪⎪⎩
ut + u · ∇u+ ∇p = μ�u+ ∇ · τ, x ∈ R3,

∇ · u = 0, x ∈ R3,

ψt + u · ∇ψ = σ�qψ −∇q · (∇uqψ − σ∇qUψ), (x, q) ∈ R3 ×R3,

where the polymer stress τ is given by

(1.2) τ =
∫
R3

∇qU ⊗ qψdq,

with U(q) = U(|q|2) being the potential function.
Existence results for micro-macro models of polymeric fluids are usually limited to

small time existence [7, 17, 13] and uniqueness of strong solutions or global existence
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of weak solutions [12]. In the setting when the last equation of (1.1) is formulated as
a stochastic PDE, we refer to [7] (see also [17] for a polynomial force). Concerning
the general coupled PDE system, some preliminary studies were made in the earlier
work [13].

In a recent work [10], Lin, Liu, and Zhang studied the global existence of smooth
solutions to (1.1) near equilibrium, which is a sort of extension to a related result
of the Oldroyd model [9, 3], and which corresponds to the Hooke dumbbell model.
In two space dimensions, Constantin et al. [4] proved the global existence of smooth
solutions to a coupled nonlinear Fokker–Planck and Navier–Stokes system when the
convection velocity u in the Fokker–Planck equation is replaced by a sort of time
averaged one. Later this assumption was removed by Constantin and Masmoudi [5].
Meanwhile Lin, Zhang, and Zhang [11] independently proved the global regularity for
the two-dimensional corotational FENE model with smooth initial data.

On the other hand, in [8], Jourdain et al. investigated the long time behavior
of both Hookean models and FENE models for various special flows in a bounded
domain with suitable boundary conditions. The main aim of this paper is to consider
the long time decay rate for the global solutions to (1.1) constructed in [10].

Before we proceed, let us introduce some basic notation that will be used through-
out this paper. Similarly to [10], after renormalization, we assume that

∫
R3 exp{−U}

dq = 1; furthermore,

|q| ≤ C(|∇qU | + 1), ΔqU ≤ C + δ|∇qU |2, with δ < 1,∫
R3

|∇qU |2e−U dq ≤ C,

∫
R3

|q|4e−U dq ≤ C,(1.3)

and

|∇k
q (q∇qU)| ≤ C(|q||∇qU | + 1),

∫
R3

|∇k
q (q∇qUe

−U
2 )|2 dq ≤ C,(1.4)

∣∣∣∣∇k
q

(
ΔqU − |∇qU |2

2

)∣∣∣∣ ≤ C(1 + |∇qU |2),

where the positive integer 0 ≤ k ≤ s, which will be fixed in the later sections.
In what follows, for any given function φ(x, q), we denote

|φ|Hs =

⎧⎨⎩
∫
R3

∫
R3

∑
|α|≤s

|∇α
xφ|2 dqdx

⎫⎬⎭
1
2

,

and ‖φ‖Hs the standard Sobolev norm of φ. We shall use the convention (f, g) to
stand for both the inner product on R3,

∫
R3 fg dx, and on R3×R3,

∫
R3

∫
R3 fg dqdx.

And we will denote ∇s to be any of ∇α
x , where α is any multiple indices with |α| = s.

And we use similar notation for ∇s
q.

It is easy to check that (0, e−U ) is a stationary solution to the system (1.1). In
[10], Lin, Liu, and Zhang considered solutions of (1.1) with ψ being of the form

(1.5) ψ = e−U + e−U/2f
def= M +

√
Mf.

As we assume that
∫
R3 ψ0(x, q)dq = 1, there holds

∫
R3 ψ(t, x, q)dq = 1, which together

with (1.5) yields

(1.6)
∫
R3

√
Mfdq = 0.
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Moreover, plugging (1.5) into (1.1), we obtain the following system for (u, f):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ut + u · ∇u+ ∇p = μ�u+ ∇ · (

∫
R3

√
M∇qU ⊗ qf dq), x ∈ R3,

ft + u · ∇f + ∇uq · ∇qf − σ(�qf + �qU
2 f − |∇qU|2

4 f)

=
√
M∇uq · ∇qU + 1

2∇uq · ∇qUf, (x, q) ∈ R3 × R3,

div u = 0, x ∈ R3,

(1.7)

together with the initial conditions

(1.8) u|t=0 = u0, f |t=0 = f0, for (x, q) ∈ R3 ×R3,

where f0 satisfies (1.6) and div u0 = 0.
For the reader’s convenience, we first recall the following result from [10].
Theorem 1.1. Let s ≥ 7 be an integer, f0 satisfy (1.6), and ψ0 = M+

√
Mf0 > 0.

Then, there exists a sufficiently small constant ε such that if

1
2
‖u0‖2

L2 +
∫
R3

∫
R3

[ψ0 lnψ0 + Uψ0] dq dx ≤ ε1+aμσmin(μ, σ),

‖u0‖2
Hs + ‖f0‖2

Hs + |qf0|2H4 ≤ εmin(μ, σ),

where a > 0 is a small positive constant, then (1.7) and (1.8) has a unique global
classical solution (u, ψ) with ψ = M +

√
Mf > 0, and

sup
0≤t<∞

(
‖u(t)‖2

Hs + |qf |2H4 + ‖f(t)‖2
Hs

)

+
∫ t

0

[
μ‖∇u‖2

Hs + σ
(∥∥∥q∣∣∣(∇qf +

1
2
∇qUf

)∣∣∣2
H4

+ ‖∇qf +
1
2
∇qUf

∥∥∥2

Hs

)]
dτ

≤ Cεmin(μ, σ).(1.9)

The main aim of this paper is to prove that the solution (u, f) constructed in
Theorem 1.1 decays to (0, 0) as t goes to ∞. More precisely, motivated by [14, 15] and
with the additional assumption on the low frequency part of (u0, f0), we obtain the
following decay rates for the L2 norm of (u, f).

Theorem 1.2. Under the assumptions of Theorem 1.1, we assume further that
there exists κ,C > 0 and a small enough number c > 0 such that

(1.10)
∫
|ξ|≤c

|ξ|−2κ|û0|2 dξ,
∫
R3

∫
|ξ|≤c

|ξ|−2κ|Fx(f0)(ξ, q)|2 dξ dq ≤ C.

Then the L2 norm of (u, f) decays to (0, 0) according to

(1.11) ‖u(t)‖L2 ≤ C(1 + t)−
b
2 , ‖f(t)‖L2 ≤ C(1 + t)−

b+1
2 ,

with b = min(κ, 3
2 ).

In general, without the additional assumptions (1.10), to study the precise long
time decay rates for (u, f), we need some basic facts from the Littlewood–Paley theory.
One may check [2] and [16] for more details.
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Let C def= {ξ ∈ R3, 3
4 ≤ |ξ| ≤ 8

3}. Let ϕ ∈ C∞
c (C), which satisfies∑

j∈Z

ϕ(2−jξ) = 1 ∀ ξ ∈ R3 \{0}.

We denote h def= F−1ϕ; then the Littlewood–Paley operators Δ̇j and Ṡj can be defined
as follows:

Δ̇jf
def= ϕ(2−jD)f = 23j

∫
R3

h(2jy)f(x− y)dy for j ∈ Z,

Ṡjf
def=

∑
j′≤j−1

Δ̇j′f.(1.12)

With the introduction of Δ̇j , we present the following decay estimates for the
solution (u, f) constructed in Theorem 1.1.

Theorem 1.3. Under the assumptions of Theorem 1.1, the global solutions (u, f)
constructed in Theorem 1.1 decay to (0, 0) by

‖u(t)‖2
L2 ≤ C

[
(1 + t)−

1
2 +

∑
j<0

(‖Δ̇ju0‖L2 + ‖Δ̇jf0‖L2)e−c22jt
]
,(1.13)

‖f(t)‖2
L2 ≤ C

[
(1 + t)−

3
2 +

∑
j<0

(‖Δ̇ju0‖L2 + ‖Δ̇jf0‖L2)22je−c22jt
]

(1.14)

for some c > 0. Moreover, for any j ∈ Z,

‖(1 − Ṡj)u(t)‖2
L2 ≤ Cj(1 + t)−

1
2 , ‖(1 − Ṡj)f(t)‖2

L2 ≤ Cj(1 + t)−
3
2 .(1.15)

Remark 1.1. (i) The estimates (1.13) and (1.14) can be improved when ‖u(t)‖L2 ≤
C(1 + t)−

1
4 . The main reason lies in the fact that in this case ‖u(t)‖L2 belongs to Lp

for p > 4. One may check the proof of Proposition 2.1 for details. Then under the
assumption (1.10), we can recover Theorem 1.2 from Theorem 1.3 by using the fact
that

sup
t≥0

⎧⎨⎩∑
j∈Z

(22jt)κe−c22jt

⎫⎬⎭ ≤ C.

(ii) The estimate (1.13) implies that ‖u(t)‖L2 tends to 0 as t goes to ∞. While
thanks to [2, 16], we have

‖f(t)‖2
L2 ≤ �(t)

1 + t
,

where �(t) → 0 as t→ ∞.
(iii) Without (1.10), Theorem 1.3 provides a more precise decay estimate for the

L2 norm of u(t) and f(t). For instance, let φ be a smooth function with low frequency
part satisfying

(1.16) (Fφ)(ξ)
∣∣
|ξ|≤ 1

2

=
∣∣ log |ξ|

∣∣−1|ξ|− 3
2 .
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It is easy to check that φ /∈ Ḣ−κ(R3) for any positive κ. While for any j < 0, we
have

‖Δ̇jφ‖2
L2 ≈ j−2.

Let ω(t) def=
∑

j>0 j
−2e−c2−2jt and �(t) def=

∑
j>0 j

−22−2je−c2−2jt; then there exist
N,CN > 0 such that

ω(22k) =
∑
j>0

j−2e−c22(k−j)

=
∑
j>k

j−2e−c22(k−j)

+
∑

0<j≤k

2−2 log2 je−c22(k−j)

≤
∫ ∞

k

x−2dx+ k−2CN

∑
0<j≤k

22(log2 k−log2 j)2−2N(k−j)

≤ CNk
−1.

By the monotone property of ω(t) and �(t), we conclude that

ω(t) ≤ C(log t)−1, �(t) ≤ C(1 + t)−1(log t)−
3
2 .

On the other hand, it is easy to construct examples so that the low frequency part of
u0 coincides with εφ, and the low frequency part of f0 coincides with εφ(x)ψ(q) with
ψ ∈ S(R3). Then for ε sufficiently small, let (u, f) be the unique solution of (1.7)
and (1.8) obtained in Theorem 1.1. The above calculations show that u(t) has the
logarithm decay, while f(t) has a better decay rate than (1+ t)−1(log t)−1, which can
be obtained by directly using Schonbek’s devices [14, 15].

(iv) Under the assumptions of Theorem 1.1, we can provide an explicit decay rate
for ‖u(t)‖Lp and ‖f(t)‖Lp for p > 2 (see Corollary 2.1).

Remark 1.2. We can study the decay rates for the global smooth solutions to the
Oldroyd model in [10, 3] by using exactly the same procedure as that in this paper.
We omit the details here.

2. The proof of Theorem 1.2. Motivated by [14, 15], we shall present the
proof of Theorem 1.2 in this section. However, compared with [14, 15], the source
term in the Navier–Stokes equations of (1.7) does not decay as fast as what is required
in [14, 15]. To deal with this term, we need to use the coupling effect between u and
f in (1.7).

Let us first recall the following lemma from [10], which shall be of constant use
in what follows.

Lemma 2.1. Let f satisfy
∫
R3 f

√
M dq = 0, and let U satisfy (1.3). Then there

hold

‖f‖L2 ≤ C

∥∥∥∥∇qf +
1
2
∇qUf

∥∥∥∥
L2

,

‖∇qUf‖L2 ≤ C

∥∥∥∥∇qf +
1
2
∇qUf

∥∥∥∥
L2

,

‖∇qUqf‖L2 ≤ C‖(1 + |q|2) 1
2

(
∇qf +

1
2
∇qUf

)
‖L2 .
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Moreover, for any integer s1 ≥ 0 and s2 ≥ 1, there holds

‖∇qU∇s1∇s2
q f‖L2 ≤ C

s2∑
k=0

∥∥∥∥∇q∇s1∇k
qf +

1
2
∇qU∇s1∇k

qf

∥∥∥∥
L2

,

‖∇s1∇s2
q f‖L2 ≤ C

s2−1∑
k=0

∥∥∥∥∇q∇s1∇k
qf +

1
2
∇qU∇s1∇k

qf

∥∥∥∥
L2

.

As a first step in the proof of Theorem 1.2, we shall prove the following L2 decay
estimate for (u, f).

Proposition 2.1. Under the assumptions of Theorem 1.2, the L2 norm of the
global classical solutions (u, f) to (1.7) constructed in Theorem 1.1 decay to (0, 0) as
t goes to ∞ according to

(2.1) ‖u(t)‖2
L2 + ‖f(t)‖2

L2 ≤ C(1 + t)−b,

with b = min(κ, 3
2 ).

Proof. We first get by using standard energy estimation to (1.7) that

d

dt
(‖u‖2

L2 + ‖f‖2
L2) + 2μ‖∇u‖2

L2 + 2σ
∥∥∥∥∇qf +

1
2
∇qUf

∥∥∥∥2

L2

= (∇uq · ∇qUf, f) ≤ |qf |H4‖∇u‖L2‖∇qUf‖L2,

which together with Lemma 2.1 and Theorem 1.1 applied gives

(2.2)
d

dt
(‖u‖2

L2 + ‖f‖2
L2) + μ‖∇u‖2

L2 + σ

∥∥∥∥∇qf +
1
2
∇qUf

∥∥∥∥2

L2

≤ 0.

Thanks to (2.2), to use Schonbek’s strategy in [14, 15], we need to split the phase space
into two time-dependent domains. More precisely, we decompose ‖∇u‖2

L2 as

‖∇u‖2
L2 =

∫
S(t)

|ξ|2|û(ξ)|2dξ +
∫

S(t)c

|ξ|2|û(ξ)|2dξ,

where S(t) def= {ξ : |ξ| ≤ C
1
2 (1 + t)−

1
2 } and the constant C will be chosen later on.

Then, thanks to (2.2), we have

(2.3)
d

dt
(‖u‖2

L2+‖f‖2
L2)+

Cμ

1 + t
‖u‖2

L2+σ
∥∥∥∥∇qf +

1
2
∇qUf

∥∥∥∥2

L2

≤ Cμ

1 + t

∫
S(t)

|û(ξ)|2dξ.

In what follows, we shall focus on the L2 estimate to the low frequency part of u. In
order to do so, we take Fourier transform with respect to x variables in (1.7) to get

(2.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ût + Fx(u · ∇u) + iξ p̂ = −μ|ξ|2û+ iξ · (

∫
R3

√
M∇qU ⊗ qf̂ dq),

f̂t + Fx(u · ∇f) + Fx(∇uq · ∇qf) − σ(�q f̂ + �qU
2 f̂ − |∇qU|2

4 f̂)

= i(ξj ûi)(∇qU ⊗ q
√
M) + 1

2Fx(∇uq · ∇qUf),
ξ · û = ξ · ¯̂u = 0,
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where f̂(ξ, q, t) def= Fx(f)(ξ, q, t). Notice that ξ · û = ξ · ¯̂u = 0. By multiplying the first
equation of (2.4) by ¯̂u(t, ξ) and taking the resulting real part we get that

1
2
d

dt
|û(ξ, t)|2 + Re[Fx(u · ∇u) · ¯̂u(ξ, t)](2.5)

= −μ|ξ|2|û(ξ, t)|2 + Re
[
iξ ⊗ ¯̂u(ξ, t) :

(∫
R3

√
M∇qU ⊗ qf̂ dq

)]
.

A similar process applied to the microscopic equation of (2.4) gives

1
2
d

dt

∫
R3

|f̂(ξ, q, t)|2dq + Re
[∫

R3

(
Fx(u · ∇f) ¯̂

f(ξ, q, t) + Fx(∇uq · ∇qf) ¯̂
f(ξ, q, t)

)
dq

]

+ σ

∥∥∥∥∇q f̂ +
1
2
∇qUf̂

∥∥∥∥2

L2
q

(2.6)

= Re
[
iξ ⊗ û(ξ, t) :

(∫
R3

√
M∇qU ⊗ q

¯̂
f(ξ, q, t) dq

)]

+
1
2
Re
[∫

R3

Fx(∇uq · ∇qUf) ¯̂
f(ξ, q, t)dq

]
.

Thanks to (2.5)–(2.6), we obtain that for any δ > 0, there is a Cδ such that

d

dt

(
|û(ξ, t)|2 +

∫
R3

|f̂(ξ, q, t)|2dq
)

+ μ|ξ|2|û(ξ, t)|2 + 2σ
∥∥∥∥∇q f̂ +

1
2
∇qUf̂

∥∥∥∥2

L2
q

≤ C|Fx(u ⊗ u)|2 + Cδ

∫
R3

(|Fx(u · ∇f)|2 + |Fx(∇uq · ∇qf)|2

+ |Fx(∇uq · ∇qUf)|2) dq + δ

∫
R3

| ¯̂f(ξ, q, t)|2dq,

from which we deduce that

|û(ξ, t)|2 +
∫
R3

|f̂(ξ, q, t)|2dq + 2σ
∫ t

0

∫
R3

e−μ|ξ|2(t−s)

∣∣∣∣∇q f̂ +
1
2
∇qUf̂

∣∣∣∣2 dqds
≤ e−μ|ξ|2t

(
|û0(ξ)|2 +

∫
R3

|f̂0(ξ, q)|2dq
)

+
∫ t

0

∫
R3

e−μ|ξ|2(t−s)(μ|ξ|2 + δ)|f̂(ξ, q, s)|2dqds

+C

∫ t

0

|Fx(u⊗ u)|2ds+ Cδ

∫ t

0

∫
R3

(|Fx(u · ∇f)(ξ, q, s)|2

+ |Fx(∇uq · ∇qf)(ξ, q, s)|2 + |Fx(∇uq · ∇qUf)(ξ, q, s)|2) dq ds.(2.7)
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Now we are in a position to estimate the right-hand side of (2.3). First, it is easy to
observe that∫ t

0

∫
R3

∫
S(t)

e−|ξ|2(t−s)(μ|ξ|2 + δ)|f̂(ξ, q, s)|2dξ dq ds

≤
(
Cμ

1 + t
+ δ

)∫ t

0

∫
R3

∫
S(t)

e−μ|ξ|2(t−s)|f̂(ξ, q, s)|2dξdqds.

While noticing that
∫
R3

√
Mf̂dq = 0, applying Lemma 2.1 gives∫

R3

∫
S(t)

e−μ|ξ|2(t−s)|f̂(ξ, q, s)|2dξdq =
∫

S(t)

e−μ|ξ|2(t−s)

∫
R3

|f̂ |2 dq dξ

≤ C

∫
R3

∫
S(t)

e−μ|ξ|2(t−s)

∣∣∣∣∇q f̂ +
1
2
∇qUf̂

∣∣∣∣2 dξdq.
To deal with the remaining terms (2.7), we introduce φ ∈ S(R3), the Fourier

transform of which satisfies

φ̂(ξ) =

{
1, |ξ| ≤ 2C

1
2 ,

0, |ξ| ≥ 3C
1
2 ,

and we denote φt(x)
def= (1 + t)−

3
2φ((1 + t)−

1
2 x). Then, by using Young’s inequality

and (1.9) we get that∫ t

0

∫
S(t)

|Fx(u⊗ u)|2dξds ≤
∫ t

0

∫
R3

|(u⊗ u) ∗ φt|2 dx ds

≤ C(1 + t)−
3
2

∫ t

0

‖u⊗ u‖2
L1ds ≤ C(1 + t)−

3
2

∫ t

0

‖u‖4
L2ds

≤ C(1 + t)−
1
2 .(2.8)

While thanks to Minkowski’s inequality and (1.9), we obtain∫ t

0

∫
R3

∫
S(t)

|Fx(u · ∇f)|2 dξ dq ds ≤
∫ t

0

∫
R3

∫
R3

|(u · ∇f) ∗ φt|2dxdqds

≤
∫ t

0

∫
R3

∣∣∣ (|u|‖∇f‖L2
q
) ∗ |φt|

∣∣∣2 dxds ≤ C(1 + t)−
3
2

∫ t

0

∥∥∥ |u|‖∇f‖L2
q

∥∥∥2

L1
x

ds

≤ C(1 + t)−
3
2

∫ t

0

‖u‖2
L2‖∇f‖2

L2ds ≤ C(1 + t)−
3
2

∫ t

0

|∇qf +
1
2
∇qUf |2H4ds

≤ C(1 + t)−
3
2 .
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A similar argument for the last two terms in (2.7) yields∫ t

0

∫
R3

∫
S(t)

|Fx(∇uq · ∇qf)|2dξdqds ≤ C(1 + t)−
3
2

∫ t

0

∥∥∥ |∇u|‖q∇qf‖L2
q

∥∥∥2

L1
x

ds

≤ C(1 + t)−
3
2

∫ t

0

‖q∇qf‖2
L2ds ≤ C(1 + t)−

3
2

∫ t

0

∥∥∥∥(1 + |q|2) 1
2

(
∇qf +

1
2
∇qUf

)∥∥∥∥2

L2

ds

≤ C(1 + t)−
3
2

and ∫ t

0

∫
R3

∫
S(t)

|Fx(∇uq · ∇qUf)|2dξdqds ≤ C(1 + t)−
3
2 .

Therefore, thanks to (2.7), we obtain∫
S(t)

|û(ξ, t)|2dξ ≤
∫

S(t)

e−μ|ξ|2t|û(ξ, 0)|2dξ +
∫

S(t)

∫
R3

e−μ|ξ|2t|f̂(ξ, q, 0)|2dξdq

+C(1 + t)−
1
2

for t large enough. Then with the additional assumption (1.10), we conclude

(2.9)
∫

S(t)

|û(ξ, t)|2dξ ≤ C(1 + t)−κ + C(1 + t)−
1
2 ,

for t large enough. This together with (2.3) ensures that

d

dt
(‖u‖2

L2 + ‖f‖2
L2) +

Cμ

1 + t
‖u‖2

L2 + σ

∥∥∥∥∇qf +
1
2
∇qUf

∥∥∥∥2

L2

≤ Cμ

1 + t
(1 + t)−b,

where b = min(κ, 1
2 ), from which we deduce that

(2.10) ‖u(t)‖2
L2 + ‖f(t)‖2

L2 ≤ C(1 + t)−b.

With the above decay estimate for ‖u(t)‖L2 , we can improve the estimate in (2.8).
Suppose that κ > 1

2 ; then b = 1
2 in (2.10) and∫ t

0

∫
S(t)

|Fx(u ⊗ u)|2dξds ≤ C(1 + t)−
3
2

∫ t

0

‖u‖4
L2ds

≤ C(1 + t)−
7
6

(∫ t

0

‖u‖6
L2ds

) 2
3

≤ C(1 + t)−
7
6 .

Then the proof of (2.9) implies that∫
S(t)

|û(ξ, t)|2dξ ≤ C(1 + t)−κ + C(1 + t)−
7
6 ,

for t large enough, from which, with the proof of (2.10), we deduce that

(2.11) ‖u(t)‖2
L2 + ‖f(t)‖2

L2 ≤ C(1 + t)−b,



1914 LINGBING HE AND PING ZHANG

with b = min(κ, 7
6 ). Now if κ > 7

6 , then by using (2.11) we get that∫ t

0

∫
S(t)

|Fx(u⊗ u)|2dξds ≤ C(1 + t)−
3
2

∫ t

0

‖u‖4
L2ds

≤ C(1 + t)−
3
2 .

Then the proof of (2.9) yields∫
S(t)

|û(ξ, t)|2dξ ≤ C(1 + t)−κ + C(1 + t)−
3
2 ,

from which, with the proof of (2.10), we obtain

‖u(t)‖2
L2 + ‖f(t)‖2

L2 ≤ C(1 + t)−b,

with b = min(κ, 3
2 ). This completes the proof of the proposition.

With Proposition 2.1, to complete the proof of Theorem 1.2, we still need to
improve the decay rate for the L2 norm of f. In order to do so, we shall first prove
the L2 decays for the derivatives of u and f, which, in particular, implies a sort of Lp

decay estimate for u, f without any additional assumption on the initial data.
Proposition 2.2. Under the assumptions of Theorem 1.1, we have the following

decay estimate for ∇u,∇f , and f :

(2.12) ‖∇u(t)‖2
L2 + ‖∇f(t)‖2

L2 + ‖f(t)‖2
L2 ≤ C(1 + t)−1.

Proof. Taking ∇ to (1.7), by a standard energy estimation we get that

d

dt
(‖∇u‖2

L2 + ‖∇f‖2
L2) + 2μ‖∇2u‖2

L2 + 2σ
∥∥∥∥∇q∇f +

1
2
∇qU∇f

∥∥∥∥2

L2

= −2(∇(u · ∇u),∇u) − 2(∇(u · ∇f),∇f)

−2(∇(∇uq · ∇qf),∇f) + (∇(∇uq · ∇qUf), ∇f)(2.13)

Thanks to (1.9), we have

|(∇(u · ∇u),∇u)| = |(∇(u⊗ u),∇∇u)|

≤ C‖u‖L3‖∇u‖L6‖∇2u‖L2 ≤ Cε‖∇2u‖2
L2.

Similarly, as div u = 0 and divq(∇uq) = 0, we have

|(∇(u · ∇f),∇f)| = |((∇u) · ∇f,∇f)| ≤ ‖∇u‖H2‖∇f‖2
L2,

|(∇(∇uq · ∇qf),∇f)| = |((∇∇u)q · ∇qf,∇f)|

≤ ‖∇qf‖H4‖∇2u‖L2‖q∇f‖L2,

and

|(∇(∇uq · ∇qUf),∇f)|

= |(∇(∇u)q · ∇qUf,∇f) + (∇uq · ∇qU(∇f),∇f)|

≤ |qf |H4‖∇2u‖L2‖∇qU∇f‖L2 + ‖∇u‖H2‖q∇f‖L2‖∇qU∇f‖L2.

Then we deduce from (1.9), (2.13) that

d

dt
(‖∇u‖2

L2 + ‖∇f‖2
L2) + μ‖∇2u‖2

L2 + σ

∥∥∥∥∇q∇f +
1
2
∇qU∇f

∥∥∥∥2

L2

≤ 0.(2.14)
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Then Schonbek’s strategy [14, 15] applied to (2.14) gives

d

dt
(‖∇u‖2

L2 + ‖∇f‖2
L2) +

Cμ

1 + t
‖∇u‖2

L2

+ σ

∥∥∥∥∇q(∇f) +
1
2
∇qU(∇f)

∥∥∥∥2

L2

≤ Cμ

1 + t

∫
S(t)

|ξ|2|û(ξ, t)|2dξ,(2.15)

from which we deduce that

(2.16) ‖∇u(t)‖2
L2 + ‖∇f(t)‖2

L2 ≤ C(1 + t)−1.

With (2.16), we now turn to the proof of the L2 decay of f. First by a standard
energy estimation we get that

1
2
d

dt
‖f‖2

L2 + σ

∥∥∥∥∇qf +
1
2
∇qUf

∥∥∥∥2

L2

≤ ‖∇u‖L2‖
√
M∇qU‖L2‖qf‖L2 + |qf |H4‖∇u‖L2‖∇qUf‖L2.

Then thanks to Lemma 2.1 and (1.9), we obtain

d

dt
‖f‖2

L2 + σ‖f‖2
L2 ≤ C‖∇u‖2

L2 ≤ C(1 + t)−1,(2.17)

from which we deduce that

‖f(t)‖2
L2 ≤ C‖f0‖2

L2e−σt +
∫ t

0

e−σ(t−s)(1 + s)−1ds.

≤ C(1 + t)−1,

which together with (2.16) gives (2.12). This completes the proof of Proposition
2.2.

Remark 2.1. Assume that ‖u(t)‖2
L2 ≤ C(1 + t)−b; then, thanks to (2.15), we can

improve (2.16) to ‖∇u(t)‖2
L2 +‖∇f(t)‖2

L2 ≤ C(1+ t)−b−1, which, in turn, implies that
‖f(t)‖2

L2 ≤ C(1 + t)−b−1.
An immediate corollary of Proposition 2.2 and Sobolev imbedding is the following

corollary.
Corollary 2.1. Under the assumption of Theorem 1.1, we have

‖u(t)‖2
Lp + ‖f(t)‖2

L2
q(L

p
x) ≤

⎧⎨⎩Cp(1 + t)−
6
p if 6 ≤ p ≤ ∞,

Cp(1 + t)−
3(p−2)

2p if 2 < p ≤ 6.

Now we are in a position to complete the proof of Theorem 1.2.
Proof of Theorem 1.2. Combining Proposition 2.1 and Remark 2.1, we complete

the proof of the theorem.

3. The proof of Theorem 1.3. In this section, we consider the L2 decay of
u without the additional assumption (1.10). It is easy to observe from the proof of
Theorem 1.2 that the low frequency part of initial data makes this problem difficult.
To get rid of this difficulty, we are going to study the decay of solution to the linearized
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problem of (1.7) first, then we estimate the difference between the solution of the
linearized equation (3.1) and that of (1.7).

The linearized equation of (1.7) reads as⎧⎪⎨⎪⎩
vt + ∇h = μ�v + ∇ · (

∫
R3

√
M∇qU ⊗ qg dq), x ∈ R3,

gt − σ(�qg + �qU
2 g − |∇qU|2

4 g) =
√
M∇vq · ∇qU, (x, q) ∈ R3 × R3,

div v = 0, x ∈ R3,

(3.1)

together with the initial condition

(3.2) v|t=0 = u0, g|t=0 = f0 for (x, q) ∈ R3 ×R3 .

Notice from (3.1) that

d

dt

∫
R3

g
√
Mdq = 0,

which together with the fact that
∫
R3 f0

√
Mdq = 0 ensures that∫

R3

g
√
Mdq = 0,

so that Lemma 2.1 can still be applied for g.
Proposition 3.1. Under the assumptions of Theorem 1.1, (3.1)–(3.2) has a

unique solution (v, g) so that

sup
0≤t<∞

(
‖v(t)‖2

Hs + |qg|2H4 + ‖g(t)‖2
Hs

)
(3.3)

+
∫ t

0

[
μ‖∇v‖2

Hs + σ
(
||q|
(
∇qg +

1
2
∇qUg

)
|2H4 +

∥∥∥∇qg +
1
2
∇qUg

∥∥∥2

Hs

)]
dτ

≤ Cεmin(μ, σ).

Furthermore, there holds

‖|D|λv‖2
L2 ≤ Cλ(1 + t)−λ,

‖|D|λg‖2
L2 + ‖|D|λ∇qg‖2

L2 + ‖|q||D|λg‖2
L2 ≤ Cλ(1 + t)−λ−1,(3.4)

for λ ∈ [0, s], where |D|λ is the Fourier multiplier with the symbol |ξ|λ.
Proof. A standard functional analysis method can be applied to prove the global

existence of a smooth solution to (3.1). Furthermore, a similar proof of (1.9) in [10]
ensures that (v, g) satisfies (3.3). We omit the details here.

Now let us turn to the long time behavior of (v, g). First, let λ ∈ N. We get by
using standard energy estimation that

d

dt
(‖∇λv‖2

L2 + ‖∇λg‖2
L2) + 2μ‖∇∇λv‖2

L2 + 2σ
∥∥∥∇q(∇λg) +

1
2
∇qU(∇λg)

∥∥∥2

L2
= 0.

Schonbek’s strategy applied gives

d

dt
(‖∇λv‖2

L2 + ‖∇λg‖2
L2) +

λ+ 1
1 + t

‖∇λv‖2
L2 + 2σ

∥∥∥∥∇q(∇λg) +
1
2
∇qU(∇λg)

∥∥∥∥2

L2

≤ λ+ 1
1 + t

∫
|ξ|≤(λ+1)

1
2 (1+t)−

1
2

|F(∇λv)(ξ)|2dξ ≤ Cλ(1 + t)−λ−1,
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from which we deduce that

(3.5) ‖∇λv‖2
L2 + ‖∇λg‖2

L2 ≤ Cλ(1 + t)−λ.

On the other hand, by applying ∇λ and ∇λ∇q to the microscopic equation (3.1)
and taking the L2 inner product of the resulting equations with ∇λg and ∇λ∇qg,
respectively, we obtain

d

dt
‖∇λg‖2

L2 + σ

∥∥∥∥∇q(∇λg) +
1
2
∇qU(∇λg)

∥∥∥∥2

L2

≤ C‖∇∇λv‖2
L2

and

d

dt
‖∇λ∇qg‖2

L2 + σ

∥∥∥∥∇q(∇λ∇qg) +
1
2
∇qU(∇λ∇qg)

∥∥∥∥2

L2

≤ C(‖∇qU∇λg‖L2‖∇qU∇λ∇qg‖L2 + ‖∇λg‖L2‖∇λ∇qg‖L2)

+ ‖∇∇λv‖L2‖∇λ∇qg‖L2,

where we used (1.3) and (1.4) in the estimate of the second inequality.
In order to get the estimate for ‖|q|∇λg‖L2, we apply ∇λ to the microscopic

equation (3.1) and then take the L2 inner product of the resulting equation with
|q|2∇λg to get

1
2
d

dt
‖|q|∇λg‖2

L2 + σ

∥∥∥∥|q|(∇q(∇λg) +
1
2
∇qU(∇λg)

)∥∥∥∥2

L2

≤ ‖∇λg‖2
L2 +

∫
R3 ×R3

|∇qUq||∇λg|2dqdx

+ ‖∇1+λv‖L2

(∫
R3

(M |q|2)dq
) 1

2

‖q∇qU∇λg‖L2.

Therefore, by using Lemma 2.1 we get that

d

dt

(
‖∇λg‖2

L2 + c‖∇λ∇qg‖2
L2 + c‖|q|∇λg‖2

L2

)
+ σ

(∥∥∥∥∇q(∇λg) +
1
2
∇qU(∇λg)

∥∥∥∥2

L2

+ c

∥∥∥∥∇q(∇λ∇qg) +
1
2
∇qU(∇λ∇qg)

∥∥∥∥2

L2

+ c

∥∥∥∥|q|(∇q(∇λg) +
1
2
∇qU(∇λg)

)∥∥∥∥2

L2

)
≤ C‖∇∇λv‖2

L2 ,

by taking c sufficiently small, which implies

(3.6) ‖∇λg(t)‖2
L2 + ‖∇λ∇qg(t)‖2

L2 + ‖|q|∇λg(t)‖2
L2 ≤ Cλ(1 + t)−λ−1.

With (3.5) and (3.6), we complete the proof of (3.4) via a trivial interpolation argu-
ment.

Remark 3.1. Plugging the second inequality of (3.4) into the v equation of (3.1)
and using Schonbek’s strategy in [14, 15], we cannot obtain an improved decay esti-
mate for v. In particular, the decay rate of ‖v(t)‖L2 is not as good as that in [14, 15].
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The main reason lies in the fact that elastic stress τ defined in (3.1) does not decay
as fast as the source term in [14, 15]. A similar remark applies to (1.7) as well.

Proposition 3.2. Let (u, f) be the unique solution of (1.7) and (1.8) obtained
in Theorem 1.1, and let (v, g) be the unique solution of (3.1) and (3.2) obtained in
Proposition 3.1. Then there hold

‖(u− v)(t)‖2
L2 ≤ C(1 + t)−

1
2 ,

‖(f − g)(t)‖2
L2 ≤ C(1 + t)−

3
2 .(3.7)

Proof. Thanks to (1.7) and (3.1), we obtain

(3.8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u − v)t + u · ∇u + ∇(p− h)

= μ�(u− v) + ∇ ·
(∫

R3

√
M∇qU ⊗ q(f − g) dq

)
, x ∈ R3,

(f − g)t + u · ∇f + ∇uq · ∇qf − σ

(
�q(f − g) +

�qU

2
(f − g) − |∇qU |2

4
(f − g)

)

=
√
M∇(u− v)q · ∇qU +

1
2
∇uq · ∇qUf, (x, q) ∈ R3 × R3,

div (u − v) = 0, x ∈ R3.

Note that as div u = 0 and div v = 0, by standard energy estimates we get that

d

dt
(‖u− v‖2

L2 + ‖f − g‖2
L2) + 2μ‖∇(u− v)‖2

L2 + 2σ
∥∥∥∥∇q(f − g) +

1
2
∇qU(f − g)

∥∥∥∥2

L2

= −2(u · ∇u, u− v) − 2(u · ∇f, f − g) − 2(∇uq · ∇qf, f − g)

+ (∇uq · ∇qUf, f − g)

= 2(u · ∇v, u− v) + 2(u · ∇g, f − g) + 2(∇uq · ∇qg, f − g)

+ (∇uq · ∇qU(f − g), f − g) + (∇uq · ∇qUg, f − g).

Thanks to (1.9) and Lemma 2.1, we have

|(∇uq · ∇qU(f − g), f − g)| ≤ ‖∇u‖H2‖q(f − g)‖L2‖∇qU(f − g)‖L2

≤ εmin{μ, σ}
∥∥∥∥∇q(f − g) +

1
2
∇qU(f − g)

∥∥∥∥2

L2

.

Then by taking ε small enough we get

d

dt
(‖u− v‖2

L2 + ‖f − g‖2
L2) + μ‖∇(u− v)‖2

L2 + σ

∥∥∥∥∇q(f − g) +
1
2
∇qU(f − g)

∥∥∥∥2

L2

≤ 2|(u · ∇v, u − v)| + 2|(u · ∇g, f − g)| + 2|(∇uq · ∇qg, f − g)|

+ |(∇uq · ∇qUg, f − g)|.(3.9)

In what follows, we shall deal with the right-hand side of (3.9) term by term. Our
main idea is to make full use of the decay estimate to the solutions of the linear system
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(3.4). First of all, thanks to (1.9), (2.12), and (3.4), we have

|(u · ∇v, u − v)| ≤ C‖u‖L4‖v‖L4‖∇(u− v)‖L2

≤ Cδ‖u‖2

Ḣ
3
4
‖v‖2

Ḣ
3
4

+ δ‖∇(u− v)‖2
L2

≤ Cδ(1 + t)−
3
2 + δ‖∇(u− v)‖2

L2 ,

for any δ > 0. A similar procedure applied to the remaining terms in (3.9) gives

|(u · ∇g, f − g)| ≤ C

∫
R3

‖u‖L4‖f − g‖L2
x
‖∇g‖L4

x
dq

≤ C‖u‖
Ḣ

3
4
‖f − g‖L2|g|

Ḣ
7
4
≤ Cδ(1 + t)−

5
2 + δ‖f − g‖2

L2,

|(∇uq · ∇qg, f − g)| ≤ C‖∇u‖
Ḣ

3
4
|∇qg|

Ḣ
3
4
‖q(f − g)‖L2

≤ Cδ(1 + t)−2 + δ‖q(f − g)‖2
L2 ,

and

|(∇uq · ∇qUg, f − g)| ≤ C‖∇u‖
Ḣ

3
4
|qg|

Ḣ
3
4
‖∇qU(f − g)‖L2

≤ Cδ(1 + t)−2 + δ‖∇qU(f − g)‖2
L2.

Then taking δ small enough, we deduce from (3.9) and Schonbek’s strategy in [14, 15]
that

d

dt
(‖u− v‖2

L2 + ‖f − g‖2
L2) +

Cμ

t+ 1
‖u− v‖2

L2 + σ

∥∥∥∥∇q(f − g) +
1
2
∇qU(f − g)

∥∥∥∥2

L2

≤ Cμ

t+ 1

∫
S(t)

|F(u − v)(ξ)|2dξ + C(1 + t)−
3
2 .(3.10)

Now we repeat the procedure in section 2 to estimate the low frequency of u − v.
First, thanks to (3.8), we have

d

dt
|F(u − v)(ξ, t)|2 +

d

dt

∫
R3

|Fx(f − g)(ξ, q, t)|2dq

+μ|ξ|2|F(u − v)(ξ, t)|2 + 2σ
∣∣∣∣∇qFx(f − g) +

1
2
∇qUFx(f − g)

∣∣∣∣2
L2

q

≤ C|F(u⊗ u)|2 + Cδ

∫
R3

(
|Fx(u · ∇f)|2 + |Fx(∇uq · ∇qf)|2

+|Fx(∇uq · ∇qUf)|2
)
dq + δ

∫
R3

|F(f − g)(ξ, q, t)|2dq,
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which implies

|F(u− v)(ξ, t)|2 +
∫
R3

|Fx(f − g)(ξ, q, t)|2dq

+2σ
∫ t

0

∫
R3

e−μ|ξ|2(t−s)

∣∣∣∣∇qFx(f − g) +
1
2
∇qUFx(f − g)

∣∣∣∣2 dqds
≤
∫ t

0

∫
R3

e−|ξ|2(t−s)(δ + μ|ξ|2)|F(f − g)(ξ, q, s)|2 dq ds+ C

∫ t

0

|F(u ⊗ u)|2ds

+C
∫ t

0

∫
R3

(|Fx(u · ∇f)(ξ, q, s)|2 + |Fx(∇uq · ∇qf)(ξ, q, s)|2

+|Fx(∇uq · ∇qUf)(ξ, q, s)|2) dqds,

from which, with the proof of Proposition 2.1, we deduce that

(3.11)
∫

S(t)

|F(u− v)(ξ, t)|2dξ ≤ C(1 + t)−
1
2 .

Plugging (3.11) into (3.10), we get for large enough t that

d

dt

(
(1 + t)Cμ‖u− v‖2

L2 + (1 + t)Cμ‖f − g‖2
L2

)
≤ C(1 + t)Cμ− 3

2 .

Let us choose C in the definition of S(t) to be large enough so that Cμ ≥ 2. Then,
we obtain

(3.12) ‖(u− v)(t)‖2
L2 + ‖(f − g)(t)‖2

L2 ≤ C(1 + t)−
1
2 .

A similar procedure applied to ∇(u − v) and ∇(f − g) gives

(3.13) ‖∇(u− v)(t)‖2
L2 + ‖∇(f − g)(t)‖2

L2 ≤ C(1 + t)−
3
2 .

With (3.12) and (3.13), we are in a position to prove (3.7). In fact, standard
energy estimation applied to the microscopic equation of (3.8) yields

d

dt
‖f − g‖2

L2 + 2σ
∥∥∥∥∇q(f − g) +

1
2
∇qU(f − g)

∥∥∥∥2

L2

= −2(u · ∇f, f − g) + 2(
√
M∇(u − v)q · ∇qU, f − g)

−2(∇uq · ∇qf, f − g) + (∇uq · ∇qUf, f − g)

= 2(u · ∇g, f − g) + 2(
√
M∇(u − v)q · ∇qU, f − g) + (∇uq · ∇qg, f − g)

+(∇uq · ∇qU(f − g), f − g) + (∇uq · ∇qUg, f − g),

from which, with the arguments from (3.9) to (3.10), we obtain

‖(f − g)(t)‖2
L2 ≤ C(1 + t)−

3
2 .

This together with (3.12) completes the proof of (3.7).
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Now we present the proof of Theorem 1.3.
Proof of Theorem 1.3. Thanks to Proposition 3.2, we only need to take care of

the decay estimate of the L2 norm of (v, g). In order to do so, we first act Δ̇j to (3.1),
then use the micro-local energy estimate to get

d

dt
(‖Δ̇jv‖2

L2 + ‖Δ̇jg‖2
L2) + 2μ‖∇Δ̇jv‖2

L2 + 2σ
∥∥∥∥∇q(Δ̇jg) +

1
2
∇qU(Δ̇jg)

∥∥∥∥2

L2

= 0,

from which we deduce that there exists some small positive constant c such that

d

dt
(‖Δ̇jv‖2

L2 + ‖Δ̇jg‖2
L2) + c‖Δ̇jv‖2

L2 + c‖Δ̇jg‖2
L2 ≤ 0 for j ≥ 0,

and

d

dt
(‖Δ̇jv‖2

L2 + ‖Δ̇jg‖2
L2) + c22j‖Δ̇jv‖2

L2 + c22j‖Δ̇jg‖2
L2 ≤ 0 for j < 0.

Then applying Gronwall’s inequality gives

‖Δ̇jv(t)‖2
L2 + ‖Δ̇jg(t)‖2

L2 ≤ (‖Δ̇ju0‖2
L2 + ‖Δ̇jf0‖2

L2)e−ct for j ≥ 0,

‖Δ̇jv(t)‖2
L2 + ‖Δ̇jg(t)‖2

L2 ≤ (‖Δ̇ju0‖2
L2 + ‖Δ̇jf0‖2

L2)e−c22jt for j < 0.(3.14)

Next, let us turn to the decay estimate of ‖Δjg(t)‖L2 . First by using a micro-local
energy estimate to the microscopic equation of (3.1) we get that

d

dt
‖Δ̇jg‖2

L2 + 2σ
∥∥∥∥∇q(Δ̇jg) +

1
2
∇qU(Δ̇jg)

∥∥∥∥2

L2

≤ ‖∇(Δ̇jv)‖L2‖q
√
M∇qU‖L2

q
‖Δ̇jg‖L2 ,

from which, with (3.14) and (2.1), we deduce that

(3.15) ‖Δ̇jg(t)‖2
L2 ≤ C(‖Δ̇ju0‖2

L2 + ‖Δ̇jf0‖2
L2)22je−c22jt.

On the other hand, thanks to [2, 16], we have ‖u‖2
L2 ≡

∑
j∈Z ‖Δju‖2

L2. Therefore,
thanks to (3.7) and (3.14), we obtain

‖u(t)‖2
L2 ≤ C

(
‖u(t) − v(t)‖2

L2 +
∑
j∈Z

‖Δjv(t)‖2
L2

)

≤ C
[
(1 + t)−

1
2 +

∑
j≤0

(‖Δ̇ju0‖2
L2 + ‖Δ̇jf0‖2

L2)e−c22jt
]
.

This proves (1.13) and the first part of (1.15). A similar argument gives (1.14) and
the second part of (1.15). This completes the proof of Theorem 1.3.
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ANISOTROPIC INHOMOGENEOUS RECTANGULAR
THIN-WALLED BEAMS∗
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Abstract. This paper is devoted to the asymptotic analysis of the problem of linear elasticity
for an anisotropic and inhomogeneous body occupying, in its reference configuration, a cylindrical
domain with a rectangular cross section with sides proportional to ε and ε2 and clamped on one of its
bases. The sequence of solutions uε of the equilibrium problem is shown to converge in an appropriate
topology, as ε goes to zero, to the solution of a problem for a beam in which the extensional, flexural,
and torsional effects are all coupled together.

Key words. asymptotic analysis, calculus of variations, thin-walled beams, dimension reduction,
variational convergence, linear elasticity
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1. Introduction. Geometrically, a thin-walled beam is a slender structural el-
ement whose length is much larger than the diameter of the cross section which, on
its hand, is larger than the thickness of the thin wall. These kinds of beams have
been used for a long time in civil and mechanical engineering and, most of all, in
flight vehicle structures because of their high ratio between maximum strength and
weight. More recently, their importance has increased because of the introduction of
fiber-reinforced composite materials in structural components. These materials are
finding more and more applications for their high resistance to corrosion and high
strength. Composite beams are usually made up by fiber-reinforced laminates and,
hence, are anisotropic and inhomogeneous, even in cross-section planes. These pecu-
liarities make classical thin-walled beam theories not applicable. The problem though
has attracted the interest of several researchers and by now a huge number of articles
can be found on the subject; see, for instance, [11] and the references therein. This
is strongly remarked also in the first sentences of the abstract of [12]: “There is no
lack of composite beam theories. Quite to the contrary, there might be too many of
them. Different approaches, notations, etc., are used by the authors of those theories,
so it is not always straightforward to compare the assumptions made and to assess
the quantitative consequences of those assumptions.”

The problem under study has a huge technological interest. One very suggestive,
mentioned in [2], concerns the rotor blades of helicopters. The blades are composite
beams and, hence, anisotropic and inhomogeneous. The anisotropy and the inho-
mogeneity introduce, as we shall also deduce, structural couplings between bending,
extension, and twisting behaviors. It has been observed experimentally that these
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couplings have a powerful influence on blade dynamics including vibrations and the
aeroelastic stability; see [2]. If a model of composite beams that accurately describes
the structural couplings was at our disposal, then we could try to vary the anisotropy
and inhomogeneity so as to minimize undesired effects like, for instance, vibrations.
Through the control of lamination parameters (ply orientation and stacking sequence),
it would then be possible for industry to minimize the undesired effects.

Our aim here is to deduce a “rigorous” model for a composite thin-walled beam,
that is, a inhomogeneous and anisotropic beam. We shall achieve our goal by means of
well-established asymptotic methods starting from the three-dimensional linear theory
of elasticity.

This paper is devoted to the asymptotic analysis of the linearized system of equi-
librium equations of a body which occupies, in its reference configuration, a cylindri-
cal domain with a rectangular cross section with sides proportional to ε and ε2 and
clamped on one of its two bases. In particular, we study the compactness properties
of the sequence of solutions uε of the equilibrium problems and, letting ε go to zero,
we are concerned with the identification of the limit problem. The same problem has
been studied from the point of view of Γ-convergence: in [4] in the simpler setting
of homogeneous and isotropic material and in [3] in the case of an anisotropic mate-
rial which is inhomogeneous only along the longitudinal axis and subject to residual
stress. Trabucho and Viano [9] also studied the same problem by superimposing two
asymptotic analyses where the lengths of the two sides of the cross section go to zero
independently.

Besides the material properties of the body, our treatment differs from the preced-
ing works also in the topology used in the passage from the three-dimensional problem
to the one-dimensional: the one used in the present paper delivers much more infor-
mation on the deformation of the beam. The approach is close to the one developed in
a recent paper of Murat and Sili [8] for a thin cylinder of radius ε. The lack of isotropy
or homogeneity assumptions leads to a limit problem where the extensional, flexural,
and torsional effects are coupled together. In fact, we prove that the limit problem
can be written as a system of five equations in a 5-tuple of unknowns (u, v, w, p, q)
(see Theorem 6.1) and that uε − (u+ εv+ ε2w+ ε3p+ ε4q) converges strongly to zero
in H1(Ω), under some regularity assumptions on v, w, p, and q (see Corollary 6.1).
We also derive the set of Euler equations of the variational limit problem, that is,
the system of equilibrium differential equations, in the fully general case. Then we
show that a strong simplification and a partial decoupling occurs when the material is
homogeneous, and a complete decoupling is obtained for a homogeneous orthotropic
material.

Notation. Throughout this paper Ω1, Ω2, and Ω3 will denote the following three
intervals:

Ωα := (−aα/2,+aα/2) for α = 1, 2 and Ω3 := (0, �),

where a1, a2, and � are three positive real numbers. Also, for i, j = 1, 2, 3 we set

Ωij := Ωi × Ωj

and

Ω := Ω1 × Ω2 × Ω3.
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Unless otherwise specified, we use the Einstein summation convention. Moreover,
we use the following convention for indexing vector and tensor components: Greek
indices α and β take their values in the set {1, 2} and Latin indices i, j, and k
in the set {1, 2, 3}. With a little abuse of notation, and because this is a common
practice and does not give rise to any mistakes, we call “sequences” even those families
indicized by a continuous parameter ε ∈ (0, 1). The component k of a vector v will
be denoted either with (v)k or vk, and an analogous notation will be used to denote
tensor components. Eαβ denotes the Ricci’s symbol, that is, E11 = E22 = 0, E12 = 1,
and E21 = −1. Since usually x = (x1, x2, x3), we shall then denote by x′ := (x1, x2).
A wide use will be made of vector valued distributions and Sobolev spaces; for a brief
account of which and for the current notation we refer the reader to the book of Le
Dret [5]. Throughout this paper C will denote a constant which may change line by
line.

2. The three-dimensional problem. We consider a body which occupies, in
its reference configuration, the region

Ωε := ε2Ω1 × εΩ2 × Ω3 ⊂ R
3.

We denote by E(u) the strain of the displacement u, whose components are

Eij(u) =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

The elasticity tensor, with respect to the reference configuration Ωε, of the material
will be denoted by C

ε. We assume it to be essentially bounded,

C
ε ∈ L∞(Ωε; R

3×3×3×3);

to have the minor symmetries,

C
ε
ijkl = C

ε
jikl = C

ε
ijlk;

and to be positive definite. That is, there exists a constant c > 0 such that

(1) C
εA · A ≥ c|A|2,

for all three by three symmetric matrices A and for all ε. We consider the body
clamped on Γε

b := ∂Ωε ∩ {x3 = 0} and we denote by

H1
dn(Ωε; R

3) :=
{
ϕ ∈ H1(Ωε; R

3) : ϕ = 0 on Γε
b

}
.

The weak form of the equilibrium problem can be written as

(2)

⎧⎪⎨⎪⎩
ũε ∈ H1

dn(Ωε; R
3),∫

Ωε

C
εE(ũε) · E(ϕ) dv =

∫
Ωε

F̃ ε · E(ϕ) dv ∀ϕ ∈ H1
dn(Ωε; R

3),

where the matrix field F̃ ε, which takes into account the presence of external forces,
is assumed to be an element of L2(Ωε; R

3×3
sym).

If F̃ ε is not just in L2(Ωε; R
3×3
sym) but in

H(div,Ωε) := {T ∈ L2(Ωε; R
3×3
sym) : div T ∈ L2(Ωε; R

3)},
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then the previous problem can be seen as the weak form of the following problem:

(3)

⎧⎪⎨⎪⎩
div C

εE(ũε) + b̃ε = 0 in Ωε,

C
εE(ũε)nε = c̃ε on Γε

c,

ũε = 0 on Γε
b,

where Γε
c := ∂Ωε\Γε

b, and nε denotes the unit outward normal vector to Ωε, while the
body loads b̃ε and the contact loads c̃ε are simply given by

(4) b̃ε := −divF̃ ε in Ωε, c̃ε := F̃ εnε in Γε
c.

Note that given b̃ε ∈ L2(Ωε; R
3) and c̃ε ∈ H−1/2(∂Ωε; R

3) it is always possible to
find an F̃ ε ∈ H(div,Ωε) which satisfies (4).

3. The rescaled problem. It is convenient to work with the domain Ω instead
of the domain Ωε. We therefore rescale the problem by means of the scaling map
sε : Ω → Ωε,

sε(x1, x2, x3) = (ε2x1, εx2, x3).

Let ũε be the solution of (2); then we define the “rescaled solution” uε by

uε
1 := ε2ũε

1 ◦ sε, uε
2 := εũε

2 ◦ sε, uε
3 := ũε

3 ◦ sε.

Let Eε be the “rescaled strain” defined by

(5) Eε(ϕ) :=

⎛⎜⎝
1
ε4E11(ϕ) 1

ε3E12(ϕ) 1
ε2E13(ϕ)

1
ε3E21(ϕ) 1

ε2E22(ϕ) 1
εE23(ϕ)

1
ε2E31(ϕ) 1

εE32(ϕ) E33(ϕ)

⎞⎟⎠ .

It follows that Eε(uε) = E(ũε) ◦ sε.
We further assume that there exists a C ∈ L∞(Ω; R

3×3×3×3) such that

C
ε = C ◦ sε,

and we denote with F ε = F̃ ε ◦ s−1
ε ∈ L2(Ω; R

3×3
sym). With this notation uε turns out to

be the unique solution of

(6)

⎧⎪⎨⎪⎩
uε ∈ H1

dn(Ω; R
3),∫

Ω

CEε(uε) · Eε(ϕ) dx =
∫

Ω

F ε ·Eε(ϕ) dx ∀ϕ ∈ H1
dn(Ω; R

3),

where Γb := ∂Ω ∩ {x3 = 0} and

H1
dn(Ω; R

3) :=
{
ϕ ∈ H1(Ω; R

3) : ϕ = 0 on Γb

}
.

By taking ϕ = uε and using (1), we find

(7) c‖Eε(uε)‖L2(Ω) ≤ ‖F ε‖L2(Ω).

Thus a uniform bound on ‖F ε‖L2(Ω) would lead to rescaled strains uniformly bounded
in ε. We augment this requirement by assuming

(8) F ε → F in L2(Ω; R
3×3
sym).
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Remark 3.1. Let Sε := diag(1/ε2, 1/ε, 1); then Eε(ϕ) = SεE(ϕ)Sε. If we assume
F ε ∈ H(div,Ω), then we can write∫

Ω

F ε ·Eε(ϕ) dx =
∫

Ω

SεF εSε · E(ϕ) dx

= −
∫

Ω

div(SεF εSε) · ϕdx+ 〈SεF εSεn, ϕ〉∂Ω,

for all ϕ ∈ H1
dn(Ω; R

3), and conclude that instead of considering F ε we could have
been using the following body and contact forces

bε := −div(SεF εSε) in Ω and cε := SεF εSεn in Γc.

Note that if F ε = Sε−1

F (0)Sε−1

for some F (0) ∈ H(div,Ω) the body and the con-
tact forces would be independent of ε. Since Sε−1

= diag(ε2, ε, 1), the sequence
{Sε−1

F (0)Sε−1}, with F (0) ∈ H(div,Ω), strongly converges in L2(Ω; R
3×3
sym) and hence

satisfies assumption (8). Assumption (8) though allows us to consider “stronger”
forces than F ε = Sε−1

F (0)Sε−1

, like F ε = F (0) or, more generally,

F ε = F (0) + εF (1) + ε2F (2) + ε3F (3) + ε4F (4),

with F (i) ∈ H(div,Ω) for i = 0, 1, . . . , 4, where, for instance, the term ε4F
(4)
11 would

lead to the definition of body and contact forces independent of ε.

4. Partial Korn’s inequalities. In this section we state and prove several
Korn’s inequalities. The proofs of Theorems 4.2 and 4.3 follow some of the lines
of that of Theorem 4.4, which is due to Monneau, Murat, and Sili [7].

Theorem 4.1. There exists a constant C such that∥∥∥u1 −−
∫

Ω1

u1 dx1

∥∥∥
L2(Ω)

≤ C
∥∥∥∂u1

∂x1

∥∥∥
L2(Ω)

for every u1 ∈ H1(Ω1;L2(Ω23)).
Proof. By density we may restrict ourselves to considering u1 ∈ C1(Ω̄). For every

x2 and x3 there exists a ξ = ξ(x2, x3) such that u1(ξ, x2, x3) =
∫
−Ω1

u1(s, x2, x3) ds
and

u1(x1, ·, ·) − u1(ξ, ·, ·) =
∫ x1

ξ

∂u1

∂x1
(s, ·, ·) ds.

Taking squares and applying Jensen’s inequality we conclude the proof.
Theorem 4.2. There exists a constant C such that∥∥∥∥u2 −

(
−
∫

Ω1

u2 dx1 − x1
∂

∂x2
−
∫

Ω1

u1 dx1

)∥∥∥∥
H−1(Ω2;L2(Ω13))

≤ C
(∥∥E11(u)

∥∥
L2(Ω)

+
∥∥E12(u)

∥∥
L2(Ω)

)
for every u ∈ H1(Ω; R

2).
Proof. Let

ū1 := u1 −−
∫

Ω1

u1 dx1, ū2 := u2 −−
∫

Ω1

u2 dx1 + x1
∂

∂x2
−
∫

Ω1

u1 dx1,



1928 LORENZO FREDDI, FRANÇOIS MURAT, AND ROBERTO PARONI

and note that
∫
−

Ω1
ū2 dx1 = 0 and ū2 ∈ H1(Ω1;L2(Ω23)). Let ψ ∈ H1

0 (Ω2); then

∂

∂x1

∫
Ω2

ψū2 dx2 =
∫

Ω2

ψ

(
∂u2

∂x1
+

∂

∂x2
−
∫

Ω1

u1 dx1

)
dx2

=
∫

Ω2

ψ

(
2E12(u) − ∂ū1

∂x2

)
dx2

=
∫

Ω2

2ψE12(u) + ū1
dψ

dx2
dx2.

Since
∫
Ω2
ψū2 dx2 ∈ H1(Ω1;L2(Ω23)) and

∫
Ω1

∫
Ω2
ψū2 dx2dx1 = 0, by Theorem 4.1

and the above equation we deduce∥∥∥∥∫
Ω2

ψū2 dx2

∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥ ∂

∂x1

∫
Ω2

ψū2 dx2

∥∥∥∥
L2(Ω)

≤ C ‖ψ‖H1(Ω2)(‖E12(u)‖L2(Ω) + ‖ū1‖L2(Ω))

≤ C ‖ψ‖H1(Ω2)(‖E12(u)‖L2(Ω) + ‖E11(u)‖L2(Ω)).

Let ϕ ∈ L2(Ω13); then∣∣∣∣ ∫
Ω

ϕψū2 dx

∣∣∣∣ ≤ ‖ϕ‖L2(Ω13)

∥∥∥∥∫
Ω2

ψū2 dx2

∥∥∥∥
L2(Ω13)

≤ C ‖ϕ‖L2(Ω13)‖ψ‖H1(Ω2)(‖E11(u)‖L2(Ω13) + ‖E12(u)‖L2(Ω)).

A density argument concludes the proof. Indeed, let {ϕn} be an orthonormal basis
of L2(Ω13) and for any v ∈ H1

0 (Ω2;L2(Ω13)), let

ψn(x2) :=
∫

Ω13

ϕn(x1, x3)v(x) dx1dx3 ∈ H1
0 (Ω2).

Then for vN :=
∑N

n=1 ψnϕn we have∣∣∣∣ ∫
Ω

vN ū2 dx

∣∣∣∣ ≤ ‖vN‖H1
0 (Ω2;L2(Ω13))(‖E11(u)‖L2(Ω) + ‖E12(u)‖L2(Ω)),

and letting N go to infinity we conclude the proof.
Remark 4.1. In spite of the fact that the left-hand side belongs to L2(Ω), the

inequality of Theorem 4.2 does not hold true if one replaces the norm H−1 with the
norm of L2, because of the following counterexample, which is inspired by an example
contained in [7] in a quite similar framework.

Consider two scalar smooth functions ϕα ∈ C∞(Ω̄α) with ϕ1 satisfying∫
Ω1

ϕ1 dx1 =
∫

Ω1

∂ϕ1

∂x1
dx1 = 0.

Define

u1 := −ϕ2
∂ϕ1

∂x1
, u2 := ϕ1

∂ϕ2

∂x2
, u3 := 0.

Then u ∈ H1(Ω; R
3), and the inequality of Theorem 4.2 reduces to∥∥∥∥ϕ1

∂ϕ2

∂x2

∥∥∥∥
H−1(Ω2;L2(Ω1))

≤ C

∥∥∥∥ϕ2
∂2ϕ1

∂x2
1

∥∥∥∥
L2(Ω)

,
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which cannot be true if we replaceH−1 by L2 because in such a case, taking ‖ϕ1‖L2(Ω1)

= ‖∂2ϕ1/∂x
2
1‖L2(Ω1) would imply that∥∥∥∥∂ϕ2

∂x2

∥∥∥∥
L2(Ω)

≤ C‖ϕ2‖L2(Ω)

for any ϕ2 ∈ C∞(Ω̄2), which is clearly impossible.
Define (using the summation convention)

rd2 = {r ∈ L2(Ω12; R
2) : ∃ c ∈ R, d ∈ R

2 such that rα(y) = Eβα xβ d+ cα},

where E denotes the Ricci’s symbol. The elements of rd2 are the infinitesimal rigid
displacements on Ω12. It is easy to see that rd2 ⊂ H1(Ω12; R

2); moreover, being finite-
dimensional, it is closed in L2(Ω12; R

2). Thus, the orthogonal projection operator of
L2(Ω12; R

2) on rd2, which will be denoted by ℘, is well defined. Given a vector
function v ∈ L2(Ω12,R

m) with m ≥ 2, we define

(9) ϑ(v) :=
1
IO

∫
Ω12

(x1v2 − x2v1) dx′, where IO =
∫

Ω12

(x2
1 + x2

2) dx′.

If v ∈ L2(Ω12; R
2), then the components of ℘ turn out to be

(10) ℘α(v) = Eβα xβϑ(v) + −
∫

Ω12

vα dx
′.

Furthermore, the two-dimensional Korn’s inequality can be written as

(11) ‖v − ℘(v)‖H1(Ω12;R2) ≤ C
∑
α,β

‖Eαβ(v)‖L2(Ω12;R2×2)

for all v ∈ H1(Ω12; R
2) with a constant C which is independent of v.

Similarly, given a vector function u ∈ L2(Ω3;L2(Ω12,R
m)) with m ≥ 2, we

analogously define ϑ(u) ∈ L2(Ω3) and ℘α(u). The operator ℘ associates to any
u ∈ L2(Ω3;L2(Ω12,R

m)) a function ℘(u) ∈ L2(Ω3;L2(Ω12,R
2)) which is an infinites-

imal rigid displacement on Ω12 for almost every x3 ∈ Ω3.
Let us observe that the orthogonal complement, with respect to the L2(Ω12; R

2)
inner product, of rd2 in H1(Ω12; R

2) can be then characterized as

rd⊥2 = {v ∈ H1(Ω12; R
2) : ℘(v) = 0} = {v ∈ H1

m(Ω12; R
2) : ϑ(v) = 0}.

Moreover, we denote by

(12) RD⊥
2 (Ω) = {v ∈ L2(Ω3;H1

m(Ω12; R
2)) : ϑ(v) = 0 a.e. x3 ∈ Ω3}.

Hereafter, for any u ∈ L2(Ω3;H1(Ω12; R
m)), m ≥ 2, we set

(13) ũα := uα − ℘α(u).

Of course ũ ∈ L2(Ω3;H1(Ω12; R
2)) and

∫
−Ω12

ũ dx1dx2 = 0 and ϑ(ũ) = 0 a.e. in Ω3,
where the latter follows from the linearity of ϑ and the fact that ϑ(u) = ϑ(℘(u)).
Thus ũ ∈ RD⊥

2 (Ω).
Lemma 4.1. There exists a constant C such that

‖ũ‖L2(Ω3;H1(Ω12;R2)) ≤ C
∑
α,β

‖Eαβ(u)‖L2(Ω3;L2(Ω12))

for every u ∈ L2(Ω3;H1(Ω12; R
m)), m ≥ 2.
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Proof. Since uα(·, ·, x3) ∈ L2(Ω12) for almost every x3 ∈ Ω3, from (10) and (11)
we have that the relations

℘α(u) = Eβα xβ ϑ(u) +
1

|Ω12|

∫
Ω12

uα dx
′,(14)

‖ũ‖H1(Ω12;R2) ≤ C
∑
α,β

‖Eαβ(u)‖L2(Ω12)(15)

hold for almost every x3 in Ω3, and the claimed inequality follows by integra-
tion.

A different proof of the lemma above can be found in Le Dret [6].
Proposition 4.1. RD⊥

2 (Ω) is a Hilbert space with the norm

‖v‖RD⊥
2 (Ω) :=

(∑
α,β

‖Eαβ(v)‖2
L2(Ω)

)1/2

.

Proof. We have only to prove that ‖v‖RD⊥
2 (Ω) is equivalent to the norm induced

on RD⊥
2 (Ω) by L2(Ω3;H1(Ω12; R

2)) since the former space is a closed subspace of
the latter. For any v ∈ RD⊥

2 (Ω), recalling that ℘(v) = 0, so that v = ṽ, and using
Lemma 4.1, we then have

‖v‖L2(Ω3;H1(Ω12;R2)) = ‖ṽ‖L2(Ω3;H1(Ω12;R2)) ≤ C‖v‖RD⊥
2 (Ω)

while the opposite inequality is trivially satisfied.
Theorem 4.3. There exists a constant C such that∥∥∥∥u3 −

(
x1x2

dϑ(u)
dx3

− x1
d

dx3
−
∫

Ω12

u1 dx
′ + −

∫
Ω1

u3 dx1

)∥∥∥∥
H−1(Ω3;L2(Ω12))

≤ C

(∑
α,β

‖Eαβ(u)‖L2(Ω) + ‖E13(u)‖L2(Ω)

)

for every u ∈ H1(Ω; R
3).

Proof. Let ũα := uα − ℘α(u) as in (13) and

ũ3 := u3 −
(
x1x2

dϑ(u)
dx3

− x1
d

dx3
−
∫

Ω12

u1 dx
′ + −

∫
Ω1

u3 dx1

)
.

Since E13(u) = E13(ũ),

∂ũ3

∂x1
= 2E13(u) − ∂ũ1

∂x3
.

Let ψ ∈ H1
0 (Ω3); then

∂

∂x1

∫
Ω3

ψũ3 dx3 =
∫

Ω3

ψ
(

2E13(u) − ∂ũ1

∂x3

)
dx3

=
∫

Ω3

2
(
ψE13(u) + ũ1

dψ

dx3

)
dx3.
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Since
∫
Ω3
ψũ3 dx3 ∈ H1(Ω) and

∫
Ω1

∫
Ω3
ψũ3 dx3dx1 = 0, by Theorem 4.1, Lemma 4.1,

and the previous equality we deduce∥∥∥∥∫
Ω3

ψũ3 dx3

∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥ ∂

∂x1

∫ �

0

ψũ3 dx3

∥∥∥∥
L2(Ω)

≤ C‖ψ‖H1(Ω3)(‖E13(u)‖L2(Ω) + ‖ũ1‖L2(Ω))

≤ C‖ψ‖H1(Ω3)(‖E13(u)‖L2(Ω) +
∑

α,β ‖Eαβ(u)‖L2(Ω)).

Let ϕ ∈ L2(Ω12); then∣∣∣∣∫
Ω

ϕψũ3 dx

∣∣∣∣ =
∣∣∣∣∫

Ω12

ϕ

∫
Ω3

ψũ3 dx3dx
′
∣∣∣∣ ≤ ‖ϕ‖L2(Ω12)

∥∥∥∥∫
Ω3

ψũ3 dx3

∥∥∥∥
L2(Ω12)

≤ C‖ϕ‖L2(Ω12)‖ψ‖H1(Ω3)

(
‖E13(u)‖L2(Ω) +

∑
α,β

‖Eαβ(u)‖L2(Ω)

)
.

Arguing as in the proof of Theorem 4.2, we conclude the proof.
Remark 4.2. As in Remark 4.1, in spite of the fact that the left-hand side belongs

to L2(Ω), the inequality of Theorem 4.3 does not hold true if one replaces the norm
H−1 with the norm of L2, because of the following counterexample.

Consider three scalar smooth functions ϕi ∈ C∞(Ω̄i) with ϕα satisfying∫
Ωα

ϕα dxα =
∫

Ωα

∂ϕα

∂xα
dxα = 0.

Define

u1 := −ϕ2
∂ϕ1

∂x1
ϕ3, u2 := −ϕ1

∂ϕ2

∂x2
ϕ3, u3 := +ϕ1ϕ2

∂ϕ3

∂x3
.

Then u ∈ H1(Ω; R
3), and the inequality of Theorem 4.3 reduces to∥∥∥∥ϕ1ϕ2
∂ϕ3

∂x3

∥∥∥∥
H−1(Ω2;L2(Ω1))

≤ C

∥∥∥∥ϕ3

(
∂2ϕ1

∂x2
1

ϕ2 + ϕ1
∂2ϕ2

∂x2
2

)∥∥∥∥
L2(Ω)

,

which cannot be true if we replaceH−1 by L2, because in such a case taking ‖ϕα‖L2(Ωα)

= ‖∂2ϕα/∂x
α
1 ‖L2(Ωα) would imply that∥∥∥∥∂ϕ3

∂x3

∥∥∥∥
L2(Ω)

≤ C‖ϕ3‖L2(Ω)

for any ϕ3 ∈ C∞(Ω̄3), which is clearly impossible.
The next partial Korn’s inequality is proved in Monneau, Murat, and Sili [7].
Theorem 4.4. There exists a constant C such that∥∥∥∥u3 −

(
−
∫

Ω12

u3 dx
′ − xα

d

dx3
−
∫

Ω12

uα dx
′
)∥∥∥∥

H−1(Ω3;L2(Ω12))

≤ C

(∑
αβ

‖Eαβ(u)‖L2(Ω) +
∑
α

‖Eα3(u)‖L2(Ω)

)
for every u ∈ H1

dn(Ω; R
3).
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5. Limit strain characterization. Let

H1
m(Ω12) := {z ∈ H1(Ω12) :

∫
Ω12

z dx′ = 0},

H1
m1

(Ω1;L2(Ω23)) := {z ∈ H1(Ω1;L2(Ω23)) :
∫
Ω1
z dx1 = 0 a.e. in Ω23},

H−1
m1

(Ω3;L2(Ω12)) := {v ∈ H−1(Ω3;L2(Ω12)) : 〈z3, ϕ〉 = 0

∀ϕ ∈ H1
0 (Ω3;L2(Ω2))},

where the bracket in the last definition has to be understood in the sense of the duality
H−1(Ω3;L2(Ω12)) ×H1

0 (Ω3;L2(Ω12)).
Let (uε) be the sequence of solutions to problems (6). From (7) and assumption

(8) it follows that

(16) sup
ε

‖Eε(uε)‖L2(Ω) < +∞.

Hence, possibly passing to a subsequence, we have that

Eε(uε) ⇀ E in L2(Ω; R
3×3
sym)

for some E ∈ L2(Ω; R
3×3
sym).

In this section we characterize the limit strain E. For clarity we state several
lemmas.

Lemma 5.1 (component 33). There exists a function ū in the set of the so-called
Bernoulli–Navier displacements

U := {u ∈ H1
dn(Ω; R

3) : Eαi(u) = 0}

such that

E33 =
∂ū3

∂x3
= E33(ū).

Proof. From (16), the structure of Eε, and Korn’s inequality, we have that

C ≥ ‖Eε(uε)‖L2(Ω) ≥ ‖E(uε)‖L2(Ω) ≥ CK‖uε‖H1(Ω),

where C is a constant independent of ε and CK is Korn’s constant. Hence, up to a
subsequence uε ⇀ ū in H1(Ω; R

3), for some ū ∈ H1
dn(Ω; R

3). The claim follows by
noticing that ‖Eαi(uε)‖L2(Ω) ≤ Cε, and Eε

33(uε) = ∂uε
3/∂x3. In fact it follows that

ū ∈ {u ∈ H1
dn(Ω; R

3) : Eαi(u) = 0}.
Remark 5.1 (representation of the space U ). It is well known (see, for instance,

Le Dret [5]) that the space of Bernoulli–Navier displacements admits the following
representation:

U :=
{
u ∈ H2

dn(Ω)2 ×H1
dn(Ω) : exists ζ ∈ H2

dn(Ω3)2 ×H1
dn(Ω3) such that

u1 = ζ1, u2 = ζ2, u3 = ζ3 − x1
dζ1
dx3

− x2
dζ2
dx3

}
.

Moreover, U is a Hilbert space with the norm

‖u‖U := ‖E33(u)‖L2(Ω),

which is equivalent to that induced by H1
dn(Ω; R

3) (see [8]).
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Lemma 5.2 (component 23). There exists a function v̄ in the space

V :=
{
v ∈ H1

dn(Ω)2 × L2(Ω3;H1
m(Ω12 )) : exist ϑ ∈ H1(Ω3) such that ϑ(0) = 0

and � ∈ L2(Ω3;H1(Ω2)) such that v1(x) = −x2ϑ(x3), v2(x) = x1ϑ(x3),

v3(x) = x1x2
dϑ

dx3
(x3) + �(x2, x3)

}
such that

E23 = E23(v̄).

Proof. Let vε
i := 1

εu
ε
i and ϑε := ϑ(vε) (see (9)).

First of all, by adapting an argument of [4] and Lemmas 4.4 and 4.5, we prove
that there exists ϑ ∈ H1(Ω3) with ϑ(0) = 0, such that, up to subsequences,

(17) ϑε → ϑ in L2(Ω3).

Applying Lemma 4.1, there exists a constant C such that

(18) ‖ṽε‖L2(Ω3;H1(Ω12;R2)) ≤ C
∑
α,β

‖Eαβ(vε)‖L2(Ω3;L2(Ω12)).

Since, furthermore,

E11(vε)11 = ε3Eε
11(uε), E12(vε) = ε2Eε

12(uε), E22(vε) = εEε
22(uε),

and using (16) we have

(19) ‖Eαβ(vε)‖L2(Ω) ≤ ε‖Eε
αβ(uε)‖L2(Ω) ≤ C ε.

From (18) we get

(20) ‖ṽε‖L2(Ω3;H1(Ω12;R2)) ≤ Cε;

hence

(21) ṽε → 0 in L2(Ω3;H1(Ω12; R
2)).

Now let η ∈ C∞
c (Ω12) be such that

∫
Ω12

η dx′ = −IO
2
.
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Then, taking into account (14), we have

IOϑ
ε = −2ϑε

∫
Ω12

η dx′ = −ϑε

∫
Ω12

ηDαxα dx
′

= ϑε

∫
Ω12

Dαη xα dx
′ = ϑε

∫
Ω12

EαγEβγDαη xβ dx
′

=
∫

Ω12

EαγDαηEβγxβϑ
ε dx′

=
∫

Ω12

EαγDαη

(
℘γ(vε) − 1

|Ω12|

∫
Ω12

vε
γ dx

′
)
dx′

=
∫

Ω12

EαγDαη ℘γ(vε) dx′

=
∫

Ω12

EαγDαη v
ε
γ dx

′ −
∫

Ω12

EαγDαη
(
vε − ℘γ(vε)

)
dx′.

Hence, denoting by

ϑ̃ε =
1
IO

∫
Ω12

EαγDαη w
ε
γ dx

′

and recalling (21), we find

(22) ϑε − ϑ̃ε → 0 in L2(Ω3).

We now show that D3ϑ̃
ε is bounded in L2. Since EαγDαDγη = 0 everywhere in Ω3

and Dαη = 0 on ∂Ω3, we have

IOD3ϑ̃
ε =

∫
Ω12

EαγDαη D3v
ε
γ dx

′ = 2
∫

Ω12

EαγDαη Eγ3(vε) dx′,

but E13(vε) = εEε
13(uε) and E23(vε) = Eε

23(uε), and therefore D3ϑ̃
ε is bounded

in L2(Ω3). Since ϑ̃ε(0) = 0, ϑ̃ε is then bounded in H1(Ω3) so that there exists
ϑ ∈ H1(Ω3) with ϑ(0) = 0, such that, up to subsequences,

ϑ̃ε ⇀ ϑ in H1(Ω3).

Thus, from (22) we obtain (17).
Let us now set

v̄ε
1 := vε

1 −−
∫

Ω12

vε
1 dx

′, v̄ε
2 := vε

2 −−
∫

Ω12

vε
2 dx

′,

and

v̄ε
3 := vε

3 −
(
−
∫

Ω12

vε
3 dx

′ − xα
d

dx3
−
∫

Ω12

vε
α dx

′
)
.

Observing that, by the definitions,

v̄ε
1 = ṽε

1 − x2ϑ
ε, v̄ε

2 = ṽε
2 + x1ϑ

ε,
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from (17) and (21) we have that

v̄ε
1 → −x2ϑ, v̄ε

2 → +x1ϑ in L2(Ω3;H1(Ω12)).

By Theorem 4.4, we have that

‖v̄ε
3‖H−1(Ω3;L2(Ω12)) ≤ C,

and hence there exists v̄3 ∈ H−1(Ω3;L2(Ω12)) such that, up to subsequences,

(23) v̄ε
3 ⇀ : v̄3 in H−1(Ω3;L2(Ω12)).

Moreover, let us set

v̄1 = −x2ϑ, v̄2 = +x1ϑ,

and check that the vector field v̄ so defined satisfies the properties claimed in the
statement of Lemma 4.1. A simple computation shows that

E13(v̄ε) = E13(vε) and E23(v̄ε) = E23(vε).

Noticing that E13(vε) = εEε
13(uε) → 0 in L2(Ω) and E13(v̄ε) → E13(v̄) in D ′(Ω), we

obtain that E13(v̄) = 0. Hence,

∂v̄3
∂x1

= − ∂v̄1
∂x3

= x2
dϑ

dx3

and, integrating with respect to x1,

v̄3 = x1x2
dϑ

dx3
+ �(x2, x3)

for some function � ∈ L2(Ω3;H1(Ω2)). Moreover, v̄3 ∈ L2(Ω3;H1(Ω12)) and, from (23)
and the fact that v̄3, v̄ε

3 ∈ L2(Ω), we then obtain easily that
∫
−Ω12

v̄3dx
′ = 0, which

concludes the proof.
Lemma 5.3 (characterization of the space V ). The space V admits the following

characterization:

(24)
V = {v ∈ H1

dn(Ω)2 × L2(Ω3;H1
m(Ω12)) : Eαβ(v) = 0, E13(v) = 0,

E23(v) ∈ L2(Ω) and
∫
Ω12

vα dx
′ = 0 a.e.}.

Moreover, it is a Hilbert space with the norm

‖v‖V := ‖W13(v)‖L2(Ω) + ‖E23(v)‖L2(Ω),

where

W13(v) =
1
2

(
∂v1
∂x3

− ∂v3
∂x1

)
.

Proof. Let us call V the space at the right-hand side of equality (24) and let V
be as in the statement of Lemma 5.2. It is trivial to check that V ⊆ V . Let us prove
the opposite inclusion. Let v ∈ V . Since vα ∈ H1

dn(Ω) and Eαβ(v) = 0, by integration
there exists ϑ ∈ L2(Ω3) such that

v1 = −x2ϑ(x3) + a1(x3), v2 = x1ϑ(x3) + a2(x3),
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and since
∫
Ω12

vα dx
′ = 0, we have a1 = a2 = 0 a.e.. From the resulting expression of

vα it follows that ϑ ∈ H1
dn(Ω) and ϑ(0) = 0.

Since E13(v) = 0 we obtain that ∂v3/∂x1 = x2ϑ
′(x3). Then there exists � ∈

L2(Ω23) such that

v3 = x1x2ϑ
′(x3) + �(x2, x3),

from which it follows also that � ∈ L2(Ω3;H1
m(Ω2)) and that E23(v) ∈ L2(Ω).

The last part of the claim follows from the fact that L2(Ω3;H1
m(Ω12) is a Hilbert

space with the scalar product

〈u3, v3〉L2(Ω3;H1
m(Ω12)) =

∫
Ω3

〈u3(x3), v3(x3)〉H1
m(Ω12) dx3,

and V is a closed subspace of H1
dn(Ω)2 × L2(Ω3;H1

m(Ω12)) which is Hilbert with the
product norm

‖v1‖H1
dn(Ω) + ‖v2‖H1

dn(Ω) + ‖v3‖L2(Ω3;H1
m(Ω12))

induced by H1
dn(Ω)2 × L2(Ω3;H1

m(Ω12)). The proof that this norm is equivalent to
‖v‖V is an easy consequence of the Poincaré inequality, the representation lemma,
Lemma 5.2, and the characterization of the space V proved above.

Lemma 5.4 (components 22 and 13). There exists a function w̄ in the space

W = {w ∈ RD⊥
2 (Ω) ×H−1

m1
(Ω3;L2(Ω12)) : E11(w) = E12(w) = 0,

E13(w) ∈ L2(Ω)}

such that

E22 =
∂w̄2

∂x2
= E22(w̄), E13 =

1
2

(
∂w̄1

∂x3
+
∂w̄3

∂x1

)
= E13(w̄).

Moreover, W is a Hilbert space with the norm

‖w‖W := ‖E22(w)‖L2(Ω) + ‖E13(w)‖L2(Ω) + ‖w3‖H−1
m1

(Ω3;L2(Ω12)).

Proof. Let

wε :=
1
ε2
uε;

then

(25)
‖E11(wε)‖L2(Ω) ≤ Cε2, ‖E12(wε)‖L2(Ω) ≤ Cε,

‖E22(wε)‖L2(Ω) ≤ C, ‖E13(wε)‖L2(Ω) ≤ C.

Let us recall that w̃ε
α := wε

α − ℘α(wε). By Lemma 4.1 and using (25), we have

‖w̃ε‖L2(Ω3;H1(Ω12;R2)) ≤ C
∑
α,β

‖Eαβ(wε)‖L2(Ω) ≤ C,

∫
−

Ω12
w̃ε dx′ = 0, and ϑ(w̃ε) = 0. Thus, up to a subsequence,

(26) w̃ε
α ⇀ w̄α in L2(Ω3;H1(Ω12)) for α = 1, 2;
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moreover, a.e.,

(27) −
∫

Ω12

w̄αdx
′ = 0, ϑ(w̄) = 0.

Hence (w̄1, w̄2) ∈ RD⊥
2 (Ω) (see (12)). Using (25) we also obtain

E11(w̄) = E12(w̄) = 0.

Moreover,

Eε
22(uε) = E22(wε) = E22(w̃ε) ⇀ E22(w̄) in L2(Ω).

Let

w̃ε
3 := wε

3 −
(
x1x2

dϑ(wε)
dx3

− x1
d

dx3
−
∫

Ω12

wε
1 dx

′ + −
∫

Ω1

wε
3 dx1

)
.

By Theorem 4.3 we have that

‖w̃ε
3‖H−1(Ω3;L2(Ω12)) ≤ C

⎛⎝∑
α,β

‖Eαβ(wε)‖L2(Ω) + ‖E13(wε)‖L2(Ω)

⎞⎠ ≤ C.

Hence, up to a subsequence,

w̃ε
3 ⇀ w3 in H−1(Ω3;L2(Ω12)).

Taking into account that (see (16))

℘1(wε) = −
∫

Ω12

wε
1 dx

′ − x2ϑ(wε), ℘2(wε) = −
∫

Ω12

wε
2 dx

′ + x1ϑ(wε),

we easily deduce that Eε
13(uε) = E13(wε) = E13(w̃ε) and hence that

E13 =
1
2

(
∂w̄1

∂x3
+
∂w̄3

∂x1

)
.

Finally, since
∫
−Ω1

w̃ε
3 dx1 = 0, we have that

〈w̄3, ϕ〉H−1(Ω3;L2(Ω12))×H1
0 (Ω3;L2(Ω12)) = 0

for all ϕ ∈ H1
0 (Ω3;L2(Ω2)).

The last part of the claim follows from the fact that W is a closed subspace of

{z ∈ RD⊥
2 (Ω) ×H−1

m1
(Ω3;L2(Ω12)) : E13(z) ∈ L2(Ω)}

which, in turn, is a Hilbert space under the scalar product

〈z, ζ〉 := 〈z, ζ〉RD⊥
2 (Ω)×H−1

m1
(Ω3;L2(Ω12)) +

∫
Ω

E13(z)E13(ζ) dx

and from an application of Proposition 4.1.
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Lemma 5.5 (representation of the space W ). The space W admits the following
representation:

(28)

W =
{
w ∈ L2(Ω3;H1(Ω12))2 ×H−1

m1
(Ω3;L2(Ω12)) : E13(w) ∈ L2(Ω),

there exists η1 ∈ L2(Ω3;H2(Ω2)) and η2 ∈ L2(Ω3;H1(Ω2)) such that

w1(x) = η1(x2, x3), w2(x) = −x1
∂η1
∂x2

(x2, x3) + η2(x2, x3),∫
Ω2

ηα dx2 = 0,
∫

Ω2

(
a2
1

12
∂η1
∂x2

+ x2η1

)
dx2 = 0

}
.

Proof. Let us callW the set on the right-hand side of equality (28), and let W be as
in the statement of Lemma 5.4. Then it is trivial to check that W ⊆ W . Let us prove
the converse inequality. Let w ∈ W as in Lemma 5.4. Since E11(w) = E12(w) = 0, by
integration we deduce that there exist η1 ∈ L2(Ω3;H2(Ω2)) and η2 ∈ L2(Ω3;H1(Ω2))
such that

w1(x) = η1(x2, x3), w2(x) = −x1
∂η1
∂x2

(x2, x3) + η2(x2, x3).

Since

(29) −
∫

Ω12

wαdx
′ = 0, ϑ(w) = 0,

we have that ∫
Ω2

ηα dx2 = 0 a.e. for α = 1, 2,

and ∫
Ω2

(
a2
1

12
∂η1
∂x2

+ x2η1

)
dx2 = 0,

a.e..
Lemma 5.6 (component 12). There exists a vector function p̄ in the set

P = {0} ×H1
m1

(Ω1;L2(Ω23)) × {0}

such that

(30) E12 =
1
2
∂p̄2

∂x1
= E12(p̄).

Moreover, P is a Hilbert space with the norm

‖p‖P := ‖E12(p)‖.

Proof. Let

pε
α :=

1
ε3
uε

α for α = 1, 2,

and

p̄ε
1 := pε

1 −−
∫

Ω1

pε
1 dx1, p̄ε

2 := pε
2 −−

∫
Ω1

pε
2 dx1 + x1

∂

∂x2
−
∫

Ω1

pε
1 dx1.
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Then E11(p̄ε) = E11(pε) = εEε
11(uε); hence, by Theorem 4.1 we have

p̄ε
1 → 0,

∂p̄ε
1

∂x1
→ 0 in L2(Ω).

Since E12(p̄ε) = E12(pε) = Eε
12(uε), by Theorem 4.2 we also have that, up to subse-

quences,

p̄ε
2 ⇀ p̄2 in H−1(Ω2;L2(Ω13)).

Setting p̄ := (0, p̄2, 0), we have

E12 = E12(p̄) =
1
2
∂p̄2

∂x1
,

that is, (30). It remains then to prove that p̄2 ∈ H1(Ω1;L2(Ω23)) and that
∫
−Ω1

p̄2 dx1 = 0.
Since p̄2 ∈ H−1(Ω2;L2(Ω13)), for any ϕ ∈ H1

0 (Ω2) and any ψ ∈ L2(Ω13) the
product ϕ⊗ ψ belongs to H1

0 (Ω2;L2(Ω13)), and the linear map

Pϕ : L2(Ω13) → R, 〈Pϕ, ψ〉 := 〈p̄2, ϕ⊗ ψ〉
satisfies the estimate

|〈Pϕ, ψ〉| ≤ ‖p̄2‖H−1‖ϕ‖H1
0
‖ψ‖L2.

Thus Pϕ ∈ L2(Ω13). Moreover, from the definition of Pϕ and the fact that ∂p̄2

∂x1
∈

L2(Ω), we obtain that ∂Pϕ

∂x1
∈ L2(Ω13) and also that

(31)
∂Pϕ

∂x1
=

∫
Ω2

∂p̄2

∂x1
ϕdx2.

Since
∫
−Ω1

p̄ε
2 dx1 = 0 it follows from the definitions that

(32) −
∫

Ω1

Pϕ(s, x3) ds = 〈p̄2, ϕ〉 = 0

for almost every x3 ∈ Ω3; using this fact, the following Poincaré inequality holds:

‖Pϕ(·, x3)‖L2(Ω1) ≤ C

∥∥∥∥∂Pϕ

∂x1
(·, x3)

∥∥∥∥
L2(Ω1)

,

where the constant C depends only on the domain Ω1 and is therefore independent
of x3. By substituting (31) inside the Poincaré inequality, we obtain that

(33) ‖Pϕ‖L2(Ω13) ≤ C

∥∥∥∥∂p̄2

∂x1

∥∥∥∥
L2(Ω)

‖ϕ‖L2(Ω2).

Using the density of C∞
c (Ω2) ⊗ C∞

c (Ω13) in L2(Ω) (see, for instance, Treves [10,
Theorem 39.2 and subsequent Corollary 3]), the fact that Pϕ ∈ L2(Ω13), and inequal-
ity (33), we have that

‖p̄2‖L2(Ω) = sup
ϕ∈C∞

c (Ω2), ψ∈C∞
c (Ω13)

|〈p̄2, ϕψ〉|
‖ϕ‖L2(Ω2)‖ψ‖L2(Ω13)

= sup
ϕ∈C∞

c (Ω2), ψ∈C∞
c (Ω13)

|〈Pϕ, ψ〉|
‖ϕ‖L2(Ω2)‖ψ‖L2(Ω13)

≤ sup
ϕ∈C∞

c (Ω2)

‖Pϕ‖L2(Ω13)

‖ϕ‖L2(Ω2)
≤ C

∥∥∥∥∂p̄2

∂x1

∥∥∥∥
L2(Ω)

;
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hence p̄2 ∈ L2(Ω). Thus p̄2 ∈ H1(Ω1;L2(Ω23)), and (32) implies
∫
−

Ω1
p̄2 dx1 = 0.

The last part of the claim follows from the fact that H1
m1

(Ω1;L2(Ω23)) is a Hilbert
space with the norm

‖p‖H1
m1

(Ω1;L2(Ω23)) :=
∥∥∥∥∂p2

∂x1

∥∥∥∥
L2(Ω)

,

which, by Theorem 4.1, turns out to be equivalent to the canonical one.
Lemma 5.7 (component 11). There exists a function q̄ in the space

Q := H1
m1

(Ω1;L2(Ω23)) × {0}2

such that

E11 =
∂q̄1
∂x1

= E11(q̄).

Moreover, Q is a Hilbert space with the norm

‖q‖Q := ‖E11(q)‖.

Proof. Let

qε
1 :=

1
ε4

(
uε

1 −−
∫

Ω1

uε
1dx1

)
;

then

sup
ε

∥∥∥∥ ∂qε
1

∂x1

∥∥∥∥
L2(Ω)

= sup
ε

‖Eε
11(uε)‖L2(Ω) ≤ C,

and by Theorem 4.1 we have supε ‖qε
1‖L2(Ω) ≤ C. Then, up to a subsequence, qε

1 ⇀ q̄1
in L2(Ω), and Eε

11(uε) = ∂q̄ε
1/∂x1 ⇀ ∂q̄1/∂x1 in L2(Ω) for some q̄1 ∈ L2(Ω).

The last part of the claim follows from the fact that H1
m1

(Ω1;L2(Ω23)) is a Hilbert
space with the norm

‖q‖H1
m1

(Ω1;L2(Ω23)) := ‖q1,1‖L2(Ω),

which, by Theorem 4.1, turns out to be equivalent to the canonical one.

6. The limit problem. Let us consider the space A := U ×V ×W ×P ×Q.
According to the notation and the results proved in the previous section, A is a
Hilbert space when endowed with the product norm

‖(u, v, w, p, q)‖A := ‖u‖U + ‖v‖V + ‖w‖W + ‖p‖P + ‖q‖Q.

Given a 5-tuple of vector valued distributions (u, v, w, p, q) ∈ D′(Ω; R
3)5, let us define

(34) E(u, v, w, p, q) :=

⎛⎜⎝ E11(q) E12(p) E13(w)
E22(w) E23(v)

Sym. E33(u)

⎞⎟⎠ .

We are now in a position to state the main result of this paper.
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Theorem 6.1. Let C be a positive definite fourth order tensor field on Ω with the
minor symmetries, i.e., Cijkl = Cjikl = Cijlk . Let F ε be a second order symmetric
tensor field which belongs to L2(Ω; R

3×3). Then problem (6), that is,

(35)

⎧⎪⎨⎪⎩
uε ∈ H1

dn(Ω; R
3),∫

Ω

CEε(uε) · Eε(ϕ) dx =
∫

Ω

F ε ·Eε(ϕ) dx ∀ϕ ∈ H1
dn(Ω; R

3),

admits a unique solution uε. Moreover, if F ε → F in L2(Ω; R
3×3), then we have the

following:
1. the problem

(36)

∫
Ω

CE(ū, v̄, w̄, p̄, q̄) ·E(u, v, w, p, q) dx =
∫

Ω

F ·E(u, v, w, p, q) dx

∀ (u, v, w, p, q) ∈ A

admits a unique solution (ū, v̄, w̄, p̄, q̄) ∈ A ;
2. uε ⇀ ū in H1(Ω; R

3);
3. Eε(uε) → E(ū, v̄, w̄, p̄, q̄) in L2(Ω; R

3×3).
The following corollary can be seen as a corrector result.
Corollary 6.1. If the solution (ū, v̄, w̄, p̄, q̄) of problem (36) is such that

(37)
∂v̄3
∂x3

, E23(w̄),
∂w̄3

∂x3
,
∂q̄1
∂x2

,
∂q̄1
∂x3

,
∂p̄2

∂x2
,
∂p̄2

∂x3
∈ L2(Ω),

then

‖Eε(uε) − Eε(ūε)‖L2(Ω;R3×3) → 0,

where

ūε := ū+ εv̄ + ε2w̄ + ε3p̄+ ε4q̄.

Proof. Since

Eε(ūε) = E(ū, v̄, w̄, p̄, q̄) + ε

⎛⎜⎝ 0 E12(q̄) 0
E22(p̄) E23(w̄)

Sym. E33(v̄)

⎞⎟⎠ + ε2

⎛⎜⎝ 0 0 E13(q̄)
0 E23(p̄)

Sym. E33(w̄)

⎞⎟⎠
the additional regularity assumptions imply that Eε(ūε) ∈ L2(Ω; R

3×3) and

‖Eε(ūε) − E(ū, v̄, w̄, p̄, q̄)‖L2(Ω;R3×3) → 0.

Then the claim follows from step 3 of Theorem 6.1.
In order to prove Theorem 6.1, we introduce the subspaces of H1

dn(Ω; R
3),

Û := {u ∈ H1
dn(Ω; R

3) : Eαβ(u) = Eα3(u) = 0},

V̂ := {v ∈ H1
dn(Ω; R

3) : Eαβ(v) = E13(v) = 0},

Ŵ := {w ∈ H1
dn(Ω; R

3) : E1β(w) = 0},

P̂ := {p ∈ H1
dn(Ω; R

3) : E11(p) = 0},

Q̂ := H1
dn(Ω; R

3),
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and define Â := Û × V̂ × Ŵ × P̂ × Q̂.
Let us note that U = Û , but similar equalities are not true for the spaces V , W ,

P, and Q. Nevertheless, for such spaces we can prove the following approximation
lemma.

Lemma 6.1. For every v ∈ V , w ∈ W , p ∈ P, and q ∈ Q there exist sequences
(v̂n) in V̂ , (ŵn) in Ŵ , (p̂n) in P̂, and (q̂n) in Q̂ such that the following convergences
hold in the norm of L2(Ω):

(i) E23(v̂n) → E23(v),
(ii) E13(ŵn) → E13(w) and E22(ŵn) → E22(w),
(iii) E12(p̂n) → E12(p),
(iv) E11(q̂n) → E11(q).
Proof. Let us prove (i). Since v ∈ V (see Lemma 5.2), there exist ϑ ∈ H1(Ω3)

with ϑ(0) = 0 and � ∈ L2(Ω3;H1(Ω2)) such that

v1(x) = −x2ϑ(x3), v2(x) = x1ϑ(x3),

v3(x) = x1x2
dϑ

dx3
(x3) + �(x2, x3).

Then there exist sequences ϑn ∈ H2
dn(Ω3) and �n ∈ H1

dn(Ω23) such that

ϑn → ϑ in H1(Ω3), �n → � in L2(Ω3;H1(Ω2)).

Setting

v̂n
1 (x) = −x2ϑn(x3), v̂n

2 (x) = x1ϑn(x3),

v̂n
3 (x) = x1x2

dϑn

dx3
(x3) + �n(x2, x3),

we obtain the claim.
Let us prove (ii). As w ∈ W (see Lemma 5.4), there exist η1 ∈ L2(Ω3;H2(Ω2))

and η2 ∈ L2(Ω3;H1(Ω2)) such that

w1(x) = η1(x2, x3), w2(x) = −x1
∂η1
∂x2

(x2, x3) + η2(x2, x3).

Then, there exist a sequence ηn
1 ∈ H2

dn(Ω) with ∂ηn
1 /∂x1 = 0 such that

ηn
1 → η1 in L2(Ω3;H2(Ω2))

and a sequence ηn
2 ∈ H1

dn(Ω) with ∂ηn
2 /∂x1 = 0 such that

ηn
2 → η2 in L2(Ω3;H1(Ω2)).

Since ∂w3/∂x1 = 2E13(w)−∂η1/∂x3 and E13(w) ∈ L2(Ω), by integration, there exists
G13 ∈ H1(Ω1;L2(Ω23)) such that

∂G13

∂x1
= E13(w) and w3 = 2G13 − x1

∂η1
∂x3

,

where we have also used the fact that η1 does not depend on x1.
We may also find a sequence Gn

13 ∈ H1
dn(Ω) such that

Gn
13 → G13 in H1(Ω1;L2(Ω23))
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and define

ŵn
1 := ηn

1 , ŵn
2 := −x1

∂ηn
1

∂x2
+ ηn

2 , ŵn
3 := Gn

13 − x1
∂ηn

1

∂x3
.

Then ŵn ∈ H1
dn(Ω), E11(ŵn) = ∂ηn

1 /∂x1 = 0, and E12(ŵn) = 0 so that ŵn ∈ Ŵ .
Moreover,

E13(ŵn) =
∂Gn

13

∂x1
→ ∂G13

∂x1
= E13(w) in L2(Ω),

and

E22(ŵn) =
∂ŵn

2

∂x2
= −x1

∂2ηn
1

∂x2
2

+
∂ηn

2

∂x2
→ ∂ŵ2

∂x2
= E22(ŵ) in L2(Ω).

To prove (iii) it is enough to consider, for a given p = (0, p2, 0) ∈ P, a sequence
p̂n
2 ∈ H1

dn(Ω), which converges to p2 in the norm of H1(Ω1;L2(Ω23)), and set p̂n

= (0, p̂n
2 , 0). Finally, claim (iv) simply follows from the density of H1

dn(Ω) in
H1

m1
(Ω1;L2(Ω23)).
Proof of Theorem 6.1. The existence and uniqueness of the solution of prob-

lem (36) follows from an application of the Lax–Milgram lemma to the symmetric
bilinear form defined on A by

a[(u, v, w, p, q), (û, v̂, ŵ, p̂, q̂)] :=
∫

Ω

CE(u, v, w, p, q) ·E(û, v̂, ŵ, p̂, q̂) dx,

which is continuous and coercive with respect to the Hilbertian norm on A defined
at the beginning of this section.

Part 2 of the statement of Theorem 6.1 is actually a consequence of step 3. Let
us now prove part 3. According to the results proved in the previous section, we have

(38) Eε(uε) ⇀ E in L2(Ω; R
3×3),

and there exists a (ū, v̄, w̄, p̄, q̄) ∈ A such that

E =

⎛⎜⎝ E11(q̄) E12(p̄) E13(w̄)
E22(w̄) E23(v̄)

Sym. E33(ū)

⎞⎟⎠ = E(ū, v̄, w̄, p̄, q̄).

The result will be achieved in two steps: (i) we prove that (ū, v̄, w̄, p̄, q̄) satisfies equal-
ity (36) and therefore coincides with the unique solution of the variational problem,
and (ii) we show that the convergence in (38) is indeed strong.

Let (û, v̂, ŵ, p̂, q̂) ∈ Â and set

ϕ̂ε := û+ εv̂ + ε2ŵ + ε3p̂+ ε4q̂;

then ϕ̂ε ∈ H1
dn(Ω; R

3) and an easy computation shows that, as ε→ 0,

(39) Eε(ϕ̂ε) →

⎛⎜⎝ E11(q̂) E12(p̂) E13(ŵ)
E22(ŵ) E23(v̂)

Sym. E33(û)

⎞⎟⎠ = E(û, v̂, ŵ, p̂, q̂)
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in the norm convergence of L2(Ω; R
3×3). Taking ϕ = ϕ̂ε in (35) and passing to the

limit we find∫
Ω

CE(ū, v̄, w̄, p̄, q̄) ·E(û, v̂, ŵ, p̂, q̂) dx =
∫

Ω

F ·E(û, v̂, ŵ, p̂, q̂) dx,

for every (û, v̂, ŵ, p̂, q̂) ∈ Â . This equality holds in fact for any (u, v, w, p, q) ∈ A in
place of (û, v̂, ŵ, p̂, q̂) ∈ Â because of the approximation Lemma 6.1 which ensures
that there exists a sequence (u, v̂n, ŵn, p̂n, q̂n) ∈ Â such that

‖(u, v̂n, ŵn, p̂n, q̂n) − (u, v, w, p, q)‖A → 0.

To show that the convergence in (38) is indeed strong, it suffices to prove that
limε→0 ‖Eε(uε)‖L2(Ω;R3×3) = ‖E(ū, v̄, w̄, p̄, q̄)‖L2(Ω;R3×3) or, equivalently, that

lim
ε→0

∫
Ω

CEε(uε) · Eε(uε) dx = lim
ε→0

∫
Ω

F ε · Eε(uε) dx

=
∫

Ω

F · E(ū, v̄, w̄, p̄, q̄) dx

=
∫

Ω

CE(ū, v̄, w̄, p̄, q̄) ·E(ū, v̄, w̄, p̄, q̄) dx,

where we passed to the limit thanks to the strong convergence of F ε.

7. Equilibrium differential equations. In this last section we derive the dif-
ferential formulation of the limit problem. For simplicity we assume here that the
elasticity tensor also satisfies the major symmetries; that is, Cijkl = Cklij for any
i, j, k, l. Nevertheless, the same computation can be performed also in the general
case.

To make (36) more explicit and to keep the notation compact, in writing the
elasticity tensor components Cijkl we associate to a pair of components ij a single
component s following the rule 11 �→ 1, 22 �→ 2, 33 �→ 3, 23 �→ 4, 13 �→ 5, 12 �→ 6, and
we write, for instance, c14 for C1123; see Auld [1] for more details on the notation used.
Clearly cij = cji. Still, for brevity, define ē1 = E11(q̄), ē2 = E22(w̄), ē3 = E33(ū),
ē4 = 2E23(v̄), ē5 = 2E13(w̄), ē6 = 2E12(p̄). Letting

L (u, v, w, p, q) :=
∫

Ω

F · E(u, v, w, p, q) dx,

we can then rewrite (36) as

∫
Ω

6∑
j=1

[
c1j ējE11(q) + c2j ējE22(w) + c3j ējE33(u) + 2c4j ējE23(v)

+ 2c5j ējE13(w) + 2c6j ējE12(p)
]
dx = L (u, v, w, p, q),
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for every (u, v, w, p, q) ∈ A . Thus∫
Ω

6∑
j=1

c1j ējE11(q) dx = L (0, 0, 0, 0, q),(40)

∫
Ω

6∑
j=1

2c6j ējE12(p) dx = L (0, 0, 0, p, 0),(41)

∫
Ω

6∑
j=1

[
c2j ējE22(w) + 2c5j ējE13(w)

]
dx = L (0, 0, w, 0, 0),(42)

∫
Ω

6∑
j=1

2c4j ējE23(v) dx = L (0, v, 0, 0, 0),(43)

∫
Ω

6∑
j=1

c3j ējE33(u) dx = L (u, 0, 0, 0, 0).(44)

In this section, for simplicity, we assume

(45)
L (0, 0, ·, ·, ·) = 0, L (0, v, 0, 0, 0) =

∫ �

0

m(x3)ϑ(x3) dx3,

L (u, 0, 0, 0, 0) =
∫

Ω

b · u dx+
∫

Γ�

s · u dH 2,

where Γ� = ∂Ω ∩ {x3 = �}; u ∈ U ; b ∈ L2(Ω); s ∈ L2(Γ�); v ∈ V ; ϑ ∈ H1(Ω3),
ϑ(0) = 0, is related to v as in Lemma 5.2; and m ∈ L2(Ω3). Such assumptions are
quite often satisfied in engineering applications.

We now derive the equilibrium equations in differential form. Let ψ ∈ L2(Ω) and
define

q1 :=
∫ x1

−a1/2

ψ(s, ·, ·) ds−−
∫

Ω1

∫ x1

−a1/2

ψ(s, ·, ·) ds dx1.

Then q := (q1, 0, 0) ∈ Q and E11(q) = ψ; hence, from (40) and (45) we deduce

(46)
6∑

j=1

c1j ēj = 0 a.e..

With the same argument it follows from (41) that

(47)
6∑

j=1

c6j ēj = 0 a.e..

From (46) and (47) we deduce, since c11c66 − c216 > 0, that

ē1 = E11(q̄) = −
5∑

j=2

c66c1j − c16c6j

c11c66 − c216
ēj a.e.,(48)

ē6 = 2E12(p̄) = −
5∑

j=2

c11c6j − c16c1j

c11c66 − c216
ēj a.e..(49)
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Using (45), (48), and (49) we can rewrite (42), after setting

c̃ij = cij − ci1
c66c1j − c16c6j

c11c66 − c216
− ci6

c11c6j − c16c1j

c11c66 − c216
,

for i, j = 2, . . . , 5, as

(50)
∫

Ω

5∑
j=2

[
c̃2j ējE22(w) + 2c̃5j ējE13(w)

]
dx = L (0, 0, w, 0, 0) = 0.

Since w ∈ W , it then admits the representation given in Lemma 5.5 in terms of
functions η1 and η2. Choosing η1 = η2 = 0, so that E22(w) = 0, and w3 like it has
been chosen q1 previously, we find from (50) that

(51)
5∑

j=2

c̃5j ēj = 0 a.e..

Let ψ ∈ L2(Ω23). Taking η1 = w3 = 0 and

η2 :=
∫ x2

−a2/2

ψ(s, ·) ds−−
∫

Ω2

∫ x2

−a2/2

ψ(s, ·) ds dx2

so that E22(w) = ψ, we find from (50) that

(52)
5∑

j=2

∫
Ω1

c̃2j ēj dx1 = 0 a.e..

Taking instead η2 = w3 = 0 and

η1 :=
∫ x2

−a2/2

∫ t

−a2/2

ψ(s, ·) ds dt−K1x2 −K2,

where the constants K1 and K2 are chosen in order to satisfy the mean integral
conditions required on η1 by (28), we have E22(w) = −x1ψ, and hence, from (50) we
deduce

(53)
5∑

j=2

∫
Ω1

x1c̃2j ēj dx1 = 0 a.e..

From (51), and observing that the positive definiteness of the elastic tensor implies
c̃55 > 0, we find

(54) ē5 = 2E13(w̄) = −
4∑

j=2

c̃5j

c̃55
ēj a.e..

To solve (52) and (53) we need to write explicitly ē2 = E22(w̄). Since w̄ ∈ W , by
Lemma 5.5, we can write

w̄1(x) = η̄1(x2, x3), w̄2(x) = −x1
∂η̄1
∂x2

(x2, x3) + η̄2(x2, x3),
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where η̄1 and η̄2 belong to the appropriate spaces. Since

(55) ē2 = −x1
∂2η̄1
∂x2

2

+
∂η̄2
∂x2

and using (54), we can rewrite (52) and (53) as

s1;22
∂2η̄1
∂x2

2

− s0;22
∂η̄2
∂x2

=
4∑

j=3

−
∫

Ω1

ĉ2j ēj dx1,

s2;22
∂2η̄1
∂x2

2

− s1;22
∂η̄2
∂x2

=
4∑

j=3

−
∫

Ω1

x1ĉ2j ēj dx1,

where we have set

(56) ĉij :=
c̃55c̃ij − c̃i5c̃j5

c̃55
, sk;ij := −

∫
Ω1

xk
1 ĉij dx1,

for i, j = 2, 3, 4 and k = 0, 1, 2. From these equations we find

∂2η̄1
∂x2

2

=
1

s0;22s2;22 − s21;22

(
s0;22

4∑
j=3

−
∫

Ω1

x1ĉ2j ēj dx1 − s1;22

4∑
j=3

−
∫

Ω1

ĉ2j ēj dx1

)
,

∂η̄2
∂x2

=
1

s0;22s2;22 − s21;22

(
s1;22

4∑
j=3

−
∫

Ω1

x1ĉ2j ēj dx1 − s2;22

4∑
j=3

−
∫

Ω1

ĉ2j ēj dx1

)
,

and then by integration η̄1 and η̄2 (the fact that s0;22s2;22 − s21;22 > 0 can be checked,
for instance, by using Hölder’s inequality; see Wheeden and Zygmund [13, Chapter 8,
Exercise 4]).

According to Remark 5.1 and Lemma 5.2, we let

(57) ē3 = ζ̄
′

3 − x1ζ̄
′′

1 − x2ζ̄
′′

2 , ē4 = 2x1ϑ̄
′
+

∂�̄

∂x2
.

Setting

Sijkl
mpqr :=

si;2jsk;2l − sm;2psq;2r

s0;22s2;22 − s21;22
,

we then have
∂2η̄1
∂x2

2

= S0213
0312

(
ζ̄

′

3 − x2ζ̄
′′

2

)
− S0223

1213 ζ̄
′′

1 + 2S0224
1214 ϑ̄

′
+ S0214

0412

∂�̄

∂x2
,

∂η̄2
∂x2

= S1213
0322

(
ζ̄

′

3 − x2ζ̄
′′

2

)
− S1223

2213 ζ̄
′′

1 + 2S1224
1422 ϑ̄

′
+ S1214

0422

∂�̄

∂x2
,

and taking into account the relations (48), (49), (54), (55), and (57), we find

(58)

6∑
j=1

cij ēj =
(
ĉi3 − x1ĉi2S

0213
0312 + ĉi2S

1213
0322

)(
ζ̄

′

3 − x2ζ̄
′′

2

)
−
(
x1ĉi3 − x1ĉi2S

0223
1213 + ĉi2S

1223
2213

)
ζ̄

′′

1

+2
(
x1ĉi4 − x1ĉi2S

0224
1214 + ĉi2S

1224
1422

)
ϑ̄

′

+
(
ĉi4 − x1ĉi2S

0214
0412 + ĉi2S

1214
0422

) ∂�̄
∂x2

,
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for i = 3, 4. Now let v ∈ V and ϑ and � be as in Lemma 5.2. With ψ ∈ L2(Ω23) and
ϑ = 0 and

� :=
∫ x2

−a2/2

ψ(s, ·) ds−−
∫

Ω2

∫ x2

−a2/2

ψ(s, ·) ds dx2,

we find from (43) that

−
∫

Ω1

6∑
j=1

c4j ēj dx1 = 0.

It then follows that

0 =
(
s0;43 − s1;42S

0213
0312 + s0;42S

1213
0322

)(
ζ̄

′

3 − x2ζ̄
′′

2

)
−
(
s1;43 − s1;42S

0223
1213 + s0;42S

1223
2213

)
ζ̄

′′

1

+2
(
s1;44 − s1;42S

0224
1214 + s0;42S

1224
1422

)
ϑ̄

′

+
(
s0;44 − s1;42S

0214
0412 + s0;42S

1214
0422

) ∂�̄
∂x2

,

and provided that the last coefficient s0;44 − s1;42S
0214
0412 + s0;42S

1214
0422 �= 0, one finds

∂�̄

∂x2
=

−1
s0;44 − s1;42S0214

0412 + s0;42S1214
0422

·
[(
s0;43 − s1;42S

0213
0312 + s0;42S

1213
0322

)(
ζ̄

′

3 − x2ζ̄
′′

2

)
−

(
s1;43 − s1;42S

0223
1213 + s0;42S

1223
2213

)
ζ̄

′′

1

+
(
s1;44 − s1;42S

0224
1214 + s0;42S

1224
1422

)
2ϑ̄

′
]
.

We may rewrite (58) as

(59)
6∑

j=1

cij ēj = Fi3ζ̄
′

3 − Fi2 ζ̄
′′

2 − Fi1 ζ̄
′′

1 + Fi4ϑ̄
′

for i = 3, 4, where

Fi1 = (x1ĉi3 − x1ĉi2S
0223
1213 + ĉi2S

1223
2213)

−
(ĉi4 − x1ĉi2S

0214
0412 + ĉi2S

1214
0422)

(
s1,43 − s1,42S

0223
1213 + s0,42S

1223
2213

)
s0,44 − s1,42S0214

0412 + s0,42S1214
0422

,

Fi2 = x2Fi3,

Fi3 = (ĉi3 − x1ĉi2S
0213
0312 + ĉi2S

1213
0322 )

− (ĉi4 − x1ĉi2S
0214
0412 + ĉi2S

1214
0422)(s0,43 − s1,42S

0213
0312 + s0,42S

1213
0322)

s0,44 − s1,42S0214
0412 + s0,42S1214

0422

,

Fi4 = 2(x1ĉi4 − x1ĉi2S
0224
1214 + ĉi2S

1224
1422)

−2
(ĉi4 − x1ĉi2S

0214
0412 + ĉi2S

1214
0422 )(s1,44 − s1,42S

0224
1214 + s0,42S

1224
1422)

s0,44 − s1,42S0214
0412 + s0,42S1214

0422

.
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Let

Aij(x3) :=
∫

Ω12

Fij(·, ·, x3) dx1dx2

and

Kij(x3) :=
∫

Ω12

x1Fij(·, ·, x3) dx1dx2, Lij(x3) :=
∫

Ω12

x2Fij(·, ·, x3) dx1dx2.

Then, from (43), (44), and (59) we finally deduce the following system of equilibrium
differential equations:

(60)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(A33ζ̄
′

3 −A31ζ̄
′′

1 −A32ζ̄
′′

2 +A34ϑ̄
′
)
′

= −p3,

(K33ζ̄
′

3 −K31ζ̄
′′

1 −K32ζ̄
′′

2 +K34ϑ̄
′
)
′′

= −p1,

(L33ζ̄
′

3 − L31ζ̄
′′

1 − L32ζ̄
′′

2 + L34ϑ̄
′
)
′′

= −p2,

2(K43ζ̄
′

3 −K41ζ̄
′′

1 −K42ζ̄
′′

2 +K44ϑ̄
′
)
′

= −m,

where

p1 =
(∫

Ω12

x1b3 dx1dx2

)′
+

∫
Ω12

b1 dx1dx2,

p2 =
(∫

Ω12

x2b3 dx1dx2

)′
+

∫
Ω12

b2 dx1dx2,

p3 =
∫

Ω12

b3 dx1dx2.

The system (60) should then be completed with the suitable boundary conditions.

7.1. The homogeneous beam. In the general inhomogeneous and anisotropic
case, the torsional, flexional, and extensional problems are all coupled together in
the equilibrium differential system (60). A partial decoupling occurs already in the
homogeneous fully anisotropic case. Indeed, in this case, from (56), we have

s0;ij = ĉij , s1;ij = 0, s2;ij =
a3
1

12
ĉij ,

and therefore

S0213
0312 = S1223

2213 = S0214
0412 = S1224

1422 = 0, S0223
1213 =

ĉ23
ĉ22

, S1213
0322 = − ĉ23

ĉ22
, S1214

1422 =
ĉ24
ĉ22

,

which causes many of the coefficients of the system Aij ,Kij , and Lij to be zero. In
this case, the system (60) simply rewrites as

(61)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A33ζ̄

′′

3 = −p3,

(−K31ζ̄
′′

1 +K34ϑ̄
′
)
′′

= −p1,

−L32ζ̄
(iv)
2 = −p2,

2(−K41ζ̄
′′

1 +K44ϑ̄
′
)
′

= −m,
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where

A33 = a1a2

[
ĉ22ĉ33 − ĉ223

ĉ22
+

(ĉ22ĉ34 − ĉ23ĉ24)2

ĉ22(ĉ22ĉ44 − ĉ224)

]
,

K31 =
a3
1a2

12
ĉ22ĉ33 − ĉ223

ĉ22
, K34 =

a3
1a2

6
ĉ22ĉ34 − ĉ23ĉ24

ĉ22
,

K41 =
a3
1a2

12
ĉ22ĉ34 − ĉ23ĉ24

ĉ22
, K44 =

a3
1a2

6
ĉ22ĉ44 − ĉ224

ĉ22
,

L32 =
a1a

3
2

12

[
ĉ22ĉ33 − ĉ223

ĉ22
+

(ĉ22ĉ34 − ĉ23ĉ24)2

ĉ22(ĉ22ĉ44 − ĉ224)

]
.

Thus for a fully anisotropic but homogeneous beam there is only coupling between
twisting and bending in direction 1.

7.2. The homogeneous orthotropic/isotropic beam. When the material is
orthotropic a complete decoupling occurs. Indeed, for orthotropic material we have
that cki = 0 for k = 1, 2, 3 and i = 4, 5, 6, and c45 = c46 = c56 = 0. It then follows
that K34 = K41 = 0 and the system (61) reduces to

(62)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A33ζ̄

′′

3 = −p3,

−K31ζ̄
(iv)
1 = −p1,

−L32ζ̄
(iv)
2 = −p2,

2K44ϑ̄
′′

= −m.

Finally, if the material is isotropic, that is, if it is orthotropic and c12 = c23 = c13 =: λ,
c44 = c55 = c66 =: μ, and c11 = c22 = c33 = λ + 2μ, where λ and μ are the Lamé
moduli, then we have that

A33 = a1a2E, K31 =
a3
1a2

12
E, 2K44 =

a3
1a2

3
μ, L32 =

a1a
3
2

12
E,

where E := μ 3λ+2μ
λ+μ is the Young modulus of the material. Hence, in the isotropic and

homogeneous case we recover the usual form of the differential system of equilibrium
equations.
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Appliquées 19, Masson, Paris, 1991.
[6] H. Le Dret, Convergence of displacements and stresses in linearly elastic slender rods as the

thickness goes to zero, Asymptot. Anal., 10 (1995), pp. 367–402.
[7] R. Monneau, F. Murat, and A. Sili, A Partial Korn’s Inequality and Error Estimates

for the 3d-1d Dimension Reduction in Anisotropic Heterogeneous Linearized Elasticity,
in preparation.



ANISOTROPIC INHOMOGENEOUS THIN-WALLED BEAMS 1951

[8] F. Murat and A. Sili, Anisotropic, Heterogeneous, Linearized Elasticity Problems in Thin
Cylinders, in preparation.

[9] L. Trabucho and J. M. Viano, Mathematical modelling of rods, in Handbook of Numerical
Analysis, Vol. 4, North–Holland, Amsterdam, 1996, pp. 487–974.

[10] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York,
London, 1967.

[11] V. V. Volovoi and D. H. Hodges, Theory of anisotropic thin-walled beams, J. Appl. Mech.,
67 (2000), pp. 453–459.

[12] V. V. Volovoi, D. H. Hodges, C. E. S. Cesnik, and B. Popescu, Assessment of beam mod-
eling methods for rotor blade applications, Math. Comput. Modelling, 33 (2001), pp. 1099–
1112.

[13] R. L. Wheeden and A. Zygmund, Measure and Integral. An Introduction to Real Analysis,
Monogr. Textbooks Pure Appl. Math. 43, Marcel Dekker, New York, Basel, 1977.



SIAM J. MATH. ANAL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 40, No. 5, pp. 1952–1978

CORRECTORS FOR THE HOMOGENIZATION OF A CLASS OF
HYPERBOLIC EQUATIONS WITH IMPERFECT INTERFACES∗

PATRIZIA DONATO† , LUISA FAELLA‡ , AND SARA MONSURRÒ§
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treated separately. The second one, where a memory effect appears in the homogenized problem, is
the most interesting. For this critical case, displaying lack of compactness, we in particulur establish
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1. Introduction. In this paper we prove some corrector results for the homog-
enization of a linear hyperbolic problem in a domain Ω of R

n made up of two compo-
nents, a connected one Ω1ε and a disconnected one Ω2ε, which is a union of ε-periodic
connected inclusions of size ε. The conditions prescribed on the interface Γε := ∂Ω2ε

between the two components are the continuity of the conormal derivatives and a
jump of the solution proportional to the conormal derivatives via a function of order
εγ . We suppose here that −1 < γ ≤ 1. This work completes the corresponding
homogenization results proved by the authors in [9].

Let A be a periodic, symmetric, bounded, and elliptic matrix field and h a
bounded and periodic function. We consider the following problem:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′ε − div(Aε∇uε) = fε in (Ω1ε × Ω2ε)×]0, T [,
[Aε∇uε] · n1ε = 0 on Γε × ]0, T [,
Aε∇u1ε · n1ε = −εγhε[uε] on Γε×]0, T [,
uε = 0 on ∂Ω×]0, T [,
uε(0) = U0

ε in Ω,
u′ε(0) = U1

ε in Ω,

where Aε(x) := A(x/ε), hε(x) := h(x/ε), uε = (u1ε, u2ε) is defined in Ω1ε × Ω2ε, [ · ]
denotes the jump trough Γε, and niε is the unitary outward normal to Ωiε, i = 1, 2.
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This problem models the wave propagation in a medium made up of two materials
with very different coefficients of propagation, which gives rise to the jump in the
boundary condition on the interface. For the physical model we refer to [4], where
these kinds of interface conditions are derived.

The homogenization results proved in [9] (recalled in section 2) show two different
asymptotic behaviors for −1 < γ < 1 and γ = 1, the last case being the most
interesting one, since a memory effect appears at the limit (see also Remark 2.7).

When −1 < γ < 1, under suitable assumptions on the data (see Theorem 2.3),
we have, as ε→ 0, the following convergences:{

P ε
1u1ε ⇀ u1 weakly* in L∞ (0, T ;H1

0(Ω)
)
,

P ε
1u

′
1ε ⇀ u′1 weakly* in L∞ (0, T ;L2(Ω)

)
,

while {
ũ2ε ⇀ θ2u1 weakly* in L∞ (0, T ;L2(Ω)

)
,

ũ′2ε ⇀ θ2u
′
1 weakly* in L∞ (0, T ;L2(Ω)

)
,

and

(1.2)

{
Aε∇̃u1ε ⇀ A0∇u1 weakly* in L∞ (0, T ;

[
L2(Ω)

]n)
,

Aε∇̃u2ε ⇀ 0 weakly* in L∞ (0, T ;
[
L2(Ω)

]n)
,

where P ε
1 is a suitable extension operator, θ2 is the proportion of material occupying

the inclusions, ˜ denotes the zero extension to the whole of Ω, and u1 is the solution
of the homogenized problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

u′′1 − div
(
A0∇u1

)
= f1 + f2 in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,
u1(0) = U0 in Ω,
u′1(0) = U1 in Ω.

The matrix field A0 is the same constant positive definite matrix obtained by Cio-
ranescu and Saint Jean Paulin (see [7] and also [6]) for the homogenization of the
elliptic problem in the perforated domain Ω1ε, with a Neumann condition on the
boundary of the holes.

All of these convergences are weak, but sufficient, to obtain the homogenized
problem. At this point, the question is how to improve them, in particular give more
information on the gradient and on the first time derivative of the solution. Such
results are known in standard homogenization as corrector results. The aim of this
paper is precisely to answer the above questions.

The corrector result given in Theorem 2.4 states that, under some additional
assumptions, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ũ′1ε + ũ′2ε → u′1 strongly in C0(0, T ;L2(Ω)),

lim
ε→0

‖∇u1ε − Cε∇u1‖C0(0,T ;[L1(Ω1ε)]n) = 0,

lim
ε→0

‖∇u2ε‖C0(0,T ;[L2(Ω2ε)]n) = 0,

where Cε is the same corrector matrix of the problem studied in [7].
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The additional assumptions concern the data. We assume strong convergence
for both fε and U1

ε , and we suppose that U0
ε solves the particular elliptic equation

given by (2.10). These assumptions are needed for the convergence of the energy
of problem (1.1) to that of the homogenized one. This convergence is necessary to
prove the corrector results, as already evidenced in the classical homogenization of
the wave equation (see [2]) or in a perforated domain with a Neumann condition on
the boundaries of the holes (see [18]).

If γ = 1, the situation is more complicated since the limit problem consists in a
p.d.e. coupled with an o.d.e., as proved in [9]. One still has the convergences{

P ε
1u1ε ⇀ u1 weakly* in L∞ (0, T ;H1

0(Ω)
)
,

P ε
1u

′
1ε ⇀ u′1 weakly* in L∞ (0, T ;L2(Ω)

)
,

and {
ũ2ε ⇀ u2 weakly* in L∞ (0, T ;L2(Ω)

)
,

ũ′2ε ⇀ u′2 weakly* in L∞ (0, T ;L2(Ω)
)
,

but u2 is not θ2u′1 anymore. In this case (see Theorem 2.6), (u1, u2) is the unique
solution of the coupled problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ1u
′′
1 − div

(
A0∇u1

)
+ ch(θ2u1 − u2) = f1 in Ω×]0, T [,

u′′2 − ch(θ2u1 − u2) = f2 in Ω×]0, T [,
u1 = 0 on ∂Ω×]0, T [,
u1(x, 0) = U0, u2(x, 0) = θ2U

0 in Ω,
u′1(x, 0) = U1, u′2(x, 0) = θ2U

1 in Ω,

where θ1 = 1 − θ2 and ch is a constant depending on the function h. Furthermore,
convergences (1.2) still hold. Let us mention that in [9, Remark 2.11] the limit function
u2 is explicitly computed in terms of u1 and it is shown that u1 is the solution of a
linear hyperbolic problem with a linear memory effect.

Under the same assumptions as in the previous case, the corrector result for γ = 1
(Theorem 2.8) states the convergences⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
ε→0

‖u′1ε − u′1‖C0(0,T ;L2(Ω1ε)) = 0,

lim
ε→0

‖u′2ε − θ−1
2 u′2‖C0(0,T ;L2(Ω2ε)) = 0,

lim
ε→0

‖∇u1ε − Cε∇u1‖C0(0,T ;[L1(Ω1ε)]n) = 0,

lim
ε→0

‖∇u2ε‖C0(0,T ;[L2(Ω2ε)]n) = 0.

The corrector results are proved in section 5 for −1 < γ < 1 and in section 6 for
γ = 1.

Let us point out the main difficulties of our situation due to the presence of the
interface. The first concerns the study of the convergence of the energy associated
to problem (1.1). This is in general straightforward, but here the expression of the
energy of problem (1.1) is more complicated than usual, since it contains a boundary
term. Moreover, for γ = 1, the energy of the homogenized coupled system contains
also a zero order term which is a linear combination of u1 and u2. This can be seen
comparing formulas (4.5) (case −1 < γ < 1) and (4.8) (case γ = 1). We can prove in
section 4 (Theorems 4.3 and 4.4) that in both cases the energy converges to those of
the homogenized problems.
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The second and more difficult point consists in proving two upper semicontinuity
type inequalities given for the two cases in Propositions 5.1 and 6.1, respectively.
They require specific arguments and are crucial, since they allow us to end, by a
density argument, the proof of the corrector result. Let us mention that usually
in the literature one obtains a convergence, which gives rise to an equality for the
limit (see Remark 5.2), but here we can only obtain an inequality on an upper limit.
Nevertheless, this is enough to conclude.

Let us briefly describe Proposition 6.1 concerning the case γ = 1, which is the
most interesting one. It states that if we set, for Φ,Ψ ∈ C∞([0, T ],D(Ω)),

X̂ε =
1
2

[ ∫
Ω1ε

|u′1ε − Φ′|2 dx+
∫

Ω2ε

|u′2ε − Ψ′|2 dx

+
∫

Ω1ε

Aε (∇u1ε − Cε∇Φ) (∇u1ε − Cε∇Φ) dx+
∫

Ω2ε

Aε∇u2ε∇u2ε dx

]
,

then

(1.3) lim sup
ε→0

∥∥X̂ε

∥∥
C0([0,T ])

≤
∥∥X̂∥∥

C0([0,T ])
,

where

X̂ =
1
2

[
θ1|‖u′1−Φ′‖2

L2(Ω) +θ−1
2 ‖u′2−θ2Ψ′‖2

L2(Ω) +
∫

Ω

A0(∇u1−∇Φ)(∇u1−∇Φ) dx
]
.

The main difficulty when proving this result is due to the boundary term in the energy
associated to problem (1.1). Indeed, we cannot have estimates for the time derivative
of X̂ε so that we cannot derive any compactness of X̂ε in C0([0, T ]). To overcome
this difficulty, in Step 4 of the proof of Proposition 6.1 we decompose X̂ε as a sum of
two terms and we show that the first one is compact and the second one goes to zero
in C0([0, T ]) (see also Remarks 6.2 and 6.3 for details). This allows us to prove (1.3).

The correctors for the corresponding elliptic case have been studied by the first
author in [8]. The first homogenization result for these kinds of boundary conditions
was done in the elliptic case, for some values of the parameter γ, by Auriault and Ene
[1] by the multiple scales method. We refer to Lipton [15] for the study of the limit
problem when γ = 0, to S. Monsurrò [17] for the case γ ≤ −1, and to [10] for the case
γ > −1. For similar elliptic homogenization problems we refer also to [3], [12], [13],
[16], [19].

2. Formulation of the problem and main results. Along this paper, Ω will
denote an open bounded subset of R

n and {ε} a sequence of positive real numbers
converging to zero.

Let Y =]0, l1[× · · · ×]0, ln[ be a reference cell in R
n and Y1 and Y2 be two nonempty

open and disjoint subsets of Y such that

Y = Y1 ∪ Y2,

with Y1 connected and Γ := ∂Y2 of class C2.
For any k ∈ Zn we denote

Y k
i := kl + Yi, Γk := kl + Γ,

where kl = (k1l1, . . . , knln) and i = 1, 2, and we suppose that

(2.1) ∂Ω ∩
(
∪

k∈Zn (εΓk)
)

:= ∅.
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We introduce then, for any ε, the two components of Ω and the interface, respectively,
by

Ωiε := Ω ∩
{
∪k∈KεεY

k
i

}
, i = 1, 2, and Γε := ∂Ω2ε,

where Kε is the set of the n-tuples such that εΓk is included in Ω, namely,

Kε := {k ∈ Zn| εΓk ∩ Ω 
= ∅},

so that ∂Ω ∩ Γε = ∅.
Due to (2.1), the set Ω1ε is connected while Ω2ε is a union of cε−n disjoint

translated sets of εY2, c being a constant independent of ε.
In what follows, we will denote by χω the characteristic function of any open set

ω ⊂ R
n. We know that (see, for instance, [6])

(2.2) χ
Ωiε

⇀ θi :=
|Yi|
|Y | weakly in L2(Ω), i = 1, 2.

We define the normed space V ε by

V ε := {v1 ∈ H1(Ω1ε)| v1 = 0}

endowed with the norm

‖v1‖V ε := ‖∇v1‖L2(Ω1ε).

Remark 2.1. Since we do not assume any regularity on ∂Ω, the condition on ∂Ω
in the definition of V ε has to be understood in a density sense. More precisely, V ε is
the closure with respect to the H1(Ω1ε)-norm of the set of the functions of C∞(Ω1ε)
with a compact support contained in Ω. This make sense because of (2.1).

As in [9], we also define, for every γ ∈ R,

Hε
γ :=

{
v = (v1, v2) | v1 ∈ V ε and v2 ∈ H1(Ω2ε)

}
equipped with the norm

‖v‖2
Hε

γ
:= ‖∇v1‖2

L2(Ω1ε) + ‖∇v2‖2
L2(Ω2ε) + εγ‖v1 − v2‖2

L2(Γε).

Obviously, if 0 < ε < 1 and γ1 ≤ γ2, then

‖v‖
Hε

γ2

≤ ‖v‖
Hε

γ1

.

Moreover, as shown in [17, Lemmas 2.7 and 2.8 and their proofs], for every fixed
ε the norms of Hε

γ and V ε ×H1(Ω2ε) are equivalent.
To introduce the coefficient matrix, we define, for α, β ∈ R with 0 < α < β, the

set M(α, β, Y ) of the n× n Y-periodic matrix-valued functions in L∞(Y ) such that

(A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ βλ

for any λ ∈ R
n and a.e. in Y .

We assume that

(2.3) A ∈M(α, β, Y ), A symmetric,
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and we set, for any ε > 0,

(2.4) Aε(x) := A(x/ε).

Moreover, we consider a Y-periodic function h such that

h ∈ L∞(Γ) and ∃ h0 ∈ R such that 0 < h0 < h(y) a.e. in Γ

and set

(2.5) hε(x) := h
(x
ε

)
.

Throughout this work, we suppose T > 0 be given and −1 < γ ≤ 1. We consider
the following problem:

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′1ε − div(Aε∇u1ε) = f1ε in Ω1ε×]0, T [,
u′′2ε − div(Aε∇u2ε) = f2ε in Ω2ε×]0, T [,
Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γε×]0, T [,
Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γε×]0, T [,
u1ε = 0 on ∂Ω×]0, T [,
u1ε(0) = U0

1ε in Ω1ε, u2ε(0) = U0
2ε in Ω2ε,

u′1ε(0) = U1
ε |Ω1ε

in Ω1ε, u′2ε(0) = U1
ε |Ω2ε

in Ω2ε,

where niε is the unitary outward normal to Ωiε, i = 1, 2, and

(2.7)

⎧⎪⎨⎪⎩
(i) fε := (f1ε|Ω1ε

, f2ε|Ω2ε
) with fiε ∈ L2

(
0, T ;L2(Ω)

)
, i = 1, 2,

(ii) U0
ε :=

(
U0

1ε, U
0
2ε

)
∈ V ε ×H1(Ω2ε),

(iii) U1
ε ∈ L2(Ω).

Its variational (weak) formulation is

(2.8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find uε = (u1ε, u2ε) in L2(0, T ; V ε) × L2(0, T ; H1(Ω2ε))
such that u′1ε ∈ L2(0, T ;L2(Ω1ε)), u′2ε ∈ L2(0, T ;L2(Ω2ε)) and
〈u′′1ε, v1〉(V ε)′,V ε + 〈u′′2ε, v2〉(H1(Ω2ε))′,H1(Ω2ε)

+
∫

Ω1ε

Aε∇u1ε · ∇v1 dx+
∫

Ω2ε

Aε∇u2ε · ∇v2 dx

+εγ

∫
Γε

hε(u1ε − u2ε)(v1 − v2) dσx =
∫

Ω1ε

f1εv1 dx+
∫

Ω2ε

f2εv2 dx

for every (v1, v2) ∈ V ε ×H1(Ω2ε) in D′(0, T ),
u1ε(0) = U0

1ε in Ω1ε, u2ε(0) = U0
2ε in Ω2ε,

u′1ε(0) = U1
ε |Ω1ε

in Ω1ε, u′2ε(0) = U1
ε |Ω2ε

in Ω2ε.

The homogenization of this problem has been studied in [9] under more general
assumptions than (2.7), obtaining different limit problems according to different values
of γ. We prove here some corrector results for the two cases −1 < γ < 1 and γ = 1.

It is well known that (see, for instance, [2] and [18]) corrector results for the
wave equation need stronger assumptions than that of the convergence results. In
particular, we suppose that

(2.9)

{
(i) (f1ε, f2ε) →

(
θ−1
1 f1, θ

−1
2 f2

)
strongly in

[
L2(0, T ; L2(Ω))

]2
,

(ii) U1
ε → U1 strongly in L2(Ω)
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and, concerning the initial condition U0
ε , we assume that it is the unique solution of

the problem

(2.10)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div
(
Aε∇U0

1ε

)
= Qε

1
∗ (−div

(
A0∇U0

))
in Ω1ε,

−div
(
Aε∇U0

2ε

)
= 0 in Ω2ε,

Aε∇U0
1ε · n1ε = −Aε∇U0

2ε · n2ε on Γε,

Aε∇U0
1ε · n1ε = −εγhε

(
U0

1ε − U0
2ε

)
on Γε,

U0
1ε = 0 on ∂Ω,

where U0 is given in H1
0 (Ω) and Qε

1
∗ is the adjoint of a suitable extension operator

Qε
1, defined in section 3.

Remark 2.2. The homogenization result proved in [8] for the elliptic case (recalled
in section 3 for the reader’s convenience) applies to (2.10) and gives (see the proof of
Lemma 4.2 for details) the following convergences:

(2.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Qε
1U

0
1ε ⇀ U0 weakly in H1

0 (Ω),

(ii) Aε∇̃U0
1ε ⇀ A0∇U0 weakly in

[
L2(Ω)

]n
,

(iii) Aε∇̃U0
2ε ⇀ 0 weakly in

[
L2(Ω)

]n
,

(iv)
∥∥U0

ε

∥∥
Hε

γ
≤ C with C independent of ε,

(v) Ũ0
2ε ⇀ θ2U

0 weakly in H1
0 (Ω),

where˜ denotes the zero extension to the whole of Ω and the homogenized matrix A0

is defined by

(2.12) A0λ =
1
|Y |

∫
Y1

A∇wλ dy

with wλ ∈ H1(Y1) solution, for any λ ∈ R
n, of

(2.13)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−div (A∇wλ) = 0 in Y1,

(A∇wλ) · n1 = 0 on Γ,
wλ − λ · y Y -periodic,
1

|Y1|

∫
Y1

(wλ − λ · y) dy = 0.

Moreover, from (2.9) and (2.11)(i) and (v) one has⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i) (χ

Ω1ε
f1ε, χΩ2ε

f2ε) ⇀ (f1, f2) weakly in
[
L2(0, T ; L2(Ω))

]2
,

(ii)
(
χ

Ω1ε
U1

ε , χΩ2ε
U1

ε

)
⇀
(
θ1U

1, θ2U
1
)

weakly in L2(Ω) × L2(Ω),

(iii)
(
Ũ0

1ε, Ũ
0
2ε

)
⇀
(
θ1U

0, θ2U
0
)

weakly in L2(Ω) × L2(Ω).

Let us describe first the case −1 < γ < 1, for which the homogenization result
proved in [9] applies and, under the above assumptions, reads as follows.

Theorem 2.3 (see [9]). For −1 < γ < 1, let Aε and hε be defined by (2.4) and
(2.5), respectively, suppose that (2.7), (2.9), and (2.10) hold, and let uε be the solution
of problem (2.6). Then, there exist a constant C > 0 (independent of ε) and an
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extension operator P ε
1 ∈ L(L∞(0, T ;Hk(Ω1ε));L∞(0, T ;Hk(Ω))), for k = 1, 2, such

that

(2.14)

⎧⎪⎨⎪⎩
(i) P ε

1u1ε ⇀ u1 weakly* in L∞ (0, T ;H1
0(Ω)

)
,

(ii) ũ2ε ⇀ u2 := θ2u1 weakly* in L∞ (0, T ;L2(Ω)
)
,

(iii) εγ/2‖u1ε − u2ε‖L∞(0,T ;L2(Γε)) < C,

(2.15)

{
(i) P ε

1u
′
1ε ⇀ u′1 weakly* in L∞ (0, T ;L2(Ω)

)
,

(ii) ũ′2ε ⇀ u′2 = θ2u
′
1 weakly* in L∞ (0, T ;L2(Ω)

)
,

(2.16)

{
(i) Aε∇̃u1ε ⇀ A0∇u1 weakly* in L∞ (0, T ;

[
L2(Ω)

]n)
,

(ii) Aε∇̃u2ε ⇀ 0 weakly* in L∞ (0, T ;
[
L2(Ω)

]n)
,

where θ2 is given by (2.2) and u1 is the unique solution in L2(0, T ;H1
0 (Ω)), with u′1

in L2(0, T ;L2(Ω)), of the problem

(2.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′′1 − div

(
A0∇u1

)
= f1 + f2 in Ω×]0, T [,

u1 = 0 on ∂Ω×]0, T [,
u1(0) = U0 in Ω,
u′1(0) = U1 in Ω,

with A0 defined in (2.12).
Let (ej)j=1,...,n be the canonical basis and wj ∈ H1(Y1) be the solution of problem

(2.13), written for λ = ej , for j = 1, . . . , n. The corrector matrix Cε is defined, for
any ε, by

(2.18) Cε(x) = C̃
(x
ε

)
,

where

Cij(y) :=
∂wj

∂yi
(y), for i, j = 1, . . . , n,

and ˜ denotes the zero extension to the whole reference cell Y . Let us mention that,
as in the elliptic case (see [8]), Cε is the same corrector obtained in the case of a
periodic perforated domain with an homogeneous Neumann condition on the holes
studied in [7]. Here, due to the symmetry of A, the matrix Cε is symmetric too.

Our first corrector result is as follows.
Theorem 2.4 (correctors for −1 < γ < 1). Let Aε and hε be defined by (2.4) and

(2.5), respectively, and suppose that (2.7), (2.9), and (2.10) hold. If uε is the solution
of problem (2.6) with −1 < γ < 1 and u1 is the solution of problem (2.17), then

(2.19)

⎧⎪⎪⎨⎪⎪⎩
(i) ũ′1ε + ũ′2ε → u′1 strongly in C0

(
0, T ;L2(Ω)

)
,

(ii) lim
ε→0

‖∇u1ε − Cε∇u1‖C0(0,T ;[L1(Ω1ε)]n) = 0,

(iii) lim
ε→0

‖∇u2ε‖C0(0,T ;[L2(Ω2ε)]n) = 0.

This theorem will be proved in section 5.
Remark 2.5. Convergence (2.19)(i) is equivalent to

lim
ε→0

‖u′iε − u′1‖C0(0,T ;L2(Ωiε)) = 0, i = 1, 2,
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since ∫
Ω

|ũ′1ε + ũ′2ε − u′1|2 dx =
∫

Ω1ε

|u′1ε − u′1|2 dx+
∫

Ω2ε

|u′2ε − u′1|2 dx,

Ω1ε and Ω2ε being disjoint sets.
We present now the more complicated case γ = 1, which is also the more inter-

esting, since the limit function u2 is not θ2u1 anymore and the limit problem satisfied
by (u1, u2) is a coupled system consisting in a p.d.e. and an o.d.e. Indeed, we have
the following theorem.

Theorem 2.6 (see [9]). For γ = 1, let Aε and hε be defined by (2.4) and (2.5),
respectively, suppose that (2.7), (2.10), and (2.9) hold, and let uε be the solution of
the problem (2.6). Then, there exist a constant C > 0 (independent of ε) and an
extension operator P ε

1 ∈ L(L∞(0, T ;Hk(Ω1ε));L∞(0, T ;Hk(Ω))), for k = 1, 2, such
that

(2.20)

⎧⎪⎨⎪⎩
(i) P ε

1u1ε ⇀ u1 weakly* in L∞ (0, T ;H1
0(Ω)

)
,

(ii) ũ2ε ⇀ u2 weakly* in L∞ (0, T ;L2(Ω)
)
,

(iii) ε1/2‖u1ε − u2ε‖L∞(0,T ;L2(Γε)) < C,

(2.21)

{
(i) P ε

1u
′
1ε ⇀ u′1 weakly* in L∞ (0, T ;L2(Ω)

)
,

(ii) ũ′2ε ⇀ u′2 weakly* in L∞ (0, T ;L2(Ω)
)
,

(2.22)

{
(i) Aε∇̃u1ε ⇀ A0∇u1 weakly* in L∞ (0, T ;

[
L2(Ω)

]n)
,

(ii) Aε∇̃u2ε ⇀ 0 weakly* in L∞ (0, T ;
[
L2(Ω)

]n)
,

where the couple (u1, u2) is the unique solution L2(0, T ;H1
0(Ω)) × L2(0, T ;L2(Ω)),

with (u′1, u
′
2) in L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)), of the problem

(2.23)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ1u
′′
1 − div

(
A0∇u1

)
+ ch(θ2u1 − u2) = f1 in Ω×]0, T [,

u′′2 − ch(θ2u1 − u2) = f2 in ]0, T [ for a.e. x ∈ Ω,
u1 = 0 on ∂Ω×]0, T [,
u1(0) = U0, u2(0) = θ2U

0 in Ω,
u′1(0) = U1, u′2(0) = θ2U

1 in Ω,

where θi, for i = 1, 2, are given by (2.2), ch = 1
|Y2|

∫
Γ h(y)dσy > 0, and the homoge-

nized matrix A0 is defined by (2.12).
Remark 2.7. (i) In [9], it is shown that u1 is the solution of the equation

θ1u
′′
1 − div

(
A0∇u1

)
+ chθ2u1 − c2hθ2

∫ t

0

K(t, s)u1(s) ds = F in Ω×]0, T [,

containing a periodic memory kernel K; moreover, the limit solution u2 and the func-
tion F are explicitly computed. In this paper we will need only to use the limit
problem under the form (2.23), which is well adapted to the study of the energies.

(ii) Observe that convergences (2.14)–(2.15) and (2.20)–(2.21) imply that for −1 <
γ ≤ 1

χΩ1εP
ε
1u

′
1ε ⇀ θ1u

′
1 weakly* in L∞ (0, T ;L2(Ω)

)
.
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Moreover, from classical compactness results (see [14])

P ε
1 u1ε → u1 strongly in C0

(
0, T ;L2(Ω)

)
.

Let us state the corrector result associated to the case γ = 1.
Theorem 2.8 (correctors for γ = 1). Let Aε and hε be defined by (2.4) and

(2.5), respectively, and suppose that (2.7), (2.9), and (2.10) hold. If uε is the solution
of problem (2.6) with γ = 1 and (u1, u2) is the solution of problem (2.23), then

(2.24)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) lim
ε→0

‖u′1ε − u′1‖C0(0,T ;L2(Ω1ε)) = 0,

(ii) lim
ε→0

‖u′2ε − θ−1
2 u′2‖C0(0,T ;L2(Ω2ε)) = 0,

(iii) lim
ε→0

‖∇u1ε − Cε∇u1‖C0(0,T ;[L1(Ω1ε)]n) = 0,

(iv) lim
ε→0

‖∇u2ε‖C0(0,T ;[L2(Ω2ε)]n) = 0.

Remark 2.9. Observe that in both cases, due to convergences (2.19)(iii) and
(2.24)(iv), respectively, the additional assumptions (2.9) and (2.10) imply that con-
vergences (2.16)(ii) and (2.22)(ii) are actually strong.

Theorem 2.4 will be proved in section 6. Its proof is more delicate than that of
the case −1 < γ < 1, due to the particular form of the limit problem, and requires
specific arguments (see Remark 6.3 for details).

3. Some preliminary results. In this section we will recall some technical
results needed in the proofs of Theorems 2.4 and 2.8 as well as the homogenization
result proved in [8] and [10] for the elliptic problem.

Lemma 3.1 (see [7]). (i) There exists a linear continuous extension operator
Q1 belonging to L(H1(Y1);H1(Y )) ∩ L(L2(Y1);L2(Y )) such that, for some positive
constant C,

‖∇Q1v1‖L2(Y ) ≤ C‖∇v1‖L2(Y1)

for every v1 ∈ H1(Y1).
(ii) There exists an extension operator Qε

1 belonging to L(L2(Ω1ε);L2(Ω))∩L(V ε;
H1

0 (Ω)) such that, for some positive constant C (independent of ε),

‖Qε
1v1‖L2(Ω) ≤ C‖v1‖L2(Ω1ε)

and

‖∇Qε
1v1‖L2(Ω) ≤ C‖∇v1‖L2(Ω1ε)

for every v1 ∈ V ε.
Lemma 3.2 (see [5]). There exists a linear continuous extension operator P ε

1

belonging to L(L∞(0, T ;Hk(Ω1ε));L∞(0, T ;Hk(Ω)), k = 1, 2, such that, for some
positive constant C (independent of ε),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) P ε
1ϕ = ϕ in Ω1ε×]0, T [,

(ii) P ε
1ϕ

′ = (P εϕ)′in Ω×]0, T [,

(iii) ‖P ε
1ϕ‖L∞(0,T ;L2(Ω)) ≤ C‖ϕ‖L∞(0,T ;L2(Ω1ε)),

(iv) ‖P ε
1ϕ

′‖L∞(0,T ;L2(Ω)) ≤ C‖ϕ′‖L∞(0,T ;L2(Ω1ε)),

(v) ‖∇(P ε
1ϕ)‖L∞(0,T ;[L2(Ω)]n) ≤ C‖∇ϕ‖L∞(0,T ;[L2(Ω1ε)]n)

for any ϕ ∈ L∞(0, T ;Hk(Ω1ε)).
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The following homogenization result concerns the elliptic problem associated to
problem (2.6).

Theorem 3.3 (see [6] and [8]). Let −1 < γ ≤ 1, Aε and hε be defined by (2.4)
and (2.5), respectively, and uε be the solution of problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div (Aε∇u1ε) = bε1 +Qε∗
1 (g) in Ω1ε,

−div (Aε∇u2ε) = bε2 in Ω2ε,

Aε∇u1ε · n1ε = −Aε∇u2ε · n2ε on Γε,

Aε∇u1ε · n1ε = −εγhε(u1ε − u2ε) on Γε,

u1ε = 0 on ∂Ω,

where Qε
1 ∈ L(H−1(Ω);V ε) is the adjoint of the extension operator given in

Lemma 3.1(ii). Suppose that bε1 ∈ L2(Ω1ε) and bε2 ∈ L2(Ω2ε) satisfy{
b̃ε1 ⇀ θ1b1 weakly in L2(Ω),

b̃ε2 ⇀ θ2b2 weakly in L2(Ω),

and let g be given in L2(Ω). Then, there exists a positive constant C (independent of
ε) such that ⎧⎨⎩

Qε
1u1ε ⇀ u1 weakly in H1

0 (Ω),
Aε∇̃u1ε ⇀ A0∇u1 weakly in [L2(Ω)]n,
‖u1ε − u2ε‖L2(Γε) < Cε−γ/2,

and the following convergences hold:{
ũ2ε ⇀ u2 weakly in L2(Ω),
Aε∇̃u2ε ⇀ 0 weakly in [L2(Ω)]n.

The function u1 is the unique solution in H1
0 (Ω) of the problem{

−div
(
A0∇u1

)
= θ1b1 + θ2b2 + g in Ω,

u1 = 0 on ∂Ω,

with θi, i = 1, 2, given by (2.2) and A0 by (2.12).
Moreover, for −1 < γ < 1, one has{

u2 = θ2u1,
‖Qε

1u1ε − u2ε‖2
L2(Ω2ε) → 0,

while, for γ = 1,

u2 = θ2
(
u1 + c−1

h b2
)
,

where ch = 1
|Y2|

∫
Γ h(y)dσy.

The following lemma is a straightforward adaptation of Lemma 3.3 of [8] to the
time-dependent case.

Lemma 3.4. Suppose that Γ is of class C2. Let g ∈ L∞(Γ), and set cg :=
1

|Y2|
∫
Γ
g(y)dσy.
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(i) There exists ψg ∈ W 1,∞(Y2) such that for every vε ∈ L2(0, T ;W 1,1(Ω2ε)) one
has

ε

∫
Γε

g(x/ε)vε(x, t) dσx = cg

∫
Ω2ε

vε(x, t) dx + ε

∫
Ω2ε

∇yψg(x/ε)∇xvε(x, t) dx

for all t ∈ [0, T ].
(ii) If for some positive constant C (independent of ε) one has

||vε||L2(0,T ;W 1,1(Ω2ε)) ≤ C,

then

lim inf
ε→0

ε

∫
Γε

g(x/ε)vε(x, t) dσx = lim inf
ε→0

cg

∫
Ω2ε

vε(x, t) dx .

We will also need the following result.
Lemma 3.5 (see [11]). Let O be an open set of R

n and {Oε}ε ⊂ O a sequence
of open subsets of O. Suppose that {vε}ε ⊂ Lp(0, T ;Lp(Oε)), p > 1, is such that{

χOε
⇀ χ

0
in L∞(O) weakly ∗,

ṽε ⇀ χ
0
v weakly in Lp (0, T ;Lp(O)) .

Then,

lim inf
ε→0

∫
Oε

|vε(t)|p dx ≥
∫
O
χ

0
|v(t)|p dx.

4. Asymptotic behavior of the energy. In this section we study the conver-
gence of the energy associated to problem (2.6) which, for every ε, is defined by
(4.1)

Eε(t) :=
1
2

[∫
Ω1ε

|u′1ε(t)|2 dx+
∫

Ω2ε

|u′2ε(t)|2 dx +
∫

Ω1ε

Aε∇u1ε(t)∇u1ε(t) dx

+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx+ εγ

∫
Γε

hε|u1ε(t) − u2ε(t)|2 dσx

]
.

Lemma 4.1. For −1 < γ ≤ 1, let Aε and hε be defined by (2.4) and (2.5),
respectively, and suppose that (2.7) holds. If uε is the solution of problem (2.6), then

(4.2)

Eε(t) =
1
2

[ ∫
Ω1ε

∣∣U1
ε

∣∣2 dx+
∫

Ω2ε

∣∣U1
ε

∣∣2 dx+
∫

Ω1ε

Aε∇U0
1ε∇U0

1ε dx

+
∫

Ω2ε

Aε∇U0
2ε∇U0

2ε dx+ εγ

∫
Γε

hε
∣∣U0

1ε − U0
2ε

∣∣2 dσx

]
+
∫ t

0

∫
Ω1ε

f1εu
′
1ε dx dτ +

∫ t

0

∫
Ω2ε

f2εu
′
2ε dx dτ ∀ t ∈ [0, T ].

Proof. If we take (u′1ε, u
′
2ε) as test functions in the variational formulation of

problem (2.6) (actually a standard density argument has to be used, see, for instance,
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[4] and [20]) we get

(4.3)

∫ t

0

〈u′′1ε, u
′
1ε〉(V ε)′,V ε dτ +

∫ t

0

〈u′′2ε, u
′
2ε〉(H1(Ω2ε))′,H1(Ω2ε) dτ

+
∫ t

0

∫
Ω1ε

Aε∇u1ε∇u′1ε dx dτ +
∫ t

0

∫
Ω2ε

Aε∇u2ε∇u′2ε dx dτ

+ εγ

∫ t

0

∫
Γε

hε(u1ε − u2ε)(u′1ε − u′2ε) dσx dτ

=
∫ t

0

∫
Ω1ε

f1εu
′
1ε dx dτ +

∫ t

0

∫
Ω2ε

f2εu
′
2ε dx dτ.

Moreover, ∫ t

0

〈u′′iε, u′iε〉(V ε)′,V ε dτ =
1
2

∫ t

0

d

dτ

∫
Ωiε

|u′iε|2 dx dτ, i = 1, 2.

Similarly, since the matrix A is symmetric we get∫ t

0

∫
Ωiε

Aε∇uiε · ∇u′iε dx dτ =
1
2

∫ t

0

d

dτ

∫
Ωiε

Aε∇uiε · ∇uiε dx dτ, i = 1, 2.

On the other hand,

εγ

∫ t

0

∫
Γε

hε(u1ε − u2ε)(u′1ε − u′2ε) dσx dτ =
εγ

2

∫ t

0

d

dτ

∫
Γε

hε|u1ε − u2ε|2 dσx dτ.

Therefore, identity (4.3) can be rewritten, using (4.1), as

Eε(t) − Eε(0) =
∫ t

0

dEε

dτ
dτ =

∫ t

0

∫
Ω1ε

f1εu
′
1ε dx dτ +

∫ t

0

∫
Ω2ε

f2εu
′
2ε dx dτ.

Hence, again by (4.1) and (2.6), we have (4.2).
Lemma 4.2. For −1 < γ ≤ 1, let Aε and hε be defined by (2.4) and (2.5),

respectively, and suppose that (2.7), (2.9), and (2.10) hold. If uε is the solution of
problem (2.6), then

lim
ε→0

Eε(t) =
1
2

[∫
Ω

∣∣U1
∣∣2 dx +

∫
Ω

A0∇U0∇U0 dx

]
+
∫ t

0

∫
Ω

f1u
′
1 dx dτ + θ2

−1

∫ t

0

∫
Ω

f2u
′
2 dx dτ ∀t ∈ [0, T ],

where we have u′2 = θ2u
′
1, if −1 < γ < 1.

Proof. We make use of Lemma 4.1, passing to the limit in (4.2) for any fixed
t ∈ [0, T ].

For the first two integrals, using (2.9), we have

lim
ε→0

(∫
Ω1ε

∣∣U1
ε

∣∣2 dx+
∫

Ω2ε

∣∣U1
ε

∣∣2 dx) =
∫

Ω

∣∣U1
∣∣2 dx.

Observe now that (2.11) holds in both cases −1 < γ < 1 and γ = 1. Indeed,
Theorem 3.3 written for u1ε = U0

1ε, u2ε = U0
2ε, b1ε = b2ε = 0, and g = −div A0∇U0
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gives, by the uniqueness of the solution of the limit problem, u1 = U0. Hence, if we
take (U0

1ε, U
0
2ε) as test functions in (2.10), in view of (2.11)(i) we have

lim
ε→0

[∫
Ω1ε

Aε∇U0
1ε∇U0

1ε dx+
∫

Ω2ε

Aε∇U0
2ε∇U0

2ε dx+ εγ

∫
Γε

hε
(
U0

1ε − U0
2ε

)2
dσx

]
= lim

ε→0

〈
−div

(
A0∇U0

)
, Qε

1U
0
1ε

〉
=
∫

Ω

A0∇U0∇U0 dx.

On the other hand, (2.9) and Remark 2.7(ii) imply that

lim
ε→0

∫ t

0

∫
Ω1ε

f1εu
′
1ε dx dτ +

∫ t

0

∫
Ω2ε

f2εu
′
2ε dx dτ

=
∫ t

0

∫
Ω

f1u
′
1 dx dτ + θ2

−1

∫ t

0

∫
Ω

f2u
′
2 dx dτ,

where for −1 < γ < 1 and γ = 1 we used convergences (2.15) and (2.21), respec-
tively.

From now on, the convergence of the energy in the two cases −1 < γ < 1 and
γ = 1 need to be studied separately.

Theorem 4.3 (convergence of energy for −1 < γ < 1). Let Aε and hε be defined
by (2.4) and (2.5), respectively, and suppose that (2.7), (2.9), and (2.10) hold. If uε is
the solution of problem (2.6) with −1 < γ < 1, then

(4.4) Eε → E in C0([0, T ]),

where

(4.5) E(t) :=
1
2

[∫
Ω

|u′1(t)|2 dx+
∫

Ω

A0∇u1(t)∇u1(t) dx
]

is the energy associated to problem (2.17).
Proof. Taking u′1 as test function in problem (2.17) and arguing as in the proof

of Lemma 4.1, we obtain

E(t) =
1
2

[∫
Ω

∣∣U1
∣∣2 dx+

∫
Ω

A0∇U0∇U0 dx

]
+
∫ t

0

∫
Ω

(f1 + f2)u′1 dx dτ.

Hence, by Lemma 4.2 we obtain

(4.6) lim
ε→0

Eε(t) = E(t) ∀t ∈ [0, T ],

since in this case u′2 = θ2u
′
1.

Using Lemma 4.1, Theorem 2.3, (2.7), (2.9), and (2.10) we deduce that there
exists a constant C (independent of ε) such that

|Eε(t)| ≤ C ∀ t ∈ [0, T ]

and, from the Hölder inequality,

|Eε(t+ σ) − Eε(t)|

=
∣∣∣∣∫ t+σ

t

∫
Ω1ε

f1εu
′
1ε dx dτ +

∫ t+σ

t

∫
Ω2ε

f2εu
′
2ε dx dτ

∣∣∣∣ ≤ σ1/2C.
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Consequently, by the Ascoli–Arzelà theorem, there exist a subsequence, still de-
noted by Eε, and a function ζ in C0([0, T ]) such that

(4.7) Eε → ζ in C0([0, T ]).

Hence, from (4.6) and (4.7), by uniqueness, one has ζ = E, which concludes the
proof.

Theorem 4.4 (convergence of energy for γ = 1). Let Aε and hε be defined by
(2.4) and (2.5), respectively, and suppose that (2.7), (2.9), and (2.10) hold. If uε is
the solution of problem (2.6) with γ = 1, then

Eε → Ê in C0([0, T ]),

where

(4.8)
Ê(t) :=

1
2

[
θ1

∫
Ω

|u′1(t)|2 dx+ θ2
−1

∫
Ω

|u′2(t)|2 dx

+
∫

Ω

A0∇u1(t)∇u1(t) dx+ chθ2
−1

∫
Ω

|θ2u1(t) − u2(t)|2 dx
]

is the energy associated to problem (2.23).
Proof. Let us prove first that

(4.9)

Ê(t) =
1
2

[∫
Ω

∣∣U1
∣∣2 dx+

∫
Ω

A0∇U0∇U0 dx

]
+
∫ t

0

∫
Ω

f1u
′
1 dx dτ + θ−1

2

∫ t

0

∫
Ω

f2u
′
2 dx dτ ∀t ∈ [0, T ].

Let us take u′1 as test function in the first equation of (2.23). Multiplying the second
equation by θ−1

2 u′2 and integrating over Ω × [0, t] we have by summation

(4.10)∫ t

0

〈θ1u′′1 , u′1〉L2(Ω),L2(Ω) dτ +
∫ t

0

〈u′′2 , θ−1
2 u′2〉L2(Ω),L2(Ω) dτ

+
∫ t

0

∫
Ω

A0∇u1∇u′1 dx dτ + ch

∫ t

0

∫
Ω

(θ2u1 − u2)u′1 dx dτ

− ch

∫ t

0

∫
Ω

(θ2u1 − u2)θ−1
2 u′2 dx dτ

=
∫ t

0

∫
Ω

f1u
′
1 dx dτ + θ2

−1

∫ t

0

∫
Ω

f2u
′
2 dx dτ ∀t ∈ [0, T ].

Now, observe that∫ t

0

〈θ1u′′1 , u′1〉L2(Ω),L2(Ω) dτ =
1
2
θ1

∫ t

0

d

dτ

∫
Ω

|u′1|2 dx dτ,∫ t

0

〈u′′2 , θ−1
2 u′2〉L2(Ω),L2(Ω) dτ =

1
2
θ−1
2

∫ t

0

d

dτ

∫
Ω

|u′2|2 dx dτ.

Similarly, taking into account that the matrix A0 is symmetric we get∫ t

0

∫
Ω

A0∇u1∇u′1 dx dτ =
1
2

∫ t

0

d

dτ

∫
Ω

A0∇u1 · ∇u1 dx dτ.
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On the other hand,

ch

∫ t

0

∫
Ω

(θ2u1 − u2)u′1 dx dτ − ch

∫ t

0

∫
Ω

(θ2u1 − u2)θ−1
2 u′2 dx dτ

= chθ
−1
2

∫ t

0

∫
Ω

(θ2u1 − u2)(θ2u′1 − u′2) dx dτ =
chθ

−1
2

2

∫ t

0

d

dτ

∫
Ω

(θ2u1 − u2)2dx dτ.

Therefore, taking into account (4.8) and identity (4.10) we obtain

Ê(t) − Ê(0) =
∫ t

0

dÊ

dτ
dτ =

∫ t

0

∫
Ω

f1u
′
1 dx dτ + θ2

−1

∫ t

0

∫
Ω

f2u
′
2 dx dτ ∀t ∈ [0, T ].

Using (2.23) and again (2.8), we deduce that

Ê(0) =
1
2

[
θ1

∫
Ω

∣∣U1
∣∣2 dx+ θ−1

2

∫
Ω

∣∣θ2U1
∣∣2 dx+

∫
Ω

A0∇U0∇U0 dx

]
+ chθ

−1
2

∫
Ω

∣∣θ2U0 − θ2U
0
∣∣2 dx

=
1
2

[∫
Ω

∣∣U1
∣∣2 dx+

∫
Ω

A0∇U0∇U0 dx

]
.

This gives (4.9) which, together with Lemma 4.2, implies that

lim
ε→0

Eε(t) → Ê(t) ∀t ∈ [0, T ].

Now, arguing as in the proof of Theorem 4.3, but using here Theorem 2.6 instead
of Theorem 2.3, we conclude the proof.

5. Proof of the corrector result in the case −1 < γ < 1. Let Q1 be
defined by Lemma 3.1 and introduce the test functions associated to the solution wλ

of problem (2.13) by

(5.1) χ1λ = λ · y − wλ(y), wε
λ(x) := λ · x− ε(Q1(χ1λ)(x/ε)).

A simple change of scale gives that

(5.2)
∫

Ω1ε

Aε∇wε
λ · ∇v1 dx = 0

for every v1 ∈ V ε and (see [7]) the following convergences hold true:

(5.3)

⎧⎪⎨⎪⎩
wε

λ → λ · x weakly in H1(Ω),
wε

λ → λ · x strongly in L2(Ω),
χΩ1εA

ε∇wε
λ ⇀ A0λ weakly in [L2(Ω)]n,

where A0 is given by (2.12).
From now on, we will adopt the Einstein summation convention. The proof of

the corrector result is based on the following proposition.
Proposition 5.1. Suppose that the assumptions of Theorem 2.4 are fulfilled. Set

for any Φ ∈ C∞([0, T ],D(Ω))

Xε(t) =
1
2

[ ∫
Ω

∣∣∣ũ′1ε(t) + ũ′2ε(t) − Φ′(t)
∣∣∣2 dx

+
∫

Ω1ε

Aε(∇u1ε(t)−Cε∇Φ(t))(∇u1ε(t)−Cε∇Φ(t)) dx+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx
]
,
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where Cε is given in (2.18). Then

(5.4) lim sup
ε→0

‖Xε‖C0([0,T ]) ≤ ‖X‖C0([0,T ]),

where

X(t) =
1
2

[
‖u′1(t) − Φ′(t)‖2

L2(Ω) +
∫

Ω

A0(∇u1(t) −∇Φ(t))(∇u1(t) −∇Φ(t)) dx
]
.

Remark 5.2. Observe that in general in literature (see, for instance, [5], [17],
[18]) one can introduce suitable quantities Xε and X such that

Xε → X in C0([0, T ]).

Here, we can prove only (5.4), which is just an inequality on the upper limit of
‖Xε‖C0([0,T ]). Nevertheless, this will be sufficient to prove the corrector result.

Proof of Proposition 5.1. Using the symmetry of Aε and Cε, one has

Xε(t) =
1
2

[ ∫
Ω

∣∣∣ũ′1ε(t) + ũ′2ε(t) − Φ′(t)
∣∣∣2

+
∫

Ω1ε

Aε∇u1ε(t)∇u1ε(t) dx− 2
∫

Ω1ε

AεCε∇Φ(t)∇u1ε(t) dx

+
∫

Ω1ε

AεCε∇Φ(t)Cε∇Φ(t) dx+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx
]
.

Set, for t ∈ [0, T ],

X1ε(t) =
1
2

[∫
Ω

∣∣∣ũ′1ε(t) + ũ′2ε(t)
∣∣∣2 +

∫
Ω1ε

Aε∇u1ε(t)∇u1ε(t) dx

+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx
]
,

X2ε(t) =
∫

Ω

(
ũ′1ε(t) + ũ′2ε(t)

)
Φ′(t) dx +

∫
Ω1ε

AεCε∇Φ(t)∇u1ε(t) dx,

and

X3ε(t) =
1
2

[∫
Ω

|Φ′(t)|2 +
∫

Ω1ε

AεCε∇Φ(t)Cε∇Φ(t) dx
]

so that

Xε = X1ε −X2ε +X3ε.

For X1ε, recalling (4.1), we have

(5.5) X1ε(t) ≤ Eε(t) ∀ t ∈ [0, T ].
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For X2ε, taking into account (2.18), (5.1) written for λ = ei, and (5.2) we obtain

(5.6)

X2ε(t) =
∫

Ω

(
ũ′1ε(t) + ũ′2ε(t)

)
Φ′(t) dx+

∫
Ω1ε

Aε∇wε
i

∂Φ
∂xi

(t)∇u1ε(t) dx

=
∫

Ω

(
ũ′1ε(t) + ũ′2ε(t)

)
Φ′(t) dx+

∫
Ω1ε

Aε∇wε
i∇
[
∂Φ
∂xi

(t) u1ε(t)
]
dx

−
∫

Ω1ε

Aε∇wε
i∇
[
∂Φ
∂xi

(t)
]
u1ε(t) dx

=
∫

Ω

(
ũ′1ε(t) + ũ′2ε(t)

)
Φ′(t) dx

−
∫

Ω

χΩ1εA
ε∇wε

i ∇
[
∂Φ
∂xi

(t)
]
P ε

1u1ε(t) dx ∀ t ∈ [0, T ].

Hence, by (2.14), (2.15), and (5.3) we conclude that

(5.7)
X2ε →

∫
Ω

(θ1u′1 + θ2u
′
1)Φ

′ dx−
∫

Ω

A0ei∇
[
∂Φ
∂xi

]
u1 dx

=
∫

Ω

u′1Φ
′ dx+

∫
Ω

A0∇Φ∇u1 dx in D′(0, T ).

Moreover, taking into account (5.6), by Theorem 2.3, (5.2), and (5.3) we obtain that
there exists a constant C (independent of ε) such that

(5.8) ‖X2ε‖L∞(0,T ) ≤ C.

Consequently, to prove that convergence (5.7) takes place in C0([0, T ]) it is enough
to show that

(5.9)
∥∥∥∥∂X2ε

∂t

∥∥∥∥
L2(0,T )

≤ C.

Using the variational formulation (2.8), we have

∂

∂t

∫
Ω

(
ũ′1ε(t) + ũ′2ε(t)

)
Φ′(t) dx =

∫
Ω

(
ũ′1ε(t) + ũ′2ε(t)

)
Φ′′(t)

−
∫

Ω1ε

Aε∇u1ε(t) · ∇Φ′(t) dx−
∫

Ω2ε

Aε∇u2ε(t) · ∇Φ′(t) dx

+
∫

Ω1ε

f1ε(t)Φ′(t) dx+
∫

Ω2ε

f2ε(t)Φ′(t) dx,

which is bounded in L2(0, T ) due to (2.15), (2.16), and (2.7).
Moreover, we have

∂

∂t

∫
Ω

χ
Ω1ε

Aε∇wε
i∇
[
∂Φ
∂xi

(t)
]
P ε

1u1ε(t) dx =
∫

Ω

χ
Ω1ε

Aε∇wε
i ∇
[
∂Φ′

∂xi
(t)
]
P ε

1u1ε(t) dx

+
∫

Ω

χ
Ω1ε

Aε∇wε
i∇
[
∂Φ
∂xi

(t)
]
P ε

1u
′
1ε(t) dx,

which is bounded in L2(0, T ) as a consequence of (5.3) and Theorem 2.3.
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Thus, from (5.6) we obtain (5.9). Due to classical compactness results, from this
inequality and (5.8) it turns out that X2ε is relatively compact in C0([0, T ]). This,
together with (5.7), gives

(5.10) X2ε → X2 :=
∫

Ω

u′1Φ
′ dx+

∫
Ω

A0∇Φ∇u1 dx strongly in C0([0, T ]).

For X3ε, by the smoothness of Φ we have that it is bounded in L∞(0, T ) as well
as its time derivative. Moreover, by (5.2) we deduce that∫

Ω1ε

AεCε∇Φ(t)Cε∇Φ(t) dx =
∫

Ω1ε

Aε∇wε
i

∂Φ
∂xi

(t)∇wε
j

∂Φ
∂xj

(t) dx

= −
∫

Ω1ε

Aε∇wε
iw

ε
j∇
[
∂Φ
∂xi

(t)
∂Φ
∂xj

(t)
]
dx.

Thus, from (5.3)

lim
ε→0

X3ε(t) = lim
ε→0

1
2

[
‖Φ′(t)‖2

L2(Ω) +
∫

Ω1ε

AεCε∇Φ(t)Cε∇Φ(t) dx
]

=
1
2

[
‖Φ′(t)‖2

L2(Ω) −
∫

Ω

A0eixj∇
[
∂Φ
∂xi

(t)
∂Φ
∂xj

(t)
]
dx

]
=

1
2

[
‖Φ′(t)‖2

L2(Ω) +
∫

Ω

A0∇Φ(t)∇Φ(t) dx
]
∀ t ∈ [0, T ],

which gives

(5.11) X3ε → X3 :=
1
2

[
‖Φ′‖2

L2(Ω) +
∫

Ω

A0∇Φ∇Φ dx

]
strongly in C0([0, T ]).

Convergence (5.11), together with (5.10), (4.4), and (4.5), gives

(5.12) Eε −X2ε +X3ε → E −X2 +X3 = X strongly in C0([0, T ]).

Since from (5.5) one has

0 ≤ Xε(t) ≤ Eε(t) −X2ε(t) +X3ε(t) ∀ t ∈ [0, T ],

by (5.12) we conclude that

lim sup
ε→0

‖Xε‖C0([0,T ]) ≤ lim
ε→0

‖Eε −X2ε +X3ε‖C0([0,T ]) = ‖X‖C0([0,T ]).

Remark 5.3. Let us point out that the main difficulty when proving Proposi-
tion 5.1 is due to the fact that, as a consequence of the presence of the boundary term
in the energy, we have only X1ε ≤ Eε and not X1ε = Eε as in the classical cases.

Nevertheless, the fact that Eε −X2ε +X3ε → X in C0([0, T ]) allows us to prove
the result.

Proof of Theorem 2.4. The function u1 ∈ L2(0, T ;H1
0 (Ω))∩C0([0, T ];L2(Ω)) and

its derivative u′1 ∈ C0([0, T ];L2(Ω)); thus, from classical density results, for any δ > 0
there exists Φ ∈ C∞([0, T ];D(Ω)) such that

(5.13)

{
‖u′1 − Φ′‖C0([0,T ];L2(Ω)) ≤ δ,

‖∇u1 −∇Φ‖L2(0,T ;L2(Ω)) ≤ δ.
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Therefore,

(5.14)

∥∥∥ũ′1ε + ũ′2ε − u′1

∥∥∥2

C0(0,T ;L2(Ω))

≤ 2
(∥∥∥ũ′1ε + ũ′2ε − Φ′

∥∥∥2

C0(0,T ;L2(Ω))
+ ‖Φ′ − u′1‖2

C0(0,T ;L2(Ω))

)
≤ 2

∥∥∥ũ′1ε + ũ′2ε − Φ′
∥∥∥2

C0(0,T ;L2(Ω))
+ 2δ2.

On the other hand, due to the Cauchy–Schwarz inequality, definition (2.18) of
Cε, and (5.13) there exist two constants C1, C2 such that

(5.15)
‖∇u1ε − Cε∇u1‖2

C0([0,T ];[L1(Ω1ε)]n) + ‖∇u2ε‖2
C0([0,T ];[L2(Ω2ε)]n)

≤ 2‖∇u1ε − Cε∇Φ‖2
C0([0,T ];[L1(Ω1ε)]n) + ‖∇u2ε‖2

C0([0,T ];[L2(Ω2ε)]n)

+ 2‖Cε(∇Φ −∇u1)‖2
C0([0,T ];[L1(Ω1ε)]n)

≤ 2C1‖∇u1ε − Cε∇Φ‖2
C0([0,T ];[L2(Ω1ε)]n) + ‖∇u2ε‖2

C0([0,T ];[L2(Ω2ε)]n) + 2C2δ
2.

From properties (2.3) and definition (2.4) of Aε, we have

1
2

∥∥∥ũ′1ε(t) + ũ′2ε(t) − Φ′(t)
∥∥∥2

L2(Ω)

+
α

2

(
‖∇u1ε(t) − Cε∇Φ(t)‖2

[L2(Ω1ε)]n + ‖∇u2ε(t)‖2
[L2(Ω2ε)]n

)
≤ Xε(t) ∀t ∈ [0, T ];

moreover, there exists a constant C3

‖X‖C0([0,T ]) ≤ C3δ
2,

where Xε and X are defined in Proposition 5.1 and are applied to the function Φ,
given by (5.13).

From this last inequality and by Proposition 5.1, we conclude that

lim sup
ε→0

{
1
2

∥∥∥ũ′1ε + ũ′2ε − Φ′
∥∥∥2

C0([0,T ];L2(Ω))

+
α

2

(
‖∇u1ε − Cε∇Φ‖2

C0([0,T ];[L2(Ω1ε)]n) + ‖∇u2ε‖2
C0([0,T ];[L2(Ω2ε)]n)

)}
≤ lim sup

ε→0
‖Xε‖C0([0,T ]) ≤ ‖X‖C0([0,T ]) ≤ C3δ

2.

This, together with (5.14) and (5.15), gives convergences (2.19), δ being arbi-
trary.

6. Proof of the corrector result in the case γ = 1. The proof is based on
the result below, which is analogous to that shown for −1 < γ < 1 in Proposition 5.1.
Let us emphasize that here the proof is more delicate and contains some technically
specific parts.
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Proposition 6.1. Suppose that the assumptions of Theorem 2.8 are fulfilled. Set
for any Φ,Ψ ∈ C∞([0, T ],D(Ω))

X̂ε(t) =
1
2

∫
Ω1ε

|u′1ε(t) − Φ′(t)|2 dx+
∫

Ω2ε

|u′2ε(t) − Ψ′(t)|2 dx

+
∫

Ω1ε

Aε(∇u1ε(t) − Cε∇Φ(t))(∇u1ε(t) − Cε∇Φ(t)) dx

+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx
]
.

Then,

lim sup
ε→0

∥∥X̂ε

∥∥
C0([0,T ])

≤
∥∥X̂∥∥

C0([0,T ])
,

where

(6.1)
X̂(t) =

1
2

[
θ1|‖u′1(t) − Φ′(t)‖2

L2(Ω) + θ−1
2 ‖u′2(t) − θ2Ψ′(t)‖2

L2(Ω)

+
∫

Ω

A0(∇u1(t) −∇Φ(t))(∇u1(t) −∇Φ(t)) dx
]
.

Remark 6.2. Here also (see Remark 5.2) we have only an inequality on the upper
limit of ‖X̂ε‖C0([0,T ]). Due to the special form of the energy, to prove Proposition 6.1
we need to introduce more complex arguments than those used in the proof of Propo-
sition 5.1.

Proof of Proposition 6.1. By the symmetry of Aε and Cε, one has

X̂ε(t) =
1
2

[ ∫
Ω1ε

|u′1ε(t) − Φ′(t)|2 dx+
∫

Ω2ε

|u′2ε(t) − Ψ′(t)|2 dx

+
∫

Ω1ε

Aε∇u1ε(t)∇u1ε(t) dx− 2
∫

Ω1ε

AεCε∇Φ(t)∇u1ε(t) dx

+
∫

Ω1ε

AεCε∇Φ(t)Cε∇Φ(t) dx+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx
]
.

Decompose X̂ε as

X̂ε = X1ε − X̂2ε + X̂3ε,

where, as in the previous case,

X1ε(t) =
1
2

[ ∫
Ω1ε

|u′1ε(t)|2 dx+
∫

Ω2ε

|u′2ε(t)|2 dx

+
∫

Ω1ε

Aε∇u1ε(t)∇u1ε(t) dx+
∫

Ω2ε

Aε∇u2ε(t)∇u2ε(t) dx
]
,

while

X̂2ε(t) =
∫

Ω1ε

u′1ε(t)Φ
′(t) dx+

∫
Ω2ε

u′2ε(t)Ψ
′(t) dx

+
∫

Ω1ε

AεCε∇Φ(t)∇u1ε(t) dx
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and

X̂3ε(t) =
1
2

[∫
Ω1ε

|Φ′(t)|2 dx+
∫

Ω2ε

|Ψ′(t)|2 dx+
∫

Ω1ε

AεCε∇ΦCε∇Φ dx

]
.

We proceed in several steps.
Step 1. Let us prove that

(6.2)
lim sup

ε→0
X1ε(t) ≤ X̂1 :=

1
2

[
θ1

∫
Ω

|u′1(t)|2 dx + θ−1
2

∫
Ω

|u′2(t)|2 dx

+
∫

Ω

A0∇u1(t)∇u1(t) dx
]

∀ t ∈ [0, T ].

Since from (4.1) we have

(6.3) X1ε = Eε − 1
2

(
ε

∫
Γε

hε|u1ε − u2ε|2dσx

)
,

following the same ideas of [8] we show first that

(6.4) lim inf
ε→0

(
ε

∫
Γε

hε|u1ε(t) − u2ε(t)|2dσx

)
≥ chθ

−1
2

∫
Ω

|θ2u1(t) − u2(t)|2 dx

for any t ∈ [0, T ].
To do that, we apply Lemma 3.4(ii) with g = h and vε = (P ε

1u1ε − u2ε)2 getting

(6.5)

lim inf
ε→0

(
ε

∫
Γε

hε|u1ε(t) − u2ε(t)|2dσx

)
= lim inf

ε→0

(
ε

∫
Γε

hε|P ε
1u1ε(t) − u2ε(t)|2dσx

)
= lim inf

ε→0
ch

∫
Ω2ε

|P ε
1 u1ε(t) − u2ε(t)|2dx ∀ t ∈ [0, T ].

Observe now that, thanks to (2.2), (2.20), and Remark 2.7(ii), we have

P̃ ε
1u1ε|Ω2ε

(t)−ũ2ε(t) = χ|Ω2ε
P ε

1 u1ε(t)−ũ2ε(t) ⇀ θ2
(
u1(t) − θ−1

2 u2(t)
)
weakly in L2(Ω)

for any t ∈ [0, T ].
Hence, we can apply Lemma 3.5 with p = 2, Oε = Ω2ε, χ0

= θ2, vε = P ε
1 u1ε|Ω2ε

−
u2ε, and v = (u1 − θ−1

2 u2). We have

lim inf
ε→0

ch

∫
Ω2ε

|P ε
1u1ε|Ω2ε

(t)−u2ε(t)|2dx ≥ ch

∫
Ω

θ2
∣∣u1(t) − θ−1

2 u2(t)
∣∣2 dx ∀ t ∈ [0, T ],

which, together with (6.5), gives (6.4).
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By (6.3), (6.4), and Theorem 4.4 we conclude that

lim sup
ε→0

X1ε(t) = lim sup
ε→0

[
Eε(t) − 1

2

(
ε

∫
Γε

hε|u1ε(t) − u2ε(t)|2dσx

)]
= lim

ε→0
Eε(t) − lim inf

ε→0

[
1
2

(
ε

∫
Γε

hε|u1ε(t) − u2ε(t)|2dσx

)]
≤ 1

2

[
θ1

∫
Ω

|u′1(t)|2 dx+ θ2
−1

∫
Ω

|u′2(t)|2 dx

+
∫

Ω

A0∇u1(t)∇u1(t) dx + chθ2
−1

∫
Ω

|θ2u1(t) − u2(t)|2 dx

− chθ2
−1

∫
Ω

|θ2u1(t) − u2(t)|2 dx
]
∀ t ∈ [0, T ],

which proves (6.2).
Step 2. Observe now that, due to the presence of the boundary term in (6.3), we

cannot have a priori estimates on the time derivative of X1ε. Hence, we cannot deduce
any compactness of X1ε in C0([0, T ]). To overcome this difficulty, we decompose X1ε

as a sum of a compact part Eε −Yε and a rest Ŷε, which goes to zero in C0([0, T ]) as
ε→ 0. To do that we use Lemma 3.4(i) in (6.3) to obtain

X1ε = Eε − Yε − Ŷε,

where

Yε(t) := ch

∫
Ω2ε

|P ε
1 u1ε(t) − u2ε(t)|2 dx

and

(6.6) Ŷε(t) := ε

∫
Ω2ε

∇yψh(x/ε)∇x|P ε
1 u1ε(t) − u2ε(t)|2 dx ∀ t ∈ [0, T ].

Let us show first that

(6.7) Eε − Yε is compact in C0([0, T ]).

Indeed, from Theorem 4.4 Eε converges in C0([0, T ]). Moreover, Yε is bounded in
L∞(0, T ) and∥∥∥∥∂Yε

∂t

∥∥∥∥
L∞(0,T )

≤ C‖P ε
1u

′
1ε − u′2ε‖L∞(0,T ;L2(Ω2ε))‖P ε

1u1ε − u2ε‖L∞(0,T ;L2(Ω2ε)) ≤ C.

This gives (6.7).
To conclude this step, let us prove that

(6.8) Ŷε → 0 in C0([0, T ]).

Indeed,

ε

∣∣∣∣∫
Ω2ε

∇yψh(x/ε)∇x|P ε
1u1ε(t) − u2ε(t)|2 dx

∣∣∣∣
≤ 2ε‖∇yψh‖L∞(Rn) ‖∇(P ε

1 u1ε − u2ε) (P ε
1 u1ε − u2ε)‖L∞(0,T ;L1(Ω2ε))

≤ C3ε‖P ε
1u1ε − u2ε‖C0(0,T ;H1(Ω2ε)) ≤ Cε ∀ t ∈ [0, T ]
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with C independent of ε and t. Therefore,

ε

∣∣∣∣∫
Ω2ε

∇yψh(x/ε)∇x(P ε
1u1ε − u2ε)2 dx

∣∣∣∣→ 0 in C0([0, T ]),

which gives (6.8).
Step 3. We prove here the convergences of X̂2ε and X̂3ε in C0([0, T ]).
Consider first X̂2ε. From (2.18), (5.1) written for λ = ei, and (5.2) we have

(6.9)

X̂2ε(t) =
∫

Ω1ε

u′1ε(t)Φ
′(t) dx+

∫
Ω2ε

u′2ε(t)Ψ
′(t) dx+

∫
Ω1ε

Aε∇wε
i∇u1ε(t)

∂Φ
∂xi

(t) dx

=
∫

Ω

ũ′1ε(t)Φ
′(t) dx+

∫
Ω

ũ′2ε(t)Ψ
′(t) dx+

∫
Ω1ε

Aε∇wε
i∇
[
u1ε(t)

∂Φ
∂xi

(t)
]
dx

−
∫

Ω1ε

Aε∇wε
i ∇
[
∂Φ
∂xi

(t)
]
u1ε(t) dx =

∫
Ω

ũ′1ε(t)Φ
′(t) dx+

∫
Ω

ũ′2ε(t)Ψ
′(t) dx

−
∫

Ω

χΩ1εA
ε∇wε

i∇
[
∂Φ
∂xi

(t)
]
P ε

1u1ε(t) dx.

Due to Theorem 2.6, Remark 2.7(ii), and (5.3) one concludes that

(6.10)
X̂2ε →

∫
Ω

θ1u
′
1Φ

′ dx+
∫

Ω

u′2Ψ
′ dx−

∫
Ω

A0ei∇
[
∂Φ
∂xi

]
u1 dx

=
∫

Ω

θ1u
′
1Φ

′ dx+
∫

Ω

u′2Ψ
′ dx+

∫
Ω

A0∇Φ∇u1 dx in D′(0, T ).

We have to prove that this convergence takes place in C0([0, T ]). From (6.9), Theo-
rem 2.6, (5.2), and (5.3) there exists a constant C (independent of ε) such that

(6.11) ‖X̂2ε‖L∞(0,T ) ≤ C.

Let us show that

(6.12)

∥∥∥∥∥∂X̂2ε

∂t

∥∥∥∥∥
L2(0,T )

≤ C.

The variational formulation (2.8) written for v1 = Φ and v2 = Ψ reads

∂

∂t

(∫
Ω

u′1ε(t)Φ
′(t) dx+

∫
Ω

u′2ε(t)Ψ
′(t) dx

)
=
∫

Ω

ũ′1ε(t)Φ
′′(t) +

∫
Ω

ũ′2ε(t)Ψ
′′(t) −

∫
Ω1ε

Aε∇u1ε(t) · ∇Φ′(t) dx

−
∫

Ω2ε

Aε∇u2ε(t)∇Ψ′(t) dx− ε

∫
Γε

hε(u1ε(t) − u2ε(t))(Φ′(t) − Ψ′(t)) dσx

+
∫

Ω1ε

f1ε(t)Φ′(t) dx +
∫

Ω2ε

f2ε(t)Ψ′(t) dx,

which is bounded in L2(0, T ) due to Theorems 2.6 and (2.9)(i).
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Moreover, we have

∂

∂t

∫
Ω

χ
Ω1ε

Aε∇wε
i∇
[
∂Φ
∂xi

(t)
]
P ε

1u1ε(t) dx =
∫

Ω

χ
Ω1ε

Aε∇wε
i ∇
[
∂Φ′

∂xi
(t)
]
P ε

1u1ε(t) dx

+
∫

Ω

χ
Ω1ε

Aε∇wε
i∇
[
∂Φ
∂xi

(t)
]
P ε

1u
′
1ε(t) dx,

and the right-hand side of this equality is bounded in L2(0, T ) in view of (5.3) and
Theorem 2.6. Hence (6.12) holds; this, together with (6.11), shows that X̂2ε is rela-
tively compact in C0([0, T ]) so that from (6.10) we obtain
(6.13)

X̂2ε → X̂2 :=
∫

Ω

θ1u
′
1Φ

′ dx+
∫

Ω

u′2Ψ
′ dx +

∫
Ω

A0∇Φ∇u1 dx strongly in C0([0, T ]).

Concerning X̂3ε, a similar argument to that used in the proof of Proposition 5.1
to show (5.11) gives

(6.14) X̂3ε → X̂3 :=
1
2

[
θ1‖Φ′‖2

L2(Ω) + θ2‖Ψ′‖2
L2(Ω) +

∫
Ω

A0∇Φ∇Φ dx

]
strongly in C0([0, T ]).

Step 4. Observe first that from (6.2), (6.13), and (6.14) we have

(6.15) 0 ≤ lim sup
ε→0

X̂ε(t) ≤ X̂1(t) − X̂2(t) + X̂3(t) = X̂(t) ∀ t ∈ [0, T ],

where X̂ is given by (6.1).
On the other hand, if we write X̂ε as

(6.16) X̂ε = Zε − Ŷε,

where

(6.17) Zε := Eε − Yε − X̂2ε + X̂3ε

and Ŷε is given by (6.6), due to (6.8) we have

(6.18) lim sup
ε→0

∥∥X̂ε

∥∥
C0([0,T ])

≤ lim sup
ε→0

‖Zε‖C0([0,T ])+lim
ε→0

∣∣Ŷε

∣∣ = lim sup
ε→0

‖Zε‖C0([0,T ]).

Consequently, to conclude, it is enough to prove that

(6.19) lim sup
ε→0

‖Zε‖C0([0,T ]) ≤
∥∥X̂∥∥

C0([0,T ])
,

which together with (6.18) will give the claimed result.
Let {ε′} be a subsequence such that

(6.20) lim sup
ε→0

‖Zε‖C0([0,T ]) = lim
ε′→0

‖Zε′‖C0([0,T ]).

From (6.7), (6.13), and (6.14) it follows that Zε is compact in C0([0, T ]). There-
fore, there exists a subsequence (still denoted {ε′}) such that

(6.21) Zε′ → Z strongly in C0([0, T ]).
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But, from (6.16), (6.15), and (6.8) we have

0 ≤ Z(t) = lim
ε′→0

[
X̂ε′(t) + Ŷε′(t)

]
= lim

ε′→0
X̂ε′(t) ≤ X(t) ∀ t ∈ [0, T ]

so that from (6.21) one has

lim
ε′→0

‖Zε′‖C0([0,T ]) = ‖Z‖C0([0,T ]) ≤
∥∥X̂∥∥

C0([0,T ])
,

which together with (6.20) gives (6.19) and ends the proof.
Remark 6.3. Let us emphasize the main difficulties in the proof of Proposition 6.1.

First, as in the previous case (see Remark 5.3), due to the presence of the boundary
term in the energy, we have only X1ε ≤ Eε and not X1ε = Eε, as usual. Moreover,
here the limit of Eε−X̂2ε +X̂3ε is bigger than X̂ so that we cannot conclude as in the
previous case. On the other hand, since we have no estimates for the time derivative
of the boundary term of X1ε, we cannot derive any compactness of X1ε in C0([0, T ]).
This is why we introduced in Step 4 of the proof a more technical argument, which
relies on the decomposition (6.17) of X̂ε as a sum of a compact term Zε − Yε and a
rest Ŷε, which goes to zero in C0([0, T ]) as ε→ 0.

Proof of Theorem 2.8. Since u1 ∈ L2(0, T ;H1
0 (Ω)) ∩ C0([0, T ];L2(Ω)), u′1 ∈

C0([0, T ];L2(Ω)), and u′2 ∈ C0([0, T ];L2(Ω)), from classical density results, we have
that for any δ > 0 there exist Φ,Ψ ∈ C∞([0, T ];D(Ω)) such that

(6.22)

⎧⎪⎨⎪⎩
(i) ‖u′1 − Φ′‖C0([0,T ];L2(Ω)) ≤ δ,

(ii)
∥∥θ−1

2 u′2 − Ψ′∥∥
C0([0,T ];L2(Ω))

≤ δ,

(iii) ‖∇u1 −∇Φ‖L2(0,T ;L2(Ω)) ≤ δ.

Therefore,

(6.23)

‖u′1ε − u′1‖2
C0(0,T ;L2(Ω1ε)) +

∥∥u′2ε − θ−1
2 u′2

∥∥2

C0(0,T ;L2(Ω2ε))

≤ 2
(
‖u′1ε − Φ′‖2

C0(0,T ;L2(Ω1ε)) + ‖Φ′ − u′1‖2
C0(0,T ;L2(Ω1ε))

+ ‖u′2ε − Ψ′‖2
C0(0,T ;L2(Ω2ε)) +

∥∥Ψ′ − θ−1
2 u′2

∥∥2

C0(0,T ;L2(Ω2ε))

)
≤ 2

(
‖u′1ε − Φ′‖2

C0(0,T ;L2(Ω1ε)) + ‖u′2ε − Ψ′‖2
C0(0,T ;L2(Ω2ε))

)
+ 2δ2.

The same argument used to prove (5.15) gives that there exists a constant C1 such
that

(6.24)
(
‖∇u1ε − Cε∇u1‖2

C0([0,T ];[L1(Ω1ε)]n) + ‖∇u2ε‖2
C0([0,T ];[L2(Ω2ε)]n)

)
≤ C1

(
‖∇u1ε − Cε∇Φ‖2

C0([0,T ];[L2(Ω1ε)]n) + ‖∇u2ε‖2
C0([0,T ];[L2(Ω2ε)]n) + δ2

)
.

On the other hand, from the properties of Aε,

1
2

[
‖u′1ε(t) − Φ′(t)‖2

L2(Ω1ε) + ‖u′2ε(t) − Ψ′(t)‖2
L2(Ω2ε)

+ α
(
‖∇u1ε − Cε∇Φ‖2

[L2(Ω1ε)]n + ‖∇u2ε‖2
[L2(Ω2ε)]n

) ]
≤ X̂ε ∀ t ∈ [0, T ]

and there exists a constant C2 such that∥∥X̂∥∥
C0([0,T ])

≤ C2δ
2,
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where X̂ε and X̂, defined in Proposition 6.1, are applied to the function Φ and Ψ,
given by (6.22).

Therefore, from Proposition 6.1 we conclude

lim sup
ε→0

{
1
2

[
‖u′1ε − Φ′‖2

C0([0,T ];[L2(Ω1ε)]) + ‖u′2ε − Ψ′‖2
C0([0,T ];[L2(Ω2ε)])

]
+
α

2

(
‖∇u1ε − Cε∇Φ‖2

C0([0,T ];[L2(Ω1ε)]n) + ‖∇u2ε‖2
C0([0,T ];[L2(Ω2ε)]n)

)}
≤ lim sup

ε→0

∥∥X̂ε

∥∥
C0([0,T ])

≤
∥∥X̂∥∥

C0([0,T ])
≤ C2δ

2,

which, together with (6.23) and (6.24), gives (2.24), since δ is arbitrary.
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RELAXATION-TIME LIMIT IN THE ISOTHERMAL
HYDRODYNAMIC MODEL FOR SEMICONDUCTORS∗

JIANG XU†

Abstract. This work is concerned with the relaxation-time limit in the multidimensional isother-
mal hydrodynamic model for semiconductors in the critical Besov space. As the initial data are suffi-
ciently close to equilibrium, the uniform (global) classical solutions are constructed by the high- and
low-frequency decomposition methods. Furthermore, it is shown that the scaled classical solutions
strongly converge towards that of a drift-diffusion model, as the relaxation time tends to zero.

Key words. relaxation-time limit, isothermal hydrodynamic model, semiconductors
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1. Introduction and main results. In this work, we are interested in the
isothermal hydrodynamic model for semiconductors, which is of the form⎧⎨⎩

nt + ∇ · (nu) = 0,
(nu)t + ∇ · (nu ⊗ u) + a2∇n = n∇Φ − nu

τ ,
ΔΦ = n− n̄, Φ → 0 as |x| → +∞

(1.1)

for (t, x) ∈ [0,+∞) × RN (N ≥ 2). Here n,u = (u1, u2, . . . , uN)�(� transpose), and
Φ stand for the electron density, the electron velocity, and the electrostatic potential,
respectively; a > 0 is the sound speed; and 0 < τ ≤ 1 is the (small) momentum
relaxation time for electrons. The symbols ∇, Δ, and ⊗ are the gradient operator,
Laplacian operator, and the tensor products of two vectors, respectively. The positive
constant n̄ stands for the density of positively charged background ions.

The system (1.1) is supplemented with the initial data

(n,u)(x, 0) = (n0,u0)(x), x ∈ RN .(1.2)

Concerning the small relaxation-time analysis, we define the scaled variables as
in [12]:

(nτ ,uτ , eτ )(x, s) =
(
n,

1
τ
u, e

)(
x,
s

τ

)
, (e = ∇Φ).(1.3)

Then the new variables satisfy the equations⎧⎨⎩
nτ

s + ∇ · (nτuτ ) = 0,
τ2uτ

s + τ2(uτ · ∇)uτ + uτ = eτ − a2 ∇nτ

nτ ,
∇ · eτ = nτ − n̄,

(1.4)

with the initial data

(nτ , τuτ )(x, 0) = (n0,u0).(1.5)
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Let τ → 0; then, formally, we arrive at the classical drift-diffusion model⎧⎨⎩
Ns + ∇ · (NE − a2∇N ) = 0,
∇ · E = N − n̄,
N (x, 0) = n0.

(1.6)

This relaxation-time limit for the system (1.1)–(1.2) was first studied by Mar-
cati and Natalini [12]. They obtained the uniform weak solutions with respect to
τ and proved that the scaled weak solutions converged towards that of the drift-
diffusion model (1.6). Subsequently, some rigorous results related to the relaxation
limit have appeared (we refer the reader to [1, 3, 7, 8, 9, 10]); however, these results
are restricted to one space dimension. Physically, it is more important and more
interesting to study this asymptotic limit in several space dimensions; unfortunately,
due to the serious difficulties in establishing the global existence of weak or smooth
solutions to (1.1)–(1.2), up to now, only partial relaxation limit results are available
in several space dimensions. In [11], Lattanzio and Marcati considered the three-
dimensional isentropic hydrodynamic model, assuming the existence of L∞-solutions
in an τ -independent time interval, and justified the relaxation limit. Inspired by the
Maxwell iteration, Yong [15] dealt with the periodic initial-value problem for the mul-
tidimensional isentropic hydrodynamic model in the Sobolev space H�(TN ); however,
the regularity index is required to be high (� > 1 +N/2, an integer).

Recently, in [6], we first established the global existence and exponential stability
of classical solutions to the (isentropic and isothermal) hydrodynamic model for semi-
conductors in the critical Besov space B1+N/2

2,1 (RN ), but it is not clear whether the
results are independent of the relaxation time τ . In this paper, we construct the uni-
form classical solutions (close to equilibrium) to the isothermal hydrodynamic model
(1.1)–(1.2) and justify the above formal limit rigorously. For the proof of the global
result, different from that in [6], we add some “new” ideas. More concretely speaking,
we take full advantage of the special structure (skew-symmetry) of (1.1)–(1.2), which
can help us avoid differentiating the system with respect to variable t once, and de-
velop some “new” frequency-localization estimates; for details, see Lemmas 4.3, 4.4,
and 4.5. In this sense, the proof of the global result is shortened heavily. Here, we
first state the main results as follows.

Theorem 1.1. Let n̄ > 0 be a constant reference density. Suppose that n0−n̄,u0,
and e0 ∈ Bσ

2,1(RN )(σ = 1 +N/2). There exists a positive constant δ0 independent of
τ , such that if

‖(n0 − n̄,u0, e0)‖Bσ
2,1(RN ) ≤ δ0,

then the system (1.1)–(1.2) admits a unique global solution (n,u, e) satisfying

(n− n̄,u, e) ∈ C([0,∞), Bσ
2,1(RN )).

Moreover, the uniform energy estimate holds:

sup
t≥0

(
‖(n− n̄,u, e)(·, t)‖Bσ

2,1(RN )

)
+μ0

∫ ∞

0

(
τ‖(n− n̄, e)(·, t)‖Bσ

2,1(RN ) + ‖u(·, t)‖Bσ
2,1(RN )

)
dt

≤ C0‖(n0 − n̄,u0, e0)‖Bσ
2,1(R

N ),(1.7)

where μ0, C0 are the positive constants independent of τ , and e0 := ∇Δ−1(n0 − n̄).
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Remark 1.1. From the energy estimate (1.7) and the smallness of τ (0 < τ ≤ 1),
we can obtain the uniform exponential decay of classical solution (n,u, e) near to
equilibrium (n̄, 0, 0) in [6]:

‖(n− n̄,u, e)(·, t)‖Bσ
2,1(RN ) ≤ C0‖(n0 − n̄,u0, e0)‖Bσ

2,1(R
N ) exp(−μ0τt), t ≥ 0.

Remark 1.2. To our knowledge, Theorem 1.1 cannot directly be applied to the
generally isentropic hydrodynamic model for semiconductors. As a matter of fact,
for the isentropic model, we can establish a similar relaxation-limit result in stronger
Besov space Bσ+ε

2,2 (RN )(ε > 0).
Then, by considering an “O(1/τ) time scale” in (1.3), we justify the following con-

vergence to the drift-diffusion model (1.6) by the standard weak convergence methods
and the application of the compactness theorem in [14].

Theorem 1.2. Let (n,u, e) be the global solution of (1.1)–(1.2) given by Theo-
rem 1.1. Then there exists some function (N , E) which is a global weak solution to
(1.6) satisfying (N − n̄, E) ∈ C([0,∞), Bσ

2,1(RN )) such that as τ → 0, it yields the
following (1 ≤ p < +∞, σ′ < σ):

(n, e)
(
x,
s

τ

)
→ (N , E)(x, s) strongly in Lp(0, T ; (Bσ′

2,1(RN ))loc) for any T > 0.

Remark 1.3. Let us mention that this strong convergence result is weaker than
that obtained in [1, 4], which can be regarded as a supplement to the theory of diffusive
limit for hyperbolic problems.

The rest of this paper is organized as follows. In section 2, we present some
definitions and basic facts on the Littlewood–Paley decomposition theory and Besov
space. In section 3, we rewrite the isothermal hydrodynamic model as a symmetric
hyperbolic system and recall the local existence result of classical solutions. Then
in section 4, we establish the uniform a priori estimate, which is used to derive the
global existence of uniform classical solutions. Finally, in section 5, we perform the
relaxation-time limit.

Throughout this paper, f ≈ g means that f ≤ Cg and g ≤ Cf , where C > 0 is
a uniform constant with respect to τ . All functional spaces are considered in RN , so
we may omit the space dependence for simplicity.

2. Littlewood–Paley analysis. In this section, we review briefly the
Littlewood–Paley decomposition theory and the characterization of Besov space; see
also, e.g., [2] or [6].

Let S be the Schwarz class. (ϕ, χ) is a couple of smooth functions valued in
[0,1] such that ϕ is supported in the shell C(0, 3

4 ,
8
3 ) = {ξ ∈ RN |34 ≤ |ξ| ≤ 8

3}, χ is
supported in the ball B(0, 4

3 ) = {ξ ∈ RN ||ξ| ≤ 4
3}, and

χ(ξ) +
∞∑

q=0

ϕ(2−qξ) = 1, q ∈ Z, ξ ∈ RN .

For f ∈ S′(denote the set of temperate distributions which is the dual of S), one can
define the nonhomogeneous dyadic blocks as follows:

Δ−1f := χ(D)f = h̃ ∗ f with h̃ = F−1χ,

Δqf := ϕ(2−qD)f = 2qN

∫
h(2qy)f(x− y)dy with h = F−1ϕ if q ≥ 0,
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where ∗, F−1 represent the convolution operator and the inverse Fourier transform,
respectively. The nonhomogeneous Littlewood–Paley decomposition is

f =
∑

q≥−1

Δqf in S′.

Define the low-frequency cut-off by

Sqf :=
∑

p≤q−1

Δpf.

Of course, S0f = Δ−1f . The above Littlewood–Paley decomposition is almost or-
thogonal in L2.

Proposition 2.1. For any f, g ∈ S′, the following properties hold:

ΔpΔqf ≡ 0 if |p− q| ≥ 2,

Δq(Sp−1fΔpg) ≡ 0 if |p− q| ≥ 5.

Besov space can be characterized in virtue of the Littlewood–Paley decomposition.
Definition 2.2. Let 1 ≤ p ≤ ∞ and s ∈ R. For 1 ≤ r < ∞, the Besov spaces

Bs
p,r are defined by

f ∈ Bs
p,r ⇔

(∑
q≥−1

(2qs‖Δqf‖Lp)r

) 1
r

<∞

and Bs
p,∞ are defined by

f ∈ Bs
p,∞ ⇔ sup

q≥−1
2qs‖Δqf‖Lp <∞.

Lemma 2.3 (Bernstein’s inequality). Let k ∈ N and 0 < R1 < R2. There exists
a constant C depending only on R1, R2, and N such that for all 1 ≤ a ≤ b ≤ ∞ and
f ∈ La, we have

Supp Ff ⊂ B(0, R1λ) ⇒ sup
|α|=k

‖∂αf‖Lb ≤ Ck+1λk+N( 1
a− 1

b )‖f‖La,

Supp Ff ⊂ C(0, R1λ,R2λ) ⇒ C−k−1λk‖f‖La ≤ sup
|α|=k

‖∂αf‖La ≤ Ck+1λk‖f‖La.

Here, Ff(or f̂ =
∫
RN f(x) exp(−ix · ξ)dx) represents the Fourier transform on f .

There is a compactness result in Besov space, which we show in the following
proposition.

Proposition 2.4. Let 1 ≤ p, r ≤ ∞, s ∈ R, and ε > 0. For all φ ∈ C∞
c , the

map f �→ φf is compact from Bs+ε
p,r to Bs

p,r.
Finally, we state a result of continuity for the composition to end this section.
Proposition 2.5. Let 1 ≤ p, r ≤ ∞, and I be an open interval of R. Let s > 0

and let n be the smallest integer such that n ≥ s. Let F : I → R satisfy F (0) = 0 and
F ′ ∈ Wn,∞(I; R). Assume that v ∈ Bs

p,r takes values in J ⊂⊂ I. Then F (v) ∈ Bs
p,r

and there exists a constant C depending only on s, I, J , and N such that

‖F (v)‖Bs
p,r

≤ C(1 + ‖v‖L∞)n‖F ′‖W n,∞(I)‖v‖Bs
p,r
.
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3. Reformulation and local existence. Let us introduce the enthalpy H(�) =
a2 ln � (� > 0), and set

m(t, x) = (H(n(t, x)) −H(n̄))/a.(3.1)

Then (1.1) can be transformed into the symmetric hyperbolic form

∂tU +
N∑

j=1

Aj(u)∂xjU =
(

0
− 1

τ u + e

)
,(3.2)

coupled with the dynamic electron field equation

dive = h(m),(3.3)

where

U =
(
m
u

)
, Aj(u) =

(
uj ae�j
aej ujIN

)
(IN denotes the unit matrix of order N),

and h(m) = n̄{exp(m/a) − 1} is a smooth function on the domain {m| − ∞ < m <
+∞} satisfying h(0) = 0. The initial data (1.2) become

(m,u, e)|t=0 = (a(lnn0 − ln n̄),u0, e0).(3.4)

Remark 3.1. The variable change is from the open set {(n,u, e) ∈ (0,+∞) ×
RN × RN} to the whole space {(m,u, e) ∈ R × RN × RN}. It is easy to show
that for classical solutions (n,u, e) away from the vacuum, (1.1)–(1.2) is equivalent
to (3.2)–(3.4).

Now, we recall a local existence and uniqueness result of the classical solutions to
(3.2)–(3.4) which has been established in [6].

Proposition 3.1. For any fixed relaxation time τ > 0, assume that (m0,u0, e0) ∈
Bσ

2,1; then, there exist a time T0 > 0 (depending only on the initial data) and a
unique solution (m,u, e) to (3.2)–(3.4) such that (m,u, e) ∈ C1([0, T0] × RN) and
(m,u, e) ∈ C([0, T0], Bσ

2,1) ∩ C1([0, T0], Bσ−1
2,1 ).

4. A uniform estimate and global existence. In this section, we shall es-
tablish a uniform a priori estimate, which is used to derive the global existence of
classical solutions to (3.2)–(3.4).

Proposition 4.1. There exist three positive constants δ1, C1, and μ1 independent
of τ such that for any T > 0, if

sup
0≤t≤T

‖(m,u, e)(·, t)‖Bσ
2,1

≤ δ1,(4.1)

then

‖(m,u, e)(·, t)‖Bσ
2,1

+ μ1

∫ t

0

(
τ‖(m, e)(·, ς)‖Bσ

2,1
+ ‖u(·, ς)‖Bσ

2,1

)
dς

≤ C1‖(m,u, e)(·, 0)‖Bσ
2,1
, t ∈ [0, T ].(4.2)

The main ingredients in the proof of Proposition 4.1 are the high-frequency (q ≥ 0)
estimates and low-frequency (q = −1) estimates on (m,u, e). To do this, we need to
establish some lemmas.
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Lemma 4.2. If (m,u, e) ∈ C([0, T ], Bσ
2,1)∩C1([0, T ], Bσ−1

2,1 ) is a solution of (3.2)–
(3.4) for any given T > 0, then the following estimate holds (q ≥ −1):

1
2
d

dt

(
‖Δqm‖2

L2 + ‖Δqu‖2
L2 +

1
n̄
‖Δqe‖2

L2

)
+

1
τ
‖Δqu‖2

L2

≤ 1
2
‖∇u‖L∞(‖Δqm‖2

L2 + ‖Δqu‖2
L2) + ‖[u,Δq] · ∇m‖L2‖Δqm‖L2

+ ‖[u,Δq] · ∇u‖L2‖Δqu‖L2 +
1
n̄
‖Δq(h(m)u)‖L2‖Δqe‖L2,(4.3)

where the commutator [f, g] = fg − gf .
Remark 4.1. By applying the operator Δq to (3.2), then multiplying the resulting

equations by the conjugator of Δqm(Δqm) and Δqu, respectively, we can directly
achieve (4.3) without extra trouble; see [6].

Below, we formulate an important skew-symmetry lemma which was developed
in [4, 13, 16].

Lemma 4.3 (Shizuta–Kawashima). For all ξ ∈ RN , ξ �= 0, the system (3.2)
admits a real skew-symmetric smooth matrix K(ξ) which is defined in the unit sphere
SN−1:

K(ξ) =

(
0 ξ�

|ξ|
− ξ

|ξ| 0

)
,(4.4)

and then

K(ξ)
N∑

j=1

ξjAj(0) =
(
a|ξ| 0
0 −a ξ⊗ξ

|ξ|

)
.(4.5)

Thanks to the skew-symmetry of the system (3.2), we can develop some “new”
frequency-localization estimates and avoid performing the t-derivative to (3.2), which
is different from the estimates in [6].

Lemma 4.4. If (m,u, e) ∈ C([0, T ], Bσ
2,1)∩C1([0, T ], Bσ−1

2,1 ) is a solution of (3.2)–
(3.4) for any given T > 0, then the following estimates hold:

τ

2
d

dt
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ + τ

a

2
22q‖Δqm‖2

L2

≤ C

τ
22q‖Δqu‖2

L2 + Cτ2q‖ΔqU‖L2‖ΔqG‖L2

+Cτ‖Δq(h̃(m)m)‖L2‖Δqm‖L2 (q ≥ 0);(4.6)

τ

2
d

dt
Im
∫

|ξ|
(

(Δ̂−1U)∗K(ξ)Δ̂−1U
)
dξ + τ

n̄

a
‖Δ−1m‖2

L2

≤ C

τ
‖Δ−1u‖2

L2 + Cτ‖Δ−1U‖L2‖Δ−1G‖L2

+Cτ‖Δ−1(h̃(m)m)‖L2‖Δ−1m‖L2,(4.7)

where the function G is given in (4.9), h̃(m) =
∫ 1

0
h′(ςm)dς − n̄

a is a smooth function
on {m| − ∞ < ςm < ∞, ς ∈ [0, 1]} satisfying h̃(0) = 0, and C > 0 is a uniform
constant independent of τ .
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Proof. The system (3.2) can be written as the linearized form

∂tU +
N∑

j=1

Aj(0)∂xjU = G +
(

0
− 1

τ u + e

)
,(4.8)

where

G =
N∑

j=1

{
Aj(0) −Aj(u)

}
∂xjU.(4.9)

Applying the operator Δq to the system (4.8) gives

∂tΔqU +
N∑

j=1

Aj(0)∂xj ΔqU = ΔqG +
(

0
− 1

τ Δqu + Δqe

)
.(4.10)

By performing the Fourier transform with respect to the space variable x for (4.10)
and multiplying the resulting equation by −iτ(Δ̂qU)∗K(ξ)(∗ represents transpose and
conjugator), then taking the real part of each term in the equality, we can obtain

τIm
(

(Δ̂qU)∗K(ξ)
d

dt
Δ̂qU

)
+ τ(Δ̂qU)∗K(ξ)

( N∑
j=1

ξjAj(0)
)

Δ̂qU

= τIm
(

(Δ̂qU)∗K(ξ)(Δ̂qG)
)
− Im

(
(Δ̂qm)

ξ�

|ξ| Δ̂qu
)

+ τIm
(

(Δ̂qm)
ξ�

|ξ| Δ̂qe
)
.(4.11)

Using the skew-symmetry of K(ξ), we have

Im
(

(Δ̂qU)∗K(ξ)
d

dt
Δ̂qU

)
=

1
2
d

dt
Im
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
.(4.12)

Substituting (4.5) into the second term on the left-hand side of (4.11), it is not difficult
to get

τIm
(

(Δ̂qU)∗K(ξ)
d

dt
Δ̂qU

)
+ τ(Δ̂qU)∗K(ξ)

( N∑
j=1

ξjAj(0)
)

Δ̂qU

≥ τ

2
d

dt
Im
(

(Δ̂qU)∗K(ξ)Δ̂qU
)

+ aτ |ξ||Δ̂qU |2 − 2aτ |ξ||Δ̂qu|2.(4.13)

With the help of Young’s inequality, the right-hand side of (4.11) can be estimated as

τIm
(

(Δ̂qU)∗K(ξ)(Δ̂qG)
)
− Im

(
(Δ̂qm)

ξ�

|ξ| Δ̂qu
)

+ τIm
(

(Δ̂qm)
ξ�

|ξ| Δ̂qe
)

≤ τ
a

2
|ξ||Δ̂qU |2 +

C

τ |ξ| |Δ̂qu|2 + τ |Δ̂qU ||Δ̂qG| + τIm
(

(Δ̂qm)
ξ�

|ξ| Δ̂qe
)
,(4.14)

where we have used the uniform boundedness of the matrix K(ξ)(ξ �= 0); the positive
constant C is independent of τ . Combining this with the equality (4.11) and the
inequality (4.13)–(4.14), we deduce that

τ

2
d

dt
Im
(

(Δ̂qU)∗K(ξ)Δ̂qU
)

+ τ
a

2
|ξ||Δ̂qU |2

≤ C

τ

(
|ξ| +

1
|ξ|

)
|Δ̂qu|2 + τ |Δ̂qU ||Δ̂qG| + τIm

(
(Δ̂qm)

ξ�

|ξ| Δ̂qe
)
.(4.15)
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Multiplying (4.15) by |ξ| and integrating it over RN , from Plancherel’s theorem, we
obtain

τ

2
d

dt
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ + τ

a

2
‖Δq∇U‖2

L2

≤ C

τ
22q‖Δqu‖2

L2 + Cτ2q‖ΔqU‖L2‖ΔqG‖L2 + τIm
∫ (

(Δ̂qm)ξ�Δ̂qe
)
dξ.(4.16)

For the third term on the right-hand side of (4.16), we have

τIm
∫ (

(Δ̂qm)ξ�Δ̂qe
)
dξ = τ

(
J + J̄

)
,(4.17)

where

J + J̄ = − i
2

∫ (
(Δ̂qm)ξ�Δ̂qe

)
dξ +

i
2

∫ (
(Δ̂qm)ξ�Δ̂qe

)
dξ

=
1
2

∫
( ̂Δq∇m) · Δ̂qedξ +

1
2

∫
( ̂Δq∇m) · Δ̂qedξ

=
1
2

(2π)N

(∫
Δq∇m · Δqedx+

∫
Δq∇m · Δqedx

)
= −1

2
(2π)N

(∫
ΔqmΔqdivedx+

∫
ΔqmΔqdivedx

)
= −1

2
(2π)N

(∫
ΔqmΔq(h(m) − h(0))dx+

∫
ΔqmΔq(h(m) − h(0))dx

)
= − (2π)N n̄

a
‖Δqm‖2

L2 −
(2π)N

2

(∫
ΔqmΔq(h̃(m)m)dx

+
∫

ΔqmΔq(h̃(m)m)dx
)
.(4.18)

Here, h̃(m) =
∫ 1

0
h′(ςm)dς − n̄/a is a smooth function on {m| − ∞ < ςm < ∞, ς ∈

[0, 1]} satisfying h̃(0) = 0. Therefore, from (4.16)–(4.18), we arrive at

τ

2
d

dt
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ + τ

a

2
‖Δq∇U‖2

L2 + τ
(2π)N n̄

a
‖Δqm‖2

L2

≤ C

τ
22q‖Δqu‖2

L2 + Cτ2q‖ΔqU‖L2‖ΔqG‖L2 + Cτ‖Δq(h̃(m)m)‖L2‖Δqm‖L2.(4.19)

In view of Lemma 2.3,

‖Δq∇m‖L2 ≈ 2q‖Δqm‖L2 (q ≥ 0)

follows, so we get the estimates (4.6) and (4.7) immediately.
From the proof of Lemma 4.4, we see that the Poisson equation remedies the low-

frequency estimate on ‖Δ−1m‖2
L2, which plays a key role in the uniform exponential

decay of classical solutions (see Remark 1.1). This is essentially different from the
Euler equations studied in [5]. On the electron field e, we also have some “new” a
priori estimates.

Lemma 4.5. If (m,u, e) ∈ C([0, T ], Bσ
2,1)∩C1([0, T ], Bσ−1

2,1 ) is a solution of (3.2)–
(3.4) for any given T > 0, then

2q‖Δqe‖2
L2 ≤ C

( n̄
a
‖Δqm‖L2 + ‖Δq(h̃(m)m)‖L2

)
‖Δqe‖L2 (q ≥ 0);(4.20)
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− d

dt

∫
Δ−1e · Δ−1udx+ ‖Δ−1e‖2

L2

≤ C(n̄‖Δ−1u‖L2 + ‖Δ−1(h(m)u)‖L2)‖Δ−1u‖L2 + C

(
a‖Δ−1∇m‖L2

+
1
τ
‖Δ−1u‖L2 + ‖u‖L∞‖Δ−1∇u‖L2 + ‖[u,Δ−1] · ∇u‖L2

)
‖Δ−1e‖L2 ,(4.21)

where C > 0 is a uniform constant independent of τ .
Proof. (I) By applying the operator Δq to both sides of dive = h(m) (q ≥ 0),

integrating it over RN after multiplying Δqdive, and noticing the irrotationality of
e, we can obtain (4.20) in virtue of Hölder’s inequality.
(II) From (1.1) and (3.1), we get

et = −∇Δ−1∇ · {h(m)u + n̄u},(4.22)

where the nonlocal term ∇Δ−1∇ · f is the product of Riesz transforms on f . From
(3.2) and (4.22), we have

− d

dt

∫
Δqe · Δqudx

= −
∫

ΔqetΔqudx−
∫

ΔqeΔqutdx

=
∫

∇Δ−1∇ · Δq{h(m)u + n̄u}Δqudx

−
∫

Δqe ·
(
−aΔq∇m− 1

τ
Δqu− uΔq∇u + [u,Δq] · ∇u + Δqe

)
dx.(4.23)

Using the L2-boundedness of the Riesz transform and Hölder’s inequality, we derive
(4.21) immediately.

For those estimates of the commutators in (4.3) and (4.21), we have the follow-
ing fact.

Lemma 4.6 (see [6]). Let s > 0 and 1 < p < ∞; then the following inequalities
are true:

2qs‖[f,Δq]Ag‖Lp

≤

⎧⎪⎨⎪⎩
Ccq‖f‖Bs

p,1
‖g‖Bs

p,1
, f, g ∈ Bs

p,1, s = 1 +N/p,

Ccq‖f‖Bs
p,1

‖g‖Bs+1
p,1

, f ∈ Bs
p,1, g ∈ Bs+1

p,1 , s = N/p,

Ccq‖f‖Bs+1
p,1

‖g‖Bs
p,1
, f ∈ Bs+1

p,1 , g ∈ Bs
p,1, s = N/p.

(4.24)

In particular, if f = g, then

2qs‖[f,Δq]Ag‖Lp ≤ Ccq‖∇f‖L∞‖g‖Bs
p,1
, s > 0,(4.25)

where the operator A = div or ∇, C is a harmless constant, and cq denotes a sequence
such that ‖(cq)‖l1 ≤ 1.

In addition, in the proof of Proposition 4.1, an elementary algebra inequality will
be used. For clarity, we put it into a lemma.

Lemma 4.7. Assume that f, g, h > 0 and 0 < τ ≤ 1; then the following inequality
is true:

f + τg + τh ≤ C
1
τ f

2 + τg2 + τh2

(f2 + g2 + h2)1/2
,(4.26)

where C > 0 is a uniform constant independent of τ .
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Proof. Note that

(f2 + g2 + h2)1/2 ≈ f + g + h.(4.27)

We need only show(
f + τg + τh

)
(f + g + h) ≤ C

(
1
τ
f2 + τg2 + τh2

)
,(4.28)

which is obvious in virtue of the smallness of τ(0 < τ ≤ 1) and Young’s inequal-
ity.

Proof of Proposition 4.1. From the a priori estimate assumption (4.1), we have

sup
0≤t≤T

(‖(m,u, e)(·, t)||W 1,∞ ) ≤ Cδ1.(4.29)

In what follows, we are going to divide the proof into some lemmas.
Lemma 4.8 (q ≥ 0). There exist some positive constants K1,K2, μ2 independent

of τ such that the following estimate holds:

2q(σ−1) d

dt

{
K1

2
22q

(
‖Δqm‖2

L2 + ‖Δqu‖2
L2 +

1
n̄
‖Δqe‖2

L2

)
+
K2τ

2
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ

}1/2

+μ22qσ
(
τ‖Δqm‖L2 + ‖Δqu‖L2 + τ‖Δqe‖L2

)
≤ C{2qσ‖∇u‖L∞(‖Δqm‖L2 + ‖Δqu‖L2) + cq‖u‖Bσ

2,1
(‖m‖Bσ

2,1
+ ‖u‖Bσ

2,1
)

+ τ2q(σ−1)‖ΔqG‖L2 + 2qσ(‖Δq(h(m)u)‖L2 + τ‖Δq(h̃(m)m)‖L2)},(4.30)

where K1,K2 are given in (4.32), and C > 0 is a uniform constant independent of
τ .

Proof. Combining (4.3), (4.6), and (4.20), we have

d

dt

{
K1

2
22q

(
‖Δqm‖2

L2 + ‖Δqu‖2
L2 +

1
n̄
‖Δqe‖2

L2

)
+
K2τ

2
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ

}
+
K1

τ
22q‖Δqu‖2

L2 + τ
a

2
K222q‖Δqm‖2

L2 +K3τ22q‖Δqe‖2
L2

≤ K122q

{
1
2
‖∇u‖L∞(‖Δqm‖2

L2 + ‖Δqu‖2
L2)

+ ‖[u,Δq] · ∇m‖L2‖Δqm‖L2 + ‖[u,Δq] · ∇u‖L2‖Δqu‖L2

+
1
n̄
‖Δq(h(m)u)‖L2‖Δqe‖L2

}
+K2

{
C

τ
22q‖Δqu‖2

L2

+Cτ2q‖ΔqU‖L2‖ΔqG‖L2 + Cτ‖Δq(h̃(m)m)‖L2‖Δqm‖L2

}
+K32qτC

{(
n̄

a
‖Δqm‖L2 + ‖Δq(h̃(m)m)‖L2

)
‖Δqe‖L2

}
,(4.31)

where these positive constants K1,K2, and K3 (independent of τ) satisfy

K2 =
K1

4C
, K3 =

a3

2C2n̄2
K2.(4.32)
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We introduce them in order to ensure that

K1

2
22q

(
‖Δqm‖2

L2 + ‖Δqu‖2
L2 +

1
n̄
‖Δqe‖2

L2

)
+
K2τ

2
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ

≈ 22q
(
‖Δqm‖2

L2 + ‖Δqu‖2
L2 + ‖Δqe‖2

L2

)
,(4.33)

since ∣∣∣∣K2τ

2
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ

∣∣∣∣ ≤ CK2

2
22q(‖Δqm‖2

L2 + ‖Δqu‖2
L2),(4.34)

and we eliminate the quadratic term C
τ 22q‖Δqu‖2

L2 , K32qτC n̄
a‖Δqm‖L2‖Δqe‖L2 in

the right-hand side of (4.31) with the aid of Young’s inequality; for similar details,
see [6]. Then, dividing the resulting inequality by{
K1

2
22q

(
‖Δqm‖2

L2+‖Δqu‖2
L2+

1
n̄
‖Δqe‖2

L2

)
+
K2

2
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ

}1/2

and after eliminating the quadratic terms and multiplying the factor 2q(σ−1) on both
sides of the inequality, we arrive at (4.30) immediately with the help of Lemmas 4.6
and 4.7.

Similarly, for the case of low frequency (q = −1), we have the following a priori
estimate.

Lemma 4.9 (q = −1). There exist some positive constants K̄1, K̄2, K̄3, and μ3

independent of τ such that the following estimate holds:

2−(σ−1) d

dt

{
K̄1

2
2−2

(
‖Δ−1m‖2

L2 + ‖Δ−1u‖2
L2 +

1
n̄
‖Δ−1e‖2

L2

)
+
K̄2τ

2
Im
∫

|ξ|
(

(Δ̂−1U)∗K(ξ)Δ̂−1U
)
dξ − K̄3τ

∫
Δ−1e · Δ−1udx

}1/2

+μ32−σ
(
τ‖Δ−1m‖L2 + ‖Δ−1u‖L2 + τ‖Δ−1e‖L2

)
≤ C{2−σ(‖∇u‖L∞ + ‖u‖L∞)(‖Δ−1m‖L2 + ‖Δ−1u‖L2)

+ c−1‖u‖Bσ
2,1

(‖m‖Bσ
2,1

+ ‖u‖Bσ
2,1

) + τ2−(σ−1)‖Δ−1G‖L2

+ 2−σ(‖Δ−1(h(m)u)‖L2 + τ‖Δ−1(h̃(m)m)‖L2)},(4.35)

where C > 0 is a uniform constant independent of τ .
Remark 4.2. Similar to the proof of Lemma 4.8, the constants K̄1, K̄2, K̄3 are

used to ensure that

K̄1

2
2−2

(
‖Δ−1m‖2

L2 + ‖Δ−1u‖2
L2 +

1
n̄
‖Δ−1e‖2

L2

)
+
K̄2τ

2
Im
∫

|ξ|
(

(Δ̂−1U)∗K(ξ)Δ̂−1U
)
dξ − K̄3τ

∫
Δ−1e · Δ−1udx

≈ 2−2
(
‖Δ−1m‖2

L2 + ‖Δ−1u‖2
L2 + ‖Δ−1e‖2

L2

)
(4.36)

and to eliminate some quadratic terms in the right-hand side of inequality (4.35).
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Summing (4.30) on q ∈ N ∪ {0} and adding with (4.35), then, according to the
smallness of τ(0 < τ ≤ 1), a priori assumption (4.1), (4.29), and Moser’s estimates
(Proposition 2.5), we obtain the following differential inequality:

d

dt
Q+ μ4

(
τ‖m‖Bσ

2,1
+ ‖u‖Bσ

2,1
+ τ‖e‖Bσ

2,1

)
≤ Cδ1

(
τ‖m‖Bσ

2,1
+ ‖u‖Bσ

2,1
+ τ‖e‖Bσ

2,1

)
,(4.37)

where

Q =
∑
q≥0

2q(σ−1)

{
K1

2
22q

(
‖Δqm‖2

L2 + ‖Δqu‖2
L2 +

1
n̄
‖Δqe‖2

L2

)

+
K2τ

2
Im
∫

|ξ|
(

(Δ̂qU)∗K(ξ)Δ̂qU
)
dξ

}1/2

+
{
K̄1

2
2−2

(
‖Δ−1m‖2

L2 + ‖Δ−1u‖2
L2 +

1
n̄
‖Δ−1e‖2

L2

)
+
K̄2τ

2
Im
∫

|ξ|
(

(Δ̂−1U)∗K(ξ)Δ̂−1U
)
dξ − K̄3τ

∫
Δ−1e · Δ−1udx

}1/2

(4.38)

and μ4 > 0 is a uniform constant independent of τ . Note that

Q ≈ ‖(m,u, e)(·, t)‖Bσ
2,1
, t ≥ 0,(4.39)

and by choosing δ1 = μ4

2C , μ1 = μ4

2 , we conclude the proof of Proposition 4.1.
Based on Propositions 3.1 and 4.1, we establish the global existence of classical

solutions to the system (3.2)–(3.4) by virtue of the standard continuation argument.
Using the imbedding property in Besov space Bσ

2,1, (m,u, e) ∈ C1([0,∞)×RN) solves
(3.2)–(3.4). From Remark 3.1, we know (n,u, e) ∈ C1([0,∞) × RN ) is a solution of
(1.1)–(1.2) with n > 0. Furthermore, we attain Theorem 1.1.

5. Relaxation-time limit. In this section, we give the proof of Theorem 1.2.
Proof. From the uniform energy estimate (1.7) in Theorem 1.1 and the scaled

variables (1.3), we have

sup
s≥0

(
‖(nτ − n̄, τuτ , eτ )(·, s)‖Bσ

2,1

)
+ μ0

∫ ∞

0

(
‖(nτ − n̄,uτ , eτ )(·, s)‖Bσ

2,1

)
ds

≤ C0‖(n0 − n̄,u0, e0)‖Bσ
2,1
.(5.1)

According to Proposition 2.4 and the compactness theorem in [14], there exists a
function (N , E) ∈ C([0,∞), n̄+ Bσ

2,1) × C([0,∞), Bσ
2,1) such that, for any T > 0, the

sequence (up to a subsequence)

{nτ} → N strongly in Lp(0, T ; (Bσ′

2,1)loc)(1 ≤ p < +∞, σ′ < σ),

{eτ} → E strongly in Lp(0, T ; (Bσ′

2,1)loc)(1 ≤ p < +∞, σ′ < σ), as τ → 0.

From (5.1), we can derive that

uτ is uniformly bounded in L1(0, T ;Bσ
2,1)

and τ(uτ · ∇)uτ is uniformly bounded in L1(0, T ;Bσ−1
2,1 ).

Hence, in the system (1.4)–(1.5), the above convergence properties allow us to pass
to the limit τ → 0 in the sense of distributions, which implies that (N , E) is a global
weak solution to the drift-diffusion model (1.6).



RELAXATION-TIME LIMIT IN THE ISOTHERMAL 1991

Acknowledgments. The author thanks his adviser, Professor Daoyuan Fang,
for his constant support and encouragement. He also thanks the anonymous referees
for their useful comments and suggestions.

REFERENCES

[1] G. Al̀ı, D. Bini and R. Rionero, Global existence and relaxation limit for smooth solutions to
the Euler–Poisson model for semiconductors, SIAM J. Math. Anal., 32 (2000), pp. 572–587.

[2] J. Y. Chemin, Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl. 14, Oxford
University Press, New York, 1998 (in English).

[3] G. Q. Chen, J. Jerome, and B. Zhang, Particle hydrodynamic models in biology and micro-
electronics: Singular relaxation limits, Nonlinear Anal., 30 (1997), pp. 233–244.

[4] J. F. Coulombel and T. Goudon, The strong relaxation limit of the multidimensional isother-
mal Euler equations, Trans. Amer. Math. Soc., 359 (2007), pp. 637–648.

[5] D. Y. Fang and J. Xu, Existence and asymptotic behavior of C1 solutions to the multidi-
mensional compressible Euler equations with damping, Nonlinear Anal., 70 (2009), pp.
244–261.

[6] D. Y. Fang, J. Xu, and T. Zhang, Global exponential stability of classical solutions to the
hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci., 17 (2007),
pp. 1507–1530.

[7] L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the
drift-diffusion equations, J. Differential Equations, 165 (2000), pp. 315–354.
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EXISTENCE AND STABILITY RESULTS FOR PERIODIC
STOKESIAN HELE–SHAW FLOWS∗

JOACHIM ESCHER† AND BOGDAN-VASILE MATIOC†

Abstract. We consider here a 2π-periodic and two-dimensional Hele–Shaw flow modelling the
motion of a viscous and incompressible fluid. The free surface is moving under the influence of gravity
and is modelled by a modified Darcy law for Stokesian fluids. The bottom of the cell is assumed to
be impermeable. We prove the existence of a unique classical solution if the initial data is near a
constant, identify the equilibria of the flow, and study their stability.

Key words. quasi-linear elliptic equation, nonlinear parabolic equation, Hele–Shaw flow, non-
Newtonian fluid, Oldroyd-B fluid, power law fluid

AMS subject classifications. 35J65, 35K55, 35R35, 42A45

DOI. 10.1137/070707671

1. Introduction.

1.1. The mathematical model. Using a fluid model with a shear-rate depen-
dent viscosity, the authors in [12] derive a Darcy law coupling the pressure p and the
velocity field v of the bulk fluid situated between the parallel plates of a Hele–Shaw
cell:

(1) v = − Dp

μ(|Dp|2) .

Here μ is the so-called effective viscosity. In the situation studied in [12] the cell
is horizontal and the gap d between the plates is small in relation to the other two
dimensions of the cell. Having averaged over the gap d they consider (1) for a two-
dimensional fluid. From the conservation of mass one concludes that the pressure p
of a finite patch Ω of fluid with boundary Γ must solve the Dirichlet problem

(2) div
(

Dp

μ(|Dp|2)

)
= 0 in Ω, p = −σκ on Γ,

where σ is the surface tension parameter and κ the curvature of Γ. The solvability of
(2) is discussed in terms of the monotonicity of μ. It should be emphasized that in
[12] only problems on temporal fixed domains are rigorously investigated. However,
the full problem describing the more complex situation in which the boundary Γ
moves and which is obtained by coupling (2) with an evolution equation describing
the motion of the fluid molecules situated on Γ is not addressed by the authors in [12].

In this paper we study the general Cauchy problem of the full system describing
the flow of a non-Newtonian fluid in a vertical Hele–Shaw cell with an impermeable
bottom and laterals (see Figure 1). Hence, effects caused by gravity must be incor-
porated into our setting. As in [12] the gap d is again small compared to the height
and length of the cell. In order to avoid the contact angle problem a two-dimensional,
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strip-like geometry will be considered. Given a positive function f ∈ C1(R), bounded
away from 0, we define the set

Ω̃f := {(x, y) ∈ R
2 : 0 < y < f(x)},

identified as the fluid domain, and denote the components of its boundary ∂Ω̃f by

Γ̃f := {(x, f(x)) : x ∈ R}, Γ̃0 := R × {0}.

We denote by ν the outward-pointing normal of ∂Ω̃f . The motion of the fluid is
modelled using the Darcy law (1):

v = − Du

μ(|Du|2) ,

with p replaced by the velocity potential u defined by

u(x, y) =
p(x, y)
g · ρ + y, (x, y) ∈ Ω̃f .

Here g is the gravity acceleration constant, ρ is the density constant, and Du =
(∂1u, ∂2u) is the gradient of u. Also called piezometric head, u expresses the mechan-
ical energy due to gravity and pressure of the fluid, per unit weight of fluid (see [3]).

The viscosity μ ∈ C∞([0,∞), (0,∞)) is assumed to satisfy μ(r) + 2rμ′(r) > 0 for
r ≥ 0. Particularly, this implies that the mapping [0,∞) � r �−→ h(r) := rμ2(r) is
invertible. The effective viscosity μ (see [12]) is defined by

1
μ(r)

:= c

∫ 1

−1

s2

μ̃(rs2)
ds,

where c is a positive constant and μ̃ := μ ◦ h−1. The free surface Γ̃f separating the
fluid from air, at pressure normalized to be zero, is moving under the influence of
gravity. Surface tension effects are neglected. Consequently, p = 0 on Γ̃f and

u = f on Γ̃f .

On the fixed boundary Γ̃0 we have no flux, i.e.,

∂νu = 0 on Γ̃0.
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Furthermore, the interface Γ̃f is implicitly given by F (t, z) = 0, where z = (x, y) and
F (t, z) = y− f(t, x). Assuming that a particle located on the interface remains there,
we obtain by differentiating this equation with respect to t the relation

0 =
d

d t
F (t, z) = −ft(t, x) + (−fx, 1)z′.

Finally, we shall make the following periodicity requirement on f and u:

f(t, x+ 2π) = f(t, x) ∀x ∈ R, t ≥ 0,

u(x+ 2π, y) = u(x, y) ∀(x, y) ∈ Ω̃f(t), t ≥ 0.

Summarizing, we arrive at the following system:

(3)

div
(

Du
μ(|Du|2)

)
= 0 in Ωf(t), t ≥ 0,

∂νu = 0 on Γ0, t ≥ 0,

u = f on Γf(t), t ≥ 0,

∂tf(t, · ) +
√

1+∂xf2(t, · )
μ(|Du( · ,f(t, · ))|2)∂νu( · , f(t, · )) = 0 on S

1, t > 0,

f(0, · ) = f0 on S
1,

where, given t ≥ 0, we use the notation

Ωf(t) := {(x, y) ∈ S
1 × R : 0 < y < f(t, x)},

Γf(t) := {(x, f(t, x)) : x ∈ S
1}, Γ0 = S

1 × {0},

and where S
1 stands for the unit circle. For the sake of simplicity, we identify periodic

functions on R with functions on S
1, and periodic functions in the x variable in Ω̃f

with functions in Ωf , for positive functions f on S
1, respectively. Given k ∈ N and

α ∈ (0, 1), we define the so-called little Hölder spaces hk+α(S1) as the closure of
C∞(S1) in Ck+α(S1).

For our analysis we fix α ∈ (0, 1) and define

U :=
{
f ∈ C2+α(S1) : min

x∈S1
f(x) > 0

}
,

respectively, V := U ∩ h2+α(S1). For f ∈ U we denote by buck+α(Ωf ) the closure of
BUC∞(Ωf ) in the Hölder space BUCk+α(Ωf ).

A pair (u, f) is called a classical Hölder solution of (3) on [0, T ], with T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(S1)),

u( · , t) ∈ buc2+α(Ωf(t)), t ∈ [0, T ],

and if (u, f) satisfies the equations in (3) pointwise.
For simplicity we denote

Qu := div
(

Du

μ(|Du|2)

)
.
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Then Qu = aij(Du)uij , with

aij(q1, q2) =
δij

μ(|q|2) − 2qiqjμ′(|q|2)
μ2(|q|2)

, 1 ≤ i, j ≤ 2, q = (q1, q2) ∈ R
2.

The eigenvalues of the matrix [aij(q)]1≤i, j≤2, q ∈ R
2, are

λ1(q) =
1

μ(|q|2) , λ2(q) =
1

μ(|q|2) − 2|q|2μ′(|q|2)
μ2(|q|2)

,

and we have

c|ξ|2 ≤ aij(q1, q2)ξiξj ≤ C|ξ|2 ∀ξ = (ξ1, ξ2) ∈ R
2, (q1, q2) ∈ R

2,

if we assume that there exist positive constants c and C such that

(A1) c ≤ 1
μ(r)

≤ C ∀ r ≥ 0,

(A2) c ≤ 1
μ(r)

− 2rμ′(r)
μ2(r)

≤ C ∀ r ≥ 0.

It can be shown (cf. [6]) that (A1) and (A2) hold true, provided the viscosity μ satisfies

(V1) m ≤ μ(r) ≤M,

(V2) m ≤ μ(r) + 2rμ′(r) ≤M,

for all r ≥ 0, where m and M are positive constants. If the viscosity μ is constant,
then the fluid is called Newtonian. Results regarding this situation can be found in
[4] and [7], [8], [9], [10]. The class of Stokesian, sometimes also called non-Newtonian,
fluids satisfying (V1) and (V2) is quite large; see [6]. This class includes particularly
numerous Oldroyd-B and power law fluids.

Under the above assumptions Q is a uniformly elliptic operator in R
2. Consider

now the problem

(4)

div
(

Du
μ(|Du|2)

)
= 0 in Gf(t), t ≥ 0,

u = f on ∂Gf(t), t ≥ 0,

∂tf(t, · ) +
√

1+∂xf2(t, · )
μ(|Du( · ,f(t, · ))|2)∂νu( · , f(t, · )) = 0 on S

1, t > 0,

f(0, · ) = f0 on S
1,

where

Gf(t) := {(x, y) ∈ S
1 × R : −f(t, x) < y < f(t, x)},

for t ≥ 0. A pair (u, f) is called a classical Hölder solution of (4) on [0, T ] if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(S1)),

u( · , t) ∈ buc2+α(Gf(t)), t ∈ [0, T ],
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and if (u, f) satisfies the equations in (4) pointwise.
Given f ∈ V , let u ∈ buc2+α(Gf ) be the unique solution (existence will be dis-

cussed later) of the quasi-linear Dirichlet problem

(5)
Qu = 0 in Gf ,

u = f on ∂Gf .

Because of the symmetry of the domain Gf and of the boundary conditions we obtain

u(x,−y) = u(x, y)

for all (x, y) ∈ Gf . Consequently, ∂νu = 0 on Γ0; thus the restriction of u to Ωf is the
unique solution of

(6)

Qu = 0 in Ωf ,

∂νu = 0 on Γ0,

u = f on Γf .

We deduce that there exists a one-to-one correspondence between solutions to (3) and
(4). Namely, if (u, f) is a solution to (3) on the interval [0, T ], T > 0, then for each
t ∈ [0, T ] the velocity potential u( · , t) ∈ buc2+α(Ωf(t)) can be extended by reflection
on the entire domain Gf(t). We obtain in this manner a solution to (4). Moreover,
if (ũ, f) is a solution to (4) on the interval [0, T ], T > 0, then we can restrict for
t ∈ [0, T ] the function ũ( · , t) to Ωf(t), and so obtain a solution to (3).

It is more convenient to treat (4), because we have in this case a Dirichlet problem
for the velocity potential, which can be solved using the techniques presented in [11].

We state now the first main result of this work.
Theorem 1.1. Assume that (A1) and (A2) hold true.
(a) Let c be a positive constant. Then we find an open neighborhood O of c in

V such that for each f0 ∈ O, problem (3) has a classical Hölder solution (u, f) on
an interval [0, T ] with T > 0. Moreover, there exists a constant γ ∈ (0, 1) such that
f ∈ Cγ

γ ((0, T ], h2+α(S1)).
(b) Let (u1, f1) and (u2, f2) be solutions of (3) with f1 ∈ Cγ

γ ((0, T ], h2+α(S1)), γ ∈
(0, 1), and f2 ∈ Cδ

δ ((0, T ], h2+α(S1)), δ ∈ (0, 1). If f1([0, T ]) ⊂ O and f2([0, T ]) ⊂ O,
then (u1, f1) = (u2, f2).

For a definition of the weighted Hölder spaces Cγ
γ ((0, T ], h2+α(S1)), γ ∈ (0, 1), see

[13].
In section 3 we prove that each pair (c, c) ∈ buc2+α(Ωc) × V , with c > 0, is a

stationary solution of the flow (3). Furthermore, we prove that if the initial data
f0 ∈ O is close enough to c in h2+α(S1) and if Ωf0 and Ωc enclose the same fluid
volume, then the solution corresponding to f0 exists globally in time and is attracted
at an exponential rate by c (see Theorem 3.3).

1.2. The transformed problem. In order to solve the problem we transform
it on a fixed reference manifold G := R × (0, 2). In order to do so we define for each
f ∈ U a diffeomorphism φf ∈ Diff 2+α(G,Gf ) by

φf (x, y) := (x, (1 − y)f(x)), (x, y) ∈ G,

and the push-forward and pull-back operators induced by φf :

φ∗f : BUC(Gf ) → BUC(G), u �−→ u ◦ φf ,

φf
∗ : BUC(G) → BUC(Gf ), v �−→ v ◦ φ−1

f .
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The transformed operatorsA(f) and B, acting onBUC2(G), respectively, U×BUC2+α

(G), are defined by

A(f) := φ∗f ◦ Q ◦ φf
∗ ,

B(f, v)(x) := D(φf
∗v)

μ(|D(φf
∗v)|2) (x, f(x)) · n(x), x ∈ S

1,

with n(x) := (−f ′(x), 1), x ∈ S
1. Transformation of (4) to G yields

(7)

A(f)v = 0 in G× [0,∞),

v = f on ∂G× [0,∞),

∂tf + B(f, v) = 0 on S
1 × (0,∞),

f(0) = f0,

where v := φ∗fu. A pair (v, f) is called a classical Hölder solution of (7) on [0, T ], with
T > 0, if

f ∈ C([0, T ],V) ∩ C1([0, T ], h1+α(S1)),

v( · , t) ∈ buc2+α(G), t ∈ [0, T ],

and if (v, f) satisfies the equations in (7) pointwise. It is obvious that problems (4)
and (7) are equivalent in the following sense.

Lemma 1.2. Let f0 ∈ V be given.
(a) If (u, f) is a classical Hölder solution of (4), then (φ∗fu, f) is a classical Hölder

solution of (7).
(b) If (v, f) is a classical Hölder solution of (7), then (φf

∗v, f) is a classical Hölder
solution of (4).

Proof. See, for example, [6].
Lemma 1.3. Given f ∈ U , we have

A(f)v = bij(y, f,Dv)vij + b(y, f,Dv)v2 for v ∈ BUC2(G),

where, using the notation Dfv := (v1 + (1−y)f ′

f v2,− 1
f v2) for f ∈ U , v ∈ BUC2(G),

and y ∈ [0, 2], we have

b11(y, f,Dv) = a11(Dfv),

b12(y, f,Dv) = b21(y, f,Dv) =
(1 − y)f ′

f
a11(Dfv) −

1
f
a12(Dfv),

b22(y, f,Dv) =
(1 − y)2f ′2

f2
a11(Dfv) −

2(1 − y)f ′

f2
a12(Dfv) +

1
f2
a22(Dfv),

b(y, f,Dv) = (1 − y)
(
f ′′

f
− 2f ′2

f2

)
a11(Dfv) +

2f ′

f2
a12(Dfv).

Proof. This follows by direct computation.
We have the following existence and uniqueness theorem. The proof is similar to

that of Lemma 2.2 in [6].
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Theorem 1.4. Let f ∈ V be given. There exists a unique solution v ∈ buc2+α(G)
of the quasi-linear Dirichlet problem

(8)
A(f)v = 0 in G,

v = f on ∂G.

Given f ∈ V, we denote by T (f) ∈ buc2+α(G) the solution to (8). The mapping
[V � f �→ T (f) ∈ buc2+α(G)] is smooth.

2. The nonlinear Cauchy problem. Due to Theorem 1.4 we can reduce prob-
lem (4) to an abstract, fully nonlinear Cauchy problem on S

1:

(9) ∂tf + Φ(f) = 0, f(0) = f0,

where

Φ(f) := B(f, T (f)).

Note that the mapping f �−→ Φ(f) is a nonlinear and nonlocal operator of first order.
It carries also a fully nonlinear structure in the sense that there is no leading linear
part in Q. We solve the Cauchy problem (9) by applying the theory of maximal
regularity; cf. [13]. Further on we verify that the assumption in Theorem 8.1.1 in [13]
are satisfied.

We first restrict our attention to the operator B. Let (f, v) ∈ V × buc2+α(G) be
given. The function B(f, v) is given by

B(f, v) = − 1
μ(|γ0Dfv|2)

(
f ′γ0v1 +

1
f

(1 + f ′2)γ0v2

)
,

with γ0 denoting the trace operator on Γ0. Together with the relation

|γ0Dfv|2 = γ0v
2
1 + 2

f ′

f
γ0v1v2 +

1 + f ′2

f2
γ0v

2
2

we obtain that the operator B defined above is smooth.
Lemma 2.1. The mapping B : V × buc2+α(G) → h1+α(S1) is smooth. Given

(f, v) ∈ V × buc2+α(G), we have

∂B(f, v)[h, u] = − 1
μ

(
|γ0Dfv|2

) [
f ′γ0u1 + h′γ0v1 +

1
f

(1 + f ′2)γ0u2

−
(
h

f2
− 2f ′h′

f
+
hf ′2

f2

)
γ0v2

]

− 2
(

1
μ

)′ (
|γ0Dfv|2

)(
f ′γ0v1 +

1
f

(1 + f ′2)γ0v2

)[
γ0v1u1

+
h′

f
γ0v1v2 +

f ′

f
γ0u1v2 +

f ′

f
γ0v1u2 −

f ′h

f2
γ0v1v2 +

f ′h′

f2
γ0v

2
2

+
f ′2

f2
γ0v2u2 −

hf ′2

f3
γ0v

2
2 +

1
f2
γ0v2u2 −

h

f3
γ0v

2
2

]

for all [h, u] ∈ h2+α(S1) × buc2+α(G).
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Lemma 2.2. Given f ∈ V and h ∈ h2+α(S1), the function ∂T (f)[h] is the unique
solution of the linear Dirichlet problem

bijwij + bw2 +Dfw

[
u11∂a11(Dfu) + 2u12

(
(1 − y)f ′

f
∂a11(Dfu) − 1

f
∂a12(Dfu)

)

+ u22

(
(1 − y)2f ′2

f2
∂a11(Dfu) − 2

(1 − y)f ′

f2
∂a12(Dfu) +

1
f2
∂a22(Dfu)

)

+ u2

(
(1 − y)

(
f ′′

f
− 2

f ′2

f2

)
∂a11(Dfu) + 2

f ′

f2
∂a12(Dfu)

)]

= −u2

(
(1 − y)

fh′ − f ′h

f2
,
h

f2

)
·
[
u11∂a11(Dfu)

+ 2u12

(
(1 − y)f ′

f
∂a11(Dfu) − 1

f
∂a12(Dfu)

)
+ u22

(
(1 − y)2f ′2

f2
∂a11(Dfu)

− 2
(1 − y)f ′

f2
∂a12(Dfu) +

1
f2
∂a22(Dfu)

)
+ u2

(
(1 − y)

(
f ′′

f
− 2

f ′2

f2

)
∂a11(Dfu)

+ 2
f ′

f2
∂a12(Dfu)

)]
− 2u12

(
(1 − y)

fh′ − f ′h

f2
a11(Dfu) +

h

f2
a12(Dfu)

)

− 2u22

(
(1 − y)2(ff ′h′ − f ′2h)

f3
a11(Dfu) − (1 − y)

fh′ − 2f ′h

f3
a12(Dfu)

− h

f3
a22(Dfu)

)
− u2

(
(1 − y)

(
fh′′ − f ′′h

f2
− 4

ff ′h′ − f ′2h

f3

)
a11(Dfu)

+ 2
fh′ − 2f ′h

f3
a12(Dfu)

)
in G,

w = h on ∂G,

where u := T (f) and bij = bij(y, f,Du), b = b(y, f,Du) are the coefficients computed
in Lemma 1.3.

Proof. The proof follows using standard arguments and we omit it.
Consequently, we obtain from Lemma 2.1 and Theorem 1.4 that the operator Φ

is smooth. We can use the chain rule to compute its derivative. More precisely, we
have the following result.

Theorem 2.3. The map Φ belongs to C∞(V , h1+α(S1)) and

∂Φ(f) = ∂B(f, T (f)) ◦ (idh2+α(S1), ∂T (f)) ∀f ∈ V .

Our goal is to show that for c ∈ R>0 the Fréchet derivative −∂Φ(c) generates a
strongly continuous analytic semigroup in L(h1+α(S1)). Then, using general results
from the theory of maximal regularity (cf. [13]), we can prove Theorem 1.1. It is clear
that we consider here −∂Φ(c) as an unbounded operator in h1+α(S1) with domain
h2+α(S1).
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Let c ∈ R>0 be given. The solution T (c) to (8) is the constant function c on G.
Given h ∈ h2+α(S1), the map ∂T (c)[h] is the solution of the Dirichlet problem

(10)
c2w11 + w22 = 0 in G,

w = h on ∂G.

Consequently,

−∂Φ(c)[h](x) =
ζ

c
w2(x, 0), x ∈ S

1,

where ζ := 1/μ(0).
We expand h and w in the following way:

h(x) =
∑
k∈Z

cke
ikx, w(x, y) =

∑
k∈Z

Ck(y)eikx,

and we substitute these expressions into (10). Comparing the coefficients of eikx,
k ∈ Z, we get the following equations for Ck:

(11)

C′′
k − c2k2Ck = 0, 0 < y < 2,

Ck(0) = ck,

Ck(2) = ck,

for k ∈ Z \ {0}, and

(12)

C′′
0 = 0, 0 < y < 2,

C0(0) = c0,

C0(2) = c0.

The solution to (12) is the constant function C0 = c0, and for k ∈ Z \ {0} we have

Ck(y) = ckdk(y), 0 ≤ y ≤ 2,

where

dk(y) :=
e2ck − 1
e4ck − 1

ecky +
e4ck − e2ck

e4ck − 1
e−cky, 0 ≤ y ≤ 2.

Summarizing, we obtain

(13) −∂Φ(c)

[∑
k∈Z

cke
ikx

]
=

∑
k∈Z

λkcke
ikx,

for all h =
∑

k∈Z
cke

ikx ∈ h2+α(S1), with

(14) λk := −ζ e
2ck − 1
e2ck + 1

k, k ∈ Z.

The multiplying coefficients λk satisfy λk = λ−k for all k ∈ Z. Furthermore,

0 = λ0 > λ±1 > λ±2 > · · · > λ±k > λ±(k+1) > · · · .
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For the purpose of proving that −∂Φ(c) generates a strongly continuous analytic
semigroup in L(h1+α(S1)), i.e., ∂Φ(c) ∈ H(h2+α(S1), h1+α(S1)), it is enough (cf. [1])
to find constants ω > 0 and κ ≥ 1 such that

λ+ ∂Φ(c) ∈ Lis(h2+α(S1), h1+α(S1)),(15)

|λ| · ‖R(λ,−∂Φ(c))‖L(h1+α(S1)) ≤ κ(16)

for all Reλ ≥ ω.

For r ≥ 0 we introduce the Sobolev space

Hr(S1) :=
{
f ∈ L2(S1) :

∑
n∈Z

(1 + n2)r|f̂(n)|2 <∞
}
,

endowed with the scalar product

〈f , g〉 :=
∑
n∈Z

(1 + n2)r f̂(n)ĝ(n).

The smooth functions are dense in Hr(S1) and the Sobolev embedding Hk+r(S1) ↪→
Ck(S1) holds for all k ∈ N, provided r > 1/2. Therefore we have

Hk+s(S1)
d
↪→ hk+β(S1)

for all k ∈ N, β ∈ [0, 1], and s > 3/2.
We choose ω = 1 and prove that relations (15) and (16) hold.
Lemma 2.4. Given r ≥ 0 and Reλ ≥ ω, we have

λ+ ∂Φ(c) ∈ Lis(Hr+1(S1), Hr(S1)).

Proof. The proof is just a consequence of the fact that

lim
k→∞

λk

k
= −ζ.

Given r ≥ 0 and Reλ ≥ ω, the inverse of λ + ∂Φ(c) is the operator R(λ,−∂Φ(c)) ∈
Lis(Hr(S1), Hr+1(S1)) defined by

(17) R(λ,−∂Φ(c))

[∑
k∈Z

cke
ikx

]
=

∑
k∈Z

1
λ− λk

cke
ikx

for all h :=
∑

k∈Z
cke

ikx ∈ Hr(S1).
In view of the above-mentioned facts, the multiplying operator R(λ,−∂Φ(c))

belongs to L(h1+α(S1), hk+α(S1)), k ∈ {1, 2}, if it belongs to L(C1+α(S1), Ck+α(S1)),
k ∈ {1, 2}. In the next proposition we show that, with our choice of ω, relation (15)
holds; i.e., for Reλ ≥ ω it follows that λ belongs to the resolvent set �(−∂Φ(c)) of
the operator −∂Φ(c).

Proposition 2.5.

{λ ∈ C : Reλ ≥ ω} ⊂ �(−∂Φ(c)).
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Proof. It is sufficient to prove that R(λ,−∂Φ(c)) ∈ L(C1+α(S1), C2+α(S1)) for
all Reλ ≥ ω. Let Reλ ≥ ω. Then R(λ,−∂Φ(c)) ∈ L(C1+α(S1), C2+α(S1)), if we have

(i) sup
k∈Z

|k||Mk| <∞,

(ii) sup
k∈Z

|k|2|Mk+1 −Mk| <∞,

(iii) sup
k∈Z

|k|3|Mk+2 − 2Mk+1 +Mk| <∞,

where Mk := 1/(λ− λk) (see, e.g., [2] and [14]). The relation

lim
k→∞

k

λ− λk
=

1
ζ

implies (i). For k ≥ 1 we have

k2|Mk+1 −Mk| =
k

λ− λk+1

k

λ− λk
|λk+1 − λk| −→

k→∞

1
ζ
,

because of λk − λk+1 → ζ. Also

k3|Mk+2 − 2Mk+1 +Mk| =
k

λ− λk+2

k

λ− λk+1

k

λ− λk
|λ(λk+2 − 2λk+1 + λk)

+λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|,

and λk+2 − 2λk+1 +λk → 0, respectively, λk(λk+1 − λk+2) + λk+2(λk+1 − λk) → 2ζ2.
This completes the proof.

Proposition 2.6. There exists κ ≥ 1 such that

|λ| · ‖R(λ,−∂Φ(c))‖L(h1+α(S1)) ≤ κ

for all Reλ ≥ ω.
Proof. Given h =

∑
k∈Z

ĥ(k)eikx ∈ h1+α(S1), we have

|λ|R(λ,−∂Φ(c))

[∑
k∈Z

ĥ(k)eikx

]
=

∑
k∈Z

Mλ
k ĥ(k)eikx,

where

Mλ
k =

|λ|
λ− λk

∀ k ∈ Z, Reλ ≥ ω.

It suffices to prove (see [2], [14]) that there exist positive constants s1, s2, and s3 such
that

(i) sup
k∈Z

|Mλ
k | ≤ s1,

(ii) sup
k∈Z

|k||Mλ
k+1 −Mλ

k | ≤ s2,

(iii) sup
k∈Z

|k|2|Mλ
k+2 − 2Mλ

k+1 +Mλ
k | ≤ s3
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for all Reλ ≥ ω. For Reλ ≥ ω and k ∈ Z we have Re(λ− λk) ≥ 1 and |λ− λk| ≥ |λ|.
Thus, (i) holds with s1 = 1. Moreover, for k �= 0, we have |λ − λk| ≥ |λk| for all
Reλ ≥ ω; hence

|k||Mλ
k+1 −Mλ

k | =
|λ|

|λ− λk+1|
|k|

|λ− λk|
|λk+1 − λk| ≤

|k|
|λk|

|λk+1 − λk|,

and (ii) holds. For k ≥ 1 we further have

k2|Mk+2 − 2Mk+1 +Mk| =
|λ|

|λ− λk+2|
k

|λ− λk+1|
k

|λ− λk|
|λ(λk+2 − 2λk+1 + λk)

+λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|

≤ k

|λk|
|k(λk+2 − 2λk+1 + λk)|

+
k

|λk|
k

|λk+1|
|λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|.

Taking into account

k(λk+2 − 2λk+1 + λk) −→
k→∞

0,

and using the symmetry of the coefficients λk, we have (iii).
In conclusion, given c ∈ R>0, we have proved that −∂Φ(c) generates a strongly

continuous analytic semigroup in L(h1+α(S1)). The proof of Theorem 1.1 is similar
to that of Theorem 8.1.1 in [13], and the assumptions of this theorem are all satisfied
(see also Theorem 2.3).

3. Stability of the equilibria. We want to identify the steady states of this
moving boundary problem, i.e., solutions which do not depend on time, and to study
their stability. A pair (u, f) ∈ buc2+α(Ωf )×V is a stationary solution of the flow (3)
iff it is a solution of the free boundary problem

(18)

div
(

Du
μ(|Du|2)

)
= 0 in Ωf ,

∂νu = 0 on Γ0,

u = f on Γf ,

∂νu = 0 on Γf .

If f ∈ V is known, then u ∈ buc2+α(Ωf ) is a solution of the Neumann problem

(19)
div

(
Du

μ(|Du|2)

)
= 0 in Ωf ,

∂νu = 0 on ∂Ωf .

Thus there exists a constant c ∈ R such that u = c. The condition u = f on Γf ,
together with f ∈ V , implies c ∈ R>0. In conclusion, (c, c) ∈ buc2+α(Ωc) × V , c > 0,
are the stationary solutions of the flow (3), or, equivalently, (c, c) ∈ buc2+α(G) × V ,
c > 0, are the stationary solutions of the flow (7).
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Let c ∈ R>0 be given. We want to identify the spectrum of the operator −∂Φ(c).
Of course, we have

{λk : k ∈ N} ⊂ σp(−∂Φ(c)) ⊂ σ(−∂Φ(c)).

Using a similar argument as in Proposition 2.5, one can in fact show that

{λk : k ∈ N} = σp(−∂Φ(c)) = σ(−∂Φ(c)).

Thus, the spectrum of −∂Φ(c) contains just eigenvalues. The largest eigenvalue is
λ0 = 0. This eigenvalue is simple and has a one-dimensional eigenspace consisting of
constant functions. All other eigenvalues λk, k ≥ 1, have a two-dimensional eigenspace
spanned by {eikx, e−ikx}. Compared to [5], the analysis is more involved here, since
we have to take the eigenvalue λ0 = 0 into consideration.

In order to prove the stability we transfer problem (9) into a neighborhood of the
origin in h2+α(S1). Let Vc := V − c. Then Vc is an open neighborhood of the origin
in h2+α(S1). We define ψ : Vc → h1+α(S1) by ψ(f) := −Φ(f + c) and consider the
following Cauchy problem:

(20) ∂tf = ψ(f), f(0) = f0.

We have ψ(0) = −Φ(c) = 0 and ∂ψ(0) = −∂Φ(c). Thus, 0 is a stationary solution
of (20), and there exists a one-to-one correspondence between solutions to (9) and
(20). Namely, if f is a solution to (20) corresponding to the initial data f0 ∈ Vc, then
f + c is the solution to (9) corresponding to f0 + c ∈ V . Conversely, if f is a solution
to (9) corresponding to the initial data f0 ∈ V , then f − c is the solution to (20)
corresponding to f0 − c ∈ Vc.

Hence, instead of studying the stability of the steady state c for (9), we study the
stability of 0 for (20). Note that 0 is an eigenvalue of the derivative ∂ψ(0). Moreover,
the null solution is not asymptotically stable because each neighborhood of 0 in Vc

contains constants, which are also steady states of this flow.
However, it is inappropriate to pose the problem in this way because, as the next

lemma shows, we have conservation of the fluid volume.
We introduce first some notation. Define by h̃k+α(S1), k ∈ {1, 2}, the closure of

the set of all smooth functions on S
1 with mean 0 in Ck+α(S1). We have defined in

this way closed subspaces of the little Hölder spaces. It is obvious that

h̃2+α(S1)
d
↪→ h̃1+α(S1) and h̃k+α(S1) =

{
f ∈ hk+α(S1) :

∫
S1

f dx = 0
}
, k ∈ {1, 2}.

Further, let Ṽ := Vc ∩ h̃2+α(S1).
Lemma 3.1 (conservation of volume). Given g ∈ Ṽ, we have ψ(g) ∈ h̃1+α(S1).
Proof. Let g + c = f ∈ V and denote by u the solution of (6). We have∫

S1

ψ(g)dx = −
∫

S1

Φ(f)dx = −
∫

S1

B(f, T (f))dx

= −
∫

S1

Du

μ(|Du|2) (x, f(x)) · n(x) dx = −
∫

Γf

∂νu

μ(|Du|2) dσ

= −
∫

Ωf

div
(

Du

μ(|Du|2)

)
dx+

∫
Γ0

∂νu

μ(|Du|2) dσ = 0.
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We consider now the restriction ψ̃ of ψ to Ṽ . From Lemma 3.1 and Theorem 2.3
we conclude that ψ̃ ∈ C∞(Ṽ , h̃1+α(S1)). Given h =

∑
k∈Z

ĥ(k)eikx ∈ h̃2+α(S1)) we
have

∂ψ̃(0)

[∑
k∈Z

ĥ(k)eikx

]
=

∑
k∈Z

λkĥ(k)eikx,

where the coefficients (λk) are given by (14).
Theorem 3.2. Consider ∂ψ̃(0) as an unbounded operator in h̃1+α(S1) with dense

domain h̃2+α(S1). Then

σ(∂ψ̃(0)) = {λk : k ≥ 1},(21)

|λ| · ‖R(λ,−∂ψ̃(0))‖L(h̃1+α(S1)) ≤ κ ∀Reλ ≥ ω,(22)

where κ and ω are the constants from Proposition 2.6.
Proof. Given λ ∈ �(∂ψ(0)) and h =

∑
k∈Z

ĥ(k)eikx ∈ h̃1+α(S1) there exists a
unique

u =
∑
k∈Z

1
λ− λk

ĥ(k)eikx ∈ h2+α(S1),

such that (λ − ∂ψ(0))u = h. Since ĥ(0) = 0 we conclude that û(0) = 0; thus u ∈
h̃2+α(S1) and λ ∈ �(∂ψ̃(0)). Moreover, ∂ψ̃(0) ∈ Lis(h̃2+α(S1), h̃1+α(S1)) and (21)
holds. Relation (22) follows from Proposition 2.6, using the fact that

(λ − ∂ψ(0))[h] = (λ− ∂ψ̃(0))[h],

for all h ∈ h̃2+α(S1) and Reλ ≥ ω.

In conclusion −∂ψ̃(0) belongs to H(h̃2+α(S1), h̃1+α(S1), and therefore, if the ini-
tial value f0 in (20) belongs to h̃2+α(S1), then the evolution takes place in h̃2+α(S1).
We have the following stability result for the flow (3).

Theorem 3.3 (exponential stability). For any ω < −λ1 = tanh c/μ(0), there are
positive constants r and C such that for any f0 ∈ c+h̃2+α(S1) with ‖f0−c‖C2+α(S1) ≤ r
the solution to (3) exists globally in time and the estimate

‖f(t) − c‖C2+α(S1) + ‖f ′(t)‖C1+α(S1) ≤ Ce−ωt‖f0 − c‖C2+α(S1) ∀t ≥ 0

holds.
Proof. Transferring problem (9) into a neighborhood of 0 in h̃2+α(S1) we find

that all of the assumptions of Theorem 9.1.2 in [13] are satisfied (cf. Theorem 3.2).
The result follows directly from this theorem.
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CONVERGENCE TO EQUILIBRIUM FOR
PARABOLIC-HYPERBOLIC TIME-DEPENDENT
GINZBURG–LANDAU–MAXWELL EQUATIONS∗

MAURIZIO GRASSELLI† , HAO WU‡ , AND SONGMU ZHENG§

Abstract. We consider a Ginzburg–Landau–Maxwell model which describes the behavior of a
two-dimensional superconducting material. The state variables are the complex-valued order param-
eter ψ, the magnetic potential Ã, and the electric potential Φ. Under the choice of Coulomb (i.e.,
London) gauge, the resulting system is a parabolic-hyperbolic coupled system of nonlinear partial
differential equations subject to suitable boundary and initial conditions. Global well-posedness re-
sults were proved in [M. Tsutsumi and H. Kasai, Nonlinear Anal., 37 (1999), pp. 187–216], while
the existence of global attractor and exponential attractors was proved in [V. Berti and S. Gatti,
Quart. Appl. Math., 64 (2006), pp. 617–639]. In this paper we use an extended �Lojasiewicz–Simon
approach to show that for any initial datum in certain phase space, the corresponding global solution
converges to an equilibrium as time goes to infinity. Besides, we also provide an estimate on the
convergence rate with respect to the phase space metric.

Key words. Ginzburg–Landau–Maxwell equations, superconductivity, Coulomb gauge, conver-
gence to equilibrium, �Lojasiewicz–Simon inequality
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1. Introduction. This paper is concerned with the asymptotic behavior of so-
lutions to a two-dimensional Ginzburg–Landau–Maxwell model of superconductiv-
ity proposed in [27] (see also [2, 13, 32]). When a superconducting material is kept
close to a certain critical temperature, its behavior can be macroscopically described,
within the Ginzburg–Landau phase transition theory (see [18] and its references, cf.
also [8, Chapter 11]), by the state variables (ψ, Ã,Φ). Here ψ is the complex order pa-
rameter, whose squared modulus represents the concentration of the superconducting
electrons, while Ã and Φ are the magnetic and the electric potentials, respectively.

On account of [32], we introduce the equations governing the evolution of (ψ, Ã,Φ).
Suppose that the material occupies a bounded domain Ω ⊂ R

2 with smooth boundary
Γ for any time t ≥ 0. Then the state variables ψ : Ω×(0,∞) → C, Ã : Ω×(0,∞) → R

2

and Φ : Ω × (0,∞) → R satisfy the following equations:

(1.1) ψt − iΦψ −D2
Ã
ψ − λ2

(
1 − |ψ|2

)
ψ = 0,

(1.2) ε
(
Ãt −∇Φ

)
t
+σ

(
Ãt −∇Φ

)
+curl2Ã+

i

2
(
ψDÃψ − ψDÃψ

)
+curlHext = 0,

in Ω × (0,∞), subject to the boundary conditions

(1.3) DÃψ ·n = 0,
(

curlÃ + Hext

)
×n = 0,

(
Ãt −∇Φ

)
·n = 0, on Γ×(0,∞),
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where

(1.4) DÃψ = ∇ψ − iÃψ, D2
Ã
ψ = Δψ − 2iÃ · ∇ψ − iψ∇ · Ã− |Ã|2ψ.

Here Hext is the external magnetic field, which is assumed to be time independent
for the sake of simplicity throughout this paper; the positive constants λ, ε, and σ
represent the Ginzburg–Landau parameter, the dielectric coefficient, and the electric
conductivity, respectively, and n denotes the unit outward normal to the boundary
Γ.

We recall that (1.2) is derived from Maxwell’s equations. In the so-called quasi-
steady approximation, namely, when the displacement current ε(Ãt − ∇Φ)t is neg-
ligible, we obtain the well-known system proposed by Gor’kov and Èliashberg [13],
which has been widely studied in the literature (see, e.g., [7,9,11,18,19,22,23,24,26,
27, 29, 30, 33] and reference therein). However, if surface charge must be taken into
account, then the displacement current cannot be neglected (see [2]).

Similarly to the classical time-dependent Ginzburg–Landau equations, the evolu-
tion equations (1.1)–(1.2) and the boundary conditions (1.3) are invariant under the
gauge transformation:

(1.5) Tχ :
(
ψ, Ã,Φ

)
�−→

(
ψeiχ, Ã + ∇χ,Φ + χt

)
.

The gauge χ can be any (smooth) real scalar-valued function depending on x and t.
In [3, 32], the authors choose the Coulomb gauge (also known as the London gauge).
This choice entails that the following identities hold:

(1.6) divÃ = 0 in Ω,
∫

Ω

Φdx = 0,

(1.7) Ã · n = 0, ∂nΦ = 0, on Γ.

For the existence of the gauge χ corresponding to (1.6) and (1.7), one may refer, e.g.,
to [23, Lemma 2.2, Remark 2.4] where even more general cases have been discussed (see
also [18, section 1.4.4]). Using the Coulomb gauge, Ã is a solenoidal vector field so that

(1.8) D2
Ã
ψ = Δψ − 2iÃ · ∇ψ −

∣∣Ã∣∣2ψ.
Moreover, system (1.1)–(1.2) is subject to the boundary conditions (cf. (1.3), (1.7))

(1.9) ∂nψ = 0, Ã · n = 0,
(

curlÃ + Hext

)
× n = 0, on Γ × (0,∞).

It will be more convenient to treat problem (1.1), (1.2), (1.9) in a homogeneous form.
For this purpose, we consider the following boundary value problem:

(1.10)
{

curl 2Aext = curlHext, divAext = 0, in Ω,
Aext · n = 0, (curlAext − Hext) × n = 0, on Γ.

Throughout this paper we always assume that Hext ∈ H1. Then, it is easy to see
that the convex quadratic functional

(1.11) J(A) =
∫

Ω

|curlA − Hext|2dx

on the domain

(1.12) D :=
{
A ∈ H 1(Ω) : divA = 0 in Ω, A · n|Γ = 0

}



CONVERGENCE TO EQUILIBRIUM FOR G-L-M EQUATIONS 2009

admits a unique minimizer Aext ∈ D, which is the (unique) solution to (1.10). The
linear mapping Hext → Aext is continuous from Hα(Ω) to Hα+1(Ω) for 0 ≤ α ≤ 1
(see [11, Lemma 3, Lemma 4]; cf. also [9]).

Set now

(1.13) A = Ã + Aext.

Then the Ginzburg–Landau–Maxwell equations (1.1) and (1.2) can be reduced to the
following homogeneous form in terms of ψ and A (cf. [3, 32]):

(1.14) ψt − iΦψ −D2
Ã
ψ − λ2

(
1 − |ψ|2

)
ψ = 0,

(1.15) ε(At −∇Φ)t + σ(At −∇Φ) + curl2A +
i

2
(
ψDÃψ − ψDÃψ

)
= 0.

By applying the spatial divergence operator to (1.15) and taking (1.14) into account,
we obtain the evolution equation for Φ, namely,

(1.16) −εΔΦt − σΔΦ +
i

2
(
ψψt − ψψt

)
+ |ψ|2Φ = 0.

Moreover, we have (see (1.5))

(1.17) divA = 0 in Ω,
∫

Ω

Φdx = 0,

and (1.14)–(1.17) are subject to the homogeneous boundary conditions (cf. (1.7)–
(1.10))

(1.18) ∂nψ = 0, A · n = 0, curlA× n = 0, ∂nΦ = 0, on Γ × (0,∞),

as well as to the initial conditions

(1.19) ψ|t=0 = ψ0, A|t=0 = A0, At|t=0 = A1, Φ|t=0 = Φ0, in Ω

for some given initial data.
The main concern of this paper is the convergence to equilibrium of the solution to

problem (1.14)–(1.19) as time goes to infinity. In what follows we recall related results
in the literature on problem (1.14)–(1.19). The global well-posedness of problem
(1.14)–(1.19) has been carefully investigated in [32] in both two and three dimensions,
even though, physically speaking, the present model is essentially two-dimensional
(see [18, sections 1.5, 1.6, 1.8]; cf. also [5, 23]). The results of [32] are also concerned
with the case ε = 0, which has been studied by many other authors (see, e.g., [18,23,
26,29,30,33] and references therein). Regarding the large time behavior of solutions,
problem (1.14)–(1.19) has recently been analyzed in [3] within the theory of infinite-
dimensional dissipative dynamical systems. In that paper the authors show that
the quoted problem generates a strongly continuous semigroup which possesses the
global attractor and an exponential attractor. However, the issue of convergence to
equilibrium for single solutions to problem (1.14)–(1.19) has not been studied in [3].
This is the goal of the present contribution. More precisely, we will prove that, for any
initial datum in the phase space introduced in [3], the corresponding global solution
to (1.14)–(1.19) converges to a single equilibrium as time goes to infinity. Besides, an
estimate of the convergence rate in the phase space metric will also be given. The key
ingredients of the present paper can be summarized as follows:
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(I) Since (1.15) is hyperbolic, we can no longer take advantage of the smoothing
effects for solutions to parabolic equations like, e.g., in [9] where the Lorentz gauge
is used. Instead, we will use a result proved in [3] to show the precompactness of
solutions.

(II) We need to develop an extended �Lojasiewicz–Simon approach for which it is
necessary to establish a suitable �Lojasiewicz–Simon-type inequality. Such an inequal-
ity is a suitable adaptation of the one proved in [9] for a problem similar to ours with
ε = 0 but subject to the Lorentz gauge Φ = −ω(∇ · A), with ω being a nonnegative
constant (for ω = 0, see also [24]).

(III) Due to the hyperbolic nature of (1.15), the standard �Lojasiewicz–Simon
approach used in the parabolic case must be modified by introducing an appropriate
auxiliary functional F (see section 5), which usually depends on the problem under
consideration (see, e.g., [15, 19, 35] and references therein for similar problems).

(IV) In the existing literature the convergence rate in a (lower order) norm is usu-
ally obtained directly by using the �Lojasiewicz–Simon approach (see, e.g., [9,17,36]).
Then, estimates in higher order norms can be deduced by means of interpolation
inequalities (cf. [17]) and, consequently, the decay exponent deteriorates. On the con-
trary, in this paper and some earlier papers by the authors, using the original equations
and suitable energy estimates and constructing proper differential inequalities, we are
able to preserve the original convergence rate when we estimate the convergence with
respect to the phase space metric. This technique has been successfully applied to
other equations as well (see, e.g., [14, 34, 35, 36]).

In [9] (see also [19]) the convergence to single equilibria for the case ε = 0 has
been investigated in detail in the hypothesis of a time-dependent applied magnetic
field and using the Lorentz gauge. The present contribution is a first step towards a
more comprehensive analysis of the case ε > 0. The corresponding results for other
widely used gauges (e.g., the Lorentz gauge) as well as for the case of a time-dependent
applied magnetic field will be considered in the near future. We recall that the choice
of the gauge plays an important role in the mathematical treatment of these models
(see [10] and references therein).

This paper is organized as follows. In section 2 we introduce the notation and
state the main results of this paper. Section 3 contains some preliminary results on the
time-dependent Ginzburg–Landau–Maxwell model. In section 4 we state a suitable
version of a �Lojasiewicz–Simon-type inequality. The last two sections are devoted to
the proof of our main results. More precisely, in section 5 we prove the convergence
to a single equilibrium, while in section 6, we establish the convergence rate estimate.

2. Notation and main results. We use the notation introduced in [32] (see
also [3]). As usual, Lp(Ω) and W k,p(Ω) stand for the Lebesgue and the Sobolev spaces
of real-valued functions, with the convention that Hk(Ω) = W k,2(Ω). We denote by
bold letters the spaces of vector-valued functions, whereas a subscript C characterizes
those of complex-valued functions. Without further specifications, ‖ · ‖ stands for
the norm in L2

C
(Ω),L2(Ω), or L2(Ω), according to the context. This norm is always

induced by the scalar inner product

〈u, v〉 =
∫

Ω

u(x)v(x)dx,

where for a vector-valued function, the product uv is replaced by the Euclidean inner
product u · v. Next, we introduce the function spaces

(2.1) X =
{
u ∈ H2(Ω) : divu = 0 in Ω, u · n|Γ = 0, curlu × n|Γ = 0

}
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equipped with the usual H2(Ω) norm. Let X0 be the completion of X in H1(Ω) and

H1
0m(Ω) =

{
u ∈ H1(Ω) :

∫
Ω

udx = 0
}
,

H2
0m(Ω) =

{
u ∈ H2(Ω) : ∂nu|Γ = 0,

∫
Ω

udx = 0
}
.

We can thus define the phase space we shall work with:

(2.2) X
0
∞ =

{
ψ ∈ H2

C(Ω) : ∂nψ|Γ = 0, ‖ψ‖L∞
C

(Ω) ≤ 1
}
× X × X0 ×H2

0m(Ω),

which is a closed subset of the Banach space

(2.3) X
0 =

{
ψ ∈ H2

C
(Ω) : ∂nψ|Γ = 0

}
× X × X0 ×H2

0m(Ω).

The norm on X
0 is defined by

(2.4) ‖z‖2
0 = ‖z1‖2

H2
C
(Ω) + ‖z2‖2

H2(Ω) + ‖z3‖2
H1(Ω) + ‖z4‖2

H2(Ω)

for any z = (z1, z2, z3, z4) ∈ X
0. We also introduce the Banach space

(2.5) X
−1 = H1

C(Ω) × X0 × L2(Ω) ×H1
0m ⊃ X

0,

endowed with the norm

(2.6) ‖z‖2
−1 = ‖z1‖2

H1
C
(Ω) + ‖z2‖2

H1(Ω) + ‖z3‖2
L2(Ω) + ‖z4‖2

H1(Ω)

for any z = (z1, z2, z3, z4) ∈ X
−1.

In what follows, we will make use of the Gagliardo–Nirenberg inequalities in
dimension two, namely,

(2.7) ‖u‖2
L4(Ω) ≤ C‖u‖‖u‖H1(Ω) ∀ u ∈ H1(Ω),

(2.8) ‖u‖2
L∞(Ω) ≤ C‖u‖‖u‖H2(Ω) ∀ u ∈ H2(Ω),

where C > 0 depends only on Ω.
We also recall that there exist constants κ > 0 and c > 0 depending only on Ω

such that (see, e.g., [25, Corollary 3.51])

(2.9) ‖A‖ ≤ κ‖curlA‖ ∀ A ∈ X0,

and (cf. [12, Chapter I, (5.45), p. 92] also [32, section 2])

(2.10) ‖A‖H1(Ω) ≤ c‖curlA‖ ∀ A ∈ X0.

In the remaining part of the paper, we always assume that

(2.11) Aext ∈ X0 ∩ H2(Ω).

We now recall the following result.
Proposition 2.1 ([3, Theorem 2.1, Proposition 3.1]). Denote z0 = (ψ0,A0,A1,

Φ0) ∈ X
0. Problem (1.14)–(1.19) generates a strongly continuous semigroup {S(t)}t≥0
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on the space X
0. If z0 = (ψ0,A0,A1,Φ0) ∈ X

0
∞, then S(t)z0 ∈ X

0
∞. Moreover, there

exists a positive constant C depending only on ‖z0‖0 such that

(2.12) ‖S(t)z0‖0 ≤ C ∀ t ≥ 0.

The stationary problem corresponding to (1.14)–(1.19) is

(2.13) −(∇− i(A∞ − Aext))2ψ∞ − λ2
(
1 − |ψ∞|2

)
ψ∞ = 0,

(2.14) curl2A∞ +
i

2
(
ψ∞∇ψ∞ − ψ∞∇ψ∞

)
+ |ψ|2(A∞ − Aext) = 0,

(2.15) divA∞ = 0,

(2.16) ∂nψ∞ = 0, A∞ · n = 0, curlA∞ × n = 0, on Γ,

(2.17) Φ∞ = 0.

Set now

(2.18) A∞ = Ã∞ + Aext.

Then problem (2.13)–(2.17) becomes

(2.19) −
(
∇− iÃ∞

)2

ψ∞ − λ2
(
1 − |ψ∞|2

)
ψ∞ = 0,

(2.20) curl2Ã∞ +
i

2
(
ψ∞∇ψ∞ − ψ∞∇ψ∞

)
+ |ψ∞|2Ã∞ + curlHext = 0,

(2.21) divÃ∞ = 0,

(2.22) ∂nψ∞ = 0, Ã∞ · n = 0,
(

curlÃ∞ + Hext

)
× n = 0, on Γ,

and

(2.23) Φ∞ = 0.

Define the functional

(2.24)
E0

(
ψ∞, Ã∞

)
=
∫

Ω

[
λ2

4
(
1 − |ψ∞|2

)2
+

1
2

∣∣∣(∇− iÃ∞
)
ψ∞

∣∣∣2
+

1
2

∣∣∣curlÃ∞ + Hext

∣∣∣2 ]dx,
on H1

C
× X0. It is easy to see that a critical point (ψ∞, Ã∞) of E0 is a weak solu-

tion of (2.19)–(2.22). This stationary problem embodies the macroscopic quantum-
mechanical nature of the superconducting state. There are many works on the station-
ary Ginzburg–Landau equations. For instance, the existence of vortex-like solutions
to the time-independent Ginzburg–Landau equations was proved in [24]. An existence
result for the stationary problem of the Ginzburg–Landau–Maxwell equations with
Coulomb gauge in the Lp framework was recently given in [1]. An equivalence rela-
tion between solutions of the time-independent and time-dependent Ginzburg–Landau
equations that describe the same physical state of a superconductor was established
in [21].

We are now in a position to state our main theorem.
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Theorem 2.1. For any initial datum z0 = (ψ0,A0,A1,Φ0) ∈ X
0
∞, the global

solution z(t) = (ψ(t),A(t),At(t),Φ(t)) to problem (1.14)–(1.19) converges in X
0 to

a unique equilibrium z∞ = (ψ∞,A∞,0, 0), where (ψ∞,A∞) satisfies (2.13)–(2.16).
Moreover, the following estimate holds:

(2.25) ‖z(t) − z∞‖0 ≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0,

where C > 0 is a constant depending only on ‖z0‖0 and θ ∈ (0, 1
2 ) depends on z∞.

Remark 2.1. We recall that θ is the so-called �Lojasiewicz exponent (see Lemma 4.2
below). Note that the convergence rate is estimated in the same norm where conver-
gence takes place. This requires some work (see section 6).

3. Preliminaries. In this section we first recall the basic results proven in [3],
which entail the precompactness of the trajectory originated from an initial datum in
X

0
∞.

Let

(3.1) X
1 = H3

C(Ω) ×
[
X ∩ H3(Ω)

]
× X ×

[
H2

0m(Ω) ∩H3(Ω)
]
,

with the standard norm defined by

(3.2) ‖z‖2
1 = ‖z1‖2

H3
C
(Ω) + ‖z2‖2

H3(Ω) + ‖z3‖2
H2(Ω) + ‖z4‖2

H3(Ω)

for any z = (z1, z2, z3, z4) ∈ X
1.

For any given z0 ∈ X
0
∞, let z(t) = S(t)z0 be the solution to problem (1.14)–

(1.19). Following [3, section 4], in order to prove the precompactness of z(t), we make
a decomposition of the solution z into a uniformly stable part zd which decays to zero
and a compact part zc, that is,

(3.3) z(t) = zd(t) + zc(t).

Here zd(t) = (ψd(t),Ad(t),Ad
t (t),Φd(t)) solves

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψd
t − Δψd + ψd = 0,
ε
(
Ad

t −∇Φd
)
t

+ σ
(
Ad

t −∇Φd
)

+ curl2Ad = 0,
−εΔΦd

t − σΔΦd = 0,
divAd = 0,

∫
Ω

Φd = 0,
∂nψ

d
∣∣
Γ

= 0, Ad · n
∣∣
Γ

= 0, curlAd × n
∣∣
Γ

= 0, ∂nΦd
∣∣
Γ

= 0,
ψd(0) = ψ0, Ad(0) = A0, Ad

t (0) = A1, Φd(0) = Φ0,

and zc(t) = (ψc(t),Ac(t),Ac
t(t),Φc(t)) is the solution to

(3.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψc
t − Δψc + ψc = F

(
ψ, Ã,Φ

)
,

ε (Ac
t −∇Φc)t + σ (Ac

t −∇Φc) + curl2Ac = G
(
ψ, Ã

)
,

−εΔΦc
t − σΔΦc = H(ψ,Φ),

divAc = 0,
∫
Ω

Φc = 0,
∂nψ

c|Γ = 0, Ac · n|Γ = 0, curlAc × n|Γ = 0, ∂nΦc|Γ = 0,
ψc(0) = 0, Ac(0) = 0, Ac

t(0) = 0, Φc(0) = 0,



2014 MAURIZIO GRASSELLI, HAO WU, AND SONGMU ZHENG

where, in (3.5), we have set

(3.6) F
(
ψ, Ã,Φ

)
= iΦψ −

∣∣Ã∣∣2ψ − 2iÃ · ∇ψ + λ2
(
1 − |ψ|2

)
ψ + ψ,

(3.7) G
(
ψ, Ã

)
=
i

2
(
ψ∇ψ − ψ∇ψ

)
− Ã

∣∣ψ∣∣2,
(3.8) H(ψ,Φ) = − i

2
(
ψψt − ψψt

)
− |ψ|2Φ.

Then the following lemmas show that the X
0-norm of zd(t) exponentially decays to

zero as time goes to infinity, while zc(t) remains in a bounded set of X
1 which is

compact in X
0.

Lemma 3.1 (cf. [3, Lemma 4.2]). There exist constants γ > 0 and ν > 0 inde-
pendent of ‖z0‖0 such that

(3.9) ‖zd(t)‖2
0 ≤ γ2e−2νt‖z0‖2

0 ∀ t ≥ 0.

Lemma 3.2 (cf. [3, Lemma 4.3]). There exists a constant C > 0 depending on
‖z0‖0 such that

(3.10) ‖zc(t)‖1 ≤ C ∀ t ≥ 0.

Let us define

E
(
ψ, Ã, Ãt,Φ

)
=

1
2
‖DÃψ‖

2 +
λ2

4

∥∥1 − |ψ|2
∥∥2

+
1
2

∥∥curlÃ + Hext

∥∥2

+
ε

2
‖Ãt‖2 +

ε

2
‖∇Φ‖2.(3.11)

It is easy to see that E is well defined and continuous on X
−1 (cf. (2.5)). In addition,

we have what follows.
Lemma 3.3. E is a global Lyapunov functional for the dynamical system (X0

∞, S(t)).
Proof. We only need to prove that E decreases along any given trajectory z(t) =

S(t)z0. Here and in what follows, we will sometimes use formal arguments which can
be rigorously justified, e.g., by using a Galerkin approximation scheme (see [32]).

Multiplying (1.1) by ψt and its conjugate by ψt, respectively, integrating on Ω
and adding the results together, we get

d

dt

(
1
2
‖DÃψ‖

2 +
λ2

4

∥∥1 − |ψ|2
∥∥2
)

+ ‖ψt‖2 +
i

2
〈
Φ, ψψt − ψψt

〉
−
〈
Ã · Ãt, |ψ|2

〉
− i

2

〈
Ãt, ψ∇ψ − ψ∇ψ

〉
= 0.(3.12)

On the other hand, multiplying (1.2) by Ãt in L2(Ω), we have

d

dt

(
1
2

∥∥curlÃ + Hext

∥∥2 +
ε

2

∥∥Ãt

∥∥2
)

+ σ
∥∥Ãt

∥∥2 +
〈
Ã · Ãt, |ψ|2

〉
+
i

2

〈
ψ∇ψ − ψ∇ψ, Ãt

〉
= 0.(3.13)

Moreover, taking the inner product of (1.16) with Φ in L2(Ω) yields

(3.14)
ε

2
d

dt
‖∇Φ‖2 + σ‖∇Φ‖2 +

〈
Φ2, |ψ|2

〉
+
i

2
〈
ψψt − ψψt,Φ

〉
= 0.
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Hence, we infer from (3.12)–(3.14) that, for all t ≥ 0,

d

dt
E
(
ψ, Ã, Ãt,Φ

)
= −‖ψt‖2 − i

〈
Φ, ψψt − ψψt

〉
− σ

∥∥Ãt

∥∥2 − σ ‖∇Φ‖2 −
〈
Φ2, |ψ|2

〉
= −‖ψt − iΦψ‖2

L2
C
(Ω) − σ

∥∥Ãt

∥∥2 − σ‖∇Φ‖2

≤ 0,(3.15)

and the assertion follows.
Due to the above lemmas, we can see that (S(t),X0

∞) is a gradient system. Fur-
thermore, on account of Lemmas 3.1, 3.2, 3.3, and some well-known results in dynam-
ical systems (see, for instance, [4, Chapter 9]), we deduce the following.

Lemma 3.4. For any z0 ∈ X
0
∞, the ω-limit set of z0 is a nonempty compact

connected subset of X
0. Furthermore, we have

(i) distX0(S(t)z0, ω(z0)) → 0 as t→ ∞;
(ii) ω(z0) consists of equilibria of the form z∞ = (ψ∞,A∞,0, 0), where (ψ∞,A∞)

satisfies (2.13)–(2.16);
(iii) S(t)ω(z0) = ω(z0) ∀ t ≥ 0;
(iv) E is constant on ω(z0).
Remark 3.1. If the set of equilibria were discrete, then we could conclude imme-

diately that each solution converges to a single equilibrium (see (i) of Lemma 3.4).
However, as is well known, in more than one spatial dimension, the set of stationary
solutions can be a continuum for physically reasonable nonlinearity. The reader is
referred, for instance, to [16, Remark 2.3.13]), where the following two-dimensional
equation −Δu+u3−λu = 0, λ > 0, endowed with a standard Dirichlet homogeneous
boundary condition, is considered.

Remark 3.2. Lemmas 3.1 and 3.2 play a basic role in [3]. In particular, they
enable the authors to prove that (S(t),X0

∞) has the global attractor Aε bounded in
X

1. In addition, due to Lemma 3.3, we infer that Aε coincides with the unstable
manifold of the set of equilibria (see, e.g., [31, Chapter 7, section 4]).

4. Extended �Lojasiewicz–Simon inequality. Let us set ψ = ψ1 + iψ2, where
ψ1, ψ2 : Ω × R

+ → R, and define
−→
ψ = (ψ1, ψ2). Recalling (2.24), we rewrite the

functional E0 in the real form E0:

E0

[
(ψ1, ψ2), Ã

]
= E0

(
ψ, Ã

)
=
∫

Ω

[
λ2

4
(
1 − |ψ|2

)2
+

1
2

∣∣∣(∇− iÃ
)
ψ
∣∣∣2 +

1
2

∣∣∣curlÃ + Hext

∣∣∣2] dx
=
∫

Ω

[
λ2

4
(
1 − ψ2

1 − ψ2
2

)2
+

1
2

∣∣∣∇ψ1 + Ãψ2

∣∣∣2 +
1
2

∣∣∣∇ψ2 − Ãψ1

∣∣∣2
+

1
2

∣∣∣curlÃ + Hext

∣∣∣2] dx.(4.1)

In analogy to [9, Lemma 5.1], we can see that the functional E0 is analytic on

(4.2) X =
[
H1(Ω)

]2 × X0

in the sense of Deimling (see [6, Definition 15.1, pp. 150]). Then a direct calculation
shows what follows.
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Lemma 4.1. The Fréchet derivative DE0 of E0 is an analytic mapping from X
to its dual X ′, and it is given by

(4.3)
〈
DE0[(ψ1, ψ2), Ã], [(v1, v2),V]

〉
= 〈∂ψ1E0, v1〉 + 〈∂ψ2E0, v2〉 + 〈∂ÃE0,V〉 ,

for any [(ψ1, ψ2), Ã], [(v1, v2),V] ∈ X , where〈
∂ψ1E0

[
(ψ1, ψ2), Ã

]
, v1

〉
(4.4)

=
∫

Ω

[(
∇ψ1 + Ãψ2

)
· ∇v1 −

(
∇ψ2 − Ãψ1

)
· Ãv1

]
dx− λ2

∫
Ω

(
1 − |ψ|2

)
ψ1v1dx,〈

∂ψ2E0

[
(ψ1, ψ2), Ã

]
, v2

〉
(4.5)

=
∫

Ω

[(
∇ψ2 − Ãψ1

)
· ∇v2 +

(
∇ψ1 + Ãψ2

)
· Ãv2

]
dx− λ2

∫
Ω

(
1 − |ψ|2

)
ψ2v2dx,〈

∂ÃE0

[
(ψ1, ψ2), Ã

]
,V
〉

(4.6)

=
∫

Ω

(
curl Ã + Hext

)
· (curl V) dx+

∫
Ω

[
− (ψ1∇ψ2 − ψ2∇ψ1) + Ã|ψ|2

]
·Vdx.

Let us introduce now the quadratic form J : X × X → R given by

(4.7)

J ([(v1, v2),V], [(w1, w2),W]) :=
∫

Ω

(∇−→v · ∇−→w +−→v · −→w )dx+
∫

Ω

(curlV) · (curlW)dx,

∀ [(v1, v2),V], [(w1, w2),W] ∈ X .
It follows from (2.10) that (J ([(v1, v2),V], [(v1, v2),V]))1/2 defines an equivalent

norm of [(v1, v2),V] on X . Based on this fact, we can retrace the steps of [9, section 6]
to prove the following version of the �Lojasiewicz–Simon inequality, which is a slight
modification of [9, Proposition 6.1]. We thus omit the details. This lemma can be
viewed as an extended version of Simon’s result [28] for the scalar case under the use
of L2 norm.

Lemma 4.2 (extended �Lojasiewicz–Simon inequality). Let [(ψ1∞, ψ2∞), Ã∞] ∈
X be a critical point of E0. Then there exist constants β > 0 and θ ∈ (0, 1

2 ) depending
on [(ψ1∞, ψ2∞), Ã∞] such that, for any [(ψ1, ψ2), Ã] ∈ X satisfying

(4.8)
∥∥∥[(ψ1, ψ2), Ã

]
−
[
(ψ1∞, ψ2∞), Ã∞

]∥∥∥
X
< β,

we have

(4.9)
∣∣∣E0

[
(ψ1, ψ2), Ã

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

]∣∣∣1−θ

≤
∥∥∥DE0

[
(ψ1, ψ2), Ã

]∥∥∥
X ′
.

5. Convergence to equilibrium. In this section we prove the convergence
to equilibrium for the global solutions to our Ginzburg–Landau–Maxwell equations.
First, we show the convergence for Ãt(t) and Φ(t) to 0, which is given by the following
lemma.

Lemma 5.1. We have

lim
t→+∞

∥∥Ãt(t)
∥∥
X0

= 0,(5.1)

lim
t→+∞

‖Φ(t)‖H2(Ω) = 0.(5.2)
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Proof. Integrating (3.15) from 0 to t, we obtain

E(t) +
∫ t

0

‖ψt(τ) − iΦ(τ)ψ(τ)‖2dτ + σ

∫ t

0

∥∥Ãt(τ)
∥∥2
dτ + σ

∫ t

0

‖∇Φ(τ)‖2dτ

≤ E(0) <∞.(5.3)

Since E is nonnegative, we deduce

(5.4)
∫ ∞

0

∥∥Ãt(τ)
∥∥2
dτ <∞,

∫ ∞

0

‖∇Φ(τ)‖2dτ <∞,

and

(5.5)
∫ ∞

0

‖ψt(τ) − iΦ(τ)ψ(τ)‖2dτ <∞.

From (1.16), we infer that

ε‖ΔΦt‖ ≤ σ‖ΔΦ‖ +
∥∥∥∥ i2 (ψψt − ψψt

)∥∥∥∥+ ‖|ψ|2Φ‖

≤ σ‖ΔΦ‖ + C (‖ψt‖ + ‖∇Φ‖)(5.6)

and, on account of (1.17),
∫
Ω

Φtdx = 0. Thus we have

(5.7) ‖∇Φt‖ ≤ ‖Φt‖H2(Ω) ≤ C‖ΔΦt‖ ≤ C (‖ΔΦ‖ + ‖ψt‖ + ‖∇Φ‖) .

On the other hand, from (1.1), (1.8), and the Sobolev embedding theorem, we have

‖ψt‖ ≤ C
(
‖Φψ‖ + ‖Δψ‖ +

∥∥Ã · ∇ψ
∥∥+

∥∥∣∣Ã∣∣2ψ∥∥+
∥∥ (1 − |ψ|2

)
ψ
∥∥)

≤ C
(
‖Φ‖‖ψ‖L∞

C
(Ω) + ‖ψ‖H2

C
(Ω) +

∥∥Ã∥∥
H2(Ω)

‖∇ψ‖ +
∥∥Ã∥∥2

H2(Ω)
‖ψ‖

+ ‖ψ‖3
H1

C
(Ω)

)
.(5.8)

Then, it follows from (5.7), (5.8), and the uniform estimate (2.12) that

(5.9) ‖∇Φt(t)‖ ≤ C ∀ t ≥ 0.

Similarly, it follows from (1.15) and estimates (2.12) and (5.9) that∥∥Ãtt

∥∥ ≤ C
(
‖∇Φt‖ +

∥∥Ãt

∥∥+ ‖∇Φ‖ +
∥∥curl2Ã

∥∥+
∥∥ (ψDÃψ − ψDÃψ

) ∥∥)
≤ C

(
‖∇Φt‖ +

∥∥Ãt

∥∥+ ‖∇Φ‖ +
∥∥curl2Ã

∥∥+ ‖ψ‖L∞
C

(Ω)‖∇ψ‖

+ ‖ψ‖2
L∞

C
(Ω)

∥∥Ã∥∥) ≤ C.(5.10)

Let h(t) = ‖Ãt(t)‖2. Then we have

(5.11)
∣∣∣∣dhdt

∣∣∣∣ = 2
∣∣∣〈Ãt, Ãtt

〉∣∣∣ ≤ 2
∥∥Ãt

∥∥∥∥Ãtt

∥∥ ≤ C.

From (5.4) and (5.11), we infer that h ∈ L1(0,∞), and it is globally Lipschitz on
(0,∞). Hence we have

(5.12) lim
t→+∞

∥∥Ãt(t)
∥∥ = 0.

Thus, on account of Lemmas 3.1 and 3.2, we deduce (5.1).
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We recall that ‖ψ0‖L∞
C

(Ω) ≤ 1. Therefore, Proposition 2.1 implies

(5.13) ‖ψ(t)‖L∞
C

(Ω) ≤ 1 ∀ t ≥ 0.

Thus, recalling (1.6), the Poincaré inequality for Φ combined with (5.4) and (5.13)
implies that

(5.14)
∫ ∞

0

‖ − iΦ(τ)ψ(τ)‖2dτ ≤ C

∫ ∞

0

‖∇Φ(τ)‖2dτ <∞.

This, together with (5.5), yields

(5.15)
∫ ∞

0

‖ψt(τ)‖2dτ <∞.

Observe now that

(5.16) |i〈ψψt − ψψt,Φ〉| ≤ 2 ‖ψΦ‖‖ψt‖ ≤
〈
Φ2, |ψ|2

〉
+ ‖ψt‖2.

Hence, from (3.14), the Hölder inequality, and the Cauchy–Schwarz inequality, we get

ε

2
d

dt
‖∇Φ‖2 + σ‖∇Φ‖2 +

〈
Φ2, |ψ|2

〉
≤
∣∣∣∣ i2 〈ψψt − ψψt,Φ

〉∣∣∣∣ ≤ ‖ψΦ‖‖ψt‖ ≤ 1
2
〈
Φ2, |ψ|2

〉
+

1
2
‖ψt‖2.(5.17)

Setting h1(t) = ‖∇Φ(t)‖2, it follows from (5.4), (5.15), (5.17), and [36, Lemma 6.2.1]
that

(5.18) lim
t→+∞

h1(t) = 0,

which entails

(5.19) lim
t→+∞

‖Φ(t)‖H1(Ω) = 0.

Hence, (5.2) is a consequence of Lemma 3.1, Lemma 3.2, and (5.19).
To establish the convergence for ψ and Ã (or A), it is convenient to rewrite E in

the real form. As before, we denote ψ = ψ1 + iψ2, with ψ1, ψ2 being real functions.
Then we have (cf. (3.11) and (4.1))

E
[
(ψ1, ψ2), Ã,Φ

]
:= E

(
ψ, Ã, Ãt,Φ

)
= E0

[
(ψ1, ψ2), Ã

]
+
ε

2

∥∥Ãt

∥∥2 +
ε

2
‖∇Φ‖2(5.20)

and accordingly, (3.15) becomes

(5.21)
d

dt
E
[
(ψ1, ψ2), Ã,Φ

]
= −‖ψ1t + Φψ2‖2 − ‖ψ2t − Φψ1‖2 − σ

∥∥Ãt

∥∥2 − σ‖∇Φ‖2 ≤ 0

∀ t ≥ 0.
It follows from (2.12) and the Poincaré inequality that

(5.22) ‖ψ1t‖2 ≤ 2
(
‖ψ1t + Φψ2‖2 + ‖Φψ2‖2

)
≤ C1

(
‖ψ1t + Φψ2‖2 + ‖∇Φ‖2

)
,
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(5.23) ‖ψ2t‖2 ≤ 2
(
‖ψ2t − Φψ1‖2 + ‖Φψ1‖2

)
≤ C1

(
‖ψ2t − Φψ1‖2 + ‖∇Φ‖2

)
,

where C1 > 0 is a constant. By choosing

(5.24) C2 ∈
(

0,min
{

σ

4C1
,

1
2C1

})
,

we infer from (5.21) that

d

dt
E
[
(ψ1, ψ2), Ã,Φ

]
≤ −C2 ‖ψ1t‖2 − C2 ‖ψ2t‖2 − σ

2

∥∥Ãt

∥∥2 − σ

2
‖∇Φ‖2.(5.25)

Next, we introduce the following auxiliary functional:

(5.26)

G
[
(ψ1, ψ2), Ã,Φ

]
=
〈

curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext, Ãt −∇Φ

〉
X′

0

.

Then we have what follows.
Lemma 5.2. The following inequality holds for all t ≥ 0:

d

dt
G
[
(ψ1, ψ2), Ã,Φ

]
≤ − 1

2ε

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥2

X′
0

+ C3

(
‖ψ1t‖2 + ‖ψ2t‖2 + ‖∇ψ1t‖2 + ‖∇ψ2t‖2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
.(5.27)

Proof. By direct calculation and (1.2), we get

d

dt
G
[
(ψ1, ψ2), Ã,Φ

]
=
〈(

curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

)
t

, Ãt −∇Φ
〉

X′
0

−1
ε

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥2

X′
0

−σ
ε

〈
curl2Ã +

i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext, Ãt −∇Φ

〉
X′

0

:= I1 + I2 + I3.(5.28)

Let us estimate the right-hand side term by term. Observe first that

(5.29)
∣∣∣∣〈curl2Ãt, Ãt −∇Φ

〉
X′

0

∣∣∣∣ =
∣∣∣〈Ãt, Ãt

〉
−
〈
Ãt,∇Φ

〉∣∣∣ ≤ 3
2

∥∥Ãt

∥∥2 +
1
2
‖∇Φ‖2.

Recalling that we are in dimension two, it follows from a well-known Sobolev embed-
ding theorem that

(5.30) X0 ⊂ H1(Ω) ↪→ Lp(Ω) ∀ p > 1,

(5.31) Lq(Ω) ↪→ (H1(Ω))′ ⊂ X′
0 ∀ q > 1.
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Therefore, using (2.12) and taking q = 4
3 in (5.31), we have∣∣∣∣∣

〈
i

2
(
ψDÃψ − ψDÃψ

)
t
, Ãt −∇Φ

〉
X′

0

∣∣∣∣∣
≤
∥∥∥[−(ψ1∇ψ2 − ψ2∇ψ1) + Ã|ψ|2

]
t

∥∥∥
X′

0

∥∥∥Ãt −∇Φ
∥∥∥
X′

0

≤
(
‖ψ1t∇ψ2‖

L
4
3 (Ω)

+ ‖ψ1∇ψ2t‖ + ‖ψ2t∇ψ1‖
L

4
3 (Ω)

+ ‖ψ2∇ψ1t‖

+
∥∥Ãt|ψ|2

∥∥+ 2
∥∥Ã(ψ1ψ1t + ψ2ψ2t)

∥∥)(∥∥Ãt

∥∥+ ‖∇Φ‖
)

≤
(
‖∇ψ2‖L4(Ω)‖ψ1t‖ + ‖∇ψ1‖L4(Ω)‖ψ2t‖ + C‖∇ψ1t‖ + C‖∇ψ2t‖

+ C
∥∥Ãt

∥∥+ C‖ψ1t‖ + C‖ψ2t‖
)(∥∥Ãt

∥∥+ ‖∇Φ‖
)

≤ C
(
‖ψ1t‖2 + ‖ψ2t‖2 + ‖∇ψ1t‖2 + ‖∇ψ2t‖2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
.(5.32)

As a result, we get

(5.33) I1 ≤ C
(
‖ψ1t‖2 + ‖ψ2t‖2 + ‖∇ψ1t‖2 + ‖∇ψ2t‖2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
.

On the other hand, thanks to the Cauchy–Schwarz inequality, we obtain

(5.34)

I3 ≤ 1
2ε

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥2

X′
0

+ C
(∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
.

Thus, (5.27) follows from (5.28), (5.33), and (5.34).
Let

(5.35) G1[(ψ1, ψ2),Φ] =
1
2
‖ψ1t‖2 +

1
2
‖ψ2t‖2 +

ε

2
‖ΔΦ‖2 +

σ

2
‖∇Φ‖2.

Then we have the following.
Lemma 5.3. The following inequality holds for all t ≥ 0:

d

dt
G1[(ψ1, ψ2),Φ] ≤ −1

2
‖∇ψ1t‖2 − 1

2
‖∇ψ2t‖2 − σ

2
‖ΔΦ‖2 − ε

2
‖∇Φt‖2

+ C4

(
‖ψ1t‖2 + ‖ψ2t‖2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
.(5.36)

Proof. Differentiating (1.14) with respect to time, adding the resulting equation
multiplied by ψt to its conjugate multiplied by ψt, then integrating on Ω yield

1
2
d

dt
‖ψt‖2 = −‖∇ψt‖2 +

i

2
〈
Φt, ψψt − ψψt

〉
+ λ2

〈(
1 − 2|ψ|2

)
, |ψt|2

〉
−λ

2

2

(〈
ψ2, ψ

2

t

〉
+
〈
ψ

2
, ψ2

t

〉)
−
〈∣∣Ã∣∣2, |ψt|2

〉
+ i

〈
At, ψ∇ψt − ψ∇ψt

〉
−
〈
Ã ·At, ψψt + ψψt

〉
− i

〈
Ã, ψt∇ψt − ψt∇ψt

〉
.(5.37)

It follows from (2.12), standard Sobolev embeddings, and the Poincaré inequality that
the terms on the right-hand side of (5.37) can be estimated as follows:

i

2
〈
Φt, ψψt − ψψt

〉
+ λ2

〈(
1 − 2|ψ|2

)
, |ψt|2

〉
− λ2

2

(〈
ψ2, ψ

2

t

〉
+
〈
ψ

2
, ψ2

t

〉)
(5.38)

≤ ε

4
‖∇Φt‖2 + C‖ψt‖2
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−
〈∣∣Ã∣∣2, |ψt|2

〉
+ i

〈
At, ψ∇ψt − ψ∇ψt

〉
−
〈
Ã ·At, ψψt + ψψt

〉
(5.39)

−i
〈
Ã, ψt∇ψt − ψt∇ψt

〉
≤ 1

2
‖∇ψt‖2 + C‖ψt‖2 + C

∥∥Ãt

∥∥2
.

Multiplying now (1.16) by −ΔΦ + Φt and integrating on Ω yield

1
2
d

dt

(
ε‖ΔΦ‖2 + σ‖∇Φ‖2

)
= −σ‖ΔΦ‖2 − ε‖∇Φt‖2 − i

2
〈
ψψt − ψψt,−ΔΦ

〉
−
〈
|ψ|2Φ,−ΔΦ

〉
− i

2
〈
ψψt − ψψt,Φt

〉
−
〈
|ψ|2Φ,Φt

〉
≤ −σ‖ΔΦ‖2 − ε‖∇Φt‖2 +

σ

2
‖ΔΦ‖2 +

ε

4
‖∇Φt‖2 + C‖ψt‖2 + C‖∇Φ‖2.(5.40)

Then from (5.37)–(5.40), it follows that

1
2
d

dt

(
‖ψt‖2 + ε‖ΔΦ‖2 + σ‖∇Φ‖2

)
≤ −1

2
‖∇ψt‖2 − σ

2
‖ΔΦ‖2 − ε

2
‖∇Φt‖2 + C

(
‖ψt‖2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
,(5.41)

which gives (5.36).
We are now able to prove that ψt vanishes at infinity.
Lemma 5.4. There holds

(5.42) lim
t→+∞

‖ψt(t)‖ = 0.

Proof. It follows from (5.41) that

(5.43)
1
2
d

dt

(
‖ψt‖2 + ε‖ΔΦ‖2 + σ‖∇Φ‖2

)
+
σ

2
‖ΔΦ‖2 ≤ C

(
‖ψt‖2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)
.

Since z0 = (ψ0,A0,A1,Φ0) ∈ X
0
∞, from (1.1) and the Sobolev embedding theorem

we infer that ‖ψt|t=0‖ ≤ C, where C is a constant depending on ‖z0‖0. Therefore,
(5.4), (5.15), and (5.43) yield

(5.44) ‖ψt(t)‖ ≤ C ∀ t ≥ 0,

(5.45)
∫ ∞

0

‖ΔΦ(τ)‖2dτ <∞.

Denote h2(t) = ‖ψt‖2 + ε‖ΔΦ‖2 + σ‖∇Φ‖2. Then (5.43), Lemma 5.1, and (5.44)
imply

(5.46)
d

dt
h2 ≤ C ∀ t ≥ 0.

On the other hand, we deduce h2(t) ∈ L1(0,∞) from (5.4), (5.15), and (5.45). As a
consequence of [36, Lemma 6.2.1],

(5.47) lim
t→+∞

h2(t) = 0.

The proof is complete.
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As we mentioned in the Introduction, due to the hyperbolic nature of the equation
for Ã, a key point in the proof of convergence result is to construct an appropriate
auxiliary functional in order to implement the �Lojasiewicz–Simon approach. For this
purpose, we introduce the following functional F : X

0 → R:

(5.48)
F

[
(ψ1, ψ2), Ã,Φ

]
:= E

[
(ψ1, ψ2), Ã,Φ

]
+ ηG

[
(ψ1, ψ2), Ã,Φ

]
+ η1G1[(ψ1, ψ2),Φ],

where η and η1 are positive constants to be specified later.
Furthermore, it follows from (5.25), Lemma 5.2, and Lemma 5.3 that

d

dt
F

[
(ψ1, ψ2), Ã,Φ

]
≤ −(C2 − C3η − C4η1)

(
‖ψ1t‖2 + ‖ψ2t‖2

)
−
(σ

2
− C3η − C4η1

)(∥∥Ãt

∥∥2 + ‖∇Φ‖2
)

−
(η1

2
− C3η

) (
‖∇ψ1t‖2 + ‖∇ψ2t‖2

)
− η1σ

2
‖ΔΦ‖2 − η1ε

2
‖∇Φt‖2

− η

2ε

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥2

X′
0

.(5.49)

Taking

(5.50) η =
min{C2, σ}

4C3(1 + 4C4)
, η1 = 4C3η =

min{C2, σ}
(1 + 4C4)

,

we can deduce that

d

dt
F

[
(ψ1, ψ2), Ã,Φ

]
≤ −C

(
‖ψ1t‖2

H1 + ‖ψ2t‖2
H1 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2 + ‖ΔΦ‖2 + ‖∇Φt‖2

+
∥∥∥∥curl2Ã +

i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥2

X′
0

)
≤ 0(5.51)

for some C > 0.
Thanks to Lemma 3.1, Lemma 3.2, and Lemma 3.4, we can find an increasing

unbounded sequence {tn}∞n=1 and a pair (ψ∞, Ã∞) satisfying (2.19)–(2.22) such that

(5.52) lim
tn→+∞

∥∥Ã(tn) − Ã∞
∥∥
H2(Ω)

= 0,

(5.53) lim
tn→+∞

‖ψ(tn) − ψ∞‖H2
C
(Ω) = 0.

Thus, it follows from (5.52), (5.53), Lemma 5.1, and Lemma 5.4 that

(5.54) lim
tn→+∞

F(tn) = E0

[
(ψ1∞, ψ2∞), Ã∞

]
.

Since F is decreasing in time (see (5.51)), we have

(5.55) F(t) ≥ E0

[
(ψ1∞, ψ2∞), Ã∞

]
∀ t ≥ 0.
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After these preparations, we proceed to prove the convergence result following a
simple argument introduced in [20]. The key observation is that, after a certain time
t0, the solution [(ψ1(t), ψ2(t)), Ã(t)] always satisfies the condition of Lemma 4.2, that
is, it falls in a neighborhood of [(ψ1∞, ψ2∞), Ã∞], where (4.9) holds.

We now consider all the possible cases.
(1) If there is a t0 > 0 such that at this time F[(ψ1, ψ2), Ã,Φ] = E0[(ψ1∞, ψ2∞),

Ã∞], then ∀ t > t0, we deduce from (5.51) that [(ψ1(t), ψ2(t)), Ã(t)] is independent
of t. We obtain the convergence for ψ and Ã from (5.52) and (5.53).

(2) If F[(ψ1, ψ2), Ã,Φ] > E0[(ψ1∞, ψ2∞), Ã∞] ∀ t ≥ 0 and there is t0 > 0 such
that ∀ t ≥ t0, [(ψ1, ψ2), Ã] satisfies the condition of Lemma 4.2, i.e.,

(5.56)
∥∥∥[(ψ1, ψ2), Ã

]
−
[
(ψ1∞, ψ2∞), Ã∞

]∥∥∥
X
< β,

then, for the �Lojasiewicz exponent θ ∈ (0, 1
2 ) (see Lemma 4.2), we calculate

d

dt

(
F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])θ

= θ
(
F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])θ−1 d

dt
F

[
(ψ1, ψ2), Ã,Φ

]
.(5.57)

Recalling (5.20) and the definitions of G[(ψ1, ψ2), Ã,Φ] and G1[(ψ1, ψ2),Φ], we have(
F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])1−θ

≤ C

( ∣∣∣E0

[
(ψ1, ψ2), Ã

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

]∣∣∣1−θ

+
∥∥Ãt

∥∥2(1−θ)

+ ‖∇Φ‖2(1−θ) + ‖ΔΦ‖2(1−θ) + ‖ψ1t‖2(1−θ) + ‖ψ2t‖2(1−θ)

+
∥∥∥∥curl2Ã +

i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥2(1−θ)

X′
0

)
.(5.58)

On the other hand, on account of (4.9), Lemma 4.1 (cf. the explicit form of DE0),
Proposition 2.1, and the Poincaré inequality, we deduce that∣∣∣E0

[
(ψ1, ψ2), Ã

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

]∣∣∣1−θ

≤
∥∥∥DE0

[
(ψ1, ψ2), Ã

]∥∥∥
X ′

≤ C

(
‖ψ1t + Φψ2‖ +‖ψ2t − Φψ1‖ +

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥
X′

0

)

≤ C

(
‖ψ1t‖ + ‖ψ2t‖ + ‖∇Φ‖ +

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥
X′

0

)
.

(5.59)

Since θ ∈ (0, 1
2 ), thanks to (5.1) and (5.2), it follows that(

F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])1−θ

≤ C

(
‖ψ1t‖ + ‖ψ2t‖ +

∥∥Ãt

∥∥+ ‖∇Φ‖ + ‖ΔΦ‖

+
∥∥∥∥curl2Ã +

i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥
X′

0

)
.(5.60)



2024 MAURIZIO GRASSELLI, HAO WU, AND SONGMU ZHENG

Hence, combining (5.51), (5.57), and (5.60), we infer that, for all t ≥ t0,

d

dt

(
F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])θ

+ C5

(
‖ψ1t‖ + ‖ψ2t‖ +

∥∥Ãt

∥∥
+ ‖∇Φ‖ + ‖ΔΦ‖ + ‖∇Φt‖ +

∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥
X′

0

)
≤ 0.

(5.61)

As a result, we can deduce that∫ t

t0

∥∥Ãt(τ)
∥∥dτ <∞,(5.62) ∫ t

t0

(‖ψ1t(τ)‖ + ‖ψ2t(τ)‖) dτ <∞(5.63)

∀ t ≥ t0. This yields

lim
t→+∞

∥∥Ã(t) − Ã∞
∥∥ = 0, lim

t→+∞
‖ψ(t) − ψ∞‖ = 0.

From Lemmas 3.1 and 3.2, owing to the uniqueness of the limit, we infer that

lim
t→+∞

∥∥Ã(t) − Ã∞
∥∥
H2(Ω)

= 0, lim
t→+∞

‖ψ(t) − ψ∞‖H2
C
(Ω) = 0.

Recalling Lemma 5.1, we conclude that (ψ(t), Ã(t), Ãt(t),Φ(t)) converges to (ψ∞, Ã∞,
0, 0) in X

0 as t goes to infinity.
(3) Combining (5.52), (5.53), and Lemma 5.1, we obtain that, for any ρ ∈ (0, β),

there exists an integer N = N(ρ) such that, when n ≥ N ,

‖ψ1(tn) − ψ1∞‖H2(Ω) <
ρ

4
, ‖ψ2(tn) − ψ2∞‖H2(Ω) <

ρ

4
,(5.64) ∥∥Ã(tn) − Ã∞

∥∥
H2(Ω)

<
ρ

4
,(5.65)

1
C5

(
F

[
(ψ1(tn), ψ2(tn)), Ã(tn),Φ(tn)

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])θ

<
ρ

4
.(5.66)

We now define

t̄n = sup
t>tn

{
| ‖ψ1(s) − ψ1∞‖H2(Ω) + ‖ψ2(s) − ψ2∞‖H2(Ω)

+
∥∥Ã(s) − Ã∞

∥∥
H2(Ω)

< β, ∀s ∈ [tn, t]
}
,(5.67)

and we note that it follows from (5.64), (5.65), and the continuity of the orbit in X
0

that t̄n > tn∀ n ≥ N . Then there are two possibilities, namely,
(i) There exists n0 ≥ N such that t̄n0 = +∞, then arguing as in (1) and (2), the

convergence result can be obtained.
(ii) Otherwise, for all n ≥ N , we have tn < t̄n < +∞, and, for all t ∈ [tn, t̄n], we

have

F

[
(ψ1(t), ψ2(t)), Ã(t),Φ(t)

]
> E0

[
(ψ1∞, ψ2∞), Ã∞

]
.
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Hence, we deduce from (5.61) that∫ t̄n

tn

(
‖ψ1t(τ)‖ + ‖ψ2t(τ)‖ +

∥∥Ãt(τ)
∥∥) dτ

≤ 1
C5

(
F

[
(ψ1(tn), ψ2(tn)), Ã(tn),Φ(tn)

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])θ

<
ρ

4
.(5.68)

Noticing that ρ > 0 is arbitrary in the above argument, we are able to conclude that
for any ρ > 0, there exist N = N(ρ) ∈ N such that, for all n ≥ N , there holds

‖ψ1(t̄n) − ψ1∞‖ + ‖ψ2(t̄n) − ψ2∞‖ +
∥∥Ã(t̄n) − Ã∞

∥∥
≤ ‖ψ1(tn) − ψ1∞‖ + ‖ψ2(tn) − ψ2∞‖ +

∥∥Ã(tn) − Ã∞
∥∥

+
∫ t̄n

tn

(
‖ψ1t(τ)‖ + ‖ψ2t(τ)‖ +

∥∥Ãt(τ)
∥∥) dτ

< ρ.(5.69)

This implies

(5.70) lim
n→+∞

(
‖ψ1(t̄n) − ψ1∞‖ + ‖ψ2(t̄n) − ψ2∞‖ +

∥∥Ã(t̄n) − Ã∞
∥∥) = 0.

Therefore, due to Lemmas 3.1 and 3.2, there exists a subsequence of {t̄n}, denoted
by {t̄nk

} such that

(5.71)
lim

nk→+∞

(
‖ψ1(t̄nk

) − ψ1∞‖H2(Ω) + ‖ψ2(t̄nk
) − ψ2∞‖H2(Ω) +

∥∥Ã(t̄nk
) − Ã∞

∥∥
H2(Ω)

)
= 0,

which contradicts the definition of t̄n.
Summing up, we conclude that

(5.72) lim
t→+∞

‖z(t) − z∞‖0 = 0.

6. Convergence rate. In this section we demonstrate estimate (2.25) on con-
vergence rate. Let us begin by noting that a combination of (5.60) and (5.61) implies,
for all t ≥ t0, that

d

dt

(
F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])
+ C

(
F

[
(ψ1, ψ2), Ã,Φ

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

])2(1−θ)

≤ 0.(6.1)

Keeping in mind that θ ∈ (0, 1
2 ), we deduce

(6.2) F

[
(ψ1(t), ψ2(t)), Ã(t),Φ(t)

]
− E0

[
(ψ1∞, ψ2∞), Ã∞

]
≤ C(1 + t)−1/(1−2θ),

for all t ≥ 0 and for a suitable C > 0, because for t ∈ [0, t0], the term on the left-hand
side is bounded by a constant depending only on initial data (cf. (2.12)). Hence, it
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follows from (5.61) that∫ ∞

t

(
‖ψ1t‖ + ‖ψ2t‖ + ‖∇Φ‖ + ‖∇Φt‖ +

∥∥Ãt

∥∥) dτ
+
∫ ∞

t

(∥∥∥∥curl2Ã +
i

2
(
ψDÃψ − ψDÃψ

)
+ curlHext

∥∥∥∥
X′

0

)
dτ

≤ C(1 + t)−θ/(1−2θ), ∀ t ≥ 0,(6.3)

and, as a consequence (cf. (1.2)),

(6.4)
∫ ∞

t

∥∥Ãtt(τ)
∥∥
X′

0
dτ ≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0.

Therefore, from (6.3) and (6.4), we deduce the following preliminary convergence rate
estimate:

‖ψ(t) − ψ∞‖ +
∥∥Ã(t) − Ã∞

∥∥+
∥∥Ãt(t)

∥∥
X′

0

+ ‖∇Φ‖

≤
∫ ∞

t

(
‖ψt(τ)‖ +

∥∥Ãt(τ)
∥∥ +

∥∥Ãtt(τ)
∥∥
X′

0

+ ‖∇Φt(τ)‖
)
dτ

≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0.(6.5)

In order to get higher order estimates, we first subtract the stationary equations from
the time-dependent equations. This gives

ψt − iΦψ − Δ(ψ − ψ∞) + 2i
(
Ã · ∇ψ − Ã∞ · ∇ψ∞

)
+ Ã2ψ − Ã2

∞ψ∞

−λ2
(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞ = 0,(6.6)

ε
(
Ãt −∇Φ

)
t

+ σ
(
Ãt −∇Φ

)
+ curl2Ã − curl2Ã∞ + |ψ|2Ã − |ψ∞|2Ã∞

+
i

2
(
ψ∇ψ − ψ∇ψ

)
− i

2
(
ψ∞∇ψ∞ − ψ∞∇ψ∞

)
= 0,(6.7)

(6.8) −εΔΦt − σΔΦ +
i

2
(
ψψt − ψψt

)
+ |ψ|2Φ = 0,

in Ω × (0,∞), with boundary conditions

(6.9) ∂n(ψ−ψ∞) = 0,
(
Ã − Ã∞

)
·n = 0,

(
curlÃ− curlÃ∞

)
×n = 0, ∂nΦ = 0,

on Γ × (0,∞).
Multiplying (6.6) by ψt and its conjugate by ψt, respectively, then integrating on

Ω and adding the results together, we have

1
2
d

dt
‖∇ψ −∇ψ∞‖2 + ‖ψt‖2 +

i

2
〈
Φ, ψψt − ψψt

〉
+ i

〈
Ã · ∇ψ − Ã∞ · ∇ψ∞, ψt

〉
− i

〈
Ã · ∇ψ − Ã∞ · ∇ψ∞, ψt

〉
+

1
2

〈
Ã2ψ − Ã2

∞ψ∞, ψt

〉
+

1
2

〈
Ã2ψ − Ã2

∞ψ∞, ψt

〉
− λ2

2

∫
Ω

[(
1 − |ψ|2

)
ψ −

(
1 − |ψ∞|2

)
ψ∞
]
ψtdx

− λ2

2

∫
Ω

[(
1 − |ψ|2

)
ψ −

(
1 − |ψ∞|2

)
ψ∞

]
ψtdx = 0.(6.10)
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It follows from inequalities (2.7), (2.8), and bound (2.12) that

I4 :=
∣∣∣i〈Ã · ∇ψ − Ã∞ · ∇ψ∞, ψt

〉∣∣∣
≤
∣∣∣〈Ã · ∇ψ − Ã∞ · ∇ψ, ψt

〉∣∣∣+
∣∣∣〈Ã∞ · ∇ψ − Ã∞ · ∇ψ∞, ψt

〉∣∣∣
≤ ‖∇ψ‖L4

∥∥Ã − Ã∞
∥∥
L4‖ψt‖ +

∥∥Ã∞
∥∥
L∞‖∇ψ −∇ψ∞‖‖ψt‖

≤ C
∥∥Ã− Ã∞

∥∥ 1
2
∥∥curlÃ − curlÃ∞

∥∥ 1
2 ‖ψt‖ + C‖∇ψ −∇ψ∞‖‖ψt‖

≤ 1
16

‖ψt‖2 +
α

8

∥∥curlÃ − curlÃ∞
∥∥2 + C‖Ã− Ã∞‖2

+ C6‖∇ψ −∇ψ∞‖2.(6.11)

Similarly, we deduce

I5 :=
∣∣∣−i〈Ã · ∇ψ − Ã∞ · ∇ψ∞, ψt

〉∣∣∣
≤ 1

16
‖ψt‖2 +

α

8

∥∥curlÃ − curlÃ∞
∥∥2 + C

∥∥Ã − Ã∞
∥∥2

+ C6‖∇ψ −∇ψ∞‖2.(6.12)

Next, we have

I6 :=
1
2

∣∣∣〈Ã2ψ − Ã2
∞ψ∞, ψt

〉∣∣∣
≤ 1

2

∣∣∣〈Ã2ψ − Ã2ψ∞, ψt

〉∣∣∣+
1
2

∣∣∣〈Ã2ψ∞ − Ã2
∞ψ∞, ψt

〉∣∣∣
≤ 1

16
‖ψt‖2 + C

(∥∥Ã − Ã∞
∥∥2 + ‖ψ − ψ∞‖2

)
.(6.13)

In the same manner, we get

I7 :=
1
2

∣∣∣〈Ã2ψ − Ã2
∞ψ∞, ψt

〉∣∣∣ ≤ 1
16

‖ψt‖2 + C
(∥∥Ã − Ã∞

∥∥2 + ‖ψ − ψ∞‖2
)
.(6.14)

Moreover, we have

I8 :=
λ2

2

∣∣∣∣∫
Ω

[(
1 − |ψ|2

)
ψ −

(
1 − |ψ∞|2

)
ψ∞
]
ψtdx

∣∣∣∣
≤ λ2

2

∣∣∣∣∫
Ω

|ψ|2(ψ − ψ∞)ψtdx

∣∣∣∣+
λ2

2

∣∣∣∣∫
Ω

ψ∞
(
|ψ|2 − |ψ∞|2

)
ψtdx

∣∣∣∣
+
λ2

2

∣∣∣∣∫
Ω

(ψ − ψ∞)ψtdx

∣∣∣∣
≤ 1

32

∥∥ψt

∥∥2 + C‖ψ − ψ∞‖2 + C
∥∥ψ2

1 + ψ2
2 − ψ2

1∞ − ψ2
2∞
∥∥∥∥ψt

∥∥
≤ 1

32

∥∥ψt

∥∥2 + C ‖ψ − ψ∞‖2 + C
∥∥ψt

∥∥(‖ψ1 − ψ1∞‖ + ‖ψ2 − ψ2∞‖)

≤ 1
32

∥∥ψt

∥∥2
+ C‖ψ − ψ∞‖2 + C

∥∥ψt

∥∥ ‖ψ − ψ∞‖

≤ 1
16

‖ψt‖2 + C‖ψ − ψ∞‖2,(6.15)
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(6.16)

I9 :=
λ2

2

∣∣∣∣∫
Ω

[(
1 − |ψ|2

)
ψ −

(
1 − |ψ∞|2

)
ψ∞

]
ψtdx

∣∣∣∣ ≤ 1
16

‖ψt‖2 + C‖ψ − ψ∞‖2.

Multiplying (6.6) by ψ−ψ∞ and its conjugate by ψ−ψ∞, respectively, then integrating
on Ω and adding the results together, we obtain

1
2
d

dt
‖ψ − ψ∞‖2 + ‖∇ψ −∇ψ∞‖2 +

i

2
〈
Φ, ψψ∞ − ψψ∞

〉
+ i

〈
Ã · ∇ψ − Ã∞ · ∇ψ∞, ψ − ψ∞

〉
− i

〈
Ã · ∇ψ − Ã∞ · ∇ψ∞, ψ − ψ∞

〉
+

1
2

〈
Ã2ψ − Ã2

∞ψ∞, ψ − ψ∞

〉
+

1
2

〈
Ã2ψ − Ã2

∞ψ∞, ψ − ψ∞
〉

+
1
2
〈
−λ2

(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞, ψ − ψ∞

〉
+

1
2
〈
−λ2

(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞, ψ − ψ∞

〉
= 0.(6.17)

Then, arguing as before, we infer the following estimates:

I10 :=
1
2

∣∣i 〈Φ, ψψ∞ − ψψ∞
〉∣∣

≤ 1
2

∣∣〈Φ, ψψ∞ − ψ∞ψ∞
〉∣∣+

1
2

∣∣〈Φ, ψ∞ψ∞ − ψ∞ψ
〉∣∣

≤ ‖Φ‖L4

∥∥ψ∞
∥∥

L4‖ψ − ψ∞‖ + ‖Φ‖L4‖ψ∞‖L4

∥∥ψ − ψ∞
∥∥

≤ ‖∇Φ‖2 + C‖ψ − ψ∞‖2,(6.18)

I11 :=
∣∣∣i〈Ã · ∇ψ − Ã∞ · ∇ψ∞, ψ − ψ∞

〉∣∣∣
≤
∣∣∣〈Ã · ∇ψ − Ã∞ · ∇ψ, ψ − ψ∞

〉∣∣∣+
∣∣∣〈Ã∞ · ∇ψ − Ã∞ · ∇ψ∞, ψ − ψ∞

〉∣∣∣
≤ ‖∇ψ‖L4

∥∥Ã − Ã∞
∥∥
L4‖ψ − ψ∞‖ +

∥∥Ã∞
∥∥
L∞‖∇ψ −∇ψ∞‖‖ψ − ψ∞‖

≤ εα

16

∥∥curlÃ− curlÃ∞
∥∥2 +

1
16

‖∇ψ −∇ψ∞‖2 + C‖ψ − ψ∞‖2,(6.19)

I12 :=
∣∣∣i〈Ã · ∇ψ − Ã∞ · ∇ψ∞, ψ − ψ∞

〉∣∣∣
≤ εα

16

∥∥curlÃ − curlÃ∞
∥∥2 +

1
16

‖∇ψ −∇ψ∞‖2 + C‖ψ − ψ∞‖2,(6.20)

I13 :=
∣∣∣∣12 〈Ã2ψ − Ã2

∞ψ∞, ψ − ψ∞

〉∣∣∣∣
≤
∣∣∣∣12 〈Ã2ψ − Ã2

∞ψ, ψ − ψ∞

〉∣∣∣∣+
∣∣∣∣12 〈Ã2

∞ψ − Ã2
∞ψ∞, ψ − ψ∞

〉∣∣∣∣
≤ C‖ψ‖L∞

∥∥Ã + Ã∞
∥∥
L∞

∥∥Ã − Ã∞
∥∥‖ψ − ψ∞‖ + C

∥∥Ã2
∞
∥∥
L∞‖ψ − ψ∞‖2

≤ C
(∥∥Ã − Ã∞

∥∥2 + ‖ψ − ψ∞‖2
)
,(6.21)

I14 :=
∣∣∣∣12 〈Ã2ψ − Ã2

∞ψ∞, ψ − ψ∞
〉∣∣∣∣ ≤ C

(∥∥Ã − Ã∞
∥∥2 + ‖ψ − ψ∞‖2

)
,(6.22)

I15 :=
∣∣∣∣12 〈−λ2

(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞, ψ − ψ∞

〉∣∣∣∣ ≤ C‖ψ − ψ∞‖2,(6.23)
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I16 :=
∣∣∣∣12 〈−λ2

(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞, ψ − ψ∞

〉∣∣∣∣ ≤ C‖ψ − ψ∞‖2.(6.24)

In the above estimates, α > 0 and ε > 0 are constants to be chosen later.
We now consider (6.7) and take the inner product with Ãt +α(Ã−Ã∞) in L2(Ω).

We thus have

d

dt

(
1
2

∥∥curlÃ − curlÃ∞
∥∥2 +

ε

2

∥∥Ãt

∥∥2 + αε
〈
Ãt, Ã − Ã∞

〉
+
ασ

2

∥∥Ã − Ã∞
∥∥2
)

+ α
∥∥curlÃ − curlÃ∞

∥∥2
+ (σ − αε)

∥∥Ãt

∥∥2

+
〈
Ã · Ãt, |ψ|2

〉
−
〈
Ã∞ · Ãt, |ψ∞|2

〉
+
i

2

〈
ψ∇ψ − ψ∇ψ, Ãt

〉
− i

2

〈
ψ∞∇ψ∞ − ψ∞∇ψ∞, Ãt

〉
+ α

〈
|ψ|2Ã − |ψ∞|2Ã∞, Ã − Ã∞

〉
+
αi

2

〈
ψ∇ψ − ψ∇ψ, Ã− Ã∞

〉
− αi

2

〈
ψ∞∇ψ∞ − ψ∞∇ψ∞, Ã− Ã∞

〉
= 0.(6.25)

Let us estimate some of the terms in (6.25). We have

I17 :=
∣∣∣〈Ã · Ãt, |ψ|2

〉
−
〈
Ã∞ · Ãt, |ψ∞|2

〉∣∣∣
≤
∣∣∣〈Ã · Ãt, |ψ|2

〉
−
〈
Ã∞ · Ãt, |ψ|2

〉∣∣∣
+
∣∣∣〈Ã∞ · Ãt, |ψ|2

〉
−
〈
Ã∞ · Ãt, |ψ∞|2

〉∣∣∣
≤ σ

16

∥∥Ãt

∥∥2 + C
(∥∥Ã− Ã∞

∥∥2 + ‖ψ − ψ∞‖2
)
,(6.26)

I18 :=
∣∣∣∣ i2 〈ψ∇ψ − ψ∇ψ, Ãt

〉
− i

2

〈
ψ∞∇ψ∞ − ψ∞∇ψ∞, Ãt

〉∣∣∣∣
≤
∣∣∣〈ψ∇ψ − ψ∞∇ψ, Ãt

〉∣∣∣+
∣∣∣〈ψ∞∇ψ − ψ∞∇ψ∞, Ãt

〉∣∣∣
+
∣∣∣〈ψ∇ψ − ψ∞∇ψ, Ãt

〉∣∣∣+
∣∣∣〈ψ∞∇ψ − ψ∞∇ψ∞, Ãt

〉∣∣∣
≤ σ

16

∥∥Ãt

∥∥2 + C7‖∇ψ −∇ψ∞‖2 + C‖ψ − ψ∞‖2,(6.27)

I19 :=
∣∣∣α〈|ψ|2Ã− |ψ∞|2Ã∞, Ã − Ã∞

〉∣∣∣
≤ α

∣∣∣〈|ψ|2Ã− |ψ|2Ã∞, Ã− Ã∞

〉∣∣∣+ α
∣∣∣〈|ψ|2Ã∞ − |ψ∞|2Ã∞, Ã− Ã∞

〉∣∣∣
≤ Cα

(∥∥Ã− Ã∞
∥∥2 + ‖ψ − ψ∞‖2

)
,(6.28)

I20 :=
∣∣∣∣αi2 〈

ψ∇ψ − ψ∇ψ, Ã − Ã∞
〉
− αi

2

〈
ψ∞∇ψ∞ − ψ∞∇ψ∞, Ã − Ã∞

〉∣∣∣∣
≤ α

∣∣∣〈ψ∇ψ − ψ∞∇ψ, Ã − Ã∞
〉∣∣∣+ α

∣∣∣〈ψ∞∇ψ − ψ∞∇ψ∞, Ã− Ã∞
〉∣∣∣

+ α
∣∣∣〈ψ∇ψ − ψ∞∇ψ, Ã− Ã∞

〉∣∣∣+ α
∣∣∣〈ψ∞∇ψ − ψ∞∇ψ∞, Ã − Ã∞

〉∣∣∣
≤ α

16
‖∇ψ −∇ψ∞‖2 + Cα

(
‖ψ − ψ∞‖2 +

∥∥Ã− Ã∞
∥∥2
)
.(6.29)
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On the other hand, recalling (3.14) and (6.10), we observe that

I21 :=
∣∣i 〈Φ, ψψt − ψψt

〉∣∣ ≤ 1
16

‖ψt‖2 + C‖∇Φ‖2.(6.30)

Thus, adding (6.10), the product of (6.17) by constant M > 0, (6.25) and (3.14)
together, using the above estimates of Ij (j = 4, . . . , 21), and taking

(6.31) α ∈
(

0,
σ

2ε

)
, M ≥ σ

ε
+ 4C6 + 2C7, ε ∈

(
0,

3
M

)
,

we can find two positive constants C and γ such that

d

dt

(
1
2
‖∇ψ −∇ψ∞‖2 +

M

2
‖ψ − ψ∞‖2 +

1
2

∥∥curlÃ− curlÃ∞
∥∥2

+
ε

2

∥∥Ãt

∥∥2 + αε
〈
Ãt, Ã − Ã∞

〉
+
ασ

2

∥∥Ã − Ã∞
∥∥2 +

ε

2
‖∇Φ‖2

)
+ γ

(
‖ψt‖2 + ‖∇ψ −∇ψ∞‖2 +

∥∥curlÃ − curlÃ∞
∥∥2 +

∥∥Ãt

∥∥2 + ‖∇Φ‖2
)

≤ C
(∥∥Ã− Ã∞

∥∥2 + ‖ψ − ψ∞‖2 + ‖∇Φ‖2
)
.(6.32)

Let us now set

y :=
1
2
‖∇ψ −∇ψ∞‖2 +

M

2
‖ψ − ψ∞‖2 +

1
2

∥∥curlÃ − curlÃ∞
∥∥2

+
ε

2

∥∥Ãt

∥∥2 + αε
〈
Ãt, Ã− Ã∞

〉
+
ασ

2

∥∥Ã − Ã∞
∥∥2 +

ε

2
‖∇Φ‖2.(6.33)

Choosing α small enough, by the Cauchy–Schwarz inequality, we get

(6.34) c1y ≤ ‖ψt‖2 + ‖∇ψ−∇ψ∞‖2 +
∥∥curlÃ− curlÃ∞

∥∥2 +
∥∥Ãt

∥∥2 + ‖∇Φ‖2 ≤ c2y.

Therefore, recalling (6.5), we have

(6.35)
d

dt
y(t) + γ̂y(t) ≤ C(1 + t)−2θ/(1−2θ) ∀ t ≥ 0

for some constant γ̂ > 0. Thus, it follows that (see also [14, 34, 35])

(6.36) y(t) ≤ C(1 + t)−2θ/(1−2θ) ∀ t ≥ 0.

Furthermore, on account of (6.34), we obtain the estimate of convergence rate in
X

−1-norm (cf. (2.5)), namely,

(6.37) ‖z(t) − z∞‖−1 ≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0.

To get (2.25), a further step is needed. We adapt a higher order estimate derived
in [3, section 3]. Let us set

y1 := α1‖ψt‖2 +
∥∥curlÃt

∥∥2 + ε
∥∥Ãtt

∥∥2 + 2α2ε
〈
Ãt, Ãtt

〉
+ α2σ

∥∥Ãt

∥∥2

+ ε‖ΔΦ‖2 + σ‖∇Φ‖2(6.38)
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and choose α1, α2 > 0 such that (cf. also (2.9))

(6.39) α1 ≥ max
{
σ

ε
,

1
σκ

}
+

24
σ
, 0 < α2 ≤ min

{
σ

4ε
,

1
4σκ

}
.

Then we observe that (see [3, equations (3.7) and (3.8)])

(6.40)
1
2

(
α1‖ψt‖2 +

∥∥curlÃt

∥∥2 + ε
∥∥Ãtt

∥∥2 + ε‖ΔΦ‖2 + σ‖∇Φ‖2
)
≤ y1,

(6.41) y1 ≤ 3
2

(
α1‖ψt‖2 +

∥∥curlÃt

∥∥2 + ε
∥∥Ãtt

∥∥2 + ε‖ΔΦ‖2 + σ‖∇Φ‖2
)
.

Furthermore, a refinement of the argument used in [3, section 3, p. 628] yields

(6.42)
d

dt
y1 + γ1y1 +

α1

2
‖∇ψt‖2 + ε‖∇Φt‖2 ≤ C

(
‖ψt‖2 + ‖∇Φ‖2 +

∥∥Ãt

∥∥2
)
,

for some γ1 > 0, provided that α1 and α2 satisfy (6.39).
Hence, on account of (6.37), it follows that

(6.43)
d

dt
y1(t) + γ1y1(t) ≤ C(1 + t)−2θ/(1−2θ),

which gives, using (6.40),

(6.44) ‖ψt(t)‖ +
∥∥curlÃt(t)

∥∥+
∥∥Ãtt(t)

∥∥+ ‖ΔΦ(t)‖ ≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0.

On the other hand, we infer from (6.6) that

‖Δ(ψ − ψ∞)‖ ≤ ‖ψt‖ + C‖Φ‖ + C
∥∥Ã · ∇ψ − Ã∞ · ∇ψ∞

∥∥+
∥∥∥Ã2ψ − Ã2

∞ψ∞

∥∥∥
+
∥∥−λ2

(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞
∥∥ ,(6.45)∥∥Ã · ∇ψ − Ã∞ · ∇ψ∞

∥∥ ≤
∥∥Ã · ∇ψ − Ã∞ · ∇ψ

∥∥+
∥∥Ã∞ · ∇ψ − Ã∞ · ∇ψ∞

∥∥
≤
∥∥Ã− Ã∞

∥∥
L4‖∇ψ‖L4 +

∥∥Ã∞
∥∥
L∞‖∇ψ −∇ψ∞‖

≤ C
(∥∥curlÃ − curlÃ∞

∥∥+ ‖∇ψ −∇ψ∞‖
)
,(6.46)∥∥∥Ã2ψ − Ã2

∞ψ∞

∥∥∥ ≤
∥∥∥Ã2ψ − Ã2ψ∞

∥∥∥+
∥∥∥Ã2ψ∞ − Ã2

∞ψ∞

∥∥∥
≤
∥∥∥Ã2

∥∥∥
L∞

‖ψ − ψ∞‖ +
∥∥Ã + Ã∞

∥∥
L∞

∥∥Ã − Ã∞
∥∥‖ψ∞‖L∞

C

≤ C
(∥∥Ã− Ã∞

∥∥+ ‖ψ − ψ∞‖
)
,(6.47)

(6.48)
∥∥−λ2

(
1 − |ψ|2

)
ψ + λ2

(
1 − |ψ∞|2

)
ψ∞
∥∥ ≤ C‖ψ − ψ∞‖.

Therefore, due to (6.37), we deduce

(6.49) ‖Δ(ψ(t) − ψ∞)‖ ≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0.

Similarly, from (6.7), we obtain∥∥curl2Ã − curl2Ã∞
∥∥

≤ ε
∥∥Ãtt

∥∥+ ε‖∇Φt‖ + σ
∥∥Ãt

∥∥+ σ‖∇Φ‖ +
∥∥|ψ|2Ã − |ψ∞|2Ã∞

∥∥
+
∥∥∥∥ i2 (ψ∇ψ − ψ∇ψ

)
− i

2
(
ψ∞∇ψ∞ − ψ∞∇ψ∞

)∥∥∥∥ .(6.50)
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Besides, the following estimates hold:

(6.51)
∥∥|ψ|2Ã− |ψ∞|2Ã∞

∥∥ ≤ C
(
‖ψ − ψ∞‖ +

∥∥Ã − Ã∞
∥∥) ,

(6.52)∥∥∥∥ i2 (ψ∇ψ − ψ∇ψ
)
− i

2
(
ψ∞∇ψ∞ − ψ∞∇ψ∞

)∥∥∥∥ ≤ C (‖ψ − ψ∞‖ + ‖∇ψ −∇ψ∞‖) .

As a result, owing to (6.37), we infer from (5.7) and (6.50)–(6.52) that

(6.53)
∥∥curl2Ã(t) − curl2Ã∞

∥∥ ≤ C(1 + t)−θ/(1−2θ) ∀ t ≥ 0.

Finally, (2.25) follows from (6.37), (6.44), (6.49), and (6.53).
The proof of Theorem 2.1 is now complete.
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ON A FOURTH ORDER NONLINEAR ELLIPTIC EQUATION WITH
NEGATIVE EXPONENT∗

ZONGMING GUO† AND JUNCHENG WEI‡

Abstract. We consider the following nonlinear fourth order equation: TΔu−DΔ2u = λ
(L+u)2

,

−L < u < 0, in Ω, u = 0, Δu = 0 on ∂Ω, where λ > 0 is a parameter. This nonlinear equation models
the deflection of charged plates in electrostatic actuators under the pinned boundary condition (Lin
and Yang [Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), pp. 1323–1337]). Lin and
Yang proved that there exists a λc > 0 such that for λ > λc there is no solution, while for λ < λc
there is a branch of maximal solutions. In this paper, we show that in the physical domains (two
or three dimensions) the maximal solution is unique and regular at λ = λc. In a two-dimensional
(2D) convex smooth domain, we also establish the existence of a second mountain-pass solution for
λ ∈ (0, λc). The asymptotic behavior of the second solution is also studied. The main difficulty is
the analysis of the touch-down behavior.

Key words. fourth order, electrostatic actuation, touch-down, pull-in threshold
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1. Introduction. We consider the structure of solutions to the problem

(Pλ)

⎧⎨⎩
TΔu−DΔ2u = λ

(L+u)2 in Ω,
−L < u ≤ 0 in Ω,

u = 0, Δu = 0 on ∂Ω,

where λ > 0 is a parameter, T > 0, D > 0, and L > 0 are fixed constants, and
Ω ⊂ RN (N ≥ 2) is a bounded smooth domain.

When D = 0, problem (Pλ) becomes

(Qλ)

⎧⎨⎩
TΔu = λ

(L+u)2 in Ω,
−L < u ≤ 0 in Ω,

u = 0 on ∂Ω,

which models a simple electrostatic microelectromechanical system (MEMS) device
consisting of a thin dielectric elastic membrane with boundary supported at 0 above
a rigid plate located at −L. Here L + u represents the distance from the membrane
to the plate. Recently there have been many studies on (Qλ). See, for example,
[9], [14], [15], [16], [10], [11], [12], [7], [8], [17], [25], [24], and the references therein.
These papers deal only with second order semilinear elliptic equations with singular
nonlinearities. Equation (Qλ) also appears in the study of thin film; see, for example,
[2], [3], [5], [19], [20], [21], [18], and the references therein.
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In a recent paper [22], Lin and Yang derived the fourth order equation (Pλ) in
the study of the deflection of charged plates in electrostatic actuators. Here λ = aV 2,
where V is the electric voltage and a is positive constant. Associated with (Pλ) is the
energy functional

(1.1) E(u) =
∫

Ω

{
T

2
|∇u|2 +

D

2
|Δu|2 − λ

L+ u

}
,

where P =
∫
Ω

T
2 |∇u|2dx is the stretching energy, Q =

∫
Ω

D
2 |Δu|2dx corresponds to

the bending energy, and W = −
∫
Ω

λ
L+u(x)dx is the electric potential energy.

Lin and Yang [22] considered two kinds of boundary conditions: the pinned bound-
ary condition

u = Δu = 0 on ∂Ω

and the clamped boundary condition

u =
∂u

∂n
= 0 on ∂Ω.

For the pinned boundary condition problem (Pλ), they found that there exists 0 <
λc <∞ such that for λ ∈ (0, λc), (Pλ) has a maximal regular solution uλ, which can
be obtained from an iterative scheme. (By a regular solution uλ of (Pλ), we mean
that uλ ∈ C4(Ω) ∩ C3(Ω) satisfies (Pλ).) For λ > λc, (Pλ) does not have any regular
solution. Moreover, if λ′, λ′′ ∈ (0, λc) and λ′ < λ′′, then the corresponding maximal
solutions uλ′ and uλ′′ satisfy

uλ′ > uλ′′ in Ω.

Physically, this is a natural relation because a higher supply voltage results in a greater
elastic deformation or deflection.

The number λc, which determines the pull-in voltage, is called the pull-in thresh-
old. It is known from [22] that, for λ ∈ (0, λc), minΩ(L+ uλ) > 0. Let Σλ = {x ∈ Ω :
L + uλ(x) = 0} be the singular set of (Pλ). An interesting question is to study the
limit of uλ as λ↗ λc. The monotonicity of uλ with respect to λ implies that there is
a well-defined function U so that

U(x) = lim
λ→λ−

c

uλ(x); −L ≤ U(x) < 0, x ∈ Ω.

However, U(x) may touch down to −L and cease to be a regular solution to (Pλc ).
(By [22], U ∈ W 2,2

loc (Ω).) For the one-dimensional case, Lin and Yang showed that U
is a regular solution; that is, the set Σλc = ∅.

In this paper, we will show that for two dimensions and three dimensions, U is
a regular solution. Moreover, we also show that there is a unique solution for (Pλ)
at λ = λc. To obtain our results, we first prove that the solutions uλ for λ ∈ (0, λc)
obtained in [22] are stable in some sense. Furthermore, we also obtain the structure
of solutions of (Pλ) in the two-dimensional (2D) case. Our main results of this paper
are as follows.

Theorem 1.1. For dimension N = 2 or 3, there exists a constant 0 < C :=
C(N,L) independent of λ such that for any 0 < λ < λc, the maximal solution uλ of
(Pλ) satisfies minΩ(L+ uλ) ≥ C.
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Consequently, uλc = limλ↗λc uλ exists in the topology of C4(Ω). It is the unique
regular solution to (Pλc).

Theorem 1.2. Let N = 2 and Ω be a bounded, smooth, and convex domain in
R2. For λ ∈ (0, λc], any solution of the problem (Pλ) is regular and the following
hold.

(i) For 0 < λ < λc, problem (Pλ) admits two solutions: the maximal solution and
a mountain-pass solution.

(ii) For λ = λc, problem (Pλ) admits a unique regular solution.
(iii) For λ > λc, problem (Pλ) admits no regular solution.
Furthermore, the mountain-pass solution Vλ has the following asymptotic behavior

as λ→ 0:

(1.2) max
Ω

Vλ → L as λ→ 0, lim
λ→0+

[minΩ(L− Vλ)]3

λ
= 0.

Remark. Theorem 1.2 shows that the bifurcation diagram of (Pλ) changes drasti-
cally when D > 0. In a nice 2D domain (see [16]), it has been proved in [16] that for
λ small, the maximal solution is unique, and there exists 0 < λ∗ < λc such that the
solutions to (Qλ) undergo infinitely many turning points. An interesting question is
the asymptotic behavior as D → 0. When Ω = B1 ⊂ R2, the complete bifurcation
picture as well as the asymptotic behavior when D → 0 has been considered in [23].

The organization of the paper is as follows: in section 2, we present some pre-
liminary results on the first eigenvalue and the corresponding eigenfunction of the
problem

−TΔφ+DΔ2φ = σφ in Ω, φ = Δφ = 0 on ∂Ω.

In section 3, we derive a key L1 bound for 1
(L+u)2 . In section 4, we show the stability

of the maximal solutions of (Pλ). In section 5, we show that the solution at the pull-in
threshold is regular for N = 2 or 3. In section 6, we show that any weak solution at
the pull-in threshold is unique. In section 7, we present the structure of the solutions
of (Pλ) for the 2D case. We show that for 0 < λ < λc, (Pλ) admits at least two
solutions: the maximal solution and a mountain-pass solution. Finally in section 8,
we give some asymptotic behaviors of the mountain-pass solution as λ→ 0+.

2. The first eigenfunction. In this section, we study the following eigenvalue
problem:

(2.1) −TΔφ+DΔ2φ = σφ in Ω, φ = Δφ = 0 on ∂Ω,

where T , D > 0. We will show that (2.1) has the least eigenvalue σ1 and the corre-
sponding eigenfunction φ1 > 0 in Ω. Moreover, φ1 is simple; i.e., all the eigenfunctions
corresponding to σ1 assume the forms of Cφ1 with C ∈ R.

Proposition 2.1. Problem (2.1) has the least eigenvalue σ1 such that all the
eigenfunctions corresponding to σ1 assume the forms of Cφ1, where φ1 ∈ C∞(Ω) and
φ1 > 0 in Ω.

Proof. This proposition may be known, but we cannot find the reference. We
give a proof here for completeness.

Consider the following minimization problem:

(2.2) σ1 := inf
{∫

Ω

[T |∇φ|2 +D|Δφ|2]dx : φ ∈ H, ‖φ‖L2(Ω) = 1
}
,
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where H = H2(Ω) ∩H1
0 (Ω) is the function space obtained by taking the completion

under the norm of H2(Ω) ∩H1
0 (Ω) (i.e., ‖ψ‖ = (

∫
Ω[T |∇ψ|2 +D|Δψ|2]dx)1/2) for the

set of smooth functions that satisfy the boundary condition φ = Δφ = 0 on ∂Ω. Since
the Sobolev embedding H ↪→ L2(Ω) is compact, by the standard direct method of
calculus of variations, we have at least one minimizer φ1 for the problem (2.2), where
φ1 ∈ H, ‖φ1‖L2(Ω) = 1. Furthermore, φ1 is a weak solution to (2.1); namely,

(2.3)
∫

Ω

[T∇φ1∇φ+DΔφ1Δφ] = σ1

∫
Ω

φ1φdx ∀φ ∈ H.

Using the Lp-estimates due to Agmon, Douglis, and Nirenberg [1], we conclude
that

‖φ1‖W 4,p(Ω) ≤ C‖φ1‖Lp(Ω)

for any p > 1. Thus we have φ1 ∈ C4(Ω)∩C3(Ω̄), and hence Δφ1 = 0 on ∂Ω, and φ1

satisfies (2.1). (See a similar argument in Lemma B.3 of [27].)
It is clear that

σ1 =

∫
Ω

[T |∇φ1|2 +D|Δφ1|2]dx∫
Ω φ

2
1dx

= inf
φ∈H\{0}

∫
Ω

[T |∇φ|2 +D|Δφ|2]dx∫
Ω φ

2dx
.

In order to show that φ1 is of fixed sign, we consider the following new problem:

(2.4) −TΔψ1 +DΔ2ψ1 = σ1|φ1| in Ω, ψ1 = Δψ1 = 0 on ∂Ω.

By the maximum principle, ψ1 > 0, −DΔψ1 + Tψ1 > 0 in Ω. Furthermore, we have
ψ1 ≥ φ1, ψ1 ≥ −φ1, and hence ψ1 ≥ |φ1| in Ω.

On the other hand, from (2.4) we obtain

(2.5)
∫

Ω

[T |∇ψ1|2 +D|Δψ1|2]dx = σ1

∫
Ω

ψ1|φ1|dx ≤ σ1

∫
Ω

|ψ1|2dx.

By the minimality of σ1, we have

(2.6) σ1 =

∫
Ω

[T |∇ψ1|2 +D|Δψ1|2]dx∫
Ω |ψ1|2dx

.

Thus ψ1 also attains σ1, and hence the inequality of (2.5) is actually an equality. This
implies that ψ1 = |φ1| in Ω. Since ψ1 > 0 in Ω, we conclude that φ1 is of fixed sign
in Ω.

The above argument actually proves that any nonzero eigenfunction correspond-
ing to σ1 must be of fixed sign in Ω. So if φ1 and φ2 are two eigenfunctions corre-
sponding to σ1, we may choose φ1 > 0, φ2 > 0. Let x0 ∈ Ω and C = φ1(x0)

φ2(x0)
. Then

the function φ1 −Cφ2 is again an eigenfunction corresponding to σ1. By the previous
argument, we see that φ1 ≡ Cφ2 in Ω. This completes the proof.

3. A uniform L1 bound. In this section, we establish a key uniform L1 bound
for 1

(L−v)2 , where v satisfies

(Tλ)

⎧⎨⎩
−TΔv +DΔ2v = λ

(L−v)2 in Ω,
0 < v < L in Ω,

v = 0, Δv = 0 on ∂Ω
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(which is equivalent to (Pλ) by taking u = −v). Note that v ∈ C4(Ω)∩C2(Ω) provided
that v satisfies (Tλ).

Theorem 3.1. Let Ω be a bounded, smooth, and convex domain. Then there
exists a constant C (independent of λ) such that for any solution v to (Tλ) we have

(3.1)
∫

Ω

1
(L − v)2

≤ C

λ
.

As a consequence, we have

(3.2)
∫

Ω

(D|Δv|2 + T |∇v|2) ≤ C.

Proof. Let φ1 be as given in Proposition 2.1. Multiplying (Tλ) by φ1 and inte-
grating over Ω, we obtain

(3.3) λ

∫
Ω

1
(L− v)2

φ1 = σ1

∫
Ω

vφ1 ≤ C,

which implies that

(3.4)
∫

Ω′

1
(L− v)2

≤ CΩ′

λ

for any Ω
′ ⊂⊂ Ω, where CΩ′ is independent of λ.

We write (Tλ) as ⎧⎨⎩
Δv + 1

Dw − T
Dv = 0 in Ω,

Δw + λ
(L−v)2 = 0 in Ω,

v = w = 0 on ∂Ω.

If we denote f1(v, w) = − T
Dv + 1

Dw, f2(v, w) = λ
(L−v)2 , we see that ∂f1

∂w = 1
D > 0

and ∂f2

∂v = 2λ
(L−v)3 > 0. Therefore, the convexity of Ω, Lemma 5.1 of [26], and the

moving plane method near ∂Ω as in the appendix of [13] imply that there exist t0 > 0
and α > 0 depending only on the domain Ω, such that v(x − tν) and w(x − tν) are
nondecreasing for t ∈ [0, t0], ν ∈ RN satisfying |ν| = 1 and (ν, n(x)) ≥ α and x ∈ ∂Ω.
Therefore, we can find γ, δ > 0 such that for any x ∈ Ωδ := {z ∈ Ω̄ : d(z, ∂Ω) < δ}
there exists a fixed-sized cone Γx (with x as its vertex) with

(i) meas(Γx) ≥ γ,
(ii) Γx ⊂ {z ∈ Ω : d(z, ∂Ω) < δ}, and
(iii) v(y) ≥ v(x) for any y ∈ Γx.
Then, for any x ∈ Ωδ, we have

1
(L− v(x))2

≤ 1
meas(Γx)

∫
Γx

1
(L− v)2

≤ 1
γ

∫
Ωδ

1
(L− v)2

≤ C

λ
.

This implies that 1
(L−v)2 ∈ L∞(Ωδ) and there is C > 0 independent of λ such that

(3.5) sup
x∈Ωδ

v < L− C
√
λ.



FOURTH ORDER ELLIPTIC EQUATIONS 2039

Next, we derive estimates for w near ∂Ω. Multiplying the second equation of the
equivalent system of (Tλ) by ϕ0, the first eigenfunction of −Δ, and integrating over
Ω, we obtain

(3.6) λ

∫
Ω

1
(L− v)2

ϕ0 = λ1

∫
Ω

ϕ0w,

where λ1 is the first eigenvalue of −Δ. By (3.3), we have that

(3.7) λ1

∫
Ω

ϕ0w = λ

∫
Ω

1
(L− v)2

ϕ0 ≤ λC

∫
Ω

1
(L− v)2

φ1 ≤ C,

and hence ∫
Ω′
w ≤ CΩ′

for any Ω
′ ⊂⊂ Ω. To see the second inequality of (3.7), we notice that there exist


i > 0 (i = 1, 2, 3, 4) such that


1d(x) ≤ ϕ0(x) ≤ 
2d(x), 
3d(x) ≤ φ1(x) ≤ 
4d(x),

where d(x) = dist(x, ∂Ω). Hence ϕ0(x) ≤ Cφ1(x). The same reason as above shows
that w ≤ C(Ωδ).

By elliptic regularity applied to the system (Tλ) (noting that v, w, and 1
(L−v)2 are

all bounded in Ωδ), we have v ∈ C3(Ωδ), and hence

λ

∫
Ω

1
(L − v)2

= D

∫
∂Ω

∂Δv
∂n

− T

∫
Ω

∂v

∂n
≤ C.

To prove the inequality (3.2), we multiply (Tλ) by v and integrate over Ω to obtain

T

∫
Ω

|∇v|2 +D

∫
Ω

|Δv|2 = λ

∫
Ω

Lv

(L− v)2
≤ C.

4. Stability of the maximal solutions of (Pλ). In this section, we show that
the maximal solutions uλ to (Pλ) obtained in [22] for λ ∈ (0, λc) are stable in some
sense. Let vλ = −uλ. Then, from [22], for each λ ∈ (0, λc), (Tλ) has a minimal
positive solution vλ.

We call vλ stable if the first eigenvalue σ1,λ(vλ) of the problem

(4.1) −TΔh+DΔ2h =
2λ

(L− vλ)3
h+ σh in Ω, h = Δh = 0 on ∂Ω

is nonnegative. By arguments similar to those in the proof of Proposition 2.1, we
see that the first eigenvalue σ1,λ(vλ) exists and every eigenfunction corresponding to
σ1,λ(vλ) is of fixed sign if σ1,λ(vλ) ≥ 0.

Lemma 4.1. Suppose that v is a regular solution of (Tλ), and u is a regular
supersolution of (Tλ); that is,⎧⎨⎩

−TΔu+DΔ2u ≥ λ
(L−u)2 in Ω,

0 < u < L in Ω,
u = 0, Δu = 0 on ∂Ω.
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If σ1,λ(v) > 0, then u ≥ v in Ω, and if σ1,λ(v) = 0, then u = v in Ω.
Proof. For a given λ and x ∈ Ω, by the fact that s → (L − s)−2 is convex on

(0, L), we see that

(4.2) −TΔ(v + τ(u − v)) +DΔ2(v + τ(u − v)) − λ

[L− (v + τ(u − v))]2
≥ 0 in Ω

for τ ∈ [0, 1]. Note that (4.2) is an identity at τ = 0, which means that the first
derivative of the left-hand side of (4.2) with respect to τ is nonnegative at τ = 0, i.e.,

(4.3)
{

−TΔ(u− v) +DΔ2(u− v) − 2λ
(L−v)3 (u − v) ≥ 0 in Ω,

u− v = 0, Δ(u − v) = 0 on ∂Ω.

Thus, the fact σ1,λ(v) > 0 implies that u ≥ v in Ω. Indeed, on the contrary, we see
that 0 �≡ (u− v)− ∈ H2(Ω) ∩H1

0 (Ω). Multiplying (u− v)− on both the sides of (4.3)
and integrating it on Ω, we see that

σ1,λ(v)
∫

Ω

[(u− v)−]2dx

≤ T

∫
Ω

|∇(u− v)−|2dx+D

∫
Ω

|Δ(u− v)−|2dx−
∫

Ω

2λ
(L− v)3

[(u− v)−]2dx

≤ 0.

This contradicts σ1,λ(v) > 0.
If σ1,λ(v) = 0, we have

−TΔ(u− v) +DΔ2(u− v) − 2λ
(L − v)3

(u − v) = 0 in Ω.

Moreover, the second derivative of the left-hand side of (4.2) with respect to τ at
τ = 0 is

−6λ(L− v)−4(u− v)2 ≥ 0,

which implies that u ≡ v in Ω. This completes the proof.
Proposition 4.2. For each λ ∈ (0, λc), the minimal positive solution vλ of (Tλ)

is stable.
Proof. Since σ1 > 0, we easily see that the first eigenvalue σ1,λ(vλ) of problem

(4.1) is positive provided that λ is sufficiently small. Now we prove that σ1,λ(vλ) > 0
for λ ∈ (0, λc).

We define

λ∗ = sup{ρ : vλ is a stable solution for λ ∈ (0, ρ)}.
It is clear that λ∗ ≤ λc. To show λ∗ = λc, it suffices to prove that there is no regular
minimal solution for (Tλ) with λ > λ∗. For that, suppose w is a regular minimal
solution of (Tλ∗+δ) with δ > 0; then we would have for λ ≤ λ∗

−TΔw +DΔ2w =
λ∗ + δ

(L− w)2
≥ λ

(L− w)2
in Ω.

Since for 0 < λ < λ∗ the minimal solution vλ is stable, it follows from Lemma 4.1
that L > w ≥ vλ. Consequently, v = limλ↗λ∗ vλ exists in C4(Ω), and it is a regular
solution to (Tλ∗). Now, from the definition of λ∗ and the implicit function theorem,
we necessarily have σ1,λ∗(v) = 0. By Lemma 4.1 again, we obtain that w ≡ v in Ω
and hence δ = 0. This is a contradiction. Therefore, λ∗ = λc. This completes the
proof.
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5. The regularity of the minimal solution of (Tλ) at λ = λc. In this
section, we are concerned with the regularity of the minimal solutions of (Tλ) at
λ = λc. Normally, the minimal solution vλ at λ = λc may have a singular set in Ω;
i.e., there exists a set Σλc ⊂ Ω such that vλc(x) = L for x ∈ Σλc . But we will see that
for the lower dimensional case, vλc < L in Ω.

By a weak solution v ∈ H of (Tλ) we mean 0 < v ≤ L in Ω and (L−v)−2 ∈ L1(Ω)
such that for any ϕ ∈ H,∫

Ω

[T∇v · ∇ϕ+DΔvΔϕ]dx = λ

∫
Ω

(L− v)−2ϕdx.

Lemma 5.1. If v ∈ H is a weak solution to (Tλ), then there exists C := C(λ) > 0
such that ∫

Ω

dx

(L− v)2
≤ C.

For N ≥ 2, any solution v satisfying (L − v)−2 ∈ Lp(Ω) with p = N/2 is a
classical solution.

Proof. For the first conclusion, we see that, since v ∈ H is a solution of (Tλ),

(5.1)
∫

Ω

v

(L− v)2
dx =

1
λ

[∫
Ω

(|∇v|2 + |Δv|2)dx
]
≤ C.

On the other hand, we see that

v

(L− v)2
=

L

(L− v)2
− 1

(L− v)
.

Thus, (5.1) implies that

(5.2)
∫

Ω

L

(L − v)2
dx =

∫
Ω

1
(L− v)

dx+
∫

Ω

v

(L − v)2
dx.

By Young’s inequality, we have that

(5.3)
∫

Ω

1
(L − v)

dx ≤ εL

∫
Ω

1
(L− v)2

dx+ C(ε, L)|Ω|,

where 0 < ε < 1/4 and C(ε, L) > 0 is a constant. Our first conclusion can be obtained
from (5.1), (5.2), and (5.3).

For N = 2, suppose that v is a weak solution such that 1
(L−v)2 ∈ L1(Ω). Thus,

−DΔ2v = λ(L − v)−2 − TΔv ∈ L1(Ω).

This and the Sobolev embedding imply that ∇3v ∈ Lq(Ω) for any 1 < q < 2. In
particular, ∇v ∈ C2− 2

q (Ω) for any 1 < q < 2. This and the fact that (L−v)−2 ∈ L1(Ω)
clearly imply that v < L in Ω. In fact, on the contrary, suppose that there exists
x0 ∈ Ω such that v(x0) = maxΩ v = L. Then, ∇v(x0) = 0 and

v(x) − v(x0) = ∇v(ξ) · (x− x0) for x ∈ Ω near x0,

where ξ = tx0 + (1 − t)x with t ∈ (0, 1). Moreover, since ∇v ∈ C2− 2
q (Ω), we see that

|∇v(ξ) −∇v(x0)| ≤M |ξ − x0|2−
2
q ≤M |x− x0|2−

2
q ,
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and thus

|v(x) − v(x0)| ≤M |x− x0|3−
2
q for x ∈ Ω near x0.

This inequality shows that

∞ >

∫
Ω

1
(L − v)2

dx ≥M−2

∫
Ω

|x− x0|−(6− 4
q )dx = ∞,

which is a contradiction, which implies that we must have ‖v‖C(Ω) < L.
For N ≥ 3, suppose that v is a weak solution such that 1

(L−v)2 ∈ Lp(Ω) with
p = N

2 . By the regularity of Δ2, we see that v ∈ W 4,p(Ω). The Sobolev embedding
theorem then implies that v ∈ C1,α(Ω) with α < 1 since 4 − N

p = 2. To show that v
is a classical solution, it suffices to show that v < L in Ω. Indeed, on the contrary,
there exists x0 ∈ Ω such that v(x0) = maxΩ v = L. Then, ∇v(x0) = 0 and

(5.4) v(x) − v(x0) = ∇v(ξ) · (x− x0) for x ∈ Ω near x0,

where ξ = tx0 + (1 − t)x with t ∈ (0, 1). Moreover, since v ∈ C1,1(Ω), we see that
|∇v(ξ) −∇v(x0)| ≤M |ξ − x0| ≤M |x− x0|. This and (5.4) imply that

(5.5) |v(x) − v(x0)| ≤M |x− x0|1+α for x ∈ Ω.

This inequality shows that

∞ >

∫
Ω

(
1

(L− v)2

)p

dx ≥M−2p

∫
Ω

|x− x0|−2(1+α)pdx = ∞,

which is a contradiction, which implies that we must have ‖v‖C(Ω) < L. This com-
pletes the proof.

Proposition 5.2. There exists a constant C := C(L, λ) > 0 such that for each
λ ∈ (0, λc), the minimal solution vλ satisfies ‖(L− vλ)−2‖L3/2(Ω) ≤ C.

Proof. Since the minimal solutions vλ are stable, we have

(5.6)
∫

Ω

2λ
(L− vλ)3

w2dx ≤
∫

Ω

[T |∇w|2 +D|Δw|2]dx

for all 0 < λ < λc and nonnegative w ∈ H.
Let w = vλ; we then have

(5.7)
∫

Ω

2λ
(L− vλ)3

v2
λdx ≤

∫
Ω

[T |∇vλ|2 +D|Δvλ|2]dx =
∫

Ω

λvλ

(L− vλ)2
.

Since vλ < L, this implies that

(5.8)
∫

Ω

v2
λ

(L− vλ)3
dx ≤ C

and

(5.9)
∫

Ω

L2

(L− vλ)3
dx ≤

∫
Ω

v2
λ

(L− vλ)3
dx +

∫
Ω

(L− vλ)2

(L− vλ)3
dx ≤ C +

∫
Ω

1
L− vλ

dx.
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Hence

(5.10)
∫

Ω

1
(L− vλ)3

dx ≤ C.

This completes the proof.
Now we obtain the following theorem, from which our Theorem 1.1 can be ob-

tained.
Theorem 5.3. For dimension N = 2 or 3, there exists a constant 0 < C :=

C(N,L) < L independent of λ such that for any 0 < λ < λc, the minimal solution vλ

of (Tλ) satisfies ‖vλ‖C(Ω) ≤ C.
Consequently, vλc = limλ↗λc vλ exists in the topology of C4(Ω). It is the unique

classical solution to (Tλc).
Proof. By Proposition 5.2 and (3.2), we see that there is C > 0 independent of λ

such that

‖vλ‖H2(Ω) ≤ C.

Since the mapping λ �→ vλ is increasing for λ ∈ (0, λc), we see that there is a function
vλc ∈ H2(Ω) such that

lim
λ↗λc

vλ = vλc weakly in H2(Ω).

Consequently, vλc is a weak solution of the equation (Tλ) at the critical parameter λc,

−TΔvλc +DΔ2vλc =
λc

(L− vλc)2
in Ω,

and in the sense of weak solutions, the critical value λc is attainable.
Now we show that vλc is a classical solution. The implicit function theorem

implies that the mapping λ �→ vλ from (0, λc) to C(Ω) is continuous. Thus, we see
that σ1,λc = 0. (Otherwise, the implicit function theorem implies that vλ will exist
for λ > λc.) By arguments similar to those in the proof of Proposition 5.2, we see
that

‖(L− vλc)−2‖L3/2(Ω) ≤ C(L).

Note that (5.6) holds with the inequality replaced by an equality. Then Lemma 5.1
implies that for N = 2 and 3, vλc is a classical solution. Thus, there exists C < L
such that ‖vλc‖C(Ω) ≤ C. Note that ‖vλ‖C(Ω) ≤ ‖vλc‖C(Ω) ≤ C < L for λ ∈ (0, λc).
The uniqueness of vλc of (Tλ) at λ = λc follows from Lemma 4.1. This completes the
proof.

6. Uniqueness of the solution of (Tλ) at λ = λc. We first note that the
monotonicity with respect to λ and the uniform boundedness of the branch of the
minimal solutions imply that the extremal function defined by vλc = limλ↗λc vλ

always exists and can always be considered as a solution for (Tλc) in a weak sense.
On the other hand, if there is a 0 < C < L such that ‖vλ‖C(Ω) ≤ C for each λ < λc,
just as in the case N = 2 or 3, then we see from Theorem 5.3 that vλc is the unique
classical solution.

In the following, we consider only the case that vλc is a weak solution (i.e., vλc ∈
W 2,2

loc (Ω); note that we can obtain vλc ∈ H provided that vλc ∈W 2,2
loc (Ω) by the moving

plane argument) but with the possibility that ‖vλc‖L∞(Ω) = L.
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Theorem 6.1. For λ > 0, assume that v ∈ H is a weak solution to (Tλ) such
that ‖v‖L∞(Ω) = L. The following assertions are equivalent:

(i) σ1,λ(v) ≥ 0; that is, v satisfies

2λ
∫

Ω

(L− v)−3φ2 ≤
∫

Ω

[T |∇φ|2 +D|Δφ|2]dx ∀φ ∈ H.

(ii) λ = λc and v ≡ vλc in Ω.
Theorem 6.1 can be easily obtained from the following proposition.
Proposition 6.2. Let v1, v2 be two H-weak solutions of (Tλ) so that σ1,λ(vi) ≥ 0

for i = 1, 2. Then v1 = v2 a.e. in Ω.
Proof. For any θ ∈ [0, 1] and φ ∈ H, φ ≥ 0, we have that

Iθ,φ : = T

∫
Ω

∇(θv1 + (1 − θ)v2)∇φdx +D

∫
Ω

Δ(θv1 + (1 − θ)v2)Δφdx

− λ

∫
Ω

[L− (θv1 + (1 − θ)v2)]−2φdx

= λ

∫
Ω

[
[θ(L − v1)−2 + (1 − θ)(L − v2)−2] − [(L− (θv1 + (1 − θ)v2))−2]

]
dx

≥ 0

due to the convexity of (L − s)−2 with respect to s ∈ (0, L). Since I0,φ = I1,φ = 0,
the derivative of Iθ,φ at θ = 0, 1 provides∫

Ω

[T∇(v1 − v2)∇φ +DΔ(v1 − v2)Δφ] − 2λ
∫

Ω

(L− v2)−3(v1 − v2)φ ≥ 0,∫
Ω

[T∇(v1 − v2)∇φ +DΔ(v1 − v2)Δφ] − 2λ
∫

Ω

(L− v1)−3(v1 − v2)φ ≤ 0

for any φ ∈ H with φ ≥ 0. Testing the first inequality on φ = (v1 − v2)− and the
second one on (v1 − v2)+, we obtain that∫

Ω

[
T |∇(v1 − v2)−|2 +D|Δ(v1 − v2)−|2

]
− 2λ

∫
Ω

(L− v2)−3((v1 − v2)−)2 ≤ 0,∫
Ω

[
T |∇(v1 − v2)+|2 +D|Δ(v1 − v2)+|2

]
− 2λ

∫
Ω

(L− v1)−3((v1 − v2)+)2 ≤ 0.

Since σ1,λ(v1) ≥ 0, we have the following:
(1) If σ1,λ(v1) > 0, then v1 ≤ v2 a.e. in Ω.
(2) If σ1,λ(v1) = 0, then∫

Ω

[
T∇(v1 − v2)∇ϕ+DΔ(v1 − v2)Δϕ

]
− 2λ

∫
Ω

(L− v1)−3(v1 − v2)ϕ = 0,

where ϕ = (v1 − v2)+. Since Iθ,ϕ ≥ 0 for any θ ∈ [0, 1] and I1,ϕ = ∂I1,ϕ = 0, we get
that ∂2

θθI1,ϕ = −
∫
Ω

6λ
(L−v1)4

((v1 − v2)+)3 ≥ 0. Thus, (v1 − v2)+ = 0 a.e. in Ω. Hence,
v1 ≤ v2 a.e. in Ω. The same argument applies to prove the reversed inequality, and
the proof of the proposition is complete.
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7. Structure of solutions of (Tλ) in the 2D case. In this section we obtain
the structure of positive solutions of (Tλ) in the 2D case. The main theorem of this
section is the following theorem. Our Theorem 1.2 can be obtained from this theorem
and Theorem 8.2.

Theorem 7.1. Let Ω be a convex smooth domain in R2. For λ ∈ (0, λc], any
solution of the problem (Tλ) is regular and the following hold.

(i) For 0 < λ < λc, problem (Tλ) admits two solutions: the minimal solution and
a mountain-pass solution.

(ii) For λ = λc, problem (Tλ) admits a unique regular solution.
(iii) For λ > λc, problem (Tλ) admits no regular solution.
To prove this theorem, we first show the following lemma.
Lemma 7.2. For any fixed λ > 0, if vλ ∈ H is a positive solution of (Tλ), then

there exists 0 < τλ < L such that vλ ≤ L − τλ in Ω. This also implies that vλ is
regular.

Proof. The embedding theorem implies that vλ ∈ Cα(Ω) for any 0 < α < 1,
and thus the moving plane arguments as in the proof of Theorem 3.1 imply that if
vλ(xλ) = maxΩ vλ, then xλ ∈ Ω0, where Ω0 ⊂⊂ Ω. Moreover, by Theorem 3.1, we
have

(7.1)
∫

Ω

(L− vλ)−2 ≤ C

λ

and

(7.2)
∫

Ω

[T |∇vλ|2 +D(Δvλ)2]dx ≤ C.

Suppose that there is λ0 > 0 and sequences {λi} and {vi} with maxΩ vi = L− εi
such that λi → λ0, εi → 0 as i→ ∞. Making the transformation wi = L− vi, we see
that wi with minΩwi = εi satisfies the problem

TΔwi −DΔ2wi = λiw
−2
i in Ω, wi = L,Δwi = 0 on ∂Ω.

Define zi = Δwi; then

(7.3) −DΔzi + Tzi = λiw
−2
i in Ω, zi = 0 on ∂Ω.

It is known from (7.3) that zi(x) = λi

∫
ΩGT,D(x, y)w−2

i (y)dy, where GT,D(x, y) is
the Green’s function of the operator −DΔ + TId. Let wi(xi) = minΩ wi. Then
xi ∈ Ω0 ⊂⊂ Ω. Setting w̃i(y) = wi

εi
and y = λ

1/4
i ε

−3/4
i (x − xi), we see that w̃i with

w̃i(0) = minΩi w̃i = 1 and w̃i satisfies the problem

(7.4) λ
−1/2
i ε

3/2
i TΔyw̃i −DΔ2

yw̃i = w̃−2
i in Ωi, w̃i =

Li

εi
, Δyw̃i = 0 on ∂Ωi,

where Ωi = {y = λ
1/4
i ε

−3/4
i (x− xi) : x ∈ Ω}. On the other hand,

Δyw̃i = λ
−1/2
i ε

1/2
i Δxwi = λ

1/2
i ε

1/2
i

∫
Ω

GT,D(x, ξ)w−2
i (ξ)dξ.
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Note that N = 2 and wi ≥ εi in Ω. The Hölder inequality implies that

|Δyw̃i| ≤ Cε
1/2
i

(∫
Ω

[GT,D(x, ξ)]pdξ
)1/p(∫

Ω

w−2
i w2−2q

i (ξ)dξ
)1/q

≤ Cε
1/2
i ε

−2/p
i

(∫
Ω

[GT,D(x, ξ)]pdξ
)1/p(∫

Ω

w−2
i (ξ)dξ

)1/q

≤ Cε
1
2−

2
p

i ,

where we have applied (7.1). Choosing p sufficiently large, we see that

(7.5) |Δyw̃i(y)| → 0 for y ∈ Ωi a.e. as i→ ∞.

On the other hand, it follows from (7.4), (7.5), and the regularity of the operator
TΔ−DΔ2 that w̃i → W in C4

loc(R2) as i→ ∞, where W with W (0) = 1 and W ≥ 1
in R2 satisfies the equation

(7.6) −DΔ2W = W−2 in R2, W (0) = 1.

Meanwhile, (7.5) implies that ΔW = 0 in R2. This contradicts (7.6) and completes
the proof of this lemma.

In the remainder of this section, we establish the existence of the second solution.
Note that in the energy functional (1.1), the integral

∫
Ω

1
L+u(x)dx is not well defined

for u ∈ H2(Ω). Therefore, we do not have a good energy functional to work with.
Our idea is to modify the nonlinearity so that the mountain-pass lemma works, and
then show that the resulting solution has no singularity.

We first modify the nonlinearity. Since the nonlinearity g(v) = 1
(L−v)2 is singular

at v = L, we need to consider a regularized C1 nonlinearity gε(v), 0 < ε < L, of the
following form:

gε(v) =

{
1

(L−v)2 , v ≤ L− ε,
1
ε2 − (L−ε)

ε3 + 1
ε3(L−ε)v

2, v > L− ε.

For λ ∈ (0, λc), we study the regularized semilinear elliptic problem:

(7.7) −TΔv +DΔ2v = λgε(v) in Ω, v = Δv = 0 on ∂Ω.

From a variational viewpoint, the action functional associated to (7.7) is

Jε,λ(v) =
1
2

∫
Ω

[T |∇v|2 +D(Δv)2]dx − λ

∫
Ω

Gε(v)dx, v ∈ H,

where Gε(v) =
∫ v

−∞ gε(s)ds.
Fix now 0 < ε < τλ/4, where τλ is as given in Lemma 7.2. The minimal solution

vλ of (Tλ) is still a solution of (7.7) so that σ1,λ(vλ) > 0. In order to motivate the
choice of gε(v), we briefly sketch the proof of Theorem 7.1. First, we prove that vλ

is a local minimum for Jε,λ(v). Then, by the well-known mountain-pass theorem, we
show the existence of a second solution Vε,λ for (7.7). (A similar idea has been used
in [6].) The subcritical growth

(7.8) 0 ≤ gε(v) ≤ Cε(1 + |v|2)
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and the inequality

(7.9) 3Gε(v) ≤ vgε(v) for v ≥ L− θ,

for some sufficiently small θ > 10ε independent of ε, Cε > 0, will yield that Jε,λ

satisfies the Palais–Smale condition.
In order to complete the details of the proof of Theorem 7.1, we first need to show

the following lemma.
Lemma 7.3. The minimal solution vλ of (Tλ) is a local minimum of Jε,λ on H.
Proof. Since H ↪→ Cα(Ω) for any 0 < α < 1, we need only to show that vλ is a

local minimum of Jε,λ in Cα(Ω) for some 0 < α < 1. Indeed, since σ1,λ(vλ) > 0, we
have the following inequality:

(7.10)
∫

Ω

[T |∇ϕ|2 +D(Δϕ)2]dx− 2λ
∫

Ω

1
(L− vλ)3

ϕ2dx ≥ σ1,λ

∫
Ω

ϕ2dx

for any ϕ ∈ H, since vλ ≤ L − τλ < L − ε (see Lemma 7.2). Now, take any ϕ ∈
H ∩Cα(Ω) such that ‖ϕ‖Cα ≤ δλ. Since vλ ≤ L− τλ, if δλ ≤ ε, then vλ + ϕ ≤ L− ε,
and we have that

Jε,λ(vλ + ϕ) − Jε,λ(vλ)

=
1
2

∫
Ω

[T |∇ϕ|2 +D(Δϕ)2]dx+
∫

Ω

[T∇vλ · ∇ϕ+DΔvλΔϕ]dx

− λ

∫
Ω

(
1

L− vλ − ϕ
− 1
L− vλ

)
≥ σ1,λ

2

∫
Ω

ϕ2 − λ

∫
Ω

(
1

L− vλ − ϕ
− 1
L− vλ

− ϕ

(L− vλ)2
− ϕ2

(L− vλ)3

)
,

where we have used (7.10). Since now∣∣∣∣ 1
L− vλ − ϕ

− 1
L− vλ

− ϕ

(L − vλ)2
− ϕ2

(L − vλ)3

∣∣∣∣ ≤ C|ϕ|3

for some C > 0, we have that

Jε,λ(vλ + ϕ) − Jε,λ(vλ) ≥
(σ1,λ

2
− Cλδλ

)∫
Ω

ϕ2 > 0

provided δλ is small enough. This proves that vλ is a local minimum of Jε,λ in the
Cα topology and completes the proof of this lemma.

Fix some ball B2r ⊂ Ω of radius 2r, r > 0. Take a cut-off function χ so that
χ = 1 on Br and χ = 0 outside B2r. Let wε = (L− ε)χ ∈ H. We have that

Jε,λ(wε) ≤
(L− ε)2

2

∫
Ω

[T |∇χ|2 +D(Δχ)2]dx− λ

ε2
|Br| → −∞

as ε→ 0. Moreover, we can find for ε > 0 small the inequality

(7.11) Jε,λ(wε) < Jε,λ(vλ).

Now fix ε > 0 small enough in order that (7.11) holds, and define

cε,λ = inf
γ∈Γ

max
v∈γ

Jε,λ(v),
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where Γ = {γ : [0, 1] → H; γ continuous and γ(0) = vλ, γ(1) = wε}. We can
then apply the mountain-pass theorem to get a solution Vε,λ of (7.7), provided the
Palais–Smale condition holds at level cε,λ. The embedding theorem and the maximum
principle imply that Vε,λ > 0 in Ω.

Lemma 7.4. Assume that {vn} ⊂ H satisfies

(7.12) Jε,λn(vn) ≤ C, J ′
ε,λn

(vn) → 0 in H′

for λn → λ > 0. Then the sequence (vn)n is uniformly bounded in H and therefore
admits a convergent subsequence in H.

Proof. By (7.12) we have that∫
Ω

[T |∇vn|2 +D(Δvn)2]dx = λn

∫
Ω

gε(vn)vndx+ o(‖vn‖H)

as n→ +∞, and then

C ≥ 1
2

∫
Ω

[T |∇vn|2 +D(Δvn)2]dx− λn

∫
Ω

Gε(vn)dx

=
1
6

∫
Ω

[T |∇vn|2 +D(Δvn)2]dx+ λn

∫
Ω

(
1
3
vngε(vn) −Gε(vn)

)
dx+ o(‖vn‖H)

≥ 1
6

∫
Ω

[T |∇vn|2 +D(Δvn)2]dx+ λn

∫
{vn≥L−θ}

(
1
3
vngε(vn) −Gε(vn)

)
dx

+ o(‖vn‖H) − C(θ)

≥ 1
6

∫
Ω

[T |∇vn|2 +D(Δvn)2]dx+ o(‖vn‖H) − C(θ)

in view of (7.9), where C(θ) > 0 depends on θ but is independent of ε. Hence,
supn∈N ‖vn‖H < +∞.

The compactness of the embedding H ↪→ Cα(Ω) for any 0 < α < 1 provides that,
up to a subsequence, vn → v weakly in H and strongly in Cα(Ω) for some 0 < α < 1
and some v ∈ H. By (7.12) we get that

∫
Ω[T |∇v|2 + D(Δv)2]dx = λ

∫
Ω gε(v)v, and

then ∫
Ω

[T |∇(vn − v)|2 +D(Δ(vn − v))2]dx

= T

[∫
Ω

|∇vn|2 −
∫

Ω

|∇v|2
]

+D

[∫
Ω

(Δvn)2 −
∫

Ω

(Δv)2
]

+ o(1)

= λn

∫
Ω

gε(vn)vn − λ

∫
Ω

gε(v)v + o(1) → 0

as n→ +∞. This completes the proof.
Proof of Theorem 7.1. We need only to show (i), and it is enough to show that

for any fixed λ > 0, the mountain-pass solution Vε,λ satisfies Vε,λ ≤ L− ε in Ω.
Since Vε,λ ∈ H, by the same argument as in Theorem 3.1, we easily see that

(7.13)
∫

Ω

gε(Vε,λ)dx ≤ C/λ,

where C is independent of ε. In fact, we see that

Jε,λ(Vε,λ) ≤ max
v∈γ0

Jε,λ(v),
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where γ0 : [0, 1] → H; γ0(v) = tvλ + (1 − t)wε for t ∈ [0, 1]. Thus,

Jε,λ(Vε,λ) ≤ C,

where C > 0 is independent of ε. On the other hand, we see that

C ≥ 1
2

∫
Ω

[T |∇Vε,λ|2 +D(ΔVε,λ)2]dx− λn

∫
Ω

Gε(Vε,λ)dx

=
1
6
‖Vε,λ‖2

H + λ

∫
Ω

(
1
3
Vε,λgε(Vε,λ) −Gε(Vε,λ)

)
dx

≥ 1
6

∫
Ω

‖Vε,λ‖2
H + λ

∫
{Vε,λ≥L−θ}

(
1
3
Vε,λgε(Vε,λ) −Gε(Vε,λ)

)
dx− C(θ)

≥ 1
6
‖Vε,λ‖2

Hdx− C(θ).

Thus,

‖Vε,λ‖H ≤ C,

where C > 0 is independent of ε. The embedding H ↪→ C0(Ω) implies Vε,λ ≤ C in
Ω. By the moving plane argument, as in the proof of Theorem 3.1, we have that
Vε,λ ≤ L− θ in Ωδ, where Ωδ is as given in the proof of Theorem 3.1 and θ is as given
by (7.9). This implies that (7.13) holds.

Let Wε = ΔVε,λ. Then Wε satisfies the equation

−TWε +DΔWε = λgε(Vε,λ) ∈ L1(Ω).

Since N = 2, the Brezis–Merle inequality [4] implies that∫
Ω

|Wε|qdx ≤ C ∀q > 1,

where C is independent of ε. This also yields that

‖Vε,λ‖W 2,q(Ω) ≤ C.

By choosing q > 3 sufficiently large, we see from the embedding W 2,q
0 (Ω) ↪→ C1+ 1

2 (Ω)
that Vε,λ ≤ C in Ω.

Now we show that Vε,λ < L in Ω for ε sufficiently small. On the contrary, we
suppose that there is a sequence {εi} with εi → 0 as i→ ∞ such that maxΩ Vεi,λ ≥ L.
Denote Vεi,λ(xi) = maxΩ Vεi,λ. By arguments similar to those in the proof of Lemma
5.1, we see that

Vεi,λ(xi) − Vεi,λ(x) ≤ C|x− xi|3/2.

Thus,

Vεi,λ(x) ≥ Vεi,λ(xi) − C|x− xi|3/2 > L− εi

provided that |x− xi| < (εi/C)2/3. But

C ≥
∫

Ω

gεi(Vεi,λ)dx ≥ ε−2
i

∫
{|x−xi|≤(εi/C)2/3}

dx = Cε
−2/3
i → ∞
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as i→ ∞. This is a contradiction.
Now we claim that there exists δ > 0 independent of ε such that

Vε,λ ≤ L− δ in Ω

for ε sufficiently small. On the contrary, there are sequences {εi} and {Vi} ≡ {Vεi,λ}
with εi → 0 as i → ∞ such that maxΩ Vi = L − ξi and ξi → 0 as i → ∞. Set
Zi = L− Vi. Then Zi(xi) := minΩ Zi = ξi and Zi satisfies

TΔZi −DΔ2Zi = λhi(Zi) in Ω, Zi = T, ΔZi = 0 on ∂Ω,

where

hi(Zi) =

{ 1
Z2

i
, Zi ≥ εi,

1
ε2i

+ 2(εi−Zi)
ε3i

+ (εi−Zi)
2

ε3i (L−εi)
, Zi < εi.

Making the transformations Z̃i(y) = Zi/ξi and y = ξ
−3/4
i (x−xi), we see that Z̃i(0) =

minΩ Z̃i = 1 and Z̃i satisfies the problem

(7.14) ξ
3/2
i ΔyZ̃i −DΔ2

yZ̃i = λh̃i(Z̃i) in Ω̃i, Z̃i = T/ξi, ΔyZ̃i = 0 on ∂Ω̃i,

where Ω̃i = {y = ξ
−3/4
i (x− xi) : x ∈ Ω} and

h̃i(Z̃i) =

⎧⎨⎩
1

Z̃2
i

, Z̃i ≥ εi

ξi
,

3
(

ξi

εi

)2

− 2
(

ξi

εi

)3

Z̃i + ξ2
i

εi(L−εi)
− 2
(

ξ3
i

ε2i (L−εi)

)
Z̃i +

(
ξ4

i

ε3i (L−εi)

)
Z̃2

i , Z̃i <
εi

ξi
.

We consider two cases for { εi

ξi
} (we can choose subsequences if necessary):

(i) There is 0 < A <∞ such that εi

ξi
≤ A for all i,

(ii) εi

ξi
→ ∞ as i→ ∞.

For the first case, we have that there is 0 ≤ A1 ≤ A such that limi→∞
εi

ξi
= A1.

If A1 < 1, since Z̃i ≥ 1, we have that h̃i = Z̃−2
i ≤ 1 in Ω̃i for i sufficiently large. If

1 ≤ A1 ≤ A, we also have that h̃i ≤ C in Ω̃i for i sufficiently large, where 0 < C <∞
is independent of i. Moreover, for q > 3,∫

Ω̃i

|ΔyZ̃i|qdy = ξ
q/2
i

∫
Ω̃i

|ΔxZi|qdy

= ξ
q−3
2

∫
Ω

|ΔxZi|qdx→ 0

as i → ∞. Thus, the regularity of Δ2 implies that Z̃i → Z̃ in C3
loc(R2) with Z̃(0) =

minR2 Z̃ = 1, and Z̃ satisfies the equation

−DΔ2Z̃ = λZ̃−2 in R2

provided A1 ≤ 1 and the equation

DΔ2Z̃ = λh̃(Z̃) in R2

provided 1 < A1 ≤ A, where

h̃(Z̃) =

{
Z̃2 , Z̃ ≥ A1,
3

A2
1
− 2

A3
1
Z̃, Z̃ < A1.
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Moreover, for any large ball BR of R2,
∫

BR
|ΔZ̃|q(y)dy = 0. This is impossible.

For the second case, we see that ξi = o(εi) for i sufficiently large. Thus, Zi(xi) =
ξi = o(εi). Noting that

∫
Ω
|ΔZi|qdx ≤ C, we see that Zi ∈ W 2,q

0 (Ω). The embedding
W 2,q

0 (Ω) ↪→ C1+ 1
2 (Ω) gives

|Zi(x)| ≤ Zi(xi) + C|x− xi|3/2 < εi

provided |x− xi| ≤ ( εi

2C )2/3. Thus

C ≥
∫

Ω

hi(Zi)dx ≥ 1
ε2i

∫
Zi<εi

dx ≥ Cε
−2/3
i → ∞

as i→ ∞. This is also a contradiction. Therefore,

Vε,λ ≤ L− δ in Ω,

where δ > 0 is independent of ε. This also implies that Vε,λ is a solution of (Tλ). This
completes the proof of (i) of Theorem 7.1.

8. The asymptotic behavior of the mountain-pass solution as λ → 0.
In this section we will study the asymptotic behavior of the mountain-pass solution
Vλ obtained in Theorem 7.1 as λ→ 0.

Lemma 8.1.

σ1,λ(Vλ) < 0 for 0 < λ < λc.

Proof. Let vλ be the minimal solution of (Tλ) so that Vλ ≥ vλ. If the linearization
around Vλ had nonnegative first eigenvalue, then Lemma 4.1 would also yield Vλ ≤ vλ

so that vλ and Vλ would necessarily coincide, which would be a contradiction.
Theorem 8.2.

(8.1) max
Ω

Vλ → L as λ→ 0.

Moreover,

(8.2) lim
λ→0+

[minΩ(L− Vλ)]3

λ
= 0.

Proof. Suppose that there are sequences {λi} and {Vi} ≡ {Vλi} such that λi → 0
as i→ ∞ and maxΩ Vi ≤ L− δ, where 0 < δ < L is independent of i. Then it follows
from the equation of Vi that Vi → 0 in C0(Ω) as i→ ∞ (we can choose subsequences
if necessary). This contradicts the fact that σ1,λi(Vi) < 0 for all i. Thus, (8.1) holds.

By Theorem 3.1, we see that

λ

∫
Ω

(L− Vλ)−2dx+
∫

Ω

|ΔVλ|2 ≤ C

for any λ sufficiently small, where C is independent of λ. Since ΔVλ satisfies

−DΔ(ΔVλ) = DΔVλ +
λ

(L− Vλ)2
∈ L1(Ω), ΔVλ = 0 on ∂Ω,

by the Brezis–Merle inequality [4], we have, for any q > 1,

(8.3)
∫

Ω

|ΔVλ|qdx ≤ C
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for any λ sufficiently small.
Let Vλ(xλ) = maxΩ Vλ. Setting Wλ = L − Vλ, we see that ξλ := Wλ(xλ) =

minΩWλ and ξλ → 0 as λ→ 0. Now we claim that

(8.4) lim
λ→0

ξ3λ
λ

= 0.

Suppose not; there are sequences {λi} and {ξi} with λi → 0 as i → ∞ such that
ξ3

i

λi
→ C > 0 or ξ3

i

λi
→ ∞ as i→ ∞.

We first consider the case that ξ3
i

λi
→ ∞ as i → ∞. Then, defining Ŵi = Wi/ξi,

we see that Ŵi satisfies the problem

TΔŴi −DΔ2Ŵi =
λi

ξ3i
Ŵ−2

i in Ω, Ŵi = L/ξi, ΔWi = 0 on ∂Ω.

Since Ŵi ≥ 1, we see that Ŵi → Ŵ in C3
loc(Ω) as i → ∞ and Ŵ with Ŵ (0) =

minΩ Ŵ = 1 satisfies the equation

(8.5) TΔŴ −DΔ2Ŵ = 0 in Ω, Ŵ = ∞, ΔŴ = 0 on ∂Ω.

Setting Z = ΔŴ , we see from (8.5) that

TZ −DΔZ = 0 in Ω, Z = 0 on ∂Ω.

The strong maximum principle then implies that Z ≡ 0 in Ω and hence ΔŴ ≡ 0 in
Ω. The maximum principle then implies that Ŵ ≡ 1 in Ω, which is a contradiction.

Now we consider the case that limi→∞
ξ3

i

λi
→ C > 0. Defining Ŵi = Wi/ξi again,

we see that Ŵi satisfies the problem

(8.6) TΔŴi −DΔ2Ŵi =
λi

ξ3i
Ŵ−2

i in Ω, Ŵi = L/ξi, ΔŴi = 0 on ∂Ω.

Setting Ẑi = ΔŴi, we see that Ẑi satisfies the problem

(8.7) T Ẑi −DΔẐi =
λi

ξ3i
Ŵ−2

i in Ω, Ẑi = 0 on ∂Ω.

Therefore,

Ẑi =
λi

ξ3i

∫
Ω

GT,D(x, y)Ŵ−2
i (y)dy,

and hence |Ẑi| ≤ C, where C > 0 is independent of i. We now obtain from the
regularity of Δ2 and (8.6) that Ŵi → Ŵ in C3

loc(Ω) and Ŵ satisfies the equation

TΔŴ −DΔ2Ŵ =
1
C
Ŵ−2 in Ω, Ŵ = ∞, ΔŴ = 0 on ∂Ω.

On the other hand, we see from (8.7) that Ẑi → Ẑ in C1(Ω) as i→ ∞ and Ẑ ≡ ΔŴ
satisfies the problem

T Ẑ −DΔẐ =
1
C
Ŵ−2 in Ω, Ẑ = 0 on ∂Ω.

Since we easily know that ΔŴ ≤ C on Ω and hence Δ(Ŵ − Cρ) ≤ 0 in Ω, where
−Δρ = 1 in Ω and ρ = 0 on ∂Ω, the maximum principle implies that Ŵ cannot be
∞ on ∂Ω. Thus, (8.2) holds. This completes the proof of Theorem 8.2.
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STABILITY AND SYMMETRY IN THE NAVIER PROBLEM FOR
THE ONE-DIMENSIONAL WILLMORE EQUATION∗

KLAUS DECKELNICK† AND HANS-CHRISTOPH GRUNAU†

Abstract. We consider the one-dimensional Willmore equation subject to Navier boundary
conditions; i.e., the position and the curvature are prescribed on the boundary. In a previous work,
explicit symmetric solutions to symmetric data have been constructed. Within a certain range
of boundary curvatures one has precisely two symmetric solutions, while for boundary curvatures
outside the closure of this range there are none. The solutions are ordered; one is “small,” and
the other is “large.” In the first part of this paper we address the stability problem and show that
the small solution is (linearized) stable in the whole open range of admissible boundary curvatures,
while the large one is unstable and has Morse index 1. A second goal is to investigate whether
the small solution is minimal for the corresponding Willmore functional. It turns out that for a
certain subrange of admissible boundary curvatures the small solution is the unique minimum, while
for curvatures outside that range the minimum is not attained. As a byproduct of our argument
we show that for any admissible function there exists a symmetric function with smaller Willmore
energy.

Key words. Willmore equation, Navier boundary conditions, stability, Morse index, symmetry

AMS subject classifications. 53C21, 34B15, 35J65, 35B35

DOI. 10.1137/07069033X

1. Introduction. Recently, Willmore surfaces (see [19]) and the related flow
have attracted quite some attention; see, e.g., [1, 8, 9, 10, 13, 17, 18], [3] for numerical
studies, and [15, 5] for elastic curves, which are the one-dimensional analogues. The
mentioned work is concerned with closed surfaces and curves, while only very few
results concerning boundary value problems are available. Quite recently, Schätzle [16]
considered Willmore surfaces with a boundary, which are subject to the constraint to
be submanifolds of S

n and which satisfy Dirichlet-type boundary conditions.
In order to gain some more insight into general boundary conditions for the “free”

Willmore equation, in [4] we had a look at the one-dimensional case, where, in some
situations, almost explicit solutions can be found for suitable boundary value prob-
lems. For further background information and references, see [4] and also [14]. In [4],
we were interested in Willmore graphs and studied among others the Navier boundary
value problem with symmetric data α ∈ R for the one-dimensional Willmore equation:

(1.1)

⎧⎨⎩ 1√
1+u′(x)2

d
dx

(
κ′(x)√

1+u′(x)2

)
+ 1

2κ
3(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0, κ(0) = κ(1) = −α.

Here

(1.2) κ(x) =
d

dx

(
u′(x)√

1 + u′(x)2

)
=

u′′(x)

(1 + u′(x)2)3/2
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denotes the curvature of the graph of u at the point (x, u(x)). Solutions of (1.1) are
critical points of the modified one-dimensional Willmore functional
(1.3)

W̃α(u) =
∫

graph(u)

(
κ(x)2 + 2ακ(x)

)
ds(x) =

∫ 1

0

(
κ(x)2 + 2ακ(x)

)√
1 + u′(x)2 dx,

with u ∈ H2(0, 1) ∩ H1
0 (0, 1); see [4, section 2]. The boundary conditions u(0) =

u(1) = 0 are formulated by working in the space H1
0 , while the curvature boundary

conditions κ(0) = κ(1) = −α arise as natural boundary conditions since also the
admissible testing functions have only to be in H2 ∩H1

0 . By reflection it is sufficient
to consider

α ≥ 0.

Our first results are concerned with solutions of (1.1) which are symmetric about
x = 1/2. This class is particularly important for two reasons: on the one hand, it is
possible to associate with each function in H2 ∩ H1

0 a symmetric function with the
same or smaller Willmore energy. The corresponding construction is nontrivial and
will be described in the proof of Theorem 1.5. Moreover, exploiting an observation
due to Euler [6, p. 234, line 13], we can give symmetric solutions more or less in
closed form. This issue was discussed in detail in [4], where, among other things, the
following result was proved.

Proposition 1.1 (see [4, Theorem 1]). There exists αmax = 1.343799725 . . .
such that for 0 < α < αmax, the Navier boundary value problem (1.1) has precisely
two smooth (graph) solutions u in the class of smooth functions that are symmetric
around x = 1

2 . If α = αmax, one has precisely one such solution, for α = 0 one has
only the trivial solution, and for α > αmax no such solutions exist.

Both solutions are positive, and one of these solutions is larger than the other.
The small solutions are ordered with respect to α, while the large ones become smaller
for increasing α; see Figure 1.1. For the bifurcation diagram, see Figure 1.2.
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Fig. 1.1. Solutions of the Navier boundary value problem (1.1) for α = 0.2, α = 1, and α = 1.34
(left to right). See [4, Figure 1].

It is an obvious conjecture that for 0 ≤ α < αmax the small solutions are (linear-
ized) stable. This property was left open in [4], and to prove it is the first goal of this
paper.

Theorem 1.2. Assume that 0 ≤ α < αmax and that u is the symmetric small
solution of the Navier boundary value problem (1.1). Then, this solution is linear-
ized stable; i.e., the spectrum of the (self-adjoint) linearization of (1.1) around u is
contained in (0,∞).

That these linearizations are the second variation of the functional W̃α proves
that the small solution is a local minimum of the functional W̃α in H2 ∩ H1

0 (0, 1).
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Fig. 1.2. Bifurcation diagram for (1.1): The extremals value of the solution u(1/2) (left) and
of the derivative u′(0) (right) plotted over α. See [4, Figure 2].

Furthermore, we will show that on 0 < α < αmax, the large solutions are unstable.
More precisely, we prove that the following holds.

Theorem 1.3. Assume that 0 < α < αmax and that u is the symmetric large
solution of the Navier boundary value problem (1.1). Then, this solution is unstable
and has Morse index 1; i.e., one eigenvalue of the (self-adjoint) linearization of (1.1)
is negative, while the remaining spectrum is contained in (0,∞).

We emphasize that no symmetry assumptions are made in the discussion of the
linearizations of (1.1).

A further important question is whether the small solutions are not only a local
but also a global minimum of the functional W̃α.

Theorem 1.4. There exists α∗ = 1.132372323 . . . ∈ (0, αmax) such that for
0 ≤ α ≤ α∗ the small solution u is the unique global minimum of the functional W̃α

in the class H2 ∩H1
0 (0, 1). If α∗ < α ≤ αmax, the infimum of W̃α in H2 ∩H1

0 (0, 1) is
not attained, and in that case

inf
v∈H2∩H1

0 (0,1)
W̃α(v) =

(∫
R

1

(1 + τ2)5/4
dτ

)2

− 2απ.

The main idea of proving Theorem 1.4 consists in reducing the minimization of W̃α

over H2∩H1
0 (0, 1) to the minimization of a function of two variables. As a byproduct

of this approach we shall see that the infimum of the Willmore energy in H2∩H1
0 (0, 1)

coincides with the infimum in the subspace M of functions that are symmetric about
x = 1/2; i.e., for every function in H2 ∩H1

0 (0, 1), there exists a symmetric function
with the same or smaller Willmore energy. This is remarkable since we deal with a
fourth order problem and the well-known symmetrization procedures do not apply.

Theorem 1.5. Let M be the class of functions in H2 ∩ H1
0 (0, 1), which are

symmetric about x = 1/2. Then we have

inf
v∈H2∩H1

0 (0,1)
W̃α(v) = inf

v∈M
W̃α(v).

2. Linearized stability. To prove Theorem 1.2 we describe in more detail how
the symmetric solutions to (1.1) were obtained in [4].
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In what follows, the function

G : R →
(
−c0

2
,
c0
2

)
, G(s) :=

∫ s

0

1

(1 + τ2)5/4
dτ,(2.1)

c0 =
∫

R

1

(1 + τ2)5/4
dτ = B

(
1
2
,

3
4

)
= 2.396280469 . . . ,

plays a crucial role. It is straightforward to see that G is strictly increasing and
bijective with G′(s) > 0. So, also the inverse function

(2.2) G−1 :
(
−c0

2
,
c0
2

)
→ R

is strictly increasing, bijective, and smooth with G−1(0) = 0.
Lemma 2.1 (see [4, Lemma 4]). Let u ∈ C4([0, 1]) be a function symmetric about

x = 1/2. Then u solves the Willmore equation in (1.1) iff there exists c ∈ (−c0, c0)
such that

(2.3) ∀x ∈ [0, 1] : u′(x) = G−1
( c

2
− cx

)
.

For the curvature, one has that

(2.4) κ(x) = − c

4

√
1 +G−1

(
c
2 − cx

)2 .
Moreover, if we additionally assume that u(0) = u(1) = 0, then one has

(2.5) u(x) =
2

c 4

√
1 +G−1

(
c
2 − cx

)2 − 2

c 4

√
1 +G−1

(
c
2

)2 (c 
= 0).

In order to solve the Navier boundary value problem (1.1), in [4], we had to study
the function

(2.6) h : (−c0, c0) → R, h(c) =
c

4

√
1 +G−1

(
c
2

)2
and the equation h(c) = α. See Figure 2.1. The range of h is precisely the set of α,
for which the Navier boundary value problem (1.1) has a smooth symmetric graph
solution. The number of solutions c of the equation α = h(c) is the number of such
solutions of the boundary value problem.

Lemma 2.2 (see [4, Lemma 6]). We have h > 0 in (0, c0), h < 0 in (−c0, 0),
limc↗c0 h(c) = limc↘−c0 h(c) = 0. The function h is odd and has precisely one local
maximum in cmax = 1.840428142 . . . and one local minimum in cmin = −cmax. The
corresponding value is αmax = h(cmax) = 1.343799725 . . . .

The small solutions correspond precisely to c ∈ (0, cmax) and the large ones to
c ∈ (cmax, c0). Let us fix c ∈ (0, c0) with corresponding α = h(c) and solution u given
by (2.5). First we have to calculate the linearization of (1.1) around u, i.e., the second
variation of the modified Willmore functional W̃α in u.
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Fig. 2.1. The function c �→ h(c). According to [4, Lemma 4], solutions to (1.1) are given by
solving h(c) = α.

Lemma 2.3. We have

D2W̃α(u)(ϕ, η) = 2
∫ 1

0

ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx+ 5
∫ 1

0

1 − u′(x)2

(1 + u′(x)2)3/2
κ(x)2ϕ′(x)η′(x) dx

+ 6α
[
u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

, ϕ, η ∈ H2 ∩H1
0 (0, 1).

Proof. According to [4, Lemma 2 and Corollary 1], the first variation of W̃α(u) is
given by

DW̃α(u)(ϕ) = 2
∫ 1

0

u′′(x)ϕ′′(x)
(1 + u′(x)2)5/2

dx − 5
∫ 1

0

u′(x)u′′(x)2ϕ′(x)
(1 + u′(x)2)7/2

dx

+ 2α
[

ϕ′(x)
1 + u′(x)2

]1
0

, ϕ ∈ H2 ∩H1
0 (0, 1).

In order to obtain the second derivative, we also consider η ∈ H2 ∩ H1
0 (0, 1) and

differentiate the previous expression with respect to this direction:

D2W̃α(u)(ϕ, η) =
d

dt
DW̃α(u+ tη)(ϕ)|t=0

= 2
∫ 1

0

ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx− 10
∫ 1

0

u′(x)u′′(x)ϕ′′(x)η′(x)
(1 + u′(x)2)7/2

dx

− 10
∫ 1

0

u′(x)u′′(x)ϕ′(x)η′′(x)
(1 + u′(x)2)7/2

dx− 5
∫ 1

0

u′′(x)2ϕ′(x)η′(x)
(1 + u′(x)2)7/2

dx

+ 35
∫ 1

0

u′(x)2u′′(x)2ϕ′(x)η′(x)
(1 + u′(x)2)9/2

dx− 4α
[
u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

= 2
∫ 1

0

ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx− 5
∫ 1

0

κ(x)2ϕ′(x)η′(x)√
1 + u′(x)2

dx

− 10
∫ 1

0

κ(x) · u′(x)√
1 + u′(x)2

· 1
(1 + u′(x)2)3/2

· d
dx

(ϕ′(x)η′(x)) dx

+ 35
∫ 1

0

u′(x)2κ(x)2ϕ′(x)η′(x)
(1 + u′(x)2)3/2

dx− 4α
[
u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

.

To proceed further we would like to integrate the third term by parts. Here we will
exploit that u is a solution to (1.1). In particular, u is smooth and satisfies the Navier
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boundary data κ(x) = −α, x ∈ {0, 1}.

D2W̃α(u)(ϕ, η) = 2
∫ 1

0

ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx− 5
∫ 1

0

κ(x)2ϕ′(x)η′(x)√
1 + u′(x)2

dx

+ 35
∫ 1

0

u′(x)2κ(x)2ϕ′(x)η′(x)
(1 + u′(x)2)3/2

dx− 4α
[
u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

− 10
[
κ(x)

u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

+ 10
∫ 1

0

κ′(x)u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

dx

+ 10
∫ 1

0

κ(x)2ϕ′(x)η′(x)
(1 + u′(x)2)3/2

dx− 30
∫ 1

0

κ(x)u′(x)2u′′(x)ϕ′(x)η′(x)
(1 + u′(x)2)3

dx

= 2
∫ 1

0

ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx− 5
∫ 1

0

κ(x)2ϕ′(x)η′(x)√
1 + u′(x)2

dx

+ 5
∫ 1

0

u′(x)2κ(x)2ϕ′(x)η′(x)
(1 + u′(x)2)3/2

dx+ 6α
[
u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

+ 10
∫ 1

0

κ′(x)u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

dx + 10
∫ 1

0

κ(x)2ϕ′(x)η′(x)
(1 + u′(x)2)3/2

dx.

We infer from (2.3) and (2.4) that

∀x ∈ [0, 1], κ(x)
(
1 + u′(x)2

)1/4
= −c,

and hence

∀x ∈ [0, 1], κ′(x)
(
1 + u′(x)2

)1/4
+

1
2
u′(x)κ(x)2

(
1 + u′(x)2

)3/4
= 0.

Consequently,

D2W̃α(u)(ϕ, η) = 2
∫ 1

0

ϕ′′(x)η′′(x)
(1 + u′(x)2)5/2

dx− 5
∫ 1

0

κ(x)2ϕ′(x)η′(x)√
1 + u′(x)2

dx

+ 6α
[
u′(x)ϕ′(x)η′(x)
(1 + u′(x)2)2

]1
0

+ 10
∫ 1

0

κ(x)2ϕ′(x)η′(x)
(1 + u′(x)2)3/2

dx.

This proves our claim.
Looking at η ∈ H2(0, 1) ∩H1

0 (0, 1) as a test function, we now obtain the linear-
ization from the second variation with the help of integration by parts. Note that the
first integral gives rise to a further boundary term 2

[ ϕ′′(x)η′(x)

(1+u′(x)2)5/2

]1
0
. Expressing u and

α in terms of c according to Lemmas 2.1 and 2.2, the linearization of (1.1) around u
reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
ϕ′′(x)(

1+G−1( c
2−cx)2

)5/2

)′′

+ 5
2c

2

(
G−1( c

2−cx)2−1(
1+G−1( c

2−cx)2
)2ϕ

′(x)

)′

= 0, x ∈ (0, 1),

ϕ(0) = ϕ(1) = 0,
ϕ′′(0)(

1+G−1( c
2 )2

)5/2 + 3
c G−1( c

2 )ϕ′(0)(
1+G−1( c

2 )2
)9/4 = 0, ϕ′′(1)(

1+G−1( c
2 )2

)5/2 − 3
c G−1( c

2 )ϕ′(1)(
1+G−1( c

2 )2
)9/4 = 0.

(2.7)
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For c = 0, the small solution of (1.1) is u(x) ≡ 0, and D2W̃0(u)(ϕ,ϕ) =
∫ 1

0 ϕ
′′(x)2 dx

is positive definite in H2 ∩H1
0 (0, 1) with respect to the L2(0, 1)-norm. The spectrum

of the linearization as a regular elliptic operator on a bounded interval together with
suitable boundary conditions consists only of eigenvalues. Since these eigenvalues
depend smoothly on u and u depends smoothly on c, D2W̃α(u)(ϕ,ϕ) remains positive
definite for c increasing from 0 as long as (2.7) has only the trivial solution ϕ(x) ≡ 0.

We assume that (2.7) has a solution ϕ and put

χ(x) := ϕ′(x).

Then, there exists a constant A ∈ R such that χ solves the second order differential
equation⎛⎜⎝ χ′(x)(

1 +G−1
(

c
2 − cx

)2)5/2

⎞⎟⎠
′

+
5
2
c2

⎛⎜⎝ G−1
(

c
2 − cx

)2 − 1(
1 +G−1

(
c
2 − cx

)2)2χ

⎞⎟⎠ = c2A.

We introduce more suitable variables,

y = G−1
( c

2
− cx

)
∈
[
−G−1

( c
2

)
, G−1

( c
2

)]
, x =

1
2
− G(y)

c
,

ψ(y) := χ(x) = χ

(
1
2
− G(y)

c

)
, χ(x) = ψ

(
G−1

( c
2
− cx

))
,

χ′(x) = −c
(

1 +G−1
( c

2
− cx

)2
)5/4

ψ′
(
G−1

( c
2
− cx

))
,

and conclude that ψ solves the following boundary value problem:

(2.8)

⎧⎨⎩ ψ′′(y) − 5y
2(1+y2)ψ

′(y) + 5(y2−1)
2(1+y2)2ψ(y) = A, y ∈ (−y0, y0),

ψ′(−y0) + 3y0

1+y2
0
ψ(−y0) = 0, ψ′(y0) − 3y0

1+y2
0
ψ(y0) = 0.

Here, we denote

(2.9) y0 := G−1
( c

2

)
.

To simplify the boundary conditions we make a last change of variables and put

(2.10) Φ(y) :=
ψ(y)

(1 + y2)3/2
, y ∈ [−y0, y0],

and finally consider the following boundary value problem:

(2.11)

⎧⎪⎨⎪⎩
(1 + y2)3/2Φ′′(y) + 7

2y(1 + y2)1/2Φ′(y)

+
(
y2 + 1

2

)
(1 + y2)−1/2Φ(y) = A, y ∈ (−y0, y0),

Φ′(−y0) = Φ′(y0) = 0.

We recall the definition of G(y) :=
∫ y

0
1

(1+τ2)5/4 dτ and put

(2.12) Φ0(y) := −2
1√

1 + y2
, Φ1(y) :=

1
4
√

1 + y2
, Φ2(y) :=

G(y)
4
√

1 + y2
.
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Then, one directly verifies that the general solution of the differential equation in
(2.11) is given by

(2.13) Φ(y) := A · Φ0(y) + γ1 · Φ1(y) + γ2 · Φ2(y)

with γ1, γ2 ∈ R. Since A ·Φ0(y)+γ1 ·Φ1(y) is even and γ2 ·Φ2(y) is odd, the boundary
conditions in (2.11) are equivalent to

(2.14) A · Φ′
0(y0) + γ1 · Φ′

1(y0) = 0 and γ2 · Φ′
2(y0) = 0,

which in turn are equivalent to

(2.15) γ1 =
4A

4
√

1 + y2
0

and (γ2 = 0 or Φ′
2(y0) = 0) .

A beautiful coincidence between these solutions and the functions involved in the
proof of Theorem 1.1 can be observed, namely,

(2.16) Φ2(y) =
1
2
h(2G(y)), Φ′

2(y) =
h′(2G(y))

(1 + y2)5/4
.

With the help of these observations we are now ready to conclude the following lemma.
Lemma 2.4. For c ∈ [0, c0) \ {cmax}, the boundary value problem (2.7) has only

the trivial solution ϕ(x) ≡ 0. For c = cmax, it has a one-dimensional null space which
is spanned by

ϕ(x) =
1
c

∫ G−1( c
2 )

G−1( c
2−cx)

G(η) dη.

If c = cmax, α = αmax, instabilities will occur first from the corresponding solution
u in direction of this function ϕ; see Figure 2.2.

0,2
0

0,40

0,5

0,4

0,1

0,8 1

0,2

0,6

0,3

Fig. 2.2. Profile of the unstable direction in c = cmax.

Proof. The case c = 0 is obvious, and we consider only c ∈ (0, c0). We denote

Φ̃1(y) := Φ0(y) +
4

4
√

1 + y2
0

· Φ1(y) =
2

4
√

1 + y2 · 4
√

1 + y2
0

(
2 −

4
√

1 + y2
0

4
√

1 + y2

)
.

According to (2.13), we have to study

Φ(y) = AΦ̃1(y) + γ2Φ2(y)
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with some suitable A, γ2 ∈ R. Let ϕ be the corresponding solution of (2.7) which is
obtained from Φ by tracing back the changes of variables and integrating χ. We want
to show first that necessarily A = 0 for any c ∈ [0, c0):

0 = ϕ(1) − ϕ(0) =
∫ 1

0

χ(x) dx =
∫ 1

0

ψ
(
G−1

( c
2
− cx

))
dx

=
1
c

∫ G−1( c
2 )

−G−1( c
2 )
ψ(y)(1 + y2)−5/4 dy =

1
c

∫ G−1( c
2 )

−G−1( c
2 )

Φ(y)(1 + y2)1/4 dy

=
A

c

∫ G−1( c
2 )

−G−1( c
2 )

Φ̃1(y)(1 + y2)1/4 dy +
γ2

c

∫ G−1( c
2 )

−G−1( c
2 )

Φ2(y)(1 + y2)1/4 dy

=
A

c

∫ G−1( c
2 )

−G−1( c
2 )

Φ̃1(y)(1 + y2)1/4 dy

since Φ2 is odd. Hence we may conclude that

0 =
A

c

∫ G−1( c
2 )

−G−1( c
2 )

Φ̃1(y)(1 + y2)1/4 dy

=
2A
c

∫ G−1( c
2 )

−G−1( c
2 )

⎛⎜⎝ 2(
1 +G−1

(
c
2

)2)1/4
− 1

(1 + y2)1/4

⎞⎟⎠ dy

=
4A
c
F
(
G−1

( c
2

))
,

where F is defined by

F (η) :=
2η

(1 + η2)1/4
−
∫ η

0

1
(1 + s2)1/4

ds.

Since F (0) = 0 and

F ′(η) =
2

(1 + η2)1/4
− η2

(1 + η2)5/4
− 1

(1 + η2)1/4

=
1

(1 + η2)1/4
− η2

(1 + η2)5/4
=

1
(1 + η2)5/4

> 0,

we have

F
(
G−1

( c
2

))
> 0.

As a consequence, A = 0, and hence γ1 = 0 by (2.15), and we are left with considering
γ2Φ2. We have that h′(c) > 0 for c ∈ (0, cmax) and h′(c) < 0 for c ∈ (cmax, c0). By
making use of

Φ′
2(y) =

h′(2G(y))

(1 + y2)5/4

and the boundary condition γ2Φ′
2(G−1(c/2)) = 0, we conclude that γ2 = 0 provided

c ∈ (0, c0) \ {cmax}. If c = cmax, then Φ2 is a nontrivial solution of (2.11). For the
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corresponding nontrivial solution ϕ of (2.7) we derive

ϕ(x) = γ2
cmax

2

∫ x

0

(
1 +G−1

(cmax

2
− cmaxξ

)2
)5/4

(1 − 2ξ) dξ

=
γ2

cmax

∫ G−1( cmax
2 )

G−1( cmax
2 −cmaxx)

G(η) dη,

where we made use of the boundary conditions ϕ(0) = ϕ(1) = 0.
Proof of Theorem 1.2. The proof is now immediate. By the preceding lemma we

have that on [0, cmax), 0 is not an eigenvalue of (2.7). Since D2W̃0(u)(ϕ,ϕ) is positive
definite in H2 ∩H1

0 (0, 1) with respect to the L2(0, 1)-norm, by continuity, the same
holds true for D2W̃α(u)(ϕ,ϕ) for c ∈ [0, cmax), which is the stated linearized stability
of the corresponding small solutions of (1.1).

As an immediate consequence of Theorem 1.2 we obtain a global existence result
for the geometric flow associated with (1.1), namely,

V = −κss −
1
2
κ3 on Γ(t).

Here, V denotes the upward normal velocity of the evolving graphs

Γ(t) = {(x, v(x, t)) | x ∈ [0, 1]}.

The above evolution law then leads to the parabolic initial-boundary value problem
(2.18) below. The principle of linearized stability as it was proved in great generality
by Latushkin, Prüss, and Schnaubelt [11, Proposition 16] can be applied to our situa-
tion and allows us to obtain global existence and asymptotic stability for initial data
close to a small solution to (1.1).

Corollary 2.5. Assume that c ∈ [0, cmax), and let α = h(c) = c
4
√

1+G−1( c
2 )2

and

(2.17) u(x) =
2

c
4

√
1 +G−1

(
c
2 − cx

)2 − 2

c
4

√
1 +G−1

(
c
2

)2
be the corresponding small solution of (1.1). We fix some p > 5. Then, there exist
δ, ρ, C > 0 such that for v0 ∈ W 4,p(0, 1) with v0(0) = v0(1) = 0, κv0(0) = κv0(1) =
−α, and

‖v0 − u‖W 4,p(0,1) ≤ δ,

there exists a global solution v ∈ Lp(0,∞,W 4,p(0, 1)) ∩ W 1,p(0,∞, Lp(0, 1)) of the
initial Navier boundary value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt(t,x)√

1+vx(t,x)2
+ 1√

1+vx(t,x)2
d
dx

(
κv,x(t,x)√
1+vx(t,x)2

)
+ 1

2κ
3
v(t, x) = 0, (t, x) ∈ [0,∞) × [0, 1],

v(t, 0) = v(t, 1) = 0, κv(t, 0) = κv(t, 1) = −α, t ∈ [0,∞),
v(0, x) = v0(x), x ∈ [0, 1].

(2.18)

One has exponential convergence toward the steady state u:

(2.19) ‖v(t, . ) − u( . )‖W 4,p(0,1) ≤ C exp(−ρt) (t ≥ 1).
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With similar but simpler techniques and calculations one finds that the unique
solution (cf. [4, Theorem 2]), being symmetric about x = 1/2 of the Dirichlet problem

(2.20)

⎧⎨⎩ 1√
1+ux(x)2

d
dx

(
κx(x)√

1+ux(x)2

)
+ 1

2κ
3(t, x) = 0, x ∈ [0, 1],

u(0) = u(1) = 0, ux(0) = −ux(1) = β,

β ∈ R, is (linearized) stable. Analogously, a global existence result follows for the
initial Dirichlet boundary value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt(t,x)√

1+vx(t,x)2
+ 1√

1+vx(t,x)2
d
dx

(
κv,x(t,x)√
1+vx(t,x)2

)
+ 1

2κ
3
v(t, x) = 0, (t, x) ∈ [0,∞) × [0, 1],

v(t, 0) = v(t, 1) = 0, vx(t, 0) = −vx(t, 1) = β, t ∈ [0,∞),
v(0, x) = v0(x), x ∈ [0, 1],

(2.21)

provided the initial datum v0 obeys the same boundary data and is sufficiently close
to the stationary solution u of (2.20) with respect to the W 4,p-norm (p > 5).

3. Morse index of the large solution. For c ∈ (0, c0) we consider as in (2.5)

uc(x) =
2

c
4

√
1 +G−1

(
c
2 − cx

)2 − 2

c
4

√
1 +G−1

(
c
2

)2 .
In order to prove Theorem 1.3, we have to show that exactly one eigenvalue of the
quadratic form

ϕ 
→ D2W̃α(uc)(ϕ,ϕ), α = h(c),

passes through 0 when c passes through cmax and that for c ∈ (cmax, c0), 0 is not an
eigenvalue of D2W̃α(uc), i.e., of (2.7). The latter was already done in Lemma 2.4.
Moreover, its proof yields that there is at most one eigenvalue, which crosses 0 in
c = cmax. It remains to show that for c > cmax and suitable ϕ ∈ H2 ∩ H1

0 (0, 1),
one indeed has D2W̃α(uc)(ϕ,ϕ) < 0. Making use of the same transformations and
notations of section 2 and restricting ourselves to symmetric ϕ, we find

D2W̃α(uc)(ϕ,ϕ) = 2
∫ 1

0

χ′(x)2(
1 +G−1

(
c
2 − cx

)2)5/2
dx

− 5c2
∫ 1

0

G−1
(

c
2 − cx

)2 − 1(
1 +G−1

(
c
2 − cx

)2)2 χ(x)2 dx− 12h(c)
G−1

(
c
2

)(
1 +G−1

(
c
2

)2)2χ(1)2

= 2c
∫ G−1( c

2 )

−G−1( c
2 )

ψ′(y)2

(1 + y2)5/4
dy − 5c

∫ G−1( c
2 )

−G−1( c
2 )

(y2 − 1)
(1 + y2)13/4

ψ(y)2 dy

− 12
cG−1

(
c
2

)(
1 +G−1

(
c
2

)2)9/4
ψ
(
G−1

( c
2

))2

.

We choose

ψc(y) := (1 + y2)3/2Φ2(y) = (1 + y2)5/4G(y)
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and obtain for the corresponding ϕc ∈ H2 ∩H1
0 (0, 1)

1
4c
D2W̃α(uc)(ϕc, ϕc)

=
∫ G−1( c

2 )

0

((
(1 + y2)−1/4 +

5
2
yG(y)

)2

− 5
2

(y2 − 1)G(y)2
)

dy

(1 + y2)3/4

− 3
4
c2G−1

( c
2

)(
1 +G−1

( c
2

)2
)1/4

.(3.1)

According to Theorem 1.2, we know that this expression is equal to 0 for c = cmax.
Writing c = 2G(d), we see that the asymptotic behavior of the right-hand side is
dominated by

c20
4

(
25
4

· 2
3
− 5

2
· 2

3
− 3
)
d3/2 = −c

2
0

8
d3/2 → −∞

for d→ ∞, i.e., c↗ c0. This shows, together with Lemma 2.4, that D2W̃α(uc)(ϕc, ϕc)
< 0 for c ∈ (cmax, c0) and concludes the proof of Theorem 1.3.

The right-hand side of (3.1) is plotted in Figure 3.1. Since ϕc → 0 for c↘ 0, the
curve starts in (0, 0), although there, D2W̃α(u0) is positive definite.

-0,5

0,5

0

-1

-1,5

1 1,5

-2

20,50

Fig. 3.1. c �→ 1
4c
D2W̃α(uc)(ϕc, ϕc).

4. Global minima and symmetry. The aim of this section is to examine
whether the small solutions which were found to be local minima in section 2 are also
global minima for the functional W̃α. In what follows it will be convenient to write

W̃α(v) =
∫ 1

0

(
κ(x)2 + 2ακ(x)

)√
1 + v′(x)2 dx,

=
∫ 1

0

κ(x)2
√

1 + v′(x)2 dx+ 2α [arctan(v′(x))]10 =: W (v) +BCα(v).

We remark that all quantities are geometric and so are invariant under rotation.
Moreover, when stretching a curve by a factor k, W is multiplied by a factor 1/k
while BCα remains unchanged.
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We shall see that the task of minimizing W̃α can be reduced to a minimization
problem for a function of two variables. As a byproduct of the analysis of this function
we find that in order to determine infv∈H2∩H1

0
W̃α(v) it is sufficient to minimize over

all symmetric functions. The reduction to a two-dimensional problem is achieved in
two steps. We begin by showing that it is enough to consider concave functions.

Lemma 4.1. Suppose that u ∈ H2 ∩H1
0 (0, 1) is not concave. Then there exists a

concave function v ∈ H2 ∩H1
0 (0, 1) with W̃α(v) < W̃α(u).

Proof. It is natural to think of v as the concave envelope of u, so that we are led
to consider the following obstacle problem: find v ∈ K such that

(4.1) ∀η ∈ K,

∫ 1

0

v′(η′ − v′) ≥ 0,

where K = {η ∈ H1
0 (0, 1) | η ≥ u a.e. in (0, 1)}. It is shown in Chapter IV of [7] that

v can be obtained as the limit of a sequence (vε)ε>0, where vε ∈ H2 ∩H1
0 (0, 1) solves

(4.2) −v′′ε = (−u′′)+ ϑε(vε − u) in (0, 1).

Here, ϑε : R → R satisfies

ϑε(t) =

⎧⎨⎩
1, t < 0,
1 − t

ε , 0 ≤ t ≤ ε,
0, t > ε.

It follows from the analysis in [7] that vε → v in H1(0, 1) and v′′ε ⇀ v′′ in L2(0, 1) as
ε→ 0, so that v ∈ H2 ∩H1

0 (0, 1) and v′′ ≤ 0 a.e. in (0, 1); in particular, v is concave.
Denoting by I = {x ∈ [0, 1] | v(x) = u(x)} the coincidence set, we have that v′′ = 0
a.e. in [0, 1] \ I. Furthermore, using (4.2)

W (v) =
∫ 1

0

|v′′|2

(1 + (v′)2)
5
2

=
∫

I

|v′′|2

(1 + (u′)2)
5
2

≤ lim inf
ε→0

∫
I

|v′′ε |2

(1 + (u′)2)
5
2

≤
∫

I

|(−u′′)+|2

(1 + (u′)2)
5
2

≤
∫ 1

0

|(−u′′)+|2

(1 + (u′)2)
5
2

≤
∫ 1

0

|u′′|2

(1 + (u′)2)
5
2

= W (u).

If we had W (v) = W (u), then the above argument would imply that (−u′′)− = 0
a.e. in (0, 1) and therefore u′′ ≤ 0 a.e. in (0, 1), contradicting our assumption that u
is not concave. Hence W (v) < W (u); since v ≥ u we have that u′(0) ≤ v′(0) and
u′(1) ≥ v′(1), and therefore W̃α(v) < W̃α(u).

In what follows we shall make use of the prototype solution

(4.3) U0(x) =
2

c0
4

√
1 +G−1

(
c0

2 − c0x
)2 .

Formally, it is the large solution of the Navier boundary value problem (1.1) for α = 0.
However, one should observe that this solution is no longer smooth as a graph near
x = 0 and x = 1, and for this reason, it was not included in Proposition 1.1.

Suppose that 0 ≤ x0 < x1 ≤ 1 are two points with x1 − x0 < 1. Then U0|[x0,x1]

can be written as a graph over the segment connecting (x0, U0(x0)) and (x1, U0(x1)).
We denote by ux0,x1 : [0, 1] → R the strictly concave function which is obtained by
translating, rotating, and rescaling the above graph to the unit interval [0, 1]. Note
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that ux0,x1 ∈ H2 ∩H1
0 (0, 1). Our next lemma essentially reduces the minimization of

W̃α to a two-dimensional minimization problem.
Lemma 4.2. Suppose that u ∈ H2 ∩H1

0 (0, 1) \ {0} is concave. Then there exist
0 ≤ x0 < x1 ≤ 1, x1 − x0 < 1 such that v = ux0,x1 satisfies BCα(u) = BCα(v) and
either W (v) ≤W (u), u′(0) = v′(0), or W (v) < W (u), u′(0) 
= v′(0).

Proof. Let us denote by β� and βr the boundary angles of graph(u) on the left
and on the right, respectively. Since u is assumed to be concave and nontrivial we
have β�, βr ∈ (0, π

2 ). Consider

K := graph(U0) ∪ {(0, y) : y ≤ 0} ∪ {(1, y) : y ≤ 0}.

1,210,80,60,40,20-0,2

1

0,5

0

-0,5

-1

Fig. 4.1. Left angle β�; right angle π/2.

This is neither a graph nor a solution of the Willmore equation. However, it is a
regular H2-curve, locally an H2-graph over the x- or the y-axis, respectively, and it
has minimal Willmore energy c20 among all concave curves connecting any point from
{(0, y) : y ≤ 0} with any point from {(1, y) : y ≤ 0} with tangential directions (0, 1)
and (0,−1), respectively. This minimality follows similarly as in [4, end of section 5].

Claim. There exist two points P = (xP , yP ), Q = (xQ, yQ) ∈ K, P 
= Q, such
that the segment [P,Q] intersects K under the angles β� at P and βr at Q.

To see this, we start with the point (x1, y1) = (1, 0) and the orthogonal straight
line through this point. This line intersects the left part of K in (x0, y0) under a right
angle. Now we move the point (x1, y1) and the corresponding orthogonal straight line
counterclockwise. The corresponding (x0, y0) finally moves down, and the intersection
angle (at least finally) decreases and becomes arbitrarily small. In particular, the left
angle β� is attained. See Figure 4.1. Now we keep this angle fixed and move the point
(x0, y0) clockwise. We consider (x1, y1) on the right part of K as an intersection point
with the straight line building the angle β� with K in (x0, y0). At the beginning this
right angle is π/2, while it becomes arbitrarily small when (x0, y0) moves clockwise.
In particular, βr is attained as the angle on the right and the claim is proved.
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In view of the above-mentioned minimality property of K, K′ enjoys a similar
minimality among those arcs with boundary angles β�, βr. We infer that

(4.4) W (K′) ≤ 1
|P −Q|W (u),

where K′ denotes the subarc of K between P and Q. Observing that by construction
yP and yQ cannot both be negative, we may distinguish two cases.

Case 1. yP ≥ 0 and yQ ≥ 0. Setting x0 = xP , x1 = xQ, we have x1 − x0 < 1
since β�, βr ∈ (0, π

2 ). The function v = ux0,x1 then satisfies

W (v) = |P −Q|W (K′) ≤W (u)

as well as v′(0) = u′(0) and v′(1) = u′(1).
Case 2. Either yP < 0 or yQ < 0. If yP < 0, then yQ > 0 since βr <

π
2 , and we

let x0 = 0, x1 = xQ, and v = ux0,x1 . Denoting by L(x0, x1) the length of the segment
connecting (x0, U0(x0)) and (x1, U0(x1)), we have

W (v) = L(x0, x1)W (K′) ≤ L(x0, x1)
|P −Q| W (u) < W (u)

since u 
= 0 and by construction any point on graph(U0) is strictly closer to (0, 0) than
to any other point on {(0, y) | y < 0}. A similar argument applies if yQ < 0. Finally
note that while BCα(u) = BCα(v), we have u′(0) 
= v′(0) in this case.

We deduce from Lemmas 4.1 and 4.2 that when determining inf W̃α over H2 ∩
H1

0 (0, 1) it is sufficient to calculate the Willmore energy for functions v = ux0,x1 with
0 ≤ x0 < x1 ≤ 1 and x1−x0 < 1. The integrand for W on [x0, x1] is c20, so the integral
is c20 · (x1−x0). The length of the base line is

(
(x1−x0)2 +(U0(x1)−U0(x0))2

)1/2. As
for BCα, we have 2α(arctan(U ′

0(x1)) − arctan(U ′
0(x0))). After rotation and rescaling

we come up with

W̃α(ux0,x1) = c20 · (x1 − x0)
(
(x1 − x0)2 + (U0(x1) − U0(x0))2

)1/2

+ 2α(arctan(U ′
0(x1)) − arctan(U ′

0(x0)))

= c20 · (x1 − x0)

·

⎛⎝(x1 − x0)2 +
4
c20

(
1

4
√

1 +G−1(c0/2 − c0x1)2
− 1

4
√

1 +G−1(c0/2 − c0x0)2

)2
⎞⎠1/2

+ 2α(arctan(G−1(c0/2 − c0x1)) − arctan(G−1(c0/2 − c0x0))).

We now introduce the new variables

(4.5) d0 := G−1(c0/2 − c0x0), d1 := −G−1(c0/2 − c0x1), d1 > −d0,

so that

x0 =
1
2
− 1
c0
G(d0), x1 =

1
2

+
1
c0
G(d1).

Defining

Ŵα(d0, d1) := W̃α(ux0,x1)
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(see Figure 4.2), we end up with

Ŵα(d0, d1)

= (G(d0) +G(d1))
(

(G(d0) +G(d1))2 + 4((1 + d2
0)−1/4 − (1 + d2

1)−1/4)2
)1/2

− 2α(arctan(d0) + arctan(d1)).

The following result summarizes what we have achieved so far.
Theorem 4.3. Let α ≥ 0. Then

inf
v∈H2∩H1

0 (0,1)
W̃α(v) = inf

(d0,d1)∈R2, d1≥−d0

Ŵα(d0, d1).

Let us remark that ideas similar to those employed to obtain Theorem 4.3 were
used in [2] in order to prove an existence result for axially symmetric Willmore sur-
faces satisfying Dirichlet boundary conditions. The corresponding Navier problem,
however, is still open.

141210 8

x
6 4 2 0-15-10-5

y

051015

-1

-0,8

-0,6

-0,4

-0,2

0

Fig. 4.2. Cross section of the graph of Ŵ1 along the axis d0 = d1.

It remains to discuss the two-dimensional function Ŵα(d0, d1), (d1 ≥ −d0). Here,
the key step is proving positivity for the following expression.

Lemma 4.4. For d1 > −d0 we have that

(G(d0) +G(d1)) ·
(

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

)
− (G(d0) +G(d1))2

− 2

(
1

4
√

1 + d2
0

− 1
4
√

1 + d2
1

)2

> 0.

Proof. By the fundamental theorem of calculus and since G is odd, we have

G(d0) +G(d1) = G(d0) −G(−d1) =
∫ d0

−d1

1
(1 + τ2)5/4

dτ,

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

=
[

τ

(1 + τ2)1/4

]d0

−d1

=
∫ d0

−d1

1 + 1
2τ

2

(1 + τ2)5/4
dτ,



ONE-DIMENSIONAL WILLMORE EQUATION 2071

1
4
√

1 + d2
0

− 1
4
√

1 + d2
1

=
[

1
(1 + τ2)1/4

]d0

−d1

= −1
2

∫ d0

−d1

τ

(1 + τ2)5/4
dτ.

One may observe that d1 > −d0 is equivalent to −d1 < d0. The first two terms in the
expression under consideration combine as follows:

(G(d0) +G(d1)) ·
(

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

)
− (G(d0) +G(d1))2

=
1
2

(∫ d0

−d1

1
(1 + τ2)5/4

dτ

)
·
(∫ d0

−d1

τ2

(1 + τ2)5/4
dτ

)
.

We now apply the Cauchy–Schwarz inequality and make use of τ 
→ 1
(1+τ2)5/8 and

τ 
→ τ
(1+τ2)5/8 being linearly independent to obtain

2

(
1

4
√

1 + d2
0

− 1
4
√

1 + d2
1

)2

=
1
2

(∫ d0

−d1

τ

(1 + τ2)5/4
dτ

)2

<
1
2

(∫ d0

−d1

1
(1 + τ2)5/4

dτ

)
·
(∫ d0

−d1

τ2

(1 + τ2)5/4
dτ

)

= (G(d0) +G(d1)) ·
(

d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

)
− (G(d0) +G(d1))2 ,

thereby proving the claim.
Next we show that in the open interior of the domain of definition of the two-

dimensional energy function Ŵα, critical points may occur at most on the diagonal,
i.e., on symmetric graphs in the original context.

Lemma 4.5. Let α ≥ 0 and assume that

(d0, d1) 
→ Ŵα(d0, d1)

= (G(d0) +G(d1)) ·
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)1/2

− 2α (arctan(d0) + arctan(d1))

has a critical point (d0, d1) with d1 > −d0. Then

d0 = d1.

Proof. In a critical point of Ŵα, we have that

0 =
∂

∂d0
Ŵα(d0, d1)

=
1
2

(G(d0) +G(d1)) ·
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)−1/2

·
(

2(G(d0) +G(d1))(1 + d2
0)−5/4 − 4d0(1 + d2

0)−5/4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
))

+ (1 + d2
0)−5/4

(
(G(d0) +G(d1))2 + 4

(
(1 + d2

0)−1/4 − (1 + d2
1)−1/4

)2
)1/2

− 2α
1 + d2

0

;
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0 =
∂

∂d1
Ŵα(d0, d1)

=
1
2

(G(d0) +G(d1)) ·
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)−1/2

·
(

2(G(d0) +G(d1))(1 + d2
1)−5/4 + 4d1(1 + d2

1)−5/4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
))

+ (1 + d2
1)−5/4

(
(G(d0) +G(d1))2 + 4

(
(1 + d2

0)−1/4 − (1 + d2
1)−1/4

)2
)1/2

− 2α
1

1 + d2
1

.

(4.6)

Equivalently,

0 = (G(d0) +G(d1)) ·
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)−1/2

·
(

(G(d0) +G(d1))(1 + d2
0)−1/4 − 2d0(1 + d2

0)−1/4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
))

+ (1 + d2
0)−1/4

(
(G(d0) +G(d1))2 + 4

(
(1 + d2

0)−1/4 − (1 + d2
1)−1/4

)2
)1/2

− 2α;

0 = (G(d0) +G(d1)) ·
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)−1/2

·
(

(G(d0) +G(d1))(1 + d2
1)−1/4 + 2d1(1 + d2

1)−1/4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
))

+ (1 + d2
1)−1/4

(
(G(d0) +G(d1))2 + 4

(
(1 + d2

0)−1/4 − (1 + d2
1)−1/4

)2
)1/2

− 2α.

Subtracting both equations yields

0 =
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)

·
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)−1/2

·
{

(G(d0) +G(d1))2 − 2(G(d0) +G(d1))

(
d0

4
√

1 + d2
0

+
d1

4
√

1 + d2
1

)

+
(

(G(d0) +G(d1))2 + 4
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)2
)}

.

By Lemma 4.4, the curly bracket is strictly negative, since we assume that d1 > −d0.
We conclude that

0 =
(

(1 + d2
0)−1/4 − (1 + d2

1)−1/4
)
,

which yields that d0 = d1.
We are now in position to solve the two-dimensional minimization problem.
Proposition 4.6. Let 0 < α ≤ αmax. There exists α∗ = 1.132372323 . . . ∈

(0, αmax) such that
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inf
(d0,d1)∈R2, d1≥−d0

Ŵα(d0, d1) =

{
Ŵα(G−1( c

2 ), G−1( c
2 )), 0 < α ≤ α∗,

c20 − 2απ, α∗ < α ≤ αmax,

where c ∈ (0, cmax) solves h(c) = α. In the first case d0 = d1 = G−1( c
2 ) is the only

point for which the minimum is attained, while it is not attained for α∗ < α ≤ αmax.
Proof. In view of Lemma 4.5 and the symmetry of Ŵα,

inf
(d0,d1)∈R2, d1≥−d0

Ŵα(d0, d1)

is the minimum between

inf
d∈(0,∞)

Ŵα(d, d),(4.7)

inf
d∈R

Ŵα(d,−d) = 0,(4.8)

and

(4.9) inf
d∈R

Ŵα(d,∞).

Since

Ŵα(d, d) = 4G(d)2 − 4α arctan(d)

is certainly negative for d > 0 close to 0, we see that infd∈(0,∞) Ŵα(d, d) < 0, so we
need not consider (4.8). As for (4.9) we have

Ŵα(d,∞) =
(
G(d) +

c0
2

)
·
((

G(d) +
c0
2

)2

+ 4(1 + d2)−1/2

)1/2

− 2α
(

arctan(d) +
π

2

)
.

It is sufficient to discuss local mimima, since Ŵα(∞,∞) is already covered by (4.7)
and Ŵα(−∞,∞) = 0 by (4.8). Passing to the c = 2G(d)-variable, we see that Ŵα

attains its minimum on {(d0, d1) : d0 ∈ [−∞,∞], d1 ∈ [−d0,∞]}. For fixed d0 ∈ R,
we infer from (4.6) that for d1 large enough, ∂Ŵα

∂d1
> 0. This follows since the slowest

term 4d1(1 + d2
1)−5/4(1 + d2

0)−1/4 decays of order −3/2 and has a positive coefficient.
Hence, the minimum is not attained on R×{∞} but either in (∞,∞) or in the interior
of our domain. This proves that

(4.10) inf
(d0,d1)∈R2, d1≥−d0

Ŵα(d0, d1) = inf
d∈(0,∞)

Ŵα(d, d).

It remains to evaluate the right-hand side of (4.10). Let

φ(d) := Ŵα(d, d) = 4G(d)2 − 4α arctan(d).

We have

φ′(d) =
8G(d)

(1 + d2)
5
4

− 4α
1 + d2

=
4

1 + d2

(
h(2G(d)) − α

)
,

with h defined in (2.6). Thus, φ′(d) = 0 iff d = G−1( c
2 ), where c is one of the solutions

of h(c) = α. Only the solution c ∈ (0, cmax) is a local minimum so that

inf
d∈(0,∞)

φ(d) = min
(
c2 − 4α arctan

(
G−1

( c
2

))
, c20 − 2απ

)
;
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we take into account that φ(0) = 0 and φ(d) < 0 for small d > 0. In order to calculate
the last minimum we introduce the following auxiliary function f : [0, cmax] → R:

f(c) := c20 − 2h(c)π − c2 + 4h(c) arctanG−1
( c

2

)
.

We find that f(0) = c20 > 0 and f(cmax) = −0.6674542140 . . . < 0, and a short
calculation shows that

f ′(c) =
(

4 arctanG−1
( c

2

)
− 2π

)
h′(c) < 0, c ∈ (0, cmax),

so that f has a unique zero

c∗ = 1.274998908 . . . ∈ [0, cmax] with α∗ := h(c∗) = 1.132372323 . . . .

This proves the formula for inf(d0,d1)∈R2, d1≥−d0
Ŵα(d0, d1). The uniqueness of the

minimum for 0 ≤ α ≤ α∗ follows from Lemma 2.2.
We are now in position to prove Theorems 1.4 and 1.5. The second result is an

immediate consequence of (4.10) and Theorem 4.3. As for Theorem 1.4, we focus
on the case 0 < α ≤ α∗. Let c ∈ (0, cmax) be the unique solution of h(c) = α with
corresponding small solution uc. Clearly,

W̃α(uc) = Ŵα

(
G−1

( c
2

)
, G−1

( c
2

))
= inf

(d0,d1)∈R2, d1≥−d0

Ŵα(d0, d1)

= inf
v∈H2∩H1

0 (0,1)
W̃α(v)

by Proposition 4.6 and Lemma 4.2. It remains to show that uc is the only function
in H2 ∩H1

0 (0, 1) for which the minimum is attained. Suppose that u ∈ H2 ∩H1
0 (0, 1)

satisfies W̃α(u) = infv∈H2∩H1
0 (0,1) W̃α(v). In view of Lemma 4.1, u is necessarily

concave. Let v = ux0,x1 ∈ H2 ∩ H1
0 (0, 1) be the function appearing in Lemma 4.2

with d0, d1 given by (4.5). Using the minimality of u, Proposition 4.6, and Lemma 4.2,
we obtain

W̃α(u) ≤ W̃α(uc) = Ŵα

(
G−1

( c
2

)
, G−1

( c
2

))
≤ Ŵα(d0, d1) = W̃α(v) ≤ W̃α(u).

This implies that Ŵα(G−1( c
2 ), G−1( c

2 )) = Ŵα(d0, d1) and hence by Proposition 4.6
that d0 = d1 = G−1( c

2 ) so that v = uc. In particular, we infer with the help of
Lemma 4.2 that u′(0) = v′(0) = u′c(0) and u′(1) = v′(1) = u′c(1). As a consequence
we have BCα(u) = BCα(uc), and therefore W (u) = W (uc). However, in view of The-
orem 2 in [4], uc is the unique minimum of W in the class Mβ = {w ∈ H2∩H1

0 (0, 1) |
w′(0) = −w′(1) = β} (β = u′c(0)) so that we must have u = uc. This completes the
proof of Theorem 1.4.

For selected values of α, Figure 4.3 shows plots of the function c 
→ W̃α(uc) on
the interval [0, c0).

The uniqueness part of Theorem 1.4 guarantees that a global minimizer of W̃α

is symmetric. A more difficult question is whether any solution of (1.1) is necessarily
symmetric. The following example (see also [12, p. 461]) shows that such a result
certainly does not hold if one extends the class of admissible functions to include
graphs with singularities in their first derivatives. Let
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Fig. 4.3. Graphs of the function c �→ W̃α(uc) for α = 1.1, α = α∗, and α = 1.34 (left to right).

u(x) :=

{
1
2U0(2x), 0 ≤ x ≤ 1

2 ,

− 1
2U0(2 − 2x), 1

2 ≤ x ≤ 1,

where the function U0 was defined in (4.3). Clearly, as a curve in R
2, the graph of u is a

nonsymmetric solution of (1.1) for α = 0. Note, however, that u /∈ H2(0, 1)∩H1
0 (0, 1)

so that u is not a smooth solution of (1.1).
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Abstract. We study the Ginzburg–Landau energy functional for superconductors in an applied
magnetic field. We focus on asymptotically large or small domains and establish the asymptotic
behavior of the energy as a function of the Ginzburg–Landau parameter, applied magnetic field, and
domain size. For a large class of domain sizes, we calculate the critical field strength where vortex
nucleation becomes energetically favorable, and describe the vorticity of minimizers. For supercritical
magnetic field strengths, we recover the energy of a classical Abrikosov vortex lattice. Our findings
generalize several known results of Sandier and Serfaty for domains of fixed size.
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1. Introduction. In the widely studied Ginzburg–Landau model, superconduct-
ing materials are modeled via the free energy functional
(1.1)

Gphys(ψ, Â) = G0 +
∫

Ω

| curl Â−Hex|2
8π

+
1

2m∗

∣∣∣∣∣
(

�∇− ie∗Â

c

)
ψ

∣∣∣∣∣
2

+ α|ψ|2 +
β

2
|ψ|4,

where Ω is the region occupied by the superconductor, ψ a complex-valued order
parameter, Â the vector potential of the magnetic field, Hex an applied magnetic field,
e∗ andm∗ physical constants corresponding to the charge and mass of superconducting
carriers, c the speed of light, and � the Planck constant. G0 is the energy of the
normal state and independent of (ψ, Â). The quantities α and β are temperature-
dependent constants. We will assume subcritical temperatures, so α < 0 and β > 0.
An introduction to the physics of (1.1) explaining the meaning of these constants can
be found in [26].

We will work with only two-dimensional domains (corresponding to cylindrical
symmetry in the x3-direction) and will assume that the domain size is s. As we want
to study regimes in which the domain size becomes small or large, we renormalize by
assuming that U = Ω

s is a fixed domain of size O(1).

Setting u(x) =
√

β
|α|ψ(sx), A(x) = e∗s

�c Â(sx), and hex = e∗
�cHex, we rewrite the

energy as

(1.2) G0 +K

(
1
2

∫
U

1
�2
| curlA− hex|2 +

1
2ε2

(1 − |u|2)2 + |(∇− iA)u|2
)
,

where K = �
2|α|

2m∗β , �2 = 2πs2e2
∗|α|

m∗βc2 , and ε2 = �
2

4m∗|α|s2 .
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Dropping K and G0 by an affine transformation of the energy, we arrive at the
functional

(1.3) Gε(u,A) =
1
2

∫
U

|∇Au|2 +
1
�2

|curlA− hex|2 +
1

2ε2
(

1 − |u|2
)2

dx.

Using the commonly used comparison length scales of penetration depth,

(1.4) λ =

√
m∗βc2

4π|α|e2∗
,

and coherence length,

(1.5) ξ =
�√

2m∗|α|
,

we find that our dimensionless parameters ε and � can be expressed as

(1.6) ε =
ξ√
2s
, � =

s√
2λ
.

We will consider ε small (i.e., domains of size s� ξ) and various scalings of �.
We will study type II superconductors, those where the Ginzburg–Landau param-

eter κ = λ
ξ is large, so the coherence length will be the smallest of the three physical

length scales. This corresponds to �� 1
ε , which will be implied by other assumptions

throughout this article. Under this limit minimizers will start to energetically favor
the formation of vortices once the applied magnetic field grows large enough.

The asymptotics of (1.3) with � ≡ 1, i.e.,

(1.7)
1
2

∫
U

|∇Au|2 + |curlA− hex|2 +
1

2ε2
(
1 − |u|2

)2
dx

under the asymptotic limit ε → 0, has been widely studied in the past decade and a
half.

1.1. Background results. In the last 15 years, there has been considerable
progress made in the mathematical understanding of the Ginzburg–Landau model. A
major step has been the groundbreaking work of Bethuel, Brezis, and Hélein [5] on
the related functional without gauge term, the so-called BBH functional

(1.8) Eε(u) =
1
2

∫
U

|∇u|2 +
1

2ε2
(1 − |u|2)2,

and much of the analysis for the full gauge-invariant functional Gε is based on analysis
of Eε. We can only sketch some of the developments for the static Ginzburg–Landau
model with magnetic field, and refer the reader to the recent monograph [18] by
Sandier and Serfaty, which contains a thorough treatment of vortex solutions and
critical fields for vortex nucleation for (1.7).

We mention some works that are of particular relevance to the topic of this article.
The first rigorous treatment of (1.7) in the ε → 0 limit can be found in Bethuel and
Riviere [6], who discovered many important features of the standard Ginzburg–Landau
functional. Serfaty [22, 23] built on this work and gave the first rigorous treatment
of the critical field question by a study of local minimizers close to the critical field.
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The technique used assumptions on the BBH energy (1.8) to obtain an a priori bound
on the number of vortices. Using the “vortex ball construction” of Sandier [17] and
Jerrard [10], a key ingredient in most of the later research, Sandier and Serfaty [21]
were then able to show that the global minimizer below the critical field is indeed
vortex-free and |uε| is bounded away from zero.

The structure of global minimizers with an unbounded number of vortices and
with external field of order hex = O(|log ε|) was analyzed by Sandier and Serfaty in
[20]. This result, combined with a Jacobian compactness theorem [11], was rephrased
by Jerrard and Soner [12] in the framework of Γ-convergence. The limit problem is
equivalent to a certain obstacle problem, and the limiting vorticity (after rescaling
with |log ε|) is constant in the set where the obstacle is active.

For asymptotically larger applied magnetic fields (|log ε| � hex � 1
ε2 ), the vor-

tices fill the whole domain as an Abrikosov-type lattice with uniform limiting density
of vortices. This was established by Sandier and Serfaty in [19].

There are few results as of yet on the influence of the domain size on the behavior
of the functional. The asymptotic expansion results of Chapman et al. [8] contain a
scaling argument similar to ours above, and then study domains of size s = O(ξ) with
κ� 1, which corresponds to very small domains.

Aftalion and Dancer [1] studied critical points of the Ginzburg–Landau energy.
For small domains (� < C min(1, C

κ )), they showed that any solution that is not
the normal solution (where u ≡ 0) will be bounded away from zero, regardless of
the external field. For the special case where the domain is a ball, U	 = B	(0), they
showed that solutions in small domains are necessarily radially symmetric, and there
exists a critical field of order O(1

	 ) such that, above this field, only the normal solution
exists, while a unique superconducting solution exists below this threshold.

A numerical study was performed by Aftalion and Du [2], who studied the re-
sponse of a superconductor to the raising and lowering of the external field depending
on Ginzburg–Landau parameter κ and domain size. They found bifurcation diagrams
in several distinct regimes, including a critical line separating type I and type II be-
havior.

Recently, there have been results by Aydi [3] and Aydi and Sandier [4] on mini-
mizing sequences of the Ginzburg–Landau energy in periodic boxes. In these papers
the authors establish a detailed description of the critical field strength for vortex
nucleation; vortices are located at minimizers of an explicit renormalized energy. Fur-
thermore, the limiting induced magnetic field satisfies a periodic London equation
with point sources at the vortex locations. These results can be understood as a
study of the interior behavior of an Abrikosov lattice in the large domain limit.

There have also been a few results that study (1.7) with applied magnetic fields
and domain-dependence between hc2 and hc3 , the regime associated with surface
superconductivity. However, we restrict ourselves to field strengths asymptotically
below hc2 ; hence we do not attempt to review results within this class of field strengths.

There are similarities between the Ginzburg–Landau energy (1.3) and the Chern–
Simons–Higgs energy

(1.9) Gcsh(u,A) =
1
2

∫
U

|∇Au|2 +
μ2

4
|curlA− hex|2

|u|2 +
1
ε2

|u|2
(
1 − |u|2

)2
dx

for an applied magnetic field, hex, and a bounded simply connected domain, U ⊂ R
2.

The Chern–Simons–Higgs model is an anyon theory that is of interest in connection
with high-temperature superconductors and the quantum Hall effect. For an overview
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of the study in the self-dual case μ = ε, see Yang [27].
In [14, 15] the authors proved several results of a similar nature to those found

here: For hex = H | log ε| and Gcsh(uε, Aε) = O(| log ε|2), we were able to show Γ-
convergence results for the cases μ = με → μ0 ∈ (0,∞]. These enabled us to calculate
the critical field for vortex nucleation. The main ingredient in these results is a
compactness proof that relates the Jacobian of u, J(u) = det∇u, to the energy

Ecsh(u) =
1
2

∫
U

|∇u|2 +
1
ε2

|u|2(1 − |u|2).

Using this compactness result from [14] and an energy decomposition, we showed
Γ-convergence for finite μ in [14] and for μ → ∞ in [15]. For μ → 0, we gave an
explicit counterexample that illustrates why this method, using a decomposition and
bounds for Ecsh, fails in this case. However, we were later able to show that for hex

much larger than the critical field, and under certain restrictions on μ, the energy of
minimizers scales in the same fashion as the energy of an Abrikosov-type lattice just
as for the Ginzburg–Landau energy (1.7); see [16].

All of our results here carry over from the Chern–Simons–Higgs energy (1.9) under
the assumptions above. In particular, we can extend the results of [14, 15, 16, 25]
and understand vortices in non–self-dual Chern–Simons–Higgs for a wider range of
parameters and in more detail. Results for (1.3) in the next subsection can be related
to results for (1.9) by simply setting � = 2

μ .

1.2. Main results. In this subsection, we list our main theorems on the behav-
ior of minimizers for various parameter regimes. These results, most of which are
generalizations of known results from the last section, provide a partial solution to
Open Problem 1 of [18].

Our first result is the calculation of the first critical field where minimizers of the
Ginzburg–Landau energy start to have vortices. This field is O(|log ε|) if the domains
stay bounded and O(�2|log ε|) if the domains are unbounded and � is bounded by a
power of |log ε|.

Theorem 1.1. There exists a sequence of critical fields hc1(ε) such that any
minimizer of the Ginzburg–Landau functional with hex < hc1(ε)− o(|log ε|) is vortex-
free, while any minimizer with hex > hc1(ε) + o(|log ε|) has vortices.

As ε → 0, the critical field hc1(ε) satisfies the following expansion: If �ε → �0
with 0 ≤ �0 <∞, then

(1.10)
hc1(ε)
|log ε| → H1(�0),

where

(1.11) H1(�0) =
1

2 maxU |y	0 |
,

where y	0 is the solution of

−Δy	0 + �20y	0 + 1 = 0

with Dirichlet boundary conditions y	0 = 0 on ∂U .
Finally, if �ε → ∞ and �ε ≤ |log ε|γ for any fixed γ > 0, then

(1.12)
hc1(ε)
�2ε|log ε| →

1
2
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as ε→ 0. Therefore, the critical field scales as hc1 = 	2ε|log ε|
2 in this regime of domain

sizes.
For small or bounded domains Theorem 1.1 follows from adapting the proof of

Sandier and Serfaty [21], where � ≡ 1. Formally examining the resulting critical field
(1.11), one finds H1(�0) → 	20

2 as �0 → ∞, so we expect that hc1 = 	2ε|log ε|
2 for any

�ε → +∞ and �ε � 1√
ε|log ε| ; see the discussion before Lemma 2.7. We give a proof

for the case of large (but not too large) domains in section 2; see Proposition 2.1 for
details.

The following results can be used to characterize the minimizers of (uε, Aε) for
external fields of order O(|log ε|) and small or bounded domains. The first step is a
Γ-convergence result that relates Gε(uε, Aε) to a simpler functional that no longer in-
volves ε. We skip some of the detailed convergence statements for ease of presentation.
The full statement is given in Theorem 3.1.

Theorem 1.2. As ε → 0, the functional 1
|log ε|2Gε is Γ-convergent to G(v, a),

where the limit functional G is given by
(1.13)

G(v, a) :=

⎧⎪⎨⎪⎩
1
2

∫
U
|v − a|2 + 1

	20
| curl a−H |2 + 1

2 ‖curl v‖M if �0 > 0,
1
2

∫
U |v − a|2 + 1

2 ‖curl v‖M if �0 = 0 and curla = H,
+∞ otherwise,

under a convergence that includes
(

1
|log ε| (iuε,∇uε) − 1

|log ε| |u|2Aε

)
⇀ (v − a) and

1
|log ε|Aε ⇀ curla in L2.

Since Γ-convergence and the compactness we have here imply that minimizers of
Gε and of G approximate each other, we study minimizers of G to gain insight into
the structure of minimizers of Gε.

Theorem 1.3. If (v0, a0) is a minimizer of (1.13) and �0 > 0, then z0 =
�−2
0 (curla0 −H) is the unique minimizer of the following obstacle problem: Minimize

(1.14) F	0,H(z) =
1
2

∫
U

|∇z|2 + �20z
2 + 2zH

in the admissible class

(1.15) K =
{
z ∈ H1

0 (U) : z ≥ −1
2

a.e. in U

}
.

The limit (v0, a0) satisfies the following additional properties:

�−2
0 curl(curl a0 −H) + a0 = v0 in U,

curl a0 −H = 0 on ∂U,

−1
2
≤ z0 ≤ 0,

curl v0 ≥ 0,

spt(curl v0) ⊂
{
z0 = −1

2

}
.

In the case where �0 = 0, we have curla0 = H and obtain a slightly different
obstacle problem: Let y0 be the solution of −Δy0 = curl v0 − H with zero boundary
conditions. Then y0 is the unique minimizer of

(1.16) F0,H(y) =
1
2

∫
U

|∇y|2 + 2yH
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in the admissible class

(1.17) K =
{
y ∈ H1

0 (U) : y ≥ −1
2

a.e. in U

}
.

Moreover, curl v0 ≥ 0 and spt(curl v0) ⊂ {y0 = − 1
2}.

This theorem, proved later in section 3, implies again the results on the first
critical field: When the obstacle is not active, the minimizer satisfies curl v = 0. This
happens if and only if H < H1(�0) with the same fields as above. However, since we
rescaled the vorticity to obtain convergence, this only shows that an approximating
sequence (uε, Aε) has at most o(|log ε|) vortices, a result that is weaker than the “no
vortices below the critical field” obtained in Theorem 1.1.

Finally, we study minimizers of the Ginzburg–Landau functional with a very
large (supercritical) applied external magnetic field and obtain energy asymptotics of
a uniform vortex lattice, as follows.

Theorem 1.4. Assume that

(1.18) max{1, �2}|log ε| � hex � 1
ε2

;

then minimizing sequence {uε, Aε} satisfies

(1.19) Gε(uε, Aε) =
1
2
|U |hex log

1
ε
√
hex

(1 − oε(1)) .

Furthermore, the vortex density is uniform in the limit; see Proposition 5.2 for a
precise statement.

The proof of Theorem 1.4 is given in Proposition 5.2 and relies on the upper
bound Proposition 4.1. For the lower bound, we have followed the simple proof of
Sandier and Serfaty [18] and reduced the theorem by a well-chosen rescaling to the
lower bound part of the Γ-convergence theorem in the |log ε|2 scaling.

For the upper bound, we use a simple approach with Fourier series (Proposi-
tion 4.1). A refined version of the upper bound, (4.2), motivates our conjecture on
the behavior close to the critical field for large domains.

Remark 1.5. For �ε → ∞ and hex = O(�2|log ε|), we do not yet have a rigorous
result on the structure of minimizers. However, we expect from formal calculations
that a uniform lattice, such as those constructed in section 4, should be minimizing.
This is further supported by the analysis of Aydi [3], who showed such a result in the
periodic setting. Aydi’s upper bound and ours are essentially equivalent.

1.3. Discussion. We conclude the introduction with several unresolved ques-
tions regarding asymptotics of (1.3). There is still work to do to complete the answer
to Problem 1 in [18]. In particular, a complete phase diagram for the minimizing be-
havior depending on κ, �, and hex should be given, including the cross-over between
type I and type II behavior that happens for κ� = O(1), and the results of Aftalion
and Du [2] should be made fully rigorous. For such a study, it would also be necessary
to understand local minimizers and hysteresis phenomena for slowly changing fields.

It is an interesting problem to further study beginning vortex nucleation close to
the critical field in the large domain limit, � → +∞. Based on the construction of
Proposition 4.1 and the structure of the Meissner state, we expect that minimizers
exhibit a uniform vortex lattice that fills the whole domain. However, vortices will be
far apart and interact only weakly, making this a subtle problem. Finally, it would
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be interesting to study (1.3) with applied fields in the “intermediate range,” recently
undertaken for (1.7) in [18]. For states with few vortices in large domains, we similarly
expect very slow motion for the gradient flow, as vortices will move in an almost flat
potential.

2. Critical field calculation. In this section we establish Theorem 1.1. The
proof of Theorem 1.1 for � → [0,+∞) follows from a direct insertion of �−2 into the
magnetic field term of (1.7) and following the proof found in [22, 21]. However, when
� → +∞, a simple scaling argument fails, and we need to be more careful. In the
following we show that for a substantial class of large-domain asymptotics, the critical
field strength is indeed

hc1 =
�2

2
|log ε| + o(|log ε|),

as suggested by the formal analysis of the scaled renormalized energy.
Proposition 2.1. Let � → +∞ with � ≤ C|log ε|γ for any fixed γ ∈ R

+, and
suppose that (u,A) is a minimizer of the Ginzburg–Landau energy (1.3). Then the
first critical field for vortex nucleation is hc1 = 	2

2 |log ε| = 1
2 |log ε|2γ+1. In particular

for hex <
	2

2 |log ε|, any minimizer will satisfy |u| ≥ 3
4 for all ε sufficiently small, and

for hex >
	2

2 |log ε| any minimizer must have a vortex.
Remark 2.2. Although we establish the conjectured critical field for � = |log ε|γ ,

we believe the critical field should be true over length scales up to � ≤ C√
ε|log ε| . In

particular, the more refined vortex ball estimates found in [13, 18] should be powerful
enough to handle larger domains, but in the interest of brevity we consider only �’s
that satisfy 1 � � ≤ C|log ε|γ . We establish Proposition 2.1 by using the explicit
vortex structure that exists for these intermediate-sized domains.

The Euler–Lagrange equations of (1.3),

0 = ∇2
Au+

1
ε2
u
(

1 − |u|2
)
,

0 = curl curlA+ �2jA(u),
(2.1)

in U and n · ∇Au = 0 and curlA = hex on ∂U . Setting the Coulomb gauge, we see
that

divA = 0 in U, n · A = 0 on ∂U.

Solutions to (2.1) satisfy the maximum principle

(2.2) ‖u‖L∞(U) ≤ 1,

the proof of which can be found in [6, 19].
The key to establishing Proposition 2.1 is a good energy decomposition. In order

to establish this decomposition we use the following result of Sandier and Serfaty that
supplies the vortex structure for our range of �’s. Their result, based on the method
of Jerrard [10] and Jerrard and Soner [11] is the following.

Proposition 2.3 (see Sandier and Serfaty[21]). Let u : U → C be such that
|∇u| ≤ C

ε and that Eε(u) ≤ C|log ε|M for M ≥ 2 a fixed number. Then, for any
α > 0 there exist disjoint balls {Bri}i∈I of radii ri such that for sufficiently small ε,

1. {|u| < 3
4} ⊂ ∪i∈IBri ,
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2. card I ≤ C|log ε|M ,
3. ri ≤ C

|log ε|α ,
4. if Bri ⊂ U and di = deg(u, ∂Bri), then

(2.3)
∫

Bri

eε(u)dx ≥ π |di| (|log ε| −O(log |log ε|)) .

Remark 2.4. The result in [21] is restricted to energies of the size Eε(u) ≤
K|log ε|2; however, the same proof holds for the higher energies in the assumptions
found in Proposition 2.1.

We now state our energy decomposition, in the spirit of Bethuel and Riviere [6],
Serfaty [22], and Sandier and Serfaty [19].

Proposition 2.5. Let (u,A) be a minimizer, where A satisfies the Coulomb
gauge and 1 � � ≤ C|log ε|γ. Let A = hex∇⊥ξ	 + ∇⊥ζ, where ξ	 satisfies

− 1
�2

Δ2ξ	 + Δξ	 = 0 in U,

Δξ	 = 1 on ∂U,

ξ	 = 0 on ∂U.

(2.4)

Then

Gε(u,A) ≥
∑
i∈I

∫
Bri

eε(u)dx+
1
�2

∫
U

|Δζ|2 +G0

+ 2πhex

∑
i∈I

diξ	(ai) −
C

|log ε| ,
(2.5)

where G0 = Gε(1, hex∇⊥ξ	). Here the vortex balls Bri and degrees di are defined via
Proposition 2.3

We prove several intermediate lemmas before attempting the proof of Proposi-
tion 2.5. The first facts we establish are on the scaled London equation. This limiting
equation for the stream function of the magnetic field potential is the expected Meiss-
ner solution.

Lemma 2.6. Let ξ	 be the solution of (2.4) with �� 1; then

(2.6) − 1
�2

≤ ξ	 ≤ 0

and

(2.7) sup
x∈U

|ξ	| =
1
�2

(1 − o	(1)) .

Further,

(2.8) ‖ξ	‖H2 ≤ C and ‖∇ξ	‖L∞ ≤ C,

where C depends only on U .
Proof. These results are similar to results found in [6, 22, 24] for � ≡ 1. If Δξ	 = h	

in U and ξ	 = 0 on ∂U , then h	 satisfies

− 1
�2

Δh	 + h	 = 0 in U,

h	 = 1 on ∂U.
(2.9)
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If we let χ = ξ	 − 1
	2 (h	 − 1), then Δχ = Δξ	 − 1

	2 Δ (h	 − 1) = h	 − 1
	2 Δh	 = 0 in U

and χ = 0 on ∂U . Therefore, χ ≡ 0, and thus

(2.10) ξ	 =
1
�2

(h	 − 1) .

Applying the maximum principle to (2.9) yields 0 < h	 < 1. In particular, if a
minimum occurs at a point xm in the interior of U , then 0 < 1

	2 Δh	(xm) = h	(xm),
and by the boundary condition we see h	 ≥ 0. On the other hand, if the maximum
occurs at a point xM in the interior of U , then 0 > 1

	2 Δh	(xM ) = h	(xM ), and by the
boundary condition h	 ≤ 1. Applying this to (2.10) yields (2.6).

Next, using the boundary conditions on ξ	,

0 =
∫

U

ξ	

[
− 1
�2

Δ2ξ	 + Δξ	

]
=
∫

U

1
�2
∇ξ	 · ∇Δξ	 − |∇ξ	|2

=
∫

∂U

1
�2
∂nξ −

∫
U

[
1
�2

|Δξ	|2 + |∇ξ	|2
]
.

Thus by (2.9), (2.10), and the bound on h	,∫
U

1
�2

|Δξ	|2 + |∇ξ	|2 =
1
�2

∫
U

Δξ	 =
1
�2

∫
U

h	 ≤
1
�2
|U |.

This implies ‖ξ	‖H2(U) ≤ 2
√
|U |. Since 0 < Δξ	 < 1, then ‖ξ	‖W 2,p ≤ Cp for any

chosen p > 2. Therefore, by Sobolev embedding, we have (2.8).
Set z	 = ∂	h	; then z	 satisfies

Δz	 − �2z	 = 2�h	 ≥ 0

in U and z	 = 0 on ∂U . By the maximum principle z	 ≤ 0; hence, h	 is monotonically
decreasing in � for all x ∈ U . Since h	 is bounded below by −1, then h	(x) = −1+o	(1)
for all x ∈ U ′ � U . Thus max |ξ	| = 1

	2 (1 − o	(1)) by (2.10).
In order to use Proposition 2.3 we need to establish a bound on Eε(u); see (1.8).

As we see below, the BBH energy can be much larger than the Ginzburg–Landau
energy Gε(u,A), since the magnetic field term in the energy can absorb large induced
fields generated by a large number of vortices. We have the following result.

Lemma 2.7. Let (u,A) be a minimizer of the Ginzburg–Landau energy. Suppose
hex ≤ C�2|log ε| ≤ C

ε and Gε(u,A) ≤ K�2|log ε|2; then

(2.11) Eε(u) ≤ C�4|log ε|2

and

(2.12) ‖A‖H1(U) ≤ C�2|log ε| and ‖A‖H2(U) ≤ C�3|log ε|.

Proof. We first establish a uniform H1 estimate on A. From the assumption on
the energy, ∫

|h− hex|2 ≤ K�4|log ε|2,

and hence from the bound on hex we see that

‖h‖L2(U) ≤ C�2|log ε|.
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Since divA = 0 and n ·A = 0 on ∂U , there exists ξ such that ∇⊥ξ = A and ξ = 0 on
∂U . From standard elliptic estimates we get ‖ξ‖H2(U) ≤ C�2|log ε|. Thus

‖A‖H1(U) ≤ C�2|log ε|.

Decomposing 1
2 |∇Au|2 = 1

2 |∇u|
2 −A · j(u) + 1

2A
2 |u|2, we control the cross term

via

A · j(u) ≤ 1
4

∣∣∣∣ j(u)
|u|

∣∣∣∣2 +A2 |u|2

≤ 1
4

∣∣∣∣ j(u)
|u|

∣∣∣∣2 +A2 + 2ε2A4 +
1

8ε2
(
1 − |u|2

)2
.

Therefore, from the algebraic bounds, the estimate on A, and Sobolev embedding,

Gε(u,A) ≥ Eε +
1

2�2
‖h− hex‖2 −

[
1
2
Eε(u) +

∫
U

A2 + 2ε2A4

]
≥ 1

2
Eε(u) − C

[
‖A‖2

H1(U) + ε2 ‖A‖4
H1(U)

]
≥ 1

2
Eε(u) − C�4|log ε|2 − Cε2�8|log ε|4.

The upper bound on Eε(u) follows.
In order to establish higher bounds on A we use the Euler–Lagrange equation

−∇⊥h = �2jA(u). Therefore,

‖∇h‖L2(U) ≤ �2 ‖∇Au‖L2(U) ‖u‖L∞(U) ≤ C�3|log ε|,

and hence (2.8).
The fact that Eε(u) can have a much larger energy than Gε(u,A) is an essential

difference in the large-� asymptotics. It implies a more complicated global vortex
structure. Given the energy bound on Eε(u), we can split apart the full Ginzburg–
Landau energy into its chief components. We start with an initial energy splitting.

Lemma 2.8. We can decompose Gε(u,A) = Gε(u,∇⊥ξ) = Gε(u, hex∇⊥ξ	+∇⊥ζ)
as

Gε(u,A) ≥ 1
2

∫
U

∣∣∇u− iu∇⊥ξ
∣∣2 +

1
2ε2

(
1 − |u|2

)2
+

1
2�2

∫
U

|Δξ|2

+
∫

U

(
∇u,−ihex∇⊥ξ	u

)
+G0 − C

|log ε| .
(2.13)

Proof. We decompose the energy in a series of steps.
Our first step is to compute the approximate energy of the Meissner state via

the method of Serfaty [22]. Since divA = 0 and n · A = 0 in ∂U , we can write
A = ∇⊥ξ with ξ = 0 on ∂U and so Δξ = h. We further decompose ∇⊥ξ as ∇⊥ξ =
hex∇⊥ξ	 +∇⊥ζ, where ζ = Δζ = 0 on ∂U and where ξ	 satisfies (2.4). Consider now
the Meissner energy associated with G0 = Gε(1, hex∇⊥ξ	). We compute the form of
the Meissner energy, setting (u0, A0) = (1, hex∇⊥ξ	). Then

Gε(u0, A0) =
1
2

∫
U

|∇A0u0|2 +
1
�2

|curlA0 − hex|2 +
1

2ε2
(
1 − |u0|2

)2
=
h2

ex

2

∫
U

|∇ξ	|2 +
1
�2

|Δξ	 − 1|2 .
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Multiplying ξ	 against − 1
	2 Δ2ξ	 + Δξ	 and integrating over U yields∫
U

|∇ξ	|2 +
1
�2

|Δξ	|2 dx =
1
�2

∫
U

Δξ	.

We use the above identity to rewrite the Meissner energy as

G0 =
1
2

∫
U

h2
ex |∇ξ	|

2 +
h2

ex

�2
|Δξ	|2 +

h2
ex

�2
− 2

h2
ex

�2
Δξ	

= −h
2
ex

2

∫
U

[
|∇ξ	|2 +

1
�2

|Δξ	|2
]

+
h2

ex

2�2
|U | .

(2.14)

Therefore the Meissner energy is of order O(h2
ex

	2 ).
Next we write

1
2

∫
U

|∇Au|2 =
1
2

∫
U

∣∣∇u− ihex∇⊥ξ	u− i∇⊥ζu
∣∣2

=
1
2

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 +

h2
ex

2

∫
U

|u|2
∣∣∇⊥ξ	

∣∣2
+
∫

U

(
∇u− i∇⊥ζu,−ihex∇⊥ξ	u

)
and ∫

U

(
∇u− i∇⊥ζu,−ihex∇⊥ξ	u

)
=
∫

U

(
∇u,−ihex∇⊥ξ	u

)
+ hex

∫
U

|u|2 ∇ξ	 · ∇ζ.

Therefore, we can write the Ginzburg–Landau energy as

Gε(u,A) =
1
2

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 +

1
2ε2

(
1 − |u|2

)2
+
∫

U

(
∇u,−ihex∇⊥ξ	u

)
+
h2

ex

2

∫
U

(
|u|2 − 1

) ∣∣∇⊥ξ	
∣∣2 + hex

∫
U

(
|u|2 − 1

)
∇ξ	 · ∇ζ

+
1

2�2

∫
U

|h− hex|2 +
h2

ex

2

∫
U

∣∣∇⊥ξ	
∣∣2 + hex

∫
U

∇ξ	 · ∇ζ.

(2.15)

The terms in the third line of (2.15) are small since

h2
ex

∫
U

(
|u|2 − 1

)
|∇ξ	|2 ≤ Ch2

ex ‖∇ξ	‖
2
L∞

∥∥1 − |u|2
∥∥

L2 ≤ Cεh2
exE

1
2
ε (u)

≤ Cε�6|log ε|3 ≤ Cε|log ε|6γ+3 ≤ C

|log ε|
and

hex

∫
U

(
|u|2 − 1

)
∇ξ	 · ∇ζ ≤ Chex ‖∇ξ	‖L∞ ‖∇ζ‖L2

∥∥1 − |u|2
∥∥

L2

≤ Cεhex

∥∥A− hex∇⊥ξ	
∥∥

L2 E
1
2
ε (u)

≤ Cε�2|log ε|
(
�2|log ε| + �2|log ε|

)
�2|log ε|

≤ Cε|log ε|6γ+3 ≤ C

|log ε| .
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For the fourth line of (2.15) we have

1
2�2

∫
U

|h− hex|2 +
h2

ex

2

∫
U

∣∣∇⊥ξ	
∣∣2 + hex

∫
U

∇ξ	 · ∇ζ

=
1

2�2

∫
U

|hexΔξ	 − hex + Δζ|2 +
h2

ex

2

∫
U

|∇ξ	|2 + hex

∫
U

∇ξ	 · ∇ζ

=
h2

ex

2�2

∫
|Δξ	 − 1|2 +

h2
ex

2

∫
|∇ξ	|2 +

1
2�2

∫
|Δζ|2

+
hex

�2

∫
(Δξ	 − 1) Δζ + hex

∫
∇ξ	 · ∇ζ.

Multiplying ζ against (2.4) and integrating over U , we have

0 = − 1
�2

∫
U

Δζ (Δξ	 − 1) −
∫

U

∇ξ	 · ∇ζ,

and then

1
2�2

∫
U

|h− hex|2 +
h2

ex

2

∫
U

∣∣∇⊥ξ	
∣∣2 + hex

∫
U

∇ξ	 · ∇ζ

= G0 +
1

2�2

∫
U

|Δζ|2 .
(2.16)

Combining (2.15), the bounds on the third line, and (2.16) yields (2.13).
We can now prove Proposition 2.5 by carefully extracting the concentration of

the Ginzburg–Landau energy against the magnetic field potential ξ	. Note that there
are potentially an unbounded number of vortices, so we need to extract good decay
on each vortex ball.

Proof of Proposition 2.5. We follow the approach in [21] for � ≡ 1. The first step
is to establish the concentration in the cross term

∫
∇⊥ξ	 · j(u). In particular, we

claim

(2.17)

∣∣∣∣∣
∫

U

(
∇u,−ihex∇⊥ξ	u

)
− 2πhex

∑
i∈I

diξ	(ai)

∣∣∣∣∣ ≤ C

|log ε| ,

where aj is the center of the vortex ball Bri and I is the vortex ball collection.
Step 1. SinceEε(u) ≤ C�4|log ε|2 ≤ C|log ε|4γ+2 and hex = C�2|log ε| = C|log ε|2γ+1,

then by Proposition 2.3 we have balls {Bri}i∈I such that{
|u| < 3

4

}
⊂ ∪i∈IBri , card I ≤ C|log ε|4γ+2

, ri ≤
C

|log ε|10γ+6 ,

if Bri ⊂ U and di = deg(u, ∂Bri), then
∫

Bri

eε(u)dx ≥ π |di| (|log ε| −O(log |log ε|)) ,

where we chose α = 10γ + 6 in Proposition 2.3. Therefore,∣∣∣∣∣
∫
∪IBri

(
∇u,−ihex∇⊥ξ	u

)∣∣∣∣∣ ≤ (card I)hex ‖∇u‖L2 max
i∈I

ri

≤ C|log ε|8γ+4−α ≤ C

|log ε| .
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Setting Ũ = U\ ∪i∈I Bri , for v = u
|u| we have

∫
Ũ

(
∇u,−ihex∇⊥ξ	u

)
= hex

∫
Ũ

∇ξ	 × j(v) + hex

∫
Ũ

∇ξ	 × (j(u) − j(v)) .

The second term is small, using (2.8) and (2.11), since

hex

∫
Ũ

∇ξ	 × (j(u) − j(v)) ≤ hex

∥∥∇⊥ξ	
∥∥

L∞

∫
Ũ

∣∣∣∣j(u) − j(u)
|u|2

∣∣∣∣
≤ Chex

∫
Ũ

|j(u)|
|u|

∣∣|u|2 − 1
∣∣

|u| ≤ CεhexEε(u)

≤ Cε|log ε|6γ+3 =
C

|log ε| ,

where we used |u| ≥ 1
2 in Ũ in the second line. Therefore,

(2.18)
∣∣∣∣∫

Ũ

(
∇u,−ihex∇⊥ξ	u

)
− hex

∫
Ũ

∇ξ	 × j(v)
∣∣∣∣ ≤ C

|log ε| .

Next for J = {i such that Bri ⊂ U} we claim we can extract the following bound:

(2.19)

∣∣∣∣∣hex

∫
Bri

∇ξ	 × j(v) − 2πhexdiξ	(ai)

∣∣∣∣∣ ≤ C

|log ε|4γ+3 .

For Ωi = Bri ∩ {x ∈ U such that |u| ≤ 1
2}, Ωi ∩ ∂Bri = ∅. Since |u| ≥ 1

2 in Ωi, by
Stokes’ theorem,

hex

∣∣∣∣∣
∫

∂Bri

(ξ	 − ξ	(ai)) j(v) · τ −
∫

∂Ui

(ξ	 − ξ	(ai)) j(v) · τ
∣∣∣∣∣

= hex

∣∣∣∣∣
∫

Bi\Ui

∇ξ	 × j(u)

∣∣∣∣∣ ≤ Chex ‖∇ξ	‖L∞ ‖∇u‖L2 ri

≤ C|log ε|4γ+2−α ≤ C

|log ε|4γ+3 ;

thus

hex

∣∣∣∣∣
∫

∂Bri

(ξ	 − ξ	(ai)) j(v) · τ −
∫

∂Ωi

(ξ	 − ξ	(ai)) j(v) · τ
∣∣∣∣∣

≤ C

|log ε|4γ+3 .

(2.20)
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On the other hand, since |u| = 1
2 on ∂Ωi we find

hex

∣∣∣∣∫
∂Ωi

(ξ	 − ξ	(ai)) j(v) · τ
∣∣∣∣

= hex

∣∣∣∣∫
∂Ωi

(ξ	 − ξ	(ai))
j(u)
|u|2 · τ

∣∣∣∣ = 4hex

∣∣∣∣∫
∂Ωi

(ξ	 − ξ	(ai)) j(u) · τ
∣∣∣∣

= 4hex

∣∣∣∣∫
Ωi

curl [(ξ	 − ξ	(ai)) j(u)]
∣∣∣∣

≤ 4hex

∣∣∣∣∫
Ωi

∇ξ	 × j(u)
∣∣∣∣+ 8hex

∣∣∣∣∫
Ωi

(ξ	 − ξ	(ai))J(u)
∣∣∣∣

≤ Chex ‖∇ξ	‖L∞ ‖∇u‖L2 ri + Chex ‖∇ξ	‖L∞ ‖∇u‖2
L2 ri

≤ C|log ε|4γ+2−α + C|log ε|6γ+3−α ≤ C

|log ε|4γ+3 ,

and consequently, since card I ≤ C|log ε|4γ+2 and
∫

∂Bri
ξ	(ai)j(v) · τ = 2πdi,

(2.21)
∑
i∈J

∣∣∣∣∣hex

∫
∂Bri

ξ	j(v) · τ − hex

∫
∂Bri

ξ	(ai)j(v) · τ
∣∣∣∣∣ ≤ C

|log ε| .

Finally, for the balls that intersect ∂U , I\J . Since ξ	 = 0 on ∂U , then for
Ωi = Bi ∩ {x ∈ U such that |u| ≤ 1

2} we follow the above argument and see∣∣∣∣∣hex

∫
∂Bri

∩U

ξ	j(v) · τ
∣∣∣∣∣ ≤

∣∣∣∣∣hex

∫
∂(Ωi∩U)

ξ	j(v) · τ
∣∣∣∣∣+

C

|log ε|4γ+3

≤ 4hex

∣∣∣∣∫
Ωi∩U

∇ξ	 × j(v) + 2ξ	J(v)
∣∣∣∣+

C

|log ε|4γ+3

≤ C

|log ε|4γ+3 .

Combining this estimate along with card I ≤ C|log ε|4γ+2 and (2.21) yields estimate
(2.17).

Step 2. We bound
∫

U

∣∣∇u− i∇⊥ζu
∣∣2 ≥

∫
∪i∈IBri

|∇u|2 − C
|log ε| . In particular,∫

U

∣∣∇u − i∇⊥ζu
∣∣2 ≥

∫
∪i∈IBri

∣∣∇u− i∇⊥ζu
∣∣2

=
∫
∪i∈IBri

|∇u|2 − 2∇⊥ζ · j(u) + |∇ζ|2 |u|2 .

From (2.12) we see ‖A‖L∞(U) ≤ C ‖A‖H2(U) ≤ C|log ε|3γ+2, and thus∣∣∣∣∣
∫
∪i∈IBri

∇⊥ζ · j(u)

∣∣∣∣∣ ≤ (card I)
∥∥A− hex∇⊥ξ	

∥∥
L∞ ‖∇u‖L2 max

i∈I
ri

≤ C|log ε|4γ+2
(
|log ε|3γ+2 + |log ε|2γ+1

)
|log ε|2γ+1|log ε|−α

≤ C|log ε|9γ+5−α ≤ C

|log ε| ,
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and so

(2.22)
∫

U

∣∣∇u− i∇⊥ζu
∣∣2 ≥

∫
∪i∈IBri

|∇u|2 .

Combining (2.13) with (2.17) and (2.22) yields (2.5).
We are finally in the position to establish the next claim.
Proof of Proposition 2.1. The first part of the proof establishes that a minimizing

sequence must be in the Meissner state when hex <
	2|log ε|

2 .
Step 1. From Proposition 2.5 and the minimality of (u,A)

G0 ≥ Gε(u,A)

≥
∑
i∈I

∫
Bri

eε(u)dx+
1

2�2

∫
U

|Δζ|2 +G0 + 2πhex

∑
i∈I

diξ	(ai) −
C

|log ε| .

Therefore, since ξ	 ≤ 0, we use (2.7) and lower bound in Proposition 2.3.4 to get

π
∑
i∈I

|di| (|log ε| +O(log |log ε|)) ≤ 2πhex

∑
i∈I

di |ξ	(ai)|

≤ 2πhex

(∑
i∈I

|di|
)

max |ξ	|

≤
(∑

i∈I

|di|
)

2π
hex

�2
(1 − o	) .

So if
∑

i∈I |di| �= 0, then

hex ≥ �2

2
(|log ε| +O(log |log ε|)) .

Hence, for hex <
	2

2 |log ε|, either deg(u, ∂Bri) = 0 orBri∩U �= ∅. It is straightforward
to show from this point that |u| ≥ 3

4 in U ; see [5, 6].
Step 2. We now complete the proof of the critical field strength. In particular,

we show that if hex > 	2|log ε|
2 , then there must be a vortex. We prove this by

contradiction. Let (uε, Aε) be a minimizing sequence with
∑

j∈J |dj | = 0; then we
claim Gε(u,A) ≥ Gε(1, hex∇⊥ξ	) − C

|log ε| .
In order to get better bounds on ∇⊥ζ = A − hex∇⊥ξ	, we replace lower bound

(2.22) with

1
2

∫
U

∣∣∇u− i∇⊥ζu
∣∣2 ≥ 1

2

∫
U

|∇u|2 − 2j(u) · ∇⊥ζ + |∇ζ|2 − C

|log ε| ,

where we used the argument for the estimate of the third line of (2.15) in the proof
of Lemma 2.8. By (2.8) and (2.12) we see that ζ is continuous. Since there are no
nontrivial-degree vortex balls, then by an argument identical to the proof of (2.17)
we have the lower bound

Gε(u,A) ≥ Eε(u) +G0 +
1
2

∫
U

|∇ζ|2 +
1
�2

|Δζ|2 − C

|log ε| .
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Since (u,A) is an energy minimizer, G0 ≥ Gε(u,A), and so Eε(u)+ 1
2

∫
U
|∇ζ|2 ≤ C

|log ε| .
Even more so, the boundary condition ζ = 0 implies ζ → 0 and Eε(u) → 0 as ε→ 0.
We see that

(2.23) Gε(u,A) ≥ G0 − C

|log ε|
when

∑
j∈J |dj | = 0.

To prove that Gε(u,A) is no longer the Meissner state, we construct a sequence
of functions (uε, Aε) which have lower energy than the Meissner energy when hex >
	2|log ε|

2 . Set Aε = hex∇⊥ξ	 + ∇⊥ζ, where ξ	 is defined in (2.4) and

(2.24) − 1
�2

Δ2ζ + Δζ = 2πδa in U, Δζ = ξ	 = 0 on ∂U.

To define uε = ρεe
iϕε we set ∇ϕε = Aε + 1

	2∇⊥ curlAε and

ρε =
{

0 |x− a| ≤ ε
2 ,

1 |x− a| ≥ ε.

Then for any BR ⊃ {a},
∫

∂BR
∂τϕε =

∫
BR

hε− 1
	2 Δhε = 2π, which correctly quantizes

the phase. A straightforward calculation shows that Eε(uε) ≤ π log diam U
ε + C ≤

π|log ε| + C, where C is a fixed constant. The arguments in section 4 contain more
refined upper bound calculations; however, they are similar in spirit.

Following Step 1 of the proof of Proposition 2.5 yields

1
2

∫
U

A2
ε |uε|2 +

1
�2

|curlAε − hex|2

≤ h2
ex

2

∫
U

|∇ξ	|2 +
1
�2

|Δξ	 − hex|2 +
1
2

∫
U

|∇ζ|2 +
1
�2

|Δζ|2 +
C

|log ε| .

Again we decompose ‖∇u−i∇⊥ζu‖2
L2(U) = ‖∇u‖2

L2(U)−2
∫
j(u)·∇⊥ζ+‖∇⊥ζu‖2

L2(U),
and a similar calculation as in Step 1 shows

Gε(uε, Aε) ≤ Eε(uε) −
∫

U

j(uε) · ∇⊥ (hexξ	 + ζ) +G0

+
1
2

∫
U

|∇ζ|2 +
1
�2

|Δζ|2 +
C

|log ε|

≤ G0 + π|log ε| − 2πhex

�2
(1 − o	(1)) + C

+
1
2

∫
U

|∇ζ|2 +
1
�2

|Δζ|2 + 2πζ(a),

where we used (2.7) in the last inequality. Multiplying (2.24) by ζ and integrating over
U shows 2πζ(a) = −

∫
U
|∇ζ|2+ 1

	2 |Δζ|
2
< 0; hence 1

2

∫
U
|∇ζ|2+ 1

	2 |Δζ|
2+2πζ(a) < 0.

Therefore,

Gε(uε, Aε) ≤ G0 + π|log ε| − 2πhex

�2
(1 − o	(1)) + C.

Since hex >
	2|log ε|

2 , there exists δ > 0, bounded away from zero, such that π|log ε| −
2πhex

	2 (1 − o	(1)) + C < C − δ|log ε| < − |C|
2 for ε small enough; thus

Gε(uε, Aε) < G0 − |C|
2

< Gε(uε, Aε).
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Therefore, a vortex-less configuration cannot be minimizing in the hex > 	2|log ε|
2

regime.
Remark 2.9. For values of hex well above the critical field, we expect the mini-

mizers to be similar to the functions constructed in the proof of (4.2) in section 4.
Remark 2.10. The proof of the critical field for �0 ∈ [0,+∞) proceeds in the same

way as for the proof of Proposition 2.1 and can be done by a suitable modification
of the method in [21]. Since we handled the more difficult case � → +∞ such that
�ε = |log ε|γ for some γ ∈ R

+, we leave out the proof for the case �ε → �0 ∈ [0,+∞).

3. Obstacle problem for small and bounded domains. In this section, we
study the functional (1.3) where �ε → �0 ∈ [0,∞), i.e., for domain sizes s that are
smaller than or comparable with the penetration depth (s � λ or s = O(λ)), in the
critical scaling of energy and magnetic field.

The following result is a generalization of Theorem 1.3 in [12] (where it is proved
for � = 1). Closely related results in the context of the Chern–Simons–Higgs energy
were shown by the authors in [14, Theorem 1.3] and [15, Theorem 3]. We state the
theorem in its gauge-invariant form.

Theorem 3.1. Let (uε, Aε) be a sequence with Gε(uε, Aε) ≤ K|log ε|2 and assume
that hex satisfies hex

|log ε| → H for some H ≥ 0 and �ε → �0 ∈ [0,∞). Define the
following rescaled quantities:

aε :=
1

|log ε|Aε,

vε :=
1

|log ε| (iuε,∇uε),

wε := vε − |uε|2aε.

Then curlaε is weakly compact in L2(U), and wε is weakly compact in Lp for 1 ≤ p <
2. Furthermore, wε

|uε| converges weakly in L2 if and only if wε converges weakly, and
the weak limits are equal.

Any weak limit of (wε, curlaε) can be expressed in the form (v−a, curl a) for some
(v, a) ∈ L2(U ; R

2) ×H1(U ; R
2) such that curl v is a Radon measure. In addition, we

have the following Γ − lim inf inequality:

lim inf
ε→0

1
|log ε|2

Gε(uε, Aε) ≥ G(v, a),

where the limit functional G is given by
(3.1)

G(v, a) :=

⎧⎪⎨⎪⎩
1
2

∫
U |v − a|2 + 1

	20
| curl a−H |2 + 1

2 ‖curl v‖M if �0 > 0,
1
2

∫
U
|v − a|2 + 1

2 ‖curl v‖M if �0 = 0 and curla = H,
+∞ otherwise.

Conversely, for every (v, a) ∈ L2(U ; R
2) × H1(U ; R

2) such that curl v is a Radon
measure there exist approximating sequences (ũε, Ãε) such that the convergences above
hold and such that

(3.2) lim
ε→0

1

|log ε|2
Gε(ũε, Ãε) = G(v, a).

Proof. It suffices to check the theorem for sequences (uε, Aε) that satisfy the
Coulomb gauge condition divAε = 0 in U , A · ν = 0 on ∂U , since G(uε, Aε) =
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G(uεe
iχ, Aε + ∇χ) and the quantities wε and curlaε are invariant under this gauge

transformation. The limit functional G(v, a) also has the gauge invariance G(v +
∇χ, a+ ∇χ) = G(v, a).

From the energy bound Gε(uε, Aε) ≤ K|log ε|2 we infer that∫
U

| curlaε −H |2 ≤ 2K�2ε ≤ C,

since �ε is bounded, and together with div aε = 0 this implies ‖aε‖H1(U) ≤ C, and via
Sobolev embedding ‖Aε‖Lp(U) ≤ Cp|log ε| for p ≥ 1.

We can now establish that the BBH energy Eε(uε) is bounded, using the following
decomposition:

|∇Au|2 = |∇u|2 − 2j(u) ·A+ |u|2|A|2,

which implies that

Eε(uε) ≤ Gε(uε, Aε) +
∫

U

|j(uε) · Aε|.

As in [12], we can estimate the cross term via

|j(uε) · Aε| ≤
1
4
|∇uε|2 + |uε|2|Aε|2

≤ 1
4
|∇uε|2 +

(
|uε|2 − 1

)
|Aε|2 + |Aε|2

≤ 1
4
|∇uε|2 +

1
8ε2

(
1 − |uε|2

)2
+ 2ε2|Aε|4 + |Aε|2

≤ 1
2
Eε(uε) + Cε2|log ε|4 + C|log ε|2,

and it follows that Eε(uε) ≤ C|log ε|2. We are therefore able to use the compactness
results of [12] that show compactness for vε and the estimate

lim inf
ε→0

Eε(uε) ≥ 1
2

∫
U

|v|2 +
1
2
‖curl v‖M .

It is then not difficult to show the lower bound for the full energy using the same
decomposition as above and the weak convergence of aε implied by the bounds.

The Γ-limsup property (3.2) can be shown as follows: Given a limit (v, a) with
div a = 0, we set Ãε = a|log ε| and construct ũε as in [12, section 7]. It is then easy
to see that the claimed convergence holds, using the Γ-convergence result for Eε from
[12] and the same decomposition as above.

Remark 3.2. Note that compactness for vε only holds due to our choice of gauge.
The representative ũε = uεe

iχε corresponds to ṽε = vε + 1
|log ε|∇χε, and so vε and

ṽε need not have the same compactness properties. The limit functional G(v, a) also
has the gauge invariance G(v + ∇χ, a+ ∇χ) = G(v, a). If �ε → ∞, the compactness
argument for aε fails, since we only know that

∫
U
| curlaε − H |2 ≤ K�2ε, so this

sequence need not be bounded. The example given (for H = 0) in [15, Theorem 5],
which can be used for (1.3), shows that vε also need not be compact in this case,
even if divAε = 0. In fact we construct a sequence of (vε, aε) with bounded energy
but ‖vε‖L2(U) � log(�ε ∧ 1

ε|log ε|1/2 ) → +∞ by constructing a set of vortices that
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concentrate about a single point. Therefore, the energy splitting approach of [12] is
insufficient to treat the case of large domains.

As in [20], we can characterize the minimizers of the limit functional. We obtain,
following the presentation of [12], Theorem 1.3.

Proof of Theorem 1.3. We prove only the part for �0 = 0; the first half can be
shown by a completely straightforward insertion of �−2 into the argument of [12]. Our
proof of the second half also follows the structure of their argument.

For a Radon measure μ ∈ H−1, define the vector field vμ ∈ L2(U ; R
2) by curl vμ =

μ and div vμ = 0. We decompose μ as μac + μsing into an absolutely continuous and
a singular part. Setting g(t, μ) = G(v0 + tvμ, a), we calculate

0 ≤ lim
t→0+

g(t, μ) − g(0, μ)
t

=
∫

U

(v0 − a0, v
μ) +

1
2

∫
U

sgn(μ0)dμac +
1
2

∥∥μsing
∥∥ (U).

Integrating by parts and using the definition of y0, we see that∫
U

(v0 − a0, v
μ) =

∫
U

y0μ,

so we obtain

(3.3) 0 ≤
∫

U

(
y0 +

1
2

sgn(μ0)
)
dμac +

∫
U

(
y0 +

1
2

sgn(μ)
)
dμsing

and similarly by one-sided differentiation in the opposite direction,

(3.4) 0 ≥
∫

U

(
y0 +

1
2

sgn(μ0)
)
dμac +

∫
U

(
y0 −

1
2

sgn(μ)
)
dμsing .

Together, (3.3) and (3.4) imply, due to the arbitrariness of μac and μsing, that |y0| ≤ 1
2

everywhere and y0 = − 1
2 sgn(μ0) in sptμ0. It follows that for any smooth function ϕ

with ϕ(z) = 0 for z ≤ 0 and ϕ′(z) ≥ 0 there holds∫
U

ϕ(y0)dμ0 = −ϕ
(

1
2

)
μ−

0 (U),

where μ−
0 denotes the negative part in the Hahn decomposition of μ0. Since μ0 =

−Δy0 +H , we can integrate by parts and obtain∫
U

ϕ(y0)dμ0 =
∫

U

ϕ′(y0)|∇y0|2 + ϕ(y0)H ≥ 0,

and we conclude that μ−
0 (U) = 0 and so μ0 ≥ 0.

To see that y0 is a solution of the obstacle problem, we take any y ∈ K and
compare using |v|2 − |w|2 ≥ 2(v − w) · w and integration by parts:

F0,H(y) − F0,H(y0) ≥
∫

U

∇(y − y0) · ∇y0 + (y − y0)H =
∫

U

(y − y0)dμ0.

Now y0 = − 1
2 on spt(μ0), so (y− y0) ≥ 0 on spt(μ0) for all y ∈ K . It follows that y0

is a minimizer of the obstacle problem. Standard theory [9] can now be used to show
uniqueness of y0.

Remark 3.3. Another proof of Theorem 1.3 can be given in the framework of
Brezis and Serfaty [7], who examine the obstacle problem arising from (1.7).



2096 MATTHIAS KURZKE AND DANIEL SPIRN

Corollary 3.4. Let (v0, a0) be a minimizer of G(v, a). Then curl v0 = 0 for
H < H1(�0) and curl v0 �= 0 for H > H1(�0), where H1(�0) is given by

(3.5) H1(�0) =
1

2 maxU |y	0 |
,

where y	0 is the solution of

−Δy	0 + �20y	0 + 1 = 0

with Dirichlet boundary conditions y	0 = 0 on ∂U .
Remark 3.5. We reiterate that the function H1 in (3.5) satisfies 2H1(	0)

	20
→ 1 as

�0 → ∞.
Remark 3.6. In the case where U = B1(0) is a ball, the function H1 can be written

down explicitly since the solutions of −Δy + αy + 1 = 0 with Dirichlet boundary
conditions are given by known special functions. Denoting by I0 the modified Bessel
function of zeroth order, we have that

H1(�0) =
�20I0(�0)

2(I0(�0) − 1)
.

Since I0(x) ∼ ex
√

2πx
as x→ ∞ and I0(x) = 1 + x2

4 +O(x4) as x→ 0, it is easy to see
that this matches the claimed behavior at zero and infinity.

4. Upper bound for vortex lattices. In this section, we construct good com-
parison sequences that correspond to vortex lattices and calculate their energy.

Proposition 4.1. Assume ε < C√
hex

and ε → 0. There exists a sequence of
functions (uε, Aε) such that the Ginzburg–Landau energy satisfies

(4.1) Gε(uε, Aε) ≤ hex
|U |
2

(
log

1√
hexε

+ C

)
.

If hex − 	2|log ε|
2 = S � 1 and hex ≤ 1

ε2 , then there exists a sequence of functions with
Ginzburg–Landau energy

(4.2) Gε(uε, Aε) ≤ |U |
2

(
S
(∣∣∣log

(
εmax(

√
S, �)

)∣∣∣+ C
)

+
�2

4
|log ε|2

)
.

Remark 4.2. The bound given in (4.2) is better than that of (4.1). It is essentially
equivalent to the one given for � = 1 in Proposition 5.8 of Aydi’s thesis [3]. Aydi’s
upper bound, adapted to our setting, reads as

Gε(uε, Aε) ≤ |U |
2

((
1
2
|log ε| + S

)2

− 1
2
S2

)
,

and, expanding the square, this is essentially (4.2).
Remark 4.3. If �2 ≥ Khex, then

Gε(1, 0) ≤ hex
|U |
2K

.

In particular, there is a constant K > 0 such that our vortex lattice construction is
not minimizing for �2 ≥ Khex.
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Remark 4.4. Under the assumptions for the upper bound (4.2), the trivial
Meissner-like state (u,A) = (1, 0) has the energy

|U |
2

(
S2

�2
+ S|log ε| +

�2

4
|log ε|2

)
.

Since | log(εmax(�,
√
S))| ≤ |log ε| − C, the vortex lattice state with O(S) vortices

is energetically favorable compared to (u,A) = (1, 0). Consult Proposition 2.1 for a
more detailed statement regarding the first critical field for vortex nucleation.

We now turn to the proof of Proposition 4.1. We present a new elementary
approach using Fourier series to estimate the energy of a vortex lattice. This approach
shows the cross-over that happens at L = �−1; this is related to the decay properties
of the Bessel function–type solutions. On the unit cell of our lattice, we investigate
solutions of

(4.3) −αΔh+ h = 2πδε in KL

with homogeneous Neumann boundary conditions. Here KL =
(
−L

2 ,
L
2

)2
for some

L > 0. This is equivalent to looking at LZ
2-periodic solutions in R

2. For δε we use
the Dirac sequence

δε(x) =
1

4ε2
χ(−ε,ε)(x1)χ(−ε,ε)(x2),

where χA is the characteristic function of a set A ⊂ R. We assume 2ε < L. We obtain
the following results on the lattice.

Proposition 4.5. There exists a C > 0 such that for any L, ε with ε < L
2 there

exists a periodic function h such that −�−2Δh+ h = 2πδε and

(4.4)
∫

KL

�−4|∇h|2 + �−2|h− hex|2 ≤ 2π log
1

max(�, L−1)ε
+ C + L2

(
hex − 2π

L2

)2

.

Proof. We calculate the energy∫
KL

α2|∇h|2 + �−2|h− hex|2.

It will become apparent later that we should use α = �−2.
We use double Fourier series as follows. For f ∈ L2(KL) and k ∈ Z

2, set

ak =
1
L2

∫
KL

f(x)e−iγk·x,

where γ = 2π
L . Then f can be reconstructed as

f(x) =
∑
k∈Z2

ake
iγk·x.

By Plancherel’s theorem we have∫
KL

|f |2 = L2
∑
k∈Z2

|ak|2.
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It is standard that ∇f corresponds to the series (iγkak), and Δf to the series
(−γ2|k|2ak). Solving (4.3) therefore corresponds to

(αγ2|k|2 + 1)ak = bk,

where bk are the Fourier coefficients for δε.
We calculate these coefficients. Set k = (k1, k2). If k1k2 �= 0, then

bk =
2π

4ε2L2

4 sin(γk1ε) sin(γk2ε)
γ2k1k2

.

In other cases we have

b(m,0) = b(0,m) =
2π

4ε2L2

4ε sin(γmε)
γm

and finally b0 = 2π
L2 corresponding to

∫
KL

h = 2π.
To simplify notation we write this using sinc(x), the continuous continuation of

sin x
x , which yields

bk =
2π
L2

sinc(γk1ε) sinc(γk2ε).

Since a0 = b0 = 2π
L2 , we have that∫

|h− hex|2 = L2
∑
k �=0

|ak|2 + L2

(
2π
L2

− hex

)2

.

We want to calculate

E = L2
∑

k∈Z2\0
(α2γ2|k|2 + α)|ak|2 + L2

(
2π
L2

− hex

)2

.

Using the expressions obtained for bk above, it follows that we have

E =
4π2

L2

∑
k∈Z2\0

α

α|γ|2|k|2 + 1
sinc2(γεk1) sinc2(γεk2) + L2

(
2π
L2

− hex

)2

.

We split up the double sum as follows. First, consider k = (k1, k2) with 1 ≤ |k| ≤ 1
γε .

For these terms we estimate | sinc | ≤ 1. We label this part of the energy E1, and so

E1 ≤ 4π2

L2

∑
K1

α

αγ2|k|2 + 1
.

Now we compare the sum with an integral. For any decreasing function f , we have

∑
1≤|k|≤A

f(|k|) ≤
∫ A+ 1√

2

1− 1√
2

f(r)2πrdr

and so

E1 ≤ 4π2

L2

∫ 1
γε +c

1−c

2παr
1 + αγ2r2

dr =
4π2

L2γ2

(
2π
2

log(αγ2x2 + 1)
) ∣∣∣∣x= 1

γε +c

x=1−c

,
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where c = 1√
2
. As 4π2

L2γ2 = 1, we obtain

E1 ≤ 2π
2

log
α
ε2 + 2cαγ

ε + c2 + 1
αγ2(1 − c)2 + 1

.

We distinguish two cases. If αγ2 ≤ 1, we estimate the denominator as ≥ 1 and obtain

E1 ≤ 2π
2

log
α

ε2
+ C ≤ 2π log

√
α

ε
+ C.

In the case where αγ2 ≥ 1, we estimate the denominator as ≥ Cαγ2 and obtain

E1 ≤ 2π
2

log
1

γ2ε2
+ C ≤ 2π log

1
γε

+ C

if αγ > ε.
We still need to deal with the frequencies k with |k| ≥ 1

γε . For this we use that
sinc2(x) sinc2(y) ≤ 2

r2 , which can be seen as follows. Assume without loss of generality
that |x| ≤ |y|. Then r2 = x2 + y2 ≤ 2y2. Estimating | sinc(x)| ≤ 1 and | sinc(y)| ≤ 1

y ,
we see that sinc2(x) sinc2(y) ≤ 1

y2 ≤ 2
r2 , as claimed.

To calculate the energy contribution E2 of those k with |k| ≥ 1
γε , we again replace

the sum by an integral. Using the sinc bound, we see that

E2 ≤ 4π2

L2

∫ ∞

1
γε−c

4παr
(αr2γ2 + 1)γ2r2ε2

.

We estimate this using 4π2L−2γ−2 = 1 as

E2 ≤ C

∫ ∞

1
γε−c

1
γ2ε2r3

dr ≤ C

γ2ε2
· 1

( 1
γε − c)2

,

and for 1
γε > 2c we obtain that E2 ≤ C. The claim then follows using the defini-

tions.
Choosing L = 2π

hex
in (4.4) implies the following upper bound.

Corollary 4.6. If ε < 1
2
√

hex
, then there exists a periodic function h with period

L =
√

2π
hex

such that −�−2Δh+ h = δε and

∫
KL

�−4|∇h|2 + �−2|h− hex|2 ≤ 2π log
1

max(�,
√
hex)ε

+ C.

Furthermore, for any L > 2ε there exists h with −�−2Δh+ h = δε and∫
KL

�−4|∇h|2 + �−2|h− hex|2 ≤ 2π log
1

max(�,
√
hex)ε

+ C + L2�−2

(
2π
L2

− hex

)2

.

Remark 4.7. This can be easily extended to ε ≤ C√
hex

for any C that is bounded
independently of ε, �, and hex by choosing ε̃ = 2ε

C and constructing with ε̃ instead
of ε.
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To construct a pair (u,A) from h, we do the following. To define the modulus ρ,
we set

ρ(r) =

⎧⎪⎨⎪⎩
0, r < ε

√
2,

r−ε
√

2
ε , ε

√
2 < r < ε(1 +

√
2),

1, r > ε(1 +
√

2).

We take any A with curlA = h. Outside Bε
√

2, we define u as ρeiϕ, where ∇ϕ−A =
α∇⊥h. This is possible since for any simple closed curve Γ ⊂ KL \Bε

√
2 with Γ = ∂G

we have

(4.5)
∫

Γ

∂ϕ

∂τ
=
∫

Γ

A · τ − α
∂h

∂ν
=
∫

G

(−Δh+ h) =

{
2π if G ⊃ Bε

√
2,

0 otherwise.

On KL, we can therefore estimate

(4.6)
1
2

∫
KL

|(∇− iA)u|2 + �−2|h− hex|2 +
1

2ε2
(1 − ρ2)2

≤ 1
2

∫
KL

ρ2�−4|∇h|2 + �−2|h− hex|2 + |∇ρ|2 +
1

2ε2
(1 − ρ2)2

≤ C + π log
1

max(�,
√
hex)ε

.

We are now in the position to establish the following argument.
Proof of Proposition 4.1. This will be done in two steps.
Step 1. We use the above construction to build an h in R

2 and to define a periodic
ρε corresponding to the lattice. As the equivalent of (4.5) holds in all of R

2, we can
define (u,A) in all of R

2 such that (4.6) holds on every cell of the lattice. All we
need to do is choose a proper origin for our lattice: For any a ∈ KL we can set
(ua(z), Aa(z)) = (u(z − a), A(z − a)), which has energy density gla(z) = gl(z − a),
where gl(z) = 1

2 |(∇− iA)u|2(z)+�−2| curlA(z)−hex|2 + 1
2ε2 (1−|u(z)|2)2. Integrating

over the unit cell, we see that∫
KL

Gε(ua
ε , A

a
ε ;U)da =

∫
KL

∫
U

gla(z)dzda = |U |Gε(u,A;KL).

The mean value theorem shows that there exists some a such that G(ua, Aa;U) ≤
|U|
|KL|G(u,A;KL), and since |KL| = hex

2π , this finishes the proof of (4.1).
Step 2. We follow the argument in Step 1; however, we choose a lattice of size

L =
√

2π
S , which is optimal up to logarithmic terms. Since hex ≤ ε−2 and S � 1, we

have 2ε ≤ L � 1, and we can follow the same construction as above and obtain for
the energy after choosing a suitable origin

G(uε, Aε;U) ≤ |U |
2|KL|

(
2π log

1
max(

√
S, �)ε

+ C + L2�−2

∣∣∣∣hex − 2π
L2

∣∣∣∣)
=

|U |
2

(
S

2π

(
2π log

1
max(

√
S, �)ε

+ C

)
+ �−2

(
1
2
�2|log ε|

)2
)

=
|U |
2

(
S log

1
max(

√
S, �)ε

+ C +
1
4
�2|log ε|2

)
since hex − 2π

L2 = hex − S = 1
2�

2|log ε|. This completes the proof of (4.2).
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5. Lower bound for vortex lattices. The lower bound counterpart to Propo-
sition 4.1 can be obtained similarly to the calculation in [18] (see also [19]). We can
actually get a uniform vortex density estimate.

The heart of the lower bound argument is the following blow-up estimate.
Proposition 5.1. Assume that �2|log ε| � hex � 1

ε2 , and let (uε, Aε) be a
minimizer of the Ginzburg–Landau energy (1.3). Then for every H > 0 we can find
λ with �� λ� 1

ε such that for every x such that the ball B(x, 1
λ ) ⊂ U there holds

(5.1) Gε

(
uε, Aε;B

(
x,

1
λ

))
≥
αH |B(x, 1

λ)|
2

hex log
1

ε
√
hex

(1 − oε(1)),

where αH satisfies αH → 1 for H → ∞.
Proof. We follow the proof of Proposition 8.2 in [18] and rescale by λ. Setting

u(x) = u′(λx), A′(x) = λA(λx), ε′ = λε, and h′ex = hex

λ2 , the claim is equivalent to
proving for a ball B1 of radius 1 that

(5.2)
1
2

∫
B1

|(∇− iA′)u′|2 +
λ2

�2
| curlA′ − h′ex|2 +

1
2ε′2

(1 − |u′|2)2

≥ αH |B1|
2

h′ex log
1

ε
√
hex

(1 − oε(1)).

Since ε2�2|log ε| � ε2hex � 1 and using the asymptotic behavior of the function
x �→ Hx2 log 1

x near 0, we can find λ such that ε2hex = H(ελ)2 log 1
ελ . It also follows

that λ satisfies �� λ� 1
ε .

With this choice of λ, we have ε′ → 0 and h′ex = H | log ε′|. We also have
log 1

ε
√

hex
= | log ε′|(1 − oε(1)), and so it suffices to prove that (dropping some ε’s)

(5.3) G′
ε′(u′, A′;x) =

1
2

∫
B1(x)

|(∇− iA′)u′|2 +
λ2

�2
| curlA′ − h′ex|2 +

1
2ε′2

(1 − |u′|2)2

≥ HαH |B1|
2

| log ε′|2(1 − oε(1))

for some αH with αH → 1 as H → ∞.
Depending on the blow-up origin x, we distinguish two cases. EitherG′

ε′(u′, A′;x) �
| log ε′|2 (in which case (5.3) is true trivially) or G′

ε′(u′, A′;x) ≤ K| log ε′|2. In
the latter case we can use the Gamma-convergence result Theorem 3.1 to see that

1
| log ε′| (iu

′
ε,∇u′ε) ⇀ v and 1

| log ε′|A
′
ε ⇀ a. As λ� �, we are in the case �0 = 0.

Letting (v0, a0) denote the minimizer of the functional G defined in (3.1), we now
use the characterization of the limit in Theorem 1.3. It follows that curla0 = H .
Using Lemma 5.3 below, curl v0 = H on Br0(H) with r0(H) → 1 for H → ∞. As
curl v0 ≥ 0 by Theorem 1.3, it follows that

lim inf
ε→0

1
| log ε′|2G

′
ε′(u′, A′;x) ≥ G(v, a) ≥ G(v0, a0) ≥ 1

2
‖ curl v0‖M(5.4)

≥ H
|Br0(H)|

2
= HαH

|B1|
2
,

and αH → 1 by Lemma 5.3.
Combining this with the result of the previous section, we obtain the following

claim.
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Proposition 5.2. Assume that �2|log ε| � hex � 1
ε2 , and let (uε, Aε) be a

minimizer of the Ginzburg–Landau energy (1.3). Then the energy density

gε =
1
2

(
|∇Aεuε|2 +

1
�2
| curlAε − hex|2 +

1
2ε2

(1 − |uε|2)2
)

satisfies

gε

hex log 1
ε
√

hex

⇀ L 2

in the sense of measures, and the energy satisfies

(5.5) Gε(uε, Aε) =
1
2
|U |hex log

1
ε
√
hex

(1 − oε(1)) .

Proof. As in [18], this follows by integrating (5.1) over the domain. If W ⊂⊂ U
is a compactly contained subdomain, then we can use Fubini’s theorem and estimate

(5.6)
∫

W

Gε

(
uε, Aε;B

(
x,

1
λ

)
∩W

)
dx =

∫
x∈W

∫
y∈B(x, 1

λ )∩W

gεdydx

=
∫

y∈B(x, 1
λ )∩W

∫
x∈W

gεdxdy =
∫

y∈W

∣∣∣∣B(y, 1
λ

)
∩W

∣∣∣∣gεdy ≤ π

λ2
Gε(uε, Aε;W ).

Using now (5.1) and Fatou’s lemma, we continue to estimate

(5.7) lim inf
ε→0

Gε(uε, Aε;W )
hex log 1

ε
√

hex

≥ lim inf
ε→0

∫
x∈W

λ2Gε(uε, Aε;B(x, 1
λ ∩W ))

πhex log 1
ε
√

hex

≥
∫

x∈W

lim inf
ε→0

(
χ{x:B(x, 1

λ )⊂W}
Gε(uε, Aε;B(x, 1

λ))
|B(x, 1

λ )|hex log 1
ε
√

hex

)
≥ 1

2
|W |.

Using the upper bound of the previous section, we can deduce the existence of a
weak limit g of gε

hex log 1

ε
√

hex

. Using an approximation result, we see from (5.7) that

g ≥ 1
2L 2, and by the upper bound, equality follows.
Lemma 5.3. For the domain U = B1(0), the unique minimizer y0 of

F0,H(y) =
1
2

∫
B1(0)

|∇y|2 + 2yH

in the admissible class

K =
{
y ∈ H1

0 (B1(0)) : y ≥ −1
2

a.e. in B1(0)
}

satisfies y0 ≡ − 1
2 in Br0(H) with r0(H) → 1 as H → ∞. Furthermore, the minimizer

(v0, a0) of the functional G given in (3.1) satisfies curl v0 = H on Br0(0), and αH =
‖ curl v0‖M

H|B1(0)| → 1 as H → ∞.
Proof. Using the uniqueness and regularity properties [9], we can calculate the

solution of the obstacle problem explicitly: It is given by

y0(r) = max
{
H

(
r2

4
− 1

4
+
r20
2

log r
)
,−1

2

}
,
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where r0 is chosen such that

H

(
r20
4

− 1
4

+
r20
2

log r0

)
= −1

2
,

which we rewrite as

(5.8) 1 − 2
H

= r20(1 + 2 log r0).

From (5.8), it is easy to see that r0 → 1 as H → ∞.
In Br0 , y0 ≡ − 1

2 , so Δy0 = 0, and from Theorem 1.3 we infer curl v0 = H in Br0 ,
and curl v0 ≥ 0 elsewhere, which shows the claim.

Acknowledgments. The authors wish to thank the referees for many helpful
suggestions, including the approach to Proposition 5.2, that significantly improved
the paper.
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INVERSE SPECTRAL AND SCATTERING THEORY FOR THE
HALF-LINE LEFT-DEFINITE STURM–LIOUVILLE PROBLEM∗
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Abstract. The problem of integrating the Camassa–Holm equation leads to the scattering
and inverse scattering problem for the Sturm–Liouville equation −u′′ + 1

4
u = λwu, where w is a

weight function which may change sign but where the left-hand side gives rise to a positive quadratic
form so that one is led to a left-definite spectral problem. In this paper the spectral theory and a
generalized Fourier transform associated with the equation −u′′ + 1

4
u = λwu posed on a half-line

are investigated. An inverse spectral theorem and an inverse scattering theorem are established. A
crucial ingredient of the proofs of these results is a theorem of Paley–Wiener type which is shown to
hold true. Additionally, the accumulation properties of eigenvalues are investigated.

Key words. inverse scattering problems, inverse spectral problems, left-definite problems,
Sturm–Liouville, Camassa–Holm equation
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1. Introduction. Standard Sturm–Liouville theory deals with the eigenvalue
problem

(1.1) −(pu′)′ + qu = λwu,

together with appropriate boundary conditions, in the space L2
w of functions square

integrable with respect to the weight w, i.e., the norm-square of the space is ‖u‖2 =∫
|u|2w. A basic assumption for this to be possible is that w ≥ 0. In some situations

of interest this is not the case, but instead one has p > 0, q ≥ 0. One may then use
as a norm-square the integral

∫
(p|u′|2 + q|u|2), and a problem of this type is usually

called left-definite. A left-definite problem of current interest is the spectral problem
associated with the Camassa–Holm equation, which is of the form

(1.2) −u′′ + 1
4u = λwu.

The Camassa–Holm equation is an integrable system in a similar sense as the
Korteweg–de Vries (KdV) equation. It was first derived as an abstract bi-Hamiltonian
system by Fuchssteiner and Fokas [22]. Subsequently, it was shown by Camassa and
Holm [11] that it may serve as an integrable model for shallow water waves. In
that paper Camassa and Holm also showed that the solitons are peaked and called
them peakons (see also Fokas and Liu [21] and Johnson [23]). In contrast to the
KdV equation the Camassa–Holm equation may model breaking waves, i.e., smooth
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initial data may develop singularities in finite time; cf. Constantin and Escher [15]
and Constantin [13] (see also Bressan and Constantin [10] for a way to resolve the
singularities due to wave breaking). This, however, happens only when w changes
sign and it is this fact which motivates us to consider (1.2) without the assumption
that w is positive. The well developed theory of scattering and inverse scattering for
the Schrödinger equation is of crucial importance to the theory of the KdV equation.
In the same way scattering/inverse scattering theory for (1.2) is important for dealing
with the Camassa–Holm equation. Unfortunately, no such theory is available unless
w ≥ 0, and even then current theory requires more smoothness of w than is convenient
to assume, in view of the lack of smoothness for the corresponding peakons.

The problem of inverse scattering for (1.2) is considerably more difficult than for
the Schrödinger equation, which may be viewed as a rather mild perturbation of the
equation −u′′ = λu. In case of (1.2) the perturbation is of the equation −u′′+ 1

4u = λu,
and thus changes the coefficient containing the eigenvalue parameter λ. It appears
that the methods used so far for dealing with the Schrödinger equation are no longer
applicable.

In this paper we will prove some uniqueness results for inverse spectral theory
and inverse scattering for the left-definite case which apply to (1.2) posed on a half-
line. One would also like to have results for the full-line, but this appears to be more
difficult. One exception is the case of odd initial data for the Camassa–Holm equation
on the full-line because the problem can be reduced to one on a half-line. We mention
here that the half-line case was also investigated by Boutet de Monvel and Shepelsky
[8], [9], who employ Riemann–Hilbert techniques but assume that w is positive. Our
approach is via the inverse spectral theory for the left-definite problem, which also
is not very well developed. Even the spectral theory for left-definite problems is not
widely known (but see for example [1]), in the level of detail necessary for dealing with
the inverse problem. We will therefore start by presenting a reasonably comprehensive
spectral theory, then prove some uniqueness theorems for the inverse spectral problem,
and finally a uniqueness theorem for inverse half-line scattering.

Spectral theory for left-definite Sturm–Liouville problems seems to have been
initiated by Weyl [28], who called such problems polar. Later many authors have
dealt with more or less general left-definite problems. In particular we mention a
series of papers by Niessen, Schneider, and their collaborators on singular left-definite
so-called S-hermitian systems; see, e.g., [26]. See also [1] and the references cited
there. For a more recent contribution, see Kong, Wu, and Zettl [24]. However, papers
in inverse spectral theory for left-definite problems are much more scarce; one example
is Binding, Browne, and Watson [7].

Because of the connection with the Camassa–Holm equation the inverse scattering
problem for (1.2) has attracted some attention. From the physical point of view the
full-line case where w decays at infinity and the periodic case are most interesting. The
former was treated by Fokas [20] and Constantin and various co-authors, for example
in [14], [16], and [17]. The latter was addressed by Constantin and McKean [18],
Constantin [12], and Vaninsky [27]. The full-line case with odd initial data reduces
to a half-line case, but the half-line case is also of interest independently.

It will be convenient to deal only with the equation

(1.3) −u′′ + qu = λwu.

There is no loss of generality in doing this, since the change of variable t =
∫ x

0
1/p

will, as is readily seen, turn (1.1) into an equation of this form.



INVERSE SCATTERING FOR A LEFT-DEFINITE PROBLEM 2107

The plan of the paper is as follows. In section 2 we give a general spectral theory
for left-definite problems on intervals with at least one regular endpoint, modelled
on standard Titchmarsh–Weyl theory. One may extend this to intervals with two
singular endpoints, in the same way as one can extend the right-definite theory, but
since we will have no use of it here we have abstained from this.

In section 3 we deal with the generalized Fourier transform associated with a
left-definite problem. To simplify the discussion we have restricted ourselves to one
case, when so-called finite functions are dense in the Hilbert space associated with the
equation. There are no fundamental difficulties involved in dealing with the general
situation, but again we have no need of it in the applications we are thinking of.

Section 4 discusses uniqueness of the inverse spectral problem. Unfortunately we
have neither a characterization nor a reconstruction algorithm, but the fundamental
uniqueness theorem is quite general.

In section 5 we prove a theorem of Paley–Wiener type which is crucial for our
approach to the inverse spectral theory, and section 6 deals with the uniqueness theo-
rem for the half-line inverse scattering of a left-definite problem. Section 7 is devoted
to some results about the number of eigenvalues for a left-definite problem under
scattering conditions. Some elementary, but rather lengthy, calculations needed in
section 4 have been relegated to the appendix.

2. Spectral theory. We shall consider (1.3) on an interval [0, b) and assume
that q and w are real-valued and integrable on compact subsets of [0, b), that q ≥ 0,
and that neither q nor w vanish a.e. Let H1 be the set of locally absolutely continuous
functions u defined in [0, b) such that u′ ∈ L2(0, b) and q|u|2 ∈ L1(0, b). As we shall
see presently H1 is a Hilbert space with scalar product

〈u, v〉 =
∫ b

0

(u′v′ + quv)

and norm ‖u‖ =
√
〈u, u〉. In order to show completeness of H1 and discuss how to

find self-adjoint realizations corresponding to (1.3) we first note the following simple
result.

Lemma 2.1. For any a ∈ [0, b) there exists a constant Ca such that

(2.1) |u(x)| ≤ Ca‖u‖

for any x ∈ [0, a] and any u ∈ H1.
Proof. By the fundamental theorem of calculus and the Cauchy–Schwarz in-

equality |u(x)| ≤ |u(y)| + |y − x|1/2
( ∫ b

0
|u′|2

)1/2. If c ∈ [a, b) is such that
∫ c

0
q > 0,

multiplication by q(y) and integrating with respect to y gives

|u(x)|
∫ c

0

q ≤
∫ c

0

q|u| + c1/2

∫ c

0

q

(∫ b

0

|u′|2
)1/2

.

Using Cauchy–Schwarz again we obtain (2.1) with Ca =
(
c+ 1/

∫ c

0
q
)1/2.

Proposition 2.2. The space H1 is complete.
Proof. By (2.1) a Cauchy sequence u1, u2, . . . in H1 converges locally uniformly

to a continuous function u. Furthermore,
√
quj and u′j converge in L2[0, b) to

√
qu

and, say, v, respectively. Now

uj(x) − uj(0) =
∫ x

0

u′j.
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Letting j → ∞ we obtain u(x) = u(0) +
∫ x

0
v. Thus u is absolutely continuous with

derivative v and uj converges to u in H1.
Denote the set of integrable functions with compact support in (0, b) by L0. Then,

if u ∈ H1 and v ∈ L0, it follows that |
∫
uv| ≤ Ca

∫
|v| ‖u‖ if supp v ⊂ [0, a], so that

the linear form H1 � u 
→
∫
uv is bounded. By Riesz’s representation theorem we may

therefore find a unique v∗ ∈ H1 so that
∫
uv = 〈u, v∗〉. Clearly v∗ depends linearly

on v, so we obtain a (bounded) operator G0 : L0 → H1 such that

〈u,G0v〉 =
∫ b

0

uv for u ∈ H1, v ∈ L0.

The operator G0 is central for the left-definite spectral theory of (1.3).
Proposition 2.3. The operator G0 is an integral operator G0u(x) =

∫
u g0(x, ·),

it is injective, and its restriction to L0 ∩H1 is symmetric with range dense in H1.
Proof. By (2.1) the map H1 � u 
→ u(x) is for each fixed x ∈ [0, b) a bounded

linear form, so there exists an element g0(x, ·) ∈ H1 so that u(x) = 〈u, g0(x, ·)〉 for
u ∈ H1, and therefore G0v(x) = 〈G0v, g0(x, ·)〉 =

∫ b

0
v g0(x, ·) for any v ∈ L0. Thus G0

is an integral operator with kernel g0(x, y) (actually, as we shall see in Proposition 2.7,
g0 is real-valued). If u and v ∈ L0 ∩H1, then

〈G0u, v〉 = 〈v,G0u〉 =
∫ b

0

uv = 〈u,G0v〉,

so the restriction of G0 to L0 ∩H1 is symmetric.
Let [c, d] ⊂ (0, b) and uj(x) = min(1, j(x−c), j(d−x)) for x ∈ [c, d] and uj(x) = 0

otherwise. Then uj ∈ L0 ∩ H1 and tends boundedly to the characteristic function of
[c, d] as j → ∞, so if G0v = 0, it follows from 0 = 〈G0v, uj〉 =

∫
vuj that

∫ d

c v = 0
for all [c, d] ⊂ (0, b). Thus v = 0 a.e. so that G0 is injective. On the other hand,
if u ∈ H1 is orthogonal to G0v for all v ∈ L0 ∩ H1, we may put v = uj, so that
0 = 〈u,G0uj〉 →

∫ d

c u. It follows that u = 0 so the range of G0 restricted to L0 ∩ H1

is dense and the proof is complete.
We shall have to briefly use the theory of symmetric relations as presented in [1,

section 1], and define maximal and minimal relations corresponding to (1.3). We start
by setting

Tc = {(G0(wv), v) | v ∈ L0 ∩H1}.

Then, since w is real-valued, Tc is a symmetric relation in H1 for

〈G0(wu), v〉 = 〈v,G0(wu)〉 =
∫ b

0

wuv = 〈u,G0(wv)〉.

Proposition 2.3 implies that Tc is the graph of a densely defined symmetric operator
in H1 if suppw = [0, b), but at this point we do not want to exclude the possibility
of w vanishing on an open set. We define the minimal relation T0 as the closure (in
H1 ⊕H1) of Tc, and the maximal relation T1 as the adjoint of this, i.e.,

T1 = {(u, f) ∈ H1 ⊕H1 | 〈u, v〉 = 〈f,G0(wv)〉 for all v ∈ L0 ∩H1}.

We must show that T1 is a differential relation.
Proposition 2.4. We have (u, f) ∈ T1 if and only if u and f ∈ H1, u′ is locally

absolutely continuous, and −u′′ + qu = wf .
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Proof. First note that if u and f ∈ H1, then the definition of G0 shows that

(2.2) 〈u, v〉 − 〈f,G0(wv)〉 =
∫ b

0

(u′v′ + quv − wfv)

for any v ∈ L0 ∩ H1. If in addition u′ is locally absolutely continuous and satisfies
−u′′ + qu = wf , integrating by parts gives

〈u, v〉 − 〈f,G0(wv)〉 =
∫ b

0

(−u′′ + qu− wf)v = 0.

This proves one direction of the proposition.
In proving the other direction the assumption is that the quantity (2.2) is zero.

But since C∞
0 (0, b) ⊂ H1 this means that the distributional derivative of u′ is qu−wf

so that u′ is locally absolutely continuous and u satisfies the differential equation.
To give a proof without the use of distribution theory we prove a variant of the

classical du Bois-Reymond lemma. If v ∈ L0 ∩H1, integration by parts in (2.2) gives

(2.3)
∫ b

0

{
u′ −

∫ x

0

(qu− wf) − C

}
v′ = 0

for any constant C. Now let [c, d] ⊂ (0, b) and choose C = 1
d−c

∫ d

c
{u′−

∫ x

0
(qu−wf)}.

Put v(y) = 0 for y /∈ [c, d] and

v(y) =
∫ y

c

{
u′(x) −

∫ x

0

(qu− wf) − C

}
dx

for y ∈ [c, d]. Then v ∈ L0 ∩H1 and (2.3) gives∫ d

c

∣∣∣∣u′ − ∫ x

0

(qu − wf) − C

∣∣∣∣2 = 0

so that u′−
∫ x

0
(qu−wf) is constant in [c, d]. Thus u′ is locally absolutely continuous,

and differentiation gives −u′′ + qu = wf .
Let Dλ = {(u, λu) ∈ T1} and let Dλ be the projection of Dλ onto its first com-

ponents, i.e., u ∈ Dλ means that u ∈ H1 and u satisfies −u′′ + qu = λwu. We then
have

T1 = T0 � Dλ � Dλ

as a direct sum for any nonreal λ. Here dimDλ = dimDλ is constant in each of the
upper and lower half-planes, and these dimensions will be called the deficiency indices
of T1. See [1, Theorem 1.4] for this simple generalization of the von Neumann formula
for symmetric operators and its consequences. It is clear that dimDλ ≤ 2, and that
dimDλ = dimDλ, since u ∈ Dλ if and only if u ∈ Dλ. Thus deficiency indices are
always equal, and there are always self-adjoint extensions of T0, which will at the
same time be restrictions of T1, and therefore realizations of (1.3). It is of course of
interest to have criteria in terms of the coefficients q and w for different values of the
deficiency indices dimDλ. In surprising contrast to the right-definite case, we have
the following simple and explicit criteria.

Theorem 2.5. Suppose Imλ �= 0 and let W be an antiderivative of w. Then
dimDλ = 2 if b <∞ and q +W 2 ∈ L1[0, b). Otherwise dimDλ = 1 for Imλ �= 0.
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The theorem is a special case of [2, Theorem 2.3]. See also [5]. In the right-definite
case a simple variation of constants argument shows that if dimDλ = 2 for one real
or nonreal value of λ, then this holds for all λ ∈ C. A similar argument shows that
this remains true in the left-definite case, with the exception that it is possible that
dimD0 = 2 even if dimDλ < 2 for all λ �= 0. This is to be expected, since D0 does
not depend on the choice of w. We characterize dimD0 completely in the following
theorem, which also brings out the significance of the space D0. We use the expression
finite function in H1 to denote a function which vanishes near b.

Theorem 2.6.

(1) The set D0 is the orthogonal complement in H1 of L0 ∩ H1 and has dimen-
sion 1 or 2.

(2) dimD0 = 2 if and only if b <∞ and q ∈ L1[0, b).
(3) If b <∞ and q ∈ L1[0, b), then v and v′ have finite limits at b for all v ∈ D0,

and these limits uniquely determine v.
(4) If b < ∞ and q ∈ L1[0, b), then every u ∈ H1 has a limit at b which is a

bounded linear form on H1.
(5) If dimD0 = 1 and D0 � v �≡ 0, then v(0)v′(0) < 0 and u(x)v′(x) → 0 as

x→ b for any u ∈ H1.
(6) Finite functions are dense in H1 if and only if dimD0 = 1.
Most of this is also a special case of the results of [2] and [5], but we give a simple

proof, an elaboration of which can also prove Theorem 2.5.
Proof. We have u ∈ D0 precisely if (u, 0) ∈ T1, which holds precisely if 〈u, v〉 =

〈u, v〉 − 〈0, G0(wv)〉 = 0 for all v ∈ L0 ∩ H1, proving the first claim. Since there are
elements v ∈ H1 with v(0) �= 0, and since u(0) = 0 for every u ∈ L0 ∩ H1, it follows
from (2.1) for x = 0 that dimD0 ≥ 1 and we have proved (1).

If b is finite and q integrable, standard existence and uniqueness theorems show
that all solutions of −v′′ + qv = 0 are continuously differentiable with absolutely
continuous derivative in [0, b], and thus in H1, and that they are uniquely determined
by the values of v and v′ at b. In this case the proof of Lemma 2.1 clearly also works
for a = b, so we have proved (3), (4), and one direction of (2).

Now let u ∈ H1 and v ∈ D0. Integration by parts gives

(2.4)
∫ x

0

(u′v′ + quv) + u(0)v′(0) = u(x)v′(x).

Thus u(x)v′(x) has a limit at b. If this is not 0, then (u(x)v′(x))−1 is bounded close
to b. Therefore u′/u = u′v′/(uv′) is integrable near b, so that u has a nonzero limit
at b. Since q|u|2 is integrable it follows that q ∈ L1(0, b). Similarly, v′′/v′ = qv/v′ =
qvu/(v′u) is integrable near b, so v′ has a nonzero limit at b. Since |v′|2 is integrable
it follows that b is finite.

Now, setting u = v �≡ 0 in (2.4) the integral is increasing, ≥ 0, and not constant,
so if v(0)v′(0) ≥ 0, then v(x)v′(x) cannot tend to 0 at b. However, if dimD0 = 2,
we may choose v ∈ D0 with v′(0) = 0, so it follows that q ∈ L1(0, b) and b finite,
completing the proof of (2).

On the other hand, if dimD0 = 1, then u(x)v′(x) must tend to zero for any
u ∈ H1. In particular, for u = v one therefore has v(0)v′(0) < 0 for any nonzero
v ∈ D0 which proves (5).

Finally, if u ∈ H1 is finite and v ∈ D0, integration by parts shows that 〈u, v〉 =
−u(0)v′(0), so the orthogonal complement of the finite functions consists of those
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v ∈ D0 for which v′(0) = 0. According to (5) this implies v = 0 if dimD0 = 1 and
the proof is complete.

It is now possible to give a detailed description of the kernel g0.
Proposition 2.7. The kernel g0(x, y) is real-valued and symmetric in x, y. As a

function of y it satisfies (1.3) with λ = 0 for y �= x, and there are real-valued functions
ψ0 and ϕ0 which solve (1.3) with λ = 0, such that if u ∈ H1, then

(1) ψ0 ∈ H1, ψ′
0(0) = 1 and ψ′

0(x)u(x) → 0 as x→ b,
(2) ϕ0(0) = −1, ϕ′

0(0) = 0,
(3) g0(x, y) = ϕ0(min(x, y))ψ0(max(x, y)).
Proof. The existence of the solution ϕ0 is not in question, and if a solution with the

properties of ψ0 exists, it is easy to verify that the kernel ϕ0(min(x, y))ψ0(max(x, y))
has the properties required of g0(x, y).

The existence of ψ0 follows from Theorem 2.6. Indeed, if dimD0 = 2, the element
v ∈ D0 with v(b) = 1, v′(b) = 0 is real-valued and must have v(0)v′(0) < 0 by (2.4),
so v′(0) �= 0, and an appropriate multiple will have the properties required of ψ0.

On the other hand, if dimD0 = 1, any nonzero v ∈ D0 satisfies v(0)v′(0) < 0
so v′(0) �= 0, and an appropriate multiple will satisfy the requirements for ψ0. Note
that this solution is real-valued, since its real and imaginary parts also are in D0, and
are thus proportional, and the initial condition guarantees that the imaginary part
vanishes.

Now let T be a self-adjoint restriction of T1 and assume that (u, f) and (v, g) ∈ T .
Integrating by parts we then obtain

(2.5)
∫ x

0

(u′g′ + qug) −
∫ x

0

(f ′v′ + qfv) = (u′g − fv′)
∣∣x
0
.

As x → b this vanishes, since the left-hand side tends to 〈u, g〉 − 〈f, v〉. Thus the
condition for symmetry is that

(u′g − fv′)
∣∣b
0

= 0.

Comparing this with (u′v − uv′)
∣∣b
0

= 0, which is the similar condition in the right-
definite case, we see that only exceptionally would self-adjoint boundary conditions
in the left-definite case also be self-adjoint boundary conditions in the right-definite
case.

Separated boundary conditions are those that make u′g − fv′ vanish at each
endpoint separately, and are thus at 0 of the form

(2.6) f(0) cosα+ u′(0) sinα = 0,

for some α ∈ [0, π). Again comparing with the right-definite case, where the condition
is u(0) cosα + u′(0) sinα = 0, the conditions coincide only in the case α = π/2, the
Neumann boundary condition. However, for eigenfunctions, where f = λu, it is clear
that also α = 0, the Dirichlet boundary condition, gives the same spectra outside of
λ = 0.

We shall not need a detailed description of self-adjoint boundary conditions at a
singular endpoint. However, one may always impose the condition (2.6) at 0. It is
easy to see that the corresponding restriction of T1 has a symmetric adjoint, which
is a strict extension of T0. If the deficiency indices of T0 equal 1, this is sufficient to
obtain a self-adjoint restriction T of T1, and all self-adjoint realizations are of this
form. Otherwise, a condition needs to be imposed also at b. From (2.5) it follows
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immediately that every (u, f) ∈ T1 satisfying such a condition at b must satisfy
Im(u′(x)f(x)) → 0 as x→ b.

Assuming now that we have a self-adjoint relation T , the spectral theorem looks
as follows (see [1, Theorem 1.15]). Consider the set H∞ = {u ∈ H1 | (0, u) ∈ T }.
Then H∞ is a subspace of H1, and setting H = H1 �H∞ the domain DT of T (i.e.,
the set of first components of T ) is a dense subset of H, and T ∩H⊕H is the graph
of a self-adjoint operator in H. We will denote this operator by T as well, and may
now apply the usual spectral theorem to T . If the resolution of the identity for the
operator T is {Et}t∈R, we extend the domain of the projection Et to all of H1 by
setting EtH∞ = 0. Clearly one may view H∞ as an eigenspace for the relation T
belonging to the eigenvalue ∞, so adjoining the orthogonal projection onto H∞ to
{Et}t∈R gives a resolution of the identity in H1 for the relation T . In the present case
one may give a rather complete description of H∞.

Proposition 2.8. The space H∞ consists of those elements g ∈ H1 for which
wg = 0 a.e., and for which (0, g) satisfies the boundary conditions that define T . In
particular, if wg = 0 a.e. and g ∈ L0 ∩H1, then g ∈ H∞.

Proof. Now g ∈ H∞ means that (0, g) ∈ T , which therefore satisfies the boundary
conditions defining T . In particular, 0 = 〈g,G0(wf)〉 − 〈0, f〉 = 〈g,G0(wf)〉 =

∫
gfw

for any f ∈ L0 ∩H1. It follows, as in the proof of Proposition 2.3, that wg = 0 a.e.
Conversely, if (0, g) satisfies the boundary conditions and gw = 0 a.e., then if

(u, f) ∈ T , an integration by parts gives

〈u, g〉 − 〈f, 0〉 = lim
x→b

(u′g − f · 0)
∣∣x
0

= 0,

i.e., (0, g) ∈ T , so the proof is complete.
We remark that if an endpoint is regular, then the boundary condition implied by

u ∈ H∞ is in most cases the vanishing of u in that endpoint. For separated boundary
conditions an exception occurs when the boundary condition is of Neumann type
(i.e., when α = π/2 in (2.6)). If we have Neumann conditions at both ends, or at one
end when deficiency indices equal 1, there are no boundary conditions for elements
of H∞.

We will base our derivation of the expansion theorem for the operator T on a
detailed description of the resolvent Rλ = (T − λ)−1. Thus Rλ is defined on H, but
we extend its domain to H1 by setting RλH∞ = 0. The range of Rλ is of course
DT , which is a dense set in H. Using the kernel g0 for the evaluation operator on
H1 introduced in the proof of Proposition 2.3, we have Rλu(x) = 〈Rλu, g0(x, ·)〉 =
〈u,Rλg0(x, ·)〉, since the adjoint of Rλ is Rλ. Thus we may view G(x, ·, λ) = Rλg0(x, ·)
as Green’s function for our operator; note, however, that G is not the kernel of a
standard integral operator. It will turn out to be convenient to introduce the kernel
g(x, y, λ) = G(x, y, λ) + g0(x, y)/λ, so that we obtain

(2.7) Rλu(x) = 〈u, g(x, ·, λ)〉 − u(x)/λ.

Note that G(x, ·, λ) ∈ H but this is not true of g(x, ·, λ) unless H∞ = {0}. We shall
need a precise description of g(x, y, λ). To do this we must introduce solutions of (1.3)
satisfying initial conditions at 0, so let ϕ(x, λ), θ(x, λ) be solutions of (1.3) for λ �= 0
satisfying

(2.8)

{
λϕ(0, λ) = − sinα

ϕ′(0, λ) = cosα
,

{
λθ(0, λ) = cosα

θ′(0, λ) = sinα
.
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This means that ϕ satisfies the boundary condition (2.6) and θ another similar bound-
ary condition at 0. We have the following theorem.

Theorem 2.9. Suppose T is a self-adjoint realization of (1.3) given by (2.6) and,
if needed, an appropriate condition at b. Then there exists a function m(λ) defined
for Imλ �= 0, the Titchmarsh–Weyl m-function for T , depending only on λ and such
that ψ(x, λ) = θ(x, λ) + m(λ)ϕ(x, λ), called the Weyl solution for T , is in H1 and
satisfies the boundary condition at b, if any. Furthermore

g(x, y, λ) = ϕ(min(x, y), λ)ψ(max(x, y), λ).

Proof. For nonreal λ neither ϕ nor θ can be in H1 and satisfy the boundary
condition at b, since that would make λ a nonreal eigenvalue for a self-adjoint problem.
Thus there is a solution ψ(x, λ) = θ(x, λ) +m(λ)ϕ(x, λ) in H1 which also satisfies the
boundary condition at b, since if dimD(λ) = 2, one linear, homogeneous condition
still leaves a one-dimensional space, whereas if dimD(λ) = 1, no boundary condition
is imposed at b.

Define, for fixed x and λ /∈ R, the function

F (y) = ϕ(min(x, y), λ)ψ(max(x, y), λ) − λ−1g0(x, y).

Since ψ(·, λ) and ψ0 are in H1 so is F . We claim that F ∈ DT . In fact, one easily
checks that F ′ is locally absolutely continuous and that F satisfies −F ′′ + qF =
λwF +wg0(x, ·). It is also easy to check that F satisfies the boundary condition (2.6).

Finally, for y > x the function F is a linear combination of ψ(·, λ) and ψ0. The
former satisfies the boundary condition at b by construction, and ψ0 satisfies the
boundary condition at b by Theorem 2.6(5), since if (u, f) ∈ T , then ψ′

0f − 0u′ =
ψ′

0f → 0 at b. All this means that F = Rλg0(x, ·) = Rλg0(x, ·) = G(x, ·, λ) so that
g(x, y, λ) is as claimed.

Theorem 2.10. The function m is analytic outside R, it maps the upper half
plane into itself, and it satisfies m(λ) = m(λ).

Proof. Since Rλ is analytic outside R in the strong operator topology Rλu(x) is,
by (2.1), pointwise analytic. It follows that g(x, ·, λ) is weakly analytic for each x, and
thus, again by (2.1), g(x, y, λ) is analytic outside R for each x and y. Since ϕ(x, λ)
and θ(x, λ) also are analytic and since an integration by parts shows that they are
nonzero for x > 0 and λ /∈ R, it follows that m(λ) is analytic in C \ R.

If (v, g) defines a boundary condition at b, then so does either its real part or
its imaginary part, which is easily seen. Therefore, since ψ(x, λ) satisfies (1.3) and
the boundary condition at b, so does ψ(x, λ), and is thus a multiple of ψ(x, λ). Now
ϕ(x, λ) = ϕ(x, λ), θ(x, λ) = θ(x, λ) and ψ(x, λ) = θ(x, λ) + m(λ)ϕ(x, λ) so it follows
that m(λ) = m(λ).

Integrating by parts we have

Imλ

∫ x

0

(|ψ′(·, λ)|2 + q|ψ(·, λ|2) = Im(ψ′(·, λ)λψ(·, λ))
∣∣x
0
.

Since ψ satisfies a boundary condition at b, the integrated term vanishes as x → b.
At 0 the integrated term evaluates to − Imm(λ), so we obtain

(2.9) ‖ψ(·, λ)‖2 = Imm(λ)/ Imλ.

Thus m maps the upper and lower half-planes into themselves.
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A function with the properties of m is a so-called Nevanlinna or Herglotz function,
and has a unique representation

(2.10) m(λ) = A+Bλ+
∫

R

(
1

t− λ
− t

t2 + 1

)
dρ,

where A ∈ R, B ≥ 0, and dρ is a positive measure with
∫

R

dρ(t)
1+t2 <∞. We will call the

measure dρ the spectral measure for T , for reasons that will become clear presently.
We finally note the following proposition.
Proposition 2.11. Unless α = π/2 and 0 /∈ suppw the functions ψ0 and ψ(·, λ)

are in H.
Proof. Suppose g ∈ H∞. An integration by parts then gives

〈g, ψ〉 = −g(0)ψ′(0),

where ψ = ψ0 or ψ(·, λ). The boundary condition at 0 requires g(0) = 0 unless
α = π/2, and even then g(0) = 0 unless w = 0 in a neighbourhood of 0.

3. The Fourier transform. We shall call functions that vanish near b finite
and from now on make the following simplifying assumption.

Assumption 3.1. Assume that finite functions are dense in H1.
According to Theorem 2.6 this means exactly that either q /∈ L1(0, b) or else b =

∞. Note that, according to Theorem 2.5, the assumption implies that the deficiency
indices of T1 equal 1.

The spectral measure introduced in the previous section gives rise to a Hilbert
space L2

ρ with scalar product 〈û, v̂〉ρ =
∫∞
−∞ ûv̂ dρ. We shall define a generalized

Fourier transform F : H1 → L2
ρ with the following properties.

Theorem 3.2.

(1) The map u 
→
∫ b

0 (u′ϕ′(·, t) + quϕ(·, t)), defined for finite u ∈ H1, extends by
continuity to a map F : H1 → L2

ρ called the generalized Fourier transform.
The image of u ∈ H1 is denoted by F(u) or û. We write this as û(t) =
〈u, ϕ(·, t)〉 although the integral in general does not converge pointwise.

(2) The mapping F : H1 → L2
ρ has kernel H∞ and is unitary between H and L2

ρ

so that Parseval’s formula 〈u, v〉 = 〈û, v̂〉ρ holds if at least one of u and v is
in H.

(3) If u ∈ DT , then F(Tu)(t) = tû(t). Conversely, if û and tû(t) are in L2
ρ, then

F−1(û) ∈ DT .
(4) Suppose α �= 0 in (2.6). Then ϕ(x, ·) ∈ L2

ρ for each x and
∫∞
−∞ ûϕ(x, ·) dρ =

〈û, ϕ(x, ·)〉ρ converges in H, and hence locally uniformly in x, for û ∈ L2
ρ.

This is the adjoint of F : H1 → L2
ρ and thus the inverse of F restricted to H.

If M is a Borel set in R, then

(3.1) EMu(x) =
∫

M

ûϕ(x, ·) dρ.

If α = 0, the same is true, except that we must replace ϕ(·, t) for t = 0 by
the function ψ0 of Proposition 2.7. Note that ψ0 is the eigenfunction for the
eigenvalue 0 in this case.

We first consider the Fourier transform for finite functions u ∈ H1, for every
λ ∈ C setting

û(λ) = 〈u, ϕ(·, λ)〉.
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It is clear that û is an entire function, since integration by parts shows that

û(λ) = 〈u, ϕ(·, λ)〉 =
∫ b

0

uλϕ(·, λ)w − u(0) cosα,

and by (2.8) λϕ(x, λ) is an entire function of λ, locally uniformly in x.
Lemma 3.3. For finite u and v ∈ H1 we have û and v̂ ∈ L2

ρ. If EΔ is the spectral
projection for T associated with an interval Δ, then 〈EΔu, v〉 =

∫
Δ ûv̂ dρ.

Proof. We have 〈Rλu, v〉 = û(λ)v̂(λ)m(λ) + g(λ), where g is entire, as is easily
verified by direct calculation. Integrating around a rectangle γ with corners at c± i

and d± i we therefore have
∫

γ
〈Rλu, v〉 dλ =

∫
γ
û(λ)v̂(λ)m(λ) dλ whenever one of the

integrals exists. By the spectral theorem the first integral equals
∫

γ

∫
R

d〈Etu,v〉
t−λ dλ,

so if the integral is absolutely convergent, changing the order of integration gives
−2πi〈E(c,d)u, v〉 if c and d are points of continuity for 〈Etu, v〉.

Similarly, using the Nevanlinna representation (2.10), the other integral equals
−2πi

∫ d

c
û(t)v̂(t) dρ(t) if it is absolutely convergent and c, d are points of continuity

for ρ.
The absolute convergence of the double integrals is ensured if 〈Etu, v〉 and ρ are

differentiable at c and d as is easily seen. For more details of the identical calculation
carried out for the right-definite case, see [6, Lemmas 14.3, 14.4].

As functions of bounded variation 〈Etu, v〉 and ρ are both differentiable a.e., so
the second claim of the lemma is true if the endpoints of Δ belong to this dense set
of points, and so in general by continuity. In particular, letting c → −∞, d → ∞
through such points it follows that 〈ERu, u〉 = 〈û, û〉ρ, so that û, v̂ ∈ L2

ρ.
Since finite functions are dense in H1, and since ER has kernel H∞, we now obtain

Theorem 3.2(1) by continuity and also (2) except for the surjectivity of F . To prove
this we need the following lemmas.

Lemma 3.4. The transform of Rλu is û(t)/(t− λ).
Proof. According to the spectral theorem we have 〈Rλu, v〉 =

∫
R

d〈Etu,v〉
t−λ and by

Lemma 3.3 we have 〈Etu, v〉 =
∫ t

−∞ ûv̂ dρ so that

〈Rλu, v〉 =
∫

R

û(t)
t− λ

v̂(t) dρ(t).

We also have Rλ −Rλ = (λ− λ)RλRλ and 〈Rλu,Rλu〉 = 〈RλRλu, u〉 so

〈Rλu,Rλu〉 =
1

λ− λ
(〈Rλu, u〉 − 〈Rλu, u〉) =

∥∥∥∥ û(t)
t− λ

∥∥∥∥2

ρ

.

Expanding ‖ û(t)
t−λ − F(Rλu)‖2

ρ and using Parseval’s formula and the above yields 0,
thus proving the lemma.

Lemma 3.5. The operator T has eigenvalue 0 if and only if α = 0, in which case
the eigenfunction is ψ0, and for any u ∈ H1 we then have û(0) = −u(0).

Furthermore, the measure dρ has mass at 0 ( {0} is not a nullset with respect to
dρ) precisely if α = 0. In this case ψ̂0 = χ{0}/ρ{0}, where χ{0} is the characteristic
function of the singleton {0} and ρ{0} the spectral measure of this set.

Proof. According to Theorem 2.6 the only nontrivial solutions of (1.3) for λ = 0
in H1 are multiples of a solution u for which u′(0)u(0) < 0, so that u′(0) �= 0. These
solutions satisfy the boundary condition (2.6) precisely if α = 0, which proves the first
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claim. If u is any finite function, integrating by parts gives û(0) = 〈u, ϕ(·, 0)〉 = −u(0).
This holds in general by continuity, u(0) being a bounded linear form on H1 by (2.1),
and û(0) on L2

ρ since dρ has mass at 0, as we shall see presently.
Now u ∈ DT and Tu = 0 precisely if u + λRλu = 0, and the Fourier transform

of u + λRλu is (1 + λ
t−λ )û(t) = tû(t)

t−λ . If this is 0, then û = 0 a.e. with respect to dρ
except possibly at t = 0. Thus, if α = 0, then {0} cannot be a nullset with respect to
dρ. It also follows that ψ̂0 is a multiple of the characteristic function of the set {0}.
On the other hand, since dimDλ = 1, Weyl solutions for different α are proportional
so it immediately follows that

(3.2) m0(λ) =
ψ′(0, λ)
λψ(0, λ)

=
sinα+mα(λ) cosα
cosα−mα(λ) sinα

,

where mα denotes the m-function associated with the boundary condition parameter
α. Now m0(iν) → ∞ as ν ↓ 0, as a consequence of the mass at 0, so that mα(iν) →
cotα for α �= 0. For α �= 0 the spectral measure therefore has no mass at 0.

It only remains to prove the formula for ψ̂0. By Parseval’s formula (note that ψ0 ∈
H by Proposition 2.11) we have ψ̂0(0) = −ψ0(0) = ‖ψ0‖2 = ‖ψ̂0‖2

ρ = |ψ̂0(0)|2ρ{0}.
Hence −ψ0(0) = ψ̂0(0) = 1/ρ{0}.

It is now easy to prove that F is surjective.
Lemma 3.6. The Fourier transform H → L2

ρ is surjective.
Proof. Suppose that û ∈ L2

ρ is orthogonal to all Fourier transforms v̂. Since
v̂(t)/(t − λ) is also a transform, for any nonreal λ, we have

∫
1

t−λ û(t)v̂(t) dρ(t) = 0
for all nonreal λ. Thus the Stieltjes transform of the measure ûv̂ dρ is 0, so by the
uniqueness of the Stieltjes transform it follows that this measure is the zero measure.

Now, if v̂ is the transform of a finite function in H1, then it is an entire function,
so to prove that t is outside the support of û dρ it is enough to show that there is
such a v̂ for which v̂(t) �= 0. If t �= 0 and v̂(t) = 0 for all compactly supported
v ∈ H1, then as in the proof of Proposition 2.4 it follows that ϕ(·, t) satisfies (1.3)
both for λ = 0 and λ = t, so that ϕ(·, t)w = 0 a.e., which is not possible since it
implies that ϕ(·, t) = 0 in a set of positive Lebesgue measure. It therefore follows that
û dρ vanishes outside 0. But according to Lemma 3.5 this proves that the measure is
zero, unless α = 0. However, also in this case û = 0 since otherwise û would be the
transform of an eigenfunction.

We next turn to Theorem 3.2(3).
Lemma 3.7. If u ∈ DT , then F(Tu)(t) = tû(t). Conversely, if û and tû(t) are

in L2
ρ, then F−1(û) ∈ DT .
Proof. We have u ∈ DT if and only if for some v ∈ H1 we have u = Rλ(v − λu),

i.e., if and only if û(t) = (v̂(t)−λû(t))/(t−λ) or tû(t) = v̂(t) for some v̂ ∈ L2
ρ.

We obtain the following corollary which will be useful later on.
Corollary 3.8. If u ∈ DT , then û is integrable with respect to dρ.
Proof. The functions tû(t), û, and 1/(t− i) are all in L2

ρ, so that û(t) = (tû(t) −
iû(t))/(t− i) is integrable with respect to dρ.

To finish the proof of Theorem 3.2 it only remains to consider the inverse trans-
form.

Lemma 3.9. If α �= 0, the integral 〈û, ϕ(x, ·)〉ρ converges in H and locally uni-
formly for every û ∈ L2

ρ. If û = F(u) for some u ∈ H1, then the integral is the
orthogonal projection of u onto H.

If α = 0, the same statement is true if one replaces ϕ(·, 0) by ψ0 in the integral.
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Remark 3.10. A simple integration by parts shows that every finite function is
orthogonal to ϕ0. Now suppose α = 0 and let θ0 = ϕ(·, 0) so that θ0 solves (1.3)
for λ = 0 with initial data θ0(0) = 0, θ′0(0) = 1. Then, when calculating the Fourier
transform at 0 we may replace ϕ(·, 0) by any function θ0 +Aϕ0 for A constant, with
no change to the Fourier transform.

In particular we may choose A = −ψ0(0) = 1/ρ{0}, according to Lemma 3.5, so
that θ0 +Aϕ0 = ψ0. This might seem a more natural choice of kernel for the Fourier
transform, in view of the fact that it must be used for the inverse transform, and that
ψ0 is an eigenfunction to the eigenvalue 0, but would thus not actually change the
Fourier transform.

Proof of Lemma 3.9. We have u(x) = 〈u, g0(x, ·)〉 = 〈û, e(x, ·)〉ρ for u ∈ H, where
e(x, t) = F(g0(x, ·))(t). If u ∈ H1, we instead get the projection of u onto H, so that
the integral operator û 
→ 〈û, e(x, ·)〉ρ is the adjoint of F . We must prove that e(x, t) =
ϕ(x, t), so suppose û has compact support and consider ũ(x) = 〈û, ϕ(x, ·)〉ρ which
satisfies the equation −ũ′′ + qũ = w(x)〈û, tϕ(x, ·)〉ρ, differentiating under the integral
sign. Since û has compact support u ∈ DT , so that −u′′ + qu = w(x)〈tû(t), e(x, t)〉ρ.
Thus u1 = u− ũ satisfies −u′′1 + qu1 = w(x)〈tû(t), e(x, t) − ϕ(x, t)〉ρ.

Now, if v is finite, then

〈ũ, v〉 =
∫∫

û(t)(ϕ′(·, t)v′ + qϕ(·, t)v) dρ(t) = 〈û, v̂〉ρ = 〈u, v〉,

since the double integral is absolutely convergent. Hence u1 is orthogonal to all finite
v so it satisfies −u′′1 + qu1 = 0. It follows that w(x)〈tû(t), e(x, t) − ϕ(x, t)〉ρ = 0
a.e., so that 〈tû(t), e(x, t) − ϕ(x, t)〉ρ = 0 on a set of positive measure. But this
function also satisfies (1.3) for λ = 0, as is seen by replacing û by tû(t) in the previous
calculations. It follows that t(e(x, t) − ϕ(x, t)) = 0 for a.a. t with respect to dρ, so
that e(x, t) = ϕ(x, t) except possibly if t = 0 and α = 0.

However, 0 is an eigenvalue for α = 0 and the eigenfunction ψ0 has transform
χ{0}/ρ{0} according to Lemma 3.5, so we must choose e(x, 0) = ψ0(x).

The proof of Theorem 3.2 is now complete if we note that from 〈Etu, v〉 =
∫ t

−∞ ûv̂
follows that the transform of Etu is û multiplied by the characteristic function of
(−∞, t]. The formula EMu(x) =

∫
M
ûϕ(x, ·) dρ therefore follows from the inversion

formula.
In Lemma 3.5 we calculated the Fourier transform of ψ0 in the case α = 0. We

shall need to find a few more Fourier transforms.
Lemma 3.11. If λ /∈ R, the Fourier transform of ψ(·, λ) is ψ̂(t, λ) = 1/(t − λ).

Furthermore, the Fourier transform of ψ0 equals ψ̂0(t) = sinα/t for α �= 0 and 1/ρ{0}
times the characteristic function of the set {0} for α = 0.

Proof. We have already calculated ψ̂0 for α = 0 in Lemma 3.5. If α �= 0, we note
that ψ0(x) = −g0(0, x) so its Fourier transform is −e(0, t) = −ϕ(0, t) = sinα/t.

According to (2.7), Theorem 2.9, and Lemma 3.9, for u ∈ H we have

− sinα〈û, ψ̂(·, λ)〉ρ = λϕ(0, λ)〈u, ψ(·, λ)〉

= λRλu(0) + u(0) =
〈(

λ

t− λ
+ 1
)
û(t), e(0, t)

〉
ρ

=
〈
û(t),

t e(0, t)
t− λ

〉
ρ

= − sinα
〈
û(t),

1
t− λ

〉
ρ



2118 C. BENNEWITZ, B. M. BROWN, AND R. WEIKARD

so that we have ψ̂(t, λ) = 1/(t−λ) if α �= 0. If α = 0, we assume û has compact support
so that we may differentiate u(x) = 〈û, e(x, ·)〉ρ under the integral sign to obtain

〈û, ψ̂(·, λ)〉ρ = ϕ′(0, λ)〈u, ψ(·, λ)〉 = (Rλu)′(0)

=
〈
û(t)
t− λ

, e′x(0, t)
〉

ρ

=
〈
û(t),

e′x(0, t)
t− λ

〉
ρ

=
〈
û(t),

1
t− λ

〉
ρ

.

Thus, also in this case we obtain ψ̂(t, λ) = 1/(t− λ).
Corollary 3.12. Suppose u ∈ H. Then 〈u, ψ(·, tλ)〉 → 0 as t → ∞, locally

uniformly for λ /∈ R. By (2.1) this means that ψ(x, tλ) → 0 as t → ∞, locally
uniformly in x and λ /∈ R.

In fact, unless 0 /∈ suppw and α = π/2 we have ψ(·, tλ) → 0 in H, locally
uniformly in λ /∈ R as t→ ∞.

Proof. We have 〈u, ψ(·, λ)〉 = 〈û, ψ̂(·, λ〉ρ. With the extra assumptions Proposi-
tion 2.11 shows that ψ(·, λ) ∈ H so that ‖ψ(·, λ)‖ = ‖ψ̂(·, λ)‖ρ.

It follows immediately by dominated convergence from Lemma 3.11 that the
claims are true.

Remark 3.13. All of the theory of sections 2 and 3 extends with no essential
change to the case when w is just a measure, or even an element of H−1

loc (0, b).

4. Uniqueness of the inverse problem. We shall here deal with the following
question: To what extent is the operator T , i.e., the interval [0, b), the coefficients q
and w, and the boundary condition parameter α, determined by the spectral measure
dρ? To answer this question we introduce the concept of a Liouville transform as
a map v 
→ u given by u(x) = f(x)v(g(x)), where f and g are fixed functions. We
suppose that g is strictly increasing and continuous, and that f is never 0. It is then
easy to see that the inverse of a Liouville transform is also a Liouville transform, as
is the composition of two Liouville transforms.

Now consider another relation T̆ of the same type as T , with Hilbert space H̆1,
interval [0, b̆), boundary condition parameter ᾰ, and coefficients q̆ and w̆. We will
assume, as we do for H1, that finite functions are dense in H̆1.

Theorem 4.1. Suppose that α = ᾰ, or 0 < α = π/2 − ᾰ < π/2, or π/2 < α =
3π/2 − ᾰ < π and that there is a continuously differentiable bijection g from [0, b)
to [0, b̆) with the following properties: g, g′, and g′′ are locally absolutely continuous,
g′ > 0, g(0) = g′′(0) = 0, g′(0) = (sin ᾰ/ sinα)2 if α �= 0 �= ᾰ, g′(0) = 1 if α = ᾰ = 0,
and the coefficients of T and T̆ satisfy q̆(g(x)) = (−f(x)f ′′(x) + q(x)f(x)2)/g′(x) and
w̆(g(x)) = w(x)/g′(x)2, where f(x) = g′(x)−1/2.

Then the spectral measures associated with T and T̆ are identical.
Proof. The functions g and f give rise to Liouville transform L from functions

defined on [0, b̆) to functions defined on [0, b), in particular to a transform from H̆1

to H1. We will first show that this latter transform is unitary. To that end assume
that ŭ and v̆ are in H̆1 and that at least one of them is a finite function. Obviously
Lŭ and Lv̆ are locally absolutely continuous. Furthermore we obtain after a partial
integration

〈Lŭ,Lv̆〉H1 =
∫ b

0

(g′(ŭ′v̆′) ◦ g + (−ff ′′ + qf2)(ŭv̆) ◦ g)

=
∫ b̆

0

(ŭ′v̆′ + q̆ŭv̆) = 〈ŭ, v̆〉H̆1
.
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This proves first that Lŭ ∈ H1 whenever ŭ is a finite function in H̆1 and second that
L is an isometry from the finite functions in H̆1 onto the finite functions in H1. As
an isometry L can be extended to a unitary operator from H̆1 to H1.

Next, a straightforward computation, using that 2f ′g′ + fg′′ = 0, shows that
−u′′ + qu = wr if u = Lŭ, r = Lr̆, and −ŭ′′ + q̆ŭ = w̆r̆. In particular, (ŭ, r̆) ∈ T̆

implies that (Lŭ,Lr̆) ∈ T and Lψ̆(·, λ) must be a multiple of ψ(·, λ).
Also, since ϕ̆(·, λ) satisfies the differential equation −ŭ′′ + q̆ŭ = λw̆ŭ the func-

tion Lϕ̆(·, λ) satisfies −u′′ + qu = λwu. Our assumptions on α, ᾰ, g′(0), and g′′(0)
imply that f(0) = sinα/ sin ᾰ = cos ᾰ/ cosα and that f ′(0) = 0. Therefore we find
λ(Lϕ̆(·, λ))(0) = λf(0)ϕ̆(0, λ) = − sinα and (Lϕ̆(·, λ))′(0) = ϕ̆′(0, λ)/f(0) = cosα
which shows that ϕ(·, λ) = Lϕ̆(·, λ). The situation is a little more complicated for the
relationship between θ and θ̆ where one finds that

Lθ̆(·, λ) = θ(·, λ) + (tan ᾰ− tanα)ϕ(·, λ).

By the linearity of L we have

Lψ̆(·, λ) = θ(·, λ) + (tan ᾰ− tanα+ m̆)ϕ(·, λ) = ψ(·, λ).

This proves that m̆+ tan ᾰ = m+ tanα and hence that ρ̆ = ρ.
In the rest of this section we will make the following additional assumption about

(1.3).
Assumption 4.2. The coefficients w and w̆ satisfy suppw = [0, b), supp w̆ = [0, b̆).
Note that this does not mean that w �= 0 a.e.; w could vanish on a nowhere dense

set of strictly positive measure. However, it does mean that H∞ = {0}, H = H1.
Remark 4.3. One may also allow w to be an arbitrary measure. However, then in

the definition of the function h below, and in the statement of Lemma 5.1, w should
be replaced by the density of the absolutely continuous part of the measure w, and
Assumption 4.2 will have to be made on this density. If this is done, the results in the
rest of the paper are still true, mutatis mutandis, with essentially the same proofs.

Now define the functions h(x) =
∫ x

0

√
|w| on [0, b) and h̆(x) =

∫ x

0

√
|w̆| on [0, b̆),

respectively. By Assumption 4.2 these are strictly increasing, locally absolutely con-
tinuous functions.

Our main theorem is the following.
Theorem 4.4. Suppose that T and T̆ have the same spectral measure dρ. Then

there is a unitary Liouville transform U taking T̆ into T , in the sense that H � u 
→
Uu ∈ H̆ through u(x) = f(x)Uu(g(x)) and UT = T̆U . Here g(x) = h̆−1 ◦ h(x) and
f(x) = (g′(x))−1/2.

The functions f and g are continuously differentiable, f is strictly positive, and f ′

is locally absolutely continuous with f ′(0) = 0. Also α = ᾰ, in which case f(0) = 1, or
else 0 < α = π/2−ᾰ < π/2 or π/2 < α = 3π/2−ᾰ < π, in which case f(0) = | tanα|.

The relations between the coefficients are w̆(g(x)) = w(x)/(g′(x))2 and q̆(g(x)) =
(−f ′′(x) + q(x)f(x))/(f(x)(g′(x))2).

It is clear from Theorem 4.1 that Theorem 4.4 is optimal in the sense that it is
not possible to deduce more about the relation between T and T̆ from the equality of
their spectral measures than is done in Theorem 4.4. Sufficient additional information,
however, will imply that T and T̆ are identical. We give two corollaries of this type.

Corollary 4.5. Suppose T and T̆ have the same spectral measure and that
|w| = |w̆| in [0,min(b, b̆)). Then T = T̆ , i.e., b = b̆, α = ᾰ, q = q̆, and w = w̆.

Proof. The assumptions together with Theorem 4.4 show that g(x) = x so that
b = b̆, and that f(x) = 1, so that T and T̆ are identical.
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Note that only the absolute value of w need be known, so that all information
about sign changes in w is encoded in the spectral measure. Also note that if |w| = |w̆|
only in [0, a), where 0 < a < min(b, b̆), we still have α = ᾰ and q = q̆, w = w̆ in [0, a).

Corollary 4.6. Suppose T and T̆ have the same spectral measure, that q = q̆
on [0,min(b, b̆)), and that either b = b̆ or α = ᾰ. Then T = T̆ , i.e., b = b̆, α = ᾰ,
q = q̆, and w = w̆.

We will postpone the proof and first prove Theorem 4.4. To do this we will use a
theorem of Paley–Wiener type. For its statement it will be convenient to introduce a
special class of entire functions.

Definition 4.7. Let A be the set of entire functions û of order ≤ 1/2 which
satisfy

(4.1) lim sup
t→∞

t−1 ln |û(t2λ)| ≤
∫ a

0

Re
√
−λw

for some a ∈ (0, b) and all λ ∈ C \ R. Here the branch of the square root is that with
a positive real part.

Theorem 4.8. Let û be the generalized Fourier transform of u ∈ H. Then û has
at most one entire continuation in A, and if sup suppu = a < b, such a continuation
is given by

û(λ) =
∫ a

0

(u′ϕ′(·, λ) + quϕ(·, λ))

in which case (4.1) holds with equality for all λ ∈ C.
Conversely, if û has an entire continuation of order ≤ 1/2 satisfying (4.1) for λ

on at least two different rays from the origin, then suppu ⊂ [0, a].
We will postpone the proof of Theorem 4.8 to the next section and instead turn

to the proof of Theorem 4.4.
Lemma 4.9. Let g : [0, b) → [0, b̆) be increasing and g(0) = 0. Suppose U : H1 →

H̆1 is linear with the properties that (Uu)(0) = 0 if u(0) = 0, that suppUu ⊂ [0, g(x)]
if suppu ⊂ [0, x], and that suppUu ⊂ [g(x), b̆) if suppu ⊂ [x, b). Then there exists a
function f such that (Uu)(g(x)) = f(x)u(x) for all u ∈ H1.

Proof. Fix x ∈ [0, b). Suppose u, v ∈ H1 and that u(x) = v(x). We will first show
that (U(u − v)(g(x)) = 0. If x = 0, this is by assumption.

For x > 0 we define1 u− = χ[0,x](u−v) and u+ = χ[x,b)(u−v). These are elements
of H. Thus suppUu− ⊂ [0, g(x)] and suppUu+ ⊂ [g(x), b) so that the functions Uu±
vanish in g(x). Adding them gives U(u − v)(g(x)) = 0 as desired.

It follows that the value of Uu at g(x) only depends on the value of u at x. Thus,
for each fixed x ∈ [0, b), the map u(x) 
→ Uu(g(x)) is well-defined and linear on C, so
we may find f(x) so that Uu(g(x)) = f(x)u(x).

We will also need the following lemma.
Lemma 4.10. Put m(x, λ) = ψ′(x, λ)/(λψ(x, λ)). Then m(x, λ) → 0 and

λm(x, λ) → ∞ for every x ∈ [0, b) as λ→ ∞ along any nonreal ray starting from the
origin.

Proof. First note that m(x, λ) is the m-function for (1.3) on the interval [x, b),
with the Dirichlet boundary condition (α = 0) at x. The first claim is then an
immediate consequence of [3, Theorem 3.6].

1χI denotes the characteristic function of an interval I.
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To prove the second claim, first assume that q does not have compact support,
so that it does not vanish identically on [x, b). Now note that, according to (3.2),
m̃(λ) = −1/m(x, λ) is the m-function for the Neumann boundary condition (α = π/2)
at x, so we need to show this to be o(|λ|). Now, in the Nevanlinna representation
(2.10) it is easy to see that the integral is always o(|λ|), so we simply need to prove
that B = 0 in the representation of m̃. Denote the corresponding Weyl solution by ψ̃
and the spectral measure by dρ̃. Using (2.9) and Lemma 3.11 we obtain

‖ψ̃(·, λ)‖2
[x,b) =

Im m̃(λ)
Imλ

= B +
∫ ∞

−∞

dρ̃(t)
|t− λ|2 = B + ‖ ˆ̃ψ(·, λ)‖2

ρ̃.

However, by Proposition 2.11, Parseval’s formula is correct for ψ̃, so that B = 0 and
we are done in the case when q does not have compact support.

Now suppose q vanishes identically in [x, b). Consider an auxiliary equation for
which q does not have compact support, but which has the same coefficients as (1.3)
up to some point c, x < c < b. For this equation the above proof of the lemma is
valid. Moreover, let θ̃ and ϕ̃ denote functions analogous to θ and ϕ for α = 0, but with
initial data given in the point x. In view of (2.9) both the original m(x, λ) and the
corresponding function for the auxiliary equation are in the “Weyl disk” defined by∫ c

x

|θ̃′ +mϕ̃′|2 ≤ Imm

Imλ
,

so their distance is bounded by the diameter of the disk, which is exponentially small
as λ becomes large (see [3, Theorem 6.3] for this result). Since m(x, λ) is a nontrivial
Nevanlinna function it cannot tend to 0 faster than a multiple of 1/|λ| for large |λ|, so
that asymptoticallym(x, λ) is the same as the corresponding function for the auxiliary
equation. Thus the lemma is actually valid in all cases.

Proof of Theorem 4.4. Note first that by Lemma 3.5 we must have either α =
ᾰ = 0 or else α �= 0 �= ᾰ.

Let H and H̆ denote the Hilbert spaces and F and F̆ the generalized Fourier
transforms associated with the two equations, and put U = F̆−1 ◦ F : H → H̆, which
is unitary since the target space is L2

ρ for both F and F̆ . By Lemma 3.11 we have
Uψ0 = ψ̆0 if α = ᾰ, and if α �= 0 �= ᾰ, we have Uψ0 = sin α

sin ᾰ ψ̆0. Since 〈u, ψ0〉 = −u(0)
it follows that

(4.2) u(0) = −〈u, ψ0〉 = −〈Uu,Uψ0〉 =
sinα
sin ᾰ

Uu(0),

where the quotient of the sines is to be read as 1 for α = ᾰ = 0. In particular,
Uu(0) = 0 if and only if u(0) = 0.

Now, applying Theorem 4.8 for the rays generated by ±i, it is clear that if ă ∈
(0, b̆) and u ∈ H, then sup suppu = a if sup suppUu = ă, where h(a) = h̆(ă), provided
there is such an a ∈ (0, b)2 (see [4, p. 29] for more details). This will certainly be the
case if ă is sufficiently close to 0. Suppose for some ă ∈ (0, b̆) we have h(b) ≤ h̆(ă).
Then, since compactly supported functions are dense in H, the range of U would be
orthogonal to all elements of H̆ with supports in (ă, b̆), contradicting the fact that U
is unitary.

A similar reasoning applied to U−1 shows that the mapping

g : [0, b) � a 
→ ă ∈ [0, b̆)

2Note that Re
√
±iw =

√
|w|/2.
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is bijective, and that sup suppUu = ă if sup suppu = a. It follows that sup suppu = a
if and only if sup suppUu = g(a).

We also have inf suppu = a if and only if inf suppUu = g(a). To see this, note
that what we have already proved implies that if inf suppu = a > 0, then Uu is
orthogonal to all elements of H̆ with support in [0, g(a)]. This means that in this
interval Uu is a multiple of ϕ̆0. However, since u(0) = 0 we also have Uu(0) = 0, so
that the multiple is 0, and thus inf suppUu ≥ g(a). A similar reasoning applied to
U−1 proves the other direction.

We have now verified that U and U−1 both have the properties required in
Lemma 4.9. This implies that there is a nonvanishing function f so that

(4.3) u(x) = f(x)Uu(g(x)).

We must have f real-valued since F and F̆−1, and thus U , map real-valued functions
to real-valued functions. We note that (4.2) implies that f(0) = 1 if α = ᾰ = 0 and
f(0) = sin α

sin ᾰ > 0 if α �= 0 �= ᾰ. Now choose Uu = 1 in a neighborhood of g(x). We
then have u = f in a neighborhood of x. Since u ∈ H is locally absolutely continuous,
so is f . This also implies that f is strictly positive, since it cannot change sign and
f(0) > 0. Similarly, choosing Uu linear in a neighborhood of g(x) it follows that also
g is locally absolutely continuous.

According to Lemma 3.11 Uψ(·, λ) = ψ̆(·, λ), so we have ψ(x, λ) = f(x)ψ̆(g(x), λ).
Taking the logarithmic derivative we obtain

ψ′(x, λ)
ψ(x, λ)

=
f ′(x)
f(x)

+ g′(x)
ψ̆′(g(x), λ)
ψ̆(g(x), λ)

.

Here the left member and the coefficient for g′(x) are locally absolutely continuous,
and the coefficient for g′(x) is not independent of λ by Lemma 4.10. It follows that
g′ and f ′ are locally absolutely continuous, and differentiating, using the differential
equations, we obtain

−f
′′

f
+ q − (g′)2q̆ ◦ g − λ(w − (g′)2w̆ ◦ g) =

(f2g′)′

f2

ψ̆′(g(·), λ)

ψ̆(g(·), λ)
.

Here the right member is o(|λ|) according to Lemma 4.10 so the coefficient of λ to the
left vanishes. On the other hand, the right member is not independent of λ unless
(f2g′)′ = 0, so that we obtain

q̆ ◦ g =
1

f(g′)2
(−f ′′ + qf),

w̆ ◦ g = (g′)−2w,

f2g′ = C

for some constantC. Evaluating (4.3) and its derivative at 0 for u = ψ(·, λ) elementary
calculations now shows3 that C = 1 and f ′(0) = 0. One also deduces that either α = ᾰ
or else 0 < α = π/2 − ᾰ < π/2 or π/2 < α = 3π/2 − ᾰ < π. In these calculations
one uses that m̆ is not a Möbius transform, which is clear since this would give

3See the appendix.
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a transform space of dimension 1. This can only happen if w, and dρ, is a point
mass.

Finally we have to prove Corollary 4.6.
Proof of Corollary 4.6. The function f̃ = −ϕ0 solves −f̃ ′′ + qf̃ = 0 with initial

data f̃(0) = 1, f̃ ′(0) = 0. Since q ≥ 0 this solution is strictly positive on [0, b), so we
may put g̃(x) =

∫ x

0
1/f̃2. The pair of functions f̃ , g̃ gives us a Liouville transform

F0 mapping [0, b) onto some interval [0, c) and [0, b̆) onto [0, c̆), and transforming the
equations into −u′′0 = λw0u0 and −ŭ′′0 = λw̆0ŭ0, respectively. Thus F0FF

−1
0 , where

F is the Liouville transform of Theorem 4.4, transforms one of these equations into
the other.

Being a composition of Liouville transforms this is itself a Liouville transform
given, say, by u0(x) = f1(x)ŭ0(g1(x)). By construction we obtain f1(0) = f(0),
f ′
1(0) = 0, and f2

1 g
′
1 ≡ 1. Since both potentials are identically 0 it follows that

f ′′
1 = 0. This means that f1 ≡ f(0) and g1(x) = x/(f(0))2.

If α = ᾰ, then by Theorem 4.4 f(0) = 1 so that F0FF
−1
0 is the identity, implying

that also F is the identity. Similarly, if b = b̆, then c = c̆ so that f(0) = 1, unless
c = c̆ = ∞. We will show that c is always finite, and then it again follows that F is
the identity.

Now c =
∫ b

0
1/f̃2, so we need to show that this integral is finite. Put H = f̃ ′f̃

which will be strictly positive sufficiently close to b by (2.4).
Differentiating H ′ = (f̃ ′)2 + f̃ ′′f̃ = (f̃ ′)2 + qf̃2 ≥ (f̃ ′)2. Thus 1/f̃2 = (f̃ ′)2/H2 ≤

H ′/H2 so that
∫ b

d
1/f̃2 ≤ 1/H(d) < ∞ if d is sufficiently close to b. This completes

the proof.

5. The Paley–Wiener theorem. The proof of Theorem 4.8 relies on the fol-
lowing lemma, which is taken from [3, Theorem 6.1, Corollary 6.2].

Lemma 5.1. The following asymptotic formulas hold, locally uniformly for λ ∈
C \ R and x > 0. The square root refers to the branch with positive real part:

lim
t→∞

t−1 lnϕ(x, t2λ) =
∫ x

0

√
−λw,

lim
t→∞

t−1 lnψ(x, t2λ) = −
∫ x

0

√
−λw.

The next lemma implies the simple direction of Theorem 4.8.
Lemma 5.2. Suppose u ∈ H and suppu ⊂ [0, a]. Then û(λ) is entire of order

≤ 1/2 and û(λ) = o(|λϕ(a + ε, λ)|) for every ε > 0 as λ → ∞ along any nonreal ray
originating at the origin.

Proof. For finite u we have 〈u, ϕ(·, λ)〉 = −u(0) cosα+
∫ b

0
uλϕ(·, λ)w. Now write

û(λ) = −u(0) cosα+ λϕ(a+ ε, λ)
∫ a

0

uϕ(·, λ)w/ϕ(a + ε, λ).

The function ϕ(x, λ)/ϕ(a + ε, λ) tends to zero uniformly for x ∈ [0, a] and λϕ(a +
ε, λ) → ∞ according to Lemma 5.1 as λ → ∞ along a nonreal ray. The lemma
follows.

The hard direction of Theorem 4.8 follows from the next lemma.
Lemma 5.3. Suppose u ∈ H, that û has an entire continuation of order ≤ 1/2,

and that û(λ) = O(1/|ψ(a, λ)|) as λ→ ∞ along two different nonreal rays originating
at the origin. Then suppu ⊂ [0, a] and û(λ) = 〈u, ϕ(·, λ)〉.
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Proof. Let ε > 0 and consider F (λ) = 〈Rλu, v〉 − û(λ)〈ψ(·, λ), v〉, where v =
G0(wf) and f ∈ H has compact support in (a+ ε, b). In particular v ∈ DT . We shall
show that F has an entire continuation of order ≤ 1/2 which tends to 0 along the given
rays. By the Phragmén–Lindelöf principle it follows that F is bounded everywhere
and is therefore constant by Liouville’s theorem, thus actually identically 0.

Now F (λ) =
∫ b

0 (Rλu − û(λ)ψ(·, λ))fw so, arguing like in the proof of Proposi-
tion 2.3, it follows that Rλu − û(λ)ψ(·, λ) has support in [0, a + ε]. Applying the
differential equation it follows that also u has support in [0, a + ε]. Since ε > 0
is arbitrary, in fact u has support in [0, a]. For x > a the formula (2.7) gives
Rλu(x) = ψ(x, λ)〈u, ϕ(·, λ)〉 so that ψ(x, λ)(û(λ) − 〈u, ϕ(·, λ)〉) = 0. The lemma
follows from this.

To prove that F is entire, Parseval’s formula and Lemma 3.11 show that

F (λ) =
∫ ∞

−∞

û(t) − û(λ)
t− λ

v̂(t) dρ(t).

It is obvious that this is an entire function, at least if we can bound the integrand
properly. To do this and see that the order is at most 1/2, note that for |t − λ| ≤ 1
we may estimate the integrand by sup|z|≤1 |û′(λ + z)||v̂(t)|. For |t − λ| > 1 we may
estimate the integrand by |û(t)v̂(t)| + |û(λ)||v̂(t)|. Hence we have locally uniformly
dominated convergence of the integral and

|F (λ)| ≤ ‖u‖‖v‖ + ( sup
|z|≤1

|û′(λ+ z)| + |û(λ)|)
∫ ∞

−∞
|v̂|dρ,

which is the required estimate, the integral being finite by Corollary 3.8 and û and
therefore û′ being of order ≤ 1/2.

Finally, to show that F tends to 0 along the rays, we first note that ψ(x, λ)/ψ(a, λ)
converges to 0 uniformly for x ∈ [a+ ε, b), according to Lemma 5.1. Assuming f has
compact support in [a + ε, b) we obtain

∫ b

0
ψ(·, λ)fw = o(|ψ(a, λ)|). Since Rλ → 0

strongly as Imλ→ ∞, it follows that F tends to 0 along the given rays. This finishes
the proof.

Theorem 4.8 is a simple consequence of these lemmas.
Proof of Theorem 4.8. If suppu ⊂ [0, a], it follows from Lemmas 5.2 and 5.1 that

û(λ) = 〈u, ϕ(·, λ)〉 is an entire continuation of û of order ≤ 1/2 such that

lim sup
t→∞

t−1 ln |û(t2λ)| ≤ lim
t→∞

t−1 ln |ϕ(a+ ε, t2λ)| =
∫ a+ε

0

Re
√
−λw

for nonreal λ and all ε > 0.
On the other hand, suppose there is an entire continuation of û of order ≤ 1/2

and such that

lim sup
t→∞

t−1 ln |û(t2λ)| ≤
∫ a

0

Re
√
−λw

for λ on two different rays from the origin. If one or both of these are real, an
immediate application of the Phragmén–Lindelöf principle shows this to be true for
all other rays as well, so we may assume them nonreal. By Lemma 5.1 this implies
that û(λ) = O(|ψ(a + ε, λ)|−1) for large λ on these rays if 0 < ε < b− a. Lemma 5.3
now shows that suppu ⊂ [0, a+ ε] for small ε > 0 and thus for ε = 0. The uniqueness
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of the continuation also follows from Lemma 5.3. If we have strict inequality on one
ray, a simple argument using the Phragmén–Lindelöf principle (see [4, Lemma 3.6])
shows this to hold on all nearby rays as well, so that in fact sup suppu < a. The proof
is now complete.

6. Inverse scattering on the half-line. In this section we will show that
scattering data for the half-line problem determines the coefficient w if q is known.
We will of course have to assume that our equation is sufficiently close to a model
equation, which, as usual, has constant coefficients.

Thus we consider (1.3) on [0,∞) with the following additional assumption, which
will be in force throughout this section.

Assumption 6.1. There is a constant q0 ≥ 0 such that q(x)− q0 and w(x)− 1 are
both in L1(0,∞).

Note that according to Theorems 2.5 and 2.6 finite functions are dense in H1

and, given the boundary condition (2.6), there is a unique self-adjoint realization T
of (1.3) in H1.

We will need the following standard result.
Proposition 6.2. For Im k ≥ 0, k �= 0, there exists a solution f(·, k) of (1.3)

with λ = k2+q0 having the following properties: (1) f(x, ·) and f ′(x, ·) are analytic for
Im k > 0 and continuous for Im k ≥ 0, k �= 0; (2) f(x, k) ∼ eikx and f ′(x, k) ∼ ikeikx

as x→ ∞.
This is standard. It is easily proved by first writing the equation for g(x, k) =

f(x, k)e−ikx as g′′+2ikg′ = (q−q0− (k2 +q0)(w−1))g and then solving this equation
by successive approximations from its desired initial values g(∞) = 1, g′(∞) = 0 at
∞ using the estimate |e2ik(t−x) − 1| ≤ 2. See, for instance, Deift and Trubowitz [19].

If Im k > 0, then f(·, k) ∈ H1. Thus, if λ /∈ R (i.e., also Re k �= 0), then

f(x, k) = F (k)ψ(x, λ)

for some function F defined in Im k > 0, Re k �= 0.
Let [u, v] = u′v − uv′ denote the Wronskian of the functions u and v and recall

that Wronskians of solutions to (1.3) are independent of x. Since

(6.1) [λϕ(·, λ), f(·, k)] = F (k)[λϕ(·, λ), ψ(·, λ)] = F (k)

is analytic for Im(k) > 0 we find that F is analytic and can be extended analytically
to the positive imaginary axis. Moreover, since [λϕ(·, λ), f(·, k)] is continuous in
Im(k) ≥ 0, k �= 0, the function F extends continuously to the positive and negative
real line. The zeros of F are located exactly where ϕ and f are linearly dependent,
i.e., when λ = q0 + k2 is an eigenvalue.

Equation (6.1) gives also that F (−k) = F (k) for real k �= 0 and that F has no
zeros on either the positive or the negative real line since ϕ(·, λ) is real for real λ and
the real and imaginary parts of f(x, k) ∼ eikx are linearly independent.

For k > 0 and thus λ = k2 + q0 > q0 define

ψ±(·, λ) = lim
ε→0

ψ(·, (±k + iε)2 + q0)

and

m±(λ) = lim
ε→0

m((±k + iε)2 + q0).
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Since m(λ) = m(λ) when λ is not real we find that m+(λ) = m−(λ) when λ is real.
Therefore

2ikλ
|F (k)|2 = λ[ψ+(·, λ), ψ−(·, λ)] = m+(λ) −m−(λ) = 2i Imm+(λ)

when k > 0 so that λ > q0. This in turn implies

πρ′(λ) = Imm(λ+ i0) =
kλ

|F (k)|2

for λ > q0. Thus the restriction of F to the positive real line determines the spec-
tral measure on the interval (q0,∞). It follows from this that the spectrum of T is
absolutely continuous4 in (q0,∞).

In the interval (−∞, q0), where λ corresponds to the positive half of the imaginary
axis for k, the spectrum is discrete since F is analytic there. There might also be
an eigenvalue for k = 0, λ = q0. Suppose λ �= 0 is an eigenvalue. Then ϕ(·, λ) is
a corresponding eigenfunction, and its Fourier transform ϕ̂(λ) is a multiple of the
characteristic function of the set {λ}. The inversion formula (3.1) gives ϕ(x, λ) =
ϕ̂(λ)ϕ(x, λ)ρ{λ}, where ρ{λ} is the spectral measure of the set {λ}. Thus ϕ̂(λ) =
1/ρ{λ}. Parseval’s formula gives ‖ϕ(·, λ)‖2 = |ϕ̂(λ)|2ρ{λ} = 1/ρ{λ}. On the interval
(−∞, q0] we therefore know the spectral measure if we know all eigenvalues λ and
the corresponding normalization constants ‖ϕ(·, λ)‖2. Similarly, if α = 0, then by
Lemma 3.5 also λ = 0 is an eigenvalue, and 1/ρ{0} is the normalization constant for
the eigenfunction ψ0. We obtain the following theorem.

Theorem 6.3. Given the absolute value of the coefficient F (k) for positive k,
all eigenvalues, the corresponding normalization constants, and either q or |w|, the
coefficients q and w and the boundary value parameter α are uniquely determined.

Proof. We have already seen that the given data determine the spectral measure,
and may now apply Corollaries 4.5 and 4.6 to draw the desired conclusion.

7. Eigenvalues. This section is devoted to the proof of the following theorem.
Part of the proof is an adaptation of Marchenko [25].

Theorem 7.1. Assume that q and w satisfy Assumption 6.1. Then we have the
following:

(1) The eigenvalues of T are isolated and can accumulate only at q0 or negative
infinity.

(2) There will be infinitely many negative eigenvalues if and only if w is negative
on a set of positive measure.

If in addition we have
∫∞
0
t|q(t) − q0w(t)|dt <∞, we also have the following:

(3) Eigenvalues will not accumulate at q0.
(4) q0 is not an eigenvalue unless q0 = 0 and α = 0.
To prove this we need the following strengthening of Proposition 6.2.
Proposition 7.2. Suppose q and w satisfy Assumption 6.1 and the integral∫∞

0
t|q(t)− q0w(t)|dt is finite. Then, for every x ∈ [0,∞), the function f(x, ·) and its

x-derivative, which were previously defined for Im(k) ≥ 0, k �= 0, extend continuously
to k = 0.

The additional assumption and the improved estimate

|e2ik(t−x) − 1| ≤ min(2|k|t, 2)

4For q0 < s < t we have
∫ t

s Imm(μ + iε) dμ → π(ρ(t) − ρ(s)) as ε ↓ 0. But the left-hand side

converges to
∫ t

s Imm(μ + i0) dμ so ρ is absolutely continuous.
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allow us to perform the successive approximations also near k = 0. The proposition
follows from this.

Proof of Theorem 7.1. If μ = k2 + q0 < q0 is an eigenvalue of T , then, since F is
analytic in the upper half-plane, eigenvalues are isolated and hence cannot accumulate
at any point in (−∞, q0). This proves (1).

To prove the second statement we make first the assumption that q0 > 0 and
α �= 0. By Lemma 3.5 zero is then not in the spectrum of T so that the range of T is
H and we may define a bilinear form Q on H by setting

Q(u, v) =
∫

R

1
t
û(t)v̂(t)dρ(t).

Note that Q(u, v) = 0 if the supports of û and v̂ do not intersect, which happens,
for instance, if u and v are eigenvectors for different eigenvalues. Furthermore, by
Lemma 3.7 Q(u, T v) =

∫
R
û(t)v̂(t)dρ(t) = 〈u, v〉. An integration by parts gives∫ x

0

(u′v′ + quv) = u(x)v′(x) − u(0)v′(0) +
∫ x

0

wuTv

for u ∈ H and v ∈ DT . Hence if v is in the range of T and u is finite, or if u and v
are exponentially decaying eigenfunctions, then we obtain

(7.1) Q(u, v) =
∫ ∞

0

wuv + cot(α)u(0)v(0)

taking into account the boundary condition satisfied by (T−1v, v).
Now assume that w ≥ 0. If cot(α) ≥ 0, there can be no negative eigenvalue since

Tv = λv, λ < 0, ‖v‖ �= 0 would imply that

0 ≤
∫ ∞

0

w|v|2 + cotα|v(0)|2 =
1
λ
Q(v, T v) =

1
λ
‖v‖2 < 0,

giving a contradiction. If cotα < 0, there can be at most one negative eigenvalue as
we shall show now. If there were two distinct negative eigenvalues λ1 and λ2 with
associated eigenvectors v1 and v2, we could assume that v1(0) = v2(0). This would
entail that

0 ≤
∫ ∞

0

w|v1 − v2|2 = Q(v1 − v2, v1 − v2) = Q(v1, v1) +Q(v2, v2) < 0

since eigenfunctions decay exponentially so that we are allowed to employ (7.1).
Next assume w < 0 on a set of positive Lebesgue measure. We shall show that

there are infinitely many negative eigenvalues. For any integer n one can choose
elements u1, . . . , un in H, compactly supported in (0,∞), such that Q(uj , uj) < 0
and Q(uj , uk) = 0 if j �= k. To achieve this one may for instance choose first bounded
sets A1, . . . , An of positive measure and positive distances from zero and each other on
which w is negative. Then one lets uj be a suitable mollification of the characteristic
function of Aj . Equation (7.1) now guarantees that they have the desired properties.

Thus Q(u, u) < 0 whenever u is in the linear span B of u1, . . . , un. Let P be
the orthogonal projection of B into the negative spectral subspace of H, i.e., Pu =
F−1(uχ), where χ is the characteristic function of (−∞, 0). Suppose now that n is
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larger than the number of negative eigenvalues. Then the kernel of P cannot be trivial
so that there is a nontrivial u ∈ B such that û is supported in [0,∞). Hence

0 > Q(u, u) =
∫

R

1
t
|û(t)|2dρ(t) ≥ 0.

Since this is impossible the number of negative eigenvalues must be infinite.
If we only have q0 ≥ 0, but still α �= 0, then Q remains defined for functions u, v

with Fourier transforms bounded near 0, since in this case 1/t ∈ L2
ρ by Lemma 3.11.

But the Fourier transforms of eigenfunctions to nonzero eigenvalues are supported
away from 0, and the Fourier transform of a finite function is entire and thus locally
bounded. Also, uj is in the range of T . To see this, solve −y′′ + qy = wuj with 0
initial data at a point to the right of suppuj which yields a finite function y. Adding
an appropriate multiple of ψ0 (Proposition 2.7) gives a function in DT . Thus the
proof applies also in this case.

Allowing also α = 0 the form Q is still defined if û(t)v̂(t)/t is continuous at 0.
This is the case if u and v are eigenfunctions to negative eigenvalues. Also, if u is a
finite function orthogonal to the eigenfunction ψ0, then û(0) = 0; so Q is defined for
such functions. This last condition is just one linear condition on the space B, so the
remainder can still have arbitrarily large dimension. All of the uj are in the range of
T , since the boundary condition now reads uj(0) = 0. Thus the proof applies also in
this case, and the proof of (2) is finished.

Now assume that
∫∞
0 t|q(t) − q0w(t)|dt is finite, and that, contrary to our claim,

there is a sequence μn = k2
n + q0 < q0 of eigenvalues converging to q0. Since eigen-

functions are orthogonal and satisfy the boundary condition an integration by parts
shows

(7.2)
∫ ∞

0

wf(·, kn)f(·, km) = −f(0, kn)f(0, km) cotα

if n �= m. If α = 0, the right-hand side has to be replaced by zero.
Since

∫∞
0
t|q(t) − q0w(t)|dt <∞, our construction of f shows that f(x, k) ∼ eikx

as x→ ∞, uniformly for k ∈ i[0, 1]. This shows first that (7.2) is bounded as n and m
tend to infinity, and second that we may find a positive c such that |f(x, k)− eikx| ≤
e−|k|x/4 if x ≥ c, k ∈ i[0, 1]. Simple estimates then show that

7
16
e−(|kn|+|km|)x ≤ Re(f(x, kn)f(x, km)) ≤ 25

16
e−(|kn|+|km|)x

if n and m are large. Since w − 1 is integrable this shows that the integral∫ ∞

c

Re(f(x, kn)f(x, km))w → +∞

as n, m tend to infinity. Now, since f(x, k) is uniformly continuous on [0, c] × i[0, 1]
it follows that the integral over [0, c] is bounded, so the integral over [0,∞) tends to
infinity, contradicting the previously established boundedness and proving (3).

Finally, if q0 = 0, we already know q0 is an eigenvalue if and only if α = 0. On
the other hand, if q0 > 0, then f(·, q0) is asymptotic to 1, and any other solution to
(1.3) is asymptotically linear, as is easily seen from the well-known reduction of order
method. Thus no such solution is in H and there is no eigenfunction with eigenvalue
q0. This proves (4).
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Remark 7.3. If we allow w to be a general measure, then the negative part of
w could be a finite sum of Dirac measures. In this case one may in the same way
show that the number of negative eigenvalues is equal to the number of these Dirac
measures if α �= 0, cotα ≥ 0, and q0 > 0, with suitable modifications in the other
cases.

8. Appendix. Here we present some calculations which were omitted from the
proof of Theorem 4.4.

For x = 0 the relation ψ(x, λ) = f(x)ψ̆(g(x), λ) gives

(8.1) cosα−m(λ) sinα = f(0){cos ᾰ− m̆(λ) sin ᾰ},

while ψ′(x, λ) = f ′(x)ψ̆(g(x), λ) + f(x)g′(x)ψ̆′(g(x), λ) for x = 0 gives

(8.2) sinα+ m(λ) cosα =
f ′(0)
λ

{cos ᾰ− m̆(λ) sin ᾰ} +
C

f(0)
{sin ᾰ+ m̆(λ) cos ᾰ}.

From (8.1), (8.2) we obtain

1 =
{
f(0) cosα+

f ′(0)
λ

sinα
}
{cos ᾰ− m̆(λ) sin ᾰ}+

C sinα
f(0)

{sin ᾰ+ m̆(λ) cos ᾰ}

and

m(λ) =
{
−f(0) sinα+

f ′(0)
λ

cosα
}
{cos ᾰ− m̆(λ) sin ᾰ}

+
C cosα
f(0)

{sin ᾰ+ m̆(λ) cos ᾰ},

which after rearranging gives

1 −
(
f(0) cosα+

f ′(0)
λ

sinα
)

cos ᾰ− C sinα sin ᾰ
f(0)

(8.3)

= m̆(λ)
{
−
(
f(0) cosα+

f ′(0)
λ

sinα
)

sin ᾰ+
C sinα cos ᾰ

f(0)

}
and (

f(0) sinα− f ′(0)
λ

cosα
)

cos ᾰ− C cosα sin ᾰ
f(0)

(8.4)

= m̆(λ)
{(

f(0) sinα− f ′(0)
λ

cosα
)

sin ᾰ+
C cosα cos ᾰ

f(0)

}
−m(λ).

In (8.3) the left member and the coefficient of m̆ are linear in 1/λ, while m̆(λ) is not
constant or a Möbius transform (this would give a one-dimensional transform space).
From (8.3) we therefore obtain(

f(0) cosα+
f ′(0)
λ

sinα
)

cos ᾰ = 1 − C sinα sin ᾰ
f(0)

,

(
f(0) cosα+

f ′(0)
λ

sinα
)

sin ᾰ =
C sinα cos ᾰ

f(0)
,
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which gives

f(0) cosα+
f ′(0)
λ

sinα = cos ᾰ,

C sinα
f(0)

= sin ᾰ.

From this it is (again) clear that sinα = 0 if and only if sin ᾰ = 0, so that we have
two cases.

• α = ᾰ = 0. We obtain f(0) = 1, and insertion in (8.4) shows that f ′(0)
λ =

m(λ)−Cm̆(λ). The right member is (1−C)m(λ) since m(iν) and m̆(iν) → 0
as ν → +∞ by Lemma 4.10, and m, m̆ have the same spectral measure.
Again by Lemma 4.10 it follows that C = 1, and thus f ′(0) = 0.

• α �= 0 �= ᾰ. We obtain f ′(0) = 0, f(0) = C sinα/ sin ᾰ, and C sin(2α) =
sin(2ᾰ). But we know that f(0) = sinα/ sin ᾰ so that C = 1. Insertion in
(8.4) gives m(λ) − m̆(λ) = cotα− cot ᾰ.
Since sin(2α) = sin(2ᾰ) we have either α = ᾰ or 0 < α = π/2 − ᾰ < π/2 or
π/2 < α = 3π/2 − ᾰ < π. If α = ᾰ, we obtain f(0) = 1 and m(λ) = m̆(λ).
In the other cases we obtain f(0) = | tanα| and m(λ) − m̆(λ) = 2 cot(2α).
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FINITE AND INFINITE DIMENSIONS WITH APPLICATIONS TO
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Abstract. In mathematical Finance calculating the Greeks by Malliavin weights has proved to
be a numerically satisfactory procedure for finite-dimensional Itô-diffusions. The existence of Malli-
avin weights relies on absolute continuity of laws of the projected diffusion process and a sufficiently
regular density. In this article we first prove results on absolute continuity for laws of projected
jump-diffusion processes in finite and infinite dimensions and a general result on the existence of
Malliavin weights in finite dimension. In both cases we assume Hörmander conditions and hypothe-
ses on the invertibility of the so-called linkage operators. The purpose of this article is to show
that for the construction of numerical procedures for the calculation of the Greeks in fairly general
jump-diffusion cases one can proceed as in a pure diffusion case. We also show how the given results
apply to infinite-dimensional questions in mathematical Finance. There we start from the Vasiček
model, and add—by pertaining no arbitrage—a jump-diffusion component. We prove that we can
obtain in this case an interest rate model, where the law of any projection is absolutely continuous
with respect to Lebesgue measure on RM .
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1. Introduction. We shall consider in this article the question of whether the
law of l(Xx

t ), for a finite-dimensional projection l : H → R
M , is absolutely continuous

with respect to Lebesgue measure on R
M , where Xx

t is the solution of the stochastic
(partial) differential equation (SPDE)

dXx
t = (AXx

t− + α(Xx
t−))dt +

d∑
i=1

Vi(Xx
t−)dBi

t +
m∑

j=1

δj(Xx
t−)dLj

t ,(1.1)

Xx
0 = x ∈ H(1.2)

and H is a possibly infinite-dimensional separable Hilbert space. We refer to the pre-
vious equation loosely speaking as a jump-diffusion on the Hilbert space H , pointing
out that the involved Lévy processes are of finite type. For sake of simplicity we
shall always work with the cadlag integrand t �→ Xx

t− , even though for the dt and
dBt integrals this is superfluous. In the infinite-dimensional setting we are not aware
of results on absolute continuity of the projected process in the jump-diffusion case.
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Related work has been done in [5] for the construction of first variation processes. In
the diffusion case we refer the reader to the work [3] and the references therein and in
particular to the recently published inspiring results of Jonathan Mattingly; see, for
instance [1]. We point out that we deal here with SPDEs and stochastic differential
equations (SDEs) at the same time, where the latter case appears in this setting when
the state (Hilbert) space H is finite-dimensional.

Very satisfying results in the finite-dimensional setting with Lévy processes of
infinite type have been obtained in [11] through a generalization of the Norris lemma
to Lévy processes. These results have been built upon our results presented in this
work for the finite activity case (see section 7). Substantial work with respect to
absolute continuity and smoothness of the density has already been published in the
1980s, the most prominent being [7] and [6]. Therein several questions of extension of
hypoellipticity results (and Malliavin Calculus) to jump-processes are discussed and
completely solved; however, the problem of a hypoelliptic diffusion together with a
finite-activity jump-structure remained open. It has to be pointed out here that—in
contrast to [6]—we do not need any extension of Malliavin Calculus to jump-processes
for our results (see also the discussion in Remark 5). This gap was filled by the
announced results of [27], but several proofs therein are extremely short. Recently,
motivated by questions from financial mathematics (see section 8 for an outline of the
problem), there has been increasing interest in those results; see the works [2], [13],
[14], and the references therein. This article aims to work out the most general finite
activity case under Hörmander conditions on the diffusion part.

From the point of view of existence and uniqueness for jump-diffusions in infinite
dimensions, our main reference is [15] and the references therein. Since we consider
jump-diffusions as concatenated diffusions on Hilbert space, we mention [12] as the
main reference for existence and uniqueness results but also [4] and [10] for many
interesting constructions and ideas.

There are two applications added to this work. The first is the Heath–Jarrow–
Morton (HJM) equation (as presented in [15]), where we show that the innocent
Vasiček model (see, for instance, the seminal work [9]) with a certain jump-structure
triggered by a one-dimensional Poisson process yields, under no-arbitrage assump-
tions, a model where not only do no finite-dimensional realizations exist but also
where every projection into a finite-dimensional subspace admits a density (compare
with the notion of generic interest rate evolutions from [3]). The second application
is concerned with concrete formulas for the calculation of Malliavin weights. There
our message is that one can think Poisson-trajectory–wise; i.e., the results from [18]
or [17] can be literally applied by replacing the diffusion process by the respective
jump-diffusion process.

When we analyze jump-diffusions with values in Hilbert spaces, loosely speaking
the following facts hold true:

• Between two consecutive jumps of the jump-diffusion we are given an ordinary
diffusion.

• At a jump we add to the left limit the jump size (which usually depends on
the left limit, too). In [25, Chapter V.10, Hypothesis (H3)], this operation is
formalized by the so-called linkage operators x �→ x + μδj(x), which encode
what happens at a jump of size μ at x. We shall apply this notion here, too.

Hence the following picture arises:
• In order to obtain absolute continuity of the projected diffusion process, we

need the Hörmander condition to be in force. Otherwise we cannot expect—
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conditioned on the event of positive probability that no jump occurs—that
the law of l(Xx

t ) is absolutely continuous with respect to Lebesgue measure.
• In order to preserve absolute continuity we need the linkage operators to be

invertible in a proper sense.
Remark 1. Both conditions are “sine qua non,” since it is easy to imagine coun-

terexamples.
In section 2 we fix the general setting of this article. We shall deal with Lévy

processes of finite type as drivers of the SDEs, even though we believe that one should
be able to prove similar results in the case of many small jumps, too. We also state
the main assumptions of this work in section 2 for later use.

In section 3 we state a “folklore” decomposition theorem, which tells that solving
a jump-diffusion S(P)DE is the same as solving associated diffusion S(P)DEs and
concatenating the solutions by linkage operators at jumps. In section 4 we show that
we can also prove results on first variation processes in the spirit of the decomposition
theorem. We prove that under our analytic requirements there is in fact a sufficiently
regular first variation process.

In section 5 we show by means of Malliavin calculus for a d-dimensional Brownian
motion that the law of a projected jump-diffusion is absolutely continuous with respect
to Lebesgue measure. In section 6 we introduce a class of examples from mathematical
Finance, where we see very directly the phenomenon of absolute continuity arising
from the introduction of jumps and the no-arbitrage condition. This shows again that
finite-dimensional realizations, as constructed, for instance, in [8], are a rare case in
infinite dimensions. In section 7 we restrict our attention to the finite-dimensional
setting to show that the density of the absolutely continuous law is in fact smooth
by proving that the inverse of the covariance matrix has pth moments for all p ≥ 1.
In section 8 we apply the invertibility of the covariance matrix to the calculation of
Greeks. The appendix shows an important estimate implicitly present in the Norris
lemma as presented in Nualart’s book [24]. A similar result (which could be directly
used in section 7 for the proof of the main theorem) can be found in [21, Corollary
3.25]. The article [21] is most likely the source of the first appearance of the precise
polynomial time-dependence in the estimate of the Lp-norm of the inverse of the
covariance matrix. We have been choosing here the path via the Norris lemma; we
explain the estimate by redoing its proof in the appendix.

2. Setting and assumptions. Let (Ω,F , P, (Ft)t≥0) be a filtered probability
space where the filtration (Ft)t≥0 satisfies the usual conditions. Let (Bt)t≥0 be a
d-dimensional Brownian motion and (Lj

t )t≥0, j = 1, . . . ,m, be m independent com-
pound Poisson processes given by

Lj
t :=

Nj
t∑

k=1

Zj
k,

where N j
t denotes a Poisson process with jump intensity λ̃j > 0 and Zj = (Zj

k)k≥1 is
an independently and identically distributed sequence of random variables with distri-
bution μj for j = 1, . . . ,m such that each μj admits all moments. The compensated
compound Poisson process reads as

Lj
t − E(Lj

t ) = Lj
t − λjt,

where λj = E(Zj
1)λ̃j is the average jump size times the jump rate.
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We could equally take an R
m-valued Lévy process of finite type, i.e., introduce a

dependence structure between the jumps of the components, and all theorems would
equally hold true with slightly modified proofs, but we believe that this generalization
does not bring further insight.

We assume that all sources of randomness are mutually independent and that the
filtration (Ft)t≥0 is the natural filtration with respect to (Bt, L

1
t , . . . , L

m
t )t≥0. Let H

be a separable Hilbert space. We fix furthermore a strongly continuous semigroup S
on H with generator A. Let α, V1, . . . , Vd, the diffusion vector fields, and δ1, . . . , δm,
the jump vector fields, be C∞-bounded on H ; that is, the vector fields are infinitely
often differentiable with bounded partial derivatives of all proper orders n ≥ 1. We
consider the mild cadlag solution (Xx

t )t≥0 of an SDE

dXx
t = (AXx

t− + α(Xx
t−))dt +

d∑
i=1

Vi(Xx
t−)dBi

t +
m∑

j=1

δj(Xx
t−)dLj

t ,(2.1)

Xx
0 = x ∈ H.(2.2)

See [15] for all necessary details on existence and uniqueness of the previous equation.
The previous conditions are slightly more than standard for existence and unique-

ness of mild solutions; i.e., in [15] the authors need Lipschitz conditions on the vector
fields, whereas we assume them to be C∞-bounded. In order to speak about absolute
continuity of projections to R

M we shall need more assumptions; in particular, for
conclusions drawn from the geometry of the given vector fields α, V1, . . . , Vd, δ1, . . . , δm
several quite strong analytic requirements are necessary. We group the assumptions
into three groups and indicate in each section which assumptions we shall need.

Let l : H → R
M be a projection; then we want to know whether the law of

l(Xx
t ) is absolutely continuous with respect to Lebesgue measure and if the density is

smooth. Following the short discussion in the introduction, we need the Hörmander
conditions to be in force, and we need to suppose invertibility on linkage operators.

We apply the following notation for Hilbert spaces dom(Ak):

dom(Ak) :=
{
h ∈ H |h ∈ dom(Ak−1) and Ak−1h ∈ dom(A)

}
,

||h||2dom(Ak) :=
k∑

i=0

||Aih||2,

dom(A∞) =
⋂
k≥0

dom(Ak),

which we need in order to specify the analytic conditions.
Assumption 1. We assume that the generator A of S generates a strongly

continuous group. We assume furthermore that α, V1, . . . , Vd, the diffusion vector
fields, and δ1, . . . , δm, the jump vector fields, are C∞-bounded on the Hilbert spaces
dom(Ak) for k ≥ 0; that is, the vector fields are infinitely often differentiable with
bounded partial derivatives of all proper orders n ≥ 1 on the Hilbert space dom(Ak)
for k ≥ 0.

Assumption 2. We take Assumption 1 for granted; i.e., we can consider all
vector fields on the space dom(Ak) for k = 0, . . . ,∞. For a proper statement of the
Hörmander condition we apply the “geometrically relevant” drift

V0(x) = Ax+ α(x) − 1
2

d∑
i=1

TVi(x) · Vi(x)
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for x ∈ dom(A) and call V0 the Stratonovich drift of the diffusion. Recall the (tangent)
directional derivative operator T defined through

TV (x) · v =
d

dε

∣∣∣
ε=0

V (x+ εv).

Lie brackets can only be calculated on the Fréchet space dom(A∞) and there we for-
mulate the Hörmander condition. We assume that the distribution D(x) generated by
the vector fields

V1(x), . . . , Vd(x), [Vi(x), Vj(x)] (i, j = 0, 1, . . . , d),(2.3)
[Vi(x), [Vj(x), Vk(x)]] (i, j, k = 0, 1, . . . , d), . . .

is dense in H for one x ∈ dom(A∞).
Assumption 3. We assume that the inverse of x �→ x + zδj(x) exists and is

C∞-bounded on each dom(Ak) for z ∈ supp(μj), j = 1, . . . ,m, and k ≥ 0 (recall that
μj was the distribution of the random variable Zj).

Remark 2. As far as Assumption 1 is concerned, we do believe that the assertions
of this paper also hold true for (most) strongly continuous semigroups. A proof
based on an application of the Szőkefalvi–Nagy theorem can be found in the recent
preprint [26]; therefore, we could replace the assumption that A generates a strongly
continuous group by the assumption that A generates a pseudocontractive, strongly
continuous semigroup. This includes most of the second order partial differential
operators. However, for this paper we do always assume the group property for the
sake of simplicity.

Remark 3. The Hörmander condition could not be formulated without the ana-
lytic part of Assumption 1.

Example 1. In order to show examples of vector fields, which are C∞-bounded on
dom(Ak), consider the following structure. Let H be a separable Hilbert space and A
the generator of a strongly continuous semigroup. We know that dom(A∞) is a Fréchet
space and an injective limit of the Hilbert spaces dom(Ak) for k ≥ 0. Following the
analysis as developed in [16] (see also [20] and [19], where the analytic concepts have
been originally developed), we can consider vector fields V : U ⊂ H → dom(A∞). If
V is smooth in the sense explained in [16] and has the property that its derivatives of
proper order n ≥ 1 are bounded on U ⊂ H , then V is obviously a C∞-bounded vector
field, and additionally V |dom(A∞) is a Banach map-vector field in the sense of [16].
Such vector fields constitute a class, where Assumptions 1–3 can be readily checked.

3. Decomposition theorem for jump-diffusions on Hilbert spaces. In or-
der to properly understand how to apply the Malliavin calculus, we state the following
rather obvious structure theorem on jump-diffusions, which simply takes into account
that stochastic integration with respect to the Poisson process follows the rules of
Lebesgue–Stieltjes integration (see, for instance, [25] for a general exposition). Here
we need only that the vector fields are C∞-bounded on H in order to guarantee
existence and uniqueness of the respective equations.

Theorem 1. Let (Ω,F , P, (Ft)t≥0) be a filtered probability space, (Bt)t≥0 be a
d-dimensional Brownian motion, and (Lj

t )t≥0 be m independent compound Poisson
processes for j = 1, . . . ,m, such that the filtration is the natural filtration with respect
to (Bt, L

1
t , . . . , L

m
t )t≥0. Let S be a strongly continuous semigroup with generator A on

H. Let α, V1, . . . , Vd, the diffusion vector fields, and δ1, . . . , δm, the jump vector fields,
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be C∞-bounded on H, and consider the cadlag solution (Xx
t )0≤t≤T of an SPDE

dXx
t = (AXx

t− + α(Xx
t−))dt +

d∑
i=1

Vi(Xx
t−)dBi

t +
m∑

j=1

δj(Xx
t−)dLj

t ,(3.1)

Xx
0 = x.(3.2)

Let η denote a piecewise constant cadlag trajectory η : R≥0 → R
m of the compound

Poisson process L with finitely many jumps on compact intervals and starting at 0.
We consider

dY x,η
s,t =

(
AY x,η

s,t− + α(Y x,η
s,t−)

)
dt+

d∑
i=1

Vi(Y
x,η
s,t−)dBi

t(3.3)

+
m∑

j=1

δj(Y
x,η
s,t−)dηj(t),

Y x,η
s,s = x.(3.4)

Then (Y x,η
s,t )s≥0 can be given explicitly in terms of the jump times τn of η for n ≥ 0

and the diffusion process between two consecutive jumps:

Y x,η
t := Y x,η

0,t for 0 ≤ t < τ1,

Y x,η
t := Y y,η

τ1,t

∣∣
y=Y x,η

0,τ
−
1

+
∑

m
j=1 δj(Y

x,η

0,τ
−
1

)Δηj(τ1)
for τ1 ≤ t < τ2

...

Y x,η
t := Y y,η

τn−1,t

∣∣
y=Y x,η

0,τ
−
n−1

+
∑m

j=1 δj(Y
x,η

0,τ
−
n−1

)Δηj(τn−1)
for τn−1 ≤ t < τn.

Here we write Δη(t) := η(t) − η(t−) for t ≥ 0. We define the process (Y x,L
t )t≥0 by

inserting the compound Poisson process L for η into (Y x,η
t )t≥0. The resulting process

(Y x,L
t )t≥0 is then indistinguishable from (Xx

t )t≥0.
Proof. For the proof we refer the reader to [25, Chapter V.10, Theorem 57],

particularly with respect to the conditioning on the jump part. The proof remains
unchanged in the infinite-dimensional setting; see [15] for the existence and uniqueness
proof on separable Hilbert spaces.

Remark 4. For future use we shall always assume that the first jumping time of
η is strictly positive, τ1 > 0, and that each time corresponds to the jump of exactly
one coordinate process Lj, which is true for almost all trajectories of the compound
Poisson process L. Notice that the dependence of (Y x,η

t )t≥0 on the jump times of η
is continuous but certainly not smooth since the jump times are inserted instead of
the time of a hypoelliptic diffusion process.

Remark 5. Notice that one can also interpret the result in the following way:
consider the solution (Xx

t )t≥0 of (3.1) as an element of L2(Ω1 × Ω2;H), where Ω1

carries the Brownian motion part (with natural filtration), Ω2 carries the Poisson
part (with natural filtration), and Ω1 × Ω2 is equipped with the respective product
σ-algebra. Then we know by Fubini’s theorem that

L2(Ω1 × Ω2;H) = L2(Ω2;L2(Ω1;H)).

The previous theorem only clarifies the jump-diffusion structure of the dependence
on Ω2. In other words, between jumps we have ordinary diffusions, and at a jump we
link by linkage operators.
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4. First variation processes. In order to calculate Malliavin derivatives, which
is crucial for arguments on absolute continuity, we need precise statements on first
variation processes of jump-diffusions. For later purposes, but also in order to see
results on the inverse of the first variation process easily, we write our equations in
the Stratonovich notation. This is not innocent in infinite dimensions, since mild
solutions are in general not semimartingales, and therefore the Stratonovich notation
fails to be applicable in general. However, by Assumption 1 we are able to determine
whether we are given a semimartingale, or not, by analyzing the initial value of the
process. Indeed, for fixed k ≥ 0, if x ∈ dom(Ak+1), then there is a mild solution
taking values in dom(Ak+1) of the Itô SDE. However, this solution process has to
coincide, by uniqueness, with the solution process obtained by considering the same
equation on dom(Ak) with an initial value in dom(Ak+1). Therefore, the mild solution
in dom(Ak+1) is a strong solution in dom(Ak). Therefore, we assume Assumptions 1
and 3 to be in force in this section.

By the previous arguments for the given SDE (3.1), we can switch to Stratonovich
notation for x ∈ dom(A) and obtain

dXx
t = V0(Xx

t−)dt+
d∑

i=1

Vi(Xx
t−) ◦ dBi

t +
m∑

j=1

δj(Xx
t−)dLj

t

with the Stratonovich drift given by

V0(x) := Ax+ α(x) − 1
2

d∑
i=1

TVi(x) · Vi(x)

for x ∈ dom(A). Recall the tangent (derivative) operator T:

TV (x) · v =
d

dε

∣∣∣
ε=0

V (x+ εv).

We do also consider the SDE (3.3) with respect to one trajectory η and switch to
Stratonovich notation there, too. The following theorem states the result on the first
variation process along one trajectory η, which yields in what follows the same result
by inserting the compound Poisson process L for η. Notice that the trajectory η is
such that the first jumping time is strictly positive and that at each jumping time τn
for n ≥ 1 only one coordinate jumps.

Theorem 2. Assume Assumptions 1 and 3 hold. We fix k ≥ 0. The first
variation process (Js→t(x, η))t≥s associated with (Y x,η

t )t≥0 on dom(Ak) is well defined
and satisfies the SDE

dJs→t(x, η) · h =
(
AJs→t−(x, η) · h+ Tα(Y x,η

s,t−) · Js→t−(x, η) · h
)
dt

+
d∑

i=1

(
TVi(Y

x,η
s,t−) · Js→t−(x, η) · h

)
dBi

t

+
m∑

j=1

(
T δj(Y

x,η
s,t−) · Js→t−(x, η) · h

)
dηj(t),

Js→s(x, η) · h = h(4.1)

for h, x ∈ dom(Ak) and t ≥ s. The Itô equation has a unique global mild solution
for h, x ∈ dom(Ak), and Js→t(x, η) defines a continuous linear operator on dom(Ak),
which is invertible if x ∈ dom(Ak+1).
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The Stratonovich equation on dom(Ak) in turn is well defined only for h, x ∈
dom(Ak+1). We apply the (formal) notation here:

TV0(x)v = Av + Tα(x)v − 1
2

T

(
x �→

d∑
i=1

TVi(x) · Vi(x)

)
v

for x ∈ dom(A) and v ∈ dom(A).

dJs→t(x, η) · h =
(

TV0(Y
x,η
s,t−) · Js→t−(x, η) · h

)
dt

+
d∑

i=1

(
TVi(Y

x,η
s,t−) · Js→t−(x, η) · h

)
◦ dBi

t(4.2)

+
m∑

j=1

(
T δj(Y

x,η
s,t−) · Js→t−(x, η) · h

)
dηj(t),

Js→s(x, η) · h = h

for h, x ∈ dom(Ak+1) and t ≥ s. The adjoint of the inverse

Zx,h
t :=

(
Js→t(x, η)−1

)∗ · h,
if it exists, should satisfy the following Stratonovich equation at the point x in direction
h:

dZx,h
t = −

(
TV0(Y

x,η
s,t−)∗ · Zx,h

t−

)
dt−

d∑
i=1

(
TVi(Y

x,η
s,t−)∗ · Zx,h

t−

)
◦ dBi

t

−
m∑

j=1

(
T δj(Y

x,η
s,t−)∗ · Zx,h

t−

)
dηj(t)(4.3)

+
m∑

j=1

((
T δj(Y

x,η
s,t−)2

)∗
·
((

idH + Δηj(t)T δj(Y
x,η
s,t−)

)−1
)∗

· Zx,h
t− (Δηj(t))2

)
for h, x ∈ dom(Ak+1) and t ≥ s ≥ 0 (here we applied the notions of [25]).

Remark 6. The completely analogous theorem holds when we replace η by a
compound Poisson process L. We do not state this theorem again, but we point out
that we even have moment estimates for the respective processes, which is the only
additional relevant information. To be precise, the first variation process Js→t(x) · h,
which equals Js→t(x, L) by construction, has bounded second moments by [15].

Proof. Under our Assumption 1, the regularity in the initial values is clear by well-
known results from [12] and the chain rule on Hilbert spaces (recall that the linkage
operators are smooth). We are allowed to pass to the Stratonovich decomposition since
we integrate semimartingales by Itô’s formula on Hilbert spaces for x, h ∈ dom(Ak+1)
due to the arguments of [3]: the core assertion here is that we can replace H by each
dom(Ak) for some k ≥ 0, which means in turn if we start in dom(Ak+1) and obtain a
mild solution there, it is indeed a strong solution considered on dom(Ak) for k ≥ 0.
It remains to show the invertibility results on the respective first variation processes.
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Left invertibility of the first variation Js→t(y, .) follows by Itô’s formula since we
have cadlag trajectories with finitely many jumps. Calculating the semimartingale
decomposition of (Zy,.

t )∗ · J0→t(x, η) given by (4.2) and (4.3) yields the result

(Zx,.
t )∗J0→t(x, η) = iddom(Ak).

Thus, the solution of (4.3) is the left inverse of Js→t.
We prove that the left inverse is also the right inverse by the same reasoning

as in the proof of Proposition 2 in [3]. Therefore, we choose an orthonormal basis
(gi)i≥1 of dom(Ak) which lies in dom(Ak+1). Then we can compute the semimartingale
decomposition of

N∑
i=1

〈(Zx,h1

t )
∗
, gi〉dom(Ak)〈gi, Js→t(x, η)∗ · h2〉dom(Ak)

=
N∑

i=1

〈h1, Z
x,gi

t 〉dom(Ak)〈Js→t(x, η) · gi, h2〉dom(Ak)

for h1, h2 ∈ dom(Ak+1) and N ≥ 1. Applying the Stratonovich decomposition and by
adjoining, we can free the gi’s and pass to the limit, which yields the vanishing finite
variation and martingale part. Hence

〈Js→t(x, η)(Z
x,h1

t )
∗
, h2〉dom(Ak)

= lim
N→∞

N∑
i=1

〈(Zx,h1

t )
∗
, gi〉dom(Ak)〈gi, Js→t(x, η)∗ · h2〉dom(Ak)

= 〈h1, h2〉dom(Ak),

which is what a right inverse should satisfy.

5. Absolutely continuous laws in finite and infinite dimensions. In this
section we assume Assumptions 1, 2, and 3. We want to determine by means of
Malliavin calculus whether the law of l(Y x,η

t ) is absolutely continuous with respect to
Lebesgue measure for t > 0.

For details on Malliavin calculus see [22] and [24], where in particular the deriva-
tive operator and the Skorohod integral for Malliavin calculus with respect to a
d-dimensional Brownian motion are defined. Notice that we do not need a Malli-
avin calculus with respect to the Poissonian trajectories, since we calculate Poisson-
trajectory–wise.

Our first task is the calculation of the Malliavin derivative for a fixed cadlag path
η. In a second step, we consider the composed problem, where we replace η by a
compound Poisson process L as outlined before. Therefore, we first fix a piecewise
constant cadlag trajectory η : R≥0 → R

m of the process (L1
t , . . . , L

m
t )t≥0 with finitely

many jumps on compact intervals starting at 0.
Theorem 3. We take Assumptions 1, 2, and 3 for granted, where x ∈ dom(A∞)

denotes the point where the Hörmander condition (2.3) holds true. Let (Y x
t )t≥0 denote

the unique cadlag solution of (3.3). Then for projections l : H → R
M the law of l(Y x

t )
is absolutely continuous with respect to Lebesgue measure on R

M for t > 0.
Proof. Fix t > 0. We are able to write the Malliavin derivative of Y x

t for each
Poissonian trajectory η:

Di
s(l ◦ Y

x,η
t ) = l ◦ J0→t(x)J0→s(x)−1Vi(Y

x,η
s− )1[0,t](s).
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We can calculate the Malliavin covariance matrix γ as

〈γ(l ◦ Y x,η
t )ξ, ξ〉 :=

d∑
i=1

∫ t

0

〈l ◦ J0→t(x)J0→s(x)−1Vi(Y
x,η
s− ), ξ〉2ds.

Consequently, the covariance matrix γ(l ◦ Y x,η
t ) can be calculated in the usual way

via the reduced covariance matrix

〈Ctξ, ξ〉 :=
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi(Y

x,η
s− ), ξ

〉2
ds

through the relation

γ(l ◦ Y x,η
t ) = (l ◦ J0→t(x))Ct(l ◦ J0→t(x))

∗
,

where ∗ denotes the adjoint operator with respect to the Hilbert space structures on
H and R

M . We assume n jumps of η on [0, t], and we denote by 0 = τ0 < τ1 < · · · <
τn ≤ t the sequence of jump times of η. For convenience, we denote the last point
in time t by τn+1, even if τn+1 = τn, which can in principle happen. Hence we can
decompose:

〈Ctξ, ξ〉 :=
n∑

k=0

d∑
i=1

∫ τk+1

τk

〈
J0→s(x)−1Vi(Y

x,η
s− ), ξ

〉2
ds =

n∑
k=0

〈Ck
t ξ, ξ〉.

Each of the summands determines a symmetric matrix Ck
t and can be interpreted as

a reduced covariance matrix coming from a diffusion between τk and τk+1 with initial
value Y x

τ−
k

for k = 0, . . . , n. We do not know whether the Hörmander condition is true

everywhere. Therefore, we do not know whether Ck
t is a positive definite operator for

each k ≥ 0. From [3], Theorem 1, we do know, however, that C0
t is a positive definite

operator and there exist null sets N0 such that on N c
0 the matrix C0

t is invertible.
Hence the law of (l ◦ Y x,η

t ) is absolutely continuous with respect to the Lebesgue
measure on R

M , since J0→t(x) is invertible and therefore γ(l ◦Y x,η
t ) has empty kernel

(Theorem 2.1.2 in [24, p. 86]).
Remark 7. The same conclusions hold for Y x,η

t− : notice that Y x,η
t = Y x,η

t− if there
is no jump at t. Otherwise, Y x,η

t = Y x,η
t− +

∑m
j=1 δj(Y

x,η
0,t−)Δηj(t), but invertible dif-

feomorphisms transform absolutely continuous laws into absolutely continuous ones.
Now we extend this theorem to the jump-diffusion process (Xx

t )t≥0, which is easy
since, conditioned on one trajectory η, we do have an absolutely continuous law and
this property is not perturbed by integration due to Fubini’s theorem.

Theorem 4. We take Assumptions 1, 2, and 3 for granted, where x ∈ dom(A∞)
denotes the point where the Hörmander condition (2.3) holds true. Let (Xx

t )t≥0 denote
the unique cadlag solution of (3.1). Then for projections l = (l1, . . . , lk) : H → R

M

the law of l(Xx
t ) is absolutely continuous with respect to the Lebesgue measure on R

M

for t > 0. Notice that l(Xx
t ) and l(Xx

t−) have the same distribution.
Proof. The proof applies the following simple corollary of Fubini’s theorem on

R
M with Lebesgue measure λ and a probability space (Ω,F , P ): let ν be a probability

measure on R
M × Ω such that there is random density p : R

M × Ω → R≥0 with∫
RM×Ω

f(x, η)p(x, η)(λ ⊗ P )(dx, dη) =
∫

RM×Ω

f(x, η)ν(dx, dη);
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then the marginal of ν on R
M is absolutely continuous with respect to Lebesgue

measure λ with density

p(x) =
∫

Ω

p(x, η)P (dη)

for almost all x ∈ R
M . In our case we know that the law of (l(Xx

t ) is absolutely
continuous for almost all trajectories η of the compound Poisson processes L (pre-
cisely those where τ1 > 0, where only one coordinate jumps at each jumping time,
and finitely many jumps occur on compact intervals); the probability measure ν cor-
responds to the distribution of (l(Xx

t ), L), where we choose Ω as the space of cadlag
trajectories on R≥0 with values in R

m. Finally, we have that the law of (l(Xx
t ) is

p(x)λ(dx).

6. Applications of the infinite-dimensional result to interest rate the-
ory. In mathematical Finance, the theory of interest rates deals with the market of
interest rate related products like swaps, bonds, bills, etc. If one considers default-free
products one can crystallize from the data of real markets the prices of default-free
zero-coupon bonds for any maturity. A zero-coupon bond contract with maturity T
(a calendar date) can be entered at calendar time t ≤ T and (certainly) pays 1 unit
of currency at maturity time T . Therefore, bonds reflect the level of interest rate
between time t and maturity time T . No coupons are paid between t and T , which
explains the notion of “zero-coupon bond.” We denote the price of a default-free
zero-coupon bond with maturity T at time t ≤ T by P (t, T ). Commonly one assumes
that bond prices are at least C1 with respect to T , i.e.,

P (t, T ) = exp

(
−

∫ T

t

f(t, r)dr

)

for 0 ≤ t ≤ T , where f(t, T ) denotes the forward rate. This leads to the concept of
the short rate

Rt = f(t, t)

for t ≥ 0, which corresponds to the level of interest rate for instantaneous transactions
from t to t + dt. As usual in mathematical Finance, discounted default-free zero-
coupon bonds are modeled by semimartingales, and one assumes the existence of
an equivalent martingale measure for discounted price processes. This leads to the
following fundamental formula with respect to the martingale measure

E

(
exp

(
−

∫ T

t

Rsds

)
|Ft

)
= P (t, T ) = exp

(
−

∫ T

t

f(t, r)dr

)
.

The formula simply expresses the fact that the expected value of discounted value of
the payoff P (T, T ) = 1 conditional on today’s information equals today’s price with re-
spect to the martingale measure. Assuming a jump-diffusion model for (f(t, T )0≤t≤T

for T ≥ 0 for the forward rates together with Musiela’s parametrization r(t, T − t) =
f(t, T ) for 0 ≤ t ≤ T leads to the famous Heath–Jarrow–Morton (HJM) equation of
interest rate theory, which is an SDE taking values in a Hilbert space of forward rate
curves H (and therefore an SPDE). We quote here as leading reference [15], where the
no-arbitrage conditions for the HJM equation are discussed in all necessary detail. A
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very readable introduction can also be found in [8], particularly for HJM equations
with jumps.

The HJM equation has been analyzed from different points of view:
• The question of which HJM equations driven by finitely many Brownian

motions admit finite-dimensional realizations has been treated in detail in
[16]. This research was inspired by [9], where the geometric approach was
introduced. The satisfying answer is that, under quite natural restrictions,
finite-dimensional realizations do exist if and only if the corresponding factor
processes are affine processes. This is the case, for instance, for Vasiček’s
model or for the Cox–Ingersoll–Ross model of interest rate theory. In both
cases the finite-dimensional realizations are, in fact, two-dimensional. In [8]
finite-dimensional realizations are treated for HJM equations with jumps but
under the strong restriction that the vector fields do not depend on the for-
ward rate. In this case one can solve the HJM equation explicitly by variation
of constants and read off the respective geometric properties of the solution
process.

• The question of whether the solution process of an HJM equation always
admits a density with respect to Lebesgue measure when projected to a
finite-dimensional subspace has been treated in [3] and could be answered
affirmatively under Hörmander-type conditions.

We ask here the question—having the theory of the previous sections in mind—of
whether a structure of finite-dimensional realizations, such as for Vasiček’s model, can
be perturbed so strongly through the introduction of jumps that the resulting HJM
evolution is “hypoelliptic,” i.e., the assumptions of Theorem 3 are fulfilled. We can
answer this question affirmatively in the case of a Vasiček model. In contrast to [8],
we allow the vector fields to be state-dependent (therefore, we cannot hope for explicit
solutions of the HJM equation, and we have to apply local methods from differential
geometry to conclude).

We consider the HJM model with jumps⎧⎨⎩ drt =
(
d

dx
rt− + αHJM (rt−) + βHJM (rt−)

)
dt+ σ(rt−)dBt + δ(rt− )dNt,

r0 = r∗ ∈ H,

on some Hilbert space H of forward rate curves as constructed in [3] and [15]. Here
(Bt)t≥0 is a standard Brownian motion, and (Nt)t≥0 is a standard Poisson process
with intensity λ̃ > 0 and jump measure μ = δ1 (hence λ̃ = λ). Define

Ψ1(z) ≡ ln E
[
ezW1

]
= ln

(
e

z2

2

)
=
z2

2
and

Ψ2(z) ≡ ln E
[
ezN1

]
= ln (exp (λ (ez − 1))) = λ (ez − 1) .

Then we know from [15, equation (2.4)], that

αHJM (r)(x) = −σ(r)(x)Ψ′
1

(
−

∫ x

0

σ(r)(y)dy
)

= σ(r)(x)
∫ x

0

σ(r)(y)dy
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and

βHJM (r)(x) = −δ(r)(x)Ψ′
2

(
−

∫ x

0

δ(r)(y)dy
)

= −λδ(r)(x) exp
(
−

∫ x

0

δ(r)(y)dy
)
.

For an explicit example we choose

σ(r)(x) = σ(x) > 0 and δ(r)(x) = − d

dx
ln(B(r)(x)),

where the vector field B will be determined later. Then we have

αHJM (r)(x) = σ(x)
∫ x

0

σ(y)dy

and

βHJM (r)(x) = λ
d

dx
ln(B(r)(x))

(B(r)(x))
(B(r)(0))

= λ
d
dx(B(r)(x))
(B(r)(0))

.

We choose B such that (B(r)(x)) is positive on H for x ∈ R and B(r)(0) = 1 for all
r ∈ H , whence δ is well defined. Thus, for such r ∈ U we have

βHJM (r)(x) = λ
d

dx
(B(r)(x))

and

δ(r)(x) = − d

dx
ln(B(r)(x)).

A particular choice in the spirit of Remark 1 is given through

B(r)(x) = ψ(x, l(r)),

where the maps y �→ d
dxψ(., y) and y �→ 1

ψ(.,y) from R to dom(A∞) ⊂ H are supposed
to be C∞-bounded with ψ(0, y) = 1 for all y ∈ R. The map l denotes here a non-
vanishing linear functional l : H → R. Hence δ and β are well defined C∞-bounded
vector fields on the whole Hilbert space, and we have global existence of mild solutions.

The Vasiček model is defined by

σ(r) = ρ exp(−ax)

for ρ, a > 0 without any jump component. By [9] and [16] we know that the Vasiček
model admits finite-dimensional realizations, as for

V0(r)(x) =
d

dx
r(x) + αHJM (r)(x)

we have

dim({V0, σ}LA(r)) ≤ 2,
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at any point r ∈ dom(( d
dx)

∞
). Here the index LA stands for the Lie algebra generated

by the vector fields V0, σ on dom(A∞). If we add a jump structure as described above
and if we choose ψ generic, the two-dimensional structure (a regular finite-dimensional
realization in the sense of [16]) is destroyed, since then the drift changes due to no-
arbitrage. We obtain a dense Lie algebra if we choose the vector field B generically.

These results might be of interest for recent works in interest rate theory; see, for
instance, [23], where under diffusion assumptions hypoellipticity is tested empirically.
If one allows for jumps in an HJM model, the phenomenon of hypoellipticity seems
to be more generic.

7. Smooth densities for the law Xx
T on R

M . In the what folllows we consider
the cases dimH = M and l = id, and we choose a coordinate representationH = R

M .
We then want to show that the pth power of the inverse of the Malliavin covariance
matrix of Xx

t for t > 0 can be integrated even with respect to Poisson trajectory
η. We therefore need an extension of the Hörmander condition which is called the
uniform Hörmander condition.

Following [24], we define

Σ′
0 := {V1, . . . , Vd},

Σ′
n :=

{
[Vk, V ], k = 1, . . . , d, V ∈ Σ′

n−1; [V0, V ] +
1
2

d∑
i=1

[Vi,[Vi, V ]], V ∈ Σ′
n−1

}
for n ≥ 1. We assume that there exist j0 and c > 0 such that

(7.1) inf
ξ∈SM−1

j0∑
j=0

∑
V ∈Σ′

j

〈V (x), ξ〉2 ≥ c

uniformly in x ∈ R
M .

Theorem 5. Assume that dimH < ∞. We take Assumptions 2 and 3 for
granted but assume that the Hörmander condition (2.3) holds true uniformly on R

M

in the sense of (7.1). Let (Xx
t )t≥0 denote the unique cadlag solution of (3.1), and

fix t > 0. Then the random variable Xx
t admits a smooth density with respect to

Lebesgue measure on R
M . Furthermore, the covariance matrix of Xx

t is invertible
with p-integrable inverse for all p ≥ 1.

Proof. We write the Malliavin derivative of Xx
t ,

Di
sX

x
t = J0→t(x)J0→s(x)−1Vi(Xx

s−)1[0,t](s),

and calculate the reduced covariance matrix

〈Ctξ, ξ〉 =
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi(Xx

s−), ξ
〉2
ds.

We now apply the result from Theorem 1 and the condition on the trajectories of the
compound Poisson process (2)

(7.2) sup
ξ∈SM−1

P (〈Ctξ, ξ〉 < ε)

= sup
ξ∈SM−1

∑
n1,...,nm≥0

[
m∏

k=1

P (Nk
t = nk)

]
P (〈Ctξ, ξ〉 < ε|N j

t = nj for j = 1, . . . ,m).
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As in the proof of Theorem 3, we can decompose 〈Ctξ, ξ〉 into

〈Ctξ, ξ〉 =
∞∑

k=0

d∑
i=1

∫ τk+1∧t

τk∧t

〈
J0→s(x)−1Vi(Xx

s−), ξ
〉2
ds,

where τ0 = 0 < τ1 < · · · < τn ≤ . . . denotes the sequence of jump times of (Nt)0≤t≤T .
Hence, we obtain for n = n1 + · · · + nm

sup
ξ∈SM−1

P (〈Ctξ, ξ〉 < ε|N j
t = nj , j = 1, . . . ,m)

≤ sup
ξ∈SM−1

P

(
d∑

i=1

∫ τk+1∧t

τk∧t

〈
J0→s(x)−1Vi(Xx

s−), ξ
〉2
ds < ε

∣∣∣N j
t = nj , j = 1, . . . ,m

)

for all 0 ≤ k ≤ n. Observing that max0≤k≤n(τk+1 − τk)K(p) ≥ ( t
n )K(p) (after all, we

have only n jumps, so the maximal distance between two consecutive jumps is bigger
than t

n ), we finally obtain

P (〈Ctξ, ξ〉 < ε|N j
t = nj for j = 1, . . . ,m) ≤ εp

for 0 ≤ ε ≤ ( t
n )K(p)ε0(p) due to the calculations outlined in the appendix. Note

that we can apply the calculations from the appendix, since J0→s(x)−1 is well defined
and bounded due to boundedness of (id+ zdδj)−1 for z ∈ supp(μj) and j = 1, . . . ,m.
Hence integration with respect to the measures μj is possible and yields finite bounds.
Recall also that μj has moments of all orders; hence Xx

t is Lp, and so is J0→s(x)−1

(see [25] for all necessary details on SDEs).
Let Λ = infξ∈SM−1 〈Ctξ, ξ〉 be the smallest eigenvalue of the reduced covariance

matrix Ct. Following the steps of [24, Lemma 2.3.1], we know that

P (Λ < ε | N j
t = nj for j = 1, . . . ,m) ≤ const · εp

for any p ≥ 2 and 0 ≤ ε ≤
(

t
n

)K(p+2M)
ε0(p + 2M) =: εmax, where the constant

depends on the p-norm of Ct. In what follows we shall denote any constant of this
type by D. We denote by ρ the law of Λ conditioned on N j

t = nj for j = 1, . . . ,m.
Consequently, for j = 1, . . . ,m, we have by Fubini’s theorem

E

(
1

Λp−1

∣∣∣ N j
t = nj

)
= E

(
1

Λp−1
· 1{Λ>εmax}

∣∣∣ N j
t = nj

)
+ E

(
1

Λp−1
· 1{Λ≤εmax}

∣∣∣ N j
t = nj

)
≤ 1
εp−1
max

+
∫ εmax

0

1
zp−1

ρ(dz)

=
1

εp−1
max

+
∫ εmax

0

(p− 1)
∫ ∞

z

1
tp
dtρ(dz)

=
1

εp−1
max

+ (p− 1)
∫ εmax

0

1
zp

∫ z

0

ρ(dt)dz
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+ (p− 1)
∫ ∞

εmax

1
zp

∫ εmax

0

ρ(dt)dz

≤ D

εp−1
max

+D

∫ εmax

0

1
zp

zpdz︸ ︷︷ ︸
=εmax

≤ D

(
t

n

)K(p+2M)

ε0(p+ 2M)

+
D

[( t
n )K(p+2M)ε0(p+ 2M)]p−1

.

Here we applied
∫ z

0 ρ(dt) ≤ D × zp as previously proved. Hence, through the decom-
position (7.2),

E

(
1

Λp−1

)
≤

∑
n1,...,nm>0

m∏
k=1

P (Nk
t = nk)

·D ·
[( t
n

)K(p+2M)

ε0(p+ 2M) +
1

[( t
n )K(p+2M)ε0(p+ 2M)]p−1

]
<∞;

the result follows by n = n1 + · · ·+ nm and by the following fact for any real number
K: ∑

n1,...,nm>0

λ̃n1
1 · · · λ̃nm

m

n1! · · ·nm!
e−tλ̃1n1−···−tλ̃mnmtn(n1 + · · · + nm)K <∞.

Remark 8. We could have also applied the beautiful results of [21, Corollary 3.25]
to evaluate the Lp-norm of the inverse of the covariance matrix between two jumps.
Both methods lead to the same result. We have been choosing our approach since we
can root it as much as possible in the standard reference [24].

8. Calculating the Greeks in finite dimension. In what follows we consider
the case dimH = M and l = id as in the previous section. Once we are given an
invertible Malliavin covariance matrix with p-integrable inverse such as in Theorem
5, we can easily calculate derivatives with respect to initial values and obtain explicit
formulas for so-called Malliavin weights (see [17] for successful applications of this
method in mathematical Finance). We quickly sum up the main idea: in mathematical
Finance the gradient of the function x �→ E(f(Xx

t )) has the meaning of hedging ratios,
which control the hedging portfolios away from jumps. Hence for any hedging portfolio
corresponding to prices E(f(Xx

t )) of a certain derivative at maturity t > 0 it is crucial
to know ∇E(f(Xx

t )) to perform hedging off jumps.
Very often pricing results in the applications of a weak approximation scheme

for the process X , for instance, the Euler–Maruyama scheme. For the calculation of
∇E(f(Xx

t )) in the direction of some vector v ∈ H , basically three methods can be
applied:

• a finite difference method to approximate ∇E(f(Xx
t )) · v, resulting in the

calculation of E(f(Xx+εv
t ))−E(f(Xx

t ))
ε (v ∈ H denotes some vector) for small

ε > 0;
• a pathwise method applying the formula

∇E(f(Xx
t )) · v = E(df(Xx

t )J0→t(x) · v),
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resulting in the weak numerical approximation of (Xx
t , J0→t(x)); and

• the method of Malliavin weights applying the formula

∇E(f(Xx
t )) · v = E(f(Xx

t )πv),

resulting in the weak numerical approximation of (Xx
t , π

v).
The first method is the most robust in the sense that it can be applied under very

weak assumptions both on Xx
t and on the payoff f , but the rate of convergence might

be very slow since the errors of Monte Carlo evaluations are amplified. The second
method works for all reasonable jump-diffusion processes, but one needs Lipschitz
conditions on the payoff f . The third method needs the assumptions of Theorem 5
on Xx

t , but no restrictions on the payoff f , which makes the third method attractive
for several problems from mathematical Finance, where measurable, non-Lipschitz
payoffs (e.g., digital options) are quite usual and hypoellipticity assumptions as in
Theorem 5 are common, too.

The implementation of procedures for all three methods has been outlined in
[18] in the pure diffusion case. We shall not work on this issue here, since our main
message is that one can implement precisely the same methods in pure diffusion cases
as in jump-diffusion cases. The important point is that the formulas have the same
structure in both cases, a fact we shall point out in this section on several occasions.

We denote in what follows the Skorohod integral (resp., the divergence operator)
by δ and its domain by dom(δ).

Definition 1. Assume that H = R
M and fix t > 0 and a direction v ∈ R

M . We
define a set of Skorohod-integrable processes

At,x,v =

{
a ∈ dom(δ) such that

d∑
i=1

∫ t

0

J0→s(x)−1Vi(Xx
s−)ai

sds = v

}

and call it the set of path-perturbations with target-value v.
Remark 9. In the previous definition, as in the whole section, assertions on

Skorohod-integrability are meant Poissonian-trajectory–wise.
Proposition 1. Assume that H = R

M . We take Assumption 3 for granted. Fix
t > 0 and a direction v ∈ R

M . Assume furthermore uniform ellipticity; i.e., M = d
and there is c > 0 such that

inf
ξ∈SM−1

M∑
k=1

〈Vk(x), ξ〉2 ≥ c.

Then At,x,v �= ∅ and there exists an integrable, real valued random variable πv (which
depends linearly on v) such that for all bounded random variables f we obtain

d

dε
|ε=0E(f(Xx+εv

t )) = E(f(Xx
t )πv).

Such a random variable πv is called a Malliavin weight and can be obtained through
an Itô integral.

Remark 10. The assertion of this theorem corresponds to Assumption (E) in
[18] and to the assumptions of [17]. The assumptions are seen as too restrictive since
not every problem in mathematical Finance has an elliptic volatility matrix. The
formulas of [18] and [17] correspond precisely to the formulas obtained here, which
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leads to the assertion that even in the presence of jumps one can apply the same
(numerical) methods for the calculation of Greeks as in the pure diffusion cases.

Proof. Here the proof is particularly simple, since we can take a matrix σ(x) :=
(V1(x), . . . , VM (x)), which is uniformly invertible with bounded inverse. We define

as :=
1
t
σ(Xx

s−)−1 · J0→s(x) · v

for 0 ≤ s ≤ t and obtain that a ∈ At,x,v. Furthermore, as in [17] and [13], we obtain

πv =
M∑
i=1

∫ t

0

ai
sdB

i
s,

since the Skorohod-integrable process a is in fact adapted, left-continuous, and hence
Itô-integrable.

Theorem 6. Assume that H = R
M . We take Assumptions 2 and 3 for granted

but assume that the Hörmander condition (2.3) holds true uniformly on R
M (see

section 7). Fix t > 0 and a direction v ∈ R
M . Then At,x,v �= ∅ and there exists an

integrable, real valued random variable πv (which depends linearly on v) such that for
all bounded random variables f we obtain

d

dε
|ε=0E(f(Xx+εv

t )) = E(f(Xx
t )πv).

We can choose πv to be the Skorohod integral of any element a ∈ At,x,v �= ∅ and call
it a Malliavin weight. Moreover, by the explicit construction of a in the proof, we can
assert that πv is the sum of an Itô integral and an integral with respect to Lebesgue
measure; see, for instance, [18].

Remark 11. The assertion of this theorem corresponds to Assumption (E′) in
[18]. The assumptions (E) and (E′) are fundamental for the third method in [18].
Again the formulas of [18] correspond to the formulas obtained here.

Proof. We take f bounded with bounded first derivative; then we obtain

d

dε
|ε=0E(f(Xx+εv

t )) = E(df(Xx
t )J0→t(x) · v).

If there is a ∈ At,x,v, we obtain

E(df(Xx
t )J0→t(x) · v) = E

(
df(Xx

t )
d∑

i=1

∫ t

0

J0→t(x)J0→s(x)−1Vi(Xx
s−)ai

sds

)

= E

(
d∑

i=1

∫ t

0

df(Xx
t )J0→t(x)J0→s(x)−1Vi(Xx

s−)ai
sds

)

= E

(
d∑

i=1

∫ t

0

Di
sf(Xx

t )ai
sds

)
= E(f(Xx

t )δ(a)).

Here we cannot assert that the strategy is Itô-integrable, since it will be anticipative
in general. In order to see that At,x,v �= ∅, we construct an element, namely,

ai
s :=

〈
J0→s(x)−1Vi(Xx

s−), (Ct)−1v
〉
,
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where Ct denotes the reduced covariance matrix from Theorem 5. Indeed,

d∑
i=1

〈∫ t

0

J0→s(x)−1Vi(Xx
s−)ai

sds, ξ

〉

=
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi(Xx

s−), ξ
〉 〈
J0→s(x)−1Vi(Xx

s−), (Ct)−1v
〉
ds

=
〈
ξ, Ct(Ct)−1v

〉
= 〈ξ, v〉

for all ξ ∈ R
M , since Ct is a symmetric random operator defined via

〈ξ, Ctξ〉 =
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi(Xx

s−), ξ
〉2
ds

for ξ ∈ R
M .

For any other derivative with respect to parameters ε, we consider a modified set,
namely,

Bt,x,v =

{
b ∈ dom(δ)

∣∣∣∣∣
d∑

i=1

∫ t

0

J0→s(x)−1Vi(Xx
s−)bisds = J0→t(x)

−1 d

dε

∣∣∣∣∣
ε=0

Xx,ε
t

}
.

Here we are given a parameter-dependent process Xx,ε
t , where all derivatives with

respect to ε can be calculated nicely. Also in this case we can construct—if the
reduced covariance matrix is invertible and regular enough—an element, namely,

bis :=
〈
J0→s(x)−1Vi(Xx

s−), (Ct)−1J0→t(x)
−1 d

dε
|ε=0X

x,ε
t

〉
.

This is a consequence of the reasoning

d∑
i=1

〈∫ t

0

J0→s(x)−1Vi(Xx
s−)bisds, ξ

〉
=

d∑
i=1

∫ t

0

〈
J0→s(x)−1Vi(Xx

s−), ξ
〉
·

·
〈
J0→s(x)−1Vi(Xx

s−), (Ct)−1J0→t(x)
−1 d

dε
|ε=0X

x,ε
t

〉
ds

=
〈
ξ, Ct(Ct)−1J0→t(x)

−1 d

dε
|ε=0X

x,ε
t

〉
=

〈
ξ, J0→t(x)

−1 d

dε
|ε=0X

x,ε
t

〉
,

due to the symmetry of Ct.

Appendix.
Theorem 7. Let (Ω,F , P, (Ft)t≥0) be a filtered probability space, and let (Bt)t≥0

be a d-dimensional Brownian motion adapted to the filtration (which is not necessarily
generated by the Brownian motion). Let V, V1, . . . , Vd, the diffusion vector fields, be
C∞-bounded on R

M , and consider the continuous solution (Xx
t )0≤t≤T of an SDE (in

Stratonovich notation). V0 denotes the Stratonovich corrected drift term,

dXx
t = V0(Xx

t )dt+
d∑

i=1

Vi(Xx
t ) ◦ dBi

t,(A.1)

Xx
0 = x.(A.2)
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Assume that the uniform Hörmander condition holds true (see the proof for the precise
statement). Then for any p ≥ 1 there exist numbers ε0(p) > 0 and an integer K(p) ≥ 1
such that for each 0 < t < T

sup
ξ∈SM−1

P (〈Ctξ, ξ〉 < ε) ≤ εp

holds true for 0 ≤ ε ≤ tK(p)ε0(p). The result holds uniformly in x.
Remark 12. The time-dependence of the estimate 0 ≤ ε ≤ tK(p)ε0(p) is best

explained by redoing the proof. It is heavily applied in section 7 and the main technical
ingredient of the given proof. We could have also directly used the results from [21].

Proof. The proof of the theorem is a careful rereading of the Norris lemma and
the classical proof of the Hörmander theorem in probability theory (see [22] or [24]).
We shall sketch this path in what follows (see [24, pp. 120–123]).

1. Consider the random quadratic form

〈Ctξ, ξ〉 =
d∑

i=1

∫ t

0

〈
J0→s(x)−1Vi(Xx

s ), ξ
〉2
ds.

Following [24], we define

Σ′
0 := {V1, . . . , Vd},

Σ′
n :=

{
[Vk, V ], k = 1, . . . , d, V ∈ Σ′

n−1; [V0, V ] +
1
2

d∑
i=1

[Vi,[Vi, V ]], V ∈ Σ′
n−1

}
for n ≥ 1. We assume that there exist j0 and c > 0 such that

inf
ξ∈SM−1

j0∑
j=0

∑
V ∈Σ′

j

〈V (x), ξ〉2 ≥ c

uniformly in x ∈ R
M .

2. We define m(j) := 2−4j for 0 ≤ j ≤ j0 and the sets

Ej :=

⎧⎨⎩ ∑
V ∈Σ′

j

∫ t

0

〈
J0→s(x)−1V (Xx

s ), ξ
〉2
ds ≤ εm(j)

⎫⎬⎭ .

We consider the decomposition

E0 = {〈Ctξ, ξ〉 ≤ ε} ⊂ (E0 ∩ Ec
1) ∪ (E1 ∩ Ec

2) ∪ · · · ∪ (Ej0−1 ∩Ec
j0 ) ∪ F,

F = E0 ∩ · · · ∩ Ej0

and proceed with

P (F ) ≤ Cε
qβ
2

for ε ≤ ε1 and any q ≥ 2 with a constant C depending on q and the norms of the
derivatives of the vector fields V0, . . . , Vd. Furthermore, 0 < β < m(j0). The number
ε1 is determined by the following two (!) equations:

(j0 + 1)εm(j0)
1 <

cεβ1
4
,

εβ1 < t.
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Hence ε1 depends on j0, c, t, and the choice of β via

ε1 < min

(
t

1
β ,

(
c

4(j0 + 1)

) 1
m(j0)−β

)
.

This little observation, in addition to the proof in [24], is key for our proof.
3. We obtain furthermore that

P (Ej ∩ Ec
j+1) = P

( ∑
V ∈Σ′

j

∫ t

0

〈J0→s(x)−1V (Xx
s ), ξ〉2ds ≤ εm(j),

∑
V ∈Σ′

j+1

∫ t

0

〈J0→s(x)−1V (Xx
s ), ξ〉2ds > εm(j+1)

)

≤
∑

V ∈Σ′
j

P

(∫ t

0

〈
J0→s(x)−1V (Xx

s ), ξ
〉2
ds ≤ εm(j),

d∑
k=1

∫ t

0

〈
J0→s(x)−1[Vk, V ](Xx

s ), ξ
〉2
ds

+
∫ t

0

〈
J0→s(x)−1

(
[V0, V ] +

1
2

d∑
i=1

[Vi, [Vi, V ]]

)
(Xx

s ), ξ

〉2

ds >
εm(j+1)

n(j)

)
,

where n(j) = #Σ′
j . Since we can find the bounded variation and the quadratic vari-

ation parts of the martingale (
〈
J0→s(x)−1V (Xx

s ), ξ
〉
)0≤s≤t in the above expression,

we are able to apply the Norris lemma (see [24, Lemma 2.3.2]). We observe that
8m(j + 1) < m(j); hence we can apply it with q = m(j)

m(j+1) .
4. We obtain for p ≥ 2—still by the Norris lemma—the estimate

P (Ej ∩ Ec
j+1) ≤ d1

(
εm(j+1)

n(j)

)rp

+ d2 exp
(
−
( εm(j+1)

n(j)

)−ν
)

for ε ≤ ε2. Furthermore, r, ν > 0 with 18r + 9ν < q − 8, and the numbers d1, d2

depend on the vector fields V0, . . . , Vd, and on p, T . The number ε2 can be chosen as
ε2 = ε3t

k1 , where ε3 does not depend on t anymore.
5. Putting all this together, we take the minimum of ε1 and ε2 to obtain the

desired dependence on t.
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(2008), pp. 83–115.
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Abstract. The notion of a rough two-dimensional (convex) body is introduced, and to each
rough body there is assigned a measure on T

3 describing billiard scattering on the body. The main
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1. Definition of a rough set and statement of main theorem.

1.1. Introductory remarks and review of literature. In this paper the
notion of a rough two-dimensional (convex) body is given and some properties of
rough bodies are established.

Let B ⊂ R
2 be a convex bounded set with nonempty interior, that is, a bounded

convex body. Consider the “set” obtained from B by moving off a set of “very small”
area. Such a (heuristically defined) set is called a rough body: from the “macroscopic”
point of view, it almost coincides with B, and, from the “microscopic” point of view,
it contains some “flaws.” (One can imagine a detail of a mechanism that, after a
period of exploitation, has some defects.) If the removed set adjoins the boundary
∂B, then one can expect that a flow of point particles incident on the rough body is
reflected in another way as compared to reflection from B.

The notion of rough body arises naturally when studying Newton-like problems
of the body of least resistance. The first problem of such kind was considered by
Newton himself [1]. Recently there were several works made concerning the problem
of least resistance in various classes of admissible bodies; see, e.g., [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [15]. The solution of a minimization problem for the
case of rotating bodies can be naturally identified with a rough body [14]; see also the
concluding remarks to this paper.

There are many papers on particle scattering by rough bodies (see, e.g., [16],
[17], [18]); they describe bodies and flows of particles that occur in nature. On the
contrary, we assume that a rough structure can be “manufactured,” and our aim is
to describe all possible rough structures.

1.2. Definition of a rough body. It is supposed that the “microscopic struc-
ture” of the boundary of a rough body can be detected from observations of particle

∗Received by the editors November 30, 2007; accepted for publication (in revised form) July 16,
2008; published electronically January 28, 2009. This work was supported by the Centre for Re-
search on Optimization and Control (CEOC) from the “Fundação para a Ciência e a Tecnologia”
(FCT), cofinanced by the European Community Fund FEDER/POCTI, and by FCT research project
PTDC/MAT/72840/2006.

http://www.siam.org/journals/sima/40-6/70970.html
†Department of Mathematics, Aveiro University, Aveiro 3810, Portugal. Current address: Insti-

tute of Mathematical and Physical Sciences, Aberystwyth University, Aberystwyth SY23 3BZ, UK
(axp@aber.ac.uk).

2155



2156 ALEXANDER PLAKHOV

scattering on the body. From this point of view, two rough bodies are considered equal
if they scatter flows of particles in an identical manner. Having these observations in
mind, we give the definition of a rough body.

Let B be a bounded convex body. Denote by n(ξ) the unit outer normal vector
to ∂B at a regular point ξ ∈ ∂B, and denote by (∂B × S1)+ the set of pairs (ξ, v) ∈
∂B × S1 such that 〈n(ξ), v〉 ≥ 0. Here and in what follows, 〈·, ·〉 means the standard
scalar product in R

2. The set (∂B × S1)+ is equipped with the measure μ which
is defined by dμ(ξ, v) = 〈n(ξ), v〉 dξ dv, where dξ and dv are the one-dimensional
Lebesgue measures on ∂B and S1, respectively.

Q B

�

�

v

ξ

v+

ξ+

Fig. 1. A billiard trajectory in R
2 \Q.

Let Q be a set with piecewise smooth boundary contained in B; consider the
billiard in R

2 \Q. Note that Q is not necessarily connected. For (ξ, v) ∈ (∂B×S1)+,
consider a billiard particle starting at the point ξ with the velocity −v. After several
(maybe none) reflections from ∂Q \ ∂B, the particle will intersect ∂B again, at a
point ξ+ = ξ+Q,B(ξ, v) ∈ ∂B; denote by v+ = v+

Q,B(ξ, v) the velocity at this point (see
Figure 1). It may happen that the initial point ξ belongs to ∂Q; in that case we have
ξ+ = ξ and the vector v+ is symmetric to v with respect to n(ξ). It may also happen
that at some moment the particle either gets into a singular point of ∂Q, or touches
∂Q at a regular point, or stays in B \Q forever and does not intersect ∂B again, or
makes an infinite number of reflections in finite time. The set of corresponding points
(ξ, v) has zero measure, and the corresponding values ξ+Q,B(ξ, v) and v+

Q,B(ξ, v) are
not defined.

Thus, there is defined the one-to-one mapping TQ,B : (ξ, v) �→ (ξ+Q,B(ξ, v),
v+

Q,B(ξ, v)) of a full measure subset of (∂B × S1)+ onto itself. It has the following
properties:

T1. TQ,B preserves the measure μ.
T2. T−1

Q,B = TQ,B.
The mapping TQ,B induces the measure νQ,B on T

3 = S1×S1×S1 in the following
way. Let A ⊂ T

3 be a Borel set; by definition,

νQ,B(A) = μ
(
{(ξ, v) ∈ (∂B × S1)+ : (v, v+

Q,B(ξ, v), n(ξ)) ∈ A}
)
.

In fact, the measure νQ,B contains information about particle scattering on Q. Imag-
ine that an observer has no means to track the trajectory of particles insideB. Instead,
for each incident particle there is registered the triple of vectors: the initial and final
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velocities (measured at the points of first and second intersection with ∂B), and the
normal vector to ∂B at the point of first intersection with ∂B. The normal vector at
the second point of intersection is not registered; as will be seen later (Lemma 1), if
the area of B \ Q is small, then the difference between the normal vectors at these
two points is also small. The measure νQ,B describes the distribution of triples.

Definition 1. We say that a sequence of sets {Qm, m = 1, 2, . . .} represents a
rough body if it has the following properties:

M1. Qm ⊂ B and Area(B \Qm) → 0 as m→ ∞.
M2. The sequence of measures νQm,B weakly converges.

Two sequences of such sets are called equivalent if the corresponding limiting measures
coincide. An equivalence class is called a body obtained by roughening B, or simply
rough body, and denoted by B, and the corresponding limiting measure is denoted
by νB.

Note that the sets Qm in this definition are not necessarily connected.
Remark. Since T

3 is compact and the full measure of T
3 satisfies νQ,B(T3) ≤

2π |∂B|, one concludes that the set of measures {νQ,B}, with fixed B, is weakly
precompact. That is, any sequence of measures {νQm,B} contains a weakly converging
subsequence. In this sense one can say that a sequence, satisfying only condition M1,
can represent more than one rough body.

We would also like to mention that, first, two rough bodies obtained one from
another by translation are identified, according to our definition. Second, particle
scattering on B in a small neighborhood of ξ ∈ ∂B can be detected if ξ is an extreme
point of B, and cannot otherwise. Indeed, if ξ is an extreme point of B, then the
scattering is described by the restriction of νB on T

2×Nn(ξ), with Nn(ξ) being a small
neighborhood of n(ξ) in S1. If, otherwise, ξ is not an extreme point of B, that is,
belongs to an open linear segment contained in ∂B, the scattering can be determined
only on the whole segment.

Actually, from the viewpoint of applications to the problems of optimal resistance
in homogeneous and rarefied media (see section 4, containing concluding remarks and
applications), these drawbacks are not so serious. Indeed, resistance of a body is
invariant under translations (due to homogeneity). Besides, if the boundary of a
body contains a linear segment, then one does not need to know scattering at each
point of the segment; it suffices to know it on the whole segment (due to homogeneity
and rarefaction).

The definition of a rough body could be made in a slightly different way, basing
it on measures defined on S1 × S1 × ∂B. In that case the triple (v, v+, ξ) should be
registered, with ξ being the point of first intersection with ∂B. That definition would
allow one to register particle scattering at each point of ∂B and to distinguish between
bodies obtained by translation one from another. However, we prefer to adopt the
former definition, since it seems to us mathematically more transparent and makes
the arguments a bit easier.

1.3. Examples. Sometimes it is convenient to use another representation of the
measure νB. Namely, consider the change of coordinates (v, v+, n) �→ (ϕ,ϕ+, n),
where ϕ = Arg v − Argn, ϕ+ = Arg v+ − Argn. Here Arg v is the angle between
a fixed vector and v measured, say, clockwise from this vector to v. If (v, v+, n) ∈
spt νB, then ϕ and ϕ+ belong to [−π/2, π/2] modulo 2π. Introduce the shorthand
notation � := [−π/2, π/2] × [−π/2, π/2] and define the mapping � : � × S1 → T

3

by �(ϕ,ϕ+, n) = (v, v+, n). One has spt νB ⊂ �(� × S1). Denote ν̆B := (�−1)#νB.
Sometimes this measure can be factorized: ν̆B = ηB ⊗ τB , where ηB is defined on �
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and τB is the surface measure on B; so to say, the “roughness” is “homogeneous”
along the body’s boundary. Consider several examples.

Example 1 (“smooth body”). The rough body represented by the sequence
Qm = B is identified with B itself. The corresponding measure is ν̆B = η0 ⊗ τB,
where the measure η0 has the density cosϕ · δ(ϕ+ϕ+); the support of η0 is shown in
Figure 2(b). In Figure 2(a), B is taken to be an ellipse.

Fig. 2. A smooth body (a) and the support of the corresponding measure η0 (b).

Example 2 (roughness formed by triangular hollows). Qm is a 2m-polygon; the
270◦ angles alternate with the angles that are slightly smaller than 90◦. All vertices
corresponding to the angles smaller than 90◦ belong to ∂B. Any two sides that form
a 270◦ angle are equal. The largest side length tends to zero as m→ ∞. Thus, the set
Qm is obtained by moving off m “hollows” from its convex hull, each of the hollows
being an isosceles right triangle.

Fig. 3. A rough body with hollows being isosceles right triangles (a) and the support of the
corresponding measure η� (b).

The corresponding measure is ν̆B = η�⊗τB, where the measure η� has the density
cosϕ·[χ[−π/2,−π/4](ϕ) δ(ϕ+ϕ++ π

2 )+χ[−π/4,π/4](ϕ) δ(ϕ−ϕ+)+χ[π/4,π/2](ϕ) δ(ϕ+ϕ+−
π
2 )] + |sinϕ| · [χ[−π/4,0](ϕ) δ(ϕ+ϕ+ + π

2 )−χ[−π/4,π/4](ϕ) δ(ϕ−ϕ+) +χ[0,π/4](ϕ) δ(ϕ+
ϕ+− π

2 )]. Thus, the support of η� is the union of three segments; see Figure 3(b). The
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middle segment ϕ+ = ϕ corresponds to double reflections, and the lateral segments,
ϕ+ = −ϕ− π/2 and ϕ+ = −ϕ+ π/2, correspond to single reflections, from the right
or from the left side of a triangular hollow. In Figure 3(a), B is a circle.

Example 3 (roughness formed by rectangular hollows). The sets Qm are ob-
tained by removing a finite number of “rectangular hollows” from B. In other words,
one has Qm = B \ (∪n Ωm,n), where the removed sets Ωm,n do not mutually inter-
sect and each set ∂Ωm,n \ ∂B is the union of three sides of a rectangle. The ratio
(width)/(depth) of a hollow depends only on m and is denoted by hm. Denote by
lm = |∂B \ ∪n(∂Ωm,n)|/|∂B| the relative length of the part of boundary ∂B not cov-
ered by hollows. We assume that limm→∞ hm = 0 = limm→∞ lm. In Figure 4(a), B
is a square.

(a)

ϕ

ϕ+

(b)

Fig. 4. A rough body where hollows are “thin rectangles” (a); the support of the corresponding
measure η� (b).

The measure ν̆B equals ν̆B = η� ⊗ τB. The density of the measure η� equals
1
2 cosϕ · (δ(ϕ + ϕ+) + δ(ϕ − ϕ+)), and the support is the union of two diagonals,
ϕ+ = ϕ and ϕ+ = −ϕ; see Figure 4(b). The particles with an even (odd) number of
reflections contribute to the first (second) diagonal.

1.4. Main theorem. According to Definition 1, each rough body is identified
with a measure on T

3. The question is, What is the set of these measures? The
following definition and theorem give the answer.

Let us first introduce some notation: πv,n : T
3 → T

2, πn : T
3 → S1, etc., are pro-

jections onto the corresponding subspaces: πv,n(v, v+, n) = (v, n), πn(v, v+, n) = n,
etc.; πd : T

3 → T
3 is the symmetry with respect to the plane v = v+, that is,

πd(v, v+, n) = (v+, v, n); z+ = max{0, z} is the positive part of z ∈ R; and u means
Lebesgue measure on S1. Recall that τB is the surface measure on B and is defined
on S1.

Definition 2. We denote by MB the set of measures ν on T
3 such that the

following properties hold:
A1. The marginal measures π#

v,nν and π#
v+,nν are

π#
v,nν = 〈v, n〉+ · u⊗ τB , π#

v+,nν = 〈v+, n〉+ · u⊗ τB .

A2. π#
d ν = ν.

Denote also M = ∪B MB, the union being taken over all bounded convex bodies B.
Taking into account the Alexandrov theorem on characterization of surface mea-

sures, one concludes that M is the set of measures ν on T
3 such that
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(1) the marginal measure π#
n ν =: τ satisfies the conditions

1a.
∫

S1 n dτ(n) = 0;
1b. for any v ∈ S1 it holds that

∫
S1 〈n, v〉2 dτ(n) 
= 0;

(2) the marginal measures π#
v,nν and π#

v+,nν satisfy the conditions
2a. π#

v,nν = 〈v, n〉+ · u⊗ τ ;
2b. π#

v+,nν = 〈v+, n〉+ · u⊗ τ .
Thus, these marginal measures coincide; the only difference is in the notation for

the variables: v, n in case 2a and v+, n in case 2b.
Now we can state the main theorem.
Theorem. The set of measures {νB}, with B being all possible bodies obtained

by roughening B, coincides with MB. Therefore, {νB, B is a rough body} = M.
In section 2, we formulate two auxiliary lemmas and using them prove the theo-

rem. In section 3, the lemmas are proved. Section 4 contains concluding remarks and
applications of the theorem to problems of optimal aerodynamic resistance. Appen-
dices A and B contain proofs of some auxiliary technical results.

2. Statement of auxiliary lemmas and proof of theorem.

2.1. Statement of Lemma 1. Fix a bounded convex body B. Two points
ξ1, ξ2 ∈ ∂B, ξ1 
= ξ2, divide the curve ∂B into two arcs. Denote by l(ξ1, ξ2) the length
of the smallest arc and denote

c = cB := inf
ξ1,ξ2∈∂B

ξ1 �=ξ2

|ξ1 − ξ2|
l(ξ1, ξ2)

;

one obviously has 0 < c < 1.
Let Q ⊂ B; denote

|ξ − ξ+|Q,B :=
∫∫

(∂B×S1)+

|ξ − ξ+Q,B(ξ, v)| dμ(ξ, v)

and

|n− n+|Q,B :=
∫∫

(∂B×S1)+

|n(ξ) − n(ξ+Q,B(ξ, v))| dμ(ξ, v).

Lemma 1. (a) The following holds true:

|ξ − ξ+|Q,B ≤ 2π · Area(B \Q).

(b) For sufficiently small Area(B \Q),1 one has

|n− n+|Q,B ≤ 2π
√

8π√
c

√
Area(B \Q).

2.2. Statement of Lemma 2. Let us first introduce the notion of a hollow.
Definition 3. Let Ω ⊂ R

2 be a closed bounded set with piecewise smooth bound-
ary and I ⊂ ∂Ω, where the following hold:

(i) I is an interval contained in a straight line 〈x, n〉 = a.
(ii) Ω \ I is contained in the open half-plane 〈x, n〉 < a. Here n is a fixed unit

vector.
Then the pair (Ω, I) is called a hollow oriented by n, or just an n-hollow.

1That is, it is smaller than a positive value depending only on B.
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I

Ω

n

〈x, n〉 = a

Fig. 5. A hollow.

In Figure 5 and in what follows, I is shown by a dashed line, and ∂Ω \ I is shown
by a solid line.

Define the measure μ̃I on I ×S1 by dμ̃I(ξ, v) = 〈n,v〉+
|I| dξ dv, where |I| means the

length of I. Obviously, μ̃I is supported on the set (I × S1)+ := {(ξ, v) ∈ I × S1 :
〈n, v〉 ≥ 0}. Define the one-to-one mapping (ξ, v) �→ (Ξ+

Ω,I(ξ, v), V +
Ω,I(ξ, v)) of a full

measure subset of (I × S1)+ onto itself. Namely, consider the billiard in Ω. Let
(ξ, v) ∈ (I × S1)+; consider the billiard particle starting at the point ξ with the
velocity −v. It makes several reflections from ∂Ω \ I and then reflects from I again,
at a point Ξ+ = Ξ+

Ω,I(ξ, v). The velocity immediately before this reflection is denoted
by V + = V +

Ω,I(ξ, v). The mapping so defined preserves the measure μ̃I and is an
involution, that is, coincides with its inverse.

One can give an equivalent definition based on the mapping ξ+Q,B(ξ, v), v+
Q,B(ξ, v)

just defined in section 1.2. Take a set Q such that Ω is a connected component of
convQ\Q and I is a connected component of ∂(convQ)\∂Q. For (ξ, v) ∈ (I×S1)+, let
by definition (Ξ+

Ω,I(ξ, v), V +
Ω,I (ξ, v)) := (ξ+Q,conv Q(ξ, v), v+

Q,conv Q(ξ, v)). This definition
does not depend on the choice of Q.

Definition 4. Let (Ω, I) be a hollow. The measure ηΩ,I on T
2 = S1 × S1 is

defined as follows. For a Borel set A ⊂ T
2, put

ηΩ,I(A) := μ̃I({(ξ, v) ∈ (I × S1)+ : (v, V +
Ω,I(ξ, v)) ∈ A}).

We shall say that ηΩ,I is the measure generated by the hollow (Ω, I).
Here we use the notation πv, πv+ : T

2 → S1 for the projections onto the subspaces
{v} and {v+}, respectively; πv(v, v+) = v, πv+(v, v+) = v+. We also denote by πd

the symmetry with respect to the diagonal v = v+; πd(v, v+) = (v+, v).
Definition 5. Denote by Λn the set of measures η on T

2 such that
(i) dπ#

v η(v) = 〈v, n〉+ dv, dπ#
v+η(v+) = 〈v+, n〉+ dv+;

(ii) π#
d η = η.

Any measure ηΩ,I generated by an n-hollow belongs to Λn. Indeed, for any
A ⊂ S1 one has π#

v ηΩ,I(A) = ηΩ,I(A × S1) = μ̃I({(ξ, v) ∈ (I × S1)+ : v ∈ A}) =
1
|I|
∫∫

I×A
〈n, v〉+ dξ dv =

∫
A
〈n, v〉+ dv. This proves the first equality in (i).

Similarly, one has π#
v+ηΩ,I(A) = ηΩ,I(S1×A) = μ̃I({(ξ, v) ∈ (I×S1)+ : V +

Ω,I(ξ, v)
∈ A}). Since the mapping (ξ, v) �→ (Ξ+

Ω,I , V
+
Ω,I) preserves the measure, one gets the
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value μ̃I({(ξ, v) ∈ (I×S1)+ : v ∈ A}), which in turns equals
∫

A
〈n, v〉+ dv. This proves

the second equality in (i). Finally, the relation (ii) for ηΩ,I is a simple consequence of
involutive and measure preserving properties of the mapping (ξ, v) �→ (Ξ+

Ω,I , V
+
Ω,I).

Lemma 2. The set of measures generated by n-hollows is weakly dense in Λn.

2.3. Proof of the direct statement of theorem. Here we prove that for any
body B obtained by roughening B it holds that νB ∈ MB.

Let Q ⊂ B; define the measure ν′Q,B on T
3 by

ν′Q,B(A) := μ
(
{(ξ, v) ∈ (∂B × S1)+ : (v, v+

Q,B(ξ, v), n(ξ+Q,B(ξ, v))) ∈ A}
)
,

where A is an arbitrary Borel subset of T
3. Thus, the definition of both νQ,B and

ν′Q,B is based on observations of vector triples (v, v+, n) and (v, v+, n+), respectively.
Here n and n+ are the outer normals to ∂B at the points where the particle gets in
B and gets out of B. The measures νQ,B and ν′Q,B have the following properties:

π#
v,nνQ,B = 〈v, n〉+ · u⊗ τB,(1)

π#
v+,n+ν

′
Q,B = 〈v+, n+〉+ · u⊗ τB,(2)

π#
d νQ,B = ν′Q,B.(3)

Consider a sequence {Qm} representing B; let us show that νQm,B−ν′Qm,B weakly
converges to zero as m → ∞. It is enough to prove that for any continuous function
f on T

3 it holds that

(4)
∫

T3

f(v, v+, n) dνQm,B(v, v+, n) −
∫

T3

f(v, v+, n+) dν′Qm,B(v, v+, n+) →m→∞ 0.

Taking into account the formulas for a change of variables∫
T3

f(v, v+, n) dνQ,B(v, v+, n) =
∫

(∂B×S1)+

f(v, v+
Q,B(ξ, v), n(ξ)) dμ(ξ, v)

and∫
T3

f(v, v+, n+) dν′Q,B(v, v+, n+) =
∫

(∂B×S1)+

f(v, v+
Q,B(ξ, v), n(ξ+Q,B(ξ, v))) dμ(ξ, v),

formula (4) takes the form

lim
m→∞

∫
(∂B×S1)+

(5) [
f(v, v+

Qm,B(ξ, v), n(ξ+Qm ,B(ξ, v))) − f(v, v+
Qm,B(ξ, v), n(ξ))

]
dμ(ξ, v) = 0.

According to Lemma 1, the difference n(ξ+Qm,B(ξ, v)) − n(ξ) converges to zero in
mean, and hence it converges to zero in measure; therefore the difference

f(v, v+
Qm,B(ξ, v), n(ξ+Qm,B(ξ, v))) − f(v, v+

Qm,B(ξ, v), n(ξ))

also converges to zero in measure. It follows that formula (5) is true.
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Thus, both νQm,B and ν′Qm,B weakly converge to νB. Substituting Q = Qm into
formulas (1)–(3) and passing to limit as m→ ∞, one gets

π#
v,nνB = 〈v, n〉+ · u⊗ τB,

π#
v+,nνB = 〈v+, n〉+ · u⊗ τB,

π#
d νB = νB,

that is, νB ∈ MB.

2.4. Proof of the inverse statement of theorem. Here it is proved that for
any ν ∈ MB there exists a body B obtained by roughening B such that νB = ν. The
proof is based on two statements.

Statement 1. Let B be a convex polygon. Then for any measure ν ∈ MB there
exists a body B obtained by roughening B such that νB = ν.

Proof. Let us enumerate the sides of the polygon B and denote by ci the length
of the ith side and by ni the outer unit normal to this side. By δn, denote the
probabilistic atomic measure on S1 concentrated at n ∈ S1, that is, δn(n) = 1. The
surface measure of B is τB =

∑
ciδni ; this implies that any measure ν ∈ MB has the

form ν =
∑
ciηi ⊗ δni , where ηi ∈ Λni .

According to Lemma 2, any measure ηi is the weak limit as m→ ∞ of measures
ηΩm

i ,Im
i

generated by a sequence of ni-hollows (Ωm
i , I

m
i ). Now take a sequence of sets

Qm such that convQm = B and each connected component of B\Qm is the image of a
set Ωm

i under the composition of a homothety with positive ratio and a translation; ad-
ditionally, the image of Im

i under this transformation belongs to (ith side of B)\∂Qm.
We also require that Area(B \ Qm) → 0 and |(ith side of B) \ ∂Qm| =: cmi → ci as
m→ ∞. In Appendix A it is shown how to construct such a sequence Qm. The mea-
sure νQm,B = ν̃m +

∑
i ν

m
i is the sum of the measure ν̃m corresponding to reflections

from ∂B∩∂Qm and the measures νm
i corresponding to particles getting into the “hol-

lows on the ith side.” One has ν̃m =
∑

i (ci−cmi ) ·η0⊗δni and νm
i = cmi ·ηΩm

i ,Im
i
⊗δni .

The norm of ν̃m goes to zero and νm
i weakly converges to ci ηi⊗δni for any i; it follows

that νQm,B weakly converges to ν as m→ ∞. Therefore, the sequence Qm represents
a body B obtained by roughening B, and νB = ν.

Statement 2. For any measure ν ∈ MB there exist a sequence of convex poly-
gons Bk ⊂ B with Area(B \ Bk) → 0 and a sequence of measures νk ∈ MBk

weakly
converging to ν as k → ∞.

Proof. Consider a partition of the circumference S1 into a finite number of arcs,
S1 = ∪i Si. It induces the partition of ∂B into arcs ∂Bi = {ξ ∈ ∂B : n(ξ) ∈ Si}.
Consider the polygon B̌ inscribed into ∂B whose vertices are separation points of this
partition. Denote by ni the outer normal to the ith side of this polygon. Denote
by sv1,v2 the operator of rotation on S1 that takes v1 to v2, and define the mapping
Υi : T

2 × Si → T
2 by Υi(v, v+, n) = (sn,niv, sn,niv

+). Finally, consider the measure
ν̌ =

∑
i |bi| ηi ⊗ δni , where |bi| is the length of the ith side of the polygon, and the

measure ηi on T
2 is defined by ηi(A) = 1

|∂Bi| ν(Υ−1
i (A)) for arbitrary Borel setA ⊂ T

2.
Here |∂Bi| is the length of the arc ∂Bi. One easily verifies that ν̌ belongs to MB̌.

Now take a sequence of partitions of S1, {Si
k}i, k = 1, 2, . . . , where the maximum

arc length of a partition goes to zero as k → ∞. Denote by {∂Bi
k}i, k = 1, 2, . . . , the

sequence of induced partitions of ∂B, and take the sequence of polygons Bk generated
by these partitions. One clearly has Area(B \Bk) → 0 and

(6) max
i

|bik|
|∂Bi

k|
→ 1 as k → ∞,
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where |bik| is the length of the ith side of Bk. In the same way as above, one defines
the mappings Υik : T

2 × Si
k → T

2 and the measures νk =
∑

i |bik| ηik ⊗ δnik
∈ MBk

,
where ηik is given by ηik(A) := 1

|∂Bi
k|
ν(Υ−1

ik (A)) and nik is the outer unit normal to
the ith side of Bk.

It remains to show that νk weakly converges to ν. For any continuous function f
on T

3 one has∫∫∫
T3

f(v, v+, n) dνk(v, v+, n) =
∑

i

|bik|
∫∫

T2

f(v, v+, nik) dηik(v, v+)

=
∑

i

|bik|
|∂Bi

k|

∫∫∫
T2×Si

k

f(Υik(v, v+, n), nik) dν(v, v+, n).(7)

For each k define the mapping from T
3 to T

3 by the relations (v, v+, n) �→ (Υik(v,
v+, n), nik) if n ∈ Si

k. It uniformly converges to the identity mapping as k → ∞;
hence the function f̃k, defined by the relations f̃k(v, v+, n) := f(Υik(v, v+, n), nik) if
n ∈ Si

k, uniformly converges to f as k → ∞. From here and from (6) it follows that
the right-hand side in (7) converges to

∫∫∫
T3 f(v, v+, n) dν(v, v+, n) as k → ∞. Thus,

the convergence
∫
f dνk →

∫
f dν is proved.

The inverse statement of the theorem follows from Statements 1 and 2. Indeed,
let ν ∈ MB. Using Statement 2, find a sequence of convex polygons Bk ⊂ B and a
sequence νk ∈ MBk

weakly converging to ν. According to Statement 1, each measure
νk is generated by a rough body. Consider the sequence of sets Qkl ⊂ Bk, l = 1, 2, . . . ,
representing this body, and then from all of these sequences choose a diagonal sequence
Q̃k = Qklk such that the corresponding sequence of measures νQ̃k,B weakly converges
to ν and Area(B \ Q̃k) goes to zero as k → ∞. The sequence Q̃k represents a body B
obtained by roughening B and νB = ν.

3. Proof of the lemmas.

3.1. Proof of Lemma 1. Consider the billiard in R
2 \ Q. For (ξ, v) ∈ (∂B ×

S1)+, denote by τ(ξ, v) the time the billiard trajectory with the initial data ξ,−v
spends in B \Q. In particular, if ξ ∈ ∂B ∩ ∂Q, then one has τ(ξ, v) = 0.

Denote by D the set of points (x,w) ∈ (B \ Q) × S1 that are accessible from
(∂B × S1)+; that is, there exists (ξ, v) ∈ (∂B × S1)+ such that the billiard particle
with the data ξ,−v at the zero moment of time at some moment 0 ≤ t ≤ τ(ξ, v) will
pass through x with the velocity w. This description defines the change of coordinates
in D : (ξ, v, t) �→ (x,w); (ξ, v) ∈ (∂B× S1)+, t ∈ [0, τ(ξ, v)], and the element of phase
volume d2xdw in the new coordinates takes the form dμ(ξ, v) dt. Hence, the phase
volume of D equals

∫∫∫
D
d2xdw =

∫∫
(∂B×S1)+

τ(ξ, v) dμ(ξ, v). Taking into account
that D ⊂ (B \Q)×S1 and the phase volume of (B \Q)×S1 equals 2π ·Area(B \Q),
one gets

(8)
∫∫

(∂B×S1)+

τ(ξ, v) dμ(ξ, v) ≤ 2π · Area(B \Q).

This is in fact a simple modification of the well-known mean free path formula (see,
e.g., [19]).

One has τ(ξ, v) ≥ |ξ − ξ+Q,B(ξ, v)|: the time the particle spends in B \Q exceeds
the distance between the initial and final points of the trajectory. This inequality
and (8) imply (a).
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The points ξ and ξ+Q,B(ξ, v) divide the curve ∂B into two arcs; denote by γ(ξ, v)
the shortest one. One has |γ(ξ, v)| = l(ξ, ξ+Q,B(ξ, v)), and therefore |ξ − ξ+Q,B(ξ, v)| ≥
c |γ(ξ, v)|. It follows that
(9)

c

∫∫
(∂B×S1)+

|γ(ξ, v)| dμ(ξ, v) ≤
∫∫

(∂B×S1)+

|ξ−ξ+Q,B(ξ, v)| dμ(ξ, v) ≤ 2π·Area(B\Q).

Let 
(y) be a natural parametrization of the curve ∂B, 
 : [0, |∂B|] → ∂B. By
f(y) denote the measure of the values (ξ, v) such that the interval γ(ξ, v) contains the
point 
(y); that is, f(y) :=

∫∫
(∂B×S1)+

I(
(y) ∈ γ(ξ, v)) dμ(ξ, v). Making a change of
variables in the integral in the left-hand side of (9), one gets

∫∫
(∂B×S1)+

|γ(ξ, v)| dμ(ξ, v) =
∫ |∂B|

0

f(y) dy,

and therefore

(10)
∫ |∂B|

0

f(y) dy ≤ 2π
c

Area(B \Q).

One easily sees that |f(y1) − f(y2)| ≤ 4 |y1 − y2| for any y1 and y2 and f(y) ≥ 0.
From here and from (10) it follows that for sufficiently small Area(B \ Q) (namely,
for Area(B \Q) ≤ c|∂B|2/(2π)) it holds that f(y) ≤

√
8π/c

√
Area(B \Q).

Recall that Arg(v) is the angle the vector v 
= 0 forms with a fixed vector v0;
the angle is measured clockwise from v0 to v and is defined modulo 2π. Introduce
the shorthand notation ξ+ := ξ+Q,B(ξ, v), and denote by Δ Arg(ξ, v) the smallest in
modulus of the values Arg(n(ξ+))−Arg(n(ξ)). In other words, Δ Arg(ξ, v) equals the
smallest of the values∫

γ(ξ,v)

|dArg(nξ′)|,
∫

∂B\γ(ξ,v)

|dArg(nξ′)|.

Taking into account that |n(ξ+) − n(ξ)| ≤ |Δ Arg(ξ, v)|, one gets that

|n(ξ+) − n(ξ)| ≤
∫

γ(ξ,v)

|dArg(nξ′)|,

and therefore

|n− n+|Q,B ≤
∫∫

(∂B×S1)+

(∫
γ(ξ,v)

|dArg(nξ′)|
)
dμ(ξ, v).

Making a change of variables in this integral, one obtains

|n− n+|Q,B ≤
∫ |∂B|

0

f(y) |dArg(n�(y))| ≤ 2π
√

8π/c
√

Area(B \Q).

Thus, (b) is also proved.
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3.2. Proof of Lemma 2. Fix n ∈ S1 and m ∈ N. Let σ be an involutive
permutation of {1, . . . ,m}, that is, σ2 = id. Divide the half-circumference S1

n :=
{v ∈ S1 : 〈v, n〉 ≥ 0} into m arcs S1

n,m = S1
n, . . . , Sm

n,m = Sm
n numbered clockwise

such that, for any i,
∫
Si

n
〈v, n〉 dv = 2/m. For the sake of brevity we omit the subscript

m when no confusion can arise.
Definition 6. A measure η is called a (σ, n)-measure if η ∈ Λn and spt η ⊂

∪m
i=1

(
Si

n × Sσ(i)
n

)
, and therefore, for any i it holds that η

(
Si

n × Sσ(i)
n

)
= 2/m.

Proposition 1. For any measure η ∈ Λn there exists a sequence of involutive
permutations σk on {1, . . . ,mk}, k = 1, 2, . . . , such that mk tends to infinity and any
sequence of (σk, n)-measures weakly converges to η as k → ∞.

Proposition 2. Let σ be an involutive permutation on {1, . . . ,m}. Then the
distance (in variation) between the set of measures generated by n-hollows and the set
of (σ, n)-measures does not exceed 16/m. In other words, whatever ε > 0, there exist
a (σ, n)-measure η and an n-hollow (Ω, I) such that ‖ηΩ,I − η‖ < 16/m+ ε; here the
norm means variation of measure.

This distance actually equals zero, but we need only the (weaker) claim of Propo-
sition 2.

Lemma 2 follows from Propositions 1 and 2. Indeed, let η ∈ Λn. First, choose the
sequence of permutations σk, according to Proposition 1, and then, using Proposi-
tion 2, for every k choose an an n-hollow (Ωk, Ik) such that the distance from ηΩk,Ik

to
the set of (σk, n)-measures does not exceed 17/mk. The sequence of chosen measures
ηΩk,Ik

weakly converges to η.

3.3. Proof of Proposition 1. Introduce on S1
n the angular coordinate ϕ =

Arg v−Argn; that is, ϕ changes between −π/2 and π/2 and increases clockwise. With
this notation, to the arcs Si

n,m correspond the segments J i
m = [arcsin(−1+2(i−1)/m),

arcsin(−1 + 2i/m)]. Define the measure λ on [−π/2, π/2] by dλ(ϕ) = cosϕdϕ, and
denote by Λ the set of measures η on � := [−π/2, π/2] × [−π/2, π/2] such that
(a) π#

ϕ η = λ = π#
ϕ+η and (b) π#

d η = η. Here πϕ, πϕ+ , and πd are defined by
πϕ(ϕ,ϕ+) = ϕ, πϕ+(ϕ,ϕ+) = ϕ+, and πd(ϕ,ϕ+) = (ϕ+, ϕ). Reformulating Defini-
tion 6, we shall say that η is a σ-measure if η ∈ Λ and spt η ⊂ ∪m

i=1

(
J i

m × J
σ(i)
m

)
.

Notice that in the new notation the objects no longer depend on n: we write Λ instead
of Λn, σ-measure instead of (σ, n)-measure, and hollow instead of n-hollow.

In this notation, Proposition 1 can be reformulated as follows: for any measure
η ∈ Λ there exists a sequence of involutive permutations σk on {1, . . . ,mk}, k =
1, 2, . . . , such that mk tends to infinity and any sequence of σk-measures weakly
converges to η as k → ∞.

The idea of the proof is as follows. First, η is approximated by means of a rational
matrix, and then this matrix is approximated by means of a larger matrix generated
by a permutation.

Consider the partition of � into smaller rectangles �
ij
k = J i

k × Jj
k , i, j = 1, . . . , k.

Choose rational nonnegative numbers cijk such that cijk = cji
k ,
∑

j c
ij
k = 2/k for any i,

and
∣∣η(�ij

k )− cijk
∣∣ ≤ k−3 for any i and j. To do so, it suffices to take positive rational

values cijk such that η(�ij
k ) − k−4 ≤ cijk ≤ η(�ij

k ) for i > j and put cijk = cji
k for i < j

and ciik = 2/k−
∑

j �=i c
ij
k for i = j. One has η

(
J i

k×[−π/2, π/2]
)

=
∑k

j=1 η(�ij
k ) = 2/k;

hence ciik − η(�ii
k ) =

∑
j �=i

(
η(�ij

k ) − cijk
)
∈ [0, (k − 1) · k−4] ⊂ [0, k−3].

Any sequence of measures ηk satisfying the conditions ηk(�ij
k ) = cijk , 1 ≤ i, j ≤ k,

weakly converges to η. Indeed, for any continuous function f on � it holds that



SCATTERING ON ROUGH SETS 2167

∫
�

f dηk −
∫

�

f dη =
k∑

i,j=1

∫
�

ij
k

f (dηk − dη) ≤ k−1 max f → 0

as k → ∞.
To complete the proof, it suffices to find an integer mk > k and an involutive

permutation σk of {1, . . . ,mk} such that any σk-measure, ηk, satisfies the equalities
ηk(�ij

k ) = cijk , i, j = 1, . . . , k. Choose a positive integer N such that all of the values
aij := N ·cijk are integer. The obtained matrix A = (aij)k

i,j=1 is symmetric, and for any
i the value

∑k
j=1 aij = 2N/k is a fixed positive integer. In Appendix B it is shown

that there exist square matrices Bij = (bμν
ij )μ,ν of size 2N/k such that BT

ij = Bji,
the sum of elements in any matrix Bij equals aij , and the block matrix D = (Bij)
composed of these matrices has exactly one unit in each row and each column, and
other elements are zeros.

D is a symmetric square matrix of size 2N ; denote its elements by dij . Put
mk = 2N , and define the mapping σk on {1, . . . , 2N} in such a way that diσk(i) = 1
for any i. The so defined mapping σk is a permutation; it is involutive since the
matrix D is symmetric. Moreover, if ηk is a σk-measure, then for any i and j it holds
that ηk(�ij

k ) = N−1
∑

μ,ν b
μν
ij = cijk . The proposition is proved.

3.4. Proof of Proposition 2.
1. Whatever the n-hollow (Ω, I), one introduces the reference system (x1, x2) in

such a way that n coincides with (0,−1), and the interval I belongs to the straight line
x2 = 0 and contains the originO = (0, 0). Like in the proof of Proposition 1, introduce
the coordinate ϕ = Arg v−Arg n on S1

n. One has v = −(sinϕ, cosϕ), ϕ ∈ [−π/2, π/2].
The definitions of the segments J i

m = J i, the measure λ, the set of measures Λ, and
the σ-measure are seen in the beginning of the previous subsection. The mapping
(ξ, v) �→ V +

Ω,I(ξ, v) in the new coordinates ξ, ϕ is written as (ξ, ϕ) �→ ϕ+
Ω,I(ξ, ϕ).

Finally, define the measure μI on I × [−π/2, π/2] by dμI(ξ, ϕ) = cos ϕ
|I| dξ dϕ.

Denote �′ =
(
∪m−1

i=2 J i
)
×
(
∪m−1

i=2 J i
)
, �1 = J1 × [−π/2, π/2], �2 = Jm ×

[−π/2, π/2], �3 =
(
∪m−1

i=2 J i
)
× J1, and �4 =

(
∪m−1

i=2 J i
)
× Jm. Thus, one has

� \ �′ = �1 ∪ �2 ∪ �3 ∪ �4; see Figure 6.

�1 �2

�3

�4

�
′

Fig. 6. Partition of the square into rectangles.

It suffices to construct a sequence of hollows (Ωε, Iε), ε > 0, such that
(P) for any i 
= 1,m, σ(1), σ(m) the measure of the set of values
(ξ, ϕ) ∈ Iε × J i such that ϕ+

Ωε,Iε
(ξ, ϕ) /∈ Jσ(i) goes to zero as ε→ 0.

Then, speaking of restrictions of measures on the subset �′, one gets that the distance
from the restrictions of measures ηΩε,Iε to the set of restrictions of σ-measures goes
to zero as ε → 0. On the other hand, for any measure η ∈ Λ one has η(�1) =
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η(�2) = 2/m, η(�3) ≤ 2/m, η(�4) ≤ 2/m, and hence η(� \ �′) ≤ 8/m; therefore
the distance between the restrictions on � \ �′ of any two measures η1 and η2 from
Λ does not exceed 16/m: ‖ η1��\�′ − η2��\�′ ‖ ≤ 16/m. It follows that the upper
limit of distances from ηΩε,Iε to the set of σ-measures does not exceed 16/m, and so
Proposition 2 is proved.

2. The rest of this subsection is dedicated to the detailed description of the
sequence of hollows (Ωε, Iε) and to the proof of property (P) for them.

First, consider an auxiliary construction (see Figure 7). Take two different points
F and F ’ above the line l = {x2 = 0}, with |OF | = 2 = |OF ’|. Denote by Φ and Φ’ the
angles the rays OF and OF ’, respectively, formed with the vector (0, 1). The angles
are counted clockwise from (0, 1). Thus, F = 2(sin Φ, cos Φ) and F ’ = 2(sin Φ’, cos Φ’).
Assume, for further convenience, that F is situated on the left of F ’; thus, one has
−π/2 < Φ < Φ’ < π/2. (The case where F is situated on the right of F ’ is completely
similar.) Select three positive numbers λ, λ’, and δ, and define two ellipses E and E ’
and two parabolas P and P ’. The first ellipse has the foci O and F , the length of its
large semiaxis is

√
1 + λ, of the small semiaxis,

√
λ, and the focal distance equals 2.

The second ellipse has the foci O and F ’, the lengths of its large and small semiaxes
are

√
1 + λ’ and

√
λ’, respectively, and the focal distance is also 2. The parabolas

P and P ’ have the foci F and F ’, respectively, the common axis FF ’, and the same
focal distance δ. Thus, the parabolas are symmetric to each other with respect to the
bisectrix of the triangle OFF ’. The parameter δ is chosen sufficiently small, so that
the point O lies in the exterior of both parabolas.

l

E E

P P

F
F

O

Φ Φ

Fig. 7. Auxiliary construction.

In what follows, we shall distinguish between the billiard and pseudobilliard dy-
namics. The pseudobilliard dynamics is defined as follows. A particle starts at a point
(ξ, 0) ∈ l and moves with a velocity (sinϕ, cosϕ) until it reflects from the interior side
of E . (Before the reflection it can intersect other curves E ’,P ,P ’, or even intersect E
from the outer side, without changing the velocity.) Then it moves again with con-
stant velocity until it reflects from the interior side of P . Then, in the same way, it
reflects from the interior side of P ’, and then from the interior side of E ’, and, finally,
it intersects l from above to below. Denote by (ξ’, 0) the point of intersection and by
−(sinϕ’, cosϕ’) the velocity at this point.

Consider the admissible set: the set of 7-tuples (ϕ, ξ,Φ,Φ’, λ, λ’, δ) such that all of
the indicated reflections occur in the prescribed order. This set is open and nonempty.
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Indeed, let δ(Φ,Φ’) be the least of the values δ such that one of the parabolas (in
fact, both of them simultaneously) passes through O. Put ϕ = Φ, ξ = 0, and take
arbitrary values λ > 0, λ’ > 0, −π/2 < Φ < Φ’ < π/2, 0 < δ < δ(Φ,Φ’). The particle
with initial data ϕ = Φ, ξ = 0 first passes along the large semiaxis of E , reflects from
E , returns along the same semiaxis, and reflects from P . Then it moves with the
velocity parallel to FF ’, reflects from P ’, moves the large semiaxis of the ellipse E ’,
reflects from it, and returns to O along the same semiaxis. Thus, the admissible set is
nonempty. Under a small perturbation of the parameters ϕ, ξ,Φ,Φ’, λ, λ’, δ, all of the
reflections are maintained and the order of reflections remains the same. This implies
that the admissible set is open.

This description determines the mapping ϕ’ = ϕ’(ϕ, ξ,Φ,Φ’, λ, λ’, δ), ξ’ = ξ’(ϕ, ξ,
Φ,Φ’, λ, λ’, δ)2 from the admissible set to R

2. This mapping is infinitely differentiable.
For ϕ = Φ and ξ = 0 one has

(11) ϕ’(Φ, 0,Φ,Φ’, λ, λ’, δ) = Φ’.

For ξ = 0 with arbitrary ϕ one has

(12) ξ’(ϕ, 0,Φ,Φ’, λ, λ’, δ) = 0,

and

ϕ’(ϕ, 0,Φ,Φ’, λ, λ’, δ) does not depend on δ.

Indeed, a particle starting at O, after the reflection from E passes through F , after
reflecting from P moves in parallel to FF ’, after the reflection from P ’ passes through
F ’, and, finally, after the reflection from E ’ returns to O (see Figure 8). The initial
and final velocities of the particle are, respectively, (sinϕ, cosϕ) and −(sinϕ’, cosϕ’).
Denoting by α and α’ the angles the second and fourth segments of the (5-segment)
trajectory form, respectively, with OF and OF ’, one has α = α’. The angle α
is a function of ϕ, and ϕ’ is a function of α’; these functions depend only on the
parameters of the ellipses E and E ’, respectively, and do not depend on the parameter
δ determining the shape of parabolas.

Using properties of ellipses, one derives the formulas connecting ϕ, α, and ϕ’ =
ϕ’(ϕ, 0,Φ,Φ’, λ, λ’, δ):
(13)

sin(ϕ− Φ) =
λ sinα

2 + λ− 2 cosα
√

1 + λ
, sin(ϕ’ − Φ’) = − λ’ sinα

2 + λ’ − 2 cosα
√

1 + λ’
.

It follows that

(14)
∂ϕ’
∂ϕ

⌋
ϕ=Φ
ξ=0

= −
( √

λ’
1 +

√
λ’

1 +
√
λ√

λ

)2

.

With fixed Φ, Φ’, λ, λ’, and δ the mapping ϕ’(ϕ, ξ), ξ’(ϕ, ξ) preserves the measure,
cosϕdϕdξ = cosϕ’ dϕ’ dξ’, and hence

cosϕ = ± cosϕ’

∣∣∣∣∣
∂ϕ’
∂ϕ

∂ϕ’
∂ξ

∂ξ’
∂ϕ

∂ξ’
∂ξ

∣∣∣∣∣ .
2Note that throughout this paper the sign ’ (prime) never means derivation.
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l O

ϕ ϕ’

α
α

Fig. 8. Pseudobilliard dynamics.

Using (12), one gets that ∂ξ’
∂ϕ

⌋
ξ=0

= 0, and hence∣∣∣∣∣
∂ϕ’
∂ϕ

∂ϕ’
∂ξ

∂ξ’
∂ϕ

∂ξ’
∂ξ

∣∣∣∣∣
ξ=0

=
∂ϕ’
∂ϕ

∂ξ’
∂ξ

⌋
ξ=0

;

therefore

(15) cosϕ = ± cosϕ’
∂ϕ’
∂ϕ

∂ξ’
∂ξ

⌋
ξ=0

.

Putting ϕ = Φ and ξ = 0, and taking into account (11), (14), and (15), one gets

(16) cos Φ = ± cos Φ’

( √
λ’

1 +
√
λ’

1 +
√
λ√

λ

)2
∂ξ’
∂ξ

⌋
ϕ=Φ
ξ=0

.

Define the positive continuous functions λ(Φ’) and λ’(Φ) by the relations

(17)

( √
λ

1 +
√
λ

)2

=
1
2

cos Φ’,

( √
λ’

1 +
√
λ’

)2

=
1
2

cos Φ;

then one has

(18)

∣∣∣∣∣ ∂ξ’∂ξ

⌋
ϕ=Φ; λ=λ(Φ’)
ξ=0; λ’=λ’(Φ)

∣∣∣∣∣ = 1.

Additionally, taking into account (14) and (17), one gets

(19)
cos Φ’
cos Φ

∂ϕ’
∂ϕ

⌋
ϕ=Φ; λ=λ(Φ’)
ξ=0; λ’=λ’(Φ)

= −1.

Recall that ϕ’ = ϕ’(ϕ, 0,Φ,Φ’, λ, λ’); that is, the restriction of the function ϕ’ to
the subspace ξ = 0 does not depend on δ. Hence the function ∂ϕ’

∂ϕ

⌋
ξ=0

and, by for-

mula (15), the function ∂ξ’
∂ξ

⌋
ξ=0

also do not depend on δ. Put Φ0 = arcsin(1 − 2/m),
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so that J1 = [−π/2,−Φ0] and Jm = [Φ0, π/2], and put ΔΦ = 2/m. The set
{(Φ, 0,Φ,Φ’, λ(Φ’), λ’(Φ)) : −Φ0 ≤ Φ,Φ’ ≤ Φ0, Φ’−Φ ≥ ΔΦ} is compact and belongs
to the (open) domain of the function ϕ’. Choose a sufficiently large integer value
k = k(ε), so that for

(20)
|sinϕ− sin Φ| < 2/(km), ξ = 0, −Φ0 ≤ Φ,Φ’ ≤ Φ0,

Φ’ − Φ ≥ ΔΦ, λ = λ(Φ’), λ’ = λ’(Φ)

it holds true that

(21) −cos Φ’
cos Φ

∂ϕ’
∂ϕ

∈ [(1 + ε)−1, 1 + ε].

Formulas (21) and (11) mean that, under conditions (20), ϕ’ is also close to Φ’.
Increasing k if necessary, ensure (under the same conditions) that

(22)
cos Φ’
cos Φ

cosϕ
cosϕ’

∈ [(1 + ε)−1, 1 + ε].

Taking into account (15), (21), and (22), one obtains that under conditions (20) it
holds true that

(23)
∣∣∣∣∂ξ’∂ξ

∣∣∣∣ ∈ [(1 + ε)−2, (1 + ε)2].

3. Now we proceed to the description of the hollow (Ωε, Iε).
(a) If 2 ≤ i 
= σ(i) ≤ m− 1, then divide the interval J i into k subintervals J i,j of

equal measure λ, going in increasing order: J i = ∪k
j=1 J

i,j , λ(J i,j) = 2/(km) for any
j = 1, . . . , k. Recall that dλ(ϕ) = cosϕdϕ and the value k = k(ε) is defined above.
Without loss of generality assume that k(ε) → ∞ as ε→ 0.

To each pair of intervals, J i,j and Jσ(i),j , we apply the construction described

above; see Figure 9. Namely, draw arcs of ellipses Ei,j =
�

AB, E ’i,j =
�

A’B’ and arcs
of parabolas Pi,j , P ’i,j . Without loss of generality suppose that i < σ(i). The angles
AOB and A’OB’ correspond to the angular intervals J i,j and Jσ(i),j , respectively.
The foci F̄ = Fi,j and F̄ ’ = F ’i,j belong to the intervals OA and OA’, respectively.
The endpoints of the arcs Pi,j and P ’i,j also belong to the intervals OA and OA’,
respectively. The angle corresponding to the ray OA (and therefore to the left end-
point of the interval J i,j) will be denoted by Φ̄ = Φi,j , and the angle corresponding
to the ray OA’ (and therefore to the right endpoint of the interval Jσ(i),j) will be
denoted by Φ̄’ = Φ’i,j . Denote λ̄ = λi,j := λ(Φ̄’) and λ̄’ = λ’i,j := λ’(Φ̄), according
to formula (17). Next, select a value δ̄ = δi,j and draw two curves (lateral reflectors)
in such a way that (i) each of the curves contains an arc of parabola (the first curve
contains Pi,j and the second one P ’i,j), an arc of circumference centered at O, and
three radial segments; (ii) these curves do not intersect the intervals whose endpoints
belong to the set {Fα,β, F ’γ,δ : (α, β) 
= (i, j), (γ, δ) 
= (σ(i), j)}: this will guarantee
free passage of particles from one parabola to another; and (iii) the λ-measure of
the angular interval occupied by each lateral reflector does not exceed ε/(km). In
Figure 9, the angular reflectors are the curves joining the points A and C, and the
points A’ and C’.

Notice that −Φ0 ≤ Φ̄, Φ̄’ ≤ Φ0, and Φ̄’ − Φ̄ ≥ ΔΦ. Indeed, Φ̄ and Φ̄’ do not
belong to the intervals J1 = [−π/2,−Φ0] and Jm = [Φ0, π/2]. On the other hand,
one has Φ̄’ − Φ̄ ≥ sin Φ̄’ − sin Φ̄ = λ([Φ̄, Φ̄’]) ≥ 2/m = ΔΦ.
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�

��

O

A’

C’

B’

F̄ ’

A

C

B

F̄

Φ̄ Φ̄’

Fig. 9. Part of the hollow corresponding to the angular intervals Ji,j and Jσ(i),j.

Introduce the shorthand notation ϕ’(ϕ, ξ) = ϕ’(ϕ, ξ,Φi,j ,Φ’i,j , λi,j , λ’i,j , δi,j). Ac-
cording to (21) and (23), for ϕ ∈ J i,j it holds true that

(24) −cos Φ̄’
cos Φ̄

∂ϕ’
∂ϕ

(ϕ, 0) ∈ [(1 + ε)−1, 1 + ε]

and

(25)
∣∣∣∣∂ξ’∂ξ

(ϕ, 0)
∣∣∣∣ ∈ [(1 + ε)−2, (1 + ε)2].

According to (11), one has ϕ’(Φ̄, 0) = Φ̄’; this equality and formula (24) imply that
for ϕ ∈ J i,j and ϕ’ = ϕ’(ϕ, 0) one has

(26) −cos Φ̄’
cos Φ̄

ϕ’ − Φ̄’
ϕ− Φ̄

∈ [(1 + ε)−1, 1 + ε].

On the other hand, one has

cos Φ̄ |J i,j | =
2
km

(1 + o(1)),(27)

cos Φ̄’ |Jσ(i),j | =
2
km

(1 + o(1)),(28)

with o(1) being uniformly small over all i, j as ε → 0, and |J | being the Lebesgue
measure of J . (Recall that the parameters Φ̄, Φ̄’, k and the intervals J i,j implicitly
depend on ε.)

Choose closed intervals J̃ i,j ⊂ J i,j and J̃σ(i),j ⊂ Jσ(i),j satisfying the following
conditions: (i) ϕ’(J̃ i,j × {0}) = J̃σ(i),j ; (ii) some neighborhoods of J̃ i,j and J̃σ(i),j

belong to J i,j and Jσ(i),j , respectively; and (iii) the pseudobilliard trajectory with
the initial data (ϕ, 0), ϕ ∈ J̃ i,j does not intersect the neighbor lateral reflectors (that
is, the lateral reflectors corresponding to the intervals J̃ i,j+1 and J̃σ(i),j−1 if j 
= 1, k;
if j = 1, then J̃σ(i),j−1 should be replaced with J̃σ(i)−1,k, and if j = k, then J̃ i,j+1

should be replaced with J̃ i+1,1). Note in this regard that the neighbor lateral reflectors
occupy a small part of the angular intervals J i,j and Jσ(i),j (represented in the figure



SCATTERING ON ROUGH SETS 2173

by the arcs AB and B’A’). Other lateral reflectors will not be intersected by the
choice of lateral reflectors.

By virtue of (26), (27), (28) and because of smallness of the angular intervals
occupied by the lateral reflectors, J̃ i,j and J̃σ(i),j may be chosen in such a way that
the ratios λ(J̃ i,j)/λ(J i,j) and λ(J̃σ(i),j)/λ(Jσ(i),j) uniformly (with respect to i, j) tend
to 1 as ε→ 0. Thus, a billiard particle going from O in a direction ϕ ∈ J̃ i,j makes the
same reflections and in the same order as under the pseudobilliard dynamics: first,
reflection from Ei,j , from Pi,j , from P ’i,j , and from E ’i,j ; finally, the particle goes back
to O in the direction ϕ’(ϕ, 0) ∈ J̃σ(i),j .

Choose ai,j in such a way that the following conditions are fulfilled: if (ξ, ϕ) ∈
[−ai,j , ai,j ]× J̃ i,j , then (i) the corresponding billiard trajectory does not intersect the
lateral reflectors and the indicated order of reflections is preserved; (ii) ϕ’(ϕ, ξ) ∈
Jσ(i),j ; (iii)

∣∣∂ξ’
∂ξ (ϕ, ξ)

∣∣ ∈ [(1 + ε)−3, (1 + ε)3]. Analogously, choose aσ(i),j in such
a way that the conditions are fulfilled: if (ξ, ϕ) ∈ [−aσ(i),j , aσ(i),j ] × J̃σ(i),j , then
(i) the billiard trajectory does not intersect the lateral reflectors and the order of its
reflections is reversed; (ii) ϕ’(ϕ, ξ) ∈ J i,j ; (iii)

∣∣∂ξ’
∂ξ (ϕ, ξ)

∣∣ ∈ [(1 + ε)−3, (1 + ε)3]. Note
that the values ai,j and aσ(i),j implicitly depend on ε.

Select aε ≤ mini,j aij in such a way that aε → 0 as ε → 0, and denote Iε =
(−aε, aε) × {0}, Ĩε = (−aε(1 + ε)−3, aε(1 + ε)−3) × {0}, and J̃ i

ε = J̃ i := ∪j J̃
i,j
ε .

The part of the boundary of Ωε related to the angular intervals J i,j and Jσ(i),j under
consideration is formed by the arcs of ellipses Ei,j , E ’i,j and the corresponding lateral
reflectors. Then a billiard particle with initial conditions (ξ, ϕ) ∈ Ĩε×J̃ i,j after making
four reflections will intersect l at a point (ξ’, 0) ∈ Iε, and the angle at the point of
intersection will be ϕ+

Ωε,Iε
(ξ, ϕ) = ϕ’(ϕ, ξ) ∈ Jσ(i),j ⊂ Jσ(i). Thus, the set of values

(ξ, ϕ) ∈ Iε×J i such that ϕ+
Ωε,Iε

(ξ, ϕ) /∈ Jσ(i) is contained in the set
(
Iε×J i

)
\
(
Ĩε×J̃ i

ε

)
,

whose measure is vanishing as ε→ 0.
(b) If 2 ≤ i = σ(i) ≤ m− 1, then the corresponding part of the boundary is the

arc of circumference of radius 2 with the center at O occupying the angular interval
J i, that is, the set {2(sinϕ, cosϕ), ϕ ∈ J i}. Next, we will show that for all values
(ξ, 0) ∈ Iε, ϕ ∈ J i, except for a portion of order o(1), the corresponding billiard
particle makes one reflection from the arc and then goes back to Iε in the direction
ϕ’ ∈ J i.

For all values ϕ ∈ J i, except for the union of two intervals of vanishing length
(each of the intervals is contained in J i, has the length 2 arctan(aε/4), and contains
an endpoint of J i), the particle starting at (ξ, 0) ∈ Iε in the direction ϕ will reflect
from the indicated arc of circumference. Let ψ ∈ J i be the angular coordinate of the
reflection point. By (ξ’, 0) denote the point at which the reflected particle intersects
the straight line l. One easily verifies that

(29)
1
ξ

+
1
ξ’

= cosψ.

One has

(30) |ξ| < aε,

and hence

(31)
1
|ξ’| =

∣∣∣∣cosψ − 1
ξ

∣∣∣∣ > 1
aε

− 1.
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From (29) it follows that |ξ + ξ’|/|ξξ’| = |cosψ| ≤ 1, and, taking into account (30)
and (31), one finds that |ξ + ξ’| < a2

ε/(1 − aε). This implies that for all values
(ξ, 0) ∈ Iε, except for a set of measure O(a2

ε), the second point of intersection of the
billiard trajectory belongs to Iε; moreover, the velocity at this point, ϕ+

Ωε,Iε
(ξ, ϕ),

belongs to N2 arctan(aε/4)(J i), the neighborhood of J i of radius 2 arctan(aε/4). This
finally implies that for all (ξ, ϕ) ∈ Iε×J i, except for a portion of order O(aε), it holds
that ϕ+

Ωε,Iε
(ξ, ϕ) ∈ J i.

(c) The parts of the hollow’s boundary, corresponding to J1 and Jm, are formed
by smooth curves joining the corresponding endpoints of Iε and the points 2(sin Φ0,
− cos Φ0) and 2(sin Φ0, cos Φ0), respectively. The unique condition on these curves is
that they can be parametrized by the monotonically increasing angular coordinate.
For those values σ(1), σ(m) that coincide with neither 1 nor m take just the arcs of
circumference of radius 2 corresponding to the angular intervals Jσ(1), Jσ(m).

Consider the union of all of the elliptic arcs Ei,j , E ’i,j introduced in item (a), all of
the arcs of circumference defined in items (a) and (b), and the two curves introduced
in this item (c). Let us call this union the main element. Each lateral reflector is
a curve; select it in such a way that both its endpoints belong to the main element.
Finally, the curve ∂Ωε \ Iε is the union of all of the lateral reflectors and the part of
the main element visible from O (that is, which is not shielded by the adjacent lateral
reflectors). Thus, the definition of the hollow (Ωε, Iε) is complete.

In Figure 10, there is shown a particular hollow (Ωε, Iε) corresponding to the
permutation σ =

(
1 2 3 4 5
5 4 3 2 1

)
. The angular intervals J1, . . . , J5 are separated

by dotted lines. The family of hollows (Ωε, Iε), with vanishingly small ε, has the
following property: for almost all particles with the initial direction from J2 (resp.
J3, J4), the final direction will belong to J4 (resp. J3, J2). In the figure, there is
shown the trajectory of a particle with the initial direction ϕ ∈ J2 and the final
direction ϕ+ ∈ J4. The particle makes a reflection from an elliptic arc, then two
reflections from (very small) parabolic arcs, and, finally, again from an elliptic arc.
According to our notation, these arcs are E2,2, P2,2, P ’2,2, and E ’2,2.

Iε

Ωε

Fig. 10. A hollow (Ωε, Iε) approximating a σ-measure.
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4. Concluding remarks and applications. Physical bodies in the real world
have atomic structure and therefore are disconnected. This is a reason for using
(generally) disconnected sets Qm in the definition of a rough body. In the future we
intend to turn to propose and study the notion of a three-dimensional rough body,
where the connectivity assumption is absolutely useless; this is another reason. By
removing this assumption, the consideration in two dimensions (namely, the proof of
Lemma 1) is made somewhat more difficult, but at the same time prerequisites for
passing to the three-dimensional case are created.

In fact, the notions of “disconnected” (as everywhere in this paper) and “con-
nected” rough bodies are equivalent. There is a natural one-to-one correspondence
between the equivalence classes in the connected and disconnected cases,3 the former
classes being subclasses of the latter ones under this correspondence.

Let us now consider applications of the main theorem to problems of the body
of minimal or maximal aerodynamic resistance. A two-dimensional convex body B
moves, at constant velocity, through a rarefied homogeneous medium in R

2, and at
the same time it slowly rotates. The rotation is generally nonuniform; we assume
that, during a sufficiently long observation period, in a reference system connected
with the body the body’s velocity is distributed in S1 according to a given density
function ρ, with

∫
S1 ρ(v) dv = 1. The medium particles do not mutually interact, and

collisions of the particles with the body are absolutely elastic. The resistance of the
medium to the motion of the body is a vector-valued function of time. After averaging
it over a sufficiently long period of time, one gets a vector. We are interested in the
projection of this vector onto the direction of motion; for the sake of brevity, it will
be called mean resistance, or just resistance. The problem is as follows: given B,
determine the roughness on it in such a way that the main resistance of the resulting
rough body is minimal or maximal.

A prototype of such a mechanical system is an artificial satellite of the Earth
on relatively low altitudes (100 ÷ 200 km), with restricted capacity of rotation angle
control. The satellite’s motion is slowing down by the rest of the atmosphere; the
problem is to minimize or maximize the effect of slowing down. The problems of
resistance maximization may also arise when considering solar sail: a spacecraft driven
by the pressure of solar photons.

The initial velocity of an incident particle (in the reference system connected with
the body) is −v, and the final velocity is v+; therefore, the momentum transmitted
by the particle to the body is v + v+. The projection of the transmitted momentum
onto the direction of motion of the body equals 1 + 〈v, v+〉. Averaging this value over
all particles incident on the body within a sufficiently long time interval, one gets the
mean resistance. The averaging amounts to integration over ρ(v) dνB(v, v+, n); that
is, the mean resistance of the rough body equals

R(νB) =
∫∫∫

T3

(1 + 〈v, v+〉) ρ(v) dνB(v, v+, n).

Using the main theorem and Fubini’s theorem, one rewrites this formula in the form

(32) R(νB) =
∫

S1

dτB(n)
∫∫

T2

(1 + 〈v, v+〉) ρ(v) dηB,n(v, v+),

3More precisely, we mean equivalence classes formed by sequences of connected/disconnected
sets.
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where ηB,n ∈ Λn. Thus, the minimization problem for R(νB) reduces to minimization,
for any n, of the functional

∫∫
T2 (1 + 〈v, v+〉) ρ(v) dη(v, v+) over all η ∈ Λn. Using the

notation introduced in section 3.3, one comes to the problem:

(33) inf
η∈Λ

∫∫
�

(1 + cos(ϕ− ϕ+)) 
(ϕ) dη(ϕ,ϕ+),

where 
(ϕ) = ρ(v) for ϕ = Arg v − Arg n. This problem, in turn, by symmetrization
of the cost function reduces to a particular Monge–Kantorovich problem:

(34) inf
η∈Λλ,λ

F(η), where F(η) =
∫∫

�

c(ϕ,ϕ+) dη(ϕ,ϕ+),

where c(ϕ,ϕ+) = (1 + cos(ϕ−ϕ+)) �(ϕ)+�(ϕ+)
2 and Λλ,λ is the set of measures η on �

having both marginal measures equal to λ: π#
ϕ η = λ = π#

ϕ+η. Recall that λ is defined
by dλ(v) = cosϕdϕ.

Problem (34) can be exactly solved in several particular cases. Consider the case
of uniform motion, where the function ρ, and therefore 
, is constant, and thus one can
take c(ϕ,ϕ+) = 3

8 (1+cos(ϕ−ϕ+)).4 Note that F(η0) = 1 and therefore resistance of
the smooth body is equal to its perimeter: R(νB) =

∫
S1 dτB(n)F(η0) = |∂B|. (Recall

that the measure η0 belongs to Λ and is supported on the diagonal ϕ+ = −ϕ.) The
minimization problem (34) for constant 
 was solved in [14]: one has infB R(νB) =
0.9878 . . . · |∂B|, the infimum being taken over all roughenings of B.

Note that the corresponding maximization problem for (34) has the trivial so-
lution, which does not depend on the function 
: η = η�, the measure η� ∈ Λ
being supported on the diagonal ϕ+ = ϕ. One has supB R(νB) = κ |∂B|, where
κ =

(∫ π/2

−π/2

(ϕ) cosϕdϕ

)/(∫ π/2

−π/2

(ϕ) cos3 ϕdϕ

)
> 1; in the case of uniform rotation

one has κ = 1.5. The maximization problem was studied in more detail in [20].

Appendix A. The construction below is simple (see Figure 11), but its descrip-
tion is a bit cumbersome.

Take a point in the interior of B and connect it by segments with all vertices.
The polygon is thus divided into several triangles; fix i and m and consider the
triangle with the base bi, the ith side of B. Denote by d(Ωm

i ) the diameter of the
orthogonal projection of Ωm

i onto the straight line containing Im
i ; one obviously has

d(Ωm
i ) ≥ |Im

i |. Fix a positive number κ < |Im
i |/d(Ωm

i ).
Take a rectangle Π1 contained in the triangle and such that one side of Π1 belongs

to bi. By δ1 denote the total length of the part of bi which is not occupied by this
side.

For the sake of brevity, the image of a set under the composition of a homothety
with positive ratio and a translation will be called a copy of this set. Take several
copies of Ωm

i (copies of first order) that do not mutually interact, that belong to Π1,
whose corresponding copies of Im

i belong to bi, and whose portion of the side of Π1

occupied by them is more than κ.
Next, take several rectangles that do not mutually intersect and do not intersect

with the chosen copies of Ωm
i , belong to Π1, and have one side contained in bi. Denote

by Π2 the union of these rectangles and by δ2 the total length of the part of the side
of Π1 which is not occupied by the rectangles from Π2 and by the copies of Im

i . Next,

4The normalization constant 3/8 is taken for further convenience.
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Fig. 11. Making hollows on the ith side of a polygon.

for each rectangle from Π2 choose several copies of Ωm
i (copies of second order) in the

way completely similar to the described above (see Figure 11).
Continuing this process, one obtains a sequence Π1,Π2, . . . of unions of rectangles

and collections of copies of Ωm
i of first, second, . . . order. Choose the rectangles in

such a way that δ1 +δ2 + · · · < 1/m and Area(Π1) < 1/m. Finally, choose k such that
the total length of sides of rectangles from Πk+1 contained in bi is less than 1/m, and
take the collection of copies of Ωm

i of order 1, 2, . . . , k (we shall call it full collection).
The total length of the part of bi not occupied by the corresponding copies of Im

i is
less than 2/m, and therefore it goes to zero as m→ ∞.

By definition, the desired set Qm is B minus the union of full collections of copies
of Ωm

i over all i.

Appendix B. We prove here slightly more than needed.
Statement 3. Let A = (aij)k

i,j=1 be a symmetric matrix, with aij being non-
negative integers. Denote ni =

∑k
j=1 aij. Then there exist matrices Bij = (bμν

ij )μ,ν

of size ni × nj such that bμν
ij ∈ {0, 1}, BT

ij = Bji, the sum of elements in Bij equals
aij, and the block matrix D = (Bij) contains exactly one unit in each row and each
column.

Note that for some values i = i1, i2, . . . it may happen that ni = 0, that is, aij = 0
for all j = 1, . . . , k. Then the corresponding matrices Bij have the size 0 × nj , that
is, are empty. In this case D coincides with the block matrix D′ = (Bij) having the
rows i1, i2, . . . and columns i1, i2, . . . crossed out.

Proof. The proof is by induction on k. Let the statement be true for k− 1; prove
it for k. Take the matrix Ã = (aij)k

i,j=2; there exists a block matrix B̃ = (B̃ij)k
i,j=2

satisfying the statement. Note that the order of B̃ij is ñi× ñj , where ñi =
∑k

j=2 aij =
ni − ai1. Define the matrices Bij as follows.

(a) Put B11 = diag{1, . . . , 1︸ ︷︷ ︸
a11

, 0, . . . , 0}.

(b) Put ba11+1,1
12 = · · · = ba11+a12,a12

12 = 1; ba11+a12+1,1
13 = · · · = ba11+a12+a13,a13

13 =
1; · · · ; ba11+···+a1,k−1+1,1

1k = · · · = ba11+···+a1k,a1k

1k = 1; the other elements of the
matrices B1j , j = 2, . . . , k, are zeros. Thus, on the diagonal of B1j starting from the
element at the first column and the (a11 + a12 + · · · + a1,j−1 + 1)th row, the first a1j

elements equal 1, and the remaining elements on this diagonal and all of the elements
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off the diagonal are zeros. This defines the matrices B1j , j = 2, . . . , k. The matrices
Bi1, i = 2, . . . , k, are determined by the condition Bi1 = BT

1i.
(c) For i ≥ 2, j ≥ 2 define the matrix Bij as follows. For μ ≤ a1i or ν ≤ a1j ,

put bμν
ij = 0, and for μ ≥ a1i + 1, ν ≥ a1j + 1, put bμν

ij = b̃
μ−a1i,ν−a1j

ij . Thus, in the
obtained matrix Bij , the right lower corner coincides with the matrix B̃ij , and all of
the remaining elements are equal to zero. The number of rows of this matrix equals
a1i + ñi = ni, and the number of columns equals a1j + ñj = nj. One obviously has
BT

ij = Bji.
One easily verifies that

∑
μν b

μν
ij = aij and that each row and each column of the

obtained block matrix D = (Bij)k
i,j=1 contains precisely one unit.
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Abstract. Lotka–Volterra systems are the canonical ecological models used to analyze popu-
lation dynamics of competition, symbiosis, or prey-predator behavior involving different interacting
species in a fixed habitat. Much of the work on these models has been within the framework of
infinite-dimensional dynamical systems, but this has frequently been extended to allow explicit time
dependence, generally in a periodic, quasiperiodic, or almost periodic fashion. The presence of more
general nonautonomous terms in the equations leads to nontrivial difficulties which have stalled the
development of the theory in this direction. However, the theory of nonautonomous dynamical sys-
tems has received much attention in the last decade, and this has opened new possibilities in the
analysis of classical models with general nonautonomous terms. In this paper we use the recent
theory of attractors for nonautonomous PDEs to obtain new results on the permanence and the ex-
istence of forwards and pullback asymptotically stable global solutions associated to nonautonomous
Lotka–Volterra systems describing competition, symbiosis, or prey-predator phenomena. We note in
particular that our results are valid for prey-predator models, which are not order-preserving: even
in the “simple” autonomous case the uniqueness and global attractivity of the positive equilibrium
(which follows from the more general results here) is new.

Key words. Lotka–Volterra competition, symbiosis and prey-predator systems, nonautonomous
dynamical systems, permanence, attracting complete trajectories
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der the Proyecto de Excelencia FQM-02468.

‡Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK (j.c.robinson@warwick.
ac.uk). Partially supported by a Royal Society University Research Fellowship.
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boundary ∂Ω, of the following type:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
ut − d1Δu = uf(t, x, u, v) x ∈ Ω, t > s
vt − d2Δv = vg(t, x, u, v) x ∈ Ω, t > s
B1u = 0, B2v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs,

where f and g are regular functions, d1, d2 are positive constants, and Bi denotes one
of the boundary operators

(1.2) Bu = u, or Bu =
∂u

∂�n
, or Bu = d

∂u

∂�n
+ σ(x)u,

for the Dirichlet, Neumann, or Robin case, respectively, �n is the outward normal
vector-field to ∂Ω, and σ(x) a C1 function. Note that we take diffusion coefficient di

and boundary potential σi(x) for the case of Robin boundary condition Bi. Also note
that we allow all of the nine possible combinations of boundary conditions in (1.1).

A particularly interesting class of models of the form (1.1) are the nonautonomous
Lotka–Volterra models:

(1.3)

⎧⎪⎪⎨⎪⎪⎩
ut − d1Δu = u(λ(t, x) − a(t, x)u − b(t, x)v) x ∈ Ω, t > s
vt − d2Δv = v(μ(t, x) − c(t, x)u − d(t, x)v) x ∈ Ω, t > s
B1u = 0, B2v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs.

We refer, for example, to [6] for the biological meaning of the parameters d1, d2,
λ, μ, a, b, c, d involved in (1.3).

In line with the ecological interpretation of these models, we will consider only
positive solutions, and in the light of this we note here that us, vs ≥ 0 implies that
the solution of (1.1) satisfies u, v ≥ 0.

Note that our hypotheses on b and c allow different models of population dynam-
ics: competition if b, c > 0, symbiosis if b, c < 0, and prey-predator if b > 0 and c < 0,
although we do not allow sign-changing coefficients.

Of course, it is an important problem to determine the asymptotic behavior of
solutions of the system (1.1). Since in general this is a very complicated task, one may
try to solve simpler problems; e.g., one can try to determine whether or not the two
species will survive in the long term or if, on the contrary, one of them will be driven
to extinction. Survival of the species has been formalized in the notion of permanence;
see Hale and Waltman [15] or Hutson and Schmitt [20]. Loosely speaking, the system
(1.1) is said to be permanent if for any positive initial data us and vs, within a finite
time the values of the solution (u(t, s, x;us, vs), v(t, s, x;us, vs)), for x ∈ Ω, enter and
remain within a compact set in R2 that is strictly bounded away from zero in each
component. Note, however, that this is an imprecise statement in the presence of
Dirichlet boundary conditions.

Note that permanence is a form of coexistence of the species, since none is extin-
guished at any part of the habitat domain at any time.

A related situation, which implies that the system is permanent but gives more
detail since it also indicates the expected final state of the system, is when there exists
a solution, bounded away from zero, to which all other solutions tend asymptotically.

These two are the main topics with which we are concerned in this paper.
Before going further observe that both (1.1) and (1.3) always possess the trivial

solution (0, 0) and semitrivial solutions of the form (u, 0) and (0, v). In the latter
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case the nontrivial component satisfies a scalar parabolic problem, of logistic type in
the case of (1.3). The dynamics of these solutions have a deep impact on the global
dynamics of general solutions. Indeed, if the system is permanent, this implies that
semitrivial solutions must be unstable in some sense. On the other hand, if semitrivial
solutions are stable, then it can be expected that some solutions of the system exhibit
extinction, that is, one of the species (or both) approaches asymptotically the value
zero.

Some results are already known along these lines. For example, in the autonomous
case, assume that all the coefficients in (1.3) are constants and consider, for example,
the problem with Dirichlet boundary conditions. In this case results about perma-
nence for problem (1.3) depend on the values of λ and μ with respect to the first
eigenvalue of certain associated linear elliptic problems, which we now describe. Given
d ∈ R, d > 0, and f ∈ L∞(Ω), we denote by Λ(d, f) (we write Λ0 := Λ(d, 0)) the first
eigenvalue of the problem{

−dΔw = σw + f(x)w in Ω,
w = 0 on ∂Ω,

and given γ, α ∈ R with α > 0, we denote by ω[d,γ,α] the unique positive solution of{
−dΔw = γw − αw2 in Ω,
w = 0 on ∂Ω.

If λ and μ satisfy

(1.4) λ > Λ(d1,−bω[d2,μ,d]) and μ > Λ(d2,−cω[d1,λ,a]),

then the autonomous version of the competition or prey-predator cases of (1.3), with
Dirichlet boundary conditions in both components, are permanent and moreover there
exists a positive equilibrium solution (Cantrell et al. [4], [6], [7], [8] and López-Gómez
[27]).

Although the case of symbiosis, b, c < 0, is not treated in these papers, a similar
result holds provided that

bc < ad,

a condition which is used to obtain a priori bounds for the solutions (see, for instance,
Pao [30] or Theorem 9.8 in Delgado et al. [12], where moreover the coefficients a, b, c,
and d depend on x).

Note that (1.4) is a condition that expresses the instability of semitrivial solutions.
However, in the competition case it is well known that if λ ≤ Λ0 or μ ≤ Λ0, then

one of the two species (or both of them) will be driven to extinction (see López-Gómez
and Sabina [29] for an improvement of this result). Similar results can be obtained
in the other cases; see [6] and [30]. Note that, in contrast with (1.4), the condition
above expresses the stability of either one of the semitrivial solutions.

When nonautonomous terms are allowed in the equations, this is usually done
under the assumption of periodicity, quasiperiodicity, or almost periodicity, and in
this case similar results can be obtained to those for autonomous equations (see Hess
[17], Hess and Lazer [18], Hetzer and Shen [19], and references therein). For the case
of periodic coefficients, the use of the Poincaré map implies that the system resembles
an autonomous one in many respects.
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Cantrell and Cosner [5] assume general nonautonomous terms that are bounded
by periodic functions, and using a comparison method give conditions on λ and μ
that guarantee that (1.3) is permanent.

Note that most of the references cited in the papers above are concerned (besides
periodicity or almost periodicity) with some particular choice of boundary conditions
(typically Neumann, or even Dirichlet, in both components) and one of the compe-
tition, symbiosis or prey-predator cases. In the first two cases a common tool in the
references is the use of order-preserving properties of the Lotka–Volterra system.

For example, in the case of almost periodic time dependence, Hetzer and Shen
[19] proved similar results for the competition case, assuming that d1 = d2 and λ = μ
are constant and both components of the system satisfy Dirichlet boundary conditions
(no such restrictions are required in the case of Neumann BCs). In that paper, the
limitation to almost periodic cases is due to the use of skew-product techniques which
require, some way or another, some sort of time recurrence in the coefficients of the
system.

Note that in [25] Langa et al. studied permanence for the competition case with
Dirichlet boundary conditions when only the coefficient a is allowed to depend on time.

In this paper we allow general nonautonomous terms and do not restrict ourselves
to (for example) almost periodic time dependence. As said before, we also consider
all nine possible choices of boundary conditions and treat competition, symbiosis, and
prey-predator models, since we do not rely on monotonicity properties of the system.
Note that the only restriction that we impose on the coefficients is that d1 = d2 in
the symbiotic case, a condition that we assume only in order to have explicit upper
bounds on the solutions, but not for the permanence results. Also note that as we
employ for the solutions of (1.1) or (1.3) the approach of nonautonomous processes
rather than skew-product techniques, we have to pay attention to both the initial
time, s, and the observation time for the solutions, t > s. This implies that concepts
like permanence, stability, instability, and attractivity can be defined and analyzed
in both pullback and forwards senses; see section 2 for further details and also [24].
Observe also that while pullback properties (e.g., permanence, attraction) are usually
the most one can expect for general nonautonomous terms, in this case we can also
show results on permanence and attractivity forwards in time; see Langa et al. [25, 23]
for cases of pullback but not forwards permanence or attraction in nonautonomous
reaction-diffusion equations.

In section 3, using results for the scalar nonautonomous logistic equations from,
e.g., [25, 34], which we compile in section 3.1, we make use of the theory of attractors
for nonautonomous PDEs as developed by Chepyzhov and Vishik [9] (see also Crauel
et al. [11] or Kloeden and Schmalfuss [21]). Thus, we prove in section 3.2 that under
the assumptions

inf
R×Ω

a(t, x) > 0 and inf
R×Ω

d(t, x) > 0

the system (1.3) has a nonautonomous attractor; see Theorem 3.5. The existence
of a nonautonomous attractor in this case implies the presence of bounded complete
trajectories, i.e., solutions defined for all time.

From here we derive in section 3.3 some sufficient conditions for the extinction of
one (or both) of the species of the system. These conditions are far from optimal but
qualitatively describe the stability of semitrivial solutions; see Proposition 3.6.

Then, in section 3.4 we give sufficient conditions reflecting the instability of
semitrivial solutions that guarantee that (1.3) is permanent both in a pullback and in
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a forwards sense. We want to stress here that these sufficient conditions involve only
information about the behavior of the coefficients of the system as either t→ −∞ or
t → ∞. Also, they are given in such a way that the result is robust with respect to
perturbations of the coefficients.

The rest of the paper is then devoted to a more detailed analysis of the asymptotic
behavior of the solutions of (1.3). After some preparatory material in sections 4 and
5, we will prove in section 6 that under appropriate conditions on the parameters
all nonsemitrivial solutions of (1.3) have the same asymptotic behavior as t → ∞.
In particular all bounded complete trajectories in the nonautonomous attractor have
the same asymptotic behavior as t → ∞. For this we make use of the permanence
results in section 3.4 and impose a smallness condition on the product of the coupling
parameters:

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0

for some suitable constant ρ0 > 0; see Theorem 6.1.
Moreover we show that, under a similar smallness condition on the coupling coef-

ficients, now as t → −∞, if one of the bounded complete trajectories of (1.3) (which
exists from the existence of the nonautonomous attractor) is bounded away from zero
at −∞, it is the unique such trajectory, and it also describes the unique pullback
asymptotic behavior of all nonsemitrivial solutions of (1.3); see Theorem 6.2. When
these two theorems can be applied together, there is a unique bounded complete
trajectory (u∗(t), v∗(t)) that is both forwards and pullback attracting for (1.3); i.e.,
(u∗, v∗) is a bounded trajectory such that, for any s ∈ R and for any positive solution
(u(t, s), v(t, s)) of (1.3) defined for t > s, one has

(1.5) (u(t, s) − u∗(t), v(t, s) − v∗(t)) → (0, 0) as t→ ∞, or s→ −∞.

To obtain these results we need some nontrivial machinery for the linear scalar
case, section 4.1, and some perturbation results about the exponential decay for solu-
tions of linear parabolic nonautonomous systems, section 4.2. In particular, we find
conditions guaranteeing that any bounded solution of

(1.6)
{
ut − d1Δu = p(t, x)u
vt − d2Δv = q(t, x)v

gives rise to a solution that tends to zero as t → ∞, when (1.6) is perturbed in a
certain way; see Theorem 4.6. It is because we are able to study the linear part of
the system in detail that we can obtain results for the nonlinear system.

Since we are able to treat the difference of two solutions of problem (1.3) within
this framework, as a consequence of this argument we can apply our results to the
Lotka–Volterra model in all three standard cases: competition, symbiosis, and prey-
predator. It is noteworthy that these different situations are usually studied separately
in the literature, but since we do not make any use of monotonicity arguments (which
do not apply in the prey-predator case) we are able to give a unified treatment.

We close this paper in section 7 with a discussion of our results and some possi-
bilities for further developments.

In the case in which all the coefficients are autonomous or periodic, our results
in section 6 that we described above in (1.5) imply the uniqueness of the asymptotic
behavior of all nonsemitrivial solutions.
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Hence, in the autonomous case our results agree with all the classical results of
uniqueness and stability of the nonsemitrivial steady states of (1.3) for the three cases
of competition, symbiosis, and prey-predator (see, for instance, Theorem 4.4 in Furter
and López-Gómez [13] and Corollary 4.3 in López-Gómez and Sabina de Lis [29] in
the competition case, and Corollary 9.5 in Delgado et al. [12] in the symbiosis case).

Moreover, in the prey-predator case, with (1.5) we are able to conclude the unique-
ness and global stability of a steady state, solving (for particular ranges of parameter
values) one of the most interesting open problems in this field. We emphasize that
this result is new even in the autonomous case, where until now only local stability
has been proved; see Theorem 4.1 in Leung [26], see also Lakos [22], López-Gómez
and Pardo [28], and Yamada [36].

2. Some notations and preliminaries. In this section we introduce some
basic notations and terminology that will be used throughout the rest of the paper.
In particular, we make precise the way systems (1.1) or (1.3) are said to be permanent.

2.1. Asymptotic behavior and complete trajectories for nonlinear sys-
tems. Note that if the solutions of (1.1) are global, then we can define a nonau-
tonomous nonlinear process in some Banach space X appropriate for the solutions,
i.e., a family of mappings {S(t, s)}t≥s : X → X , t, s ∈ R satisfying:

(a) S(t, s)S(s, τ)z = S(t, τ)z, for all τ ≤ s ≤ t, z ∈ X ,
(b) S(t, τ)z is continuous in t > τ and z, and
(c) S(t, t) is the identity in X for all t ∈ R.

S(t, τ)z arises as the value of the solution of our nonautonomous system at time t
with initial condition z at initial time τ . For an autonomous system the solutions
depend only on t− τ , and we can write S(t, τ) = S(t− τ, 0).

In order to describe the asymptotic behavior of nonautonomous systems like (1.1)
and (1.3), we rely on the concept of a nonautonomous pullback attractor (Chepyzhov
and Vishik [9], Kloeden and Schmalfuss [21]), which is the sensible generalization of
an attractor for nonautonomous systems. For A,B ⊂ X we denote the Hausdorff
semidistance between A and B by dist(A,B) = supa∈A infb∈B d(a, b).

Definition 2.1. We say that a family of compact sets {A(t)}t∈R ⊂ X is a
pullback attractor associated to S if

(a) S(t, τ)A(τ) = A(t), for all t ≥ τ and
(b) for all t ∈ R and D ⊂ X bounded

lim
τ→−∞

dist(S(t, τ)D,A(t))) = 0.

Observe that the attraction in (b) fixes the final time and moves the initial time
backwards towards −∞. We are not evolving one trajectory backwards in time, but
rather we consider the current state of the system (at the fixed time t) which would
result from the same initial condition starting at earlier and earlier times.

To guarantee the existence of such a pullback attractor, one is usually faced with
the task of proving the existence of a pullback absorbing family, defined as follows.

Definition 2.2. Given t0 ∈ R, we say that B(t0) ⊂ X is pullback absorbing at
time t0 if for every bounded D ⊂ X there exists a T = T (t,D) ∈ R such that

S(t0, τ)D ⊂ B(t0), for all τ ≤ T.

A family {B(t)}t∈R is pullback absorbing if B(t0) is pullback absorbing at time t0, for
all t0 ∈ R.
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The general result on the existence of nonautonomous pullback attractors is a
generalization of the abstract theory for autonomous dynamical systems (Temam
[37], Hale [14]).

Theorem 2.3 (Crauel et al. [11], Schmalfuss [35]). Assume that there exists
a family of compact pullback absorbing sets. Then, there exists a pullback attractor
{A(t)}t∈R that is minimal in the sense that if {C(t)}t∈R is another family of closed
pullback attracting sets, then A(t) ⊂ C(t) for all t ∈ R.

To have a more precise description of the dynamical objects within the pullback
attractor, we make the following definition:

Definition 2.4. Let S be a process. We call the continuous map w : R → X a
complete trajectory if, for all s ∈ R,

S(t, s)w(s) = w(t) for all t ≥ s.

According to Chepyzhov and Vishik [9], when the family of absorbing sets is
uniformly bounded, the pullback attractor can be characterized as

(2.1) A(t) = {w(t) : w(·) is a bounded complete trajectory for S}.

2.2. Pullback and forwards permanence for nonautonomous systems.
Consider the nonlinear system (1.1) and assume that f and g are regular functions.
Hence, we can assume that for initial data (us, vs) ∈ CB1(Ω) × CB2(Ω) there exists a
unique (local) smooth solution such that (u, v) ∈ C1

B1
(Ω) × C1

B2
(Ω) for t > s, where,

for j = 0, 1,

Cj
B(Ω) =

{
Cj

0(Ω) for Dirichlet BCs,
Cj(Ω) for Neumann or Robin BCs,

with Cj
0(Ω) denoting functions in Cj(Ω) that are zero on ∂Ω and C0(Ω) = C(Ω).

Note that in practice we will be interested only in nonnegative solutions and that
if us ≥ 0 and vs ≥ 0 in (1.1), then the local solution satisfies u, v ≥ 0. In fact, the
maximum principle implies that if both us ≥ 0 and vs ≥ 0 are nontrivial, then u and
v are strictly positive in Ω.

Although at this point we assume only local existence of solutions, it still makes
sense to consider complete trajectories of (1.1), which roughly speaking are solutions
defined for all times. These objects will play a central role in our analysis below,
as can be seen from (2.1). More precisely, a restatement of Definition 2.4 gives the
following.

Definition 2.5. A continuous function U =
(
u
v

)
: R → CB1(Ω) × CB2(Ω) is a

complete trajectory of (1.1), if for all s < t in R, (u(t), v(t)) is the solution of (1.1)
with initial data us = u(s), vs = v(s).

Now we define several concepts that will help us in making precise the concepts
of pullback and forwards permanence for the solutions of (1.1) or (1.3). Note that the
concepts below are related to the spaces CBi(Ω) above. We start with the following.

Definition 2.6. A set of nonnegative functions B ⊂ C(Ω) is bounded away
from zero if there exists a nonnegative nontrivial continuous function ϕ0(x) ≥ 0 in Ω
(vanishing on ∂Ω in case of Dirichlet boundary conditions) such that

u(x) ≥ ϕ0(x) for all x ∈ Ω, u ∈ B.

The set B is nondegenerate if the function ϕ0(x) above is in C1(Ω) and ϕ0(x) > 0
in Ω.
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Note that ϕ0 above can be a positive constant in the case of Neumann or Robin
boundary conditions.

Then we have the following definitions for curves in the space of continuous func-
tions.

Definition 2.7. A positive function with values in C(Ω) is nondegenerate at ∞
(respectively, −∞) if there exists t0 ∈ R such that u is defined in [t0,∞) (respectively,
(−∞, t0]) and

{u(t), t ≥ t0} is a nondegenerate set

(respectively, for t ≤ t0), that is, there exists a C1(Ω) function ϕ0(x) > 0 in Ω,
(vanishing on ∂Ω in case of Dirichlet boundary conditions), such that

u(t, x) ≥ ϕ0(x) for all x ∈ Ω, t ≥ t0

(respectively, for all t ≤ t0).
A family of curves in C(Ω), denoted {uσ(t)}σ∈Σ, is nondegenerate at ∞ if there

exists t0 ∈ R such that uσ is defined in [t0,∞) and

{uσ(t), t ≥ t0, σ ∈ Σ} is a nondegenerate set.

Finally, a family of curves in C(Ω), denoted {uσ(t, s)}σ∈Σ, defined in the intervals
[s,∞) is nondegenerate as s→ −∞ if there exists s0 ∈ R such that for all s ≤ s0

{uσ(t), s ≤ t ≤ s0, σ ∈ Σ} is a nondegenerate set.

For systems, analogously to Definition 2.6, a set B ⊂ (C(Ω))2 is bounded away
from zero if each projection of B is bounded away from zero in C(Ω). In a similar way,
as in Definition 2.7, a family of curves Uσ(x, ·) ∈ (C(Ω))2, σ ∈ Σ, is nondegenerate if
both components are nondegenerate in C(Ω).

Now we can finally define when the system (1.1) or (1.3) is pullback permanent.
Observe that we assume here that solutions are globally defined.

Definition 2.8. We say that system (1.1) is pullback permanent if for any
bounded set of intial B ⊂ (C(Ω))2 bounded away from zero, there exists t0 ∈ R such
that for any t ≤ t0 the family of solutions

(2.2) {
(
u(t, s;u0, v0), v(t, s;u0, v0)

)
, s ≤ t, (u0, v0) ∈ B}

is nondegenerate as s→ −∞.
The system (1.1) is uniformly pullback permanent if it is pullback permament and

the functions ϕ0 in Definition 2.7 are independent of B.
Note that using the regularizing properties of the solutions of (1.1) or (1.3), if the

system is pullback permanent, as defined above, then the set (2.2) is nondegenerate
as s→ −∞ for any fixed t ∈ R.

In an analogous although subtly different way, we can define when system (1.1)
or (1.3) is forwards permanent.

Definition 2.9. We say that system (1.1) is forwards permanent if for any
bounded set of initial B ⊂ (C(Ω))2 bounded away from zero, and for any s ∈ R, the
family of solutions

(2.3) {
(
u(t, s;u0, v0), v(t, s;u0, v0)

)
, s ≤ t, (u0, v0) ∈ B}

is nondegenerate at ∞.
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The system (1.1) is uniformly forwards permanent if it is forwards permanent and
the functions ϕ0 in Definition 2.7 are independent of B.

Note that (1.1) always has the trivial solution (0, 0) as well as semitrivial solutions
(u, 0) and (0, v). Hence, if the system is permanent, as defined above, this implies
that trivial and semitrivial solutions are unstable in the pullback or forwards sense;
see, e.g., Langa, Robinson, and Suárez [24]. Also, note that permanence implies
coexistence of the species, since the values of the solutions eventually remain far from
zero in all points of the domain (except at the boundary in the case of Dirichlet
boundary conditions).

In the next section we will give conditions on the coefficients of (1.3) for uniform
permanence (both forwards and pullback), which will be moreover robust with respect
to suitable perturbations on the coefficients.

3. Extinction and permanence for nonautonomous Lotka–Volterra
equations: Competition, symbiosis, and prey-predator models. In this sec-
tion we give results on extinction and pullback and forwards permanence for nonau-
tonomous Lotka–Volterra systems of the type

(3.1)

⎧⎪⎪⎨⎪⎪⎩
ut − d1Δu = u

(
λ(t, x) − a(t, x)u − b(t, x)v

)
, x ∈ Ω, t > s

vt − d2Δv = v
(
μ(t, x) − c(t, x)u− d(t, x)v

)
, x ∈ Ω, t > s

B1u = 0, B2v = 0, x ∈ ∂Ω, t > s
u(s) = us ≥ 0, v(s) = vs ≥ 0,

with d1, d2 > 0; λ, μ, a, b, c, d ∈ Cθ(Q), and Q = R × Ω. Given a function e ∈ Cθ(Q),
we define

eL := inf
Q
e(t, x) eM := sup

Q

e(t, x).

We assume from now on that

(3.2) aL, dL > 0,

and consider the three classical cases depending on the signs of b and c:
1. Competition: bL, cL > 0 in Q.
2. Symbiosis: bM , cM < 0 in Q.
3. Prey-predator: bL > 0, cM < 0 in Q.

Also, note that we consider all nine possible choices for Bi as in (1.2).
Using standard techniques, see for instance Pao [30], it can be shown that given

0 ≤ us ∈ C(Ω), 0 ≤ vs ∈ C(Ω) there exists, locally in time, a unique solution of (3.1)
which is nonnegative, and which we will denote by

u = u(t, s, x;us, vs) ≥ 0, v = v(t, s, x;us, vs) ≥ 0.

In fact, due to the strong maximum principle, if us ≥ 0 and vs ≥ 0 are both
nontrivial, then u and v are strictly positive in Ω. Furthermore, if we denote by Ci and
int(Ci) for i = 1, 2, respectively, the positive cones in C1

Bi
(Ω) and their corresponding

interior sets, we have

int(Ci) := {u ∈ Ci : u > 0 in Ω, and
∂u

∂�n
< 0 on ∂Ω} if Biu = u

and

int(Ci) := {u ∈ Ci : u ≥ δ > 0, for some δ > 0 in Ω},
if Biu = ∂u

∂	n or Biu = di
∂u
∂	n + σi(x)u.
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Thus, if us ≥ 0 and vs ≥ 0 are both nontrivial, then (u, v) ∈ int(C1) × int(C2) for
t > s.

Note that (3.1) also admits semitrivial solutions of the form (u, 0) or (0, v). As
indicated in the Introduction, the stability properties of semitrivial solutions play
an important role in the global dynamics of (3.1). In fact, extinction requires some
semitrivial solution is stable whereas permanence is only possible if semitrivial solu-
tions are somehow unstable.

Thus, we first review some results on the solutions of scalar logistic equations that
will be used further below. These results will be used to prove that the local solutions
of (3.1) above are, in fact, globally defined. Also, they will be crucially used to prove
the existence of a pullback attractor as in section 2.1, and to obtain our results on
extinction and permanence as well.

3.1. On the nonautonomous logistic equation. Note that (3.1) always ad-
mits semitrivial solutions of the form (u, 0) or (0, v). In this case, when one species is
not present, the other one satisfies the nonautonomous logistic equation

(3.3)

⎧⎨⎩
ut − dΔu = h(t, x)u − g(t, x)u2 in Ω, t > s,
Bu = 0 on ∂Ω,
u(s) = us ≥ 0 in Ω,

where d > 0 and B as in (1.2), us ∈ C(Ω), h, g ∈ Cθ(Q), and

gL > 0 in Q.

For m ∈ L∞(Ω) we denote by ΛB(d,m) the first eigenvalue of

(3.4)
{

−dΔu = λu +m(x)u in Ω,
Bu = 0 on ∂Ω.

In particular, we denote by Λ0,B(d) = ΛB(d, 0) the first eigenvalue of the operator −dΔ
with boundary conditions B. It is well known that ΛB(d,m) is a simple eigenvalue
and a continuous and decreasing function of m. Also note that if m1 is constant, then

(3.5) ΛB(d,m1 +m2) = ΛB(d,m2) −m1.

We write ϕ1,B(d,m) for the positive eigenfunction associated to ΛB(d,m), normalized
such that ‖ϕ1,B(d,m)‖L∞(Ω) = 1.

If there is no possible confusion we will suppress the dependence on d and B in
the notations above. When we need to distinguish these quantities with respect to
Bi, or di, i = 1, 2, we will employ superscripts as Λi(m) or Λi

0.
Finally, for h, g ∈ L∞(Ω) with gL > 0 consider the elliptic equation

(3.6)
{

−dΔu = h(x)u − g(x)u2 in Ω,
Bu = 0 on ∂Ω.

The following result is well known (Cantrell and Cosner [6]).
Proposition 3.1. If Λ(h) ≥ 0, the unique nonnegative solution of (3.6) is the

trivial one, i.e., ω[h,g](x) = 0. On the other hand, if Λ(h) < 0 there exits a unique
positive solution of (3.6), which we denote by ω[h,g](x). Moreover, 0 < ω[h,g](x) ≤
Ψ(x) in Ω, where

Ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
hM

gL
for Dirichlet or Neumann BCs,

− Λ(h)
ϕLgL

ϕ(x) for Robin BCs,

with ϕ = ϕ1,B(m).
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The following result will be used in what follows.
Lemma 3.2. Assume that hn ∈ L∞(Ω) and that

hn → h∞ in L∞(Ω),

with Λ(h∞) < 0. Then, there exist n0 ∈ N, and ϕ ∈ int(C) such that

ϕ(x) ≤ ω[hn,g](x) in Ω, for all n ≥ n0,

where ω[hn,g](x) is given by Proposition 3.1.
Proof. Since Λ(h∞) < 0, we can take ε > 0 such that 0 < ε < −Λ(h∞). For this

ε > 0, there exists n0 ∈ N such that for n ≥ n0

−ε < hn − h∞ < ε for all x ∈ Ω.

Consider ϕ∞ ∈ int(C) the eigenfunction associated to Λ(h∞) with ‖ϕ∞‖L∞(Ω) = 1.
It is not hard to show that δϕ∞ is a subsolution of (3.6) with h = hn provided that

δ ≤ −ε+ Λ(h∞)
gM

.

So, δϕ∞(x) ≤ ω[hn,g](x) in Ω. This completes the proof.
In [25] and [34] the following properties of (3.3) were proved.
Theorem 3.3. Assume that in (3.3)

hM <∞ and gL > 0 in Q.

Then
1. For every nontrivial us ∈ C(Ω), us ≥ 0, there exists a unique positive solution

of (3.3) denoted by Θ[h,g](t, s, us). Moreover,

(3.7) 0 ≤ Θ[h,g](t, s, us) ≤ K,

where

K :=

⎧⎪⎪⎨⎪⎪⎩
max

{
(us)M ,

hM

gL

}
for Dirichlet or Neumann BCs,

max
{(

us

ϕ

)
M

,
−Λ(hM )
ϕLgL

}
for Robin BCs,

and ϕ is the positive eigenfunction associated to Λ(hM ) with ‖ϕ‖L∞(Ω) = 1.
2. For fixed t > s, us, the map h 	→ Θ[h,g](t, s, us) is increasing and g 	→

Θ[h,g](t, s, us) is decreasing.
For fixed t > s, h and g, the map us 	→ Θ[h,g](t, s, us) is increasing.

3. Define, for x ∈ Ω,

h0(x) := inf
t∈R

h(t, x), H0(x) := sup
t∈R

h(t, x)

and

g0(x) := inf
t∈R

g(t, x), G0(x) := sup
t∈R

g(t, x).
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Then, if us ∈ int(C) and Λ(h0) < 0 we have, for any t > s,

(3.8) 0 < εϕ1(x) ≤ Θ[h,g](t, s, x;us) in Ω,

where ϕ1 is the positive eigenfunction associated to Λ(h0) and

ε = ε(us) := min
{(

us

ϕ1

)
L

,
−Λ(h0)
gM

}
.

4. If Λ(H0) > 0, then for all initial data us ≥ 0, Θ[h,g](t, s, us) → 0, in C1(Ω),
as t − s → ∞. Moreover the convergence is exponential and uniform for
bounded sets of initial data us.

5. If Λ(h0) < 0, then there exists a unique bounded, complete, and nondegenerate
trajectory at ±∞ of (3.3), ϕ[h,g], which moreover satisfies that for all s and
any bounded set of nontrivial initial data us ≥ 0, bounded away from 0,

Θ[h,g](t, s, us) − ϕ[h,g](t) → 0 as t→ ∞.

That is, ϕ[h,g] describes the forward behavior of all solutions. Also, ϕ[h,g]

describes the pullback behavior of all nondegenerate solutions of (3.3), that is,
for each t, if s 	→ us ≥ 0 is bounded and nondegenerate, then

Θ[h,g](t, s, us) − ϕ[h,g](t) → 0 as s→ −∞.

Both limits above are taken in C1(Ω). Furthermore for all t ∈ R, we have

ω[h0,G0](x) ≤ ϕ[h,g](t, x) ≤ ω[H0,g0](x) in Ω.

6. If h, g are independent of t and are in L∞(Ω) with gL > 0 and Λ(h) < 0,
then ϕ[h,g](t, x) = ω[h,g](x) is the unique positive solution of (3.6) and for all
t > s and us

Θ[h,g](t, s, us) = Θ[h,g](t− s, us) → ω[h,g] in C1(Ω) as t− s→ ∞

uniformly for bounded sets of initial data us ≥ 0 bounded away from zero. In
particular, there exist m ≤ 1 ≤M such that

mω[h,g] ≤ Θ[h,g](t, s, us) ≤Mω[h,g],

for t− s large.
Moreover in statements 4, 5, and 6 above the convergence as t → ∞ is exponentially
fast (see [33]).

3.2. Existence of the pullback attractor and complete trajectories for
nonautonomous Lotka–Volterra systems. Our first purpose is to prove the ex-
istence of a nonautonomous pullback attractor for (3.1). To do this we will derive
suitable estimates on the solutions of (3.1). In doing this we will use the following
notation for the solutions of (3.3) with diffusion coefficients d1 and d2 and boundary
conditions B1 and B2, respectively,

ξ[λ,a](t, s) = Θ[λ,a](t, s, us), η[μ,d](t, s) = Θ[μ,d](t, s, vs),

where us ≥ 0 and vs ≥ 0 in Ω.
Theorem 3.4. Provided that aL, dL > 0, for any solution (u, v) of (3.1), with

initial data us ≥ 0, vs ≥ 0, the following lower and upper bounds hold:
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1. Competition, bL > 0, cL > 0:

ξ[λ−bη[μ,d],a] ≤ u ≤ ξ[λ,a], η[μ−cξ[λ,a],d] ≤ v ≤ η[μ,d].

2. Symbiosis, bM < 0, cM < 0: Assume that

(3.9) bLcL < aLdL.

Then,

ξ[λ−bη[μ,d],a] ≤ u, η[μ−cξ[λ,a],d] ≤ v.

Assume furthermore that d1 = d2 and define

γ = max{λM , μM}, M =
aL − cL
dL − bL

> 0, K =
aLdL − bLcL
dL − bL

> 0,

and choose ws such that ws ≥ max{us,
1
M vs}. Denote by Θ[γ,K](t, s, ws) the

solution of (3.3) with d = d1 and a certain boundary condition that depends
on B1 and B2 and that will be specified in the proof. Then, we have the upper
bounds

u ≤ Θ[γ,K](t, s, ws), v ≤MΘ[γ,K](t, s, ws).

3. Prey-predator, bL > 0, cM < 0:

ξ[λ−bη[μ−cξ[λ,a],d],a] ≤ u ≤ ξ[λ−bη[μ,d],a] ≤ ξ[λ,a], η[μ,d] ≤ v ≤ η[μ−cξ[λ,a],d].

Proof. 1. Assume that bL, cL > 0. If we write the equation for u as

ut − d1Δu = u(λ− bv) − au2,

then using Theorem 3.3 we get

u = ξ[λ−bv,a] ≤ ξ[λ,a],

and similarly,

v ≤ η[μ,d].

Hence, again by Theorem 3.3

u = ξ[λ−bv,a] ≥ ξ[λ−bη[μ,d],a].

2. Assume now that bM , cM < 0. To have the lower bounds it is enough to check
that in the equation for u one has

ξ[λ−bη[μ,d],a](λ−aξ[λ−bη[μ,d],a]−bη[μ,d]) ≤ ξ[λ−bη[μ,d],a](λ−aξ[λ−bη[μ,d],a]−bη[μ−cξ[λ,a],d]),

or equivalently,

η[μ−cξ[λ,a],d] ≥ η[μ,d],

which is true since c < 0. We treat the equation for v similarly.
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On the other hand, assuming that d1 = d2, define

u = Θ[γ,K](t, s, ws), v = MΘ[γ,K](t, s, ws)

with a suitable boundary condition, B, to be described below. Then using the equa-
tions we get that u and v are supersolutions if

−K ≥ −a− bM, −K ≥ −dM − c,

which is satisfied with the choice of M and K. To compare the solutions with the
uppersolutions on the boundary, if either u or v satisfies Dirchlet boundary conditions
we take B the boundary condition of the other component. If both u and v satisfy
Robin or Neumann (i.e., σi = 0 in the latter case) boundary conditions we define

σ = min{σ1, σ2},
and Bu = d1

∂u
∂	n + σ(x)u.

3. Assume finally that bL > 0, cM < 0, then

u ≤ ξ[λ,a] and η[μ,d] ≤ v.

Hence

v = η[μ−cu,d] ≤ η[μ−cξ[λ,a],d],

and then,

u = ξ[λ−bv,a] ≥ ξ[λ−bη[μ−cξ[λ,a],d],a].

With the upper bounds in Theorem 3.4 and using the results for scalar logistic
equations in Theorem 3.3, we get the following result.

Theorem 3.5. Under the assumptions in cases (1)–(3) of Theorem 3.4, all so-
lutions of (3.1) are global in time and moreover there exists a pullback attractor A(t)
of (3.1), which is bounded for all t ∈ R. More precisely, we have

lim sup
t−s→∞

u(t, s;us, vs) ≤M∞, lim sup
t−s→∞

v(t, s;us, vs) ≤ N∞,

uniformly in Ω and for bounded sets of intial data us, vs ≥ 0, for some constants
M∞ ≥ 0 and N∞ ≥ 0 that depend on the coefficients of (3.1).

In particular, there exists at least one complete bounded trajectory (u∗(t), v∗(t)),
t ∈ R, for (3.1). Furthermore, all complete bounded trajectories of (3.1) are uniformly
bounded by M∞ and N∞ and for all t ∈ R.

Proof. Thanks to the upper bounds in Theorem 3.4, the positive solutions of
(3.1) are always bounded by solutions of the logistic equation of the type (3.3). In
particular, all solutions of (3.1) are globally defined.

Now we use that

0 ≤ Θ[α,β](t, s; z) ≤ Θ[αM ,βL](t− s; z),

statements (4)–(6) in Theorem 3.3, and that 0 ≤ ω[αM ,βL](x) ≤ ΨM , with ω and Ψ(x)
as in Proposition 3.1, to get the estimates.

In particular, this implies the existence of bounded pullback absorbing sets for
(3.1) in C(Ω) × C(Ω).

Then following the proof of section 6 in Langa et al. [25], we can show the existence
of a bounded pullback absorbing set in C1(Ω)×C1(Ω), and so compact in C(Ω)×C(Ω).
Hence, we conclude using Theorem 2.3 as the existence of a bounded nonautonomous
pullback attractor A(t), and thus the existence of at least one bounded complete
trajectory (u∗(t), v∗(t)), t ∈ R, follows.
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3.3. Extinction for nonautonomous Lotka–Volterra systems. Note that
with the arguments above there are some cases, when statement 4 in Theorem 3.3 can
be used, in which one (or both) constants M∞ and N∞ are zero and we have then
extinction of one of the species. This implies, in turn, that the semitrivial (or the
trivial) solutions are stable in a forwards and pullback senses. More precisely, we have
the following result. Observe that these sufficient conditions are far from optimal but
qualitatively they describe the global stability of trivial or semitrivial solutions.

Proposition 3.6. With the notations in Theorems 3.4 and 3.5, we have
1. Competition, bL > 0, cL > 0. If

λM < Λ1
0, then M∞ = 0,

while if

μM < Λ2
0, then N∞ = 0.

2. Symbiosis, bM < 0, cM < 0, d1 = d2 and (3.9), that is bLcL < aLdL. If

γ < Λ1
0, then M∞ = 0,

while if

γ < Λ2
0, then N∞ = 0.

3. Prey-predator, bL > 0, cM < 0. If

λM < Λ1
0, then M∞ = 0,

and in this case, if

μM < Λ2
0, then M∞ = 0.

On the other hand, if

Λ1
0 < λM , and μM − cL

λM

aL
< Λ2

0, then N∞ = 0.

In all the cases, when M∞ = 0 the u component of the solutions of (3.1) extin-
guishes in pullback and forwards senses, while the v component of the solutions asymp-
totically follows the dynamics of the scalar logistic equation (3.3) with h(t, x) = μ(t, x)
and g(t, x) = d(t, x) as described in Theorem 3.3.

The case when N∞ = 0 is analogous.
Proof. In fact, in the case of competition we have 0 ≤ u ≤ ξ[λM ,aL] and 0 ≤

v ≤ η[μM ,dL]. Hence, from statement 4 in Theorem 3.3 and using (3.5), if Λ1(λM ) =
Λ1

0 − λM > 0, then M∞ = 0, while N∞ = 0 if Λ2(μM ) = Λ2
0 − μM > 0.

In the case of symbiosis, assuming d1 = d2, we have 0 ≤ u ≤ Θ[γ,K](t, s, ws),
0 ≤ v ≤ MΘ[γ,K](t, s, ws). Hence, if Λ1(γ) = Λ1

0 − γ > 0, then M∞ = 0, while
N∞ = 0 if Λ2(γ) = Λ2

0 − γ > 0.
Finally, in the case of prey-predator, we have 0 ≤ u ≤ ξ[λM ,aL], 0 ≤ v ≤

η[μM−cLξ[λM ,aL],dL]. Hence, if Λ1(λM ) = Λ1
0 − λM > 0, then M∞ = 0. In this

case, N∞ = 0 if Λ2(μM ) = Λ2
0 − μM > 0.

On the other hand, if Λ1
0 < λM , then for large values of t − s we have v ≤

η[μM−cL(ω[λM ,aL]+ε),dL], and then N∞ = 0 if Λ2(μM − cL
λM

aL
) = Λ2

0 −μM + cL
λM

aL
> 0.

The rest is immediate.
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As we are interested in the “permanence” problem for (3.1), we will consider in
what follows only the cases in which M∞ > 0 and N∞ > 0. In particular, note that for
sufficiently large values of λM > 0 and μM > 0 we can take, for the case of Dirichlet
or Neumann boundary conditions in either one of the components u or v,

M∞ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λM

aL
in the competition case,

γ

K
in the symbiosis case,

λM

aL
in the prey-predator case,

N∞ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μM

dL
in the competition case,

M
γ

K
in the symbiosis case,

μM − cL
λM

aL

dL
in the prey-predator case,

while for Robin boundary conditions we have

M∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λM − Λ1
0

(ϕ1)LaL
in the competition case,

γ − Λ1
0

(ϕ1)LK
in the symbiosis case,

λM − Λ1
0

(ϕ1)LaL
in the prey-predator case,

N∞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μM − Λ2
0

(ϕ2)LdL
in the competition case,

M
γ − Λ2

0

(ϕ2)LK
in the symbiosis case,

μM − cL
λM−Λ1

0

(ϕ1)LaL
− Λ2

0

(ϕ2)LdL
in the prey-predator case,

where ϕi denotes the positive eigenfunction associated to Λi
0 with ‖ϕi‖L∞(Ω) = 1.

Note that similar expressions can be given in the remaining five cases for the boundary
conditions, although their explicit form becomes more cumbersome.

In fact, in the next section we will impose conditions on the coefficients to ensure
that the pullback and forwards behavior of the solutions of (3.1), with nontrivial initial
data, is far from the semitrivial and the trivial solutions.

3.4. Permanence for nonautonomous Lotka–Volterra systems: Nonde-
generacy of solutions. Now, using the lower bounds in Theorem 3.4, we will give
sufficient conditions for the system (3.1) to be uniformly permanent in pullback and
forwards senses, as in section 2.2. For reasons that will become clear further below,
we are interested in obtaining such nondegeneracy in a uniform way with respect to
the coefficients λ, μ, a, b, c, d in the system. For this, recall the notations in (3.4) and
that we always take nonnegative nontrivial initial data us, vs.

Also note that in the results of this section we will use the quantities λI ≤ λS ,
μI ≤ μS , aI ≤ aS , bI ≤ bS , cI ≤ cS , and dI ≤ dS to control the asymptotic sizes of
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the coefficients λ, μ, a, b, c, d as t → ±∞. As all the results will be given in terms of
such quantities, the statements below show the robustness of the results with respect
to perturbations in the coefficients of the system.

Finally, we stress here once again that the results below imply the instability of
trivial and semitrivial solutions.

3.4.1. Competition.
Proposition 3.7 (forwards permanence—competitive case). Assume (3.2) and

bL, cL > 0. Then:
(i) If λI > Λ1(−bSω[μS ,dI ]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , μ(t, x) ≤ μS , b(t, x) ≤ bS, a(t, x) ≤ aS , and d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≥ t0, for any us, vs > 0, the solution for t > s ≥ t0 of
(3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t− s large enough.

(ii) If μI > Λ2(−cSω[λS,aI ]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≤ λS , μ(t, x) ≥ μI , a(t, x) ≥ aI > 0, d(t, x) ≤ dS , c(t, x) ≤ cS

for all x ∈ Ω and t ≥ t0, for any us, vs > 0, the solution for t > s ≥ t0 of
(3.1) satisfies ψ22(x) ≤ v(t, s, x;us, vs) for t− s large enough.

Hence, if

(3.10) λI > Λ1(−bSω[μS,dI ]) and μI > Λ2(−cSω[λS ,aI ]),

then there exist ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that for any choice of coefficients
that satisfy

λI ≤ λ(t, x) ≤ λS , μI ≤ μ(t, x) ≤ μS , 0 < aI ≤ a(t, x) ≤ aS ,

0 < bI ≤ b(t, x) ≤ bS, 0 < cI ≤ c(t, x) ≤ cS , 0 < dI ≤ d(t, x) ≤ dS ,

for all x ∈ Ω and for all t ≥ t0, and for all nontrivial us ≥ 0, vs ≥ 0 in a fixed
bounded set of C(Ω) bounded away from 0, the solution (u, v) of (3.1) for t > s ≥ t0
is nondegenerate at ∞ and for all t− s large enough,

u(t, s, x;us, vs) ≥ ψ11(x) and v(t, s, x;us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly forwards permanent.
Proof. Since λI > Λ1(−bSω[μS ,dI ]), by the continuity of Λ1(m) with respect to

m, there exists ε > 0 such that

λI > Λ1(−bS(ω[μS ,dI ] + ε)) or equivalently by (3.5) Λ1(λI − bS(ω[μS ,dI ] + ε)) < 0.

Using Theorems 3.3 and 3.4, we get, for t > s ≥ t0,

u(t, s, us, vs) ≥ ξ[λ−bη[μ,d],a](t, s, us) ≥ Θ[λI−bSη[μS,dI ],aS ](t− s, us).

Moreover, η[μS ,dI ](t, s, vs) → ω[μS ,dI ] in C1(Ω) and uniformly for vs in bounded sets
bounded away from zero, as t− s→ ∞, and so

(3.11) u(t, s, us, vs) ≥ Θ[λI−bS(ω[μS,dI ]+ε),aS ](t− s, us) → ω[λI−bS(ω[μS,dI ]+ε),aS ]

in C1(Ω) and uniformly for us in bounded sets bounded away from zero, as t−s→ ∞
by Theorem 3.3 and where we have used (3.10). Hence, the result follows for u.
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On the other hand, we have analogously for the v component, for t > s ≥ t0,

v(t, s, us, vs) ≥ η[μ−cξ[λ,a],d](t, s, vs) ≥ Θ[μI−cSξ[λS,aI ],dS](t− s, vs).

Now, from (3.10), ξ[λS ,aI ](t, s, us) → ω[λS ,aI ] in C1(Ω) and uniformly for us in bounded
sets bounded away from zero, as t− s→ ∞, and so

(3.12) v(t, s, us, vs) ≥ Θ[μI−cS(ω[λS,aI ]+ε),dS](t− s, vs) → ω[μI−cS(ω[λS,aI ]+ε),dS]

in C1(Ω) and uniformly for vs in bounded sets bounded away from zero, as t−s → ∞
by Theorem 3.3.

The same arguments as above, carried out in all pullback sense lead to the follow-
ing result. Note that, in particular, this proposition guarantees the uniform nondegen-
eracy at −∞ of complete nondegenerate trajectories with respect to the coefficients
in the system.

Proposition 3.8 (pullback permanence—competitive case). Assume (3.2) and
bL, cL > 0. Then:

(i) If λI > Λ1(−bSω[μS ,dI ]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , μ(t, x) ≤ μS , b(t, x) ≤ bS, a(t, x) ≤ aS , d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≤ t0 (for some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t− s large enough.
In particular, any complete trajectory of (3.1) that is nondegenerate at −∞
satisfies u(t, x) ≥ ψ11(x) for all x ∈ Ω and t ≤ t0.

(ii) If μI > Λ2(−cSω[λS,aI ]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≤ λS , μ(t, x) ≥ μI , a(t, x) ≥ aI > 0, d(t, x) ≤ dS , c(t, x) ≤ cS

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x;us, vs) for t− s large enough.
In particular, any complete trajectory of (3.1) that is nondegenerate at −∞
satisfies v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Hence, if

(3.13) λI > Λ1(−bSω[μS ,dI ]) and μI > Λ2(−cSω[λS ,aI ])

there exist functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x) ≤ λS , μI ≤ μ(t, x) ≤ μS , 0 < aI ≤ a(t, x) ≤ aS ,

0 < bI ≤ b(t, x) ≤ bS, 0 < cI ≤ c(t, x) ≤ cS , 0 < dI ≤ d(t, x) ≤ dS ,

for all x ∈ Ω and t ≤ t0 (for some t0 ∈ R), and for all nontrivial us ≥ 0, vs ≥ 0
in a fixed bounded set, B, of C(Ω) bounded away from 0, the set of solutions of (3.1)
{(u, v), s < t ≤ t0, (us, vs) ∈ B} is nondegenerate as s→ −∞ and for all t− s large
enough

u(t, s, x;us, vs) ≥ ψ11(x) and v(t, s, x;us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly pullback permanent and any bounded complete tra-
jectory that is nondegenerate at −∞ satisfies

u(t, x) ≥ ψ11(x) and v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.
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Proof. The first part of the statements follow from (3.11) and (3.12), with t−s→
∞ but now s < t ≤ t0.

For a complete solution, arguing as in Proposition 3.7 we get for any t0 ≥ t > s,

u(t) ≥ ξ[λ−bη[μ,d],a](t, s, u(s)) ≥ Θ[λI−bSη[μS,dI ],aS ](t− s, u(s)).

As v is nondegenerate at −∞, 5 in Theorem 3.3 implies η[μS ,dI ](t, s, v(s)) → ω[μS,dI ]

in C1(Ω) as s→ −∞. Thus, for sufficiently negative s,

(3.14) u(t) ≥ Θ[λI−bS(ω[μS,dI ]+ε),aS](t− s, u(s)) → ω[λI−bS(ω[μS,dI ]+ε),aS ]

in C1(Ω) as s→ −∞, because u is nondegenerate at −∞ and 5 in Theorem 3.3 again.
Hence the result follows for u.

On the other hand, we have analogously for the v component for any t0 ≥ t > s,

v(t) ≥ η[μ−cξ[λ,a],d](t, s, v(s)) ≥ Θ[μI−cSξ[λS,aI ],dS](t− s, v(s)).

Now, ξ[λS ,aI ](t, s, u(s)) → ω[λS ,aI ] in C1(Ω) as s → −∞, because u is nondegenerate
at −∞, and so, for sufficiently negative s,

(3.15) v(t) ≥ Θ[μI−cS(ω[λS,aI ]+ε),dS](t− s, v(s)) → ω[μI−cS(ω[λS,aI ]+ε),dS ]

in C1(Ω) as s→ −∞ by Theorem 3.3, because v is nondegenerate at −∞.
Results for the other cases can be proved analogously, as we now show.

3.4.2. Symbiosis. First for the case of symbiosis, we have the following result.
Note that as we make no use here of the upper bound in Theorem 3.4, we do not
assume below that d1 = d2.

Proposition 3.9 (forwards permanence—symbiotic case). Assume (3.2), bM ,
cM < 0, and (3.9), that is

bLcL < aLdL.

Then:
(i) If λI > Λ1(−bSω[μI ,dS]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , μ(t, x) ≥ μI , b(t, x) ≤ bS < 0, a(t, x) ≤ aS , d(t, x) ≤ dS

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t− s large enough.

(ii) If μI > Λ2(−cSω[λI ,aS]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≥ λI , μ(t, x) ≥ μI , a(t, x) ≤ aS , d(t, x) ≤ dS , c(t, x) ≤ cS < 0

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x;us, vs) for t− s large enough.

Hence, if

(3.16) λI > Λ1(−bSω[μI ,dS]) and μI > Λ2(−cSω[λI ,aS ]),

then there are functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x), μI ≤ μ(t, x), a(t, x) ≤ aS ,

b(t, x) ≤ bS < 0, c(t, x) ≤ cS < 0, d(t, x) ≤ dS
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x ∈ Ω and t ≥ t0 (some t0 ∈ R), and for all us > 0, vs > 0 in a fixed bounded set of
C(Ω) bounded away from 0, the solution (u, v) of (3.1) for t > s ≥ t0 is nondegenerate
at ∞, and for all t− s large enough

u(t, s;us, vs) ≥ ψ11(x) and v(t, s;us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly forwards permanent.
Proof. We proceed as in the Proposition 3.7 using now that, as t− s→ ∞,

u ≥ ξ[λ−bη[μ,d],a] ≥ ξ[λI−bSη[μI ,dS ],aS] → ω[λI−bSω[μI ,dS ],aS ]

and

v ≥ η[μ−cξ[λ,a],d] ≥ η[μI−cSξ[λI ,aS ],dS] → ω[μI−cSω[λI,aS ],dS].

On the other hand, for pullback permenence and for complete nondegenerate
solutions, we have the following proposition along the same lines as that above.

Proposition 3.10 (pullback permanence—symbiotic case). Assume (3.2), bM ,
cM < 0, and (3.9), that is

bLcL < aLdL.

Then
(i) If λI > Λ1(−bSω[μI ,dS]) there exists ψ11 ∈ int(C1) such that whenever

λ(t, x) ≥ λI , μ(t, x) ≥ μI , b(t, x) ≤ bS < 0, a(x, t) ≤ aS , d(t, x) ≤ dS .

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t− s large enough.
In particular, any complete trajectory of (3.1) that is nondegenerate at −∞
satisfies u(t, x) ≥ ψ11(x) for all x ∈ Ω and t ≤ t0.

(ii) If μI > Λ2(−cSω[λI ,aS]) there exists ψ22 ∈ int(C2) such that whenever

λ(t, x) ≥ λI , μ(t, x) ≥ μI , a(t, x) ≤ aS , d(t, x) ≤ dS , c(t, x) ≤ cS < 0,

x ∈ Ω and t ≤ t0 (some t0 ∈ R) for any us, vs > 0, the solution for s < t ≤ t0
of (3.1) satisfies ψ22(x) ≤ v(t, s, x;us, vs) for t− s large enough.
In particular, any complete trajectory of (3.1) that is nondegenerate at −∞
satisfies v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Hence, if

(3.17) λI > Λ1(−bSω[μI ,dS]) and μI > Λ2(−cSω[λI ,aS ]),

there exist ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x), μI ≤ μ(t, x), a(t, x) ≤ aS ,

b(t, x) ≤ bS < 0, c(t, x) ≤ cS < 0, d(t, x) ≤ dS ,

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), and for all nontrivial us ≥ 0, vs ≥ 0 in
a fixed bounded set, B, of C(Ω) bounded away from 0, the set of solutions of (3.1)
{(u, v), s < t ≤ t0, (us, vs) ∈ B} is nondegenerate as s→ −∞ and for all t− s large
enough

u(t, s, x;us, vs) ≥ ψ11(x) and v(t, s, x;us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly pullback permanent and any bounded complete tra-
jectory that is nondegenerate at −∞ satisfies

u(t, x) ≥ ψ11(x) and v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.
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3.4.3. Prey-predator. We also have for the prey-predator case the following
result.

Proposition 3.11 (forwards permanence—prey-predator case). Assume (3.2)
and bL > 0 and cM < 0. Then:

(i) If λI > Λ1(−bSω[μS−cIω[λS,aI ],dI ]), there exists ψ11 ∈ int(C1) such that when-
ever

λS ≥ λ(t, x) ≥ λI , μ(t, x) ≤ μS , aS ≥ a(t, x) ≥ aI > 0,
b(t, x) ≤ bS , c(t, x) ≥ cI , d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t− s large enough.

(ii) If μI > Λ2
0, there exists ψ22 ∈ int(C2) such that whenever

μ(t, x) ≥ μI , d(x, t) ≤ dS

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), for any us, vs > 0 the solution for
t > s ≥ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x;us, vs) for t− s large enough.

Hence, if

(3.18) λI > Λ1(−bSω[μS−cIω[λS,aI ],dI ]) and μI > Λ2
0,

there are functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x) ≤ λS , μI ≤ μ(t, x) ≤ μS , aS ≥ a(t, x) ≥ aI > 0,
0 < bI ≤ b(t, x) ≤ bS, cI ≤ c(t, x) ≤ cS < 0, dS ≥ d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≥ t0 (some t0 ∈ R), and for all us > 0, vs > 0 in a fixed
bounded set of C(Ω) bounded away from 0, the solution (u, v) of (3.1) for t > s ≥ t0
is nondegenerate at ∞ and for all t− s large enough

u(t, s, x;us, vs) ≥ ψ11(x) and v(t, s, x;us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly forwards permanent.
Proof. As before, we use now that as t− s→ ∞,

u ≥ ξ[λ−bη[μ−cξ[λ,a],d],a] ≥ ξ[λI−bSη[μS−cI ξ[λS,aI ],dI ],aI ] → ω[λI−bSη[μS−cI ω[λS,aI ],dI ],aI ]

and

v ≥ η[μ,d] ≥ η[μI ,dS] → ω[μI ,dS].

Proposition 3.12 (pullback permanence—prey-predator case). Assume (3.2)
and bL > 0 and cM < 0. Then:

(i) If λI > Λ1(−bSω[μS−cIω[λS,aI ],dI ]), there exists ψ11 ∈ int(C1) such that when-
ever

λS ≥ λ(t, x) ≥ λI , μ(t, x) ≤ μS , aS ≥ a(t, x) ≥ aI > 0,
b(t, x) ≤ bS , c(t, x) ≥ cI , d(t, x) ≥ dI > 0

for all x ∈ Ω and t ≤ t0 (some t ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ11(x) ≤ u(t, s, x;us, vs) for t− s large enough.
In particular, any complete trajectory of (3.1) that is nondegenerate at −∞
satisfies u(t, x) ≥ ψ11(x) for all x ∈ Ω and t ≤ t0.
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(ii) If μI > Λ2
0, there exists ψ22 ∈ int(C2) such that whenever

μ(t, x) ≥ μI , d(x, t) ≤ dS

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), for any us, vs > 0, the solution for
s < t ≤ t0 of (3.1) satisfies ψ22(x) ≤ v(t, s, x;us, vs) for t− s large enough.
In particular, any complete trajectory of (3.1) that is nondegenerate at −∞
satisfies v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Hence, if

(3.19) λI > Λ1(−bSω[μS−cIω[λS,aI ],dI ]) and μI > Λ2
0,

there exist functions ψ11 ∈ int(C1) and ψ22 ∈ int(C2) such that whenever

λI ≤ λ(t, x) ≤ λS , μI ≤ μ(t, x) ≤ μS , aS ≥ a(t, x) ≥ aI > 0,
0 < bI ≤ b(t, x) ≤ bS, cI ≤ c(t, x) ≤ cS < 0, dS ≥ d(t, x) ≥ dI > 0,

for all x ∈ Ω and t ≤ t0 (some t0 ∈ R), and for all nontrivial us ≥ 0, vs ≥ 0 in
a fixed bounded set, B, of C(Ω) bounded away from 0, the set of solutions of (3.1)
{(u, v), s < t ≤ t0, (us, vs) ∈ B} is nondegenerate as s→ −∞ and for all t− s large
enough

u(t, s, x;us, vs) ≥ ψ11(x) and v(t, s, x;us, vs) ≥ ψ22(x).

In particular, (3.1) is uniformly pullback permanent and any bounded complete tra-
jectory that is nondegenerate at −∞ satisfies

u(t, x) ≥ ψ11(x) and v(t, x) ≥ ψ22(x) for all x ∈ Ω and t ≤ t0.

Remark 3.13. Note that in order to apply the previous results one has to check
that the assumptions in Propositions 3.7–3.12 are meaningful. Indeed, conditions
(3.10), (3.16), and (3.18) must define nonempty sets of coefficients. Here we analyze
only Dirichlet or Neumann boundary conditions; Robin ones can be treated in a
similar way although the estimates are a little more involved.

In fact, (3.16) includes all coefficients such that

λI > Λ1
0, μI > Λ2

0

since in this case λI > Λ1
0 > Λ1(−bSω[μI ,dS ]) and μI > Λ2

0 then μI > Λ2(−cSω[λI ,aS ]);
see also [12].

However, in order to show that (3.10) defines a nonempty set we must impose
some conditions on b or c. If, for example, bS → 0, then Λ1(−bSω[μS ,dI ]) → Λ1

0. Also,
if cS → 0, then Λ2(−cSω[λS ,aI ]) → Λ2

0. Hence if bS or cS are small, the conditions in
(3.10) can be met; see also [27] and [29].

We analyze condition (3.18) for the prey-predator case in more detail. From
Proposition 3.1, in the case of Dirichlet or Neumann boundary conditions, we have
ω[h,g] ≤ hM/gL, and so

ω[λS ,aI ] ≤
λS

aI
and then ω[μS−cIω[λS,aI ],dI ] ≤

μS − cI
(

λS

aI

)
dI

,

and then using the monotonicity of Λ(m) with respect to m and (3.5), we get

Λ1(−bSω[μS−cIω[λS,aI ],dI ]) ≤ Λ1(−bS
(aIμS − cIλS)

aIdI
) = Λ1

0 + bS
(aIμS − cIλS)

aIdI
.
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Hence, if λI and μI satisfy

λI > Λ1
0 +

bSμS

dI
+

−bScI
aIdI

λS , μI > Λ2
0,

then (3.18) defines a nonempty set of parameters.
Observe that the first condition above is a restriction on the oscillation of λ(t, x)

as t→ ±∞.
In particular, if Λ1

0 + bSμS

dI
> 0, then a necessary condition is

aIdI + bScI > 0.

In such a case the conditions above can be met.
Now, for reasons that will be apparent in the following sections, we are interested

in some uniformity in the previous results with respect to the coefficients bI ≤ bS and
cI ≤ cS . More precisely, we are going to show that the functions ψ11(x) and ψ22(x) in
all the previous propositions can be taken independent of b(t, x) and c(t, x), provided
that one of the numbers bI ≤ bS or cI ≤ cS is sufficiently small. In fact we have the
following:

Theorem 3.14. (i) The competitive case: bL, cL > 0. Assume either
1. λI > Λ1

0, μI > Λ2(−cSω[λS ,aI ]), and bS is sufficiently small, or
2. λI > Λ1(−bSω[μS ,dI ]), μI > Λ2

0, and cS is sufficiently small, for t − s large
enough.

Then the functions ψ11(x) and ψ22(x) in Propositions 3.7 and 3.8 can be taken
also independent of bS and cS.

(ii) The symbiotic case: bM , cM < 0 and bLcL < aLdL. Assume either
1. λI > Λ1

0, μI > Λ2(−cSω[λI ,aS ]), or
2. λI > Λ1(−bSω[μI ,dS]), μI > Λ2

0.
Then the functions ψ11(x) and ψ22(x) in Propositions 3.9 and 3.10 can be taken

also independent of bI and cI .
(iii) The prey-predator case: bL > 0, cM < 0. Assume either
1. λI > Λ1

0, μI > Λ2
0, and bS is sufficiently small, or

2. λI > Λ1(−bSω[μS,dI ]), μI > Λ2
0, and |cI | is sufficiently small.

Then the functions ψ11(x) and ψ22(x) in Propositions 3.11 and 3.12 can be taken
also independent of bS and cI .

Proof. We analyze only the competitive case. By the proof of Proposition 3.7 and
Theorem 3.3, statement 6 we get

u(t, s, us, vs) ≥ Θ[λI−bSη[μS,dI ],aS ](t− s, us) ≥
≥ ω[λI−bS(ω[μS,dI ]+ε),aS ] ≥ mω[λI−bS(ω[μS,dI ]+ε),aS ].

It suffices to apply Lemma 3.2 as bS → 0 where m < 1.
On the other hand,

v(t, s, us, vs) ≥ Θ[μI−cS(ω[λS,aI ]+ε),dS ](t− s, vs) → ω[μI−cS(ω[λS,aI ]+ε),dS ],

and so taking ε small, the result follows.
The other cases can be studied in an analogous way by Propositions 3.9, 3.10,

3.11, and 3.12.

4. Exponential decay for nonautonomous linear systems. Once the re-
sults on permanence of the previous section have been established, we turn now our



2202 LANGA, ROBINSON, RODRÍGUEZ-BERNAL, AND SUÁREZ

attention to determining ranges of parameters such that there exist some special
asymptotically stable trajectories describing the asymptotic behavior of solutions of
(3.1), either forwards or in a pullback sense. For this we have to develop some tools
for linear systems.

Hence, in this section we give sufficient conditions for certain linear systems to
have exponential decay. The results are of a perturbative nature and are based upon
results in [33] for scalar equations.

4.1. Preliminary results for the scalar case. We start by recalling some
results for the following scalar equation:

(4.1)

⎧⎨⎩
ut − dΔu = c(t, x)u x ∈ Ω, t > s

Bu = 0, x ∈ ∂Ω, t > s
u(s) = us.

Assume that d > 0, c ∈ Cθ(R, Lp(Ω)), with 0 < θ ≤ 1 and some p > max(N/2, 1).
Then for any us ∈ X , where X = Lq(Ω) with 1 ≤ q < ∞, or X = C(Ω), (4.1) has
a unique solution given by u(t, s;us), which is a strong solution in Lr(Ω) for any
1 ≤ r < p. This solution can be used to define an order-preserving evolution operator
Tc in X via the definition Tc(t, s)us = u(t, s;us).

Moreover for each q and r with 1 ≤ q ≤ r ≤ ∞ and R0 > 0 there exist L0 =
L0(R0, r, q) > 0 and δ0 = δ(R0, r, q) > 0 such that the evolution operator Tc(t, s)
satisfies

(4.2) ‖Tc(t, s)u0‖Lr(Ω) ≤ L0
eδ0(t−s)

(t− s)
N
2 ( 1

q −
1
r )

‖u0‖Lq(Ω), t > s

for every c ∈ Cθ(R, Lp(Ω)), with 0 < θ ≤ 1 and some p > N/2, such that

‖c‖L∞(R,Lp(Ω)) ≤ R0.

Also, the evolution operator smooths the solutions. More precisely, for every
u0 ∈ Lq(Ω) and t > s, the map

(s,∞) 
 t 	−→ u(t, s;u0) := Tc(t, s)u0 ∈
{
Cν

B(Ω) if p > N/2,
C1,ν

B (Ω) if p > N,

is continuous for some ν > 0. Here

Cj,ν
B (Ω) =

{
Cj,ν

0 (Ω) for Dirichlet BCs,
Cj,ν(Ω) for Neumann or Robin BCs,

see, e.g., Rodŕıguez-Bernal [32].
The following proposition is taken from Lemma 4.1 in Robinson et al. [31] and

Lemma 2.1 in Rodŕıguez-Bernal [33]:
Proposition 4.1. Suppose that for some q with 1 ≤ q ≤ ∞ there exist M > 0

and β ∈ R such that

(4.3) ‖Tc(t, s)‖L(Lq(Ω)) ≤Meβ(t−s) for all t > s.

Then for any 1 ≤ r ≤ ∞ there exists a K ≥ 1 such that

(4.4) ‖Tc(t, s)‖L(Lr(Ω)) ≤ Keβ(t−s) for all t > s.

The constant K can be taken as a continuous function of β,M .
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Moreover, for each r with 1 ≤ r ≤ q ≤ ∞ and for any ε > 0, we have

(4.5) ‖Tc(t, s)‖L(Lq(Ω),Lr(Ω)) ≤M(β, ε)
e(β+ε)(t−s)

(t− s)δ
, t > s,

where δ = N
2

(
1
r − 1

q

)
,

(4.6) M(β, ε) = κ(β,M)

{ (
δ
e

)δ
ε−δ if 0 < ε < ε0 = δ

e

1 if ε ≥ ε0 = δ
e

and

κ(β,M) = L0ε
δ0 max{1,Mε−β}.

Note that the constants K and κ in the proposition also depend on q and r but
we will not pay attention to this dependence.

Our main argument, further below in the paper, will rely on results of the following
type. We start with an evolution operator Tc(t, s) that satisfies the estimate

‖Tc(t, s)‖L(Lq(Ω)) ≤M1 for t ≥ s and M1 > 0

for either s ≥ s0 or for t ≤ t0. Then, we add to c(t, x) a perturbation p(t, x) in the class
Cθ(R, Lp(Ω)), with 0 < θ ≤ 1 and some p > max(N/2, 1), and we want to guarantee
that the solutions of the new evolution operator Tc+p(t, s) decay exponentially. This
means that we want to get estimates of the type

(4.7) ‖Tc+p(t, s)‖L(Lq(Ω)) ≤M ′
1eβ′(t−s) for all t > s and some β′ < 0

and for either s ≥ s0 or for t ≤ t0. Note also that we can always assume, without loss
of generality, that the L∞(R, Lp(Ω)) norms of both c(t, x) and p(t, x) are bounded by
R0, so (4.2) holds for Tc(t, s) and Tc+p(t, s).

In this direction, the following important result is a particular case of Corollary 3.3
in Rodŕıguez-Bernal [33], and it provides sufficient conditions on p(t, x) to ensure that
(4.7) holds.

Proposition 4.2. Assume that

(4.8) ‖Tc(t, s)‖L(Lq(Ω)) ≤M1 for t ≥ s and M1 > 0

and for either s ≥ s0 or for t ≤ t0.
Let p ∈ Cθ(R, Lp(Ω)), for some 0 < θ ≤ 1 and p > max(N/2, 1), and assume

that for |t| sufficiently large, we have p(t, x) ≤ −ϕ(x) where

ϕ ∈ C1(Ω), ϕ ≥ 0, and ∇ϕ �= 0 at the points at which ϕ = 0.

Then

(4.9) ‖Tc+p(t, s)‖L(Lq(Ω)) ≤M ′
1eβ′(t−s) for all t > s and some β′ < 0

and for either s ≥ s0 or for t ≤ t0, with M ′
1 = M ′

1(M1, ϕ) and β′ = β′(M1, ϕ).
The constants M ′

1 = M ′
1(M1, ϕ) and β′ = β′(M1, ϕ) depend continuously on M1

and on ϕ ∈ C1(Ω).
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Note that the condition above holds, in particular if p(t, x) ≤ −δ < 0 (in which
case the constants M ′

1 and β′ can be chosen so that they depend continuously on δ),
or if ϕ ∈ C1

0 (Ω) is positive in Ω and ∂ϕ
∂	n < 0 on ∂Ω. The former is a common situation

in the case of Neumann or Robin boundary conditions and the latter in the case of
Dirichlet boundary conditions.

In order to apply the above result, we need to show first that (4.8) holds. The next
result gives conditions for an evolution operator to have bounds of the type (4.8); see
[34], [33]. For this recall the definitions of complete trajectory and of nondegeneracy
in section 2.2, which we apply here to solutions of (4.1). Hence, according to [33], we
have the following proposition.

Proposition 4.3. (i) If there exists a positive nondegenerate solution u(t, s;us)
of (4.1) defined for all t > s ≥ s0 such that for some M > 0 and some q with
1 ≤ q ≤ ∞

‖u(t, s;us)‖Lq(Ω) ≤M,

then

(4.10) 0 < M0 ≤ ‖Tc(t, s)‖L(Lq(Ω)) ≤M1 for t ≥ s ≥ s0,

where M0,M1 are independent of t and s and depend continuously on M and on
ϕ0 ∈ C1(Ω).

(ii) If there exists a positive, complete nondegenerate solution u(t) of (4.1) that is
bounded as t→ −∞, i.e.,

‖u(t)‖Lq(Ω) ≤M for t ≤ t0,

then

(4.11) 0 < M0 ≤ ‖Tc(t, s)‖L(Lq(Ω)) ≤M1 for s ≤ t ≤ t0,

where M0,M1 are independent of t and s and depend continuously on M and ϕ0 ∈
C1(Ω).

4.2. Perturbation and decay of linear systems. In this section we gener-
alize the perturbation result in the previous section to the case of a system of linear
equations. The main theorem in this section will be crucial in the analysis of Lotka–
Volterra models in the following sections.

Consider the linear coupled nonautonomous system

(4.12)

⎧⎪⎪⎨⎪⎪⎩
ut − d1Δu = a11(t, x)u + a12(t, x)v, x ∈ Ω, t > s
vt − d2Δv = a21(t, x)u + a22(t, x)v, x ∈ Ω, t > s
B1u = 0, B2v = 0
u(s) = us, v(s) = vs,

in Lq(Ω,R2) .= [Lq(Ω)]2. Then define

D = diag(d1, d2) and A =
(
a11 a12

a21 a22

)
and note that setting U =

(
u
v

)
, (4.12) can be written as

Ut −DΔU = A(t, x)U

with boundary conditions BU =
(B1u
B2v

)
= 0 on the boundary of Ω.
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If A ∈ Cθ(R, Lp(Ω,R4)), with 0 < θ ≤ 1, p > N/2, and p > q ≥ 1, the
existence of a unique solution U(t, s;Us) of (4.12), in Lq(Ω,R2), can be obtained
from Theorems 11.2, 11.3, and 11.4 in Amann [1]. Thus, the time-dependent operator
−DΔ−A(t, x) generates an evolution operator, TA(t, s), in Lq(Ω,R2) (Theorem 4.4.1
in Amann [2]) via the definition TA(t, s)Us = U(t, s;Us).

The following result, analogous to (4.2), can be proved along the lines of the scalar
arguments in Rodŕıguez-Bernal [33], [32], and Robinson et al. [31].

Proposition 4.4. For any 1 ≤ q ≤ r ≤ ∞, and R0 > 0 there exist L0 =
L0(R0, r, q) > 0 and δ0 = δ0(R0, r, q) > 0 such that the evolution operator TA(t, s)
satisfies

(4.13) ‖TA(t, s)Us‖Lr(Ω,R2) ≤ L0
eδ0(t−s)

(t− s)
N
2 ( 1

q −
1
r )

‖Us‖Lq(Ω,R2),

for every ‖A‖L∞(R,Lp(Ω,R4)) ≤ R0. In particular, TA(t, s) extends to an evolution
operator in Lq(Ω,R2) for every 1 ≤ q <∞.

Furthermore, the results of Proposition 4.1 for the scalar case remain true for
system (4.12).

Along the same lines as for scalar equations, we consider the linear uncoupled
system

(4.14)

⎧⎪⎪⎨⎪⎪⎩
ut − d1Δu = q11(t, x)u, x ∈ Ω, t > s
vt − d2Δv = q22(t, x)v, x ∈ Ω, t > s
B1u = 0, B2v = 0
u(s) = us, v(s) = vs.

Observe that with the notations above and setting

Q = diag(q11, q22),

then the evolution operator TQ(t, s) is well defined in Lq(Ω,R2), 1 ≤ q <∞.
Now we assume that each separate equation in (4.14) satisfies

‖Tqii(t, s)‖L(Lq(Ω)) ≤M1, t > s,

with M1 independent of t and s and for either t ≤ t0 or s ≥ s0. Therefore the
evolution operator TQ(t, s) satisfies (4.8).

Our goal is to give conditions on the coupling perturbations such that the solutions
of the perturbed system⎧⎪⎪⎨⎪⎪⎩

ut − d1Δu = q11(t, x)u+ p11(t, x)u+ p12(t, x)v, x ∈ Ω, t > s
vt − d2Δv = q22(t, x)v + p21(t, x)u + p22(t, x)v, x ∈ Ω, t > s
B1u = 0, B2v = 0
u(s) = us, v(s) = vs,

decay exponentially. Note that the perturbed system can be written as

(4.15) Ut −DΔU = Q(t, x)U + P (t, x)U

with

Q = diag(q11, q22), P =
(
p11 p12

p21 p22

)
, and U =

(
u

v

)
,

with Q,P ∈ Cθ(R, Lp(Ω,R4)), with 0 < θ ≤ 1, p > max(N/2, 1).
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Hence our goal is to obtain an estimate of the type

(4.16) ‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤M ′
1eβ′(t−s) for all t > s and some β′ < 0

and for either s ≥ s0 or for t ≤ t0.
Note that again we will assume, without loss of generality, that all the evolution

operators considered satisfy (4.13) with the same constants L0 and δ0.
In what follows we will make use of the following singular Gronwall lemma (see

Henry [16]):
Lemma 4.5 (a singular Gronwall lemma). Assume that a ∈ L∞(τ0,∞) with

τ0 ≥ −∞ and that z(t) ≥ 0 is a locally bounded function that for t ≥ s > τ0 satisfies

(4.17) z(t) ≤ A+
∫ t

s

a(τ)
(t− τ)δ

z(τ) dτ

with δ < 1. Then we have for t ≥ s > τ0

0 ≤ z(t) ≤ A(δ)eγ(t−s)

with γ = γ(a, s, δ) = (‖a‖L∞(s,∞)Γ(1 − δ))1/(1−δ) and A(δ) depends only on the con-
stants A and δ but not on the function a(·) or on s, γ, or τ0.

Our next result states that if the diagonal perturbing terms pii(t, x) are sufficiently
strong and the coupling terms pij(t, x), i �= j, are “small” at ±∞, then (4.16) is
achieved.

Theorem 4.6. With the notations in (4.15), assume that the scalar evolution
operators Tqii(t, s) satisfy

(4.18) ‖Tqii(t, s)‖L(Lq(Ω)) ≤M1, t > s,

with M1 independent of t and s and for either t ≤ t0 or s ≥ s0.
Assume also that pii(t, x) satisfies pii(t, x) ≤ −ϕii(x) with ϕii(x) as in Proposi-

tion 4.2.
Then there exists a ρ = ρ(M1, ϕ11, ϕ22) > 0 such that if

(4.19) lim sup
|t|→∞

‖p12(t)‖Lp(Ω) lim sup
|t|→∞

‖p21(t)‖Lp(Ω) ≤ ρ2,

then

(4.20) ‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤M ′′
1 eβ′′(t−s) for all t > s and some β′′ < 0

and for either s ≥ s0 or for t ≤ t0, where M ′′
1 = M ′′

1 (M1, ϕ11, ϕ22) and β′′ =
β′′(M1, ϕ11, ϕ22).

The constants ρ, M ′′
1 , and β′′ depend continuously on M1 and ϕ11, ϕ22 as in

Proposition 4.2.
Proof. Note that, using Proposition 4.4, we just need to prove the result for some

suitably chosen 1 ≤ q <∞. We proceed in several steps.
Step 1. If we define

P1 =
(
p11 0
0 p22

)
,

then Proposition 4.2 applied to each separate equation gives the estimate

(4.21) ‖TQ+P1(t, s)‖L(Lq(Ω,R2)) ≤M ′
1eβ′(t−s) for all t > s and some β′ < 0
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and for either s ≥ s0 or for t ≤ t0, with M ′
1 = M ′

1(M1, ϕ11, ϕ22) and β′ = β′(M1,
ϕ11, ϕ22).

Step 2. We will show that there exists a ρ = ρ(M ′
1, β

′), which depends continu-
ously on M ′

1, β
′, such that if

‖p12‖L∞(R,Lp(Ω)) ≤ ρ and ‖p21‖L∞(R,Lp(Ω)) ≤ ρ,

then

(4.22) ‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤M ′′
1 eβ′′(t−s) for all t > s and some β′′ < 0

and for either s ≥ s0 or for t ≤ t0, with

P = P1 + P2, P2 =
(

0 p12

p21 0

)
,

where M ′′
1 = M ′′

1 (M ′
1, β

′, ρ) and β′′ = β′′(M ′
1, β

′, ρ), depend continuously on M ′
1, β

′, ρ.
In fact, we have, by the variation of constants formula, that for every U0 ∈

Lq(Ω,R2) the solution U(t, s;U0) = TQ+P (t, s)U0 of (4.15) satisfies for t ≥ s,

U(t, s;U0) = TQ+P1(t, s)U0 +
∫ t

s

TQ+P1(t, τ)P2(τ)U(τ, s;U0) dτ.

Now we choose q such that p ≥ q′, so that 1/p+ 1/q ≤ 1. In what follows we will
apply (4.5) with 1

r = 1
p + 1

q , and so with δ = N/2p. With this choice, we have (4.21)
and from (4.5)

‖TQ+P1(t, s)‖L(Lr(Ω,R2),Lq(Ω,R2)) ≤M(β′, ε)
e(β′+ε)(t−s)

(t− s)
N
2p

,

where M(β′, ε) is as in (4.6).
Since P2(τ) ∈ Lp(Ω,R2) and U(τ, s;U0) ∈ Lq(Ω,R2), then the term P2(τ)U(τ, s;

U0) can be estimated, using Hölder’s inequality, in Lr(Ω,R2) with 1
r = 1

p + 1
q . Thus,

‖U(t, s;U0)‖Lq(Ω,R2) ≤M ′
1e(β′+ε)(t−s)‖U0‖Lq(Ω,R2)

+M(β′, ε)
∫ t

s

e(β′+ε)(t−τ)

(t− τ)
N
2p

‖P2(τ)‖Lp(Ω,R2)‖U(τ, s;U0)‖Lq(Ω,R2) dτ.

Then, multiplying by e−(β′+ε)(t−s), and setting A = M ′
1‖U0‖Lq(Ω,R2),

z(t) = e−(β′+ε)(t−s)‖U(t, s;U0)‖Lq(Ω,R2), and a(τ) = M(β′, ε)‖P2(τ)‖Lp(Ω,R2)

we get, for all t ≥ s,

z(t) ≤ A+
∫ t

s

a(τ)

(τ − s)
N
2p

z(τ) dτ.

We can apply the singular Gronwall lemma above with δ = N
2p < 1, and we get

(4.23) ‖U(t, s;U0)‖Lq(Ω,R2) ≤M ′′
1 e(β′+μ(ε))(t−s)‖U0‖Lq(Ω,R2), t ≥ s,
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where

μ(ε) = ε+
(
M(β′, ε)Γ(1 − δ)‖P2‖L∞((s,∞),Lp(Ω,R2))

) 1
1−δ .

Recalling (4.6), we get that

μ(ε) =

⎧⎨⎩ ε + ε
−δ
1−δA0‖P2‖

1
1−δ

L∞((s,∞),Lp(Ω,R2)) if 0 < ε < ε0 = δ
e

ε +A1‖P2‖
1

1−δ

L∞((s,∞),Lp(Ω,R2)) if ε ≥ ε0,

where

A1 =
(
L0eδ0 max{1,M ′

1e−β′}Γ(1 − δ)
)1/(1−δ)

, A0 = A1

(
δ

e

)δ/(1−δ)

,

and L0 and δ0 are the constants in (4.2).
Thus μ(0) = μ(∞) = ∞. But the function

h(ε) = ε+ ε
−δ
1−δA0‖P2‖

1
1−δ

L∞((s,∞),Lp(Ω,R2))

has a unique minimum at

ε1 =
(
A0

δ

1 − δ

)1−δ

‖P2‖L∞((s,∞),Lp(Ω,R2)),

and

h(ε1) =
1
δδ

(
A0

1 − δ

)1−δ

‖P2‖L∞((s,∞),Lp(Ω,R2)).

Therefore, comparing ε0 and ε1, and minimizing μ(ε) leads to

‖U(t, s;U0)‖Lq(Ω,R2) ≤M ′′
1 eβ′′(t−s)‖U0‖Lq(Ω,R2), t ≥ s

with

β′′ = β′ + min
{ε>0}

μ(ε)

= β′ +

⎧⎨⎩
c0‖P2‖L∞((s,∞),Lp(Ω,R2)), if ‖P2‖L∞((s,∞),Lp(Ω,R2)) ≤ s∗,

c1 + c2‖P2‖
1

1−δ

L∞((s,∞),Lp(Ω,R2)), if ‖P2‖L∞((s,∞),Lp(Ω,R2)) ≥ s∗,

where

c0 =
1
δδ

(
A0

1 − δ

)1−δ

, c1 =
δ

e
, c2 = A1, s∗ =

δ

e

(
1 − δ

A0δ

)1−δ

.

Thus, it is then clear that (4.22) follows, i.e., β′′ < 0, provided that

‖P2‖L∞((s,∞),Lp(Ω,R2)) < min
{
s∗,

−β′

c0

}
,

which reads

(4.24) ‖P2‖L∞((s,∞),Lp(Ω,R2)) < ρ := δ

(
1 − δ

δA0

)1−δ

min
{
−β′,

1
e

}
.
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Step 3. Now we show that the result in Step 2 above can be obtained only in
terms of lim sup|t|→∞ ‖P2(t)‖Lp(Ω,R2).

In fact, note that from (4.24), if we take s ≥ s0 sufficiently large, the conclusion
with lim supt→∞ ‖P2(t)‖Lp(Ω,R2) is clear.

On the other hand, observe that we can set P2 = 0 for t ≥ t0 and we still
have (4.23) for s ≤ t ≤ t0. Taking then t0 very negative, (4.24) gives the result for
lim supt→−∞ ‖P2(t)‖Lp(Ω,R2).

In particular, (4.22) follows, provided that

(4.25) lim sup
|t|→∞

‖P2(t)‖Lp(Ω,R2) < ρ,

with ρ as in (4.24).
Step 4. The change of variables

U =
(
u
v

)
→ V =

(
αu
βv

)
with α, β > 0, transforms the system (4.15) into

Vt −DΔV = Q(t, x)V + P̃ (t, x)V

with

D = diag(d1, d2), Q = diag(q11, q22), P̃ =

⎛⎜⎝ p11
α

β
p12

β

α
p21 p22

⎞⎟⎠ .

Hence, we can apply Step 3 provided

α

β
lim sup
|t|→∞

‖p12(t)‖Lp(Ω) ≤ ρ and
β

α
lim sup
|t|→∞

‖p21(t)‖Lp(Ω) ≤ ρ,

with ρ > 0 as in (4.24). We can choose α, β such that the above inequalities are
satisfied if

lim sup
|t|→∞

‖p12(t)‖Lp(Ω) lim sup
|t|→∞

‖p21(t)‖Lp(Ω) ≤ ρ2

with ρ > 0 as in (4.24).
Remark 4.7. Note that (4.24) gives a quantitative threshold for the size of the

perturbation. In fact, from (4.24) and the expression of A0, it can be deduced that

ρ = ρ(M ′
1, β

′) =
eδ(1 − δ)1−δ

Γ(1 − δ)
min{−β′, 1

e}
L0eδ0 max{1,M ′

1e−β′} ,

where M ′
1, β′ are from Step 1.

Observe that Step 4 above is the only place where we used the fact that the
system has only two components.

5. Attracting trajectories for general nonautonomous nonlinear sys-
tems. In this section we sketch out our approach to the existence of asymptotically
stable complete trajectories for Lotka–Volterra systems. The key point is to write the
equation satisfied by the difference of two solutions as a perturbation of an associated
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linear system. Using then the permanence results in section 3, we can apply Theorem
4.6 to conclude that the difference of two solutions converges to zero as t → ∞. A
similar convergence result as the initial time s → −∞ will imply the uniqueness of
complete nondegenerate solutions, which moreover describes the pullback behavior of
the system.

First we treat the case of general nonautonomous nonlinear systems, before spe-
cializing to Lotka–Volterra models. Consider the general nonautonomous nonlinear
system

(5.1)

⎧⎪⎪⎨⎪⎪⎩
ut − d1Δu = uf(t, x, u, v) x ∈ Ω, t > s
vt − d2Δv = vg(t, x, u, v) x ∈ Ω, t > s
B1u = 0, B2v = 0 x ∈ ∂Ω, t > s
u(s) = us, v(s) = vs.

We now sketch our strategy for analyzing the asymptotic behavior of solutions
to (5.1). Consider two different pairs of nonnegative initial conditions (u1

s, v
1
s) and

(u2
s, v

2
s) and consider the corresponding solutions of (5.1), U1 =

(
u1

v1

)
and U2 =

(
u2

v2

)
,

respectively. Write y = u2 − u1 and z = v2 − v1. Then, (y, z) satisfies

(5.2)

⎧⎪⎪⎨⎪⎪⎩
yt − d1Δy = q11(t, x)y + p11(t, x)y + p12(t, x)z x ∈ Ω, t > s
zt − d2Δz = q22(t, x)z + p21(t, x)y + p22(t, x)z x ∈ Ω, t > s
B1y = 0, B2z = 0 x ∈ ∂Ω, t > s
y(s) = ys, z(s) = zs,

with ys = u2
s − u1

s, zs = v2
s − v1

s , and

q11(t, x) = f(t, x, u2, v2), q22(t, x) = g(t, x, u2, v2)

p11(t, x) = u1
f(t, x, u2, v1) − f(t, x, u1, v1)

u2 − u1
,

p12(t, x) = u1
f(t, x, u2, v2) − f(t, x, u2, v1)

v2 − v1
,

p21(t, x) = v1
g(t, x, u2, v1) − g(t, x, u1, v1)

u2 − u1
,

p22(t, x) = v1
g(t, x, u2, v2) − g(t, x, u2, v1)

v2 − v1
.

Most of the analysis that follows in the next section will be based on proving
that the following results can be applied. The first one gives sufficient conditions to
guarantee that two solutions have the same forwards asymptotic behavior, while the
second gives a criterion to prove the coincidence of two complete trajectories and also
describes the pullback behavior of solutions.

Theorem 5.1 (forwards behavior). Assume that both solutions of (5.1), U1 =(
u1

v1

)
and U2 =

(
u2

v2

)
, are globally defined and bounded in L∞(Ω,R2) for t > s > t0.

Moreover, suppose that u1, v1 are positive in Ω and U2(t) is positive, nondegenerate
for t > t0 and for some p > max(N/2, 1) and 0 < θ ≤ 1, the coefficients in (5.2)
satisfy pij , qii ∈ Cθ(R, Lp(Ω)) for i, j = 1, 2 and pii(t, x) ≤ −ϕii(x), for t > t0, with
ϕii(x) as in Proposition 4.2.

Then there exists a ρ > 0 such that if

(5.3) lim sup
t→∞

‖p12(t)‖Lp(Ω) lim sup
t→∞

‖p21(t)‖Lp(Ω) ≤ ρ2,
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both solutions have the same forwards asymptotic behavior, i.e.,

U1(t) − U2(t) → 0 exponentially in C1
B1

(Ω) × C1
B2

(Ω) as t→ ∞.

In particular, U1(t) is also nondegenerate at +∞.
Proof. Clearly, (5.2) can be written as

Wt −DΔW = QW + PW,

where

(5.4) D = diag(d1, d2), Q = diag(q11, q22), P =
(
p11 p12

p21 p22

)
, W =

(
y
z

)
.

Since U2 =
(
u2

v2

)
is a positive, bounded, and nondegenerate solution, for t > s > t0, of

the diagonal system

Wt −DΔW = QW,

it follows from Propositions 4.3 and 4.4 that for any 1 ≤ q <∞,

(5.5) ‖TQ(t, s)‖L(Lq(Ω,R2)) ≤M1, t > s > t0,

with M1 independent of t and s, t > s > t0.
Then, we apply Theorem 4.6 to obtain that there exists ρ > 0 such that if (5.3)

holds, then

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤M ′′
1 eβ′′(t−s) for all t > s > t0 and some β′′ < 0.

Thus, from Proposition 4.4 (see also Proposition 4.1), we have, writing Ws =
(ys, zs) and for t > s > t0,

(5.6) ‖W (t, s;Ws)‖L∞(Ω,R2) ≤M2e
β′′(t−s)‖Ws‖L∞(Ω,R2) → 0, t→ ∞.

The uniform forwards convergence of trajectories follows. Standard parabolic regu-
larization implies the C1

B1
(Ω) × C1

B2
(Ω) convergence.

In the following result we use similar arguments to prove the coincidence of com-
plete nondegenerate trajectories, and show that such a trajectory, when it exists,
attracts (in the pullback sense) all bounded positive trajectories. In particular, the
following results guarantee the uniqueness of complete nondegenerate solutions.

Theorem 5.2 (coincidence of complete trajectories and pullback behavior). As-
sume that U1 =

(
u1

v1

)
is a complete trajectory that is bounded in L∞(Ω,R2) at −∞,

and nondegenerate for t ≤ t0. Suppose further that for some p > max(N/2, 1) and
0 < θ ≤ 1, the coefficients in (5.2) satisfy pij , qii ∈ Cθ(R, Lp(Ω)) for i, j = 1, 2 and
pii(t, x) ≤ −ϕii(x), for t ≤ t0, with ϕii(x) as in Proposition 4.2.

Then there exists a ρ > 0 such that if

(5.7) lim sup
t→−∞

‖p12(t)‖Lp(Ω) lim sup
t→−∞

‖p21(t)‖Lp(Ω) ≤ ρ2,
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then
(i) U1(t) is the unique complete trajectory that is bounded in L∞(Ω,R2) at −∞,

and
(ii) if U2(s) is a family of positive initial data which is bounded in L∞(Ω,R2) as

s→ −∞, then U1(·) pullback attracts S(t, s)U2(s), i.e., for any t ∈ R

S(t, s)U2(s) − U1(t) → 0 in C1
B1

(Ω) × C1
B2

(Ω) as s→ −∞.
Proof.
(i) Let U2(t) be a complete trajectory bounded in L∞(Ω,R2) at −∞. We write

(5.2) as

Wt −DΔW = QW + PW, W (s) = Ws = U2(s) − U1(s),

where Q, P , and W are defined as in (5.4). Since U1 = (u1, v1) is a complete,
positive, bounded, and nondegenerate solution of the diagonal system

Wt −DΔW = QW,

it follows from Proposition 4.3 that for any 1 ≤ q < ∞, and sufficiently
negative t0,

(5.8) ‖TQ(t, s)‖L(Lq(Ω,R2)) ≤M1, s < t ≤ t0,

with M1 independent of t and s.
Then, we apply Theorem 4.6 to obtain that there exists ρ > 0 such that if
(5.7) holds, then

‖TQ+P (t, s)‖L(Lq(Ω,R2)) ≤M ′′
1 eβ′′(t−s) for all s < t ≤ t0 and some β′′ < 0.

Thus,

(5.9)
‖U1(t)−U2(t)‖Lq(Ω,R2) = ‖W (t, s;Ws)‖Lq(Ω,R2) ≤M ′′

1 eβ′′(t−s)‖Ws‖Lq(Ω,R2).

The right-hand side tends to zero as s→ −∞ since both complete trajectories
are bounded, and the result follows.

(ii) Proceeding as above, we obtain

‖U1(t) − S(t, s)U2(s)‖Lq(Ω,R2) ≤M ′′
1 eβ′′(t−s)‖U1(s) − U2(s)‖Lq(Ω,R2)

for s < t ≤ t0 and some β′′ < 0.
Thus, from Proposition 4.4 (see also Proposition 4.1), we get for s < t ≤ t0,

‖U1(t) − S(t, s)U2(s)‖L∞(Ω,R2) ≤M2eβ′′(t−s)‖U1(s) − U2(s)‖Lq(Ω,R2) → 0

as s → −∞. Standard parabolic regularization implies the convergence in
C1

B1
(Ω) × C1

B2
(Ω).

Now for every τ ≥ t0, using the continuity of the nonlinear evolution process,
we get, as s→ −∞,

U1(τ, s) = S(τ, t)U1(t, s) → S(τ, t)U2(t).
The theorems above may perhaps appear more general than they really are. To

verify the assumptions involved one must restrict the nonlinearities of the system and
carefully choose the classes of solutions being considered. For example, the conditions
pii(t, x) ≤ −ϕii(x) and the smallness conditions on pij(t, x), i �= j depend on the
particular solutions considered.

Nevertheless, in the next section we will show that the assumptions required can
be verified for our example of a general nonautonomous Lotka–Volterra system.
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6. Attracting trajectories for nonautonomous Lotka–Volterra systems.
As (5.1) is far too general to apply Theorems 5.1 and 5.2 in a straightforward manner,
in this section we apply these results to the solutions of (3.1). Note that we handle
the three cases, competition, symbiosis, and prey-predator, in a unified way.

Then, for the difference of two solutions the coefficients in (5.2) are given by
(6.1)
q11(t, x) = λ(t, x) − a(t, x)u2 − b(t, x)v2, q22(t, x) = μ(t, x) − c(t, x)u2 − d(t, x)v2,

p11(t, x) = −a(t, x)u1, p12(t, x) = −b(t, x)u1,

p21(t, x) = −c(t, x)v1, p22(t, x) = −d(t, x)v1.

Hence, to apply Theorems 5.1 or 5.2, since aL, dL > 0 and u1, v1 ≥ 0, in order to
find positive functions ϕii(x) such that pii(t, x) ≤ −ϕii(x), i = 1, 2 we need positive
functions ψii(x) such that ψ11(x) ≤ u1(t, x) and ψ22(x) ≤ v1(t, x), that is, we must
consider nondegenerate solutions. The results in section 3.4 guarantee then that all
solutions are nondegenerate.

On the other hand we must show that the product of the coupling terms

p12(t, x)p21(t, x)

is small at ±∞. Having obtained bounds on u1, v1 this will be achieved by a smallness
condition on the coefficients b(t, x) or c(t, x).

But note that the nondegeneracy of solutions above depends on the functions
b(t, x) and c(t, x) themselves. Therefore, we will use the results in section 3.4 which
guarantee that solutions of (3.1) are nondegenerate for all sufficiently small “coupling”
coefficients b(t, x) or c(t, x) and that the functions ψii(x), i = 1, 2 do not converge to
zero as b or c vanish.

We first start with the forwards behavior in Theorem 5.1. Then we can prove the
following theorem.

Theorem 6.1. There exists ρ0(M∞, N∞) > 0, where M∞ and N∞ are given in
Theorem 3.5, such that if

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0(M∞, N∞),

and for some t0 the coefficients of (3.1) satisfy for t ≥ t0 the assumptions of Theo-
rem 3.14, then for any bounded set of positive initial data bounded away from zero,
all solutions of (3.1) that start at a sufficiently large s > t0 have the same asymptotic
behavior as t→ ∞.

In particular, all complete positive trajectories in the pullback attractor have the
same asymptotic behavior as t→ ∞.

Proof. Note that Theorem 3.14 implies that all forward solutions of (3.1) that
start at s ≥ t0 are uniformly nondegenerate with respect to a bounded set of initial
data us > 0, vs > 0, bounded away from zero, and the coefficients. In particular,
from Propositions 4.2 and 4.4 the constant M1 in (5.5) can be taken independent of
such us > 0, vs > 0 and the coefficients.

Moreover, for such initial data and t > s ≥ t0, we have in (6.1)

p11(t, x) = −a(t, x)u1 ≤ −aLψ11(x) = −ϕ11(x),

p22(t, x) = −d(t, x)v1 ≤ −dLψ22(x) = −ϕ22(x)

with ψ11(x) and ψ22(x) independent us > 0, vs > 0, and of the coefficients. In
particular ϕ11(x) and ϕ22(x) satisfy the assumptions in Proposition 4.2.
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Hence the threshold value ρ > 0 in Theorem 5.1 is also uniform for us > 0, vs > 0,
and of the coefficients as in Theorem 3.14.

Now we have in (6.1) p12(t, x) = −b(t, x)u1, p21(t, x) = −c(t, x)v1, and hence
(5.3) is satisfied if

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ2(p,Ω,M∞, N∞) = ρ0,

where M∞ and N∞ are given in Theorem 3.5.
Therefore, from Theorem 5.1, all solutions have the same forwards

behavior.
Our next result proves that if there is a complete trajectory that is nondegenerate

at −∞, then it must be unique and be pullback attracting, as in Theorem 5.2.
Theorem 6.2. Assume that there exists a complete, bounded solution of (3.1)

that is nondegenerate at −∞, U∗(t), t ∈ R.
Then there exists ρ0(M∞, N∞) > 0, where M∞ and N∞ are given in Theorem 3.5,

such that if

lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ0(M∞, N∞),

and for some t0 the coefficients of (3.1) satisfy for t ≤ t0 the assumptions of Theorem
3.14, then U∗(t) is the unique bounded complete solution of (3.1) that is nondegenerate
at −∞. Moreover, for every t ∈ R, U∗(t) pullback attracts solutions U1(t, s) such that
U1(s) are positive and bounded as s→ −∞.

If, in addition,

lim sup
t→∞

‖b‖L∞(Ω) lim sup
t→∞

‖c‖L∞(Ω) < ρ0(M∞, N∞),

and for some t1 the coefficients of (3.1) satisfy for t ≥ t1 the assumptions of Theo-
rem 3.14, then for any s ∈ R and for any positive solution U(t, s) of (3.1) we have

U(t, s) − U∗(t) → 0 as t→ ∞.

Proof. Assume there exists a complete, bounded nondegenerate solution at −∞.
Then Theorem 3.14 implies that all bounded nondegenerate solutions at −∞ are
uniformly nondegenerate with respect to the coefficients. In particular, from Proposi-
tions 4.2 and 4.4 the constant M1 in (5.5) can be taken independent of the complete
nondegenerate solution under consideration and of the coefficients. Moreover, we have
in (6.1)

p11(t, x) = −a(t, x)u1 ≤ −aLψ11(x) = −ϕ11(x),
p22(t, x) = −d(t, x)v1 ≤ −dLψ22(x) = −ϕ22(x)

with ψ11(x) and ψ22(x) independent of the complete nondegenerate solution and of the
coefficients. In particular ϕ11(x), ϕ22(x) satisfy the assumptions in Proposition 4.2.

Hence the threshold value ρ > 0 in Theorem 5.2 is also independent of the com-
plete nondegenerate solution and of the coefficients.

Now we have in (6.1) p12(t, x) = −b(t, x)u1, p21(t, x) = −c(t, x)v1, and hence
(5.7) is satisfied if

lim sup
t→−∞

‖b‖L∞(Ω) lim sup
t→−∞

‖c‖L∞(Ω) < ρ2(p,Ω,M∞, N∞) = ρ0.

Therefore, from Theorem 5.2, there exists at most a complete nondegenerate solution
at −∞.
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To show that U∗(t) is pullback attracting, observe that for sufficiently negative
t0 we can proceed as in the proof of Theorem 5.2 to conclude that U∗(t) pullback
attracts solutions U1(t, s) such that U1(s) is positive and bounded as s→ −∞.

The rest follows from Theorem 6.1.

7. Conclusions. We have obtained some results on permanence in nonauto-
nomous Lotka–Volterra models without the assumption of any kind of periodicity. In
particular we have found conditions under which there exists at least one complete
trajectory, and for which all trajectories converge together as t → +∞. The key
argument is a perturbation result for an associated linear system satisfied by the
difference between two solutions, and using this we have been able to treat all the
different classical cases – competition, symbiosis, and prey-predator – in a unified way.
While this unified approach has its advantages, our method requires at least one of the
coupling parameters in the system to be sufficiently small. Hence, we hope that a more
detailed study of each particular situation could lead to some improvements in the
conditions imposed on the nonautonomous terms while still using similar techniques.

It is a very interesting open problem to prove, for this Lotka–Volterra example,
the existence of a complete trajectory that is nondegenerate at −∞. Given this
nondegeneracy one would get the uniqueness of such a trajectory, and its pullback
attracting property. We believe that use of the concepts of sub- and super-trajectories
(cf. Arnold and Chueshov [3] and Chueshov [10]), along with the sub- and super-
solutions technique (cf. for example Pao [30]) should be able to provide this, and we
intend to pursue this direction in a future paper.

However, it is certainly the case that the hypothesis that the time-dependent
terms are bounded is important throughout the literature, as this assumption implies
the existence of bounded global solutions, and in particular of bounded attracting
trajectories. As the analysis in Langa et al. [23] shows, different kinds of forwards
asymptotic behavior, such as the nonexistence of asymptotically stable trajectories,
is possible if solutions are allowed to be unbounded.
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[12] M. Delgado, J. López-Gómez, and A. Suárez, On the symbiotic Lotka-Volterra model with
diffusion and transport effects, J. Differential Equations, 160 (2000), pp. 175–262.

[13] J. E. Furter and J. López-Gómez, On the existence and uniqueness of coexistence states for
the Lotka-Volterra competition model with diffusion and spatially dependent coefficients,
Nonlinear Anal., 25 (1995), pp. 363–398.

[14] J. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs, AMS,
Providence, RI, 1998.

[15] J. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal.,
9 (1989), pp. 388–395.

[16] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes Math. 840,
Springer-Verlag, Berlin, 1981.

[17] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes
in Mathematics 247, Harlow Longman, 1991.

[18] P. Hess and A. C. Lazer, On an abstract competition model and applications, Nonlinear
Anal., 16 (1991), pp. 917–940.

[19] G. Hetzer and W. Shen, Uniform persistence, coexistence, and extinction in almost pe-
riodic/nonautonomous competition diffusion systems, SIAM J. Math. Anal., 34 (2002),
pp. 204–221.

[20] V. Hutson and K. Schmitt, Permanence in dynamical systems, Math. Biosci., 111 (1992),
pp. 1–71.

[21] P. E. Kloeden and B. Schmalfuss, Asymptotic behaviour of non-autonomous difference
inclusions, Systems Control Lett., 33 (1998), pp. 275–280.

[22] N. Lakos, Existence of steady-state solutions for one-predator-two prey system, SIAM J. Math.
Anal., 21 (1990), pp. 647–659.
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AN ENTIRE SOLUTION TO THE LOTKA–VOLTERRA
COMPETITION-DIFFUSION EQUATIONS∗

YOSHIHISA MORITA† AND KOICHI TACHIBANA‡

Abstract. We deal with a system of Lotka–Volterra competition-diffusion equations on R, which
is a competing two species model with diffusion. It is known that the equations allow traveling waves
with monotone profile. In this article we prove the existence of an entire solution which behaves as
two monotone waves propagating from both sides of the x-axis, where an entire solution is meant
by a classical solution defined for all space and time variables. The global dynamics for this entire
solution exhibits the extinction of the inferior species by the superior one invading from both sides.
The proof is carried out by applying the comparison principle for the competition-diffusion equations,
that is, using an appropriate pair of a subsolution and a supersolution.
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1. Introduction. In the field of population biology Lotka–Volterra competi-
tion equations are well accepted as a physiological model describing competing in-
teraction of multiple species. Here we restrict our attention to a two species model.
Taking random movement of the species into account, we get to the Lotka–Volterra
competition-diffusion equations that are obtained by coupling diffusion terms to the
Lotka–Volterra equations. In this article we are dealing with the following Lotka–
Volterra competition-diffusion equations on R:

(1.1)

{
ut = uxx + (1 − u− k1v)u,
vt = dvxx + a(1 − v − k2u)v

(x ∈ R),

where k1, k2, a, and d are positive constants. The variables u(x, t) and v(x, t) stand
for the population density of two competing species. Thus we consider nonnegative
u(x, t), v(x, t). We note that the above system is normalized so that it has the equi-
librium solutions (u, v) = (1, 0), (0, 1), set as

eu := (1, 0), ev := (0, 1).

In the diffusion-free case we can classify the asymptotic behavior of the solution
as t→ ∞, depending on k1, k2:

(i) (u(t), v(t)) → eu (u always wins) if 0 < k1 < 1 < k2.
(ii) Depending on the initial condition, (u, v) → eu or (u(t), v(t)) → ev in general

if 1 < k1, k2.
(iii) (u(t), v(t)) → ev (v always wins) if 0 < k2 < 1 < k1.

∗Received by the editors May 8, 2008; accepted for publication (in revised form) September 23,
2008; published electronically January 28, 2009. This research was supported in part by the Grant-
in-Aid for Scientific Research (B) 19340026 and the Grant-in-Aid for Exploratory Research 19654030,
Japan Society for the Promotion of Science.

http://www.siam.org/journals/sima/40-6/72371.html
†Department of Applied Mathematics and Informatics, Ryukoku University, Seta Otsu 520-2194,

Japan (morita@rins.ryukoku.ac.jp).
‡Daiwa Technique Laboratory Ltd., 915 Mitsushima Kadoma, Osaka 571-0015, Japan

(ham one14@msn.com).

2217



2218 YOSHIHISA MORITA AND KOICHI TACHIBANA
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Fig. 1. The profile of a monotone traveling wave solution of (1.1). Monotone increasing and
decreasing curves correspond to u = φ(ξ) and v = ψ(ξ), respectively. Parameter values are given by
a = 3/2, d = 1/3, k1 = 3/2, and k2 = 2.

(iv) (u(t), v(t)) converges to a positive equilibrium (u and v coexist) if 0 < k1, k2 <
1.

Here we do not treat case (iv). Then we may assume k2 > 1 because the third case (iii)
is obtained by exchanging the roles of u and v.

The above equations (1.1) are used for describing the invasion of the superior
species. As a matter of fact, by virtue of the diffusion, we can observe behavior
such as the superior species propagating from one side of the x-axis to the other side,
pushing back the inferior species. This dynamics of the propagation is mathematically
characterized by a traveling wave solution (u, v) = (φ(x + ct), ψ(x+ ct)) satisfying

(1.2)

{
φ′′ − cφ′ + (1 − φ− k1ψ)φ = 0,
dψ′′ − cψ′ + a(1 − ψ − k2φ)ψ = 0,

with

lim
ξ→−∞

(φ(ξ), ψ(ξ)) = ev, lim
ξ→∞

(φ(ξ), ψ(ξ)) = eu,(1.3)

φ(ξ), ψ(ξ) > 0, φ′(ξ) > 0, ψ′(ξ) < 0,(1.4)

where ′ = d/dξ, ′′ = d2/dξ2. A solution to (1.2) with (1.3) and (1.4) gives a profile
of the traveling wave. Here we assume the monotonicity of (1.4) which arises in most
cases. A traveling wave with the monotonicity is called a monotone wave or a wave
front.

We note that for a traveling wave solution (φ(ξ), ψ(ξ)) = (φ(x + ct), ψ(x + ct))
to (1.2)–(1.4), the reflected (φ(−x+ ct), ψ(−x+ ct)) also gives a traveling wave with
opposite speed. Then (φ̃(ξ), ψ̃(ξ)) = (φ(−x + ct), ψ(−x+ ct)) satisfies

lim
ξ→−∞

(φ̃(ξ), ψ̃(ξ)) = eu, lim
ξ→∞

(φ̃(ξ), ψ̃(ξ)) = ev.
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Thus we obtain traveling wave solutions with opposite speeds simultaneously if we
obtain a solution satisfying (1.3)–(1.4).

As for the study of traveling wave solutions, there are various works, including [3],
[4], [15], and [7]. In particular, see [8], [9], [10], [11], [12], and the references therein.

Although the study for a traveling wave is a central issue of the Lotka–Volterra
competition-diffusion equations, it is not enough for mathematical understanding of
the dynamical structure of solutions to (1.1). In fact, as seen in the recent develop-
ment of the study for entire solutions to a scalar reaction-diffusion equation, some
combination of two traveling waves yields characteristic dynamics for the equation
(see [6], [16], [2], [5], [1], [13]), where the entire solution is meant by a classical so-
lution which is defined for every x and t. Those results revealed that the equation
allows types of entire solutions other than equilibrium solutions and traveling wave
solutions. For example, in [6], [16], [2], [5], it is shown that there exists an entire
solution which behaves as two wave fronts propagating from both sides of the x-axis
and then annihilating, while [13] shows entire solutions which behave as two wave
fronts merging.

In this article, motivated by the work of [2] and [5], we consider the entire solution
which behaves like two monotone traveling waves propagating from both sides of the
x-axis. As t goes forward, this solution converges to the equilibrium eu when u
is superior. Namely, we are interested in the entire solution (u(x, t), v(x, t)) which
behaves like (φ(x + ct), ψ(x + ct)) for x ∈ (0,∞) and (φ(−x + ct), ψ(−x + ct)) for
x ∈ (−∞, 0) as t → −∞ and converges to a uniform state as t → ∞. This solution
corresponds to the phenomenon that the superior species invades from both sides and
causes the extinction of the inferior species.

We prepare some notation for stating the main result. We assume that u is always
superior so that the traveling wave solution of (1.2) with (1.3) and (1.4) has a positive
speed c > 0. In addition, we allow the equations to have solutions with different speeds
(corresponding to case (i)). As a matter of fact, we have traveling waves of the Fisher
type for the case (i); that is, there is a minimum speed cmin > 0 so that the equations
allow a family of monotone traveling wave solutions for c ≥ cmin > 0 (see [10]). Thus
we set a pair of traveling wave solutions

(φj(ξ), ψj(ξ)) (j = 1, 2)

satisfying

(1.5)

{
φ′′j − cjφ

′
j + (1 − φj − k1ψj)φj = 0,

dψ′′
j − cjψ

′
j + a(1 − ψj − k2φj)ψj = 0

(j = 1, 2),

with

lim
ξ→−∞

(φj(ξ), ψj(ξ)) = ev, lim
ξ→∞

(φj(ξ), ψj(ξ)) = eu,(1.6)

φj(ξ), ψj(ξ) > 0, φ′j(ξ) > 0, ψ′
j(ξ) < 0,(1.7)

where cj (j = 1, 2) are positive. Note that we consider the case when they coincide,
namely, (φ1(ξ), ψ1(ξ)) identically equals (φ2(ξ), ψ2(ξ)) up to a phase shift.

We assume that there is a positive constant η0 such that

(1.8) η0 ≤ φj(ξ)
1 − ψj(ξ)

(ξ ≤ 0)
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holds. Then we obtain the following theorem, which is the main result in this article.
Theorem 1.1. Assume k1 �= 1 and k2 > 1 in (1.1). Let (φj , ψj) be a solution to

(1.5) with (1.6), (1.7), and cj > 0 (j = 1, 2). If the condition (1.8) holds, then there
exists a solution (u(x, t), v(x, t)) ((x, t) ∈ R × R) of (1.1) satisfying

lim
t→−∞

sup
x≥(c2−c1)t/2

{|u(x, t) − φ1(x+ c1t)| + |v(x, t) − ψ1(x+ c1t)|} = 0,

lim
t→−∞

sup
x≤(c2−c1)t/2

{|u(x, t) − φ2(−x+ c2t)| + |v(x, t) − ψ2(−x+ c2t)|} = 0,

and

lim
t→∞

sup
x∈R

{|u(x, t) − 1| + |v(x, t)|} = 0.

Remark 1.1. If k1 > 1, the monotone traveling wave is unique up to translation
(for instance, see [8]). Hence, when k1 > 1, (φ1, ψ1) = (φ2, ψ2) in the theorem.

Considering the fact that the equations (1.1) are invariant under the translation
in x and the time shift, we easily see the following result from the above theorem.

Corollary 1.2. Let (u(x, t), v(x, t)) be an entire solution to (1.1) given in
Theorem 1.1. Given θ1, θ2, there exist ξ and τ such that

lim
t→−∞

sup
x≥(c2−c1)t/2

{|u(x+ ξ, t+ τ) − φ1(x+ c1t+ θ1)|

+ |v(x+ ξ, t+ τ) − ψ1(x+ c1t+ θ1)|} = 0,
lim

t→−∞
sup

x≤(c2−c1)t/2

{|u(x+ ξ, t+ τ) − φ2(−x+ c2t+ θ2)|

+ |v(x+ ξ, t+ τ) − ψ2(−x+ c2t+ θ2)|} = 0,

and

lim
t→∞

sup
x∈R

{|u(x+ ξ, t+ τ) − 1| + |v(x + ξ, t+ τ)|} = 0.

The condition (1.8) is crucial in our argument, though it might be a technical
condition. Here we give a sufficient condition for (1.8), which is easier to check. Let
λ

(j)
3 be a positive root of

(1.9) dλ2 − cjλ− a = 0.

For k1 > 1, we have a unique positive root λ(j)
4 of

(1.10) λ2 − cjλ− (k1 − 1) = 0,

while for 0 < k1 < 1, there is another positive root λ(j)
5 (≤ λ

(j)
4 ) of (1.10) under the

condition

(1.11) cj ≥ cmin ≥ 2
√

1 − k1,

where λ(j)
4 = λ

(j)
5 if cj = 2

√
1 − k1. Those roots λ(j)

k (k = 3, 4, 5) are related to the
convergence rate of the traveling waves as (φj(ξ), ψj(ξ)) → (0, 1) (ξ → −∞). We
notice that

(1.12) d
ψ′′

j

1 − ψj
− cj

ψ′
j

1 − ψj
+ aψj

(
1 − k2

φj

1 − ψj

)
= 0
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by the second equation of (1.5). We can prove the limit of ψ′
j(ξ)/(1 − ψj(ξ)) as

ξ → −∞ exists. In fact, we have the next lemma.
Lemma 1.3. Assume the same assumption of Theorem 1.1. Then (1.8) holds if

(1.13) lim
ξ→−∞

−ψ′
j(ξ)

1 − ψj(ξ)
�= λ

(j)
3 .

Moreover, the condition (1.13) is realized for λ(j)
4 < λ

(j)
3 (j = 1, 2).

Remark 1.2. The condition λ
(j)
4 < λ

(j)
3 (j = 1, 2) is clear and easily checked.

However, there are cases which break this condition but allow (1.13). For example,
(1.13) is verified by the condition λ(j)

5 < λ
(j)
3 ≤ λ

(j)
4 together with a generic condition

for the asymptotic behavior of the traveling wave as t → −∞. We discuss this in
section 2.

We briefly sketch an outline of the proof of Theorem 1.1. We will use the following
functions to approximate the entire solution as t ≈ −∞:

(1.14)

{
u = max{φ1(x+ c1t), φ2(−x+ c2t)},
v = min{ψ1(x+ c1t), ψ2(−x+ c2t)},

and

(1.15)

{
u = φ1(x+ p1(t)) + φ2(−x+ p2(t)) − φ1(x+ p1(t))φ2(−x+ p2(t)),
v = ψ1(x+ p1(t))ψ2(−x+ p2(t)),

where

pj(t) ≈ cjt (t ≈ −∞).

Note that (u, v) and (u, v) certainly have the profile we are supposing as t → −∞.
Since the comparison principle does work in the present competition-diffusion system,
we prove that (1.14) and (1.15) are a subsolution and a supersolution with suitable
pj(t), respectively, if t < 0. This yields a solution sandwiched by the subsolution and
the supersolution, defined for every negative t. Then such a solution can be extended
for any positive time. In what follows, we obtain the desired entire solution.

Although our idea for the proof of the main result is based on the previous work
of [5], [1], and [13], we encounter a difficulty when we prove that the pairing of (1.15)
is a supersolution. Fortunately, noticing the identity

(u1 + u2 − u1u2)v1v2 − (1 − u2)u1v1 − (1 − u1)u2v2(1.16)
= −u1(1 − u2)v1(1 − v2) − (1 − u1)u2(1 − v1)v2 + u1u2v1v2,

we can overcome the difficulty (see section 4 for the details).
In the above theorem we obtain an entire solution characterized by the asymp-

totic behavior as t → −∞. Once we obtain such a solution, it is easy to prove the
asymptotic behavior as t→ ∞ stated in the theorem, since the subsolution is defined
globally in time. However, we have only the one side estimated by the subsolution;
hence precise transient behavior for positive t is not described yet. Here, using an
exact expression for the traveling wave solution, we show the entire behavior of the
solution for specific parameter values. In the paper [14], traveling wave solutions are
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exactly given in terms of the hyperbolic tangent function under a constraint of the
parameters. We use one of them, which is given by

(1.17) φ(ξ) =
1
2

{
1 + tanh

(√
k1ξ

2
√

2

)}
, ψ(ξ) =

1
4

{
1 − tanh

(√
k1ξ

2
√

2

)}2

,

where

(1.18) d =
a

3k1
, a =

6 − 3k1

3k2 − 5
, c =

2 − k1√
2k1

,

with the condition

(1.19) 0 < k1 < 2, 5/3 < k2.

It is a lengthy but simple computation to verify that (1.17) with (1.18) and (1.19) is
a traveling wave of (1.1) satisfying (1.2)–(1.4). Moreover, this solution satisfies (1.13)
as well as (1.8). Indeed, we can compute the corresponding positive roots of (1.9)
and (1.10) as

λ3 =
1
2

√
k1

2
{3k2 − 5 +

√
(3k2 − 5)2 + 24} >

√
3k1,

λ4 =

{√
k1/2 (2/3 ≤ k1),√
2(1 − k1)/

√
k1 (0 < k1 < 2/3)

and

λ5 =

{√
2(1 − k1)/

√
k1 (2/3 < k1 < 1),√

k1/2 (0 < k1 ≤ 2/3),

respectively.
We rewrite (1.17) as

φ(ξ) = 1 − 1
1 + exp(ξ

√
k1/2)

, ψ(ξ) =
1

{1 + exp(ξ
√
k1/2)}2

.

Modify this expression as

(1.20) u∗(x, t) := 1 − 1
1 + Φ(x, t)

, v∗(x, t) =
1

(1 + Φ(x, t))2

with

(1.21) Φ = cosh
(
x
√
k1√
2

)
exp (ω0t) , ω0 := 1 − k1

2
.

As for a profile of the functions of (1.20), see Figure 2.
We also define

(1.22) u∗(x, t) := 1 − 1
1 + Ψ(x, t)

, v∗(x, t) =
1

(1 + Ψ(x, t))2
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(a) A bird’s eye view of u∗(x, t− 20)
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Fig. 2. Bird’s eye views of the functions u∗(x, t− 20) and v∗(x, t− 20) (0 ≤ t ≤ 30, −10 ≤ x ≤
10), respectively, which are defined by (1.20) and (1.21). Parameter values are given by (1.18) with
k1 = 3/2 and k2 = 2.

with

(1.23) Ψ = cosh
(
x
√
k1√
2

)
exp(p(t)),

where p(t) is given by a solution to

ṗ(t) = ω0 +
L0 exp(p(t))
1 + exp(p(t))

, p(0) = p0,(1.24)

L0 := max{k1, a/2}.

Note that the solution p(t) is a monotone increasing function satisfying

lim
t→−∞

p(t) = −∞, lim
t→∞

p(t) = ∞.

The next result shows that the above functions give an approximation globally in
time together with the existence of an entire solution.

Proposition 1.4. In addition to (1.18) and (1.19), assume that the solution
p(t) of (1.24) satisfies p(t0) = ω0t0 for an arbitrarily given t0. Then a solution
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(u(x, t), v(x, t)) to (1.1) with the initial condition

(u(x, t0), v(x, t0)) = (u∗(x, t0), v∗(x, t0)) = (u∗(x, t0), v∗(x, t0))

satisfies

(1.25)

{
u∗(x, t) ≤ u(x, t) ≤ u∗(x, t),
v∗(x, t) ≤ v(x, t) ≤ v∗(x, t)

((t, x) ∈ (t0,∞) × R).

Moreover, if p0 is a solution of

(1.26) p0 =
L0

L0 + ω0
log
(

1 +
L0 + ω0

ω0
exp(p0)

)
,

then the asymptotics

lim
t→−∞

sup
x∈R

[|u∗(x, t) − u∗(x, t)| + |v∗(x, t) − v∗(x, t)|] = 0

hold; hence there is an entire solution (u(x, t), v(x, t)) satisfying (1.25) with t0 = −∞.
We organize the paper as follows: In the next section we classify the asymptotic

behavior of the traveling wave solutions as ξ → ±∞. This result is given by investi-
gating the linearized equations at the equilibrium points eu and ev. Then Lemma 1.3
is proved. Although the result is already established, we give a proof in the appen-
dix for the reader’s convenience. In section 3 we give crucial estimates for the terms
consisting of the traveling wave solutions. By virtue of the estimates we prove The-
orem 1.1 together with Proposition 1.4 in section 4. The paper concludes with the
appendix.

2. Asymptotic behavior of traveling front waves. All the results in Lem-
mas 2.1, 2.2, and 2.3 stated below were already obtained in [8] and [12]. For com-
pleteness of the present paper we give a proof in the appendix. We let λ(j)

1 and λ
(j)
2

be negative roots of

(2.1) λ2 − cjλ− 1 = 0

and

(2.2) dλ2 − cjλ− a(k2 − 1) = 0,

respectively. The first lemma is on the asymptotic behavior of the traveling wave
solutions as ξ → ∞.

Lemma 2.1. Let (φj(ξ), ψj(ξ)) be traveling wave solutions to (1.5)–(1.7) with
cj > 0 (j = 1, 2), and let λ(j)

1 and λ(j)
2 be negative roots of (2.1) and (2.2), respectively.

Then the solution exhibits the asymptotic behavior as ξ → ∞ as follows:
(i) If λ(j)

2 < λ
(j)
1 , then

1 − φj(ξ) = αj exp(λ(j)
1 ξ) − βjs

(j)
1 exp(λ(j)

2 ξ) + h.o.t.,

ψj(ξ) = βj exp(λ(j)
2 ξ) + h.o.t.

(2.3)

hold for some numbers αj ≥ 0 and βj > 0, where

(2.4) s
(j)
1 :=

k1

(λ(j)
2 )2 − cjλ

(j)
2 − 1

=

{
> 0 (λ(j)

2 < λ
(j)
1 ),

< 0 (λ(j)
2 > λ

(j)
1 ).
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(ii) If λ(j)
1 < λ

(j)
2 , then

1 − φj(ξ) = −βjs
(j)
1 exp(λ(j)

2 ξ) + h.o.t.,

ψj(ξ) = βj exp(λ(j)
2 ξ) + h.o.t.

(2.5)

for some βj > 0, where s(j)1 is as in (2.4).
(iii) If λ(j)

1 = λ
(j)
2 , then

1 − φj(ξ) = βjξ exp(λ(j)
1 ξ) + h.o.t.,

ψj(ξ) = −βjτ
(j)
1 exp(λ(j)

1 ξ) + h.o.t.
(2.6)

for some βj > 0, where

τ
(j)
1 =

2λ(j)
1 − cj
k1

< 0.

The second lemma is related to the asymptotic behavior of the traveling wave so-
lution as ξ → −∞ for k1 > 1, namely, the bistable case (ii) stated in the introduction.

Lemma 2.2. Let (φj(ξ), ψj(ξ)) be traveling wave solutions to (1.5)–(1.7) with
cj > 0 (j = 1, 2) for k1 > 1, and let λ(j)

3 and λ
(j)
4 be positive roots of (1.9) and

(1.10), respectively. Then the solution exhibits the asymptotic behavior as ξ → −∞
as follows:

(i) If λ(j)
3 < λ

(j)
4 , then

φj(ξ) = βj exp(λ(j)
4 ξ) + h.o.t.,

1 − ψj(ξ) = αj exp(λ(j)
3 ξ) − βjs

(j)
2 exp(λ(j)

4 ξ) + h.o.t.
(2.7)

hold for some numbers αj ≥ 0 and βj > 0, where

(2.8) s
(j)
2 :=

ak2

d(λ(j)
4 )2 − cjλ

(j)
4 − a

=

{
> 0 (λ(j)

3 < λ
(j)
4 ),

< 0 (λ(j)
3 > λ

(j)
4 ).

(ii) If λ(j)
4 < λ

(j)
3 , then

φj(ξ) = βj exp(λ(j)
4 ξ) + h.o.t.,

1 − ψj(ξ) = −βjs
(j)
2 exp(λ(j)

4 ξ) + h.o.t.
(2.9)

for some βj > 0, where s(j)2 is defined as in (2.8).
(iii) If λ(j)

3 = λ
(j)
4 , then

φj(ξ) = βjτ
(j)
2 exp(λ(j)

3 ξ) + h.o.t.,

1 − ψj(ξ) = −βjξ exp(λ(j)
3 ξ) + h.o.t.

(2.10)

as ξ → −∞ for some βj, where

(2.11) τ
(j)
2 :=

2dλ(j)
3 − cj
k1

> 0.
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The next lemma is related to the asymptotic behavior as ξ → −∞ when 0 < k1 <
1, namely, the monostable case (i) stated in the introduction.

Lemma 2.3. Let (φj(ξ), ψj(ξ)) be traveling wave solutions to (1.5)–(1.7) with
cj > 0 (j = 1, 2) for k1 ∈ (0, 1), and let λ(j)

5 be a positive root of (1.10) with
λ

(j)
5 ≤ λ

(j)
4 , where cj ≥ 2

√
1 − k1. Then the solution behaves as ξ → −∞ in the

following way:
(i) λ

(j)
5 < λ

(j)
4 , λ(j)

4 , λ
(j)
5 �= λ

(j)
3 : there are numbers αj, βj, and nonnegative γj

such that

φj(ξ) = βj exp(λ(j)
4 ξ) + γj exp(λ(j)

5 ξ) + h.o.t.,

1 − ψj(ξ) = αj exp(λ(j)
3 ξ) − βjs

(j)
2 exp(λ(j)

4 ξ) − γjs
(j)
3 exp(λ(j)

5 ξ) + h.o.t.

(2.12)

with

γj ≥ 0, βj > 0 (γj = 0), αj > 0 (λ(j)
3 < λ

(j)
5 )

hold, where

(2.13) s
(j)
3 =

ak2

d(λ(j)
5 )2 − cjλ

(j)
5 − a

=

{
> 0 (λ(j)

5 > λ
(j)
3 ),

< 0 (λ(j)
5 < λ

(j)
3 ).

(ii) λ
(j)
5 = λ

(j)
4 < λ

(j)
3 : there are βj and γj such that

φj(ξ) = βjξ exp(λ(j)
4 ξ) + γj exp(λ(j)

4 ξ) + h.o.t.,

1 − ψj(ξ) = −βjs
(j)
2 ξ exp(λ(j)

4 ξ) − γjs
(j)
2 exp(λ(j)

4 ξ) + h.o.t.
(2.14)

with βj ≥ 0 and γj > 0 (βj = 0), where s(j)2 is defined as in (2.8).
(iii) λ

(j)
5 < λ

(j)
3 = λ

(j)
4 : there are βj and γj such that

φj(ξ) = βjτ
(j)
2 exp(λ(j)

3 ξ) + γj exp(λ(j)
5 ξ) + h.o.t.,

1 − ψj(ξ) = −βjξ exp(λ(j)
3 ξ) − γjs

(j)
3 exp(λ(j)

5 ξ) + h.o.t.
(2.15)

with γj ≥ 0 and βj > 0 (γj = 0), where τ (j)
2 is defined as in (2.11).

(iv) λ
(j)
5 = λ

(j)
3 < λ

(j)
4 : there are αj, βj, and γj such that

φj(ξ) = γjτ
(j)
2 exp(λ(j)

3 ξ) + βj exp(λ(j)
4 ξ) + h.o.t.,

1 − ψj(ξ) = αj exp(λ(j)
3 ξ) − γjξ exp(λ(j)

3 ξ) − βjs
(j)
2 exp(λ(j)

4 ξ) + h.o.t.

(2.16)

with γj ≥ 0 and

αj ≥ 0, βj > 0 (γj = 0).

(v) λ
(j)
5 = λ

(j)
4 = λ

(j)
3 : there are βj and γj such that

φj(ξ) = βjτ
(j)
2 exp(λ(j)

3 ξ) − γjτ2ξ exp(λ(j)
3 ξ) + h.o.t.,

1 − ψj(ξ) = −βjξ exp(λ(j)
3 ξ) + γj(ξ2/2) exp(λ(j)

3 ξ) + h.o.t.
(2.17)

with γj ≥ 0 and βj > 0 (γj = 0).
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The next lemma immediately follows from the above lemmas.
Lemma 2.4. There are positive constants r1, r2, η1, η2, ω1, ω2, and M such that

r1 ≤
φ′j(ξ)

1 − φj(ξ)
≤ r2 (ξ ≥ 0),(2.18)

r1 ≤ 1 − φj(ξ)
ψj(ξ)

(ξ ≥ 0),(2.19)

r1 ≤
|ψ′

j(ξ)|
ψj(ξ)

(ξ ≥ 0)(2.20)

and

0 < 1 − ψj(ξ) ≤M exp(ω1ξ) (ξ ≤ 0),(2.21)

η1 ≤
|ψ′

j(ξ)|
1 − ψj(ξ)

≤ η2 (ξ ≤ 0),(2.22)

0 ≤ φj(ξ) ≤M exp(ω2ξ) (ξ ≤ 0),(2.23)

η1 ≤
φ′j(ξ)
φj(ξ)

≤ η2 (ξ ≤ 0).(2.24)

The following lemma is clear from Lemmas 2.2 and 2.3.
Lemma 2.5. Inequality (1.8) holds provided that one of the following conditions

is satisfied:

(1) λ
(j)
4 < λ

(j)
3 ,

(2) λ
(j)
5 < λ

(j)
3 ≤ λ

(j)
4 , γj > 0,

(3) λ
(j)
5 ≤ λ

(j)
3 < λ

(j)
4 , αj = γj = 0,

where αj, βj, and γj are the numbers corresponding to each condition of (i)–(v) for
λ

(j)
k (k = 3, 4, 5) in Lemma 2.3.

Proof of Lemma 1.3. By Lemmas 2.2 and 2.3, the limit

lim
ξ→−∞

−ψ′
j(ξ)

1 − ψj(ξ)
= lim

ξ→−∞

ψ′′
j (ξ)
ψ′

j(ξ)

exists. Then the condition (1.13) implies that this limit is λ(j)
4 or λ(j)

5 . Hence βj > 0 or
γj > 0. We assert that one of the conditions (1), (2), and (3) of Lemma 2.5 holds. This
proves the first part of the assertion. The latter part is trivial by Lemma 2.5.

3. Key estimates. In this section we prove two lemmas which will play a crucial
role in the argument for the proof of Theorem 1.1.

Lemma 3.1. Let (φj , ψj) be traveling wave solutions of (1.5)–(1.7) satisfying
(1.8). Define

(3.1) A1(z, p) := (1 − φ2(−z + p))φ′1(z + p) + (1 − φ1(z + p))φ′2(−z + p),

and put ω = min{ω1, ω2}. Then there exist L1, L2 > 0 such that, given p < 0,

φ′1(z + p)φ′2(−z + p)
A1(z, p)

≤ L1 exp(ωp),(3.2)

φ1(z + p)(1 − φ2(−z + p))ψ1(z + p)(1 − ψ2(−z + p))
A1(z, p)

≤ L2 exp(ωp),(3.3)



2228 YOSHIHISA MORITA AND KOICHI TACHIBANA

and

(3.4)
φ2(−z + p)(1 − φ1(z + p))ψ2(−z + p)(1 − ψ1(z + p))

A1(z, p)
≤ L2 exp(ωp)

hold.
Proof. We first prove (3.2). With the aid of (2.23) and (2.24), for z ≤ 0,

φ′1(z + p)φ′2(−z + p)
A1(z, p)

≤ φ′1(z + p)
1 − φ1(z + p)

≤ η2M exp(ω2(z + p))
1 − φ1(0)

≤ η2M exp(ω2p)
1 − φ1(0)

,

while, for z ≥ 0,

φ′1(z + p)φ′2(−z + p)
A1(z, p)

≤ φ′2(−z + p)
1 − φ2(−z + p)

≤ η2M exp(ω2(−z + p))
1 − φ2(0)

≤ η2M exp(ω2p)
1 − φ2(0)

.

Thus we can take L1 = η2M max{1/(1 − φ1(0)), 1/(1 − φ2(0))} to prove (3.2).
Next we show (3.3) and (3.4). Put

B1(z, p) := φ1(z + p)ψ1(z + p)(1 − φ2(−z + p))(1 − ψ2(−z + p)),(3.5)

B̃1(z, p) := φ2(−z + p)ψ2(−z + p)(1 − φ1(z + p))(1 − ψ1(z + p)).(3.6)

First we prove (3.3). Let z ≤ p. By (2.18) we have

r1 ≤ φ′2(−z + p)
1 − φ2(−z + p)

(z ≤ p);

hence

B1(z, p)
A1(z, p)

≤ φ1(z + p)
r1(1 − φ1(z + p))

≤ M exp(ω2(z + p))
r1(1 − φ1(0))

≤ M exp(ω2p)
r1(1 − φ1(0))

.(3.7)

As for the case p ≤ z ≤ 0, noticing that

η0η1 ≤ φ′2(−z + p)
1 − ψ2(−z + p)

(p ≤ z),

from (2.24) and (1.8) we have
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B1(z, p)
A1(z, p)

≤ φ1(z + p)
η0η1(1 − φ1(z + p))

≤ M exp(ω2(z + p))
η0η1(1 − φ1(0))

≤ M exp(ω2p)
η0η1(1 − φ1(0))

.(3.8)

We let 0 ≤ z ≤ −p. With the aid of

η1 ≤ φ′1(z + p)
φ1(z + p)

(z ≤ −p),

we obtain

B1(z, p)
A1(z, p)

≤ (1 − φ2(−z + p))(1 − ψ2(−z + p))
η1(1 − φ2(−z + p))

≤ 1 − ψ2(−z + p)
η1

≤ M exp(ω1(−z + p))
η1

≤ M exp(ω1p)
η1

.(3.9)

Since

r21 ≤ φ′1(z + p)
ψ1(z + p)

(−p ≤ z),

by (2.18) and (2.19), we see that for −p ≤ z,

B1(z, p)
A1(z, p)

≤ (1 − φ2(−z + p))(1 − ψ2(−z + p))
r21(1 − φ2(−z + p))

≤ M exp(ω1(−z + p))
r21

≤ M exp(ω1p)
r21

.(3.10)

Combining (3.7), (3.8), (3.9), and (3.10) leads to (3.3).
We go to the case (3.4). In the above argument for (3.5), we replace φ1(z + p),

φ2(−z + p), ψ1(z + p), and ψ2(−z + p) by φ2(−z + p), φ1(z + p), ψ2(−z + p), and
ψ1(z + p), respectively, and change z to −z. Then for (3.6) we similarly obtain the
desired estimate. We will leave the details to the reader.

Lemma 3.2. Let

(3.11) A2(z, p) := ψ2(−z + p)ψ′
1(z + p) + ψ1(z + p)ψ′

2(−z + p) (< 0).

Then there exist L3, L4 > 0 such that, given p < 0,

(3.12)
ψ′

1(z + p)ψ′
2(−z + p)

|A2(z, p)| ≤ L3 exp(ωp)
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and

(3.13)
ψ1(z + p)ψ2(−z + p)(1 − ψ1(z + p))(1 − ψ2(−z + p))

|A2(z, p)| ≤ L4 exp(ωp)

hold.
Proof. For z ≥ 0, by (2.21) and (2.22) we have

ψ′
1(z + p)ψ′

2(−z + p)
|A2(z, p)| ≤ |ψ′

2(−z + p)|
ψ2(−z + p)

≤ η2M exp(ω1(−z + p))
ψ2(0)

≤ η2M exp(ω1p)
ψ2(0)

.

Similarly, we obtain that, for z ≤ 0,

ψ′
1(z + p)ψ′

2(−z + p)
|A2(z, p)| ≤ η2M exp(ω1p)

ψ1(0)
.

This proves (3.12).
We show (3.13). Put

(3.14) B2(z, p) := ψ1(z + p)ψ2(−z + p)(1 − ψ1(z + p))(1 − ψ2(−z + p)).

First let 0 ≤ z ≤ −p. By (2.22),

B2(z, p)
|A2(z, p)| ≤

ψ1(z + p)ψ2(−z + p)(1 − ψ2(−z + p))
η1ψ2(−z + p)

≤ 1 − ψ2(−z + p)
η1

≤ M exp(ω1p)
η1

.

Next we consider the case −p ≤ z. By (2.20)

B2(z, p)
|A2(z, p)| ≤

ψ2(−z + p)(1 − ψ1(z + p))(1 − ψ2(−z + p))
r1ψ2(−z + p)

≤ 1 − ψ2(−z + p)
r1

≤ M exp(ω1p)
r1

.

As for p ≤ z ≤ 0 and z ≤ p, we use the above argument similarly to obtain

B2(z, p)
|A2(z, p)| ≤

M exp(ω1p)
η1

(p ≤ z ≤ 0),

B2(z, p)
|A2(z, p)| ≤

M exp(ω1p)
r1

(z ≤ p).

This concludes the proof of (3.13).

4. Existence of the entire solution. Let (φj(ξ), ψj(ξ)) (j = 1, 2) be the trav-
eling wave solutions as in Theorem 1.1. To prove the theorem, we consider the com-
bination of the solutions (φ1(x+ c1t), ψ1(x+ c1t)) and (φ2(−x+ c2t), ψ2(−x+ c2t)).

By the change of variables

(U(z, t), V (z, t)) = (u(x, t), v(x, t)), z = x+
c1 − c2

2
t,
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(1.1) is transformed into

(4.1)

⎧⎪⎨⎪⎩
Ut = Uzz − c1 − c2

2
Uz + U(1 − U − k1V ),

Vt = dVzz − c1 − c2
2

Vz + aV (1 − V − k2U)
(x ∈ R).

Then (U, V ) = (φ1(z + cmt), ψ1(z + cmt)) and (φ2(−z + cmt), ψ2(−z + cmt)) give
traveling wave solutions of (4.1) with speed cm = (c1 + c2)/2 and the opposite speed
−cm, respectively. The latter has the profile such that the U component is monotone
decreasing while the V component is monotone increasing.

We define supersolutions and subsolutions to (1.1) and (4.1). Put{
F1(u, v) := ut − uxx + βux − f(u, v),
F2(u, v) := vt − dvxx + βvx − ag(u, v),

and consider the equations

(4.2) F1(u, v) = 0, F2(u, v) = 0,

where

f(u, v) := (1 − u− k1v)u, g(u, v) := (1 − v − k2u)v,

β :=
c1 − c2

2
.

We call (u(x, t), v(x, t)), (x, t) ∈ R × [T1, T2] a subsolution if

F1(u, v) ≤ 0, F2(u, v) ≥ 0 ((x, t) ∈ R × [T1, T2])

hold. We say that (u(x, t), v(x, t)), (x, t) ∈ R × [T1, T2] is a supersolution to (4.2) if

F1(u, v) ≥ 0, F2(u, v) ≤ 0 ((x, t) ∈ R × [T1, T2]).

We note that any solutions (u(x, t), v(x, t)) of (4.2) are not only subsolutions but also
supersolutions. Let (u(x, t), v(x, t)) be solutions to (4.2) in t ∈ [T1, T2]. The maximal
principle for the competition-diffusion system yields that if{

u(x, T1) ≤ u(x, T1) ≤ u(x, T1),
v(x, T1) ≤ v(x, T1) ≤ v(x, T1)

hold, then these orders are preserved for all t ∈ [T1, T2].
If (u1(x, t), v1(x, t)) and (u1(x, t), v1(x, t)) are subsolutions in t ∈ (T1, T2), then

the pairing of

u(x, t) := max
x∈R

{u1(x, t), u2(x, t)}, v(x, t) := min
x∈R

{v1(x, t), v2(x, t)}

is a subsolution in t ∈ (T1, T2). Similarly, if (u1(x, t), v1(x, t)) and (u1(x, t), v1(x, t))
are supersolutions, then the pairing of

u(x, t) := min
x∈R

{u1(x, t), u2(x, t)}, v(x, t) := max
x∈R

{v1(x, t), v2(x, t)}

is a supersolution.
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We define a subsolution of (4.1) by the pairing

(4.3)

{
U(z, t) := maxz∈R{φ1(z + cmt+ q), φ2(−z + cmt+ q)},
V (z, t) := minz∈R{ψ1(z + cmt+ q), ψ2(−z + cmt+ q)},

where q is an arbitrarily given number.
Next we construct a supersolution. We first notice the following identities:

f(u1 + u2 − u1u2, v1v2) − (1 − u2)f(u1, v1) − (1 − u1)f(u2, v2)
= −(1 − u1)(1 − u2)u1u2

− k1{(u1 + u2 − u1u2)v1v2 − (1 − u2)u1v1 − (1 − u1)u2v2},
g(u1 + u2 − u1u2, v1v2) − v2g(u1, v1) − v1g(u2, v2)

= −v1v2(1 − v1)(1 − v2) + k2u1u2v1v2.

With the aid of (1.16), we obtain the inequalities

f(u1 + u2 − u1u2, v1v2) − (1 − u2)f(u1, v1) − (1 − u1)f(u2, v2)
≤ k1{u1(1 − u2)v1(1 − v2) + (1 − u1)u2(1 − v1)v2},(4.4)

g(u1 + u2 − u1u2, v1v2) − v2g(u1, v1) − v1g(u2, v2)
≥ −v1v2(1 − v1)(1 − v2)(4.5)

for 0 ≤ u1, u2 ≤ 1, and 0 ≤ v1, v2.
We introduce the following ordinary differential equation:

(4.6)

{
ṗ = cm + Leωp (t ≤ 0),
p(0) = p0 < 0.

A simple computation yields a solution to (4.6) as

(4.7) p(t) = cmt−
1
ω

log
{
e−ωp0 +

L(1 − eωcmt)
cm

}
< 0 (t < 0)

having the asymptotics

(4.8) lim
t→−∞

(p(t) − cmt) = − 1
ω

log
(
e−ωp0 +

L

cm

)
.

Lemma 4.1. Let (φj(x+ cjt), ψj(x+ cjt)) (j = 1, 2) be traveling wave solutions
to (1.1) satisfying (1.5), (1.6), (1.7), and (1.8). Let p(t) be a solution to (4.6) with
L ≥ max{2L1 + 2k1L2, 2dL3 + aL4}. Then the pairing of

(4.9)

{
U(z, t) := φ1(z + p(t)) + φ2(−z + p(t)) − φ1(z + p(t))φ2(−z + p(t)),
V (z, t) := ψ1(z + p(t))ψ2(−z + p(t))

is a supersolution of (4.1).
Proof. First note that φ1 = φ1(ξ), ψ1 = ψ1(ξ) (ξ = z + cmt) satisfy{

φ′′1 − c1φ
′
1 + f(φ1, ψ1) = 0,

dψ′′
1 − c1ψ

′
1 + ag(φ1, ψ1) = 0,
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while φ2 = φ2(ξ), ψ2 = ψ2(ξ) (ξ = −z + cmt) satisfy{
φ′′2 − c2φ

′
2 + f(φ2, ψ2) = 0,

dψ′′
2 − c2ψ

′
2 + ag(φ2, ψ2) = 0,

where ′ = d/dξ, ′′ = d2/dξ2. Substituting (U, V ) into⎧⎪⎨⎪⎩
F1(U, V ) = Ut − Uzz +

c1 − c2
2

Uz − f(U, V ),

F2(U, V ) = Vt − dVzz +
c1 − c2

2
Vz − ag(U, V )

yields

F1(U, V ) = ṗ{(1 − φ2)φ′1 + (1 − φ1)φ′2} − (φ′′1 + φ′′2 − φ′′1φ2 + 2φ′1φ
′
2 − φ1φ

′′
2 )

+
c1 − c2

2
{(1 − φ2)φ′1 − (1 − φ1)φ′2} − f(φ1 + φ2 − φ1φ2, ψ1ψ2)

= ṗ{(1 − φ2)φ′1 + (1 − φ1)φ′2} − (1 − φ2)
(
φ′′1 − c1 − c2

2
φ′1

)
− (1 − φ1)

(
φ′′2 +

c1 − c2
2

φ′2

)
− 2φ′1φ

′
2 − f(φ1 + φ2 − φ1φ2, ψ1ψ2)

= (ṗ− cm){(1 − φ2)φ′1 + (1 − φ1)φ′2} − 2φ′1φ
′
2

− {f(φ1 + φ2 − φ1φ2, ψ1ψ2) − (1 − φ2)f(φ1, ψ1) − (1 − φ1)f(φ2, ψ2)}.

Using (4.4), we obtain

F1(U, V ) ≥ A1(z, p)(ṗ− cm) − 2φ′1φ
′
2 − k1(B1(z, p) + B̃1(z, p))

= A1(z, p)

{
L exp(ωp) − 2φ′1φ′2

A1(z, p)
− k1

B1(z, p) + B̃1(z, p)
A1(z, p)

}
,(4.10)

whereA1(z, p), B1(z, p), and B̃1(z, p) are defined in (3.1), (3.5), and (3.6), respectively.
By Lemma 3.1 we obtain

F1(U, V ) ≥ 0 ((z, t) ∈ R × (−∞, 0])

for L ≥ 2L1 + 2k1L2.
Similarly,

F2(U, V ) = (ψ′
1ψ2 + ψ1ψ

′
2)ṗ− d(ψ′′

1ψ2 + ψ1ψ
′′
2 ) + 2dψ′

1ψ
′
2

+
c1 − c2

2
(ψ′

1ψ2 − ψ1ψ
′
2) − ag(φ1 + φ2 − φ1φ2, ψ1ψ2)

= (ψ′
1ψ2 + ψ1ψ

′
2)ṗ+ ψ2{−c1ψ′

1 + ag(φ1, ψ1)}
+ ψ1{−c2ψ′

2 + ag(φ2, ψ2)} + 2dψ′
1ψ

′
2

+
c1 − c2

2
(ψ′

1ψ2 − ψ1ψ
′
2) − ag(φ1 + φ2 − φ1φ2, ψ1ψ2)

= (ψ′
1ψ2 + ψ1ψ

′
2)(ṗ− cm) + 2dψ′

1ψ
′
2

− a{g(φ1 + φ2 − φ1φ2, ψ1ψ2) − ψ2g(φ1, ψ1) − ψ1g(φ2, ψ2)}.
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Applying (4.5) to the right-hand side of this equality yields

(4.11) F2(U, V ) ≤ A2(z, p)
{
L exp(ωp) +

2dψ′
1ψ

′
2

A2(z, p)
+
aB2(z, p)
A2(z, p)

}
,

where A2(z, p) and B2(z, p) are defined as in (3.11) and (3.14), respectively (recall
A2(z, p) < 0). By Lemma 3.2 we obtain

F2(U, V ) ≤ 0 ((z, t) ∈ R × (−∞, 0])

for L ≥ 2dL3 + aL4. This implies that (U, V ) is a supersolution.
Proof of Theorem 1.1. We use the subsolution (4.3) with

q = − 1
ω

log
(
e−ωp0 +

L

cm

)
and the supersolution (4.9). For this q we have

lim
t→−∞

|p(t) − (cm + q)t| = 0,{
U(z, t) < U(z, t),
V (z, t) < V (z, t)

(t < 0, z ∈ R),

and

lim
t→−∞

[sup
z∈R

(U(z, t) − U(z, t)) + sup
z∈R

(V (z, t) − V (z, t))] = 0.

Applying the same argument in [2] (see also [1]) with the aid of the comparison
theorem yields that there is a solution (U(z, t), V (z, t)) satisfying

(4.12)

{
U(z, t) ≤ U(z, t) ≤ U(z, t),
V (z, t) ≤ V (z, t) ≤ V (z, t)

((z, t) ∈ R × (−∞, 0]).

Since (1.1) (or (4.1)) has the invariance with time shift, we obtain the asymptotic
behavior as t→ −∞ in the statement in Theorem 1.1.

On the other hand, to prove the asymptotic behavior as t → ∞ of the theorem,
we recall that U(z, t), V (z, t) in (4.3) are defined every t. By the asymptotic behavior

lim
t→∞

sup
z∈R

(1 − U(z, t)) = 0, lim
t→∞

sup
z∈R

V (z, t) = 0

and the fact that the solution can be continued for positive t, we obtain the desired
behavior as t→ ∞.

Proof of Corollary 1.2. Since the equation is invariant under phase shift and time
shift, the desired result follows from Theorem 1.1. For the details of the argument,
see [5].

Proof of Proposition 1.4. A straightforward computation yields

F1(u∗, v∗) = −k1 exp(2ω0t)
(1 + Φ)3

< 0,

F2(u∗, v∗) =
a exp(2ω0t)

(1 + Φ)4
> 0.
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On the other hand,

F1(u∗, v∗) =
Ψ

(1 + Ψ)2

{
ṗ− ω0 −

k1 exp(2p)
Ψ(1 + Ψ)

}
≥ Ψ

(1 + Ψ)2

{
L0 exp(p)
1 + exp(p)

− k1 exp(p)
1 + exp(p)

}
≥ 0,

F2(u∗, v∗) = − 2Ψ
(1 + Ψ)3

{
ṗ− ω0 −

a exp(2p)
2Ψ(1 + Ψ)

}
≤ − 2Ψ

(1 + Ψ)3

{
L0 exp(p)
1 + exp(p)

− a exp(p)
2(1 + exp(p))

}
≤ 0,

where we used Ψ(x, t) ≥ Ψ(0, t) = exp(p). Hence the first assertion of the proposition
is true.

By integration we obtain

p(t) − ω0t =
L0

L0 + ω0
log{ω0 + (L0 + ω0) exp(p(t))} + q,

where

q := p0 −
L0

L0 + ω0
log{ω0 + (L0 + ω0) exp(p0)}.

As t→ −∞,

p(t) − ω0t→
L0

L0 + ω0
logω0 + q.

Hence, if we take p0 as a solution of

L0

L0 + ω0
logω0 + q = 0,

namely, a solution of (1.26), then

lim
t→−∞

(p(t) − ω0t) = 0.

This yields

u∗(x, t) < u∗(x, t), v∗(x, t) < v∗(x, t) ((x, t) ∈ R × R),

and

lim
t→−∞

[sup
x∈R

(u∗(x, t) − u∗(x, t)) + sup
x∈R

(v∗(x, t) − v∗(x, t))] = 0.

The existence of the entire solution satisfying (1.25) is proven by the same argument
found in [2] (see also [5] or [1]), which is left to the reader.

Appendix. In this section we prove Lemmas 2.1, 2.2, and 2.3. We investigate the
asymptotic behavior as ξ → ±∞. For simplicity we will not specify the dependence
on j in the notation as long as there is no confusion.

We put

(u,w, v, y) = (φj(ξ), φ′j(ξ), ψj(ξ), ψ′
j(ξ)).
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Then the equations of (1.5) are written as

(A.1)

⎛⎜⎜⎝
u′

w′

v′

y′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
w

cjw − f(u, v)
y

(cj/d)y − (a/d)g(u, v)

⎞⎟⎟⎠ ,

where

f(u, v) := u(1 − u− k1v), g(u, v) := v(1 − v − k2u).

Proof of Lemma 2.1. We first consider the linearized equations of (A.1) at
(u,w, v, y) = (1, 0, 0, 0):⎛⎜⎜⎝

W ′
1

W ′
2

Y ′
1

Y ′
2

⎞⎟⎟⎠ = A1

⎛⎜⎜⎝
W1

W2

Y1

Y2

⎞⎟⎟⎠ ,(A.2)

A1 :=

⎛⎜⎜⎝
0 1 0 0
1 cj k1 0
0 0 0 1
0 0 −(a/d)(1 − k2) cj/d

⎞⎟⎟⎠ .(A.3)

All the eigenvalues of A1 consist of roots to (2.1) and (2.2). There is a negative
eigenvalue satisfying (2.1) and a corresponding eigenvector, which are given by

(A.4) λ1 = −

√
c2j + 4 − cj

2
,

⎛⎜⎜⎝
1
λ1

0
0

⎞⎟⎟⎠ .

We recall k2 > 1. Since (2.2) has a negative root, A1 has another negative eigenvalue
and a corresponding eigenvector

(A.5) λ
(j)
2 = −

√
c2j + 4ad(k2 − 1) − cj

2d
,

⎛⎜⎜⎝
s1
s1λ2

1
λ2

⎞⎟⎟⎠ , s1 :=
k1

λ2
2 − cjλ2 − 1

.

When λ1 = λ2, A1 has a generalized eigenvector⎛⎜⎜⎝
0
1
τ1
λ1τ1

⎞⎟⎟⎠ , τ1 :=
2λ1 − cj

k1
.

Thus every solution of (A.2), which converges to zeros as ξ → ∞, is given by⎛⎜⎜⎝
W1

W2

Y1

Y2

⎞⎟⎟⎠ = C1

⎛⎜⎜⎝
1
λ1

0
0

⎞⎟⎟⎠ eλ1ξ + C2

⎛⎜⎜⎝
s1
s1λ2

1
λ2

⎞⎟⎟⎠ eλ2ξ (λ1 �= λ2)
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or ⎛⎜⎜⎝
W1

W2

Y1

Y2

⎞⎟⎟⎠ = C1

⎛⎜⎜⎝
1
λ1

0
0

⎞⎟⎟⎠ eλ1ξ + C2

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
λ1

0
0

⎞⎟⎟⎠ ξ +

⎛⎜⎜⎝
0
1
τ1
λ1τ1

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ eλ1ξ (λ1 = λ2),

where C1, C2 are arbitrarily given real numbers.
Applying the stable manifold theorem to (A.1) yields that as ξ → ∞, there are α

and β such that

(A.6)

{
φ(ξ) = 1 − α exp(λ1ξ) + βs1 exp(λ2ξ) + h.o.t.,
ψ(ξ) = β exp(λ2ξ) + h.o.t.

for λ1 �= λ2, while there are α̃ and β̃ such that

(A.7)

{
φ(ξ) = 1 − α̃ exp(λ1ξ) − β̃ξ exp(λ1ξ) + h.o.t.,
ψ(ξ) = −β̃τ1 exp(λ1ξ) + h.o.t.

for λ1 = λ2.
We show β �= 0. Equation (A.1) allows a solution of the form (u,w, 0, 0), which

corresponds to a solution to

(A.8) u′ = w, w′ = cw − f(u, 0) = cw − u(1 − u).

There is a stable manifold for the equilibrium (u,w) = (1, 0) of (A.8). The stable
manifold for (u,w, v, y) = (1, 0, 0, 0) contains this dynamics that is obtained by putting
β = 0 in (A.6). By this observation we can assert that β �= 0 in (A.6) for the present
traveling wave.

Since λ1 is a negative root of (2.1), we notice that

s1 > 0 (λ2 < λ1 < 0), s1 < 0 (λ1 < λ2 < 0).

Recall that φ(ξ) and ψ(ξ) are monotone increasing and decreasing, respectively. Thus
for λ2 < λ1, α > 0 and β > 0 follow from (A.6), while for λ1 < λ2, β > 0 follows.

When λ1 = λ2, we can let β̃ �= 0 in the same argument above. Since τ1 < 0 holds,
β̃ must be positive in (A.7). This concludes the proof of the lemma.

Next we consider the linearized equation at (u,w, v, y) = (0, 0, 1, 0):

W ′ = A2W ,(A.9)

A2 :=

⎛⎜⎜⎝
0 1 0 0

k1 − 1 cj 0 0
0 0 0 1

ak2/d 0 a/d cj/d

⎞⎟⎟⎠ , W :=

⎛⎜⎜⎝
W1

W2

Y1

Y2

⎞⎟⎟⎠ .(A.10)

In this case eigenvalues of A2 are given by the roots of (1.9) and (1.10). We easily
see from (1.9) that there is a positive eigenvalue and a corresponding eigenvector

(A.11) λ3 =
cj +

√
c2j + 4ad

2d
,

⎛⎜⎜⎝
0
0
1
λ3

⎞⎟⎟⎠ .



2238 YOSHIHISA MORITA AND KOICHI TACHIBANA

Proof of Lemma 2.2. This corresponds to the bistable case (ii) stated in the
introduction. In addition to the positive eigenvalue λ3, there is a positive eigenvalue

(A.12) λ4 =
cj +

√
c2j + 4(k1 − 1)

2
,

⎛⎜⎜⎝
1
λ4

s2
s2λ4

⎞⎟⎟⎠ , s2 :=
ak2

dλ2
4 − cjλ4 − a

unless λ4 satisfies (1.9). When λ3 = λ4, we have a generalized eigenvector⎛⎜⎜⎝
τ2
τ2λ3

0
1

⎞⎟⎟⎠ , τ2 :=
2dλ3 − cj

ak2
.

Hence every solution which converges to zeros as ξ → −∞ is given by

W (ξ) = C1p1e
λ3ξ + C2p4e

λ4ξ

or

W (ξ) = C1p1e
λ3ξ + C2(p1ξ + p2)eλ3ξ,

where we put

p1 :=

⎛⎜⎜⎝
0
0
1
λ3

⎞⎟⎟⎠ , p2 :=

⎛⎜⎜⎝
τ2
τ2λ3

0
1

⎞⎟⎟⎠ , p4 :=

⎛⎜⎜⎝
1
λ4

s2
s2λ4

⎞⎟⎟⎠ .

Applying the unstable manifold theorem yields that as ξ → −∞, there exist α
and β such that

(A.13)

{
φj(ξ) = β exp(λ4ξ) + h.o.t.,
ψj(ξ) = 1 − α exp(λ3ξ) + βs2 exp(λ4ξ) + h.o.t.

for λ3 �= λ4, while there are α̃ and β̃ such that

(A.14)

{
φj(ξ) = β̃τ2 exp(λ3ξ) + h.o.t.,
ψj(ξ) = 1 − α̃ exp(λ3ξ) + β̃ξ exp(λ3ξ) + h.o.t.

for λ3 = λ4. In this case we have an unstable manifold for the equilibrium (v, y) =
(1, 0) of

v′ = y, y′ = cjy − ag(0, v),

which corresponds to β = 0 and β̃ = 0 in (A.13) and (A.14), respectively. Thus we
may assume that β �= 0, β̃ �= 0. By a similar argument applying to the behavior as
ξ → ∞, we obtain the assertion in Lemma 2.2.

Proof of Lemma 2.3. This corresponds to the monostable case (i) in the intro-
duction. There is a family of traveling waves for cj ≥ c

(j)
min ≥ 2

√
1 − k1.
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In addition to λ3 and λ4, we have a positive eigenvalue and a corresponding
eigenvector,

(A.15) λ5 =
cj −

√
c2j − 4(1 − k1)

2
,

⎛⎜⎜⎝
1
λ5

s3
s3λ5

⎞⎟⎟⎠ , s3 :=
ak2

dλ2
5 − cjλ5 − a

,

unless λ5 satisfies (1.9). We note that λ5 ≤ λ4. If λ5 < λ4 and λ4, λ5 �= λ3, any
solution converging to zeros as ξ → −∞ is given as

W (ξ) = C1p1e
λ3ξ + C2p4e

λ4ξ + C3p5e
λ5ξ,

where

p5 :=

⎛⎜⎜⎝
1
λ5

s3
s3λ5

⎞⎟⎟⎠ .

Applying the unstable manifold theorem, we obtain{
φj(ξ) = β exp(λ4ξ) + γ exp(λ5ξ) + h.o.t.,
ψj(ξ) = 1 − α exp(λ3ξ) + βs2 exp(λ4ξ) + γs3 exp(λ5ξ) + h.o.t.

By the same reason as in the previous case, we can assert (β, γ) �= (0, 0). This leads
to (2.12).

When λ5 = λ4 < λ3, we obtain

W (ξ) = C1p1e
λ3ξ + C2(p4ξ + p̃4)eλ4ξ + C3p4e

λ4ξ,

where

p̃4 :=

⎛⎜⎜⎝
0
1
τ4
τ5

⎞⎟⎟⎠ ,

(
τ4
τ5

)
:=

s2
dλ2

4 − cjλ4 − a

(
cj − 2dλ4

−dλ2
4 − a

)
(λ4 = λ5 = cj/2).

Applying the unstable manifold theorem to this case yields{
φj(ξ) = β exp(λ4ξ) + γ exp(λ4ξ) + h.o.t.,
ψj(ξ) = 1 − α exp(λ3ξ) + β(s2ξ + τ4) exp(λ4ξ) + γs2 exp(λ4ξ) + h.o.t.,

where we again see that (β, γ) �= (0, 0). This leads to (2.14).
For the cases λ5 < λ3 = λ4 and λ5 = λ3 < λ4 all the solutions converging to zeros

as ξ → −∞ are given by

W (ξ) = C1p1e
λ3ξ + C2(p1ξ + p2)eλ3ξ + C3p5e

λ5ξ

and

W (ξ) = C1p1e
λ3ξ + C2(p1ξ + p2)eλ3ξ + C3p4e

λ4ξ,
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respectively. When λ3 = λ4 = λ5 = cj/2, we obtain one more generalized eigenvector
so that the solution is given by

W (ξ) = C1p1e
λ3ξ + C2(p1ξ + p2)eλ3ξ + C3(p1ξ

2/2 + p2ξ + p3)eλ3ξ,

where

p3 :=

⎛⎜⎜⎝
d/ak2

λ3(3d− 2)/ak2

0
0

⎞⎟⎟⎠ .

By those solutions it is not so difficult to prove the remaining cases (iii), (iv), and (v)
of Lemma 2.3. Completing the proof is left to the reader.
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AND THE TRUNCATED MOMENT PROBLEM∗
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Abstract. In this paper, we employ linear combinations of n heat kernels to approximate

solutions to the heat equation. We show that such approximations are of order O(t
( 1
2p

− 2n+1
2

)
) in

Lp-norm, 1 ≤ p ≤ ∞, as t → ∞. For positive solutions of the heat equation such approximations
are achieved using the theory of truncated moment problems. For general sign-changing solutions
these type of approximations are obtained by simply adding an auxiliary heat kernel. Furthermore,
inspired by numerical computations, we conjecture that such approximations converge geometrically
as n→ ∞ for any fixed t > 0.

Key words. heat equation, moments, asymptotics convergence rates, approximation of an
integral formula, heat kernel
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1. Introduction. It is well known that

u(x, t) =
∫

u0(c)√
4πt

e
−(x−c)2

4t dc(1.1)

is the physically meaningful solution to the heat equation

ut = uxx, u(x, 0) = u0(x) ∈ L1(R), x, u ∈ R, t > 0,(1.2)

where, for simplicity, the initial value u0(x) is assumed to be continuous. In this
paper, we shall refer to (1.1) as the solution of the heat equation (1.2) for the sake of
brevity. If a general L1 initial value is considered, no asymptotic convergence order to
a fundamental solution is expected in L1-norm. Hence, the asymptotic convergence
order is usually studied under suitable restrictions on its initial value u0(x) for |x|
large.

Since the analysis of this paper is based on the moments of the solution, the initial
value u0(x) is required to have finite moments up to certain order, say, 2n. We set
x2nu0(x) ∈ L1(R) and the moments of the initial value u0(x) as

γk :=
∫
xku0(x)dx <∞, k = 0, 1, . . . , 2n.(1.3)

For example, if the initial value has an algebraic decay order higher than 2n+ 1 for
|x| large, i.e., for ε > 0,

u0(x) = O
(
|x|−(2n+1+ε)

)
as |x| → ∞,(1.4)
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then the moments are well defined up to order 2n. In the study of asymptotics the
initial value is frequently assumed to have the order that a fundamental solution has
for |x| large. For the heat equation case the fundamental solution is the Gaussian and
the corresponding decay order is u0(x) = O(e−x2

) as |x| → ∞. Hence, the moment
γk is defined for all order k ≥ 0.

One may do the integration in the explicit formula (1.1) only approximately, even
though the integration gives the exact value of the solution. In numerical computa-
tions finding an efficient way to compute such an integration has been an important
issue. From this point of view, it seems useful to consider its approximation in a
simpler form. Duoandikoetxea and Zuazua [9] showed that the following linear com-
bination of derivatives of the Gaussian

ψ2n(x, t) ≡
2n−1∑
i=0

(−1)iγi

(i!)
√

4πt
∂i

x

(
e

−x2

4t

)
(1.5)

approaches to the solution u with a convergence order of

‖u(t) − ψ2n(t)‖p = O
(
t(

1
2p− 2n+1

2 )
)

as t→ ∞ for 1 ≤ p ≤ ∞,(1.6)

where ‖ · ‖p denotes the Lp-norm in the whole space R and ∂i
x the ith order partial

differentiation with respect to x. Note that the original multidimensional result is
written in a one-dimensional (1D) version for an easier comparison. This asymptotic
convergence order indicates that ψ2n is a good approximation of the solution u(x, t)
for t large. However, it does not necessarily mean that ψ2n is a good approximation
as n → ∞ with a fixed t > 0. In fact, Table 7.3 shows that this Lp-norm difference
may diverge geometrically as n→ ∞ if the fixed time t > 0 is not large enough. This
is not surprising since the high order derivatives of the Gaussian in (1.5) diverge as
their orders increase.

In this article we consider a linear combination of “n” heat kernels

φn(x, t) ≡
n∑

i=1

ρi√
4πt

e
−(x−ci)

2

4t(1.7)

as an approximation to the solution u(x, t). One may regard this summation as a
discrete version of the integration in (1.1) by considering ci’s as grid points and ρi’s
as approximations of u0(c)dc in the interval (ci−1, ci). However, we employ these 2n
degrees of freedom, ρi’s and ci’s, to match the first 2n initial moments, i.e., to satisfy
the following 2n moment equations:

lim
t→0

∫
xkφn(x, t)dx = γk, k = 0, 1, . . . , 2n− 1.(1.8)

If the initial value is positive, the theory of truncated moment problems [3] gives the
solvability of this problem. Then φn and u share identical first 2n moments for all
t ≥ 0. Note that ψ2n in (1.5) also has the same property, and Duoandikoetxea and
Zuazua obtained the convergence order in (1.6) based on it. Hence, we may obtain
the same convergence order for the approximation φn(x, t). In this paper, we actually
go a little bit further and obtain the limit of t

2n+1
2 − 1

2p ‖u(t) − φn(t)‖p as t → ∞.
This convergence order is then improved in Lemma 2.3 for the case that this limit
becomes zero. A multidimensional extension of this approach requires a theory of
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multidimensional truncated moment problems. One may find one from a recent work
by Curto and Fialkow [4].

From a practical point of view, it is desirable if the solution u can be approximated
by φn as n → ∞ for a fixed t > 0. Indeed, our numerical examples in section 7.2
indicate the following geometric convergence order:

‖u(t) − φn(t)‖∞
‖u(t) − φn+1(t)‖∞

→ 1 + 4
t

v
as n→ ∞,(1.9)

where the constant v > 0 depends on the initial value u0(x). However, its proof has,
thus far, eluded us; nevertheless, we will include a discussion of (1.9) in section 6.

This paper is organized as follows. First, in section 2, we compute the limit of
t(

2n+1
2 − 1

2p )‖u(t) − φn(t)‖p as t → ∞ under the assumption (1.8), which gives the
convergence order in (1.6). A short introduction to the theory of truncated moment
problems is given in section 3, which provides the existence and the uniqueness of ρi’s
and ci’s that solve (1.8). We remark that the theory is applicable for nonnegative
initial values only (see [1, 3]). For general sign-changing solutions the existence and
the uniqueness of such ρi’s and ci’s do not hold. In section 4 we discuss this issue in
detail for three cases with n = 1, 2, and 3. In section 5 we construct approximations
for general sign-changing cases by adding an auxiliary heat kernel or by assigning
ci’s independently. The conjectured geometric convergence order for large n > 0 is
discussed in section 6. The asymptotic convergence orders as t → ∞ or n → ∞
are numerically tested in sections 7.1 and 7.2. The convergence of the alternative
approach using ψ2n and the conjectured statements in section 6 are numerically tested
in sections 7.3 and 7.4.

In the study of nonlinear diffusion or convection, fundamental solutions which
have the Dirac measure as their initial value, i.e., u0(x) = δ(x), often serve as canoni-
cal solutions. The Barenblatt solutions, the diffusion waves, and the N-waves are well-
known examples (see [23]). In the study of porous medium equations, the Barenblatt
solution is used as an asymptotic profile and the convergence order of general solutions
to this special one has been studied in various cases (see [2, 6] and references therein).
The diffusion wave and the Gaussian are the asymptotics of convection-diffusion equa-
tions for diffusion dominant cases (see [10, 11, 12, 16] ). For convection dominant cases
(see [14]) and inviscid convection equations (see [5, 8, 13, 20]) or hyperbolic systems
(see [7, 17, 18]), N-waves represent the asymptotic behavior, where N-waves can be
understood as a special solution with initial value u0(x) = limε→0[aδ(x−ε)−bδ(x+ε)]
with a, b > 0. Placing the Dirac measure at the center of mass, the optimal conver-
gence order of O(t

1
2p− 3

2 ) in Lp-norm (or of O(t−1) in L1-norm) has been obtained in
several cases (see [2, 13, 15]). Therefore, the result of this paper can be viewed as an
extreme case that exploits all of the moments of the initial value.

The approach in this paper can be directly employed to approximate the solutions
to the Burgers equation via the Cole–Hopf transformation. To obtain the rigorous
convergence order for the Burgers case it is required to check the well definedness of
the transformed solutions as is done in Lemmas 3.1–3.2 and Theorem 3.3 in [15] for
the special case n = 1. Considering that the Burgers equation has been used as a
tool to study the asymptotic structure of the viscous systems of conservation laws
(see, e.g., [19]), we hope the approach in this article may be useful for other general
models.

2. Asymptotic convergence order. In this section, we show that the decay
rate of a derivative of a solution is naturally transferred to the convergence order
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of our approximation. This connection will be made by assigning the moments of a
solution to its approximation. Let γk(t) be the kth order moment of a solution u(x, t)
at time t ≥ 0, i.e.,

γk(t) =
∫
xku(x, t)dx, k = 0, 1, 2, . . . , t ≥ 0.

(Notice that we are slightly abusing the notation γk in (1.3) in the following couple
of paragraphs.) We can easily show how the moment γk(t) evolves as t→ ∞.

Lemma 2.1. Let u(x, t) be the solution to the heat equation and γk(t) be its kth
order moment at time t ≥ 0. Then

d

dt
γk(t) =

{
0 , k = 0 or 1,

k(k − 1)γk−2(t), k ≥ 2.

Proof. For k = 0, the lemma is equivalent to the conservation of mass. For k = 1,
since ut = uxx, the integration by parts gives

γ′1(t) =
∫
xutdx =

∫
xuxxdx = [xux − u]∞−∞ = 0.

Similarly, for k ≥ 2, we obtain

γ′k(t) =
∫
xkutdx =

∫
xkuxxdx

=
[
xkux − kxk−1u

]∞
−∞ +

∫
k(k − 1)xk−2udx = k(k − 1)γk−2(t).

This lemma shows that even numbered moments and odd numbered ones evolve
independently. One may explicitly write

γ2n(t) =
n∑

k=0

(2n)!
(n− k)!(2k)!

tn−kγ2k(0),

γ2n+1(t) =
n∑

k=0

(2n+ 1)!
(n− k)!(2k + 1)!

tn−kγ2k+1(0).
(2.1)

If γk(0) = 0 for all 0 ≤ k ≤ n, then γk(t) = 0 for all 0 ≤ k ≤ n, γk(t) = γk(0) for
k = n+1, n+2, γk(t) is linear for k = n+3, n+4, γk(t) is quadratic for k = n+5, n+6,
and so on.

Let v(x, t) be an approximation solution of the exact one u(x, t). Since the dif-
ference E(x, t) = v(x, t)− u(x, t) is also a solution to the heat equation, the moments
of E(x, t) will be always zero up to certain order if they are initially zero. Hence,
it is natural to expect a higher convergence order by matching the moments of the
approximation solution to those of the exact one. We proceed with our discussion in
this respect.

Lemma 2.2. If xmE0(x) ∈ L1(R) and∫ ∞

−∞
xkE0(x)dx = 0 for all 0 ≤ k < m,(2.2)

then there exists Em ∈ Wm,1(R) such that

∂m
x Em(x) = E0(x).(2.3)



HIGHER ORDER APPROXIMATIONS IN THE HEAT EQUATION 2245

Proof. The proof was given by Duoandikoetxea and Zuazua [9] for the multidi-
mensional case. Here we provide its 1D counterpart. Consider a sequence of functions
defined inductively by

Ek(x) =
∫ x

−∞
Ek−1(y)dy, 0 < k ≤ m.(2.4)

First, we show that Ek’s are well defined,∫ ∞

−∞
Ek(x)dx = 0 and Ek(x) → 0 as |x| → ∞(2.5)

for k = 0, 1, . . . ,m− 1. It suffices to show (2.5) for k = l < m under the assumption
that (2.5) holds for all k = 0, 1, . . . , l − 1. Note that it is clearly satisfied for k = 0.
Since

∫∞
−∞El−1(x)dx = 0, the integral El(x) also decays to zero as |x| → ∞. Using

the fact that Ek decays to zero as |x| → ∞ for all 0 ≤ k ≤ l, we obtain∫ ∞

−∞
El(x)dx = (−1)l

∫ ∞

−∞

xl

l!
E0(x)dx = 0

using the integration by parts and then (2.2). Therefore, (2.5) holds for k = l and,
hence, for all 0 ≤ k ≤ m − 1. Since xmE0(x) ∈ L1(R), Em ∈ Wm,1(R) and (2.3) is
satisfied.

The existence of Em satisfying (2.3) is the key observation to obtain the asymp-
totic convergence order. We now continue our discussion under the assumption that
the initial value E0(x) satisfies (2.2) and Em(x) is its mth order antiderivative given
in Lemma 2.2. However, the following discussions about the decay rate of derivatives
of a solution can be considered independently. Let Em(x, t) be the solution to the
heat equation with initial value Em(x, 0) = Em(x) ∈Wm,1(R), i.e.,

Em(x, t) =
1√
4πt

∫
e−(x−y)2/(4t)Em(y)dy.

The dissipation of the solution can be easily shown by introducing similarity variables:

ξ =
x√
t
, ζ =

y√
t
, Ẽm(ξ, t) = Em(x, t).

Then Em(x, t) is transformed to

Ẽm(ξ, t) =
1√
4π

∫
e−(ξ−ζ)2/4Em(

√
tζ)dζ,

and its mth order derivative is given by

∂m
ξ Ẽm(ξ, t) = ∂m

x Em(x, t)(∂ξx)m = ∂m
x Em(x, t)

(√
t
)m
.

Now consider the decay order of the mth order derivative of the solution Em(x, t).
First, let Cm := |

∫
Em(y)dy| and consider the case Cm 
= 0. Then

(√
t
)m+1|∂m

x Em(x, t)| =
√
t
∣∣∣∂m

ξ Ẽm(ξ, t)
∣∣∣ =

Cm√
4π

∣∣∣∣∫ f(ζ)gt(ξ − ζ)dζ
∣∣∣∣ ,(2.6)

where

gt(ξ) =
√
tEm

(√
tξ
)
/Cm, f(ξ) = ∂m

ξ

(
e−ξ2/4

)
.(2.7)
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After taking the supremum on both sides of (2.6), one obtains that

(√
t
)m+1‖∂m

x Em(t)‖∞ ≤ Cm√
4π

∥∥∥∂m
ξ

(
e−ξ2/4

)∥∥∥
∞
.

If one takes t→ ∞ limit to (2.6), then

lim
t→∞

(√
t
)m+1|∂m

x Em(x, t)| =
Cm√

4π
|f(ξ)|.

Therefore, after taking the supremum on both sides again, we obtain

lim
t→∞

(√
t
)m+1‖∂m

x Em(t)‖∞ =
Cm√

4π

∥∥∥∂m
ξ

(
e−ξ2/4

)∥∥∥
∞
.

On the other hand, if 1 ≤ p <∞, then

t(
m+1

2 − 1
2p ) ‖∂m

x Em(t)‖p

=
(√
t
)m+1

(
1√
t

)1/p(∫
|∂m

x Em(x, t)|pdx
)1/p

=
(∫ ∣∣∣(√t)m+1

∂m
x Em(x, t)

∣∣∣p d( x√
t

))1/p

=
(∫ ∣∣∣√t∂m

ξ Ẽm(ξ, t)
∣∣∣p dξ)1/p

=
Cm√

4π

(∫ ∣∣∣∣∫ f(ζ)gt(ξ − ζ)dζ
∣∣∣∣p dξ)1/p

=
Cm√

4π
‖f ∗ gt‖p.

(2.8)

Standard arguments imply that ‖f∗gt‖p → ‖f‖p as t→ ∞ (see [21, p. 62]). Therefore,

lim
t→∞

t(
m+1

2 − 1
2p )‖∂m

x Em(t)‖p =
Cm√

4π

∥∥∥∂m
ξ

(
e−ξ2/4

)∥∥∥
p
.

Now we consider the case that Cm = 0. Then one can easily show that this limit is
zero. In fact, we will improve the convergence order by working with higher order
antiderivatives. Let

Ek(x) =
∫ x

−∞
Ek−1(y)dy, k > m.(2.9)

We can easily show that
∫∞
−∞Ek0(x)dx(= limx→∞Ek0+1(x) ) 
= 0 for some k0 > m.

Suppose that
∫∞
−∞ Ek(x)dx = 0 for all k > m. Then |Ek(x)| decays to zero for

|x| large, and, therefore, after integrating by parts k times with proper inductive
arguments, one obtains

(−1)kk!
∫ ∞

−∞
Ek(x)dx =

∫ ∞

−∞
xkE0(x)dx = 0.

On the other hand, by the Weierstrass approximation theorem, there exists a sequence
of polynomials Pn such that

Pn(x) → E0(x) as n→ ∞
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uniformly on any bounded domain [−L,L]. Therefore, we obtain

‖E0‖2
2 =

∫ L

−L

E2
0(x)dx = lim

n→∞

∫ L

−L

Pn(x)E0(x)dx = 0.

Hence, if the initial value E0 is not a trivial one, there exists k0 > m such that
limx→∞Ek(x) = 0 for all 0 ≤ k ≤ k0 and Ck0 := | limx→∞Ek0+1(x)| 
= 0. If E0(x)
decays with an algebraic order k0 +1+ε, ε > 0, for |x| large, then Ck0 <∞. However,
Ck0 can be unbounded in general.

Let Ek0(x, t) be the solution with Ek0(x) as its initial value. Then, clearly,
∂m

x Em = ∂k0
x Ek0 = E0 and, hence,

lim
t→∞

t

(
k0+1

2 − 1
2p

)
‖∂m

x Em‖p = lim
t→∞

t

(
k0+1

2 − 1
2p

) ∥∥∂k0
x Ek0

∥∥
p

=
Ck0√

4π

∥∥∥∥∂k0

ξ e
−ξ2

4

∥∥∥∥
p

.

Therefore, if Cm := |
∫
Em(y)dy| = 0, one obtains a higher decay order. Summing

up, we obtain the following lemma.
Lemma 2.3. Let Em(x, t) be the solution to the heat equation with a nontrivial

initial value Em(x) ∈ Wm,1(R) and Ek’s be given inductively by (2.9). Then there ex-
ists k0 ≥ m such that limx→∞Ek(x) = 0 for 0 ≤ k ≤ k0 and 0 
= | limx→∞Ek0+1(x)|,
and, for m ≤ k ≤ k0,

lim
t→∞

t(
k+1
2 − 1

2p )‖∂m
x Em(t)‖p =

∥∥∥∂k
ξ e

−ξ2/4
∥∥∥

p√
4π

∣∣∣∣∫ Ek(x)dx
∣∣∣∣ , 1 ≤ p ≤ ∞.(2.10)

If
∫
Em(x)dx = 0, then the limit in (2.10) implies that limt→∞ t(

m+1
2 − 1

2p )‖∂m
x Em‖p =

0. Hence, we may simply say that

lim
t→∞

t(
m+1

2 − 1
2p )‖∂m

x Em(t)‖p =

∥∥∥∂m
ξ

(
e−ξ2/4

)∥∥∥
p√

4π

∣∣∣∣∫ Em(x)dx
∣∣∣∣ , 1 ≤ p ≤ ∞,(2.11)

which is a weaker statement than (2.10) is. Note that one may obtain the upper bound
of the term t(

m+1
2 − 1

2p )‖∂m
x Em(t)‖p using Young’s inequality. In fact, the corresponding

upper bound for the estimate ψ2n was obtained in [9].
In the following, we take the convergence order in (2.11) for simplicity. If an

optimal convergence order is concerned and
∫
Em(x)dx = 0, then one may refer to

(2.10). It is well known that an L1 solution to the heat equation decays to zero with
order O(t−1/2). Lemma 2.3 says that the decay order of its derivative is increased by
1
2 after each differentiation. The asymptotic convergence order between two solutions
is now obtained as a corollary of previous lemmas.

Theorem 2.4. Let u(x, t) and v(x, t) be solutions of the heat equation with initial
values u0(x) and v0(x), respectively. Suppose that the initial difference E0(x) :=
u0(x) − v0(x) satisfies the assumptions in Lemma 2.2. Then, for 1 ≤ p ≤ ∞,

lim
t→∞

t(
m+1

2 − 1
2p )‖u(t) − v(t)‖p =

∥∥∥∂m
ξ

(
e−

1
4 ξ2
)∥∥∥

p√
4π

∣∣∣∣∫ Em(x)dx
∣∣∣∣ ,(2.12)

where Em ∈Wm,1(R) is the one that satisfies ∂m
x Em(x) = E0(x).
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Proof. Let Em(x, t) be the solution to the heat equation with initial value Em(x).
Then ∂m

x Em(x, t) is the solution to the heat equation with initial value ∂m
x Em(x) =

E0(x). Hence, ∂m
x Em(x, t)(= E(x, t) ) = u(x, t) − v(x, t) and (2.12) follows from

(2.11).
Remark 2.5. In this section, we basically considered the convergence order of

φn(x, t) (∼= v(x, t)) to u(x, t) as t → ∞ with a fixed n > 0. However, the relation
(2.6), for example, provides certain convergence information as n → ∞ with a fixed
t > 0, too. To obtain a convergence order as n → ∞ we need to specify Em(x)
corresponding to our approximation φn(x, t), which will be considered in section 6.

3. Positive solutions and truncated moment problems. Consider a linear
combination of heat kernels

φn(x, t) :=
n∑

i=1

ρi√
4πt

e−(x−ci)
2/(4t).(3.1)

The 2n freedom of choices in ρi’s and ci’s are used to control the first 2n moments of
the approximation. Remember that γk is to denote the initial kth moment, i.e.,

γk :=
∫
xku0(x)dx, k = 0, 1, . . . , 2n− 1.(3.2)

Let rk be a column n-vector and A be the n× n Hankel matrix given by

rk = (γk, γk+1, . . . , γk+n−1)t, k = 0, 1, . . . , n,
A ≡ (aij) = (γi+j), i, j = 0, 1, . . . , n− 1.(3.3)

Since φn(x, t) →
∑n

i=1 ρiδci(x) as t → 0, the difference between the initial value
and its approximation is

E0(x) := u0(x) −
n∑

i=1

ρiδci(x),

where δci(x) is the Dirac measure centered at ci, i.e., δci(x) = δ(x − ci). Hence, the
zero moment conditions in (2.2) can be written as∫ n∑

i=1

xkρiδci(x) dx =
∫
xku0(x) dx(≡ γk), 0 ≤ k ≤ 2n− 1,(3.4)

or, in a matrix form, as⎛⎜⎜⎜⎜⎜⎜⎝
1 · · · 1
c1 · · · cn
· · · · ·
· · · · ·
· · · · ·

c2n−1
1 · · · c2n−1

n

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

ρ1

·
·
ρn

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
γ0

γ1

·
·
·

γ2n−1

⎞⎟⎟⎟⎟⎟⎟⎠ .(3.5)

After eliminating all ρi’s (see section 4.3), one may obtain n-equations involving
ci’s only:

AΨ = rn,(3.6)
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where the column vector Ψ = (ψ0, . . . , ψn−1)t is given by

ψ0 = (−1)n+1
n∏

i=1

ci, ψ1 = (−1)n
n∑

j=1

∏
i�=j

ci, . . . , ψn−1 =
n∑

i=1

ci.(3.7)

Consequently, we set

gn(x) := xn −
n−1∑
j=0

ψjx
j = (x− c1)(x − c2) · · · (x− cn).(3.8)

(Note that the coefficient of the leading order term is 1 and, hence, gn(x) → ∞ as
x→ ∞.) Hence, if the initial moments in (3.4) are satisfied, then ci’s are zero points
of the polynomial gn(x), where its coefficients are given as a solution of (3.6).

To show the existence and the uniqueness of the approximation we should show
that the Hankel matrix in (3.6) is nonsingular. Then there exists a unique column
vector Ψ = (ψ0, . . . , ψn−1)t that satisfies (3.6). The next thing to show is that the
polynomial gn(x) in (3.8) has n distinct real zeros c1 < · · · < cn. Then ρi’s are given
by solving the Vandermonde given by the first n-equations in (3.5), i.e.,⎛⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
c1 c2 · · · cn
· · · · · ·
· · · · · ·
· · · · · ·
cn−1
1 cn−1

2 · · · cn−1
n

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
ρ1

ρ2

·
·
·
ρn

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
γ0

γ1

·
·
·

γn−1

⎞⎟⎟⎟⎟⎟⎟⎠ .(3.9)

It is well known that the Vandermonde matrix is nonsingular if ci’s are all different.
Then we can easily check that ci’s and ρi’s also satisfy the last n-equations in (3.5).

For a general sign-changing initial value u0(x) the Hankel matrix A can be sin-
gular, and examples are given in section 4. However, if the initial value u0(x) is
nonnegative, then the uniqueness and the existence are resolved by the theory for the
moment problem (see [1, 3]). In the following, we assume u0(x) ≥ 0 and introduce
this technique briefly for the completeness and the later use in this paper. Consider

ΨtAΨ =
n−1∑
i,j=0

ψiψjγi+j =
∫ n−1∑

i,j=0

ψix
iψjx

ju0(x)dx =
∫ (n−1∑

k=0

ψkx
k

)2

u0(x)dx.

Since the integrand (
∑n−1

k=0 ψkx
k)2u0(x) is nonnegative, we have ΨtAΨ ≥ 0. Further-

more, ΨtAΨ = 0 if and only if (
∑n−1

k=0 ψkx
k)2u0(x) = 0 for all x ∈ R. For Ψ 
= 0,

the polynomial
∑n−1

k=0 ψkx
k has at most n− 1 zeros and, therefore, ΨtAΨ > 0 if the

support of the initial value u0 consists of at least n points. Hence, we may conclude
that the Hankel matrix A ≡ (γi+j)n−1

i,j=0 is nonsingular. (The proof is originally done
by Hamburger.)

To show that gn(x) has n-distinct real zeros, consider a linear functional S on the
space of polynomials defined by

S(r) :=
l∑

i=0

riγi = r0γ0 + · · · + rlγl for r(x) =
l∑

i=0

rix
i.
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Then, the same statements used for the positivity of ΨtAΨ also show that

S(r2) = S

⎛⎝ l∑
i,j=0

rirjx
i+j

⎞⎠ =
l∑

i,j=0

rirjγi+j > 0.

Suppose that r(x) ≥ 0. Then the degree of the polynomial r(x) is even and there
exist two polynomials p, q such that r(x) = p2(x) + q2(x) (see [1, p. 2]). So S(r) =
S(p2) + S(q2) > 0.

Since A is nonsingular, there exists an n-vector Ψ = (ψ0, . . . , ψn−1) uniquely so
that AΨ = rn, i.e.,

n−1∑
j=0

ψjrj = rn

or

γn+k −
n−1∑
j=0

ψjγj+k = 0, k = 0, 1, . . . , n− 1.(3.10)

Considering the polynomial gn(x) and the definition of the functional S(r), we
can easily check that (3.10) implies

S
(
gnx

k
)

= 0, k = 0, 1, . . . , n− 1.(3.11)

Suppose that gn(x) never changes its sign. Then gn(x) ≥ 0 and, hence, S(gn) > 0,
which contradicts (3.11) with k = 0. Suppose that gn(x) changes its sign at points
c1, . . . , cl only. Then gn(x)(x−c1) · · · (x−cl) ≥ 0 and S(gn(x)(x−c1) · · · (x−cl)) > 0.
On the other hand, if l < n, then the linearity of the functional S(r) together with
(3.11) implies that S(gn(x)(x− c1) · · · (x− cl)) = 0. Hence, we obtain that gn(x) has
n-distinct real roots, say, c1 < · · · < cn.

Now we show that there exist ρi’s that solve (3.5) in a unique way, i.e.,

n∑
i=1

ρic
l
i = γl, l = 0, 1, . . . , 2n− 1.(3.12)

Since ci’s are all different, there exists a unique solution for the Vandermonde (3.9);
i.e., (3.12) is satisfied for all 0 ≤ l < n. Now we complete the proof using inductive
arguments. Let 0 ≤ k ≤ n − 1. We will show that the identity in (3.12) holds for
l = n + k under the assumption that it holds for all 0 ≤ l < n + k. First, observe
that, since ci’s are zero points of xkgn(x), k ≥ 0,

cn+k
i =

n−1∑
j=0

ψjc
j+k
i for any 1 ≤ i ≤ n, k ≥ 0.

Using the relations (3.10) and (3.12) for l < n+ k, we obtain

γn+k =
n−1∑
j=0

ψjγj+k =
n−1∑
j=0

ψj

n∑
i=1

ρic
j+k
i =

n∑
i=1

ρi

n−1∑
j=0

ψjc
j+k
i =

n∑
i=1

ρic
n+k
i .

Hence, (3.12) holds by the induction.
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In summary, the proof of the existence and the uniqueness of the solution to the
problem (3.5) consists of three steps. The invertibility of the Hankel matrix A in
(3.6) and the existence of n-distinct real roots ci’s of gn are the first two. The latter
depends on the positive definiteness of the matrix A which is easily proved for positive
initial value u0(x). On the other hand, after obtaining ci’s, finding ρi’s that satisfy
(3.5) does not require the positivity. It depends only on the recursive structure of the
problem. The following theorem is now clear from Theorem 2.4.

Theorem 3.1. Let u(x, t) be the solution to the heat equation with initial value
u0(x). If u0(x) is nonnegative (or nonpositive) and x2nu0(x) ∈ L1(R), then there
exist ρi, ci, i = 1, . . . , n, such that, for φn(x, t) ≡

∑n
i=1

ρi√
4πt

e−(x−ci)
2/(4t),

lim
t→∞

t
2n+1

2 − 1
2p ‖u(t) − φn(t)‖p =

∥∥∥∂2n
ξ

(
e−

1
4 ξ2
)∥∥∥

p√
4π

∣∣∣∣∫ E2n(x)dx
∣∣∣∣ ,(3.13)

where 1 ≤ p ≤ ∞ and E2n(x) ∈W 2n,1(R) is the 2nth order antiderivative of E0(x) =
u(x, 0) − φn(x, 0). Furthermore, such a function φn(x, t) is unique.

Remark 3.2. The system (3.5) can be solved by commercial software such as
Maple. However, since the problem is highly nonlinear, it takes a very long time even
for small n. Therefore, even for the computational purpose, one needs to follow the
steps of the proof to construct φn(x).

4. General initial value. In this section, we consider a general initial value
which may change its sign. Then the existence and the uniqueness theory of the
previous section is not applicable since it is for positive solutions only. In this section,
we observe that the existence and uniqueness may fail for a general solution.

4.1. Approximation with a single heat kernel. For the case n = 1, the
approximation φ1(x, t) = ρ1√

4πt
e−(x−c1)

2/(4t) is obtained by solving

ρ1 = γ0, c1 ρ1 = γ1.(4.1)

If γ0 
= 0, c1 is uniquely decided by c1 = γ1/γ0; i.e., c1 is the center of the mass of
the initial mass distribution u0. The convergence order in Theorem 2.4 is written as

lim
t→∞

t(
3
2−

1
2p )‖u(t) − φ1(t)‖p =

∥∥∥∂2
ξ

(
e−

1
4 ξ2
)∥∥∥

p√
4π

∣∣∣∣∫ ∞

−∞
E2(x)dx

∣∣∣∣ , 1 ≤ p ≤ ∞,

where E2(x) is the second order antiderivative of the initial error E0(x) := u0(x) −
ρ1δc1(x) given by (2.4), i.e., E2(x) =

∫ x

−∞
∫ y

−∞(u0(z) − ρ1δc1(z))dzdy.
Now consider the singular case γ0 = 0. Then the approximation is simply φ1 ≡ 0.

If γ1 = 0, then the equation for the first moment is satisfied for any c1 ∈ R and we
obtain the above convergence order which is equivalent to the decay rate u(x, t). If
γ1 
= 0, (4.1) has no solution and we do not obtain a single heat kernel approximation
φ1 with the desirable convergence order O(t(

1
2p− 3

2 )) for t large.

4.2. Approximation with two heat kernels. The double heat kernel solution
φ2(x, t) =

∑2
i=1

ρi√
4πt

e−(x−ci)
2/(4t) that approximates the solution u(x, t) is obtained

by solving

ρ1 + ρ2 = γ0, ρ1c1 + ρ2c2 = γ1,
ρ1c

2
1 + ρ2c

2
2 = γ2, ρ1c

3
1 + ρ2c

3
2 = γ3.

(4.2)
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We may simplify the equation by eliminating ρi’s and obtain two equations of the
form AΨ = r2, i.e., (

γ0 γ1

γ1 γ2

)(
ψ0

ψ1

)
=
(
γ2

γ3

)
.

First, we need to check the invertibility of the Hankel matrix. Its determinant is the
variance of the initial value u0 if it is a probability distribution, i.e.,

|A| = γ0γ2 − γ2
1 .

If |A| 
= 0, ψi’s can be solved using Cramer’s rule, and ci’s are zeros of a quadratic
function

g2(x) = x2 +
γ1γ2 − γ0γ3

|A| x+
γ1γ3 − γ2

2

|A| .

Hence, the centers c1, c2 are given by

c1,2 =
(γ0γ3 − γ1γ2) ±

√
D

2|A| , c1 < c2,(4.3)

under two assumptions

|A| = γ0γ2 − γ2
1 
= 0, D := (γ1γ2 − γ0γ3)2 − 4

(
γ0γ2 − γ2

1

) (
γ1γ3 − γ2

2

)
> 0.(4.4)

After obtaining ci’s, the problem (3.5) is easily solved and gives

ρ1 =
γ0c2 − γ1

c2 − c1
, ρ2 =

γ0c1 − γ1

c1 − c2
.(4.5)

From Theorem 2.4 we may conclude that if D > 0 and |A| 
= 0, then

lim
t→∞

t(
5
2−

1
2p )‖u(t) − φ2(t)‖p ≤

∥∥∥∂4
ξ

(
e−

1
4 ξ2
)∥∥∥

p√
4π

∣∣∣∣∫ ∞

−∞
E4(x)dx

∣∣∣∣ , 1 ≤ p ≤ ∞,(4.6)

where E4(x) is the fourth order antiderivative of the initial error E0(x) := u0(x) −∑2
i=1 ρiδci(x) given by (2.4).

Example 4.1. Consider an initial value

Ul(x) =

⎧⎨⎩
−1, −2l− 0.5 < x < −l− 0.5, l + 0.5 < x < 2l + 0.5,

1, −l− 0.5 ≤ x ≤ l + 0.5,
0, otherwise,

(4.7)

where l > 0. Let γk,l be the kth moments of the function Ul(x), i.e.,

γk,l :=
∫
xkUl(x)dx, k = 0, 1, . . . .

Then γ0,l = 1 for all l > 0 and, since Ul is an even function, γk,l = 0 for k = 1, 3, 5, . . . .
Hence, |A| and D in (4.4) are given by

|A| = γ2,l, D = 4(γ2,l)3.
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One may easily check that γ2,l = 0, if and only if

l = l2 := 0.5
(

3
√

2 − 1
)
/
(

2 − 3
√

2
)
,

and D = 4(γ2,l)3 > 0, if and only if l < l2. Hence, the moment problem (4.2) with
the initial value Ul(x) is solvable only for l < l2. This example says that, even if the
Hankel matrix is nonsingular, φ2(x, t) that satisfies convergence order in (4.6) may
not exist.

4.3. Approximation with three heat kernels. The derivation of (3.6) from
(3.5) is not clear without some calculations. In the following, such a derivation is
given for an example. For the case n = 3 the system (3.5) reads

ρ1 + ρ2 + ρ3 = γ0,
ρ1c1 + ρ2c2 + ρ3c3 = γ1,
ρ1c

2
1 + ρ2c

2
2 + ρ3c

2
3 = γ2,

ρ1c
3
1 + ρ2c

3
2 + ρ3c

3
3 = γ3,

ρ1c
4
1 + ρ2c

4
2 + ρ3c

4
3 = γ4,

ρ1c
5
1 + ρ2c

5
2 + ρ3c

5
3 = γ5.

(4.8)

Multiply c1 to the kth equation and subtract (k + 1)th one from it for k = 1, . . . , 5
and obtain five equations without ρ1, i.e.,

ρ2(c1 − c2) + ρ3(c1 − c3) = γ0c1 − γ1,
ρ2(c1 − c2)c2 + ρ3(c1 − c3)c3 = γ1c1 − γ2,
ρ2(c1 − c2)c22 + ρ3(c1 − c3)c23 = γ2c1 − γ3,
ρ2(c1 − c2)c32 + ρ3(c1 − c3)c33 = γ3c1 − γ4,
ρ2(c1 − c2)c42 + ρ3(c1 − c3)c43 = γ4c1 − γ5.

Do the similar process two more times and obtain three equations without ρi’s:

0 = γ0c1c2c3 − γ1(c1c2 + c2c3 + c3c1) + γ2(c1 + c2 + c3) − γ3,
0 = γ1c1c2c3 − γ2(c1c2 + c2c3 + c3c1) + γ3(c1 + c2 + c3) − γ4,
0 = γ2c1c2c3 − γ3(c1c2 + c2c3 + c3c1) + γ4(c1 + c2 + c3) − γ5,

which are identical to (3.6)–(3.7) with n = 3, i.e.,⎛⎝ γ0 γ1 γ2

γ1 γ2 γ3

γ2 γ3 γ4

⎞⎠⎛⎝ ψ0

ψ1

ψ2

⎞⎠ =

⎛⎝ γ3

γ4

γ5

⎞⎠ ,

where ψ0 = c1c2c3, ψ1 = −(c1c2 + c2c3 + c3c1), and ψ2 = c1 + c2 + c3. The derivation
is done for the case n = 3.

The determinant of the 3 × 3 Hankel matrix is given by

|A| = γ0γ2γ4 + 2γ1γ2γ3 − γ3
2 − γ0γ

2
3 − γ2

1γ4.

If |A| 
= 0, then ψi are given by Cramer’s rule:

ψ0 = (2γ3γ2γ4 + γ3γ1γ5 − γ3
3 − γ2

2γ5 − γ2
4γ1)/|A|,

ψ1 = (γ2γ5γ1 + γ0γ
2
4 + γ2

3γ2 − γ3γ1γ4 − γ4γ
2
2 − γ0γ3γ5)/|A|,

ψ2 = (γ0γ2γ5 + γ2
3γ1 + γ2γ4γ1 − γ0γ3γ4 − γ3γ

2
2 − γ2

1γ5)/|A|.
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The points ci’s are zeros of third order polynomial

g3(x) = x3 − ψ2x
2 − ψ1x− ψ0.(4.9)

Hence, the solvability of the problem (4.8) is equivalent to the existence of three
distinct real roots c1 < c2 < c3 of (4.9). The convergence order in Theorem 2.4 gives
the asymptotic convergence order:

lim
t→∞

t(
7
2−

1
2p )‖u(t) − φ3(t)‖p ≤

∥∥∥∂6
ξ

(
e−

1
4 ξ2
)∥∥∥

p√
4π

∣∣∣∣∫ ∞

−∞
E6(x)dx

∣∣∣∣ , 1 ≤ p ≤ ∞,(4.10)

where E6(x) is the sixth order antiderivative of the initial error E0(x) := u0(x) −∑3
i=1 ρiδci(x) given by (2.4).

Consider the initial value given in Example 4.1. Since γ1,l = γ3,l = γ5,l = 0 and
γ0,l = 1, we obtain

|A| = γ2,l

(
γ4,l − γ2

2,l

)
, ψ1 = γ4,l/γ2,l, ψ0 = ψ2 = 0.

Hence, if

|A| 
= 0 and ψ1 > 0,

then g3(x) has three distinct real roots

c1 = −
√
ψ1, c2 = 0, c3 =

√
ψ1.

One may show that γ4,l > 0 if and only if 0 < l < l4 := 0.5( 5
√

2 − 1)/(2 − 5
√

2).
Therefore, if l4 < l < l2, then ψ1 < 0 and the existence of φ3(x, t) satisfying (4.10)
is not guaranteed. This example shows that the solvability of (3.5) is not obvious for
sign-changing initial values.

5. Approximation for sign-changing solutions. Now consider a general
sign-changing initial value. First, consider the case that the initial value u0(x) decays
for |x| large with the order that the Gaussian has, i.e.,

u0(x) = O
(
e−|x|2

)
as |x| → ∞.(5.1)

Then there exists M > 0 such that v0(x) := u0(x) + M√
4π
e−x2/4 ≥ 0, and we may

apply the theory in section 3 to the nonnegative function v0. Let ρi’s and ci’s be the
solutions of the moment problem with initial value v0(x). Then the solution u(x, t)
can be approximated by

u(x, t) ∼
n∑

i=1

ρi√
4πt

e−(x−ci)
2/(4t) − M√

4π(t+ 1)
e−x2/4(t+1).(5.2)

Since the auxiliary part of the approximation is the exact solution with the extra initial
value added to u0(x), the convergence order of this approximation is the same as the
one in Theorem 3.1. This example shows that we may obtain the same convergence
order for general sign-changing solutions by simply adding an extra term.

On the other hand, if the grid points are preassigned, say, ci = c̄i, then we have the
freedom in choosing the weights ρi’s only. These ρi’s are simply obtained by solving
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the first n equations in (3.5), where the corresponding matrix is the Vandermonde
matrix, i.e., ⎛⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
c̄1 c̄2 · · · c̄n
· · · · · ·
· · · · · ·
· · · · · ·

c̄n−1
1 c̄n−1

2 · · · c̄n−1
n

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
ρ1

ρ2

·
·
·
ρn

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
γ0

γ1

·
·
·

γn−1

⎞⎟⎟⎟⎟⎟⎟⎠ .(5.3)

The Vandermonde determinant
∏

1≤i<j≤n(c̄j − c̄i) is not zero if c̄i are all different
and, hence, (5.3) is solvable. Now construct a different kind of approximation:

ηn(x, t) :=
n∑

i=1

ρi√
4πt

e−(x−c̄i)
2/(4t).(5.4)

Then ηn(·, t) converges to u(·, t) with the order

‖u(t) − ηn(t)‖p = O
(
t(

1
2p−n+1

2 )
)

as t→ ∞,

since limt→0(ηn(x, t) − u0(x)) has zero moments up to (n− 1)th order.

6. Convergence as n → ∞ with fixed t > 0. In this section, we discuss
the convergence of the approximation φn(x, t) to the solution u(x, t) as n → ∞ with
a fixed t > 0. An interesting behavior of the approximation φn(x, t) that one may
observe numerically is a geometric convergence order such as

βn(t) :=
‖u(t) − φn(t)‖∞

‖u(t) − φn+1(t)‖∞
→ 1 + 4

t

v

(
≡ β

(
t

v

))
as n→ ∞,(6.1)

where v > 0 depends on the initial value u0(x). (We do not have a proof of it. Hence,
the statements here are rather conjectures.) This convergence order implies that the
error decays to zero very fast as n → ∞ for any fixed time t > 0. This convergence
order is somewhat extreme. For example, if t > v/4, then the approximation error is
reduced into half whenever just a single heat kernel is added.

Set the approximation error as

en(x, t) = u(x, t) − φn(x, t).

Consider a sequence of functions

En
k (x) =

∫ x

−∞
En

k−1(y)dy, k = 1, 2, . . . , 2n,

where

En
0 (x) := en(x, 0) = u0(x) −

n∑
i=1

ρiδ(x− ci).

Notice that the upper index n is to denote that En
k is related to the approximation

φn(x, t) and the lower index k is to indicate that En
k is the kth order antiderivative

of the initial approximation error En
0 (x). Then, from (2.6), one obtains(√

t
)2n+1‖en(t)‖∞ =

C2n√
4π

sup
ξ

∣∣∣∣∫ ∂2n
ξ

(
e−ζ2/4

)√
tEn

2n

√
t(ξ − ζ)
C2n

dζ

∣∣∣∣ ,(6.2)

where C2n :=
∫∞
−∞En

2n(x)dx <∞.
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An interesting observation is that, for n large, En
2n(x) has a Gaussian-like struc-

ture. The following has been observed numerically.
Conjecture 6.1. Suppose that the initial value u0(x) is nonnegative and has

finite moments up to any order. Then there exist c ∈ R and v > 0 such that∥∥∥∥ 1√
vπ

e
−(x−c)2

v − 1
C2n

En
2n(x)

∥∥∥∥
∞

→ 0 as n→ ∞,(6.3)

where C2n :=
∫∞
−∞En

2n(x)dx <∞. Furthermore,

C2n

C2(n+1)

∥∥∥D2n
x e

−x2

v

∥∥∥
∞∥∥∥D2n+2

x e
−x2

v

∥∥∥
∞

→ 1 as n→ ∞.(6.4)

The (2n − 1)th order derivative of En
2n(x) is En

1 (x) which is, at most, of order
O(1/n), which does not make any difference in the geometric convergence order such
as (6.1). Hence, we may treat it as of order O(1). Note that C2n is obtained after
integrating En

0 (x) 2n times and, hence, its order should be the reciprocal of the order
of ‖D2n

x (e
−x2

v )‖∞, which is the 2nth derivative of the Gaussian. Hence, (6.4) is a
natural conclusion if (6.3) is assumed. Furthermore, for ξ = x/

√
v,∥∥∥∥D2n

x

(
e

−x2

v

)∥∥∥∥
∞

=
∥∥∥D2n

ξ

(
e−ξ2

)
(ξx)2n

∥∥∥
∞

=
1
vn

∥∥∥D2n
ξ

(
e−ξ2

)∥∥∥
∞
.

Under Conjecture 6.1, the right-hand side of (6.2) can be approximated using A(n, v/t)
given by

sup
x

∣∣∣∣ ∫ D2n
y

(
e−y2/4

)√
tEn

2n

√
t(x− y)
C2n

dy

∣∣∣∣
∼=

√
t√
vπ

sup
x

∣∣∣∣ ∫ D2n
y

(
e−y2/4

)
e−

(x−y−c/
√

t)2

v/t dy

∣∣∣∣
=

√
t√
vπ

∣∣∣∣∫ D2n
y

(
e−y2/4

)
e−

y2

v/t dy

∣∣∣∣ =: A(n, v/t).

Notice that due to the symmetry of D2n
x (e−x2/4) and e−

x2

v/t the supremum of the
second line is obtained at x− c/

√
t = 0. Then we obtain from the relations (6.2) and

(6.4) that

t−1 ‖en(t)‖∞
‖en+1(t)‖∞

∼=
C2n

C2(n+1)

A(n, v/t)
A(n+ 1, v/t)

∼=
vn

vn+1

∥∥∥D2n+2
x

(
e−x2

)∥∥∥
∞∥∥D2n

x

(
e−x2

)∥∥
∞

A(n, v/t)
A(n+ 1, v/t)

.

One can easily check that∥∥∥D2n+2
x

(
e−x2

)∥∥∥
∞∥∥D2n

x

(
e−x2

)∥∥
∞

= 4n+ 2,
A(n, v/t)

A(n+ 1, v/t)
=

4 + v/t

4n+ 2
,

using a mathematical software such as Maple or by hand. Therefore, we obtain the
convergence order in (6.1), i.e.,

‖en(t)‖∞
‖en+1(t)‖∞

∼= t
1
v

(4n+ 2)
4 + v/t

4n+ 2
= 1 + 4

t

v
for n large.
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Notice that c ∈ R in (6.3) does not make any difference in the convergence order.
The factor that decides the geometric convergence rate is the variance factor v of the
limit function 1√

vπ
e−x2/v. It seems that the variance factor v depends on the initial

value u0(x), and another discussion about it will be included in section 7.2.
Remark 6.2. For n > 0 small, En

2n(x)/C2n is not close enough to the Gaussian
and the arguments above do not apply. Then it is natural to ask how large n should
be. The answer depends on the initial value. Clearly, if u0(x) itself is like a Gaussian,
then such an n > 0 can be relatively small. In other cases, the corresponding n > 0
could be larger.

7. Numerical examples. In this section, we test the convergence orders nu-
merically for t > 0 large and for n > 0 large. These tests confirm the convergence
orders obtained in the previous sections. This section consists of four subsections.
The first two are for t → ∞ and for n → ∞ limits of the approximation φn(x, t). In
the third one, we test the behavior of the alternative approach ψ2n(x, t) as n → ∞.
In the last one, we do numerical tests for Conjecture 6.1.

There are two difficulties in observing the theoretical convergence order for t > 0
large. First, the convergence rate for small time 0 < t
 1 is lower than the theoretical
one for t > 0 large. So we need to wait a certain amount of time to observe the
theoretical convergence order. On the other hand, since the convergence order is so
high, the approximation error at the right moment can be as small as of order 10−36

or 10−64 (see Tables 7.1 and 7.2). So we should employ enough precisions in the
computation to obtain meaningful numerical results.

The second difficulty, which is more restrictive, is in computing the solution
u(x, t). To compute the decay order of ‖u(x, t) − φn(x, t)‖∞ accurately, we should
obtain the exact value u(x, t) or compute it with a smaller error than the actual
approximation error. However, it seems impossible to do the integration in (1.1) nu-
merically with such a small error. (In this sense, one may say that the approximation
φn(x, t) is more exact than the exact formula in (1.1).) To avoid such a difficulty, we
consider the following two examples with explicit solutions. In the following numerical
tests we employ these examples.

Example 7.1 (example with a single hump). Consider the solution of

ut = uxx, u(x, 0) = K(x, t0), x ∈ R, t > 0,(7.1)

where K(x, t) is the heat kernel

K(x, t) =
1√
4πt

e−x2/4t.

Then the exact solution is simply u(x, t) = K(x, t + t0) and the variance of the
initial value is var = 2t0. This rather simple example illustrates certain convergence
behavior very clearly.

Example 7.2 (example with double humps). Consider the solution of

ut = uxx, u(x, 0) =
1
2

[K(x+ 1, t0) +K(x− 1, t0)], x ∈ R, t > 0.(7.2)

Then the solution is simply u(x, t) = 1
2 [K(x + 1, t + t0) + K(x − 1, t + t0)] and the

variance of the initial value is var = 1 + 2t0.
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Table 7.1

The error en(x, t) = u(x, t)−φn(x, t) and the convergence order αn in (7.5) have been computed
for Examples 7.1 and 7.2 with n = 4, 8 and t0 = 1. We observe that αn(t) → −(n + 1

2
) as t → ∞.

(The norms in this and the following tables are L∞-norms.)

Example 7.1 Example 7.2
t ‖e4(t)‖ α4(t) ‖e8(t)‖ α8(t) ‖e4(t)‖ α4(t) ‖e8(t)‖ α8(t)

0.1 2.17e-01, 0.7 1.13e-01, 1.0 2.24e-01, 0.8 1.30e-01, 0.9
0.2 1.13e-01, 0.9 2.98e-02, 1.9 1.33e-01, 0.8 4.57e-02, 1.5
0.4 3.48e-02, 1.7 3.34e-03, 3.2 5.30e-02, 1.3 7.27e-03, 2.7
0.8 6.24e-03, 2.5 1.38e-04, 4.6 1.21e-02, 2.1 4.27e-04, 4.1
1.6 6.81e-04, 3.2 2.21e-06, 6.0 1.60e-03, 2.9 9.09e-06, 5.6
3.2 5.12e-05, 3.7 1.72e-08, 7.0 1.37e-04, 3.5 8.57e-08, 6.7
6.4 3.03e-06, 4.1 8.40e-11, 7.7 8.79e-06, 4.0 4.68e-10, 7.5

12.8 1.56e-07, 4.3 3.13e-13, 8.1 4.73e-07, 4.2 1.86e-12, 8.0
25.6 7.48e-09, 4.4 1.01e-15, 8.3 2.31e-08, 4.4 6.18e-15, 8.2
51.2 3.44e-10, 4.4 3.01e-18, 8.4 1.08e-09, 4.4 1.88e-17, 8.4

102.4 1.55e-11, 4.5 8.66e-21, 8.4 4.89e-11, 4.5 5.44e-20, 8.4
204.8 6.93e-13, 4.5 2.44e-23, 8.5 2.19e-12, 4.5 1.54e-22, 8.5

Table 7.2

The error en(x, t) = u(x, t) − φn(x, t) and the geometric convergence rate βn(t) in (6.1) have
been computed for Examples 7.1 and 7.2 with t = 1, 10 and t0 = 1. The ratio βn(t) converges to the
limit in (6.1) quickly with v = 2 for Example 1 and slowly for Example 2.

Example 7.1 Example 7.2
n ‖en(1)‖ βn(1) ‖en(10)‖ βn(10) ‖en(1)‖ βn(1) ‖en(10)‖ βn(10)
2 2.8e-02 2.91 2.0e-04 20.84 4.28e-02 2.48 3.83e-04 15.83
3 9.6e-03 2.96 9.5e-06 20.92 1.72e-02 2.49 2.32e-05 16.53
4 3.2e-03 2.98 4.5e-07 20.95 6.7e-03 2.57 1.36e-06 17.06
7 1.2e-04 2.99 4.9e-11 20.98 3.67e-04 2.66 2.47e-10 17.89

10 4.5e-06 3.0 5.3e-15 20.99 1.89e-05 2.71 4.09e-14 18.35
13 1.7e-07 3.0 5.8e-19 21.0 9.35e-07 2.74 6.45e-18 18.65
16 6.1e-09 3.0 6.2e-23 21. 4.45e-08 2.76 9.65e-22 18.86
19 2.3e-10 3.0 6.7e-27 21.0 2.08e-09 2.78 1.41e-25 19.02
22 8.4e-12 3.0 7.3e-31 21.0 9.65e-11 2.79 2.02e-29 19.15
25 3.1e-13 3.0 7.9e-35 21.0 4.36e-12 2.8 2.85e-33 19.26
46 2.97e-23 3.0 1.35e-62 21.0 1.38e-21 2.85 2.25e-60 19.70
49 1.1e-24 3.0 1.46e-66 21.0 5.95e-21 2.86 2.94e-64 19.74

7.1. Numerical tests for the long time asymptotics. The approximation

φn(x, t) ≡
n∑

i=1

ρi√
4πt

e
−(x−ci)

2

4t(7.3)

constructed in section 3 converges to the exact solution u(x, t) with order

‖u(t) − φn(t)‖∞ = O
(
t−

2n+1
2

)
as t→ ∞.(7.4)

In Table 7.1 the error en(x, t) = u(x, t) − φn(x, t) and the convergence order αn

have been computed for n = 4, 8 as doubling the time from t = 0.1 to t = 204.8. The
convergence order of the approximation has been measured by computing

αn(t) ∼ ln(‖en(t/2)‖∞/‖en(t)‖∞)
ln(1/2)

.(7.5)

(Note that we measure the error in L∞-norm in the following numerical examples and
denote it by ‖ · ‖ in the tables to get it fitted in the tables.) From Table 7.1, one
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clearly observes that the convergence order αn(t) approaches the optimal convergence
order in (7.4) as t → ∞. Notice that these numerical tests for t → ∞ limits show
similar patterns of the convergence for both Examples 7.1 and 7.2.

7.2. Numerical tests for n → ∞ limits. Now we are going to check the
convergence order for n large with a fixed t > 0. Consider the ratio

βn(t) := ‖en−1(t)‖∞
/
‖en(t)‖∞.

(The ratio r = an/an−1 is usually considered for a geometric sequence. Here we
consider its reciprocal for easier comparison.) In Table 7.2, the error ‖en(t)‖∞ and
this ratio are computed for Examples 7.1 and 7.2 at two instances t = 1 and t =
10 with increasing n from n = 2 to n = 25. One can clearly observe a certain
geometric convergence order as in (6.1). In both examples, we can clearly see that
10(βn(1) − 1) ∼ (βn(10) − 1), which indicates that the corresponding constant v > 0
in (6.1) which decides the geometric convergence ratio does not depend on the time
t > 0.

From the test for Example 7.1, one can clearly see that βn(1) → 3 and βn(10) →
21 as n → ∞. In both cases, the corresponding v is v = 2 which is the variance of
the initial value. The convergence pattern for Example 7.2 is different. First, the
convergence speed of the ratio βn(t) is slow. It seems due to the complexity of the
structure of the initial value. At the moment n = 49 the index v corresponding to
the geometric convergence rate β = 19.74 is v = 2.15 and seems still decreasing. This
value is already smaller than the variance of the initial value which is 3 and looks likely
to converge to v = 2. It seems that the factor that decides the geometric convergence
rate is not the variance but the tail of the initial value for |x| large.

7.3. Approximation using derivatives of the Gaussian. We may write
ψ2n(x, t) in (1.5) as

ψ2n(x, t) =
2n−1∑
i=0

− γi

2(i!)

(
−1
2
√
t

)n+1

Hi

(
x

2
√
t

)
e−x2/4t,(7.6)

where Hi(x) is the Hermite polynomial of degree i. In Table 7.3, the approximation
error and the geometric convergence ratio βn are given for Example 7.1. To make the
relation between the initial value and the convergence ratio more clear, we set

β2n(t, t0) := ‖e2n−2(t)‖∞
/
‖e2n(t)‖∞,(7.7)

where e2n(x, t) = u(x, t) − ψ2n(x, t) and u0(x) = K(x, t0) with t0 = 10.
One may observe that β2n(1, 10) → 0.1, β2n(10, 10) → 1, and β2n(100, 10) → 10

as n→ ∞. This observation leads us to a conjecture

lim
n→∞

‖u(t) − ψ2n(t)‖∞
‖u(t) − ψ2n+2(t)‖∞

=
t

t0
,(7.8)

which indicates that the approximation error increases geometrically if t < t0 and,
hence, ψ2n(x, t) is meaningful for t > t0 only. We may consider t0 as the age of the
initial value since u0(x) = K(x, t0). This t0 seems to be related to the time-shift t∗
in [22]. Generally, one may call t0 the age of a general initial value u0 of the heat
equation if limn→∞

‖u(t0)−ψ2n(t0)‖∞
‖u(t0)−ψ2n+2(t0)‖∞

= 1.
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Table 7.3

The error en(x, t) = u(x, t) − ψ2n(x, t) and the geometric convergence rate βn(t, t0) in (7.7)
have been computed numerically for Example 7.1 with t0 = 10 and t = 1, 10, 100. We may observe
the convergence rate in (7.8).

2n ‖e2n(1)‖ β2n(1, 10) ‖e2n(10)‖ β2n(10, 10) ‖e2n(100)‖ β2n(100, 10)
4 1.21e+00 0.1623821 1.85e-02 1.4142136 9.77e-05 13.4400610
6 9.37e+00 0.1295695 1.50e-02 1.2335625 8.11e-06 12.0475285
8 7.88e+01 0.1188625 1.29e-02 1.1610328 7.08e-07 11.4555359

14 5.74e+04 0.1089029 9.66e-03 1.0825322 5.40e-10 10.7781946
20 4.73e+07 0.1058095 8.05e-03 1.0553099 4.54e-13 10.5307485
26 4.12e+10 0.1043095 7.04e-03 1.0415615 3.99e-16 10.4026370
32 3.69e+13 0.1034247 6.34e-03 1.0332791 3.60e-19 10.3243276
38 3.38e+16 0.1028412 5.81e-03 1.0277462 3.31e-22 10.2715121
44 3.13e+19 0.1024275 5.39e-03 1.0237896 3.07e-25 10.2334861
50 2.93e+22 0.1021190 5.06e-03 1.0208199 2.88e-28 10.2048012

Table 7.4

We may observe conjectures in (6.3) and (6.4) numerically. In this table, those conjectures are
tested using Examples 7.1 and 7.2 with t0 = 1 and v = 2t0.∥∥∥∥ 1√

2t0π
e

−x2

2t0 − 1
C2n

En2n(x)

∥∥∥∥ C2n−2

C2n

∥∥D2n−2
x e−x2/2t0

∥∥∥∥D2n
x e−x2/2t0

∥∥
n Example 7.1 Example 7.2 Example 7.1 Example 7.2
2 2.233e-02 4.378e-02 1.0 0.7500000
3 2.070e-02 3.675e-02 1.0 0.7826087
4 1.631e-02 3.547e-02 1.0 0.8070175
5 1.387e-02 3.353e-02 1.0 0.8237512
6 1.207e-02 3.194e-02 1.0 0.8369731
7 1.070e-02 3.054e-02 1.0 0.8474264
8 9.675e-03 2.932e-02 1.0 0.8561101
9 8.743e-03 2.825e-02 1.0 0.8634099
10 8.016e-03 2.729e-02 1.0 0.8696921

7.4. Numerical test for Conjecture 6.1. The geometric convergence rate
(6.1) for n large has been obtained under Conjecture 6.1 and observed numerically
in section 7.2. The conjecture itself is of an independent interest which has no direct
relation with the heat equation. In this section, we test the limits (6.3) and (6.4) in
the conjecture.

In Table 7.4, the uniform norm of the difference in (6.3) and the ratio in (6.4) are
given for Examples 7.1 and 7.2. In both cases, we have taken v = 2t0. The results
for Example 7.1 show the convergence clearly. In particular, the test for (6.4) shows
that the ratio is identically one if the initial value u0(x) is the Gaussian.

The columns for Example 7.2 also show similar convergence behavior. However,
the speed of its convergence is a lot slower. In fact, it is not even clear that taking
v = 2t0 is the correct one for the case of Example 7.2. Since 2t0 is the variance
of Example 7.1, one may also try 2t0 + 1, which is the variance of Example 7.2.
However, one cannot obtain the convergence, and v = 2t0 seems a better choice. The
computation is done up to n = 10 and that was our best. If computations with higher
n are performed, we conjecture that the convergence to the unity will be more clearly
observed.

Acknowledgment. Authors would like to thank anonymous reviewers. Their
comments and suggestions helped to improve this paper.
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1. Introduction. The theory of (usual) partial differential equations has two
rather different parts depending on whether the equations are written in divergence
or nondivergence form. Quite often the starting point is the same: equations with
constant coefficients, and then one uses different techniques to treat different types of
equations.

By now, one can say that the Lp-theory of evolutional second-order SPDEs is
quite well developed. The most advanced results of this theory can be found in the
following papers and references therein: [1] (nondivergence type equations), [2] and
[3] (divergence type equations). The results of the present paper are close to the
corresponding results of [2]. However, unlike [2] we do not assume that the leading
coefficients are continuous in the space variable. Instead we assume that the leading
coefficients of the “deterministic” part of the equation are in VMO (the space of
functions with vanishing mean oscillation), which is a much wider class than C. Still
the leading coefficients of the “stochastic” part are assumed to be continuous in x.

The exposition in [2] and [3] is based on the theory of solvability in spaces
Hγ

p = (1 − Δ)−γ/2Lp of SPDEs with coefficients independent of x. Then the method
of “freezing” the coefficients is applied as in the general framework set out in [6].
This method does not work if the coefficients are only in VMO so we use a different
technique based on recent results from [8] on deterministic parabolic equations with
VMO coefficients. In addition, our technique allows us to avoid using the Wn

2 theory
of SPDEs, which is a starting point in the paper [6] and subsequent articles based on it.

One more difference of our approach from the one in [2] is that we represent the
free term in the deterministic part in the form Dif

i + f0 with f j ∈ Lp (see (1.1)
below). Of course, this is just a general form of a distribution from H−1

p . However,
the spaces Hγ

p are most appropriate for equations in nondivergence form. One general
inconvenience of these spaces is that the space or space-time dilations affect the norms
in a way which is hard to control. For divergence form equations with low regularity
of coefficients the most important space is H1

p . This space coincides with the Sobolev
space W 1

p and the effect of dilations on the norm or on Dif
i + f0 can be easily taken

into account.
The exposition here is self-contained apart from references to some very basic

results of [6], [8], and [12], and is much more elementary than in [2], employing the
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derivatives instead of the powers of the Laplacian, and yet gives more information.
In particular, the author intends to use Corollary 5.5 in order to largely simplify the
theory in [2] of divergence form SPDEs in domains. It turns out that to develop this
theory one need not first develop the theory of SPDEs in domains with coefficient
independent of x, which in itself required quite a bit of work.

The author’s interest in divergence-type equations and in simplifying the theory
of them appeared after he realized that the corresponding results can be applied
to filtering theory of partially observable diffusion processes, given by stochastic Itô
equations. It turns out that, under Lipschitz and nondegeneracy conditions only,
the filtering density is almost Lipschitz in x and almost Hölder 1/2 in time. This is
proved in [10] on the basis of Theorems 2.2 through 2.6 of the present article. The
filtering density satisfies an SPDE usually written in terms of the operators adjoint to
operators in nondivergence form with Lipschitz continuous coefficients. Writing these
adjoint operators in divergence form makes perfect sense and allows us to obtain the
above-mentioned results (see [10]).

Our Theorem 2.2 is very close to Theorem 2.12 of [2]. Apart from weaker condi-
tions on the coefficients, another important difference is the presence of the parameter
λ in (2.10). One of differences in the proofs is that we avoid proving the solvability
on small consecutive time intervals and then gluing together the results.

Let (Ω,F , P ) be a complete probability space with an increasing filtration {Ft, t ≥
0} of complete with respect to (F , P ) σ-fields Ft ⊂ F . Denote by P the predictable
σ-field in Ω × (0,∞) associated with {Ft}. Let wk

t , k = 1, 2, . . . , be independent
one-dimensional Wiener processes with respect to {Ft}.

We fix a stopping time τ and for t ≤ τ in the Euclidean d-dimensional space Rd

of points x = (x1, . . . , xd) we consider the following equation

(1.1) dut =
(
Ltut − λut +Dif

i
t + f0

t

)
dt+

(
Λk

t ut + gk
t

)
dwk

t ,

where ut = ut(x) = ut(ω, x) is an unknown function,

Ltψ(x) = Dj

(
aij

t (x)Diψ(x) + aj
t (x)ψ(x)

)
+ bit(x)Diψ(x) + ct(x)ψ(x),

Λk
tψ(x) = σik

t (x)Diψ(x) + νk
t (x)ψ(x),

the summation convention with respect to i, j = 1, . . . , d and k = 1, 2, . . . is enforced
and detailed assumptions on the coefficients and the free terms will be given later.

One can rewrite (1.1) in the nondivergence form assuming that the coefficients
aij

t and aj
t are differentiable in x and then one could apply the results from [6]. It

turns out that the differentiability of aij
t and aj

t is not needed for the corresponding
counterparts of the results in [6] to be true and showing this and generalizing the
corresponding results of [2] is one of the main purposes of the present article.

The author is sincerely grateful to Kyeong-Hun Kim who kindly pointed out a
serious error in the first draft of the article. Doyoon Kim and the referees of the paper
made many valuable suggestions and their impact is greatly appreciated.

2. Main results. Fix a number

p ≥ 2,

and denote Lp = Lp(Rd). We use the same notation Lp for vector- and matrix-
valued or else �2-valued functions such as gt = (gk

t ) in (1.1). For instance, if u(x) =
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(u1(x), u2(x), . . . ) is an �2-valued measurable function on Rd, then

‖u‖p
Lp

=
∫

Rd

|u(x)|p�2 dx =
∫

Rd

( ∞∑
k=1

∣∣uk(x)
∣∣2)p/2

dx.

Introduce

Di =
∂

∂xi
, i = 1, . . . , d, Δ = D2

1 + · · · +D2
d.

By Du we mean the gradient with respect to x of a function u on Rd.
As usual,

W 1
p = {u ∈ Lp : Du ∈ Lp}, ‖u‖W 1

p
= ‖u‖Lp + ‖Du‖Lp.

Recall that τ is a stopping time and introduce

Lp(τ) := Lp( |(0, τ ]],P , Lp), W1
p(τ) := Lp

(
|(0, τ ]],P ,W 1

p

)
.

We also need the space W1
p (τ), which is the space of functions ut = ut(ω, ·) on

{(ω, t) : 0 ≤ t ≤ τ, t <∞} with values in the space of generalized functions on Rd and
having the following properties:

(i) We have u0 ∈ Lp(Ω,F0, Lp);
(ii) We have u ∈ W1

p(τ);
(iii) There exist f i ∈ Lp(τ), i = 0, . . . , d, and g = (g1, g2, . . . ) ∈ Lp(τ) such that

for any ϕ ∈ C∞
0 = C∞

0 (Rd) with probability 1 for all t ∈ [0,∞) we have

(2.1)
(ut∧τ , ϕ) = (u0, ϕ) +

∞∑
k=1

∫ t

0

Is≤τ

(
gk

s , ϕ
)
dwk

s

+
∫ t

0

Is≤τ

((
f0

s , ϕ
)
−
(
f i

s, Diϕ
))
ds.

In particular, for any φ ∈ C∞
0 , the process (ut∧τ , φ) is Ft-adapted and (a.s.)

continuous.
The reader can find in [6] a discussion of (ii) and (iii), in particular, the fact that

the series in (2.1) converges uniformly in probability on every finite subinterval of
[0, τ ]. On the other hand, it is worth saying that the above introduced space W1

p is
not quite the same as H1

p(τ) in [6] or in [2]. There are three differences. One is that
there is an additional restriction on u0 in [6] and [2]. But in the main part of the
article we are going to work with W1

p,0(τ) which is the subset of W1
p (τ) consisting of

functions with u0 = 0. Another issue is that in [6] and [2] in place of Dif
i + f0 we

have just f such that

f ∈ H−1
p (τ) = Lp

(
|(0, τ ]],P , H−1

p

)
.

Actually, this difference is fictitious because one knows that any f ∈ H−1
p

(a) has the form Dif
i + f0 with f j ∈ Lp and

‖f‖H−1
p

≤ N

d∑
j=0

‖f j‖Lp ,

where N is independent of f, f j, and on the other hand,
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(b) for any f ∈ H−1
p there exist f j ∈ Lp such that f = Dif

i + f0 and

d∑
j=0

‖f j‖Lp ≤ N‖f‖H−1
p
,

where N is independent of f .
The third difference is that instead of (ii) the condition D2u ∈ H−1

p (τ) is required
in [6] and [2]. However, as it follows from Theorem 3.7 of [6] and the boundedness
of the operator D : Lp → H−1

p , this difference disappears if τ is a bounded stopping
time.

To summarize, the spaces W1
p,0(τ) introduced above coincide with H1

p,0(τ) from
[6] if τ is bounded, and we choose a particular representation of the deterministic part
of the stochastic differential just for convenience. In the remainder of the article the
spaces H1

p,0(τ) do not appear and none of their properties is used.
In case that property (iii) holds, we write

(2.2) dut =
(
Dif

i
t + f0

t

)
dt+ gk

t dw
k
t

for t ≤ τ and this explains the sense in which equation (1.1) is understood. Of course,
we still need to specify appropriate assumptions on the coefficients and the free terms
in (1.1).

Assumption 2.1. (i) The coefficients aij
t , ai

t, b
i
t, σ

ik
t , ct, and νk

t are measurable
with respect to P × B(Rd), where B(Rd) is the Borel σ-field on Rd.

(ii) There is a constant K such that for all values of indices and arguments∣∣ai
t

∣∣+
∣∣bit∣∣+ |ct| + |ν|�2 ≤ K, ct ≤ 0.

(iii) There is a constant δ > 0 such that for all values of the arguments and ξ ∈ Rd

(2.3) aij
t ξ

iξj ≤ δ−1|ξ|2,
(
aij

t − αij
t

)
ξiξj ≥ δ|ξ|2,

where αij
t = (1/2)(σi·, σj·)�2 . Finally, the constant λ ≥ 0.

It is worth emphasizing that we do not require the matrix (aij) to be symmetric.
Assumption 2.1 guarantees that (1.1) makes perfect sense if u ∈ W1

p (τ). By the
way, adding the term −λut with constant λ ≥ 0 is one more technically convenient
step. One can always introduce this term, if originally it is absent, by considering
vt := ute

λt.
Let B denote the set of balls B ⊂ Rd and let ρ(B) be the radius of B ∈ B. For

functions ht(x) on [0,∞) × Rd and B ∈ B introduce

ht(B) =
1
|B|

∫
B

ht(x) dx,

where |B| is the volume of B. Also let Q denote the set of all cylinders in [0,∞)×Rd of
type Q = (s, t)×B, where B ∈ B and t−s = ρ2(B). For such Q set ρ(Q) = ρ(B). For
ρ ≥ 0, s < t, a continuous Rd-valued function xr, r ∈ [s, t], and a Q = (s, t) ×B ∈ Q,
introduce

osc (h,Q, x·) =
1

t− s

∫ t

s

(
|hr − hr(B+xr)|

)
(B+xr)

dr,

Osc (h,Q, ρ) = sup
|x·|C≤ρ

osc (h,Q, x·), osc (h,Q) = osc (h,Q, 0),

where |x·|C is the sup norm of |x·|.
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Observe that osc (h,Q, x·) = 0 if ht(x) is independent of x.
Denote by Bρ the open ball with radius ρ > 0 centered at the origin, define

Qρ = (0, ρ2)×Bρ and for t ≥ 0 and x ∈ Rd set Bρ(x) = Bρ +x, Qρ(t, x) = Qρ +(t, x).
In the remaining two assumptions we use constants β > 0 and β1 > 0, the values

of which will be specified later.
Let t0 ≥ 0, x0 ∈ Rd, and constants ε ≥ ε1 > 0. We say that the couple (a, σ) is

(ε, ε1)-regular at point (t0, x0) if (for any ω) either
(i) we have σnm

t (x0) = 0 for t ∈ (t0, t0 + ε21) and all n,m and

(2.4) osc
(
aij , Q

)
≤ β, ∀i, j,

for all Q ∈ Q such that Q ⊂ Qε(t0, x0), or
(ii) for all Q ∈ Q such that Q ⊂ Qε(t0, x0) we have

(2.5) Osc
(
aij , Q, ε

)
≤ β, ∀i, j.

Note that (a, σ) is (ε, ε1)-regular at any point (t0, x0) for any β > 0 if, for instance,
aij depend only on x and are of class VMO.

Assumption 2.2. There exist ε ≥ ε1 > 0 such that (a, σ) is (ε, ε1)-regular at any
point (t0, x0) and (

ajk
t (x) − αjk

t (y)
)
ξjξk ≥ δ|ξ|2

for all t, ξ, x, and y satisfying |x− y| ≤ ε.
Assumption 2.3. There exists an ε2 > 0 such that

(2.6)
∣∣σi·

t (x) − σi·
t (y)

∣∣
�2

≤ β1

for all i, t, x, and y satisfying |x− y| ≤ ε2.
Needless to say that Assumptions 2.2 and 2.3 are satisfied with any β, β1 > 0 and

slightly reduced δ if (2.3) holds and aij
t (x) and σi·

t (x) are uniformly continuous in x
uniformly with respect to (ω, t).

Finally, we describe the space of initial data. Recall that for p ≥ 2 the Slobodetskii
space W 1−2/p

p = W
1−2/p
p (Rd) of functions u0(x) can be introduced as the space of

traces on t = 0 of (deterministic) functions u such that

u ∈ Lp

(
R+, H

1
p

)
, ∂u/∂t ∈ Lp

(
R+, H

−1
p

)
,

where R+ = (0,∞). For such functions there is a (unique) modification denoted again
u such that ut is a continuous Lp-valued function on [0,∞) so that u0 is well defined.
Any such ut is called an extension of u0.

The norm in W
1−2/p
p can be defined as the infimum of

‖u‖Lp(R+,H1
p) + ‖∂u/∂t‖Lp(R+,H−1

p )

over all extensions ut of elements u0. It is also well known that an equivalent norm
of u0 can be introduced as

‖u‖Lp((0,1),W 1
p ),

where u = ut is defined as the (unique) solution of the heat equation ∂ut(x)/∂t =
Δut(x) with initial condition u0(x).



ON DIVERGENCE FORM SPDES WITH VMO COEFFICIENTS 2267

For s ≥ 0 we introduce

trsW1
p = Lp

(
Ω,Fs,W

1−2/p
p

)
.

The following auxiliary result helps understand the role of trsW1
p . We use spaces

W1
p ([S, T )) and W1

p((S, T )), which are introduced in the same way as W1
p (τ) and

W1
p(τ), but the functions are considered only on [S, T ) and (S, T ), respectively.
Lemma 2.1. Let s ≥ 0 be a fixed number and let us be an Fs-measurable function

with values in the set of distributions over Rd.
(i) We have us ∈ trsW1

p if and only if there exists a v ∈ W1
p ([s,∞)) satisfying the

equation

(2.7) ∂v/∂t = Δv − v, t ≥ s,

(which is a particular case of (1.1) and is understood in the same sense) with initial
data us. This v is unique and satisfies

(2.8) ‖v‖W1
p((s,∞)) ≤ N‖us‖trsW1

p
, ‖us‖trsW1

p
≤ N‖v‖W1

p((s,∞)),

where the constants N are independent of s, us, and v.
(ii) We have us ∈ trsW1

p if and only if there exists a v ∈ W1
p ([s, s+ 1)) such that

vs = us.
(iii) If such a v exists and dvt = (Dif

i
t + f0

t ) dt+ gk
t dw

k
t , t ≥ s, then

(2.9) ‖us‖trsW1
p
≤ N

⎛⎝‖v‖W1
p((s,s+1)) +

d∑
j=0

∥∥f j
∥∥
Lp((s,s+1))

+ ‖g‖Lp((s,s+1))

⎞⎠ ,

where the constant N is independent of s, us, and v.
(iv) If s > 0 and we have a u ∈ W1

p (s), then us ∈ trsW1
p and

‖us‖trsW1
p
≤ N

⎛⎝‖u‖W1
p(s) +

d∑
j=0

∥∥f j
∥∥
Lp(s)

+ ‖g‖Lp(s)

⎞⎠ ,

where N is independent of u, and f j and gk are taken from (2.2).
We prove this lemma in section 5.
Here are our main results concerning (1.1). The following theorem is very close

to Theorem 2.12 of [2]. Important differences are the presence of the parameter λ
in (2.10) and weaker assumptions on the coefficients of the deterministic part of the
equation.

Theorem 2.2. Let the above assumptions be satisfied with β = β(d, p, δ) = β0/3,
where β0 is the constant from Lemma 5.1, and β1 = β1(d, p, δ, ε) > 0 taken from the
proof of Lemma 5.2. Let λ ≥ 0, let f j, g ∈ Lp(τ), and let u0 ∈ tr0W1

p .
(i) Then equation (1.1) for t ≤ τ ∧ T has a unique solution u ∈ W1

p (τ ∧ T ) with
initial data u0 and any T ∈ (0,∞). Moreover, if

λ ≥ λ0(d, p, δ,K, ε, ε1, ε2) ≥ 1,

then (1.1) for t ≤ τ has a unique solution u ∈ W1
p (τ) with initial data u0.
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(ii) Furthermore, if a v ∈ W1
p (∞) is defined by (2.7) with initial condition u0,

then the above solution u satisfies

(2.10)
λ1/2‖u‖Lp(τ) + ‖Du‖Lp(τ) ≤ N

(
d∑

i=1

‖f i‖Lp(τ) + ‖g‖Lp(τ) + ‖Dv‖Lp(τ)

)
+ Nλ−1/2‖f0‖Lp(τ) +Nλ1/2‖v‖Lp(τ),

provided that λ ≥ λ0, where the constants N,λ0 ≥ 1 depend only on d, p, δ, K, ε, ε1,
and ε2.

(iii) Finally, there exists a set Ω′ ⊂ Ω of full probability such that ut∧τIΩ′ is a
continuous Ft-adapted Lp-valued function of t ∈ [0,∞).

Observe that estimate (2.10) shows one of good reasons for writing the free term
in (1.1) in the form Dif

i +f0, because f i, i = 1, . . . , d, and f0 enter (2.10) differently.
Remark 2.3. As it follows from our proofs, if p = 2, Assumptions 2.2 and 2.3 are

not needed for Theorem 2.2 to be true and mentioning ε, ε1, and ε2 can be dropped
in the statement. Thus we provide a new way to prove the classical result on Hilbert
space solvability of SPDEs (cf., for instance, [13]).

We prove Theorem 2.2 in section 6 after we prepare necessary tools in sections 3–
5. In section 3 we prove uniqueness part of Theorem 2.2 on the basis of Itô’s formula
from [12]. Here Assumptions 2.2 and 2.3 are not used. In section 4 we treat the case
of the heat equation with the random right-hand side and present a simplified version
of the corresponding result from [6]. In section 5 we prove an auxiliary existence
theorem and derive some a priori estimates.

Here is a result about continuous dependence of solutions on the data.
Theorem 2.4. Assume that for each n = 1, 2, . . . we are given functions aij

nt,
ai

nt, b
i
nt, cnt, σik

nt, ν
k
nt, f

j
nt, g

k
nt, and un0 having the same meaning as the original

ones and satisfying the same assumptions as those imposed on the original ones in
Theorem 2.2 (with the same δ,K, β, . . . ). Assume that for i, j = 1, . . . , d and almost
all (ω, t, x) we have (

aij
nt, a

i
nt, b

i
nt, cnt

)
→
(
aij

t , a
i
t, b

i
t, ct

)
,∣∣σi·

nt − σi·
t

∣∣
�2

+ |νnt − νt|�2 → 0,

as n→ ∞. Also assume that

d∑
j=0

∥∥f j
n − f j

∥∥
Lp(τ)

+ ‖gn − g‖Lp(τ) + ‖un0 − u0‖tr0W1
p
→ 0

as n→ ∞. Take λ ≥ λ0, take the function u from Theorem 2.2, and let un ∈ W1
p (τ)

be the unique solutions of (1.1) for t ≤ τ constructed from aij
nt, a

i
nt, b

i
nt, cnt, σik

nt, ν
k
nt,

f j
nt, and gk

nt and having initial values un0.
Then, as n→ ∞, we have ‖un − u‖W1

p(τ) → 0 and for any finite T ∈ [0,∞)

(2.11) E sup
t≤τ∧T

‖unt − ut‖p
Lp

→ 0.

Proof. Set vnt = unt − ut. Then

dvnt =
(
Lntvnt − λvnt +Dif̃

i
nt + f̃0

nt

)
dt+

(
Λk

ntvnt + g̃k
nt

)
dwk

t ,
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where Lnt and Λk
nt are the operators constructed from aij

nt, ai
nt, b

i
nt, cnt, and σik

nt, ν
k
nt,

respectively, and

f̃ i
nt = f i

nt − f i
t +

(
aji

nt − aji
t

)
Djut +

(
ai

nt − ai
t

)
ut,

f̃0
nt = f0

nt − f0
t +

(
bint − bit

)
Diut + (cnt − ct)ut,

g̃k
nt = gk

nt − gk
t +

(
σik

nt − σik
t

)
Diut +

(
νk

nt − νk
t

)
ut.

By Theorem 2.2 we know that u ∈ W1
p(τ). This, along with our assumptions and

the dominated convergence theorem, implies that

d∑
j=0

∥∥∥f̃ j
n

∥∥∥
Lp(τ)

+ ‖g̃n‖Lp(τ) → 0

as n → ∞. After that by applying (2.10) to vnt we immediately see that ‖un −
u‖W1

p(τ) → 0.
Assertion (2.11) is, actually, a simple corollary of the above. Indeed, by introduc-

ing f̂ j
n and ĝk

n in an obvious way, we can write

(2.12) dvnt =
(
Dif̂

i
nt + f̂0

nt

)
dt+ ĝk

nt dw
k
t ,

and

d∑
j=0

∥∥∥f̂ j
n

∥∥∥
Lp(τ)

+ ‖ĝn‖Lp(τ) → 0.

It is standard (see, for instance, our Theorem 3.1) to derive from here the estimate

E sup
t≤τ∧T

‖unt − ut‖p
Lp

≤ N

⎛⎝ d∑
j=0

∥∥∥f̂ j
n

∥∥∥
Lp(τ∧T )

+ ‖ĝn‖Lp(τ∧T ) + E‖un0 − u0‖p
Lp

⎞⎠ ,

where N is independent of n. It is also well known that W 1−2/p
p ⊂ Lp, that is

‖un0 − u0‖Lp ≤ N‖un0 − u0‖W
1−2/p
p

.

By combining all this together we obtain (2.11) and the theorem is proved.
The following result could be proved on the basis of Theorem 2.4 in the same

way as Corollary 5.11 of [6], where the solutions are approximated by solutions of
equations with smooth coefficients and then a stopping time technique was used. We
give here a shorter proof based on a different idea.

Theorem 2.5. Let p1, p2 ∈ [2,∞), p1 < p2, and let the above assumptions be
satisfied with β ≤ β(d, p, δ) for all p ∈ [p1, p2] and β1 ≤ β1(d, p, δ, ε) for all p ∈ [p1, p2].
Let λ ≥ 0, and suppose that for p ∈ [p1, p2] we have f j , g ∈ Lp(τ), and u0 ∈ tr0W1

p .
Then the solutions corresponding to p = p1 and p = p2 coincide, that is, there is

a unique solution u ∈ W1
p1

(τ) ∩W1
p2

(τ) of (1.1) with initial data u0.
Proof. Obviously, it suffices to concentrate on bounded τ . As is explained above

in that case we may assume that λ is as large as we like. We take it so large that one
could use assertion (ii) of Theorem 2.2 with any p ∈ [p1, p2].
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Denote by u the solution corresponding to p = p2 and observe that, owing to
uniqueness of solutions in W1

p1
(τ), we need only show that u ∈ W1

p1
(τ).

Take a nonnegative ζ ∈ C∞
0 such that ζ(0) = 1, set ζn(x) = ζ(x/n), and notice

that un := uζn satisfies

dun
t =

(
Ltu

n
t − λun

t + Dif
i
nt + f0

nt

)
dt+

(
Λk

t u
n
t + gk

nt

)
dwk

t ,

where

f i
nt = f i

t ζn − uaji
t Djζn, i ≥ 1,

f0
nt = f0

t ζn − f i
tDiζn −

(
aij

t Diut + aj
tu
)
Djζn − bitutDiζn,

gk
nt = gk

t ζn − σik
t utDiζn.

It follows that for p1 ≤ p ≤ p2 we have

(2.13) ‖un‖W1
p(τ) ≤ N

(
d∑

i=0

∥∥f i
n

∥∥
Lp(τ)

+ ‖gn‖Lp(τ) + ‖u0ζn‖tr0W1
p

)
.

One knows that with constants N independent of n

‖u0ζn‖tr0W1
p
≤ N

(
‖u0ζn‖tr0W1

p1
+ ‖u0ζn‖tr0W1

p2

)
≤ N

(
‖u0‖tr0W1

p1
+ ‖u0‖tr0W1

p2

)
.

Similarly, and by Hölder’s inequality,∥∥f i
n

∥∥
Lp(τ)

≤ N +N‖uDζn‖Lp(τ) ≤ N + ‖u‖Lp2(τ)‖Dζn‖Lq(τ),

where

q =
pp2

p2 − p
.

Similar estimates are available for other terms in the right-hand side of (2.13). Since

‖Dζn‖Lq(τ) = Nn−1+(p2−p)d/(p2p) → 0

as n→ ∞ if

(2.14)
1
p
− 1
p2

<
1
d
,

estimate (2.13) implies that u ∈ W1
p (τ).

Thus, knowing that u ∈ W1
p2

(τ) allowed us to conclude that u ∈ W1
p (τ) as long

as p ∈ [p1, p2] and (2.14) holds. We can now replace p2 with a smaller p and keep
going in the same way each time increasing 1/p by the same amount until p reaches
p1. Then we get that u ∈ W1

p1
(τ). The theorem is proved.

In many situations the following maximum principle is useful.
Theorem 2.6. Let the above assumptions be satisfied with β ≤ β(d, q, δ) for

all q ∈ [2, p] and β1 ≤ β1(d, q, δ, ε) for all q ∈ [2, p]. Let λ ≥ 0 and f0 ∈ Lp(τ),
u0 ∈ tr0W1

p , f i = 0, i = 1, . . . , d, g = 0 be such that u0 ≥ 0 and f0 ≥ 0. Then for the
solution u almost surely we have ut ≥ 0 for all finite t ≤ τ .

Proof. If p = 2 the result is proved in [9]. For general p ≥ 2 take the same function
ζn as in the preceding proof, introduce fni = f iζn, gk

n = 0, and call un the solution of
(1.1) with so modified free terms and the initial data u0ζn. By Theorem 2.5 we have
un ∈ W1

p (τ) ∩W1
2 (τ). By the above, un ≥ 0 and it only remains to use Theorem 2.4.

The theorem is proved.



ON DIVERGENCE FORM SPDES WITH VMO COEFFICIENTS 2271

3. Itô’s formula and uniqueness. The following two “standard” results are
taken from [12].

Theorem 3.1. Let u ∈ W1
p (τ), f j ∈ Lp(τ), g = (gk) ∈ Lp(τ), and assume that

(2.2) holds for t ≤ τ in the sense of generalized functions. Then there is a set Ω′ ⊂ Ω
of full probability such that

(i) ut∧τIΩ′ is a continuous Lp-valued Ft-adapted function on [0,∞);
(ii) for all t ∈ [0,∞) and ω ∈ Ω′ Itô’s formula holds:

(3.1)

∫
Rd

|ut∧τ |p dx =
∫

Rd

|u0|p dx+ p

∫ t∧τ

0

∫
Rd

|us|p−2usg
k
s dx dw

k
s

+
∫ t∧τ

0

(∫
Rd

[
p|ut|p−2utf

0
t − p(p− 1)|ut|p−2f i

tDiut

+ (1/2)p(p− 1)|ut|p−2|gt|2�2
]
dx

)
dt.

Furthermore, for any T ∈ [0,∞)

(3.2)
E supt≤τ∧T ‖ut‖p

Lp
≤ 2E‖u0‖p

Lp
+NT p−1

∥∥f0
∥∥p

Lp(τ)

+ NT (p−2)/2

(
d∑

i=1

∥∥f i
∥∥p

Lp(τ)
+ ‖g‖p

Lp(τ) + ‖Du‖p
Lp(τ)

)
,

where N = N(d, p).
Here is an “energy” estimate.
Corollary 3.2. Under the conditions of Theorem 3.1 assume that τ <∞ (a.s.).

Then

(3.3)
E

∫
Rd

|u0|p dx +E
∫ τ

0

(∫
Rd

[
p|ut|p−2utf

0
t − p(p− 1)|ut|p−2f i

tDiut

+ (1/2)p(p− 1)|ut|p−2|gt|2�2
]
dx

)
dt ≥ EIτ<∞

∫
Rd

|uτ |p dx.

Furthermore, if τ is bounded, then there is an equality instead of inequality in (3.3).
The next result implies, in particular, uniqueness in Theorem 2.2.
Lemma 3.3. Under Assumption 2.1 there exist λ0 ≥ 0 and N depending only on

d, p,K, and δ such that, for any strictly positive λ ≥ λ0 and any solution u ∈ W1
p,0(τ)

of (1.1) for t ≤ τ , we have

(3.4) λ‖u‖Lp(τ) ≤ Nλ1/2

⎛⎝ d∑
j=1

∥∥f j
∥∥
Lp(τ)

+ ‖g‖Lp(τ)

⎞⎠+N
∥∥f0

∥∥
Lp(τ)

.

Furthermore, if ai = bi = νk ≡ 0, then one can take λ0 = 0.
Proof. We may assume that f j ∈ Lp(τ), g = (gk) ∈ Lp(τ), since otherwise the

right-hand side of (3.4) is infinite.
If (3.4) is true for τ ∧T in place of τ and any T ∈ (0,∞), then it is obviously also

true as is. Therefore, we may assume that τ is finite. An advantage of this assumption
is that we can use Corollary 3.2. Write (3.3) with f̂ i

t , f̂0
t , and ĝk

t in place of f i
t , f0

t ,
and gk

t , respectively, where

f̂ i
t = aji

t Djut + ai
tut + f i

t ,

f̂0
t = bitDiut + (ct − λ)ut + f0

t , ĝk
t = σik

t Diut + νk
t ut + gk

t .
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Then observe that inequalities like (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2 show that for
any ε ∈ (0, 1] we have

|ĝt|2�2 ≤ (1 + ε)

∣∣∣∣∣
d∑

i=1

σi·
t Diut

∣∣∣∣∣
2

�2

+ 2ε−1|νtut + gt|2�2

≤ 2(1 + ε)αij
t (Diut)Djut +Nε−1

(
|ut|2 + |gt|2�2

)
.

Owing to (2.3), for ε = ε(δ) > 0 small enough

(3.5)

It := (1/2)|ut|p−2|ĝt|2�2 − |ut|p−2f̂ i
tDiut + (p− 1)−1|ut|p−2utb

i
tDiut

≤ −(δ/2)|ut|p−2|Dut|2

+N |ut|p−2

(
|ut|2 + |gt|2�2 + |Dut| |ut| + |Dut|

d∑
i=1

∣∣f i
t

∣∣) .
Next, we use that for any γ > 0

|ut|p−1|Dut| =
(
|ut|(p−2)/2|Dut|

)
|ut|p/2 ≤ γ|ut|p−2|Dut|2 + γ−1|ut|p,

|ut|p−2|Dut|
∣∣f i

t

∣∣ ≤ γ|ut|p−2|Dut|2 + γ−1|ut|p−2
∣∣f i

t

∣∣2 ,
and by choosing γ appropriately find from (3.5) that

(3.6) It ≤ N |ut|p +N |ut|p−2

(
d∑

i=1

∣∣f i
t

∣∣2 + |gt|2�2

)
.

After that Hölder’s inequality and (3.3), where the right-hand side is nonnegative,
immediately lead to

(λ−N1)‖u‖p
Lp(τ) ≤ N‖u‖p−2

Lp(τ)

(
d∑

i=1

‖f i‖2
Lp(τ) + ‖g‖2

Lp(τ)

)
+N‖u‖p−1

Lp(τ)

∥∥f0
∥∥
Lp(τ)

.

Furthermore, simple inspection of the above argument shows that, if ai = bi = νk ≡ 0,
then the terms with |ut|2 and |ut| |Dut| in (3.5) and the term with |ut|p in (3.6)
disappear, so that we can take N1 = 0 in this case (recall that c ≤ 0). Generally, for
λ ≥ 2N1 we have λ−N1 ≥ (1/2)λ and

Ūp ≤ NŪp−2Ḡ2 +NŪp−1F̄ ,

where

Ū = λ‖u‖Lp(τ), Ḡ = λ1/2

(
d∑

i=1

∥∥f i
∥∥
Lp(τ)

+ ‖g‖Lp(τ)

)
, F̄ =

∥∥f0
∥∥
Lp(τ)

.

It follows that Ū ≤ N(Ḡ+ F̄ ), which is (3.4) and the lemma is proved.

4. Case of the heat equation. To move further we need the following analytic
fact established in [4] (see also [7] for a complete proof).

Lemma 4.1. Denote by Tt the heat semigroup in Rd and let p ≥ 2, −∞ ≤ a <
b ≤ ∞, g ∈ Lp((a, b) × Rd, �2). Then∫

Rd

∫ b

a

[∫ t

a

|DTt−sgs(x)|2�2 ds
]p/2

dtdx ≤ N(d, p)
∫

Rd

∫ b

a

|gt(x)|p�2 dtdx.



ON DIVERGENCE FORM SPDES WITH VMO COEFFICIENTS 2273

In this section we deal with the following model equation

(4.1) dut = Δut dt+ gk
t dw

k
t .

Lemma 4.2. Assume that τ ≤ T , where the constant T ∈ [0,∞). Then for any
g = (g1, g2, . . . ) ∈ Lp(τ) there exists a unique u ∈ W1

p,0(τ) satisfying (4.1) for t ≤ τ .
Furthermore, for this solution we have

E sup
t≤τ

‖ut‖p
Lp

≤ N(d, p)T (p−2)/2‖g‖p
Lp(τ),(4.2)

‖Du‖Lp(τ) ≤ N(d, p)‖g‖Lp(τ).(4.3)

Proof. By replacing the unknown function ut with vte
λt we see that vt satisfies

dvt = (Δvt − λvt) dt+ e−λtgk
t dw

k
t .

Since τ is bounded, the inclusions u ∈ W1
p,0(τ) and v ∈ W1

p,0(τ) are equivalent and
our assertion about uniqueness follows from Lemma 3.3.

In the proof of existence we borrow part of the proof of Theorem 4.2 of [6]. As
we have pointed out in the Introduction, the beginning of the theory of divergence
and nondivergence type equations is the same. The main difference with that proof
is that here we take f ≡ 0.

We take an integer m ≥ 1, some stopping times τ0 ≤ τ1 ≤ · · · ≤ τm ≤ T , and
some (nonrandom) functions gij ∈ C∞

0 , i, j = 1, . . . ,m. Then we define

gk
t (x) =

m∑
i=1

gik(x)I(τi−1,τi](t),

vt(x) =
m∑

k=1

∫ t

0

gk
s (x) dwk

s =
m∑

i,k=1

gik(x)
(
wk

t∧τi
− wk

t∧τi−1

)
, t ≥ 0.

Obviously, for any ω, the function vt(x) is continuous and bounded in (t, x) along
with any derivative in x. Furthermore, the function and its derivative in x are Hölder
1/3 continuous in t uniformly with respect to x (for almost any ω). Also, vt(x) has
compact support in x.

These properties of vt(x) imply that for any ω there exists a unique classical
solution of the heat equation

∂

∂t
ūt = Δūt + Δvt, t > 0,

with zero initial data. Furthermore,

(4.4) ūt(x) =
∫ t

0

Tt−sΔvs(x) ds.

This formula shows, in particular, that ūt(x) is Ft-adapted. Adding the fact that ūt

is continuous in t proves that ūt(x) is predictable. The same holds for

(ūt, φ) =
∫ t

0

(Tt−sΔvs, φ) ds
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with any φ ∈ C∞
0 . The following corollary of Minkowski’s inequality

(4.5) ‖ūt‖Lp ≤
∫ t

0

‖Δvs‖Lp ds

shows that ūt is Lp-valued. Since (ūt, φ) is predictable for any φ ∈ C∞
0 , ūt is weakly

and, hence, strongly predictable as an Lp-valued process.
One can differentiate (4.4) with respect to x as many times as one wants and get

similar statements about the derivatives of ūt. In particular, (4.5) implies that for
any multi-index α

E

∫ T

0

∫
Rd

|Dαūt|p dxdt ≤ T pE

∫ T

0

∫
Rd

|DαΔvt|p dxdt <∞,

so that ūt ∈ W1
p,0(T ).

Now, it is easily seen that

ut(x) := ūt(x) + vt(x)

satisfies (4.1) pointwisely and by the above ut ∈ W1
p,0(T ). The (deterministic) Fubini’s

theorem also shows that ut satisfies (4.1) in the sense of distributions.
Next, we use the same simple transformation as in the proof of Lemma 4.1 of [6]

and conclude that for any t and x almost surely

Dut(x) =
m∑

k=1

∫ t

0

Tt−sDg
k
s (x) dwk

s .

Hence, by Burkholder–Davis–Gundy inequality

E|Dut(x)|p ≤ NE

[∫ t

0

|Tt−sDgs(x)|2�2 ds
]p/2

,

which along with Lemma 4.1 proves (4.3) for our particular g. Theorem 3.1 shows
that (4.2) follows from (4.3) and (4.1).

The rest is trivial since the set of g’s like the one above is dense in Lp(T ) by
Theorem 3.10 of [6]. The lemma is proved.

Next we introduce the parameter λ into (4.1).
Lemma 4.3. Assume that τ ≤ T , where the constant T ∈ [0,∞). Let λ > 0.

Then for any g = (g1, g2, . . . ) ∈ Lp(τ) there exists a unique u ∈ W1
p,0(τ) satisfying

(4.6) dut = (Δut − λut) dt+ gk
t dw

k
t

for t ≤ τ . Furthermore, for this solution we have

λp/2‖u‖p
Lp(τ) ≤ N(d, p)‖g‖p

Lp(τ),(4.7)

‖Du‖Lp(τ) ≤ N(d, p)‖g‖Lp(τ).(4.8)

Proof. Uniqueness and estimate (4.7) follow from Lemma 3.3. The existence
immediately follows from Lemma 4.2 and the result of transformation described in
the beginning of its proof. To establish (4.8) consider the heat equation

(4.9)
∂

∂t
vt = Δvt − λut.
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Since u ∈ Lp(τ), for almost any ω we have u ∈ Lp((0, τ) × Rd) and by a classical
result (see, for instance, [11]) for almost any ω equation (4.9) with zero initial data
has a unique solution in the class of functions such that along with derivatives in x
up to the second order they belong to Lp((0, τ)×Rd). Furthermore, after writing the
term −λut as −λvt − λzt, where zt = ut − vt, differentiating the equation once with
respect to x and using the contraction property of the heat semigroup we find

(4.10) ‖Dv‖p
Lp((0,τ)×Rd)

≤ ‖Dz‖p
Lp((0,τ)×Rd)

.

The solution vt can be given by an integral formula, which implies that vt is Ft-
adapted. It is also continuous as an Lp-valued process, and hence, is a predictable
Lp-valued process. Taking expectations of both parts of (4.10) shows that v ∈ W1

p (τ)
if z ∈ W1

p (τ).
Now observe that

dzt = Δzt dt+ gk
t dw

k
t ,

which by Lemma 4.2 implies that z ∈ W1
p (τ) and

‖Dz‖p
Lp(τ) ≤ N‖g‖p

Lp(τ).

Upon combining this with (4.10) and using the fact that u = v+ z, we come to (4.8).
The lemma is proved.

5. A priori estimates in the general case. First we deal with the case when
σ = ν = 0.

Lemma 5.1. Suppose that σik ≡ νk ≡ 0. Also suppose that Assumptions 2.1 and
2.2 are satisfied with β ≤ β0, where the way to estimate the constant β0(d, p, δ) > 0
is described in the proof. Let f j ∈ Lp(τ) and g ∈ Lp(τ).

Then there exist constants λ0 ≥ 1 and N , depending only on d, p, δ,K, and ε,
such that for any λ ≥ λ0 there exists a unique u ∈ W1

p,0(τ) satisfying (1.1) for t ≤ τ .
Furthermore, this solution satisfies the estimate

(5.1)

λ1/2‖u‖Lp(τ) + ‖Du‖Lp(τ) ≤ N

(
d∑

i=1

∥∥f i
∥∥
Lp(τ)

+ ‖g‖Lp(τ)

)
+Nλ−1/2

∥∥f0
∥∥
Lp(τ)

.

Proof. Uniqueness and part of estimate (5.1) follow from Lemma 3.3. In the rest
of the proof we may assume that τ is bounded and split our argument into two parts.

Case gk ≡ 0. First assume that the coefficients and f j are nonrandom. We extend
the coefficients of L following the example aij

t (x) = δij , t < 0, and extend f j
t beyond

(0, τ) arbitrary only requiring f j ∈ Lp(Rd+1).
Then by Theorem 4.5 and Remark 2.4 of [8] the equation

(5.2)
∂

∂t
ut = Ltut − λut +Dif

i
t + f0

t

in Rd+1 has a unique solution with finite norms

‖u‖Lp(Rd+1) and ‖Du‖Lp(Rd+1)

provided that λ ≥ λ0. By Theorem 4.4 of [8]
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(5.3)

λ1/2‖u‖Lp(Rd+1) + ‖Du‖Lp(Rd+1) ≤ N

(
d∑

i=1

∥∥f i
∥∥

Lp(Rd+1)
+ λ−1/2

∥∥f0
∥∥

Lp(Rd+1)

)
.

By Theorem 3.1 the function ut is a continuous Lp-valued function.
The proof of Theorem 4.4 of [8] is achieved on the basis of the a priori estimate

(5.3) and the method of continuity by considering the family of equations

(5.4)
∂

∂t
ut = (θLt + (1 − θ)Δ)ut − λut +Dif

i
t + f0

t ,

where the parameter θ changes in [0, 1]. We remind briefly the method of continuity
because we want to show that certain properties of (5.4) which we know for θ = 0
propagate from θ = 0 to θ = 1.

We fix a θ0 ∈ [0, 1] and to solve (5.4) for given f j define a sequence of un ∈
Lp(R,W 1

p ) by solving the equation

(5.5)
∂

∂t
un+1

t = (θ0Lt + (1 − θ0)Δ)un+1
t − λun+1

t

+ Dif
i
t + f0

t + (θ − θ0)(Lt − Δ)un, n ≥ 1, u0 = 0.

If we know that (5.4) is uniquely solvable with θ0 in place of θ for arbitrary f j ∈
Lp(Rd+1), then the sequence un is well defined. Furthermore, estimate (5.3) easily
shows that for θ sufficiently close to θ0 the Lp(R,W 1

p ) norm of un+1 −un goes to zero
geometrically as n → ∞. In this way, passing to the limit in (5.5), we obtain the
solution of (5.4) for θ close to θ0. Then we can repeat the procedure and starting
from θ = 0 and moving step by step eventually reach θ = 1.

For θ = 0 we are dealing with solvability of the heat equation which is proved
by giving the solution explicitly by means of the heat semigroup. This representation
formula has two important implications:

(i) For any constant T ∈ R, changing f j
t for t ≥ T does not affect ut for t ≤ T ;

(ii) If f j are Lp(Rd+1)-valued measurable functions of a parameter, say ω from a
measurable space, say (Ω,FT ), then the solution u ∈ Lp(R,W 1

p ), which now depends
on ω is also FT -measurable.

Property (i) is obtained by inspecting the representation formula. Property (ii) is
true because the mapping Lp(Rd+1) 
 f j → u ∈ Lp(R,W 1

p ) is continuous and, hence,
Borel measurable.

Obviously, both properties propagate from θ = 0 to θ = 1 by the above method
of continuity. In particular, solutions of (5.2) on the time interval (−∞, T ] depend
only on the values of f j

t for t ∈ (−∞, T ]. It follows that with the same λ and N , for
any T ∈ R,

(5.6) λ1/2‖u‖Lp((−∞,T ),Lp) + ‖Du‖Lp((−∞,T ),Lp)

≤ N

(
d∑

i=1

‖f i‖Lp((−∞,T ),Lp) + λ−1/2‖f0‖Lp((−∞,T ),Lp)

)
.

From now on, we allow the coefficients and f j to be random, continue f j as zero
for t < 0, and solve (5.2) for each ω. By (5.6) with T = 0 we have that ut = 0 for
t ≤ 0, and it makes sense considering (5.2) on (0, T ) for each T ∈ (0,∞) with zero
initial condition. In such situation properties (i) and (ii) still hold.
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In particular, if f j are measurable Lp((0, T ), Lp)-valued functions of a parameter,
say ω from a measurable space, say (Ω,FT ), then the solution u ∈ Lp((0, T ),W 1

p )
is also FT -measurable. Then, from the equation itself, it follows that (uT , φ) is FT -
measurable for any φ ∈ C∞

0 . Since uT takes values in Lp, it is an Lp-valued FT -
measurable function.

If f i
t are predictable Lp-valued functions, the above conclusions are valid for any

T ∈ [0,∞). In particular, ut is Ft-adapted as an Lp-valued function and since it is
continuous, ut is a predictable Lp-valued function.

These properties and the fact that (5.6) holds for any T ∈ (0,∞) and ω prove the
lemma in the particular case under consideration.

General case. By Lemma 4.3 there is a unique solution v ∈ W1
p,0(τ) of (4.6).

Observe that

(Lt − Δ)vt = Dif̂
i
t + f̂0

t ,

where f̂ j
t are functions of class Lp(τ) defined by

f̂ j
t =

(
aij

t − δij
)
Divt + aj

tvt, j = 1, . . . , d,

f̂0
t = bitDivt + ctvt.

By the above there is a unique solution u ∈ W1
p,0(τ) of

∂

∂t
ut = Ltut − λut + (Lt − Δ)vt +Dif

i
t + f0

t .

Obviously, vt + ut is a solution of class W1
p,0(τ) of (1.1). By the particular case

λ1/2‖u‖Lp(τ) + ‖Du‖Lp(τ) ≤ N

d∑
i=1

(∥∥f i
∥∥
Lp(τ)

+
∥∥∥f̂ i
∥∥∥
Lp(τ)

)
+Nλ−1/2

(∥∥f0
∥∥
Lp(τ)

+
∥∥∥f̂0

∥∥∥
Lp(τ)

)
and to obtain (5.1), it remains only to use the estimates of vt provided by Lemma
4.3. The lemma is proved.

Now we allow σ �= 0.
Lemma 5.2. (i) Suppose that Assumption 2.1 is satisfied with K = 0 and take

ε ≥ ε1 > 0, ε2 ∈ (0, ε/4], t0 ≥ 0, and x0 ∈ Rd.
(ii) Let f j ∈ Lp(τ), g ∈ Lp(τ), and u ∈ W1

p,0(τ) be such that (1.1) holds for t ≤ τ .
Assume that ut(x) = 0 if

(t, x) �∈ Γ := (t0, t0 + ε21) ×Bε2(x0).

(iii) Assume that the couple (a, σ) is (ε, ε1)-regular at (t0, x0) with β = β0/3 in
(2.4) and (2.5), where β0 is the constant from Lemma 5.1. Also assume that

|σi·
t (x) − σi·

t (x0)|�2 ≤ β1, (ajk
t (y) − αjk

t (x0))ξjξk ≥ δ|ξ|2

for all values of indices and arguments such that (t, x) ∈ Γ and (t, y) ∈ Qε(t0, x0),
where β1 = β1(d, δ, p, ε) > 0 is a constant an estimate from below for which can be
obtained from the proof.
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Then there exist constants λ0 ≥ 1 and N , depending only on d, p, δ, and ε, such
that estimate (5.1) holds provided that λ ≥ λ0.

Proof. Without loss of generality we may and will assume that x0 = 0. Also we
modify, if necessary, a and σ in such a way that σik

t (x) = 0 if t �∈ (t0, t0 + ε21), and
aij

t (x) = δ−1δij if t �∈ (t0, t0 + ε21). Obviously, under this modification assumption
(iii) is preserved and (1.1) remains unaffected due to assumption (ii). The rest of the
proof we split into two cases.

Case σik
t (x) = σik

t (0) for |x| ≤ ε2 and t ≥ 0. We want to apply Lemma 5.1 and
for that, even if σ ≡ 0, we need aij to satisfy at least the condition osc (aij , Q) ≤ β
for all Q ∈ Q with ρ(Q) ≤ ε. To achieve this we modify aij

t (x) for |x| ≥ ε/4 using
the fact that such modifications have no effect on (1.1) since ut(x) = 0 for |x| ≥ ε2
and ε2 ≤ ε/4.

Take a ξ ∈ C∞
0 (Rd) with support lying in the ball of radius ε/2 centered at the

origin and such that ξ(x) = 1 for |x| ≤ ε/4 and 0 ≤ ξ ≤ 1. Set

âij
t := ξaij

t + δ−1(1 − ξ)δij .

We can use â in place of a in (1.1). It follows by Lemma 4.7 of [6] (Itô–Wentzell
formula) that the function vt(x) := ut(x+ xt) satisfies the equation

(5.7) dvt(x) =
(
L̄tvt(x) − λvt +Dif̄

i
t + f̄0

t

)
dt+ ḡk

t (x+ xt) dwk
t ,

where

L̄tφ = Dj

(
āij

t Diφ
)
, āij

t (x) = âij
t (x+ xt) − αij

t (0),

f̄ i
t (x) := f i

t (x+ xt) − σik
t (0)gk

t (x+ xt), i = 1, . . . , d,
f̄0

t (x) := f0
t (x+ xt), ḡk

t (x) = gk
t (x+ xt),

and the process xt = (x1
t , . . . , x

d
t ) is defined by

xi
t = −

∫ t

0

σik
s (0) dwk

s .

This fact shows that the assertion of the present lemma is a direct consequence of
Lemma 5.1 in case the latter is applicable to (5.7).

As is easy to see we will be able to apply Lemma 5.1 to (5.7) if we can find
ε′ = ε′(d, δ, ε, p) > 0 such that

(5.8)
1

t− s

∫ t

s

(∣∣∣āij
r − āij

r(B)

∣∣∣)
(B)

dr ≤ β0,

whenever (s, t) ×B ∈ Q and ρ(B) ≤ ε′.
Denote by N , with or without subscripts, various (large) constants depending

only on d, δ, and ε and observe that |Dξ| ≤ N . It follows easily that for B ∈ B we
have

(5.9)(∣∣∣āij
r − āij

r(B)

∣∣∣)
(B)

≤
(∣∣ξaij

r − (ξaij
r )(B+xr)

∣∣)
(B+xr)

+ δ−1δij(|ξ − ξ(B+xr)|)(B+xr)

≤
(∣∣ξaij

r − (ξaij
r )(B+xr)

∣∣)
(B+xr)

+N1ρ =: Ir +N1ρ,

where and below ρ = ρ(B).
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Let z be the center of B and set

yr = (z + xr)(ρ+ ε/2)|z + xr |−1

if |z + xr| ≥ ρ + ε/2 and yr = z + xr otherwise. Observe that yr is continuous in r
and

(5.10) |yr| ≤ ρ+ ε/2.

Next we claim that

(5.11) Ir ≤ 2
(∣∣∣aij

r − aij
r(Bρ+yr)

∣∣∣)
(Bρ+yr)

+N2ρ.

If (5.11) is true, then by combining it with (5.9) and using (5.10) we find that the
left-hand side of (5.8) is less than

(N1 +N2)ρ+ 2 sup
|y|≤ρ+ε/2

osc (aij , Qρ + (0, y), 0)

if σnm
t (0) = 0 for all t, n,m or, in general, less than

(N1 +N2)ρ+ 2Osc
(
aij , Qρ, ρ+ ε/2

)
,

where Qρ = (s, t) ×Bρ. Now (2.4) and (2.5) imply that (5.8) is satisfied for ρ ≤ ε′ if
we choose ε′ > 0 so that

(N1 +N2)ε′ ≤ β0/3, ε′ ≤ ε/4.

Therefore, it remains only to prove the claim. Obviously, if |z + xr| ≥ ρ + ε/2,
then Ir = 0 and (5.11) holds.

In case |z + xr | < ρ+ ε/2 the estimates

(|hr − hr(B′)|)(B′) ≤
1

|B′|2
∫

B′

∫
B′

|hr(y) − hr(z)| dydz ≤ 2(|hr − hr(B′)|)(B′),∣∣ξ(y)aij
r (y) − ξ(z)aij

r (z)
∣∣ ≤ ξ(y)

∣∣aij
r (y) − aij

r (z)
∣∣+N |ξ(y) − ξ(z)|

show that

Ir ≤ 2
(∣∣∣aij

r − aij
r(B+xr)

∣∣∣)
(B+xr)

+Nρ,

which is equivalent to (5.11). This proves the lemma in the particular case under
consideration.

General case. We rewrite the term Λk
t ut + gk

t in (1.1) as σik
t (0)Diut + ḡk

t with
ḡk

t = gk
t + (σik

t −σik
t (0))Diut and use the above result to conclude that estimate (5.1)

holds with N = N1 = N1(d, p, δ, ε) if we add to its right-hand side

N2(d, p, δ, ε)β1‖Du‖Lp(τ).

By choosing β1 = β1(d, p, δ, ε) so that N2β1 ≤ 1/2, we get (5.1) with 2N1 in place of
N1. The lemma is proved.

Remark 5.3. If Assumption 2.1 is satisfied with K = 0 and aij
t and σik

t depend
only on ω and t, then the assertion of Lemma 5.2 is true with λ0 = 0 and N =
N(d, p, δ) and without requiring u to have compact support. This fact can be obtained
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by following the arguments in section 4.3 of [6]. Even though those arguments are
much longer, they allow one to prove a very general result that, roughly speaking,
“whatever estimate can be established for solutions of the heat equation in Banach
function spaces with norms that are invariant under time dependent shifting of the
x coordinate, the same estimate with the same constant also holds for solutions of
the parabolic equations with no lower order terms and with the matrix of the second
order coefficients depending only on t and dominating (in the matrix sense) the unit
matrix” (see [5]).

The next step is to consider equations with lower order terms. The following
lemma and its corollary are stated in a slightly more general form than it is needed
in the present article. The point is that we intend to use them in a subsequent article
about equations in half spaces.

Lemma 5.4. Let G ⊂ Rd be a domain (perhaps, G = Rd) and take ε ≥ ε1 > 0
and ε2 ∈ (0, ε/4].

(i) Let f j , g ∈ Lp(τ) and let u ∈ W1
p,0(τ) satisfy (1.1) for t ≤ τ and be such that

ut(x) = 0 if x �∈ G.
(ii) Suppose that Assumption 2.1 is satisfied.
(iii) Suppose that assumption (iii) of Lemma 5.2 is satisfied for any t0 ≥ 0 and

x0 such that dist (x0, G) ≤ ε2.
Then there exist constants N,λ0 ≥ 0, depending only on d, p, K, δ, ε, ε1, and

ε2, such that estimate (5.1) holds true whenever λ ≥ λ0.
Proof. As usual we will use partitions of unity. Take a nonnegative ξ ∈ C∞

0 (Bε2)
with unit Lp-norm and take a nonnegative η ∈ C∞

0 ((0, ε21)) with unit Lp-norm. For
s ∈ R and y ∈ Rd introduce

ζ(t, x) = ξ(x)η(t), ζs,y(t, x) = ζ(t− s, x− y), us,y
t (x) = ζs,y(t, x)ut(x)

so that, in particular,

(5.12) |ut(x)|p =
∫

Rd+1

|us,y
t (x)|p dyds.

Observe that, for each s, y,

(5.13)
dus,y

t =
(
σik

t Diu
s,y
t + ĝs,y,k

t

)
dwk

t

+
(
Dj

(
aij

t Diu
s,y
t

)
− λus,y

t +Dj f̂
s,y,j
t + f̂s,y,0

t

)
dt

for t ≤ τ , where we dropped the argument x (and ω) and

ĝs,y,k
t = ζs,y

(
νk

t ut + gk
t

)
− utσ

ik
t Diζ

s,y ,

f̂s,y,j
t = ζs,y

(
aj

tut + f j
t

)
− aij

t utDiζ
s,y, j = 1, . . . , d,

f̂s,y,0
t = ζs,y

(
f0

t + bitDiut + ctut

)
− f j

t Djζ
s,y −

(
aij

t Diut + aj
tut

)
Djζ

s,y + ζs,y
t ut,

and ζs,y
t (t, x) = ξ(x − y)η′(t− s).

As is easy to see us,y(t, x) = 0 for (t, x) �∈ (s+, s+ + ε21) × Bε2(y). Therefore, by
Lemma 5.2 if dist (y,G) ≤ ε2, then

(5.14) λp/2‖us,y‖p
Lp(τ) + ‖Dus,y‖p

Lp(τ)

≤ N

⎛⎝ d∑
j=1

∥∥f̂s,y,j
∥∥p

Lp(τ)
+ ‖ĝs,y‖p

Lp(τ)

⎞⎠+Nλ−p/2
∥∥f̂s,y,0

∥∥p

Lp(τ)
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provided that λ ≥ λ0, where N and λ0 depend only on d, δ, p, and ε. This estimate
also, obviously, holds if dist (y,G) > ε2 since then us,y

t ≡ 0.
Next, ∣∣f̂s,y,j

t

∣∣ ≤ Nζ̄s,y|ut| + ζs,y
∣∣f j

t

∣∣, j = 1, . . . , d,∣∣f̂s,y,0
t

∣∣ ≤ Nζ̄s,y(|Dut| + |ut|) +Nζ̄s,y
d∑

j=0

|f j
t |,

|ĝs,y
t |�2 ≤ Nζ̄s,y|ut| + ζs,y|gt|�2 ,

where ζ̄ = ζ + |Dζ|+ |ζt|, ζ̄s,y(t, x) = ζ̄(t− s, x− y), and here and below we allow the
constants N to depend only on d, p, δ, K, ε, ε1, and ε2.

We also notice that |ζs,yDut| ≤ |D(ζs,yut)| + ζ̄s,y |ut|. Then we find that

λp/2‖ζs,yu‖p
Lp(τ) + ‖ζs,yDu‖p

Lp(τ)

≤ N

(
d∑

i=1

∥∥ζ̄s,yf i
∥∥p

Lp(τ)
+ ‖ζs,yg‖p

Lp(τ) +
∥∥ζ̄s,yu

∥∥p

Lp(τ)

)
+ Nλ−p/2

(∥∥ζ̄s,yf0
∥∥p

Lp(τ)
+
∥∥ζ̄s,yDu

∥∥p

Lp(τ)

)
.

We integrate through this estimate and use formulas like (5.12). Then we obtain

λp/2‖u‖p
Lp(τ) + ‖Du‖p

Lp(τ)

≤ N1

(
d∑

i=1

∥∥f i
∥∥p

Lp(τ)
+ ‖g‖p

Lp(τ) + ‖u‖p
Lp(τ)

)
+N1λ

−p/2
(∥∥f0

∥∥p

Lp(τ)
+ ‖Du‖p

Lp(τ)

)
.

Finally, we increase λ0 ≥ 0, if necessary, in such a way that N1λ
−p/2 ≤ 1/2 for λ ≥ λ0.

Then we obviously arrive at (5.1) with N = 2N1. The lemma is proved.
To the best of the author’s knowledge, the following multiplicative estimate is

new even in the deterministic case.
Corollary 5.5. Let λ = 0. Then under the assumptions of Lemma 5.4 we have

‖Du‖Lp(τ) ≤ N

(
d∑

i=1

∥∥f i
∥∥
Lp(τ)

+ ‖g‖Lp(τ) +
∥∥f0

∥∥1/2

Lp(τ)
‖u‖1/2

Lp(τ) + ‖u‖Lp(τ)

)
,

where N depends only on d, p,K, δ, ε, ε1, and ε2.
Indeed, take λ > 0 and add and subtract the term (λ0 + λ)ut dt on the right in

(1.1), thus introducing λ into the equation and modifying f0
t by including into it one

of (λ0 + λ)ut. Then after applying (5.1), we see that

‖Du‖Lp(τ) ≤ N

(
d∑

i=1

∥∥f i
∥∥
Lp(τ)

+ ‖g‖Lp(τ)

+ (λ0 + λ)−1/2
∥∥f0

∥∥
Lp(τ)

+ (λ0 + λ)1/2‖u‖Lp(τ)

)
.

Now it remains only to take the inf with respect to λ > 0.
Proof of Lemma 2.1. By bearing in mind an obvious shifting of time, we see that

in the proof of assertions (i)–(iii) we may assume that s = 0.
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(i) First of all observe that uniqueness of solution of (2.7) is well known even in
a much wider class than W1

p (∞).
Let u0 ∈ tr0W1

p , then u0 ∈ W 1−2/p for almost each ω and there is a unique
solution of the heat equation

dvt = Δvt dt

of class Lp((0, 1),W 1
p ) with initial condition u0. Furthermore,

‖v‖Lp((0,1),W 1
p ) ∼ ‖u0‖W

1−2/p
p

.

Next, take a ζ ∈ C∞
0 (R) such that ζ0 = 1 and ζt = 0 for t ≥ 1/2 and define

ψt(x) = e−tvt(x)ζt for t ∈ [0, 1] and as zero if t ≥ 1/2. Notice that (a.s.)

ψ ∈ Lp

(
R+,W

1
p

)
,

and

∂

∂t
ψt = Δψt − ψt + e−tζ′tvt.

Then it is a classical result that there exists a unique φ ∈ Lp(R+,W
2
p ) which

solves the equation

dφt = (Δφt − φt + e−tζ′tvt) dt

with zero initial condition. In addition,

‖φ‖Lp(R+,W 2
p ) ≤ N‖ζ′v‖Lp(R+,Lp) ≤ N‖u0‖W

1−2/p
p

,

where the constants N depend only on d and p. Owing to these estimates and unique-
ness, the operators mapping u0 into v and φ are continuous (and nonrandom). Since
u0 is F0-measurable, the same is true for ψ, φ, and u = ψ − φ, which is of class
Lp(R+,W

1
p ), satisfies (2.7), and equals u0 for t = 0. Also, for each ω

‖u‖Lp(R+,W 1
p ) ≤ ‖ψ‖Lp(R+,W 1

p ) + ‖φ‖Lp(R+,W 1
p ) ≤ N‖u0‖W

1−2/p
p

,

where N depends only on d and p. By raising the extreme terms to the pth power
and taking expectations we get the first inequality in (2.8) and also finish proving the
“only if” part of (i).

To prove the “if” part assume that we have a v ∈ W1
p (∞) satisfying (2.7) and

equal u0 at t = 0. Then ut = vte
t satisfies ∂ut/∂t = Δut and is of class W1

p (1). It
follows that almost all ω we have u ∈ Lp((0, 1),W 1

p ), u0 ∈ W
1−2/p
p , and

‖u0‖W
1−2/p
p

≤ N‖u‖Lp((0,1),W 1
p ) ≤ N‖v‖Lp(R+,W 1

p ).

By raising all expressions to the power p and taking expectations we arrive at the
second estimate in (2.8). Assertion (i) is proved.

The “only if” part in (ii) is, actually, proved above. To prove the “if” part write

dvt =
(
Dif

i
t + f0

t

)
dt+ gk

t dw
k
t =

(
Δvt − λvt +Dif̂

i
t + f̂0

t

)
dt+ gk

t dw
k
t ,
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where the constant λ > 0 will be chosen later, f̂ i
t = f i

t − Divt, i = 1, . . . , d, f̂0
t =

f0
t + λvt, and f̂ j , g ∈ Lp(1). Next, take the function ζ as above, set u = vζ, and

observe that

(5.15) dut =
(
Δut − λut +Dif̌

i
t + f̌0

t

)
dt+ ǧk

t dw
k
t ,

where f̌0 = ζf̂0 + vζ′, f̌ i
t = ζf̂ i

t , i = 1, . . . , d, ǧk = ζgk, and f̌ j, ǧ ∈ Lp(∞) and
u ∈ W1

p (∞).
By Lemma 5.1, for λ fixed and large enough (actually, one can take λ = 1, which

is shown by using dilations), (5.15) with zero initial condition admits a unique solution
ψ ∈ W1

p (∞) and

‖ψ‖W1
p(∞) ≤ N

⎛⎝ d∑
j=0

∥∥f̌ j
∥∥
Lp(∞)

+ ‖ǧ‖Lp(∞)

⎞⎠
≤ N

⎛⎝ d∑
j=0

∥∥f j
∥∥
Lp(1)

+ ‖g‖Lp(1) + ‖v‖W1
p(1)

⎞⎠ .

Then the difference φ = u − ψ satisfies (2.7), is of class W1
p (∞), and φ0 = u0. By

assertion (i) we have u0 ∈ tr0W1
p , which proves the “if” part in (ii). Furthermore,

‖u0‖tr0W1
p
≤ N‖φ‖W1

p(∞) ≤ N‖u‖W1
p(∞) +N‖ψ‖W1

p(∞)

≤ N‖v‖W1
p(1) +N‖ψ‖W1

p(∞)

≤ N

⎛⎝ d∑
j=0

∥∥f j
∥∥
Lp(1)

+ ‖g‖Lp(1) + ‖v‖W1
p(1)

⎞⎠ .

This proves assertion (iii).
To prove (iv) observe that obvious dilations of the t axis allow us to assume that

s = 1. Then write (2.2) for t ∈ [0, 1] and notice that tut admits representation (2.2)
with new f j and gk having simple relations with ut and the original f j and gk. It
follows that in the rest of the proof we may assume that u0 = 0.

In that case, take a sufficiently large λ > 0 and consider the equation

dvt =
(
Δvt − λvt +Dif̄

i
t + f̄0

t

)
dt+ ḡk

t dw
k
t

for t ≥ 0 with zero initial condition, where

f̄ i
t = f i

tI(0,1)(t) −DiutI(0,1)(t), i = 1, . . . , d,

f̄0
t =

(
f0

t + λut

)
I(0,1)(t), ḡk

t = gk
t I(0,1)(t).

By uniqueness, vt = ut for t ∈ [0, 1] and by assertion (iii) we have v1 ∈ tr1W1
p . This

fact combined with already known estimates of v proves assertion (iv). The lemma is
proved.

6. Proof of Theorem 2.2. Owing to Lemma 2.1 we may assume that we are
given a v as in assertion (i) of the lemma. By introducing a new unknown function
ū = u− v we see that u satisfies (1.1) and u0 = v0 if and only if ū0 = 0 and

dūt =
(
Ltūt − λūt +Dj f̄

j
t + f̄0

t

)
dt+

(
Λk

t ūt + ḡk
t

)
dwk

t ,
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where

f̄ j
t = f j

t −Djvt + aij
t Divt + aj

tvt, j = 1, . . . , d,
f̄0

t = f0
t + bitDivt + (ct − λ+ 1)vt,

ḡk
t = gk

t + σik
t Divt + νk

t vt.

By Lemma 2.1 we have f̄ j, ḡ ∈ Lp(τ) and the problem of finding solutions of (1.1)
with initial data u0 is thus reduced to the same problem but with zero initial data.

Furthermore, if estimate (2.10) holds for solutions with zero initial condition, then
(for λ ≥ λ0)

λ1/2‖u‖Lp(τ) + ‖Du‖Lp(τ) − λ1/2‖v‖Lp(τ) − ‖Dv‖Lp(τ)

≤ λ1/2‖ū‖Lp(τ) + ‖Dū‖Lp(τ)

≤ N

(
d∑

i=1

‖f̄ i‖Lp(τ) + ‖ḡ‖Lp(τ)

)
+Nλ−1/2

∥∥f̄0
∥∥
Lp(τ)

≤ N

(
d∑

i=1

∥∥f i
∥∥
Lp(τ)

+ ‖g‖Lp(τ) + ‖v‖W1
p(τ)

)
+ Nλ−1/2

(∥∥f0
∥∥
Lp(τ)

+ ‖v‖W1
p(τ)

)
+Nλ1/2‖v‖Lp(τ),

which yields (2.10) in full generality.
It follows that while proving (2.10) we may also assume that u0 = 0. Therefore,

in the rest of the proof of assertions (i) and (ii) we assume that u0 = 0. Having in
mind the substitution ut = vte

−μt, we see that while proving assertion (i) it suffices
to concentrate on large λ and prove only the second part of the assertion.

We recall that we suppose that Assumption 2.2 is satisfied with β = β0/3 and β0

from Lemma 5.1 and Assumption 2.3 is satisfied with β1 defined in Lemma 5.2. It
follows that assumption (iii) of Lemma 5.2 is satisfied for any (t0, x0).

Now we take λ0 larger than the one in Lemma 3.3 and the one in Lemma 5.4. In
that case uniqueness follows from Lemma 3.3. In the proof of existence we will rely
on the method of continuity and the a priori estimate (5.1) which is established in
Lemma 5.4. For λ ≥ λ0 and θ ∈ [0, 1] we consider the equation

(6.1) dut = [(θLt + (1 − θ)Δ)ut − λut +Dif
i
t + f0

t ] dt+
(
θΛk

t ut + gk
t

)
dwk

t .

We call a θ ∈ [0, 1] “good” if the assertions of the theorem hold for (6.1). Observe
that 0 is a “good” point by Lemma 5.1. Now to prove the theorem it suffices to show
that there exists a γ > 0 such that if θ0 is a good point, then all points of the interval
[θ0 − γ, θ0 + γ]∩ [0, 1] are “good”. So fix a “good” θ0 and for any v ∈ W1

p(τ) consider
the equation

(6.2) dut = [(θ0Lt + (1 − θ0)Δ)ut − λut + (θ − θ0)(Lt − Δ)vt +Dif
i
t + f0

t ] dt

+
(
θ0Λk

t ut + (θ − θ0)Λkvt + gk
t

)
dwk

t .

Observe that

(Lt − Δ)vt = Dj

((
aij − δij

)
Divt + aj

tvt

)
+ bitDivt + cvt

and recall that v ∈ W1
p(τ). It follows by assumption that (6.2) has a unique solution

u ∈ W1
p,0(τ) (⊂ W1

p(τ)).
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In this way, for f j and g being fixed, we define a mapping v → u in the space
W1

p(τ). It is important to keep in mind that the image u of v ∈ W1
p(τ) is always

in W1
p,0(τ). Take v′, v′′ ∈ W1

p(τ) and let u′, u′′ be their corresponding images. Then
u := u′ − u′′ satisfies

dut = [(θ0Lt + (1 − θ0)Δ)ut − λut + (θ − θ0)(Lt − Δ)vt)] dt

+
(
θ0Λk

t ut + (θ − θ0)Λkvt

)
dwk

t ,

where v = v′ − v′′. It follows by Lemma 5.4 that

‖u‖W1
p(τ) ≤ N |θ − θ0| ‖v‖W1

p(τ)

with a constant N independent of f , g, v′, v′′, θ0, and θ. For θ sufficiently close to θ0,
our mapping is a contraction and, since W1

p(τ) is a Banach space, it has a fixed point.
This fixed point is in W1

p,0(τ) and, obviously, satisfies (6.1). This proves assertion (i)
of the theorem.

Estimate (2.10) is proved above in Lemma 5.4 and assertion (iii) follows from
Theorem 3.1. The theorem is proved.
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SEMILINEAR STOCHASTIC EQUATIONS IN A HILBERT SPACE
WITH A FRACTIONAL BROWNIAN MOTION∗

T. E. DUNCAN† , B. MASLOWSKI‡ , AND B. PASIK-DUNCAN†

Abstract. The solutions of a family of semilinear stochastic equations in a Hilbert space with
a fractional Brownian motion are investigated. The nonlinear term in these equations has primarily
only a growth condition assumption. An arbitrary member of the family of fractional Brownian
motions can be used in these equations. Existence and uniqueness for both weak and mild solutions
are obtained for some of these semilinear equations. The weak solutions are obtained by a measure
transformation that verifies absolute continuity with respect to the measure for the solution of the
associated linear equation. Some examples of stochastic differential and partial differential equations
are given that satisfy the assumptions for the solutions of the semilinear equations.

Key words. semilinear stochastic equations, fractional Brownian motion, stochastic partial
differential equations, absolute continuity of measures
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1. Introduction. Fractional Brownian motion denotes a family of Gaussian
processes with continuous sample paths that are indexed by the Hurst parameter
H ∈ (0, 1) and that have properties that appear empirically in a wide variety of phys-
ical phenomena, such as hydrology, economic data, telecommunications, and medicine.
Since some physical phenomena are naturally modeled by stochastic partial differen-
tial equations and the randomness can be described by a fractional Gaussian noise, it
is important to study the problems of the solutions of stochastic differential equations
in a Hilbert space with a fractional Brownian motion. A significant family of these
stochastic equations is the set of semilinear equations, so it is important to investigate
the existence and the uniqueness of the solutions of the equations and the sample path
properties of the solutions. If primarily only some growth assumptions are made on
the nonlinear terms in the semilinear equations, then it is natural to investigate weak
solutions, especially those that arise by an absolutely continuous transformation of
the measure of the solution of the associated linear stochastic equation.

The study of the solutions of stochastic equations in an infinite-dimensional space
with a (cylindrical) fractional Brownian motion (for example, stochastic partial differ-
ential equations) has been relatively limited. For the Hurst parameter H ∈ (1/2, 1),
linear and semilinear equations with an additive fractional Gaussian noise, the formal
derivative of a fractional Brownian motion, are considered in [8, 13, 15, 28]. Random
dynamical systems described by such stochastic equations and their fixed points are
studied in [22]. A pathwise (or nonprobabilistic) approach is used in [21] to study
a parabolic equation with a fractional Gaussian noise where the stochastic term is
a nonlinear function of the solution. Strong solutions of bilinear evolution equations
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with a fractional Brownian motion are considered in [11, 12], and the same type of
equation is studied in [33], where a fractional Feynman–Kac formula is obtained. A
stochastic wave equation with a fractional Gaussian noise is considered in [2], and a
stochastic heat equation with a multiparameter fractional Gaussian noise is studied
in [16, 18].

One facet of the motivation for the study of weak solutions in an infinite-
dimensional space follows from some results [7, 27] for weak solutions in finite-
dimensional spaces that use an absolutely continuous transformation of measures
which generalize the result of Girsanov [14] for Brownian motion.

In this paper, a similar analysis is made for infinite-dimensional state spaces.
While the structure of the infinite-dimensional Girsanov theorem is analogous to the
finite-dimensional case, significant distinct difficulties arise when the application of
this theorem is used for stochastic equations in infinite-dimensional spaces. First
the driving process is only cylindrical, so the Girsanov theorem can only be used to
transform the semilinear equation to a linear equation that is a fractional Ornstein–
Uhlenbeck process. Since there is no classical strong solution to the linear equation,
the mild solution must be used, making the analysis of the transformation of the
measures by the Radon–Nikodým derivative more difficult because a suitable sam-
ple path regularity of the Ornstein–Uhlenbeck process must be verified. Unlike the
finite-dimensional case, this regularity is not immediate and some assumptions on
the coefficients in the linear equation must be made which are known for the case of
Brownian motion. The sample regularity requirement increases as the Hurst parame-
ter H increases. Dually the operators that appear in the Radon–Nikodým derivative
are less regular as H increases. Thus the applicability of the Girsanov theorem is not
immediate in this case and some conditions must be determined for the whole proce-
dure to succeed. Furthermore, for H > 1

2 in the finite-dimensional case it is assumed
that the nonlinear term in the semilinear equation satisfies a global Hölder condition,
but this assumption is not satisfied in many typical examples in infinite-dimensional
spaces, such as reaction-diffusion equations. Thus this Hölder condition is relaxed
here as well.

In section 2, some results from fractional calculus are given, and these results are
used to describe a kernel function for an integral operator that provides an isometry
of the second moment of Wiener-type stochastic integrals with respect to a fractional
Brownian motion and the Lebesgue space of square integrable functions. Furthermore,
some recent results for the solution of a linear stochastic equation in a Hilbert space
[28] are described. In section 3, semilinear stochastic equations in a Hilbert space
are studied. Initially, an absolute continuity of measures result for transforming the
solution of a linear stochastic equation is verified that can be viewed as an analogue
of the result of Girsanov [14] for a transformation of a finite-dimensional standard
Brownian motion. For a semilinear stochastic equation where the nonlinear term
satisfies a linear growth condition and some additional conditions are satisfied, it is
shown that there is one and only one weak solution. The weak solution is obtained
by verifying an absolute continuity of the measure of the solution with respect to the
measure of the solution of the associated linear equation. The cases H ∈ (0, 1/2) and
H ∈ (1/2, 1) are treated separately. Absolute continuity of the above measures is
verified when the nonlinearity satisfies a power growth condition and some additional
assumptions are made. In section 4, some examples of stochastic differential and
partial differential equations are given that satisfy the assumptions of the theorems.
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2. Preliminaries. In this section, a cylindrical fractional Brownian motion in a
separable Hilbert space is introduced, a Wiener-type stochastic integral with respect to
this process is defined, and some basic properties of this integral are noted. Initially,
some facts from the theory of fractional integration (cf. [31]) are described. Let
(V, ‖ · ‖, 〈·, ·〉) be a separable Hilbert space. If ϕ ∈ L1([0, T ], V ), then for α > 0 the
left-side and the right-side fractional (Riemann–Liouville) integrals of ϕ are defined
(for almost all t ∈ [0, T ]) by

(
Iα
0+ϕ
)

(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
ϕ(s) ds

and

(
Iα
T−ϕ

)
(t) =

1
Γ(α)

∫ T

t

(s− t)α−1ϕ(s) ds,

respectively, where Γ(·) is the gamma function. For α ∈ (0, 1) the inverse operators
of these fractional integrals are called fractional derivatives and can be given by their
respective Weyl representations

(
Dα

0+ψ
)

(t) =
1

Γ(1 − α)

(
ψ(t)
tα

+ α

∫ t

0

ψ(t) − ψ(s)
(t− s)α+1

ds

)
and

(
Dα

T−ψ
)

(t) =
1

Γ(1 − α)

(
ψ(t)

(T − t)α
+ α

∫ T

t

ψ(s) − ψ(t)
(s− t)α+1

ds

)
,

where ψ ∈ Iα
0+

(
L1 ([0, T ], V )

)
and ψ ∈ Iα

T−
(
L1 ([0, T ], V )

)
, respectively.

Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the real-valued kernel function

(2.1) KH(t, s) =
c̃H(t− s)H− 1

2

Γ
(
H + 1

2

) +
c̃H
(

1
2 −H

)
Γ
(
H + 1

2

) ∫ t

s

(u− s)H− 3
2

(
1 −
( s
u

) 1
2−H

)
du

for H ∈ (0, 1/2). If H ∈ (1/2, 1), then KH has a simpler form as

(2.2) KH(t, s) =
ĉH

Γ
(
H − 1

2

)s 1
2−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du.

The terms c̃H and ĉH are constants that depend only on H .
Define the integral operator KH induced from the kernel KH by

(2.3) KHϕ(t) =
∫ t

0

KH(t, s)h(s) ds

for h ∈ L2 ([0, T ], V ). It is well known [31] that

KH : L2 ([0, T ], V ) → I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
is a bijection and KH can be described as

(2.4) KHh(s) = cHI
2H
0+

(
u 1

2−HI
1
2−H
0+

(
uH− 1

2
h
))

(s)
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for H ∈ (0, 1/2] and

(2.5) KHh(s) = cHI
1
0+

(
uH− 1

2
I

H− 1
2

0+

(
u 1

2−Hh
))

(s)

for H ∈ [1/2, 1), where

cH =

[
2HΓ

(
H + 1

2

)
Γ
(

3
2 −H

)
Γ (2 − 2H)

] 1
2

,(2.6)

cH = cHΓ(2H),

and

ua(s) = saI

for s ≥ 0 and a ∈ R. The inverse operator

K
−1
H : IH+ 1

2
0+

(
L2([0, T ], V )

)
→ L2 ([0, T ], V )

is given by

(2.7) K
−1
H ϕ(s) = c−1

H s
1
2−HD

1
2−H
0+

(
uH− 1

2
D2H

0+ϕ
)

(s)

for H ∈ (0, 1/2] and

(2.8) K
−1
H ϕ(s) = c−1

H sH− 1
2D

H− 1
2

0+

(
u 1

2−HDϕ
)

(s)

for H ∈ [1/2, 1) and ϕ ∈ I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
. Note that if ϕ ∈ H1 ([0, T ], V ), the

Sobolev space, then

(2.9) K
−1
H ϕ(s) = c̄−1

H sH− 1
2 I

1
2−H
0+

(
u 1

2−Hϕ
′
)

(s)

for H ∈ (0, 1/2].
Since the operator K

−1
H plays an important role in what follows, it is desirable to

have some information about its domain IH+ 1
2

0+

(
L2([0, T ], V )

)
. It is straightforward that

I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
⊂ Cβ ([0, T ], V ) for β > 1

2 −H and H ∈ (0, 1/2). However, in

section 3, a more refined result is needed. If H ∈ (1/2, 1), then IH+ 1
2

0+

(
L2 ([0, T ], V )

)
⊂

L2 ([0, T ], V ).
A definition of the stochastic integral of a deterministic V -valued function with

respect to a scalar fractional Brownian motion (β(t), t ≥ 0) is given. This definition
uses the methods in [1, 6, 11, 30]. An alternative, equivalent method is given in [10].

A family of linear operators (K∗
H , H ∈ (0, 1)) is defined which provides an isometry

between Wiener-type integrals of a fractional Brownian motion and L2 ([0, T ], V ).
It is written as an adjoint because the linear operator KH occurs naturally in the
factorization of the covariance for a fractional Brownian motion in L2.

Let K∗
H : E → L2 ([0, T ], V ) be the linear map given by

(2.10) K∗
Hϕ(t) = ϕ(t)KH(T, t) +

∫ T

t

(ϕ(s) − ϕ(t))
∂KH

∂s
(s, t) ds
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for ϕ ∈ E and KH given by (2.1), where E is the linear space of V -valued step functions
on [0, T ], that is, ϕ ∈ E if

ϕ(t) =
n−1∑
i=1

xi�[ti,ti+1)(t),

where xi ∈ V for i ∈ {1, . . . , n− 1} and 0 = t1 < t2 < · · · < tn = T .
Define the stochastic integral as∫ T

0

ϕdβ :=
n∑

i=1

xi (β(ti+1) − β(ti)) .

It follows directly that

(2.11) E

∥∥∥∥∥
∫ T

0

ϕdβ

∥∥∥∥∥
2

= |K∗
Hϕ|

2
L2([0,T ],V ) ,

where |·|L2([0,T ],V ) is the norm in L2 ([0, T ], V ) induced by the inner product. Let
(H, | · |H, 〈·, ·〉H) be the Hilbert space obtained by the completion of the pre-Hilbert
space E with the inner product

(2.12) 〈ϕ, ψ〉H := 〈K∗
Hϕ,K∗

Hψ〉L2([0,T ],V )

for ϕ, ψ ∈ E . The stochastic integral is extended to an arbitrary ϕ ∈ H by the
isometry (2.11). Thus H is a linear space of integrable functions, and it is useful to
obtain some more specific information about H. If H ∈ (1/2, 1), then it is easily
verified that H ⊃ H̃, where H̃ is the Banach space of Borel measurable functions with
the norm | · |H̃ given by

(2.13) |ϕ|2H̃ :=
∫ T

0

∫ T

0

‖ϕ(u)‖ ‖ϕ(v)‖ φH(u − v) du dv,

where φH(u) = H(2H − 1)|u|2H−2, and it can be verified that H̃ ⊃ L
1
H ([0, T ], V )

and, in particular, H̃ ⊃ L2 ([0, T ], V ) (cf. [12]). If ϕ ∈ H̃ and H > 1/2, then

(2.14) E

∥∥∥∥∥
∫ T

0

ϕdβ

∥∥∥∥∥
2

=
∫ T

0

∫ T

0

〈ϕ(u), ϕ(v)〉 φH(u− v) du dv.

If H ∈ (0, 1/2), then the space of integrable functions is smaller than for H ∈
(1/2, 1). For H ∈ (0, 1/2) it is known that H ⊃ H1 ([0, T ], V ) (cf. [17, Theorem 5.20])
and H ⊃ Cβ ([0, T ], V ) for each β > 1/2 − H (a more specific result is given in the
next section). If H ∈ (0, 1/2), then the linear operator K∗

H can be described by a
fractional derivative

(2.15) K∗
Hϕ(t) = cHt

1
2−HD

1
2−H

T−

(
uH− 1

2
ϕ
)

(t),

where its domain is H = I
1
2−H

T−
(
L2 ([0, T ], V )

)
(cf. [1, Proposition 6]). If H ∈ (1/2, 1),

then

(2.16) K∗
Hϕ(t) = cHt

1
2−HI

H− 1
2

T−

(
uH− 1

2
ϕ
)

(t).



SEMILINEAR STOCHASTIC EQUATIONS 2291

A standard cylindrical fractional Brownian motion is defined now.
Definition 2.1. Let (Ω,F ,P) be a complete probability space. A cylindrical

process 〈B, ·〉 : Ω×R+×V → R on (Ω,F ,P) is called a standard cylindrical fractional
Brownian motion with the Hurst parameter H ∈ (0, 1) if

(1) for each x ∈ V \ {0}, 1
‖x‖ 〈B(·), x〉 is a standard scalar fractional Brownian

motion with the Hurst parameter H;
(2) for α, β ∈ R and x, y ∈ V

〈B(t), αx + βy〉 = α〈B(t), x〉 + β〈B(t), y〉 a.s. P.

Note that 〈B(t), x〉 has the interpretation of the evaluation of the functional B(t)
at x though the process B(·) does not take values in V .

For H = 1/2, this definition is the usual one for a standard cylindrical Wiener
process in V . For a complete orthonormal basis (en, n ∈ N) of V , letting βn(t) =
〈B(t), en〉 for n ∈ N, the sequence of scalar processes (βn, n ∈ N) is independent and
B can be represented by the formal series

(2.17) B(t) =
∞∑

n=1

βn(t)en

that does not converge a.s. in V .
Naturally associated with a standard cylindrical fractional Brownian motion is a

standard cylindrical Wiener process (W (t), t ≥ 0) in V such that, formally, Ḃ(t) =
KHẆ (t). For x ∈ V \ {0}, let βx(t) = 〈B(t), x〉. It is elementary to verify from (2.1)
that there is a scalar Wiener process (wx(t), t ≥ 0) such that

(2.18) βx(t) =
∫ t

0

KH(t, s) dwx(s)

for t ∈ R+. Dually, wx(t) = βx

(
(K∗

H)−1
�[0,t)

)
, where K∗

H is given by (2.15) or (2.16)
and V = R. Thus there is a formal expansion of W ,

(2.19) W (t) =
∞∑

n=1

wn(t)en,

where (en, n ∈ N) is a complete orthonormal basis for V and wn = 〈W, en〉 for n ∈ N.
Now, the stochastic integral

∫ T

0
GdB is defined for a suitable operator-valued

function G : [0, T ] → L(V ) so that the integral is a V -valued random variable.
Definition 2.2. Let G : [0, T ] → L(V ) be Borel measurable, let (en, n ∈ N) be

a complete orthonormal basis in V , let G(·)en ∈ H for each n ∈ N, and let B be
a standard cylindrical fractional Brownian motion for some fixed H ∈ (0, 1). The
stochastic integral

∫ T

0 GdB is defined as

(2.20)
∫ T

0

GdB :=
∞∑

n=1

∫ T

0

Gen dβn,

provided the infinite series converges in L2(Ω, V ).
It is elementary to verify that this definition does not depend on the complete

orthonormal basis that is used.
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The following proposition describes some L(V )-valued functions G that can be
used as integrands in Definition 2.2.

Proposition 2.3. Let G : [0, T ] → L(V ) be Borel measurable and let G(·)x ∈ H
for each x ∈ V . Let ΓT : V → L2([0, T ], V ) be given as

(2.21) (ΓTx) (t) = (K∗
HGx) (t)

for t ∈ [0, T ] and x ∈ V . If ΓT ∈ L2

(
V, L2 ([0, T ], V )

)
, the linear space of Hilbert–

Schmidt operators, then the stochastic integral (2.20) is a centered Gaussian V -valued
random variable with the covariance operator Q̃T given by

(2.22) Q̃Tx =
∫ T

0

∞∑
n=1

〈(ΓT en) (s), x〉 (ΓT en) (s) ds.

This integral does not depend on the choice of the complete orthonormal basis (en, n ∈
N) in V .

Proof. Substituting G in the definition of the stochastic integral (2.20), it is
clear that the terms of the summation on the right-hand side are V -valued Gaussian
random variables by the construction of the integral for a scalar fractional Brownian
motion, and the sequence of random variables

( ∫ T

0
Gen dβn, n ∈ N

)
is independent.

Computing the second moment of the tail of the series in (2.20) yields

E

∥∥∥∥∥
∞∑

k=m

Gek dβk

∥∥∥∥∥
2

=
∞∑

k=m

E

∥∥∥∥∥
∫ T

0

Gek dβk

∥∥∥∥∥
2

=
∞∑

k=m

∫ T

0

‖(K∗
HGek) (s)‖2 ds

=
∞∑

k=m

∫ T

0

‖(ΓT ek) (s)‖2 ds =
∞∑

k=m

|ΓT ek|2L2([0,T ],V ) .

It is clear that this final series tends to zero as m tends to infinity. Thus there is
convergence in L2(Ω, V ) of the partial sums of the infinite series in (2.20).

To verify that (2.20) is a Gaussian random variable and the form of the covariance
Q̃T , initially note that for any ϕ ∈ H and x ∈ V , there is the equality

(2.23)
∫ T

0

ϕdβx =
∫ T

0

K∗
Hϕdwx,

where wx is the Wiener process given by (2.18). The terms in the infinite series on
the right-hand side of (2.20) are V -valued, independent centered Gaussian random
variables with the sequence of covariance operators

(
Q̃

(n)
T , n ∈ N

)
(2.24) Q̃

(n)
T x =

∫ T

0

〈(K∗
HGen) (s), x〉 (K∗

HGen) (s) ds

for each n ∈ N and x ∈ V . Thus

(2.25) Q̃Tx =
∞∑

n=1

∫ T

0

〈(K∗
HGen) (s), x〉 (K∗

HGen) (s) ds

=
∫ T

0

∞∑
n=1

〈(ΓT en) (s), x〉 (ΓT en) (s) ds.
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The summability of the infinite series on the right-hand side follows from the Hilbert–
Schmidt property of ΓT . The independence of the stochastic integral from the choice
of the complete orthonormal basis follows from (2.23) and the analogous property for
stochastic integrals with respect to a standard cylindrical Wiener process.

Since for almost all t ∈ [0, T ] the linear operator ΓT (·)(t) : V → V is Hilbert–
Schmidt, so we denote for almost all t ∈ [0, T ] the adjoint of ΓT (·)(t) as Γ∗

T (·)(t) :
V → V . It follows by (2.25) that for x, y ∈ V ,

〈
Q̃Tx, y

〉
=
∫ T

0

∞∑
n=1

〈(ΓT en) (s), x〉 〈(ΓT en) (s), y〉 ds

=
∫ T

0

∞∑
n=1

〈en, (Γ∗
Tx) (s)〉 〈en, (Γ∗

T y) (s)〉 ds

=
∫ T

0

〈(Γ∗
Tx) (s), (Γ∗

T y) (s)〉 ds

=
∫ T

0

〈ΓT Γ∗
Tx(s), y〉 ds.

If H ∈ (1/2, 1), then Q̃T satisfies

Q̃T =
∫ T

0

∫ T

0

G(u)G∗(v)φH(u− v) du dv,

where φH(u) = H(2H − 1)|u|2H−2 and G is assumed to satisfy∫ T

0

∫ T

0

|G(u)|L2(V )|G(v)|L2(V )φH(u− v) du dv <∞

(cf. [13, Proposition 2.2]).
The next proposition shows that some densely defined linear operators commute

with the stochastic integration.
Proposition 2.4. If Ã : Dom(Ã) → V is a closed linear operator, Dom(Ã) ⊂ V ,

and G : [0, T ] → L(V ) is Borel measurable such that G([0, T ]) ⊂ Dom(Ã) and both G
and ÃG satisfy the conditions for G in Proposition 2.3, then∫ T

0

GdB ⊂ Dom(Ã) a.s. P

and

(2.26) Ã

∫ T

0

GdB =
∫ T

0

ÃG dB a.s. P.

Proof. By the assumptions on G and ÃG, it follows that Gen ∈ H and ÃGen ∈ H
for n ∈ N, so by a standard argument using a sequence of step function integrands,
the following equality is satisfied:

Ã

∫ T

0

Gen dβn =
∫ T

0

ÃGen dβn.
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Since the sequence of integrals that are obtained from a complete orthonormal basis
(en, n ∈ N) are Gaussian random variables it follows that

(2.27) lim
m→∞

m∑
n=1

∫ T

0

Gen dβn =
∫ T

0

GdB a.s. P

and

lim
m→∞

Ã

(
m∑

n=1

∫ T

0

Gen dβn

)
= lim

m→∞

m∑
n=1

∫ T

0

ÃGen dβn =
∫ T

0

ÃG dB a.s. P.

Since Ã is a closed linear operator it follows that
∫ T

0 GdB ∈ Dom(Ã) a.s. P and
equality (2.26) is satisfied.

Some results are reviewed for a linear stochastic differential equation with a cylin-
drical fractional Brownian motion whose solution is often called a fractional Ornstein–
Uhlenbeck process. This process is a mild solution of the linear stochastic equation

dZ(t) = AZ(t) dt+ Φ dB(t),(2.28)

Z(0) = x,

where Z(t), x ∈ V , (B(t), t ≥ 0) is a standard cylindrical fractional Brownian with
H ∈ (0, 1), Φ ∈ L(V ), A : Dom(A) → V , Dom(A) ⊂ V , and A is the infinitesimal
generator of a strongly continuous semigroup (S(t), t ≥ 0) on V . A mild solution of
(2.28) is

Z(t) = S(t)x+
∫ t

0

S(t− r)Φ dB(r)(2.29)

= S(t)x+ Ẑ(t),

where the stochastic integral in (2.29) is given by Definition 2.2.
Typically it is assumed that (S(t), t ≥ 0) is an analytic semigroup. In this case,

there is a β̂ ∈ R such that the operator β̂I − A is uniformly positive on V ; that is,
the resolvent set contains {λ ∈ C; | argλ| < π/2 + δ} ∪ U , where δ > 0 and U is a
neighborhood of zero.

For each δ ≥ 0, (Vδ, ‖ · ‖δ) is a Hilbert space where Vδ = Dom
(
(β̂I − A)δ

)
with

the graph norm topology so that

‖x‖δ =
∥∥∥∥(β̂I −A

)δ

x

∥∥∥∥ .
For the mild solution of (2.28), the cases H ∈ (0, 1/2) and H ∈ (1/2, 1) have been

treated separately [13, 28] because the conditions for similar results are somewhat
different. The case H = 1/2 (Brownian motion) has been studied extensively (cf. [4]).

For H ∈ (1/2, 1), the following sample path property of the solution is described
in [13].

Proposition 2.5. If H ∈ (1/2, 1), S(t)Φ ∈ L2(V ) for each t > 0 and

(2.30)
∫ T0

0

∫ T0

0

u−αv−α|S(u)Φ|L2(V )|S(v)Φ|L2(V )φH(u− v) du dv <∞
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for some T0 > 0 and α > 0, then there is a Hölder continuous V -valued version of the
process (Ẑ(t), t ≥ 0) with Hölder exponent β < α, where Ẑ is the stochastic convolution
in (2.29) and φH is given in (2.13). If (S(t), t ≥ 0) is an analytic semigroup, then
there is a version of the process (Ẑ(t), t ∈ [0, T ]) with Cβ ([0, T ], Vδ) sample paths for
each T > 0 and β + δ < α.

For each H ∈ (0, 1), there are the following results for the sample path behavior
of the mild solution [28].

Proposition 2.6. Let (S(t), t ≥ 0) be an analytic semigroup, let H ∈ (0, 1), and
let

(2.31) |S(t)Φ|L2(V ) ≤ ct−γ

for t ∈ [0, T ], some c > 0, and γ ∈ [0, H). Let α ≥ 0 and δ ≥ 0 satisfy

(2.32) α+ δ + γ < H.

Then there is a version of the process (Ẑ(t), t ∈ [0, T ]) with Cα ([0, T ], Vδ) sample
paths. If it is assumed instead of (2.31) and (2.32) that Φ ∈ L2(V ) and α + δ < H,
then the process

(
Ẑ(t), t ∈ [0, T ]

)
has a Cα ([0, T ], Vδ) version. In particular, there is

a Cα ([0, T ], V ) version for 0 < α < H.

3. Semilinear stochastic equations. In this section, both weak and mild
solutions are obtained for various semilinear stochastic equations with a fractional
Brownian motion. The cases H ∈ (0, 1/2) and H ∈ (1/2, 1) are treated separately as
in the case of the linear stochastic equations (Propositions 2.5 and 2.6). The weak
solution of a semilinear equation is obtained by an absolutely continuous transforma-
tion of the measure for the solution of the associated linear equation. The absolute
continuity methods given here are an analogue of the results for the measure of a finite-
dimensional fractional Brownian motion [7, 9, 25, 26] and the results for Wiener mea-
sure [3,14]. For a fixed H ∈ (0, 1) and T > 0, let (Ft, t ∈ [0, T ]) be the filtration for the
standard cylindrical fractional Brownian motion (B(t), t ∈ [0, T ]) with the Hurst pa-
rameter H . The sub-σ-algebra Ft ⊂ F can be generated by σ (βn(s), s ∈ [0, t], n ∈ N),
where (βn, n ∈ N) is a sequence of independent scalar fractional Brownian motions
with the Hurst parameter H that is given in the definition of a standard cylindrical
fractional Brownian motion (Definition 2.1).

The following result describes an absolute continuity for a transformation of a
standard cylindrical fractional Brownian motion.

Theorem 3.1. Let H ∈ (0, 1) and T > 0 be fixed and let (u(t), t ∈ [0, T ]) be a
V -valued, (Ft)-adapted process such that

1. ∫ T

0

‖u(t)‖ dt <∞ a.s. P

and
2.

U(·) :=
∫ ·

0

u(s) ds ∈ I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
a.s. P.

Furthermore, it is assumed that

Eξ(T ) = 1,
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where

(3.1) ξ(T ) = exp

[∫ T

0

〈
K

−1
H (U)(t), dW (t)

〉
− 1

2

∫ T

0

∥∥K−1
H (U)(t)

∥∥2
dt

]
,

where (W (t), t ∈ [0, T ]) is a standard cylindrical Wiener process in V given by (2.19)
and K

−1
H is the inverse of the integral operator KH in (2.3). Then the process

(
B̃(t), t ∈

[0, T ]
)

given by

B̃(t) := B(t) − U(t)

is a standard cylindrical fractional Brownian motion in V with the Hurst parameter
H on the probability space

(
Ω,F , P̃

)
, where

(3.2)
dP̃

dP
= ξ(T ) a.s.

Proof. Initially, it is noted that for an (Ft)-adapted process, (η(t), t ∈ [0, T ]) with
η ∈ L2 ([0, T ], V ) a.s. P,

∫ T

0 〈η, dW 〉 is defined by∫ T

0

〈η, dW 〉 =
∞∑

n=1

∫ T

0

〈η, en〉 dwn,

where the sequences (βn, n ∈ N) and (wn, n ∈ N) are related by (2.18). It is shown
that K

−1
H U satisfies the conditions of η so that the stochastic integral in (2.20) is

well-defined. Recall that the linear operator KH given in (2.3) is a bijection

KH : L2([0, T ], V ) → I
H+ 1

2
0+

(
L2([0, T ], V )

)
,

so by assumption 1 in Theorem 3.1, K
−1
H (U) ∈ L2 ([0, T ], V ) a.s. P. From the definition

of KH , it follows that
(
K

−1
H (U)(t), t ∈ [0, T ]

)
is an (Ft)-adapted process because U is

(Ft)-adapted. By the construction of the standard cylindrical Wiener process W , it
is a Wiener process with respect to (Ft) so ξT is a well-defined random variable. By
a Girsanov theorem for Wiener processes in infinite dimensions (cf. [4, 24]), equality
(3.2) defines a probability P̃ on (Ω,F) such that

W̃ (t) := W (t) −
∫ t

0

K
−1
H (U)(s) ds

is a standard cylindrical Wiener process in V . Let

β̃n(t) := 〈B(t), en〉 − 〈U(t), en〉
and

w̃n(t) = 〈W (t), en〉 −
〈∫ t

0

K
−1
H (U)(s) ds, en

〉
.

It follows that∫ t

0

KH(t, s) dw̃n(s) =
∫ t

0

KH(t, s) dwn(s) −
∫ t

0

KH(t, s)
〈
K

−1
H (U)(s), en

〉
ds(3.3)

= βn(t) −
〈∫ t

0

KH(t, s)
(
K

−1
H (U)(s)

)
ds, en

〉
= βn(t) −

〈
KHK

−1
H (U)(t), en

〉
= βn(t) − 〈U(t), en〉 = β̃n(t).
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Thus (B̃(t), t ∈ [0, T ]) is a standard cylindrical fractional Brownian motion in V with
the Hurst parameter H on

(
Ω,F , P̃

)
.

In this section, the following semilinear stochastic equation is considered:

(3.4) dX(t) = (AX(t) + F (X(t))) dt+ Φ dB(t),

where t ∈ R+, X(t), X0 ∈ V is nonrandom, (B(t), t ≥ 0) is a standard cylindri-
cal fractional Brownian motion with the Hurst parameter H ∈ (0, 1), Φ ∈ L(V ),
A : Dom(A) → V , Dom(A) ⊂ V , and A is the infinitesimal generator of a strongly
continuous semigroup (S(t), t ≥ 0) on V . The function F : V → V is nonlinear, and
for the applications to stochastic partial differential equations it is more useful to
assume that F is defined only on a (dense) subspace of V . So, let (E, ‖ · ‖E) be a sep-
arable Banach space that is continuously embedded in V and F : E → E with X0 ∈ E.
Subsequently, it is assumed that F : E → E is Borel measurable, Im(F ) ⊂ Im(Φ), for
G := Φ−1F , G : E → V , and

‖G(x)‖ ≤ k̂ (1 + ‖x‖ρ
E)(3.5)

and

‖F (x)‖E ≤ k̂ (1 + ‖x‖ρ
E)(3.6)

for each x ∈ E and some ρ ≥ 1. Furthermore, it is assumed that there is a constant
K̄ such that for each pair (x, y) in Dom(A), there is a z∗ ∈ ∂‖z‖E such that

(3.7) 〈Ax −Ay + F (x) − F (y), z∗〉E,E∗ ≤ K̄‖x− y‖E ,

where ∂‖z‖E is the subdifferential of the norm ‖z‖E at the point z = x − y and
〈·, ·, 〉E,E∗ is the pairing between E and E∗. The basic results on subdifferentials can
be found in [32]. Inequality (3.7) is a one-sided growth condition that ensures the
absence of explosions of solutions of (3.4) in a finite time. Some subsequent examples
should clarify its interpretation.

The notions of a weak and a mild solution of (3.4) are given now.
Definition 3.2. A weak solution of (3.4) is a triple (X(t), B(t), (Ω̃, F̃ , (F̃t), P̃),

t ≥ 0), where (B(t), t ≥ 0) is a standard cylindrical fractional Brownian motion in V
that is defined on the probability space (Ω̃, F̃ , P̃), (B(t), t ≥ 0) and (X(t), t ≥ 0) are
adapted to the filtration (F̃t), and (X(t), t ≥ 0) is an E-valued process satisfying

(3.8) X(t) = S(t)X0 +
∫ t

0

S(t− r)F (X(r)) dr +
∫ t

0

S(t− r)Φ dB(r).

A mild solution, (X(t), t ≥ 0) of (3.4), is an E-valued process on a fixed probability
space (Ω,F , (Ft),P) with a given standard cylindrical fractional Brownian motion that
is the fractional Brownian motion in (3.8), (B(t), t ≥ 0) and (X(t), t ≥ 0) are adapted
to the filtration (Ft), and the process (X(t), t ≥ 0) satisfies (3.8).

Equation (3.8) has a unique weak solution if, for any two weak solutions (X(t),
B(t), (Ω,F , (Ft),P), t ≥ 0) and (X̃(t), B̃(t), (Ω̃, F̃ , (F̃t), P̃), t ≥ 0), the processes (X(t),
t ≥ 0) and (X̃(t), t ≥ 0) have the same probability law.

The equation has a unique mild solution if, for any two processes (X1(t), t ≥ 0) and
(X2(t), t ≥ 0) that satisfy (3.8) on the same probability space (Ω,F , (Ft),P) with the
same standard cylindrical fractional Brownian motion, P (X1(t) = X2(t), t ≥ 0) = 1.
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A primary goal in this section is to verify weak existence and weak uniqueness of
a solution of (3.4). Note that (H1) alone is not sufficient to ensure that the stochastic
convolution has values in E. While the assumption (H2) is given in a rather general
form, it is verified for particular examples in section 4. Since the cases H ∈ (0, 1/2)
and H ∈ (1/2, 1) require different methods, they are treated separately.

The following three assumptions are made to construct a solution of (3.4):
(H1) The semigroup (S(t), t ≥ 0) generated by A is analytic on V and for each t ≥

0, S(t)|E ∈ L(E) and ‖ S(t)|E ‖L(E) is bounded on compact time intervals.
(H2) Φ ∈ L(V ) is injective and for T > 0 the stochastic convolution process(∫ t

0

S(t− r)Φ dB(r), t ∈ [0, T ]
)

has a version with C([0, T ], E) sample paths.
(H3) The function F : E → V in (3.4) is Borel measurable, Im(F ) ⊂ Im(Φ), and

the function G = Φ−1F : E → V satisfies

(3.9) ‖G(x)‖ ≤ k (1 + ‖x‖E)

for some k > 0 and all x ∈ E.
The following result verifies a weak solution for H ∈ (0, 1/2).
Theorem 3.3. If H ∈ (0, 1/2) and the conditions (H1)–(H3) are satisfied, then

the semilinear equation (3.4) has a weak solution. If additionally F : E → E and

(3.10) ‖F (x)‖E ≤ k1 (1 + ‖x‖E)

for some k1 > 0 and all x ∈ E, then the weak solution is unique.
Proof. Initially, existence of a weak solution is verified. By a standard method

that has been used for equations of the form (3.4) with a standard cylindrical Brownian
motion (cf. [4, 24]), it suffices to verify that the cylindrical process

B̃(t) = B(t) −
∫ t

0

G(Z(s)) ds

is a standard cylindrical fractional Brownian motion in a suitable probability space
where

Z(t) = S(t)X0 + Z̃(t)

satisfies the associated linear equation. To use Theorem 3.1 it is necessary to verify
that G = Φ−1F satisfies the conditions of U in this theorem, that is,

(3.11)
∫ ·

0

G(Z(s)) ds ∈ I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
and

(3.12) E exp [ρ(Z)] = 1,

where

(3.13)

ρ(Z) =
∫ T

0

〈
K

−1
H

(∫ ·

0

G(Z)
)

)(t), dW (t)
〉
− 1

2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

G(Z)
)

(t)
∥∥∥∥2

dt,
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K
−1
H is the inverse of KH in (2.3), and (W (t), t ≥ 0) is a standard cylindrical Wiener

process in V by (2.19).
From (2.9), it follows that∣∣∣∣K−1

H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,T ],V )

(3.14)

= c̄−2
H

∣∣∣uH− 1
2
I

1
2−H
0+

(
u 1

2−HG(Z)
)∣∣∣2

L2([0,T ],V )

= ĉH

∫ T

0

(
sH− 1

2

∥∥∥∥∫ s

0

r
1
2−H(s− r)−

1
2−HG(Z(r)) dr

∥∥∥∥)2

ds

≤ ĉHk
2

(
1 + |Z̃|C([0,T ],E) + sup

t∈[0,T ]

‖S(t)X0‖E

)2 ∫ T

0

s2H−1

·
(∫ s

0

r
1
2−H(s− r)−

1
2−H dr

)2

ds

≤ cT

(
1 + |Z̃|2C([0,T ],E)

)
for some cT > 0 that depends only on T . This inequality verifies (3.11). By (3.14) it
follows directly that

(3.15) E exp

[
k̂

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

G(Z)
)

(t)
∥∥∥∥2

dt

]
≤ cE exp

[
k̂cT |Z̃|2C([0,T ],E)

]
for some c > 0. Substituting v = r

s in the integral with respect to r on the right-hand
side of (3.14), it easily follows that cT ↓ 0 as T ↓ 0. Since Z̃ is a C([0, T ], E)-valued
Gaussian random variable, it follows that

(3.16) E exp
[
k̂cT |Z̃|2C([0,T ],E)

]
<∞

is satisfied for T > 0 sufficiently small by the Fernique inequality. Clearly, (3.16) is
the Novikov condition [19] which implies the equality (3.12) for T > 0 sufficiently
small. For arbitrary T > 0, a simple iteration verifies the result, that is,

(3.17) E exp

[
k̂

∫ Tm

Tm−1

∥∥∥∥K−1
H

(∫ ·

0

G(Z)
)

(t)
∥∥∥∥2

dt

]
<∞

for a sufficiently fine partition 0 = T0 < T1 < · · · < Tn = T . Using a downward
induction procedure from the well-known proofs of the martingale property for the
Radon–Nikodým derivative in (3.12) for an arbitrary T > 0 (see, e.g., [20, Exam-
ple 6.2.3]), the verification of the equality in (3.12) is obtained.

Now, uniqueness of the weak solution is verified. Uniqueness in law can be proved
in a standard way by removing the term F in (3.4) by absolute continuity of measures,
which is a suitable inverse of the above construction of a weak solution.

Let (X̃(t), t ∈ [0, T ]) be a solution to the equation

(3.18) X̃(t) = S(t)x0 +
∫ t

0

S(t− r)F (X(r)) dr + Z̃(t),
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where Z̃(t) =
∫ t

0
S(t − r)Φ dB(r) and (B(t), t ∈ [0, T ]) is some standard cylindrical

fractional Brownian motion on a probability space
(
Ω̃, F̃ , P̃

)
.

The process (X̃(t), t ∈ [0, T ]) is defined on the same probability space as (B(t), t ∈
[0, T ]). Let (W (t), t ∈ [0, T ]) be the Wiener process associated with (B(t), t ∈ [0, T ])
by (2.18). It suffices to show that

(3.19)

exp
[
ρ̃(X̃)

]
:= exp

[
−
∫ T

0

〈
K

−1
H

(∫ ·

0

G(X̃)
)

(t), dW (t)
〉
− 1

2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

G(X̃)
)

(t)
∥∥∥∥2

dt

]

is a Radon–Nikodým derivative on
(
Ω̃, F̃ , P̃

)
, so P̃ is the measure for a fractional

Ornstein–Uhlenbeck process and uniqueness in law follows. Thus it is necessary to
show that

(3.20)
∫ ·

0

G
(
X̃(s)

)
ds ∈ I

H+ 1
2

0+

(
L2 ([0, T ], V )

)
and

(3.21) Ẽ exp
[
ρ̃(X̃)

]
= 1,

where Ẽ is integration with respect to P̃. The verifications of (3.20) and (3.21) are
analogous to the verifications of (3.11) and (3.12), respectively. However, since X̃ is
not a Gaussian process, the Fernique inequality cannot be used directly. Initially, it
is verified that there is a c > 0 such that

(3.22) |X̃ |C([0,T ],E) ≤ c
(

1 + ‖X0‖E + |Z̃|C([0,T ],E)

)
,

where Z̃ is the stochastic process described in (H2). Let

u(t) = X̃(t) − Z̃(t)

= S(t)X0 +
∫ t

0

S(t− r)F
(
u(r) + Z̃(r)

)
dr.

Thus

(3.23) ‖u(t)‖E ≤ c1‖X0‖ + c2

∫ t

0

(
1 + ‖u(r)‖E + ‖Z̃(r)‖E

)
dr

for some positive constants c1 and c2. By the Gronwall lemma it follows that

(3.24) ‖u(t)‖E ≤ c1

(
1 + ‖X0‖E + |Z̃|C([0,T ],E)

)
for t ∈ [0, T ], so the inequality (3.22) is verified. The exponential that usually occurs
in the Gronwall inequality is bounded by ec2T . Making the analogous computations
in (3.14), it follows that

(3.25)∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)

(s)
∣∣∣∣2
L2([0,T ],V )

≤ cT

(
1 + |X |2C([0,T ],E)

)
≤ c̃T

(
1 + |Z̃|2C([0,T ],E)

)
,
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where c̃T ↓ 0 as T ↓ 0, so (3.20) is satisfied. Thus the method in (3.15)–(3.17) can be
used to verify (3.21).

The random variable exp(ρ̃(X̃)) in (3.19) is a Radon–Nikodým derivative and it
defines a probability measure Q on Ω̃. By this Girsanov-type theorem the process
defined by B̃(t) = B(t) +

∫ t

0 u(s)ds, where u(s) = G(X̃(s)), is a standard cylindrical
fractional Brownian motion with respect to the measure Q. Let (W̃ (t), t ∈ [0, T ]) be
the Wiener process associated with (B̃(t), t ∈ [0, T ]). Let U(s) = K

−1
H (
∫ ·
0
G(X̃))(s)

for s ∈ [0, T ] and let E and EQ denote the expectations with respect to the measures
P̃ and Q, respectively. For a bounded measurable function Ψ on C([0, T ], V ) it follows
that

E[Ψ(X̃)] =
∫

Ω̃

Ψ
dP̃

dQ
dQ = EQ[Ψ(X̃) exp(−ρ̃(X̃))]

= EQ

[
Ψ(X̃) exp

(∫ T

0

〈U(r), dW̃ (r)〉 − 1
2

∫ T

0

‖U(r)‖2dr

)]

= EQ

[
Ψ(S(·)X0 +

∫ ·

0

S(· − r)dB̃(r)) exp

(∫ T

0

〈
K

−1
H

(∫ ·

0

G

(
S(·)X0

+
∫ ·

0

S(· − r)ΦdB̃(r)
))

(s), dW̃ (s)
〉

−1
2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

G

(
S(·)X0 +

∫ ·

0

S(· − r)ΦdB̃(r)
))

(s)
∥∥∥∥2 ds

)]
.

Since the processes W̃ and B̃ are standard cylindrical Brownian motions and stan-
dard cylindrical fractional Brownian motions, respectively, the final expectation on
the right-hand side above does not depend on the realization of X̃, so the uniqueness
in law is verified.

Now the existence and the uniqueness of a weak solution of (3.4) is verified for
H ∈ (1/2, 1).

Theorem 3.4. If H ∈ (1/2, 1), (H1)–(H3) are satisfied, and

(3.26) ‖G(x) −G(y)‖ ≤ kG‖x− y‖γ

for all x, y ∈ E, some γ ∈ (0, 1], kG > 0, and Z̃ ∈ Cβ([0, T ], V ) for some β satisfying

(3.27) β >
H − 1

2

γ
,

where Z̃ is the stochastic convolution process in (H2), then (3.4) has a weak solution.
If, additionally, (3.10) is satisfied, then the weak solution is unique.

Proof. Initially, the existence of a solution is verified as in the proof of Theo-
rem 3.3. It is shown that

(3.28)
∫ ·

0

G(Z(s)) ds ∈ I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
a.s.

and

(3.29) E exp [ρ(Z)] = 1,
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where ρ is given by (3.13). By (2.8) it follows that∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,T ],V )

(3.30)

= c−2
H

∣∣∣uH− 1
2
D

H− 1
2

0+

(
u 1

2−HG(Z)
)∣∣∣2

L2([0,T ],V )

= c−2
H

∫ T

0

∥∥∥∥∥ sH− 1
2

Γ
(

3
2 −H

) (s 1
2−HG(Z(s))
sH− 1

2

)

+
(
H − 1

2

)∫ s

0

s
1
2−HG(Z(s)) − r

1
2−HG(Z(r))

(s− r)H+ 1
2

dr

∥∥∥∥∥
2

ds

≤ c

∫ T

0

(
s

1
2−H ‖G(Z(s))‖ + sH− 1

2

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2

‖G(Z(r))‖ dr

+
∫ s

0

‖G(Z(s)) −G(Z(r))‖
(s− r)H+ 1

2

dr

)2

ds.

Using (3.9) and (3.26), the analyticity of the semigroup S(·) on V , and the in-
equality ∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2

dr ≤ cs1−2H ,

where c is a generic constant, it follows that

(3.31)∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)∣∣∣∣

L2([0,T ],V )

≤ cT

(
1 + ‖X0‖2

E + |Z̃|2C([0,T ],E)

)
+ cT

∫ T

0

⎡⎣(∫ s

0

‖S(s)X0 − S(r)X0‖γ

(s− r)H+ 1
2

dr

)2

+

(∫ s

0

‖Z̃(s) − Z̃(r)‖γ

(s− r)H+ 1
2

dr

)2
⎤⎦ ds

≤ cT

(
1 + ‖X0‖2

E + |Z̃|2C([0,T ],E)

)
+ cT

∫ T

0

(
‖X0‖γ

∫ s

0

(s− r)γλ

rγλ(s− r)H+ 1
2

dr

)2

+ cT

∫ T

0

|Z̃|2Cβ([0,T ],V )

(∫ s

0

(s− r)γβ

(s− r)H+ 1
2

dr

)2

ds,

where λ > 0 satisfies γλ < 1 and H + 1/2 − γλ < 1. The first integral term in the
initial inequality in (3.31) is obtained by the analyticity of the semigroup S(.) on V ,
which implies that

||(S(s) − S(r))x|| ≤ c(s− r)λrλ ||x||, x ∈ V, λ ≥ 0, 0 < r < s ≤ T,
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for some c = c(λ). It follows that

(3.32)∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,T ],V )

≤ cT

(
1 + ‖X0‖2

E + ‖Z̃‖2
C([0,T ],E) + |Z̃|2Cβ([0,T ],V )

)
,

where cT ↓ 0 as T ↓ 0, so (3.28) is verified and by the Fernique inequality (3.29) is
also verified.

Now the uniqueness of the weak solution is verified. Let (X̃(t), t ∈ [0, T ]) be the
solution to (3.4) on a probability space (Ω̃, F̃ .P̃). As in the proof of Theorem 3.3, it
is shown that

(3.33)
∫ ·

0

G(X̃) ds ∈ I
H+ 1

2
0+

(
L2 ([0, T ], V )

)
a.s.

and

(3.34) Ẽ exp
[
ρ̃(X̃)

]
= 1,

where ρ̃ is given by (3.13). It is necessary to obtain inequality (3.22), used in the
proof of Theorem 3.3. Inequality (3.22) is verified by verifying the inequality

(3.35) ‖X̂‖Cβ([0,T ],V ) ≤ L
(

1 + ‖X0‖E + |Z̃|C([0,T ],E) + |Z̃|Cβ([0,T ],V )

)
,

where X̂(t) = X̃(t) − S(t)X0 and L > 0. Let w(t) = X̃(t) − S(t)X0 − Z̃(t) for t ≥ 0.
The process w satisfies

(3.36) w(t) =
∫ t

0

S(t− r)ψ(r) dr

for t ∈ [0, T ], where

ψ(t) = F (w(t) + S(t)X0 + Z̃(t)).

By inequalities (3.10) and (3.35) it follows that ψ ∈ L∞([0, T ], V ) a.s. P. Since the
semigroup S(·) is analytic on V , w is α-Hölder continuous for each α ∈ (0, 1), and
using the method of proof of [29, Theorem 4.3.1] there are constants ci > 0 for i = 1, 2
such that

(3.37)

|w|Cβ([0,T ],V ) ≤ c1|ψ|L∞([0,T ],V ) ≤ c2

(
|w|L∞([0,T ],E) + ‖X0‖E + |Z̃|C([0,T ],E)

)
.

Thus

|X̃|Cβ([0,T ],V ) ≤ |w|Cβ([0,T ],V ) + |Z̃|Cβ([0,T ],V )

≤ c2

(
|w|L∞([0,T ],E) + ‖X0‖E + |Z̃|C([0,T ],E) + |Z̃|Cβ([0,T ],V )

)
.

(3.38)

Using (3.22) again to bound |w|L∞([0,T ],E), inequality (3.35) follows.
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Now, using the methods for inequalities (3.30)–(3.32), where Z(t) is replaced by
X̃(t) = S(t)X0 + X̂(t), it follows that

(3.39)∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,T ],V )

≤ cT

(
1 + ‖X0‖2

E + |X̃|2C([0,T ],V ) + |X̃ |2Cβ([0,T ],V )

)
,

where cT ↓ 0 as T ↓ 0, which by (3.22) and (3.35) verifies (3.33). Equality (3.34) is
obtained from (3.39) by the Fernique inequality as in the proof of Theorem 3.3.

Remark 3.5. The proofs of Theorems 3.3 and 3.4 have verified, in addition to
weak existence and uniqueness of a solution to (3.4), the mutual absolute continuity
(equivalence) of the probability laws of the solution to (3.4) and the solution of (3.4)
with F ≡ 0 (the fractional Ornstein–Uhlenbeck process) in the path space.

The next objective is to relax the linear growth conditions (3.9) and (3.10) and the
Hölder continuity (3.26). The linear growth condition is replaced by a dissipativity
condition of the drift term of (3.4), but some other conditions are also imposed so that
there is existence and (strong) uniqueness of a mild solution. The main contribution
of the following two theorems is a mutual absolute continuity of the probability laws
of the solutions of (3.4) with a nonzero F and (3.4) with F ≡ 0.

Initially, the case H ∈ (0, 1/2) is considered.
Theorem 3.6. Let H ∈ (0, 1/2) and let (H1) and (H2) be satisfied. Let Φ ∈

L(V ) be injective, let Φ−1 ∈ L(E, V ), and let (S(t)|E , t ≥ 0) be a strongly continuous
semigroup on E such that

(3.40) |S(t)|E |L(E) ≤ ew̃t

for t ≥ 0 and some w̃ ∈ R. Let F : E → E be continuous and satisfy

(3.41) ‖F (x)‖E ≤ k1 (1 + ‖x‖ρ
E)

for x ∈ E for some k1 ≥ 0 and ρ ≥ 1, and for each pair x, y ∈ E, there is a
z∗ ∈ ∂‖x − y‖E where ∂‖z‖E is the subdifferential of the norm ‖ · ‖E at z ∈ E such
that

(3.42) 〈F (x) − F (y), z∗〉E,E∗ ≤ k2‖x− y‖E

for some k2 ∈ R; that is, F − k2I is dissipative on E. Then there is one and only
one mild solution of (3.4), and its probability law on the Borel σ-algebra of Ω̌ =
C([0, T ], E) is mutually absolutely continuous with respect to the probability law of the
fractional Ornstein–Uhlenbeck process (3.24) on Ω.

Proof. Let (Fλ, λ > 0) be a family of Lipschitz continuous functions from E to E
such that each Fλ satisfies inequalities (3.41) and (3.42) for F with the same constants
ρ, k1, k2. It is shown that there is a k̄ > 0 depending only on w̃, k1, and k2 such that

(3.43) ‖vλ(t)‖E ≤ k̄
(

1 + ‖X0‖E + ‖φ‖ρ
C([0,T ],E)

)
for t ∈ [0, T ] is satisfied for each λ > 0 and φ ∈ C([0, T ], E), where vλ is a solution of
the equation

(3.44) vλ(t) = S(t)X0 +
∫ t

0

S(t− r)Fλ (vλ(r) + φ(r)) dr

for t ∈ [0, T ].
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To verify inequality (3.43), it can be assumed by translation that k2 = 0 in (3.42)
(replace Fλ and A by Fλ − k2I and A+ k2I, respectively). Thus Fλ is dissipative on
E for each λ > 0 and by the assumptions

(3.45) 〈AEz, z
∗〉E,E∗ ≤ w̃‖z‖2

E

for each z ∈ Dom(AE) and z∗ ∈ ∂‖z‖E, where AE is the restriction of A to E that
generates the semigroup S(·)|E . For each pair x, y ∈ Dom(AE) and λ > 0, there is a
z∗λ ∈ ∂‖x− y‖E such that

〈AE(x− y) + Fλ(x) − Fλ(y), z∗λ〉E,E∗ ≤ w̃‖x− y‖E.

By [5, Proposition 5.5.6], there is a sequence (vn
λ , n ∈ N) such that vn

λ ∈ C1([0, T ], E)∩
C([0, T ],Dom(AE)) such that vn

λ → vλ and δn
λ = d

dtv
n
λ − AEv

n
λ − Fλ (vn

λ + φ) → 0 in
C([0, T ], E) as n→ ∞. It follows that

(3.46)

d−

dt
‖vn

λ(t)‖E ≤ 〈AEv
n
λ(t) + Fλ (vn

λ(t) + φ(t)) , (vn
λ(t))∗〉E,E∗ + ‖δn

λ(t)‖E

= 〈AEv
n
λ(t) + Fλ (vn

λ(t) + φ(t)) − Fλ(φ(t)), (vn
λ (t))∗〉

+ 〈Fλ(φ(t)), (vn
λ (t))∗〉E,E∗ + ‖δn

x (t)‖E

≤ w̄ ‖vn
λ(t)‖E + k2

(
1 + |φ|ρC([0,T ],E) + ‖δn

λ(t)‖E

)
for t ∈ [0, T ]. Using the Gronwall lemma, and letting n → ∞, verifies inequality
(3.43).

The mild solution to (3.4) can be expressed as X(t) = v(t)+Z̃(t), where v satisfies
the equation

(3.47) v(t) = S(t)X0 +
∫ t

0

S(t− r)F (v(r) + Z̃(r)) dr

for t ∈ [0, T ]. Thus the existence and the uniqueness of a mild solution follows from
the corresponding pathwise deterministic result (cf. [5, Proposition 5.5.6]).

The equivalence of the probability laws is shown by application of Theorem 3.1.
As in the proof of Theorem 3.3, it suffices to show that

(3.48)
∫ ·

0

G(Z(s)) ds ∈ I
H+ 1

2
0+

(
L2([0, T ], V )

)
and

(3.49) E exp [ρ(Z)] = 1,

where ρ is given by (3.13). While G is not assumed to have at most linear growth as
in Theorem 3.3, there is the growth condition

(3.50) ‖G(x)‖ ≤ k̂ (1 + ‖x‖ρ
E)
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for all x ∈ E and a constant k̂. Proceeding as in (3.14), it follows that

(3.51) ∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,t],V )

≤ c1

∫ T

0

(
sH− 1

2

∥∥∥∥∫ s

0

r
1
2−H(s− r)−

1
2−HG(Z(r)) dr

∥∥∥∥)2

ds

≤ c2

(
1 + |Z̃|ρC([0,T ],E) + sup

t∈[0,T ]

‖S(t)X0‖ρ
E

)∫ T

0

s2H−1

·
(∫ s

0

r
1
2−H(s− r)−

1
2−H dr

)2

ds

≤ c3

(
1 + ‖X0‖2ρ

E + |Z̃|2ρ
C([0,T ],E)

)
for suitable constants c1, c2, c3. This inequality verifies (3.48). To verify equality
(3.49), it suffices to assume that F is dissipative (that is, k2 = 0 in (3.42)). Recall
that m-dissipative mapping F is defined as a dissipative mapping satisfying Range(I−
λF ) = E for each λ > 0; cf. [22]. Since F is continuous, it is m-dissipative (cf. [23]),
so the family (Fλ, λ > 0) of Yosida approximations of F is defined as

(3.52) Fλ(x) = F (Rλ(x)) =
1
λ

(Rλ(x) − x)

for x ∈ E, where

(3.53) Rλ(x) = (I − λF )−1 (x).

It is well known that Fλ : E → E for λ > 0 is Lipschitz continuous, so by Theorem 3.3,
there is the equality

(3.54) E exp [ρλ(Z)] = 1

for λ > 0, where

(3.55)

ρλ(Z) =
∫ T

0

〈
K

−1
H

(∫ ·

0

Gλ(Z)
)

(t), dW (t)
〉
− 1

2

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

Gλ(Z)
)

(t)
∥∥∥∥2

dt

and Gλ := Φ−1Fλ. As in (3.51), it follows that

(3.56) E

∣∣∣∣K−1
H

(∫ ·

0

(Gλ(Z) −G(Z))
)∣∣∣∣

L2([0,T ],V )

≤ cT E

∫ T

0

(
sH− 1

2

∫ s

0

r
1
2−H(s− r)−

1
2−H ‖Gλ(Z(r)) −G(Z(r))‖ dr

)2

ds.

By some well-known properties of the Yosida approximations and for x ∈ E,

(3.57) ‖Gλ(x) −G(x)‖ ≤
∣∣Φ−1

∣∣
L(E,V )

‖Fλ(x) − F (x)‖ ,
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it follows that Fλ → F as λ → 0 and the right-hand side of (3.57) tends to zero as
λ ↓ 0, and

(3.58)

‖Gλ(x)‖ ≤
∣∣Φ−1

∣∣
L(E,V )

‖Fλ(x)‖E

≤
∣∣Φ−1

∣∣
L(E,V )

‖F (x)‖E

≤
∣∣Φ−1

∣∣
L(E,V )

k1 (1 + ‖x‖ρ
E) ,

so the right-hand side of (3.56) tends to zero as λ ↓ 0. For a sequence (λn, n ∈ N)
that decreases to zero, it follows that

(3.59) lim
n→∞

exp [ρλn(Z)] = exp [ρ(Z)] a.s. P.

To obtain equality (3.54) from equality (3.59) for λn, n ∈ N, it is necessary and
sufficient to show that the sequence (exp [ρλn(Z)] , n ∈ N) is uniformly integrable. A
sufficient condition for this uniform integrability is to verify that

(3.60)
sup

n
E [(exp [ρλn(Z)]) |log (exp [ρλn(Z)])|] = sup

n
E [(exp [ρλn(Z)]) ρλn (Z)] <∞.

By Theorem 3.3,

(3.61) E [ρλn (Z) exp [ρλn(Z)]] ≤ Ẽλn

[
2
∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

Gλn (Z)
)

(t)
∥∥∥∥2

dt

]
,

where Ẽλn is the expectation with respect to P̃λn and

dP̃λn

dP
= exp [ρλn(Z)] ,

and Z(·) satisfies (2.28). On the probability space with the measure Pλn , Z(·) satisfies
the following semilinear equation, where B(·) is a fractional Brownian motion with
respect to Pλn :

(3.62)
dXλn(t) = (AX(t) + Fλn (X(t))) dt+ Φ dB(t),

Xλn(0) = X0.

Since Fλn is Lipschitz continuous, there is a unique mild solution on a given probability
space, so it suffices to show

(3.63) E

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

Gλn (Xλn)
)

(t)
∥∥∥∥2 dt ≤ c

for some c ∈ R+ that does not depend on λn. Repeating inequalities (3.51), where
G and Z are replaced by Gλn and Xλn , respectively, and using inequality (3.58), it
follows that

(3.64)
∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

Gλn (Xλn )
)

(t)
∥∥∥∥2 dt ≤ c5

(
1 + ‖X0‖2ρ

E +
∣∣∣X̃λn

∣∣∣2ρ

C([0,T ],E)

)
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for a constant c5 that does not depend on n ∈ N where X̃λn(t) = Xλn(t) − S(t)X0.
By inequality (3.43) there is a constant c6 that does not depend on n such that

(3.65)

E

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

Gλn (Xλn)
)

(t)
∥∥∥∥2 dt ≤ c6

(
1 + ‖X0‖2ρ

E + E |Z|4ρ2

C([0,T ],E)

)
= C <∞.

This inequality verifies (3.60). Thus the sequence (exp [ρλn (Z)] , n ∈ N) converges in
L1 and equality (3.54) is satisfied.

Now the case H ∈ (1/2, 1) is considered.
Theorem 3.7. Let H ∈ (1/2, 1) and the other assumptions in Theorem 3.6 be

satisfied. Let Φ−1 ∈ L(V ), Z̃ ∈ Cβ([0, T ], V ) for some β ∈ (0, 1),

(3.66) 〈F (x) − F (y), x− y〉 ≤ k2 ‖x− y‖2

for each pair x, y ∈ E and a k2 ∈ R+ (that is, F −k2I is dissipative on E with respect
to the norm on V ) and

(3.67) ‖F (x) − F (y)‖ ≤ k3 (1 + ‖x‖q
E + ‖y‖q

E) ‖x− y‖γ

for each x, y ∈ E, with some k3 > 0, q ≥ 1, and γ ∈ (0, 1] such that

(3.68) γβ > H − 1
2
.

Then there is one and only one mild solution to (3.4), and its probability law is
mutually absolutely continuous with respect to the probability law of the fractional
Ornstein–Uhlenbeck process (2.28) on Ω̌.

Proof. As in the proof of Theorem 3.6, it is shown that

(3.69)
∫ ·

0

G(Z(s)) ds ∈ I
H+ 1

2
0+

(
L2([0, T ], V )

)
and

(3.70) E exp [ρ(Z)] = 1.

The methods to verify (3.69) and (3.70) are similar to those used in the proof of
Theorem 3.6, but now the operator K

−1
H has a different form. Using inequality (3.41)

and the Hölder continuity condition (3.67), it follows that∣∣∣∣K−1
H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,T ],V )

(3.71)

≤ c1

∫ T

0

(
s

1
2−H ‖G(Z(s))‖ + sH− 1

2

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2

‖G(Z(r))‖ dr

+
∫ s

0

‖G(Z(s)) −G(Z(r))‖
(s− r)H+ 1

2

dr

)2

ds

≤ c2

⎡⎢⎣1 + |Z|2ρ
C([0,T ],E) + c3

(
1 + |Z|2q

C([0,T ],E)

)

·
∫ T

0

⎛⎝∫ s

0

‖S(s)X0 − S(r)X0‖γ +
∥∥∥Z̃(s) − Z̃(r)

∥∥∥γ

(s− r)H+ 1
2

dr

⎞⎠2

ds

⎤⎥⎦
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for some constants c1, c2, c3. By the analyticity of the semigroup S(·) on V , it follows
that ∣∣∣∣K−1

H

(∫ ·

0

G(Z)
)∣∣∣∣2

L2([0,T ],V )

(3.72)

≤ c4

[
1 + ‖X0‖2ρ

E

+
(
‖X0‖2q

E + |Z|2q
C([0,T ],V ) + 1

)(
‖X0‖2γ

E + |Z|2γ
Cβ([0,T ],V )

)]
≤ c5

(
1 + ‖X0‖m

E + |Z|mC([0,T ],V ) + |Z|mCβ([0,T ],V )

)
for some constants c4 and c5 and m sufficiently large. Thus (3.69) is verified. To verify
equality (3.70) consider the family of Yosida approximations (Fλ, λ > 0) of F as in
the proof of Theorem 3.6. By the dissipativity of F in the norm on V , Fλ : V → V
is Lipschitz continuous for each λ > 0 and has at most polynomial growth, so Fλ

satisfies the assumptions of Theorem 3.4 so that

(3.73) E exp [ρλ(Z)] = 1,

where ρλ is given by (3.55). By the method used to obtain inequality (3.71), it follows
that

(3.74) E

∣∣∣∣K−1
H

(∫ ·

0

(Gλ(Z) −G(Z))
)∣∣∣∣2

L2([0,T ],V )

≤ c6E

∫ T

0

[
s

1
2−H ‖Gλ(Z(s)) −G(Z(s))‖

+ sH− 1
2

∫ s

0

s
1
2−H − r

1
2−H

(s− r)H+ 1
2

‖Gλ(Z(r)) −G(Z(r))‖ dr

+
∫ s

0

‖Gλ(Z(s)) −G(Z(s)) −Gλ(Z(r)) +G(Z(r))‖
(s− r)H+ 1

2

dr

]2
ds.

By inequalities (3.57) and (3.58), it follows that ‖Gλ(x) −G(x)‖ → 0 as λ ↓ 0 for
each x ∈ E and the family (Gλ, λ > 0) satisfies the growth condition

(3.75) ‖Gλ(x)‖ ≤ c7 (1 + ‖x‖ρ
E)

for x ∈ E and some c7 > 0. From the V -dissipativity of F , it follows by [5, Proposi-
tion 5.5.3] that

‖Rλ(x) −Rλ(y)‖ ≤ ‖x− y‖

for x, y ∈ E, so that

‖Fλ(x) − Fλ(y)‖ = ‖F (Rλ(x)) − F (Rλ(y))‖(3.76)

≤ k3 (1 + ‖Rλ(x)‖q
E + ‖Rλ(y)‖q

E) ‖x− y‖γ

for x, y ∈ E. Since

‖Rλ(x)‖E ≤ ‖x‖E + λ ‖F (x)‖E ≤ c8 (1 + ‖x‖ρ
E)
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for x ∈ E, c8 ∈ R+, and λ ∈ (0, 1], there is the inequality

(3.77) ‖Fλ(x) − Fλ(y)‖ ≤ c9 (1 + ‖x‖m
E + ‖y‖m

E ) ‖x− y‖γ

for x, y ∈ E, c0 ∈ R+, m ≥ 1, and λ ∈ (0, 1]. So Fλ and Gλ satisfy inequality (3.67)
uniformly in λ ∈ (0, 1]. Thus the right-hand side of inequality (3.74) tends to zero as
λ ↓ 0 by the dominated convergence theorem where a majorizing function is provided
by the estimates (3.75) and (3.77), whose integrability is shown in (3.71) and (3.72),
and there is a decreasing sequence (λn, n ∈ N) whose limit is zero such that

(3.78) lim
n→∞

exp [ρλn(Z)] = exp [ρ(Z)] a.s. P.

The uniform integrability of the sequence (exp [ρλn(Z)] , n ∈ N) is shown by verifying
the analogue of (3.60). Equivalently,

(3.79) sup
n

E

∫ T

0

∥∥∥∥K−1
H

(∫ ·

0

Gλn (Xλn)
)

(t)
∥∥∥∥2 dt ≤ c <∞,

where Xλn(·) is the unique mild solution to (3.62). The analogous inequalities (3.71)–
(3.74) are obtained by replacing G by Gλ using the polynomial growth bound and
the local Hölder continuity that are uniform in (λn, n ∈ N), and Z(·) is replaced by
Xλn(·). For some constants c10 and m ≥ 1,∣∣∣∣K−1

H

(∫ ·

0

Gλn (Xλn )
)∣∣∣∣2

L2([0,T ],V )

(3.80)

≤ c10

(
1 + ‖X0‖m

E +
∣∣∣X̃λn

∣∣∣m
C([0,T ],E)

+
∣∣∣X̃λn

∣∣∣m
Cβ([0,T ],V )

)
,

where X̃λm(t) = Xλm(t) − S(t)X0. By inequality (3.43), it follows that

(3.81)
∣∣∣X̃λn

∣∣∣
C([0,T ],E)

≤ c11

(
1 + ‖X0‖ + |Z|ρC(0,T ],E)

)
for some c11 > 0. Let wλn (t) = X̃λn(t) − Z̃(t) so that

(3.82) wλn (t) =
∫ t

0

S(t− r)Fλn

(
wλn (s) + S(s)X0 + Z̃(s)

)
ds

for t ∈ [0, T ]. Inequality (3.81) provides a uniform bound on |wλn |C([0,T ],E), so by
repeating the arguments for inequalities (3.37) and (3.38), it follows that

(3.83) |Xλn |Cβ([0,T ],V ) ≤ c12

(
1 + ‖X0‖ + |Z̃|ρC([0,T ],E) + |Z̃|Cβ([0,T ],V )

)
for some c12 > 0. Inequalities (3.80) and (3.81) verify inequality (3.79), so the
sequence (exp [ρλn(Z)] , n ∈ N) is uniformly integrable and equality (3.73) is veri-
fied.

4. Some examples. The first example is a finite-dimensional stochastic equa-
tion with a nonlinear drift. Consider the equation

(4.1) dX(t) = f(X(t)) dt+ Φ dB(t),
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where f : R
n → R

n, Φ ∈ L(Rn), and (B(t), t ≥ 0) is an R
n-valued standard fractional

Brownian motion with Hurst parameter H ∈ (0, 1). This case can be subsumed in
the infinite-dimensional results given here, though some of the assumptions and the
results simplify significantly. Let E = V = R

n, S(t) = I for t ∈ R+, and assume that
Q = ΦΦ∗ is positive definite. The process(∫ t

0

Φ dB, t ∈ [0, T ]
)

has sample paths in Cβ([0, T ],Rn) for 0 < β < H . If f : R
n → R

n is Borel measurable
and

(4.2) ‖f(x)‖ ≤ k1(1 + ‖x‖)

for some k1 > 0 and all x ∈ R
n, then for H ∈ (0, 1/2) there is one and only one weak

solution of (4.1) by Theorem 3.3. If, additionally, it is assumed that

(4.3) ‖f(x) − f(y)‖ ≤ k‖x− y‖γ

for all x, y ∈ R
n and some γ > 1 − 1

2H , then for H ∈ (1/2, 1) there is one and only
one weak solution. In each of these cases, the probability measure of the solution is
mutually absolutely continuous with respect to the probability measure of the process
(ΦB(t), t ∈ [0, T ]).

Now, replace the inequality in (4.2) by

(4.4) ‖f(x)‖ ≤ k1(1 + ‖x‖ρ)

for some ρ ≥ 1 and k1 > 0. Assume that f : R
n → R

n is continuous and satisfies

(4.5) 〈f(x) − f(y), x− y〉 ≤ k3‖x− y‖2

for some k3 > 0 and all x, y ∈ R
n. If H ∈ (1/2, 1), then assume that

(4.6) ‖f(x) − f(y)‖ ≤ k4 (1 + ‖x‖q + ‖y‖q) ‖x− y‖γ

for some q ≥ 1, k4 > 0, γ > 1− 1
2H . For H ∈ (0, 1

2 ) Theorem 3.6 can be used to verify
that the probability law of the solution of (4.1) is mutually absolutely continuous
with respect to the probability law of (ΦB(t), t ∈ [0, T ]). Furthermore, there is one
and only one mild solution of (4.1); in fact, since the state space is finite-dimensional,
the mild solution is a strong solution. For H ∈ (1

2 , 1) Theorem 3.7 can be used to
verify mutual absolute continuity and one and only one mild solution as for the case
H ∈ (0, 1

2 ). Note that inequalities (4.4)–(4.6) are satisfied for the important case of
models where f is a polynomial of odd degree with a negative leading coefficient.

The second example is a stochastic parabolic equation of 2mth order:

(4.7)
∂u

∂t
(t, ξ) = [L2mu](t, ξ) + f(u(t, ξ)) + η(t, ξ)

for (t, ξ) ∈ [0, T ] ×O with the initial condition

(4.8) u(0, ξ) = x(ξ)

for ξ ∈ O and the Dirichlet boundary condition

(4.9)
∂ku

∂vk
(t, ξ) = 0
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for (t, ξ) ∈ [0, T ]× ∂O, k ∈ {0, . . . ,m− 1}, with ∂
∂v denoting the conormal derivative,

O a bounded domain in R
d with a smooth boundary, and L2m a 2mth order uniformly

elliptic operator

(4.10) L2m =
∑

|α|≤2m

aα(ξ)Dα

with aα ∈ C∞
b (O). For example, if m = 1, then this equation is called the stochas-

tic heat equation. The process η denotes a space-dependent noise process that is
fractional in time with the Hurst parameter H ∈ (0, 1) and, possibly, in space. The
system (4.7)–(4.9) is modeled as

(4.11)
dX(t) = AX(t)dt+ F (X(t))dt+ ΦdB(t),

X(0) = x

in the space V = L2(O), where A = L2m,

Dom(A) =
{
ϕ ∈ H2m(O)

∣∣∣ ∂k

∂vk
ϕ = 0 on ∂D for k ∈ {0, . . . ,m− 1}

}
,

F : V → V is the operator, F (x)(ξ) = f(x(ξ)), x ∈ V, ξ ∈ O, Φ ∈ L(V ) defines
the space correlation of the noise process, and (B(t), t ≥ 0) is a cylindrical standard
fractional Brownian motion in V (formally, η(t, ·) = Φ(∂/∂t)B(t, ·)). For Φ = I, the
noise process is uncorrelated in space. It is well known that A generates an analytic
semigroup (S(t), t ≥ 0). Furthermore

(4.12) |S(t)Φ|L2(V ) ≤ |S(t)|L2(V )|Φ|L(V ) ≤ ct−
d

4m

for t ∈ [0, T ], so if

(4.13) H >
d

4m
,

then the conditions of Proposition 2.6 are satisfied with γ = d
4m . Therefore, for any

Φ ∈ L(V ), the stochastic convolution process(∫ t

0

S(t− r)Φ dB(r), t ∈ [0, T ]
)

is well-defined and has a version with Cβ([0, T ], V ) sample paths for β ≥ 0 satisfying

(4.14) β < H − d

4m
.

Note that the condition (4.13) extends the well-known result for a standard
Wiener process (H = 1

2 ).
Theorems 3.3 and 3.4 are applied to the present example. Assume inequality

(4.13) and let Φ be boundedly invertible on V . Furthermore, let f : R → R be
measurable and satisfy

(4.15) |f(ξ)| ≤ k1(1 + |ξ|), ξ ∈ R.
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By the preceding part of this example, conditions (H1)–(H3) are satisfied for
E = V = L2(O) and the map F : V → V has at most linear growth. Thus by
Theorem 3.3 if H < 1

2 , then there exists a unique weak solution to (4.11).
If H > 1

2 , some additional conditions are required. Assume that

(4.16)
d

4m
<

1
2

(which is more restrictive than (4.13)) and suppose that

(4.17) |f(ξ) − f(λ)| ≤ k|ξ − λ|γ , ξ, λ ∈ R,

for some k > 0 and γ > 0,

(4.18)
H − 1/2
H − d/4m

< γ ≤ 1.

Then, letting β be such that β < H − d
4m and γβ > H − 1

2 , it is clear that all of
the conditions of Theorem 3.4 are verified so there is a unique weak solution to (4.11).

The third example is a one-dimensional stochastic equation of reaction-diffusion
type. Consider the equation

(4.19)
∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ) + f(u(t, ξ)) + η(t, ξ)

for (t, ξ) ∈ (0, T ) × (0, 1) and

u(0, ξ) = x0(ξ),

∂u

∂ξ
(t, 0) =

∂u

∂ξ
(t, 1) = 0

for (t, ξ) ∈ (0, T ) × (0, 1), where f and η are given in the previous example (with
O = (0, 1)). The above formal equation can be rewritten in the form (4.11) with
V = L2([0, 1]), A = ∂2

∂ξ2 ,

Dom(A) =
{
φ ∈ H2([0, 1]) :

∂

∂ξ
φ(0) =

∂

∂ξ
φ(1) = 0

}
,

where Φ ∈ L(V ) and F is as given in the preceding example. The semigroup generated
by A satisfies the estimate (4.12) (with m = d = 1), so if f satisfies the conditions of
the previous example, the same conclusions on existence and uniqueness of the weak
solution are obtained.

However, it is desirable to relax condition (4.15) of the linear growth of the func-
tion f , which is very restrictive in view of reaction-diffusion models, where f is often
a polynomial. Let H > 1/2 and assume that

|f(ξ)| ≤ k(1 + |ξ|ρ),(4.20)

(f(ξ) − f(λ)) sgn(ξ − λ) ≤ k(ξ − λ),(4.21)

|f(ξ) − f(λ)| ≤ k(1 + |ξ|q + |λ|q|ξ − λ|γ(4.22)
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for all ξ, λ ∈ R and some universal constants ρ > 0, q > 0, k > 0 and γ satisfying

(4.23)
H − 1/2
H − 1/4

< γ ≤ 1.

Note that these conditions are satisfied if f is Lipschitz or if f is a polynomial of
odd degree with a negative leading coefficient.

The conditions of Theorem 3.7 are verified now. Take the state space E =
C([0, 1]). It is well known that the restriction of A to E generates a strongly contin-
uous semigroup of contractions on E. By Proposition 2.6 the stochastic convolution

(4.24)
(∫ t

0

S(t− r)ΦdB(r), t ∈ [0, T ]
)

has Cβ([0, T ], Vδ) sample paths for β + δ < H − 1/4, and, hence, by the Sobolev
embedding theorem, in the space C([0, T ], E) ∩ Cβ([0, T ], V ) for 0 < β < H − 1/4
(by (4.23) β can be chosen such that βγ > H − 1/2). It remains to verify the
conditions imposed on F . The polynomial growth condition (3.41), the “dissipativity
of F − kI on V ” (3.66), and the local Hölder continuity of the form (3.67) follow
easily from the corresponding conditions on f , that is, (4.20), (4.21), and (4.22). The
dissipativity of F − kI on E (3.42) is a well-known consequence of (4.21) by the
characterization of the subdifferential of the norm on E = C([0, 1]) (cf. [32]). The
characterization of the subdifferentials for this example is as follows: Given x ∈ E,
let Mx = {ξ ∈ [0, 1]; |x(ξ)| = ||x||E}. Then μ ∈ δ||x||E if and only if the following
three conditions are satisfied: (i) μ is a Radon measure on [0, 1] with ||μ|| = 1; (ii) the
support of μ is contained in Mx; and (iii)

∫
Γ sgn x(ξ)μ(dξ) ≥ 0 for each Borel set Γ

in [0, 1]. In particular if x ∈ E has the property that Mx = {ξ0}, then δ||x||E = δξ0

for x(ξ0) = ||x||E and δ||x||E = −δξ0 for x(ξ0) = −||x||E , where δξ0 is the Dirac
distribution at ξ0. The family of x ∈ E with this latter property is dense in E.
Therefore, all of the conditions of Theorem 3.7 are satisfied, and it follows that there
is a unique weak solution in the present case.
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ON THE EXISTENCE OF SOLUTIONS OF EQUILIBRIA IN
LUBRICATED JOURNAL BEARINGS∗
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Abstract. In this paper we study a system of equations concerning equilibrium positions of
journal bearings. The problem consists of two surfaces in relative motion separated by a small
distance filled with a lubricant. The shape of the inlet surface is circular, while the other surface
has a more general shape. Our result shows the existence of at least one equilibrium by using degree
theory.
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1. Introduction. We consider in this paper a lubricated system called a journal
bearing consisting of two cylinders in relative motion. An incompressible fluid, the
lubricant, is introduced in the narrow space between the cylinders. An exterior force
F = (F1, F2) ∈ R

2 is applied on the inner cylinder (shaft) which turns with a given
velocity ω.

The wedge between the two cylinders is assumed to satisfy the thin-film hypothe-
sis, so that the pressure (assumed time-independent) does not depend on the normal
coordinate to the bodies and obeys the Reynolds equation.

In order to introduce the Reynolds equation we need to describe the geometry and
the dynamic of the system. We suppose that the interior cylinder has a circular form
of constant radius (assumed 1) which rotates with known velocity. The transversal
axis of the shaft is assumed to have only two degrees of freedom in the transversal
plane, i.e., parallel to the exterior cylinder (bush) which is fixed and not necessarily
of constant radius.

Let us consider (O, y1, y2) a reference system in the transversal plane to the
cylinders, and suppose that the distance between O and the surface of the bush
is larger than the radius of the shaft (see Figure 1.1). We also assume that the
representation in polar coordinates (r, θ) of the bush is given by

(1.1) r = 1 + δρ(θ),

where ρ : [0, 2π] → [1,+∞[ is a known function and δ > 0 (the clearance) is a small
parameter, representing the distance between the two cylinders when O and the center
of the shaft coincide.
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Fig. 1.1. Scheme of the journal bearing.

Remark 1.1. The particular case ρ ≡ 1 corresponds to a circular bush with radius
1 + δ and O the center of the bush.

Let us now denote by Os the center of the shaft. The position of Os is given in
cartesian coordinates by (δη1, δη2) and in polar coordinates by (δη, α), that is,

(1.2)
η1 = η cosα,

η2 = η sinα.

It is well known (see, for instance, [5]) that the distance between the two cylinders is
given by δh(θ, η, α) +O(δ2) with

(1.3) h(θ, η, α) = ρ(θ) − η cos(θ − α) = ρ(θ) − η1 cos θ − η2 sin θ.

The formulation of the problem is complete when the distance between the sur-
faces is of order δ (i.e., h ∈ O(1)) and second order terms are neglected. Admissible
forces in that case are of order 1

δ2 or smaller. If the distance becomes smaller (i.e.,
h� 1) or forces are large (larger than O( 1

δ2 )), second order terms cannot be neglected
and the formulation loses its physical meaning.

Now, the problem will be posed in a fixed domain Ω = ]0, 2π[× ]0, 1[ which
parametrizes the space between shaft and bush. In fact the gap is approximated
by the following domain given in cylindrical coordinates by (r, θ, x) with respect to
Os:

1 ≤ r ≤ 1 + δh(θ, η, α), θ ∈ [0, 2π[, x ∈ [0, 1],

where Os = (δη cos (α), δη sin (α)).
Since the wedge between the two cylinders satisfies the thin-film hypothesis, the

pressure of the lubricant fluid (assumed time-independent) does not depend on the
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normal coordinate to the bodies and obeys the Reynolds equation (see [9]). We also
consider that there is an alimentation region along the circles {x = 0} and {x = 1},
respectively, where the pressure in the fluid equals the atmospheric pressure supposed
to be 0 by translation. Then the pressure p : (θ, x) ∈ Ω → R satisfies the following
problem written in nondimensional form:

(1.4)

⎧⎪⎨⎪⎩
∇ · (h3∇p) = ∂h

∂θ on Ω,
p is 2π-periodic in θ,

p = 0 on ]0, 2π[ × {0} ∪ ]0, 2π[ × {1}.

In general the solution of (1.4) is not always nonnegative and we must replace (1.4)
by the corresponding variational inequality.

In this work we are interested in an equilibrium problem which entails finding
the position (η1, η2) of the shaft such that the hydrodynamic force (load) created by
the pressure film equilibrates the exterior force F . Thus the problem is formulated as
follows:

Find p ∈ K, (η1, η2) ∈ A such that∫
Ω

h3∇p · ∇(ϕ− p) ≥
∫

Ω

h
∂

∂θ
(ϕ− p) ∀ϕ ∈ K,(1.5)

∫
Ω

p cos θdθdx = F1,(1.6)

∫
Ω

p sin θdθdx = F2,(1.7)

where h is given in (1.3),

K =
{
ϕ ∈ H1

0 (Ω) : ϕ ≥ 0
}
,

and A ⊂ R
2. The set of admissible positions of the shaft (to be defined later) is such

that h(θ, η, α) > 0 ∀θ ∈ [0, 2π].
As far as we know, very few works can be found in the literature concerning exis-

tence of equilibrium in the lubricated devices in spite of a larger number of references
to numerical simulations; see, for instance, [3] or [4].

Some results exist in the case of sliders, that is, mechanisms consisting of an
almost plane surface sliding above a horizontal plane surface.

Exact solutions for the case in which the upper surface is an inclined plane of angle
θ and infinite width have been known for a long time, since the problem becomes one-
dimensional and is easily integrated [7].

For more general shapes of the upper surfaces an existence result is obtained in [1]
for the equation case and in [2] for the variational inequality in the one-dimensional
case.

The content of the paper is as follows: In section 2 we give the main result. In
section 3 we recall some elements of the degree theory which will be used. In section 4
some preliminary results are given, and section 5 is devoted to the proof of the main
result.
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2. Main results and assumptions. For the rest of the paper we assume that

ρ ∈ C3(R), ρ, ρ′, and ρ′′ are 2π-periodic,(2.1)

ρ′′(θ) + ρ(θ) > 0 ∀ θ ∈ R,(2.2)

min
0≤θ≤2π

ρ(θ) = 1.(2.3)

We denote the following:

(2.4)

ρM = max
0≤θ≤2π

ρ(θ),

m = min
0≤θ≤2π

(ρ′′(θ) + ρ(θ)) > 0,

M = max
0≤θ≤2π

(ρ′′(θ) + ρ(θ)) > 0.

Remark 2.1. All these assumptions are clearly satisfied in the particular case of
a circular bush, corresponding to ρ ≡ 1.

Remark 2.2. Assumption (2.2) is the most restrictive of the assumptions. It is
introduced for technical reasons and guarantees that in the limit case the set where
h = 0 is a single line.

Let us introduce the function a(α) : R → R+ given by

(2.5) a(α) := min
α−π

2 <θ<α+π
2

{
ρ(θ)

cos(θ − α)

}
.

The fact that

lim
θ→α±π

2

ρ(θ)
cos(θ − α)

= ∞

and the continuity and boundedness of ρ guarantee the existence of at least one
minimum.

Now we define the set A by

A =
{

(η1, η2) ∈ R
2 : 0 ≤ η < a(α)

}
,

where (η, α) are given by (1.2).
It is clear that h(θ) > 0 ∀θ ∈ [0, 2π] if and only if (η1, η2) ∈ A.
For any fixed (η1, η2) ∈ A, problem (1.5) has been studied by several authors. The

existence and uniqueness of solutions can be obtained by using the direct methods
in the calculus of variations along with strict convexity of the associated functional.
Then (1.5) admits a unique classical solution p ∈ K; see, for instance, Kinderlehrer
and Stampacchia [6].

Thus problem (1.5)–(1.7) is equivalent to the following problem:

(2.6)

{
Find (η1, η2) ∈ A such that

G(η1, η2) = (0, 0),

where G = (G1, G2) : A→ R
2 is given by

G1(η1, η2) =
∫

Ω

p cos θdθdx − F1,(2.7)

G2(η1, η2) =
∫

Ω

p sin θdθdx − F2,(2.8)
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where p (depending on η1, η2) is the unique solution of (1.5).
The main result of the paper is presented in the following theorem.
Theorem 2.1. Under assumptions (2.1)–(2.3) and for any F ∈ R

2 there exists
at least one solution (η1, η2) ∈ A of (2.6).

3. Known results on degree theory. In order to prove Theorem 2.1 we use
the topological degree theory, which is rapidly recalled in the following.

The topological degree for continuous mappings between n-dimensional Euclidean
spaces was first introduced by L. E. J. Brouwer in 1912. We first introduce the
definition of degree for C1 maps.

Let S be a bounded open subset of R
n and a C1(S) function f : S → R

n. Let
y0 ∈ R

n such that y0 
∈ f(∂S), and suppose that f ∈ C1(S) and that Df(x) is
invertible for all x ∈ f−1(y0). Then f(x) = y0 has either no solutions in S or a finite
number r of solutions, say x1, x2, . . . , xr and det(Df(xi)) 
= 0 for i = 1, 2, . . . , r.

Definition 3.1. We define the degree of f in S at y0 as follows:
If r = 0, then d(f, S, y0) := 0; else

d(f, S, y0) :=
r∑

i=1

sign(det(Df(xi))).

Remark 3.1. In the particular case where f is a linear function, i.e., f(x) = Ax,
where A is an invertible matrix, the general formula for calculating the degree of linear
functions is the following:

deg(Ax, S, 0) = sgn(detA) if 0 is contained in S.

The definition of degree can be extended to continuous maps; see [8, Extension
Lemma, p. 60]. For the reader’s convenience we state the following result (see, for
instance, [8, Corollary 4 to Theorem 1.12, p. 81]) adapted to the finite-dimensional
case.

Theorem 3.1. Let S be a bounded open set in R
n. Let f0 and f1 be two con-

tinuous functions from S to R
n. We assume moreover that S is a star domain with

respect to the point y0 ∈ S and that

[f0(x) − y0] · [f1(x) − y0] > 0 for any x ∈ ∂S.

Then

d(f0, S, y0) = d(f1, S, y0).

Remark 3.2. It is clear that if d(f, S, y0) 
= 0, then there exists at least a solution
x ∈ S of the equation f(x) = y0.

4. Preliminary results.
Lemma 4.1. Let a(α) be the function defined in (2.5). Then

1 = min
0≤θ≤2π

ρ ≤ a(α) ≤ max
0≤θ≤2π

ρ = ρM .

Proof. Since

min
0≤θ≤2π

ρ ≤ ρ ≤ max
0≤θ≤2π

ρ
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we have that

min
0≤θ≤2π

{ρ} min
α−π

2 <θ<α+π
2

{
1

cos(θ − α)

}
≤ a(α)

and

a(α) ≤ max
0≤θ≤2π

{ρ} min
α−π

2 <θ<α+π
2

{
1

cos(θ − α)

}
.

The fact that

min
α−π

2 <θ<α+π
2

{
1

cos(θ − α)

}
= 1

implies

min{ρ} ≤ a(α) ≤ max{ρ},

and the proof is complete.
Lemma 4.2. There exists s with 0 < s < π

2 such that

|θ̃α − α| < s

for any α ∈ R and for any θ̃α ∈ ]α− π
2 , α+ π

2 [ satisfying

ρ(θ̃α)
cos(θ̃α − α)

= a(α).

Proof. From Lemma 4.1 we deduce

cos(θ̃α − α) ≥ 1
ρM

,

which implies

(4.1) |θ̃α − α| ≤ arccos
1
ρM

<
π

2
.

Now taking s = 1
2 (π

2 + arccos 1
ρM

) we obtain the result.
Lemma 4.3. Under assumptions (2.1)–(2.3), for any α ∈ R, the set of θ ∈

]α− π
2 , α+ π

2 [, which minimizes the function θ �→ ρ(θ)
cos(θ−α) , is a single point which we

denote by θα satisfying

ρ(θα)
cos(θα − α)

= a(α)

and

ρ′(θα) cos(θα − α) + ρ(θα) sin(θα − α) = 0.

Moreover the function α �→ θα belongs to C1(R).
Proof. Let α be a fixed value of R and consider the critical points of the function

θ ∈ ]α− π
2 , α+ π

2 [ �→ ρ(θ)
cos(θ−α) , which satisfies

(4.2)
(

ρ(θ)
cos(θ − α)

)′
=

ρ′(θ)
cos(θ − α)

+
ρ(θ) sin(θ − α)

cos(θ − α)2
= 0.
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Consider

f(θ, α) := ρ′ cos(θ − α) + ρ sin(θ − α).

Notice that if θ is a minimum of

ρ(θ)
cos(θ − α)

,

then f(θ, α) = 0. We now have that

∂f

∂θ
= (ρ′′ + ρ) cos(θ − α),

which is positive in |θ − α| < π
2 (by hypothesis (2.2)). The assertion follows using

also the implicit function theorem on the open set (θ, α) ∈ ]−s, s[×R with s given in
Lemma 4.2.

We now introduce the function h0 : R
2 → R defined by

h0(θ, α) = h(θ, a(α), α) = ρ(θ) − a(α) cos(θ − α).

Remark 4.1. We have from Lemma 4.3

h0(θα, α) =
∂h0

∂θ
(θα, α) = 0,(4.3)

∂2h0

∂θ2
(θα, α) = ρ′′(θα) + ρ(θα).(4.4)

Lemma 4.4. Let us denote for any α ∈ [0, 2π] and ε > 0 small enough

Iα,ε := [θα − 2
√
ε, θα −

√
ε].

Then for any α ∈ [0, 2π] and θ ∈ Iα,ε we have
(i) h(θ, a(α) − ε, α) ≤ (2M + 2)ε,

(ii) −∂h
∂θ (θ, a(α) − ε, α) ≥ m

2

√
ε,

with m and M defined in (2.4).
Proof.
(i) We have

h(θ, a(α) − ε, α) = h0(θ, α) + ε cos(θ − α).

From Taylor development of h0 at θ = θα, using (4.3) and (4.4) we have (i).
(ii) We have

−∂h
∂θ

(θ, a(α) − ε, α) = −∂h0

∂θ
(θ, α) + ε sin(θ − α).

Using the Taylor development of ∂h0

∂θ at θ = θα we obtain

−∂h
∂θ

(θ, a(α) − ε, α) =
∂2h0

∂θ2
(θ̂, α)(θα − θ) + ε sin(θ − α)

with θ̂ ∈ Iα,ε.
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From (4.4), the uniform continuity of ∂2h0

∂θ2 , and (2.4) we deduce

∂2h0

∂θ2
(θ̂, α) ≥ 2

3
m.

Since θα − θ ≥
√
ε, we obtain for ε small enough

−∂h
∂θ

(θ, a(α) − ε, α) ≥ 2
3
m
√
ε− ε,

which ends the proof.
Lemma 4.5. Let ε be small enough and η := a(α) − ε. There exists a constant

c > 0 independent of ε and α such that

inf
0≤α≤2π

∫
Ω

h3(θ, η, α)|∇p|2dθdx > cε−
1
2 as ε→ 0.

Proof. We take in (1.5) φ := p+ ϕ with ϕ ∈ K arbitrary. Then∫
Ω

h
∂ϕ

∂θ
dθdx ≤

∫
Ω

h3∇p∇ϕdθdx.

By the Cauchy–Schwarz inequality we have∫
Ω

h
∂ϕ

∂θ
dθdx ≤

∣∣∣∣∫
Ω

h3|∇p|2dθdx
∣∣∣∣ 12 ∣∣∣∣∫

Ω

h3|∇ϕ|2dθdx
∣∣∣∣ 12

and we deduce

(4.5)
∣∣∣∣∫

Ω

h3|∇p|2dθdx
∣∣∣∣ 12 ≥ sup

ϕ∈K,ϕ �=0

−
∫
Ω ϕ

∂h
∂θ dθdx∣∣∫

Ω h
3|∇ϕ|2dθdx

∣∣ 12 .
Let m be given by (2.4) and ψ ∈ C2(R) such that

(i) supp(ψ) ⊂ [−2,−1];
(ii) ψ ≥ 0;

(iii)
∫

R
ψ > 0.

As a consequence of (i)–(iii) we have

(4.6)

∫
R
ψ∣∣∫

R
|ψ′|2

∣∣ 12 = c1 > 0.

Let

ϕε(θ, x) := ψ

(
θ − θα√

ε

)
x(1 − x)

with θα defined in Lemma 4.3.
It is clear that supp(ϕε) = Iα,ε × [0, 1] with Iα,ε as in Lemma 4.4. Using

Lemma 4.4 (ii) we deduce

(4.7)

−
∫

Ω

∂h

∂θ
ϕεdθdx ≥ min

θ∈Iα,ε

(
−∂h
∂θ

)∫
Ω

ϕεdθdx

≥ m

2
ε

∫
R

ψdy

∫ 1

0

x(1 − x)dx =
m

12
ε

∫
R

ψdy.
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On the other hand, using Lemma 4.4 (i) we have∣∣∣∣∫
Ω

h3|∇ϕε|2dθdx
∣∣∣∣ 12 ≤ max

Iα,ε

{h3} 1
2

∣∣∣∣∫
Ω

|∇ϕε|2dθdx
∣∣∣∣ 12

≤ ((2M + 2)ε)3/2

∣∣∣∣∫
Ω

|∇ϕε|2dθdx
∣∣∣∣ 12 .

A simple calculation gives ∫
Ω

|∇ϕε|2dθdx ≤ c3ε
−1/2.

We then have

(4.8)
∣∣∣∣∫

Ω

h3|∇ϕε|2dθdx
∣∣∣∣ 12 ≤ c4ε

5/4,

which, also using (4.7), gives us

(4.9)
−
∫
Ω ϕε

∂h
∂θ dθdx∣∣∫

Ω
h3|∇ϕε|2dθdx

∣∣1/2
≥ c5ε

− 1
4 .

Finally from (4.5) and (4.9) we have the result.
We now introduce for any ε small the function h̃ : R

2 → R defined by

(4.10) h̃(θ, α) := h(θα, a(α) − ε, α) + [ρ′′(θα) + ρ(θα)](1 − cos(θ − θα)).

Notice that

(4.11)

⎧⎪⎪⎨⎪⎪⎩
h(θα, a(α) − ε, α) = h̃(θα, α) = ε cos(θα − α),
∂h
∂θ (θα, a(α) − ε, α) − ∂h̃

∂θ (θα, α) = ∂h
∂θ (θα, a(α) − ε, α) = −ε sin(θα − α),

∂2h
∂θ2 (θα, a(α) − ε, α) − ∂2h̃

∂θ2 (θα, α) = −ε cos(θα − α).

Lemma 4.6. There exists a constant c independent of ε and α such that

∫ 2π

0

(
h(θ, a(α) − ε, α) − h̃(θ, α)

)2

h3(θ, a(α) − ε, α)
dθ ≤ c.

Proof. By the Taylor polynomial of h− h̃ and h at θα and (4.11) we have

(4.12) |h(θ, a(α) − ε, α) − h̃(θ, α)| ≤ ε|θ − θα| + ε|θ − θα|2 + c|θ − θα|3

and

(4.13)

h(θ, a(α) − ε, α) = ε cos(θα − α) − ε sin(θα − α)(θ − θα)

+
1
2

(
ρ′′(θα) + ρ(θα) − ε cos(θα − α)

)
(θ − θα)2

+
1
6
∂3h

∂θ3
(θ̂, a(α) − ε, α)(θ − θα)3

with θ̂ ∈ R.
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From Lemma 4.2, (4.13), and (2.2) there exists m1,m2, and m3 positive and
independent of ε and α such that

(4.14) h(θ, a(α) − ε, α) ≥ m1ε+m2(θ − θα)2

∀ θ such that |θ − θα| ≤ m3.
We have from (4.12)∫ 2π

0

(h− h̃)2

h3
dθ ≤ 2(ε2I1 + ε2I2 + c2I3)

with Ik =
∫ 2π

0
(θ−θα)2k

h3 dθ, k = 1, 2, 3.
Now from (4.14) it is clear that I3 is bounded uniformly in ε and α.
We will prove the uniform estimate for ε2I1. For ε2I2 the proof is similar.
We have

I1 = I1
1 + I2

1 + I3
1 ,

where I1
1 , I

2
1 , I

3
1 are the subintegrals, respectively, in the intervals |θ−θα| ≥ m3, ε

1/3 ≤
|θ − θα| ≤ m3, and 0 ≤ |θ − θα| ≤ ε1/3.

It is clear that ε2I1
1 is bounded uniformly in ε and α since h is lower bounded by

a positive constant on the interval |θ − θα| ≥ m3.
From (4.14) we have

I2
1 ≤ m−3

2

∫
ε1/3≤|θ−θα|≤m3

dθ

|θ − θα|4
≤ cε−4/3

and

I3
1 ≤ m−3

1 ε−3

∫
0≤|θ−θα|≤ε1/3

|θ − θα|2dθ ≤ m−3
1 ε−2,

which proves the lemma.

5. Proof of Theorem 2.1. We apply the degree theory recalled in section 3 to
the function G.

Since G is not defined on Ā we introduce for any ε > 0 small enough the domain

Aε =
{

(η1, η2) : 0 ≤ η ≤ a(α) − ε
}
.

Let us now introduce the vector field

W : (η1, η2) ∈ A→ (η sin θα,−η cos θα) ∈ R
2

with (η, α) defined in (1.2) and θα as in Lemma 4.3.
We observe that

W · (−η2, η1) = −η2 cos(θα − α).

From Lemmas 4.2 and 4.3 we have that

W · (−η2, η1) < 0 ∀(η1, η2) ∈ A.
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From Theorem 3.1 we deduce that

deg(W,Aε, 0) = deg((−η2, η1), Aε, 0) = 1.

Notice that deg(f, S, 0) = (−1)ndeg(−f, S, 0), where n is the dimension of the domain
(for the application here, n = 2, so the sign does not change).

It suffices now to prove the inequality

(5.1) G(η1, η2) ·W (η1, η2) > 0 ∀(η1, η2) ∈ ∂Aε,

and the proof is finished using again Theorem 3.1.
We have, ∀(η1, η2) ∈ ∂Aε, η = a(α) − ε. Then

(5.2) G(η1, η2) ·W (η1, η2) = −η
∫

Ω

p sin(θ − θα)dθdx + η(−F1 sin θα + F2 cos θα).

Now taking ϕ = 0 and ϕ = 2p, respectively, in (1.5) we obtain

(5.3)
∫

Ω

h3|∇p|2dθdx = −
∫

Ω

∂h

∂θ
pdθdx.

Notice that

(5.4)
∫

Ω

∂h

∂θ
pdθdx =

∫
Ω

∂

∂θ
(h− h̃)pdθdx +

∫
Ω

∂h̃

∂θ
pdθdx

with h̃ given by (4.10).
We now have

(5.5)

∫
Ω

∂

∂θ
(h− h̃)pdθdx = −

∫
Ω

(h− h̃)
∂p

∂θ
dθdx

≥ −
∫

Ω

|h− h̃|
h3/2

h3/2|∇p|dθdx

≥ −1
2

∫
Ω

|h− h̃|2
h3

dθdx− 1
2

∫
Ω

h3|∇p|2dθdx.

Since

∂h̃

∂θ
= (ρ′′(θα) + ρ(θα)) sin(θ − θα)

we obtain from (5.3) and (5.5)∫
Ω

h3|∇p|2dθdx ≤ 1
2

∫
Ω

|h− h̃|2
h3

+
1
2

∫
Ω

h3|∇p|2dθdx

− (ρ′′(θα) + ρ(θα))
∫

Ω

sin(θ − θα)pdθdx,

which implies, using also hypotheses (2.2),

−
∫

Ω

sin(θ − θα)pdθdx ≥
∫
Ω h

3|∇p|2dθdx−
∫
Ω

|h−h̃|2
h3 dθdx

2(ρ′′(θα) + ρ(θα))
.
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Since ρ is in C2 and from Lemmas 4.5 and 4.6, we obtain for ε small enough

−
∫

Ω

sin(θ − θα)p ≥ c(ε−1/2 − 1)

with c > 0 a constant independent of ε and α.
Since η = a(α) − ε and thanks to (5.2) we deduce

G(η1, η2) ·W (η1, η2) ≥ η
(
c(ε−1/2 − 1) − ‖F‖

)
.

Taking ε small enough, we prove the theorem.
Remark 5.1. In the same manner we can prove the existence of at least one

equilibrium solution for some other similar problems in this context. For instance,
the case of Dirichlet boundary conditions on every boundary of Ω, or the case of a
one-dimensional domain with Dirichlet boundary conditions.

Acknowledgments. The third author thanks INSA-Lyon and Institut Camille
Jordan at University of Lyon for their hospitality.
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POINTWISE GREEN FUNCTION BOUNDS AND LONG-TIME
STABILITY OF LARGE-AMPLITUDE NONCHARACTERISTIC

BOUNDARY LAYERS∗

SHANTIA YARAHMADIAN† AND KEVIN ZUMBRUN†

Abstract. Using pointwise semigroup techniques of Zumbrun–Howard and Mascia–Zumbrun,
we obtain sharp global pointwise Green function bounds for noncharacteristic boundary layers of
arbitrary amplitude. These estimates allow us to analyze linearized and nonlinearized stability of
noncharacteristic boundary layers of one-dimensional systems of conservation laws, showing that
both follow from (and linearized stability is equivalent to) a numerically checkable Evans function
condition. Our results extend to the large-amplitude case results obtained for small amplitudes by
Matsumura, Nishihara, and others using energy estimates.

Key words. boundary layer stability, Evans function, pointwise Green function bounds
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1. Introduction. Boundary layers appear in many physical settings, such as gas
dynamics, MHD, and rotating fluids; see, for example, the physical discussion in [34].
In this paper, we study the stability of boundary layers assuming that the boundary
layer solution is noncharacteristic, which means that signals are transmitted into or
out of, but not along the boundary. Specifically, we consider a boundary layer, or
stationary solution,

(1.1) u = ū(x), lim
x→+∞

ū(x) = u+, ū(0) = u0

of a system of conservation laws on the quarter-plane

(1.2) ut + f(u)x = (B(u)ux)x, x, t > 0,

u, f ∈ R
n, B ∈ R

n×n, with initial data u(x, 0) = g(x) and Dirichlet boundary condi-
tion

(1.3) u(0, t) = h(t).

A fundamental question is whether or not such boundary layer solutions are stable in
the sense of PDE, i.e., whether or not a sufficiently small perturbation of ū remains
close to ū, or converges time-asymptotically to ū, under the evolution of (1.2).

Long-time stability of boundary layers has been considered for scalar equations
in [24, 25] and for the equations of isentropic gas dynamics in [26, 23]. The latter
results, obtained by energy estimates, apply to arbitrary amplitude layers of “expan-
sive inflow” type analogous to rarefaction waves, but only to small-amplitude layers
of “compressive inflow or outflow” type analogous to shock waves or “expansive out-
flow” type. For general symmetric hyperbolic-parabolic systems, stability of small-
amplitude noncharacteristic boundary layers has been shown in multidimensions for

∗Received by the editors January 31, 2008; accepted for publication (in revised form) October 9,
2008; published electronically February 25, 2009. This work was supported in part by the National
Science Foundation grant number DMS-0300487.

http://www.siam.org/journals/sima/40-6/71480.html
†Department of Mathematics, Indiana University, Bloomington, IN 47405 (syarahma@indiana.

edu, kzumbrun@indiana.edu).
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strictly parabolic systems in [11], and in one dimension for partially parabolic (“real
viscosity”) systems in [30].

Here, in the spirit of results obtained for shock waves in [37, 27, 28], we show for
general strictly parabolic systems of conservation laws that linearized and nonlinear
stability follow from and linearized stability is equivalent to a generalized spectral
stability condition phrased in terms of the Evans function associated with the lin-
earized equations about the wave, independent of the amplitude of the boundary layer
in question. The Evans function, introduced for boundary layers in [32], is described
further in section 2; for its origins in the study of stability of traveling waves, see for
example, [1, 10] and references therein.

The Evans condition is readily checkable numerically, and in some cases analyti-
cally; see [3, 4, 5, 6, 20, 2, 17]. In particular, stability of small-amplitude uniformly
noncharacteristic boundary layers has been shown for general hyperbolic–parabolic
systems in multidimensions in [13] using elementary Evans function arguments (con-
vergence to the constant layer). An exhaustive numerical study for isentropic gas
layers in one dimension has been carried out in [7], with the conclusion of stability for
arbitrary amplitudes. Results of instability in some cases have been shown in [32, 33]
using a mod two stability index in the spirit of [10].

Our method of analysis [35] is by pointwise Green function methods like those
used in [37, 27, 28], and especially [16], to analyze the stability of viscous shock
layers. Similar results have been obtained for the related small-viscosity-limit problem
in [12, 29, 14]. In particular, we point to the analysis of Grenier and Rousset [12]
as using pointwise Green function estimates very similar to those that we use here,
though adapted for different purposes.

1.1. Equations and assumptions. Consider a viscous boundary layer, a
standing-wave solution (1.1) of a general parabolic system of conservation laws (1.2).

Assume, similarly, as in the treatment of the viscous shock case in [16]:
(H0) f,B ∈ C3.
(H1) Reσ(B) > 0.
(H2) σ(f ′(u+)) real, distinct, and nonzero.
(H3) Reσ(−ikf ′(u+) − k2B(u+)) < −θk2 for all real k and θ > 0.
Lemma 1.1 ([27, 36]). Assuming (H0)–(H3), a solution ū of (1.1) if it exists is

also unique; moreover,

(1.4)
∣∣(d/dx)k(ū − u+)

∣∣ ≤ Ce−θx, k = 0, . . . , 4,

as x→ +∞, for some θ > 0.
Proof. As in the shock case [28, 36], (1.4) follows by the observation that, under

hypotheses (H0)–(H3), u+ is a hyperbolic rest point of the layer profile ODE. Unique-
ness follows by the observation [27] that the standing-wave ODE may be integrated
from x to +∞ and rearranged to yield

(1.5) B(u)u′ = f(u) − f(u+)

together with the boundary conditions at x = 0, thus determining a unique solution
for all x ≥ 0.

1.2. Linearized stability and the Evans function. After linearizing (1.2)
about the stationary solution ū, we obtain the linearized equation

(1.6) ut = Lu := −(Au)x + (Bux)x, A,B ∈ C2,
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where

(1.7) B := B(ū)

and

(1.8) Au := dF (ū)u− dB(ū)(u, ūx).

Definition 1.2. The boundary layer ū is said to be linearly asymptotically stable
if u(·, t) approaches 0 as t→ ∞, for any solution u of (1.6) with initial data bounded
in some specified norm.

We define the following stability criterion, where D(λ), described below, denotes
the Evans function associated with the linearized operator L about the layer, an
analytic function analogous to the characteristic polynomial of a finite-dimensional
operator, whose zeroes away from the essential spectrum agree in location and multi-
plicity with the eigenvalues of L:

(1.9) There exist no zeroes of D(·) in the nonstable half-plane Reλ ≥ 0.

As discussed, e.g., in [31], under assumptions (H0)–(H3), this is equivalent to strong
spectral stability, σ(L) ⊂ {Reλ < 0}, transversality of ū as a solution of the con-
nection problem in the associated standing-wave ODE, and hyperbolic stability of an
associated boundary value problem obtained by formal matched asymptotics. Here,
and elsewhere, σ denotes spectrum of a linearized operator or matrix.

Our first main result is as follows.
Theorem 1.3. Assuming (H0)–(H3), linearized asymptotic L1 ∩Lp → Lp stabil-

ity, p > 1, is equivalent to (1.9).
Theorem 1.3 is obtained as a consequence of the following detailed, pointwise

bounds on the Green function G(x, t; y) of the linearized evolution equations (1.6) with
homogeneous boundary conditions (more properly speaking, a distribution), defined
by:

(i) (∂t − Lx)G = 0 in the distributional sense, for all x, y, t > 0;
(ii) G(x, t; y) → δ(x− y) as t→ 0;
(iii) G(0, t; y) ≡ 0, for all y, t > 0.

Denote by

(1.10) a+
1 < a+

2 < · · · < a+
n

the eigenvalues of of the limiting convection matrix A+ := df(u+).
Then, our second main result is as follows.
Theorem 1.4. Assuming (H0)–(H3) and stability condition (1.9),

(1.11)

|∂γ
x∂

α
y G(x, t; y)| ≤ Ce−η(|x−y|+t)

+ C
(
t−|α|/2 + |α|e−η|y| + |γ|e−η|x|

)( n∑
k=1

t−1/2e−(x−y−a−
k t)2/Mt

+
∑

a+
k <0, a+

j >0

χ{|a+
k t|≥|y|}t

−1/2e−(x−a+
j (t−|y/a+

k |))2
/Mt

)
,

0 ≤ |α|, |γ| ≤ 1, for some η, C, M > 0, where x+ denotes the positive/negative part
of x, indicator function χ{|a−

k
t|≥|y|} is 1 for |a−k t| ≥ |y| and 0 otherwise.
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1.3. Nonlinear stability.
Definition 1.5. The boundary layer ū is said to be nonlinearly asymptotically

stable if ũ(·, t) exists for all t ≥ 0 and approaches ū as t → ∞, for any solution ũ of
(1.2) with initial data sufficiently close in some norm to the original layer ū.

Denoting by

(1.12) a+
1 < a+

2 < · · · < a+
n

the eigenvalues of of the limiting convection matrix A+ := df(u+), define

(1.13) θ(x, t) :=
∑

a+
j >0

(1 + t)−1/2e−|x−a+
j t|2/Lt,

(1.14) ψ1(x, t) := χ(x, t)
∑

a+
j >0

(1 + |x| + t)−1/2
(
1 +

∣∣x− a+
j t
∣∣)−1/2

,

and

(1.15) ψ2(x, t) := (1 − χ(x, t))
(

1 +
∣∣x− a+

n t
∣∣+ t1/2

)−3/2

,

where χ(x, t) = 1 for x ∈ [0, a+
n t] and χ(x, t) = 0 otherwise and L > 0 is a sufficiently

large constant. For simplicity, take B identically constant. Then, our third and final
main result is as follows.

Theorem 1.6. Assuming (H0)–(H3), B ≡ constant, and the linear stability
condition (1.9), the profile ū is nonlinearly asymptotically stable with respect to per-
turbations g, h in initial and boundary data satisfying

|g(x)| ≤ E0(1 + |x|)−3/2, |h(t)| ≤ E0(1 + |t|)−3/2, |h′(t)| ≤ E0(1 + |t|)−1

for E0 sufficiently small. More precisely,

(1.16) |ũ(x, t) − ū(x)| ≤ CE0(θ + ψ1 + ψ2)(x, t),

where ũ denotes the solution of (1.2) with initial data g̃ = ū + g and boundary data
h̃ = u0 + h.

Remark 1.7. Pointwise bound (1.16) yields as a corollary the sharp Lp decay rate

(1.17) |ũ(x, t) − ū(x)|Lp ≤ CE0(1 + t)−
1
2 (1− 1

p ), 1 ≤ p ≤ ∞.

1.4. Discussion and open problems. The case of boundary layers is quite
analogous to the undercompressive shock case; in particular, pointwise estimates as
in [16] appear to be necessary to close the one-dimensional analysis by a linearized
semigroup approach suitable for large-amplitude layers. (On the other hand, small-
amplitude stability has been established using energy estimates in, e.g., [26, 11].) A
new feature of the present analysis as compared to those of [16, 18, 19] is the admission
of perturbations in boundary as well as initial data. Open problems are extensions
to systems with physical (partial) or quasilinear viscosity and to multidimensional
boundary layers.

2. The Evans function. Before starting the analysis, we review the basic Evans
function methods and gap/conjugation lemma.
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2.1. The gap/conjugation lemma. Consider a family of first-order ODE sys-
tems on the half-line:

(2.1)
W ′ = A(x, λ)W, λ ∈ Ω and x > 0,

B(λ)W = 0, λ ∈ Ω and x = 0.

These systems of ODEs should be considered as a generalized eigenvalue equation,
with λ representing frequency. We assume that the boundary matrix B is analytic in
λ and that the coefficient matrix A is analytic in λ as a function from Ω into L∞(x),
CK in x, and approaches exponentially to a limit A+(λ) as x → ∞, with uniform
exponentially decay estimates

(2.2)
∣∣(∂/∂x)k(A − A+)

∣∣ ≤ C1e
−θ|x|/C2, for x > 0, 0 ≤ k ≤ K,

Cj , θ > 0, on compact subsets of Ω. Now we can state a refinement of the “Gap
Lemma” of [10, 21], relating solutions of the variable-coefficient ODE to the solutions
of its constant-coefficient limiting equations

(2.3) Z ′ = A+(λ)Z

as x→ +∞.
Lemma 2.1 (conjugation Lemma [29]). Under assumption (2.2), there exists

locally to any given λ0 ∈ Ω a linear transformation P+(x, λ) = I+Θ+(x, λ) on x ≥ 0,
Φ+ analytic in λ as functions from Ω to L∞[0,+∞), such that:

(i) |P+| and their inverses are uniformly bounded, with

(2.4)
∣∣(∂/∂λ)j(∂/∂x)kΘ+

∣∣ ≤ C(j)C1C2e
−θ|x|/C2 for x > 0, 0 ≤ k ≤ K + 1,

j ≥ 0, where 0 < θ < 1 is an arbitrary fixed parameter, and C > 0 and the size of the
neighborhood of definition depend only on θ, j, the modulus of the entries of A at λ0,
and the modulus of continuity of A on some neighborhood of λ0 ∈ Ω.

(ii) The change of coordinates W := P+Z reduces (2.1) on x ≥ 0 to the asymp-
totic constant-coefficient equations (2.3). Equivalently, solutions of (2.1) may be con-
veniently factorized as

(2.5) W = (I + Θ+)Z+,

where Z+ are solutions of the constant-coefficient equations, and Θ+ satisfy (2.4).
Proof. As described in [27], for j = k = 0 this is a straightforward corollary of

the gap lemma as stated in [Z.3], applied to the “lifted” matrix-valued ODE

P ′ = A+P − PA + (A − A+)P

for the conjugating matrices P+. The x-derivative bounds 0 < k ≤ K + 1 then follow
from the ODE and its first K derivatives. Finally, the λ-derivative bounds follow from
standard interior estimates for analytic functions.

Definition 2.2. Following [1], we define the domain of consistent splitting for
the ODE system W ′ = A(x, λ)W as the (open) set of λ such that the limiting matrix
A+ is hyperbolic (has no center subspace) and the boundary matrix B is full rank, with
dimS+ = rank B.

Lemma 2.3. On any simply connected subset of the domain of consistent split-
ting, there exists an analytic basis {v1, . . . , vk} for the subspace S+ defined in Defini-
tion 2.2.



STABILITY OF BOUNDARY LAYERS 2333

Proof. By spectral separation of S+ from the complementary unstable subspace
U+, the associated (group) eigenprojection is analytic. The existence of an analytic
eigenbasis then follows by a standard result of Kato; see [22], pp. 99–102.

Corollary 2.4. By the Conjugation Lemma, on the domain of consistent split-
ting, the stable manifold of solutions decaying as x→ +∞ of (2.1) is

(2.6) S+ := span
{
P+v

+
1 , . . . , P+v

+
k

}
,

where W j
+ := P+v

+
j are analytic in λ and CK+1 in x for A ∈ CK .

2.2. Definition of the Evans function. On any simply connected subset of
the domain of consistent splitting, let W+

1 , . . . ,W
+
k = P+v

+
1 , . . . , P+v

+
k be the analytic

basis described in Corollary 2.4 of the subspace S+ of solutions W of (2.1) satisfying
the boundary condition W → 0 at +∞. Then, the Evans function for the ODE
systems W ′ = A(x, λ)W associated with this choice of limiting bases is defined as the
k × k Gramian determinant

(2.7)
D(λ) := det

(
BW+

1 , . . . ,BW
+
k

)
|x=0,λ

= det
(
BP+v

+
1 , . . . ,BP+v

+
k

)
|x=0,λ

.

Remark 2.5. Note that D is independent of the choice of P+ as, by uniqueness
of stable manifolds, the exterior products (minors) P+v

+
1 ∧ · · · ∧ P+v

+
k are uniquely

determined by their behavior as x→ +∞.
Proposition 2.6. Both the Evans function and the subspace S+ are analytic on

the entire simply connected subset of the domain of consistent splitting on which they
are defined. Moreover, for λ within this region, equation (2.1) admits a nontrivial
solution W ∈ L2(x > 0) if and only if D(λ) = 0.

Proof. Analyticity follows by uniqueness, and local analyticity of P+, v+
k . Noting

that the first P+v
+
j are a basis for the stable manifold of (2.1) at x → +∞, we find

that the determinant of BP+v
+
j vanishes if and only if B(λ) has nontrivial kernel on

S+(λ, 0), whence, the second assertion follows.
Remark 2.7. In the case that the ODE system describes an eigenvalue equation

associated with an ordinary differential operator L, Proposition 2.6 implies that eigen-
values of L agree in location with zeroes of D. (Indeed, they agree also in multiplicity;
see [8, 9]; Lemma 6.1, [37]; or Proposition 6.15 of [27].)

When ker B has an analytic basis v0
k+1, . . . , v

0
N−k, for example, in the commonly

occurring case, as here, that B ≡ constant, we have the following useful alternative
formulation. This is the version that we will use in our analysis of the Green function
and resolvent kernel.

Proposition 2.8. Let v0
k+1, . . . , v

0
N−k be an analytic basis of ker B, normalized

so that det(B∗, v0
k+1, . . . v

0
N ) ≡ 1. Then, the solutions W 0

j of (2.1) determined by
initial data W 0

j (λ, 0) = v0
j are analytic in λ and CK+1 in x, and

(2.8) D(λ) := det
(
W+

1 , . . . ,W
+
k ,W

0
k+1, . . . ,W

0
N

)
|x=0,λ

.

Proof. Analyticity/smoothness follow by analytic/smooth dependence on initial
data/parameters. By the chosen normalization, and standard properties of Grammian
determinants, D(λ) = det(W+

1 , . . . ,W
+
k , v

0
k+1, . . . , v

0
N )|x=0,λ, yielding (2.8).

3. Construction of the resolvent kernel. In this section we construct the
explicit form of the resolvent kernel, which is nothing more than the Green function
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Gλ(x, y) associated with the elliptic operator (L − λI), where

(3.1) (L − λI)Gλ(., y) = δyI, Gλ(0, y) ≡ 0.

Let Λ be the region of consistent splitting for L. It is an established fact (see [15])
that the resolvent (L− λI)−1 and the Green function Gλ(x, y) are meromorphic in λ
on Λ, with isolated poles of finite order. Gλ, in fact, admits a meromorphic extension
to a sector

(3.2) Ωθ = {λ : Re(λ) ≥ −θ1 − θ2|Im(λ)|}, θ1, θ2 > 0.

Writing the associated eigenvalue equation in the form of a first-order system
(2.1), we obtain

(3.3) W ′ = A(λ, x)W, BW (0) = 0,

where

W =
(
w
w′

)
∈ C

2n, A =
(

0 I
λB−1 +A′B−1 AB−1 −B′B−1

)
,

and B ≡ constant is the rank-n projection onto the first coordinate w ofW , with kernel
spanned by the constant basis v0

n+j = en+j , j = 1, . . . , n and ej the jth standard basis
element.

Denote by

(3.4) Φ0 =
(
φ0

1(x;λ) · · · φ0
n(x;λ)

)
=
(
W 0

1 · · · W 0
n

)
and

(3.5)
Φ+ =

(
φ+

1 (x;λ) · · · φ+
n (x;λ)

)
=
(
W+

n+1 · · · W+
2n

)
=
(
P+v

+
1 · · · P+v

+
k

)
the matrices whose columns span the subspaces of solutions of (2.1) decaying at
x = 0,+∞, respectively, denoting (analytically chosen) complementary subspaces by

(3.6) Ψ0 =
(
ψ0

1(x;λ) · · · ψ0
n(x;λ)

)
=
(
W 0

n+1 · · · W 0
2n

)
and

(3.7) Ψ+ =
(
ψ+

1 (x;λ) · · · ψ+
n (x;λ)

)
=
(
W+

1 · · · W+
n

)
.

As described in the previous subsection, eigenfunctions decaying at both 0,+∞ occur
precisely when the subspaces span Φ0 and span Φ+ intersect, i.e., at zeros of the Evans
function defined in (2.8):

(3.8) DL(λ) := det
(
Φ0,Φ+

)
|x=0

=
(
φ0

1 ∧ · · · ∧ φ0
n ∧ φ+

1 ∧ · · · ∧ φ+
n

)
|x=0

.

Lemma 3.1 ([10, 37]). For θ1, θ2 > 0 sufficiently small, DL is locally analytic on
sector Ωθ as defined in (3.2).

Proof. Direct calculation showing that the domain Λ of consistent splitting is
contained in Ωθ−B(0, r) for r > 0 arbitrary and θ sufficiently small, with v+

j extending
analytically to B(0, r).
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Lemma 3.2. Let Hλ(x, y) denote the Green function for the adjoint operator
(L − λI)∗ on the half-plane x ≥ 0. Then Gλ(x, y) = H∗

λ(x, y). In particular, for
x �= y, the matrix z = Gλ(x, .) satisfies

(3.9) (z′B)′ = −z′A+ zλ.

Proof. Standard duality argument; see [37] for operators on the whole line.
Considering (3.9) as an ODE system for the vector Z = (z, z′), it becomes

(3.10) Z ′ = ZÃ(λ, x),

where

(3.11) Ã =
(

0 λB−1 −A′B−1

I −AB−1 −B′B−1

)
.

Lemma 3.3 ([37]). Z is a solution of (3.11) if and only if ZSW ≡ constant for
any solution W of (2.1), where S =

(
−A B
−B 0

)
.

Proof. Direct computation/comparison with 0 of (ZSW )′; see [37].
Using Lemma 3.3, we can define dual bases W̃ 0

j and W̃+
j by the relations

(3.12) W̃ 0,+
j SW 0,+

k = δj
k.

Likewise, Ã0,+ can be defined as

(3.13) Ã0,+ =
(

0 λB−1
0,+

I −A0,+B
−1
0,+

)
.

We define also the dual subspaces

(3.14) Φ̃0 =
(
φ̃0

1(x;λ) · · · φ̃0
n(x;λ)

)
=
(
W̃ 0

n+1 · · · W̃ 0
2n

)
,

(3.15) Φ̃+ =
(
φ̃+

1 (x;λ) · · · φ̃+
n (x;λ)

)
=
(
W̃+

1 · · · W̃+
n

)
,

(3.16) Ψ̃0 =
(
ψ̃0

1(x;λ) · · · ψ̃+
n (x;λ)

)
=
(
W̃ 0

1 · · · W̃ 0
n

)
,

(3.17) Ψ̃+ =
(
ψ̃+

1 (x;λ) · · · ψ̃0
n(x;λ)

)
=
(
W̃+

n+1 · · · W̃+
2n

)
.

With these preparations, the construction of the resolvent kernel goes exactly as
in the construction performed in [37, 27] on the whole line.

Lemma 3.4. We have the the representation

(3.18)
(
Gλ Gλy

Gλx Gλxy

)
=

{
Φ+(λ, x)M+(λ)Ψ̃0(λ, y) for x > y,

Φ0(λ, x)M0(λ)Ψ̃+(λ, y) for x < y,

where M0,+ are to be determined.
Proof. See [37] Lemma 4.6.
Using Lemma 3.4, we find the explicit coordinate-free representation for x > y:

(3.19)
(
Gλ Gλy

Gλx Gλxy

)
= Fz→xΠ+(z)S−1(z)Π̃0(z)F̃z→y,
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where

(3.20) Π+(y) =
(
Φ+(y), 0

) (
Φ+(y),Φ−(y)

)−1
,

(3.21) Π̃0(y) =
(

Ψ̃0(y)
Ψ̃+(y)

)−1(
Ψ̃0(y)

0

)
,

(3.22) Fz→x =
(
Φ+(x),Φ0(x)

) (
Φ+(z),Φ0(z)

)−1
,

(3.23) F̃z→y =
(

Ψ̃0(z)
Φ+(z)

)(
Ψ0(y)
Ψ+(y)

)−1

,

and similarly for x < y.
Corollary 3.5. The resolvent kernel may be expressed as

(3.24) Gλ(x, y) =

{
(In, 0)Φ+(x;λ)M+(λ)Ψ̃0∗(y;λ)(In, 0)tr x > y,

−(In, 0)Φ0(x;λ)M0(λ)Ψ̃+∗(y;λ)(In, 0)tr x < y,

where

(3.25) M(λ) := diag
(
M+(λ),M0(λ)

)
= Φ−1(z;λ)S̄−1(z)Ψ̃−1∗(z;λ).

4. Low-frequency bounds. Our goal in this section is the estimation of the
resolvent kernel in the critical regime |λ| → 0, i.e., the large time behavior of the
Green function G, or global behavior in space and time. We are basically following
the same treatment as that carried out for viscous shock waves of strictly parabolic
conservation laws in [37, 27]; we refer to those references for details. In the low
frequency case the behavior is essentially governed by the equation

(4.1) Ut = L+U := −A+Ux +B+Uxx.

Proposition 4.1. Assuming (H0)–(H3), let K be the order of the pole of Gλ at
λ = 0 and r be sufficiently small that there are no other poles in B(0, r). Then for
λ ∈ Ωθ such that |λ| ≤ r and for x > y > 0 we have

(4.2)
(
Gλ Gλy

Gλx Gλxy

)
=
∑
j,k

djk(λ)φ+
j (x)ψ̃+

k (y) +
∑

k

φ+
k (x)φ̃+

k (y),

where djk(λ) = O(λ−K) is a scalar meromorphic function, moreover, K ≤ order of
vanishing of the Evans function D(λ) at λ = 0.

Proof. See [37], Proposition 7.1 for the first statement and Theorem 6.3 for the
second statement linking order K of the pole to multiplicity of the zero of the Evans
function.

Lemma 4.2. Assuming (H0)–(H3), for |λ| sufficiently small, the eigenvalue equa-
tion (L+ − λ)W = 0 associated with the limiting, constant-coefficient operator L+

has a basis of 2n solutions W̄+
j = eμ+

j (λ)xVj(λ) where μ+
j and V +

j are analytic in λ,
consisting of n fast modes

(4.3)
μ+

j = γ+
j + O(λ),

V +
j = S+

j + O(λ),
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where γ+
j , S+

j are eigenvalues and associated right eigenvectors of B−1
+ A+, and n slow

modes

(4.4)
μ+

r+j(λ) := −λ/a+
j + λ2β+

j /a
+3

j + O
(
λ3
)
,

V +
r+j(λ) := r+j + O(λ),

where a+
j , l+j , r+j are eigenvalues and left and right eigenvectors of A+ := dF (u+), and

β+
j := l+j B+r

+
j > 0 with B+ := B(u+). The same is true for the adjoint eigenvalue

equation (
L+ − λ

)∗
Z = 0;

i.e, it has a basis of solutions

¯̃W+
j = e−μ+

j (λ)xṼj(λ)

with

(4.5) Ṽ +
j (λ) = T̃+

j + O(λ),

(4.6) Ṽ +
r+j(λ) = l+j + O(λ),

Ṽ + analytic in λ.
Proof. See [27].
Proposition 4.3. Assume (H0)–(H3) and (1.9), then, for r > 0 sufficiently

small, the resolvent kernel Gλ associated with the linearized evolution equation

(4.7) Ut = L+U := −A+Ux +B+Uxx

satisfies, for 0 ≤ y ≤ x:

(4.8)

|∂γ
x∂

α
y Gλ(x, t; y)| ≤ C

(
|λ|γ + e−θ|x|

)(
|λ|α + e−θ|y|

)⎛⎜⎝ ∑
a+

k >0

∣∣∣∣e(−λ/a+
k +λ2β+

k /a+
k

3
)
(x−y)

∣∣∣∣
+

∑
a+

k <0, a+
j >0

∣∣∣∣e(−λ/a+
j +λ2β+

j /a+
j

3
)

x+
(

λ/a+
k −λ2β+

k /a+
k

3
)

y

∣∣∣∣
⎞⎟⎠ ,

0 ≤ |α|, |γ| ≤ 1, θ > 0, with similar bounds for 0 ≤ x ≤ y. Moreover, each term in
the summation on the right-hand side of (4.8) bounds a separately analytic function.

Proof. By 1.8 D does not vanish on Re(λ) ≥ 0, hence, by continuity, on |λ| ≤ r.
Thus, according to (4.2), all |djk(λ)| are uniformly bounded on |λ| ≤ r, and so it is
enough to find estimates for fast and slow modes φ+

j , φ̃+
j , ψ+

j , and ψ̃+
j . By using (3.5)

we find:

(4.9)
(
φ+

j

∂xφ
+
j

)
= eμj(λ)xP+

(
Vj

μjVj

)
= eμj(λ)x(I + Θ)

(
Vj

μjVj

)
and similarly for φ̃+

j , ψ+
j , and ψ̃+

j . Now using (2.4) and the fact, by (4.4), that eμj(λ)x

is of order e−|θx| for fast modes and order e−λ/a+
j +λ2β+

j /a+3

j +O(λ3) for slow modes,
substituting this and corresponding dual estimates in (4.9) and grouping terms, we
obtain the result.
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5. High frequency bounds. To analyze the high frequency behavior of the
Green function of the boundary layer, we first establish some bounds for the projection
terms in the Green function, using the symmetric formula

(5.1)
(
Gλ(x, y) ∂yGλ(x, y)
∂xGλ(x, y) ∂x∂yGλ(x, y)

)
=

{
Fy→xΠ+(x)S−1(y) if x > y,

F̃x→yΠ̃+(x)S−1(x) if x < y.

By setting x̄ = |λ 1
2 |x, λ̄ = λ

|λ| , B̄(x̄) = B( x̄

λ
1
2

), w̄(x̄) = w( x

λ
1
2

) in the eigenvalue
equation Lw = λw associated with (1.6) we obtain

(5.2) W̄ ′ = B̄W̄ + O
(∣∣∣λ− 1

2

∣∣∣) W̄
where

(5.3) B =
(

0 I
λ̄B̄ 0

)
and B

′ = O(|λ− 1
2 |) and |λ̄| = 1. Since B(λ, x̄) varies within a compact set, then

there are C1 eigenprojections P0 and P+ with property |P ′
+| = O(|λ− 1

2 |) and |P ′
0| =

O(|λ− 1
2 |) taking W̄ onto the stable and unstable subspaces. By using the two new

coordinates Y+ = P+W̄ and Y0 = P0W̄ , we obtain

(5.4)
(
Y+

Y0

)′
=
(
A+ 0
0 A0

)(
Y+

Y0

)
+ O

(∣∣∣λ− 1
2

∣∣∣)(y
y

)
.

Equivalently, we can find continuous invertible transformations Q+, Q0 such that
E+ = Q+A+Q

−1
+ and E0 = Q0A0Q

−1
0 , where

(5.5) Re(E) :=
1
2

(E+ + E∗
+) < −β− 1

2 I

in the sense of quadratic forms.
Again, by coordinate change Z+ = Q+Y+, Z0 = Q0Y0, we find

(5.6)
(
z+
z0

)′
=
(
E+ 0
0 E0

)(
z+
z0

)
+ O

(∣∣∣λ− 1
2

∣∣∣)(z
z

)
,

where

(5.7)
|w̄|
C

≤ |z| ≤ C|w̄|.

From this we find by energy estimate that

(5.8)
(
|z+|2

)′
< −2β− 1

2 |z+|2

and, hence,

(5.9)
|z+(x)|
|z+(y)| ≤ e−β̃− 1

2 |(x−y)|

for any solution z+ decaying at ∞, where β̃ < β and, thus,

(5.10)
|z(x)|
|z(y)| ≤ e−β− 1

2 |(x−y)|
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for x > y, provided that |λ| is sufficiently large. From this we obtain

(5.11)

∣∣W̄ (x)
∣∣∣∣W̄ (y)
∣∣ ≤ C2e−β− 1

2 |(x−y)|

where C is as in (5.7).
Applying a symmetric argument for the adjoint equation, we obtain the following

lemma.
Lemma 5.1. On the manifolds Φ+ and Ψ̃+ defined in (3.5) and (3.17), for λ

sufficiently large, within the sector Ωθ = {λ : Re(λ) ≥ −θ1 − θ2|Im(λ)|}, θ1, θ2 > 0,
we have in rescaled coordinates x̄, for some uniform C > 0,

(5.12) |Fy→x|,
∣∣∣F̃x→y

∣∣∣ ≤ Ce−
|y−x|

C

for x > y and x < y, respectively.
Lemma 5.2. In rescaled coordinates x̄, λ̄, for the projection terms Π+(y) and

Π̃+(x), the projection along Φ0 onto Φ+, for λ sufficiently large,

(5.13) |Π+(y)|,
∣∣Π̃+(x)

∣∣ < C

for some uniform C > 0.
Proof. Choosing the coordinates

(
W1

W2

)
∈ C

2n where W j =
(

W j
1

W j
2

)
, we show for

small enough ε and fixed c > 0 such that |W
j
2 |

|W j
1 |

≤ cε and |W j
1 |

|W j
2 |
< c the projection along

E = span (W 1, . . . ,Wn) onto F = span (Wn+1, . . . ,W 2n)

(5.14) Π :=
(
w1, . . . , w2n

)
(On, In)

(
w1, . . . , w2n

)−1

satisfies

(5.15) |Π| ≤ C2(c, ε).

To show this without loss of generality we assume that

(5.16)
(
wn+1, . . . , w2n

)
=
(
In

O(ε)

)(
w1, . . . , wn

)
=
(
O(1)
In

)
.

Now it is sufficient to show that

(5.17)
∣∣(w1, . . . , w2n

)∣∣ ≤ C2(c, ε).

However, this amounts to showing that

(5.18)
∣∣∣∣ (M In
In O

)
+ O(ε))−1

∣∣∣∣ ≤ C,

which amounts to showing that

(5.19)

∣∣∣∣∣
(
M In
In O

)−1
∣∣∣∣∣ ≤ C2(c),
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where |M | ≤ c. However, this is easy to show because(
M In
In O

)−1

=
(
In −M
O In

)
,

and so ∣∣∣∣∣
(
M In
In O

)−1
∣∣∣∣∣ ≤ 1 + |M | ≤ C.

Proposition 5.3. Assume (H0)–(H3) and (1.9). Then, for R > 0 sufficiently
large, the resolvent kernel Gλ associated with the linearized evolution equation (4.7)
satisfies, for c, C > 0 and 0 ≤ |α|, |γ| ≤ 1:

(5.20) |∂γ
x∂

α
y Gλ(x, y)| ≤ C|λ|(

|α|+|γ|−1
2 )e−

√
λ |y−x|

c .

Proof. Recalling the coordinate-free representation (5.1) and combining with
(5.12) and (5.13), we find that the Green function Ḡλ̄ in rescaled coordinates x̄, λ̄
satisfies

(5.21)
∣∣∂γ

x∂
α
y Ḡλ̄(x̄, ȳ)

∣∣ ≤ Ce−
|y−x|

C ,

whence, (5.20) follows in the original coordinates.
Remark 5.4. The argument of Lemma 5.2 is the key new ingredient in the resol-

vent estimates for the boundary layer case as compared to the analysis on the whole
line carried out for viscous shock layers in [37], making essential use of compatibility
of the boundary condition with high-frequency behavior. On the whole line, there is
no such requirement and high-frequency stability is automatic.

6. Pointwise Green function bounds. With the pointwise bounds established
on the resolvent kernelGλ, we obtain pointwise bounds on the Green function through
the inverse Laplace transform formula by a simplified version of the stationary-phase
arguments used in [37] for the shock case, repeated here for completeness.

Proof of Theorem 1.4. By sectoriality of L, we have the inverse Laplace transform
representation (see [37]):

(6.1) G(t;x, y) =
∫

Γ

eλtGλ(x, y)dλ.

Let θ1 > 0, θ2 > 0 be chosen sufficiently small, in particular so small as to satisfy
the hypotheses of all previous assertions. By assumption (1.9), the large-|λ| bounds
on the resolvent kernel, and analyticity of the Evans function DL(λ), it follows that
Gλ has finitely many poles in Ωθ (corresponding to roots of DL), each with strictly
negative real part. Choosing θ1, θ2 still smaller, if necessary, we can, thus, arrange
that Gλ is analytic on Ωθ. It follows from Cauchy’s Theorem that

(6.2) G(x, t; y) =
∫

Γ

eλtGλ(x, y) dλ

for any contour Γ that can be expressed as Γ = ∂(Ωθ \ S) for S ⊂ C open.
Case I. |x − y|/t large. We first treat the trivial case that |x − y|/t ≥ S, S

sufficiently large, the regime in which standard short-time parabolic theory applies.
Set

(6.3) ᾱ :=
|x− y|

2βt
, R := βᾱ2,
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where β is as in (5.5), and consider again the representation of G, that is

(6.4) G(x, t; y) =
∫

Γ1∪Γ2

eλtGλ(x, y) dλ,

where Γ1 := ∂B(0, R) ∩ Ω̄θ and Γ2 := ∂Ωθ \B(0, R). Note that the intersection of Γ
with the real axis is λmin = R = βᾱ2.

By the large |λ| estimates of Proposition 5.3, we have for all λ ∈ Γ1 ∪ Γ2 that

|Gλ(x, y)| ≤ C
e−

√
|λ| |y−x|

c√
|λ|

.

Further, we have

(6.5) Reλ ≤ R
(
1 − ηω2

)
, λ ∈ Γ1, Reλ ≤ Reλ0 − η(|Imλ| − |Imλ0|), λ ∈ Γ2

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗0 are the two
points of intersection of Γ1 and Γ2, for some η > 0 independent of ᾱ. Combining
these estimates, we obtain

(6.6)

∣∣∣∣∫
Γ1

eλtGλdλ

∣∣∣∣ ≤ ∫
Γ1

C|λ|− 1
2 eReλt−β− 1

2 |λ|−
1
2 |x−y| dλ

≤ Ce−βᾱ2t

∫ +L

−L

R− 1
2 e−βRηω2tRdω ≤ Ct−

1
2 e−βᾱ2t.

Likewise,

(6.7)

∣∣∣∣∫
Γ2

eλtGλdλ

∣∣∣∣ ≤ ∫
Γ2

C|λ|− 1
2 CeReλt−β− 1

2 |λ|−
1
2 |x−y|dλ

≤ CeRe(λ0)t−|β|−
1
2 |λ0|−

1
2 |x−y|

∫
Γ2

|λ|− 1
2 e(Reλ−Reλ0)t |dλ|

≤ Ce−βᾱ2t

∫
Γ2

|Imλ|− 1
2 e−η|Im λ−Im λ0|t |d Imλ|

≤ Ct−
1
2 e−βᾱ2t.

Combining these last two estimates, we have

(6.8) |G(x, t; y)| ≤ Ct−
1
2 e

−βᾱ2t
2 e

−(x−y)2

8βt ≤ Ct−
1
2 e−ηte

−(x−y)2

8βt ,

for η > 0 independent of ᾱ. Observing that |x−at|
2t ≤ |x−y|

t ≤ 2|x−at|
t for any bounded

a, for |x−y|
t sufficiently large, we find that this contribution may be absorbed in any

summand t
−1
2 e

−(x−y−a
+
k

t)2

Mt .
Case II. |x − y|/t bounded. We now turn to the critical case that |x − y|/t ≤ S.

A few remarks are in order at the outset. Our goal is to bound |G| by terms of form
Ct−1/2e−ᾱ2t/M , where ᾱ := (x− a+

j (t− |y/a+
k |))/2t or ᾱ := (x− y− a+

k t)/2t are now
uniformly bounded, by

(6.9) |x− y|/2t+ max
j

{∣∣a+
j

∣∣} /2 ≤ S/2 + max
∣∣a+

j

∣∣/2.
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Fig. 1.

Thus, in particular, contributions of order t−1/2e−ηt, η > 0, can be absorbed in
any summand t−1/2e−(x−y−a+

k t)2/Mt) if we take M sufficiently large. Likewise, for Gx

and Gy, contributions of order t−1e−ηt can be absorbed. We will use this observation
repeatedly.

In contrast to the previous case of large characteristic speed |x − y|/t ≥ S, we
are not trying to show rapid time-exponential decay. Rather, we are trying to show
that the rate of exponential decay of the solution does not degrade too rapidly as
ᾱ → 0: precisely, that it vanishes to order ᾱ2 and no more. Thus, the crucial part
of our analysis will be for small ᾱ. All other situations can be estimated crudely as
described just above.

Let r be sufficiently small that the small-|λ| bounds hold on B(0, r). Next, choose
θ1 and θ2 still smaller than before, if necessary, so that Ωθ \B(0, r) ⊂ Λ. This implies
that ∂Ωθ ∩B(0, r) �= ∅, giving the configuration pictured in Figure 1. Similarly as in
the previous case, define Γ = Γ1 ∪ Γ2, where Γ1 is the portion of the circle ∂B(0, r)
contained in Ω̄θ, and Γ2 is the portion of ∂Ωθ outside B(0, r).

(6.10) G(x, t; y) =
∫

Γ1

eλtGλ(x, y) dλ+
∫

Γ2

eλtGλ(x, y) dλ.

We separately estimate the terms
∫
Γ1

and
∫
Γ2

.
Large- and medium-λ estimates. The

∫
Γ2

term is straightforward. The points λ0,
λ∗0 where Γ1 meets Γ2 satisfy Re(λ0) = −η < 0. Moreover, combining the results
low-frequency case, we have the bound |Gλ| ≤ C|λ|− 1

2 for λ ∈ Γ2. Thus, we have

(6.11)

∣∣∣∣∫
Γ2

eλtGλdλ

∣∣∣∣ ≤ Ce−Re λ0t

∫
Γ2

|Imλ|− 1
2 e−η|Im λ−Im λ0|t |d Imλ|

≤ Ct−
1
2 e−ηt.

This contribution can be absorbed as described above. An analogous computation us-
ing |Gλx |, |Gλx | ≤ C|λ|−1 shows that the Γ2 contribution to Gx and Gy is O(t−1e−ηt),
and can likewise be absorbed.

Small |λ| estimates. It remains to estimate the critical term
∫
Γ1
eλtGλdλ. This

we will estimate in different ways, depending on the size of t.
Bounded time. For t bounded, we can use the medium-λ bounds |Gλ|, |Gλx |,

|Gλy | ≤ C to obtain |
∫
Γ1
eλtGλdλ| ≤ C2|Γ1|. This contribution is order Ce−ηt for

bounded time, and hence can be absorbed.
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Large time. For t large, we must instead estimate
∫
Γ1
eλtGλdλ using the small-|λ|

expansions. First, observe that all coefficient functions djk(λ) are uniformly bounded
(since |λ| is bounded in this case).

Expanding G =
∫
Γ e

λtGλ(x, y)dλ as(
G Gx

Gy Gxy

)
=
∫

Γ

eλt

(
Gλ Gλx

Gλy Gλxy

)
dλ,

we estimate the
∫
Γ1

contributions to G, Gx, and Gy simultaneously.
Case II(i). (0 < y < x). By our low-frequency estimates, we have

(6.12)

∫
Γ

eλt

(
Gλ Gλx

Gλy Gλxy

)
dλ =

∫
Γ

∑
j,k

eλtφ+
j (x)djkψ̃

+
k (y)dλ

+
∫

Γ

∑
j,k

eλtψ+
k (x)ψ̃+

k (y)dλ,

where each djk is analytic and, hence, bounded. We estimate separately each of the
terms ∫

Γ1

eλtφ+
j (x)djkψ̃

+
k (y)dλ

on the right-hand side of (6.12). Estimates for terms∫
Γ

∑
j,k

eλtψ+
k (x)ψ̃+

k (y)dλ

go similarly.
Case II(ia). First, consider the critical case a+

j > 0, a+
k < 0 . For this case,∣∣∣φ+

j(x)djkψ̃
+
k (y)

∣∣∣ ≤ CeRe(ρ+
j x−ν+

k y),

where {
ν+

k (λ) = −λ/a+
k + λ2β+

k /
(
a+

k

)3
+ O

(
λ3
)

ρ+
j (λ) = −λ/a+

j + λ2β+
j /
(
a+

j

)3
+ O

(
λ3
)
.

Set

ᾱ =
a+

k x/a
+
j − y − a+

k t

2t
, p :=

β+
j a

+
k x/

(
a+

j

)3 − β+
k y/

(
a+

k

)2
t

> 0.

Define Γ′
1a to be the portion contained in Ωθ of the hyperbola

(6.13)
Re
(
ρ+

j x− ν+
k y
)

+ O
(
λ3
)

(|x| + |y|)

=
(
1/a+

k

)
Re
[
λ
(
−a+

k x/a
+
j + y

)
+ λ2

(
xβ+

j a
+
k /
(
a+

j

)3 − yβ−
k /
(
a+

k

)2)]
≡ constant

=
(
1/a−k

) [
λmin

(
−a−k x/a

+
j + y

)
+ λ2

min

(
xβ+

j a
+
k /
(
a+

j

)3 − yβ+
k /
(
a+

k

)2)]
,
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where

(6.14) λmin :=

{
ᾱ
p if

∣∣∣ ᾱp ∣∣∣ ≤ ε,

±ε if ᾱ
p ≷ ε.

Denoting by λ1, λ∗1 the intersections of this hyperbola with ∂Ωθ, define Γ′
1b

to be
the union of λ1λ0 and λ∗0λ∗1, and define Γ′

1 = Γ′
1a

∪Γ′
1b

. Note that λ = ᾱ/p minimizes
the left-hand side of (6.13) for λ real. Note also that p is bounded for ᾱ sufficiently
small, since ᾱ ≤ ε implies that(∣∣a+

k x/a
+
j

∣∣+ |y|
)
/t ≤ 2

∣∣a+
k

∣∣+ 2ε;

i.e., (|x| + |y|)/t is controlled by ᾱ.
With these definitions, we readily obtain that

(6.15)
Re
(
λt+ ρ+

j x− ν+
k y
)
≤ −

(
t/a−k

) (
ᾱ2/4p

)
− ηIm(λ)2t

≤ −ᾱ2t/M − ηIm(λ)2t,

for λ ∈ Γ′
1a

(note: here, we have used the crucial fact that ᾱ controls (|x| + |y|)/t,
in bounding the error term O(λ3)(|x| + |y|)/t arising from expansion). Likewise, we
obtain for any q that

(6.16)
∫

Γ′
1a

|λ|qeRe(λt+ρ+
j x−ν−

k
y)dλ ≤ Ct−

1
2−

q
2 e−ᾱ2t/M ,

for suitably large C, M > 0 (depending on q). Observing that

ᾱ =
(
a+

k /a
+
j

) (
x− a+

j

(
t−
∣∣y/a+

k

∣∣)) /2t,
we find that the contribution of (6.16) can be absorbed in the described bounds for
t ≥ |y/a−k |. At the same time, we find that ᾱ ≥ x > 0 for t ≤ |y/a+

k |, whence,

ᾱ ≥
(
x− y − a+

j t
)
/Mt+ |x|/M,

for some ε > 0 sufficiently small and M > 0 sufficiently large.
This gives

e−ᾱ2/p ≤ e−(x−y−a+
k t)2

/Mte−η|x|

provided |x|/t > a+
j , a contribution which can again be absorbed. On the other hand,

if t ≤ |x/a+
j |, we can use the dual estimate

(6.17)
ᾱ =

(
−y − a+

k

(
t−
∣∣x/a+

j

∣∣)) /2t
≥
(
x− y − a+

k t
)
/Mt+ |y|/M,

together with |y| ≥ |a−k t|, to obtain

e−ᾱ2/p ≤ e−(x−y−a+
j t)2

/Mte−η|y|,

a contribution that can likewise be absorbed.
Case II(ib). In case a+

j < 0 or a+
k > 0, terms |ϕ+

j | ≤ Ce−η|x| and |ψ̃+
j | ≤ Ce−η|y|

are strictly smaller than those already treated in Case II(ia), so may be absorbed in
previous terms.

Case II(ii) (0 < x < y). The case 0 < x < y can be treated very similarly to
the previous one; see [37] for details. This completes the proof of Case II, and the
theorem.
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7. Nonlinear analysis. Introducing the perturbation variable

(7.1) u(x, t) := ũ(x, t) − ū(x),

we obtain

(7.2) ut − Lu = Q(u)x,

where the second-order Taylor remainder satisfies

(7.3) Q(u) := f(ū+ u) − f(ū) − df(ū)u = O
(
|u|2
)

so long as |u| remains bounded.
Lemma 7.1 (integral formulation). Under the assumptions of Theorem 1.6, there

exists a classical solution of (7.2) for 0 < t ≤ T , T > 0, continuous in L∞(x) at
t = 0, extending for all t > 0 such that u(·, t) remains sufficiently small in L1 ∩ L∞,
given by

(7.4)
u(x, t) =

∫ ∞

0

G(x, t; y)g(y) dy +
∫ t

0

Gy(x, t− s; 0)Bh(s) ds

−
∫ t

0

∫ ∞

0

Gy(x, t− s; y)Q(u)(y, s) dy ds.

Proof. From Lemma 3.2 and the inverse Laplace representation (6.1) we find that
G(x, t− s; y) considered as a function of y, s satisfies the adjoint equation

(7.5) (∂s − Ly)∗G∗(x, t− ·; ·) = 0,

or

(7.6) −Gs − (GA)y +GAy = (GyB)y .

Likewise, reviewing the construction of the resolvent, we find Gλ(x, 0) ≡ 0, yielding

(7.7) G(x, t − s; 0) ≡ 0.

That is, G∗(x, t− ·; ·) is the Green function for the adjoint equation, as may alterna-
tively be seen directly by a duality argument analogous to the proof of Lemma 3.2.

Thus, integrating G against (7.2), integrating by parts, and using the fact that
G = 0 and u = h on the boundary y = 0, we obtain for any classical solution of (7.2)
that

(7.8)

∫ t

0

∫ ∞

0

G(x, t− s; y)Q(u(y, s))y dy ds =∫ t

0

∫ ∞

0

G(x, t − s; y)(∂s − Ly)u(y, s) dy ds

=
∫ t

0

∫ ∞

0

((∂s − Ly)∗G∗)∗(x, t− s; y)u(y, s) dy ds

+ u(x, t) −
∫ ∞

0

G(x, t; y)g(y) dy −
∫ t

0

Gy(x, t− s; 0)Bh(s) ds,
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from which we obtain (7.4) by rearranging and integrating by parts the term
∫ t

0

∫∞
0

G(x, t− s; y)Q(u(y, s))y dy ds.
Indeed, (7.4) may be taken as the definition of a weak solution in L∞(x, t). (One

can see using convolution identities that this agrees with the usual definition in terms
of integration against test functions φ ∈ C∞

0 (R × R).) Existence of weak solutions
can be obtained by a standard contraction mapping/continuation argument using the
convolution bounds of Lemmas 7.2–7.4 below; we omit the details, since we shall
carry out quite similar but more difficult estimates in the proof of stability. Smooth-
ness of solutions may then be obtained by a bootstrapping argument as sketched in
Appendix A.

To establish stability, we use the following lemmas proved in [16].
Lemma 7.2 (linear estimates [16]). Under the assumptions of Theorem 1.6,

(7.9)
∫ +∞

0

|G(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0.
Lemma 7.3 (nonlinear estimates [16]). Under the assumptions of Theorem 1.6,

(7.10)
∫ t

0

∫ +∞

0

|Gy(x, t− s; y)|Ψ(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0, where

(7.11)
Ψ(y, s) := (1 + s)1/2s−1/2(θ + ψ1 + ψ2)2(y, s)

+ (1 + s)−1(θ + ψ1 + ψ2)(y, s).

We require also the following estimate accounting boundary effects.
Lemma 7.4 (boundary estimate). Under the assumptions of Theorem 1.6,

(7.12)
∣∣∣∣∫ t

0

Gy(x, t− s; 0)Bh(s) ds
∣∣∣∣ ≤ CE0(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0.
Proof. The estimate on

∫ t−1

0 , where Gy(x, t− s; 0) is nonsingular, follows readily
by estimates similar to but somewhat simpler than those of Lemma (7.3), which we,
therefore, omit.

To bound the singular part
∫ t

t−1, we integrate (7.6) in y from 0 to +∞, recalling
that G(x, t− s; 0) ≡ 0, to obtain

(7.13) GyB = −
∫ +∞

0

Ay(y)G(x, t − s; y) dy −
∫ +∞

0

Gs(x, t− s; y) dy.

Substituting in the left-hand side of (7.12), and integrating by parts in s, we obtain

(7.14)

∫ t

t−1

GyBh(s) ds =
∫ 1

0

(∫ +∞

0

Ay(y)G(x, τ ; y) dy
)
h(t− τ) dτ

−
∫ 1

0

(∫ +∞

0

G(x, τ ; y) dy
)
h′(t− τ) dτ

+
(∫ +∞

0

G(x, 1; y) dy
)
h(t− 1),

which, by
∫
|G|dy ≤ C, has norm bounded by max0≤τ≤1(|h| + |h′|)(t− τ).
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Combining this with the more straightforward estimate

(7.15)

∣∣∣∣∫ t

t−1

Gy(x, t; 0)Bh(s) ds
∣∣∣∣ ≤ ∫ 1

0

|Gy(x, τ ; 0)|Bh(s) ds

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0

τ−1e−|x|2/Cτ dτ

= C|x|−2 max
0≤τ≤1

|h(t− τ)|

×
∫ 1

0

(
|x|2/τ

)
e−|x|2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)||x|−2,

we find that the contribution from
∫ t

t−1 has norm bounded by

max
0≤τ≤1

(|h| + |h′|)(t− τ)(1 + |x|)−2.

Combining this estimate with the one for
∫ t−1

0 , we obtain (7.12).
With these preparations, the proof of stability is straightforward.
Proof of Theorem 1.6. Define

(7.16) ζ(t) := sup
y,0≤s≤t

|u|(θ + ψ1 + ψ2)−1(y, t).

We will establish:
Claim. For all t ≥ 0 for which a solution exists with ζ uniformly bounded by

some fixed, sufficiently small constant, there holds

(7.17) ζ(t) ≤ C2

(
E0 + ζ(t)2

)
.

From this result, provided E0 < 1/4C2
2 , we have that ζ(t) ≤ 2C2E0 implies ζ(t) <

2C2E0, and so we may conclude by continuous induction that

(7.18) ζ(t) < 2C2E0

for all t ≥ 0. (By Lemma 7.1 and standard short-time estimates, u ∈ C0(x) exists
and ζ remains continuous so long as ζ remains bounded by some uniform constant;
hence (7.18) is an open condition.) From (7.18) and the definition of ζ in (7.16) we
then obtain the bounds of (1.16). Thus, it remains only to establish the claim above.

Proof of Claim. We must show that u(θ+ψ1+ψ2)−1 is bounded by C(E0 +ζ(t)2),
for some C > 0, all 0 ≤ s ≤ t, so long as ζ remains sufficiently small. By (7.16), we
have for all t ≥ 0 and some C > 0 that

(7.19) |u(x, t)| ≤ ζ(t)(θ + ψ1 + ψ2)(x, t),

and, therefore,

(7.20) |Q(u)(y, s)| ≤ Cζ(t)2Ψ(y, s)

with Ψ as defined in (7.11), for 0 ≤ s ≤ t. Combining (7.20) with representation (7.4)
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and applying Lemmas 7.2–7.4, we obtain

(7.21)

|u(x, t)| ≤
∫ ∞

0

∣∣∣G̃(x, t; y)
∣∣∣ |g(y)| dy +

∣∣∣∣∫ t

0

Gy(x, t− s; 0)Bh(s) ds
∣∣∣∣

+
∫ t

0

∫ ∞

0

∣∣∣G̃y(x, t− s; y)
∣∣∣ |(Q(u))(y, s)|dy ds

≤ E0

∫ ∞

0

∣∣∣G̃(x, t; y)
∣∣∣ (1 + |y|)−3/2 dy

+
∣∣∣∣∫ t

0

Gy(x, t− s; 0)Bh(s) ds
∣∣∣∣

+ Cζ(t)2
∫ t

0

∫ ∞

0

∣∣∣G̃y(x, t− s; y)
∣∣∣Ψ(y, s)dy ds

≤ C
(
E0 + ζ(t)2

)
(θ + ψ1 + ψ2)(x, t).

Dividing by (θ + ψ1 + ψ2)(x, t), we obtain (7.17) as claimed. This completes the
proof of the claim, and the theorem.

Appendix A. Smoothness of solutions.
In this appendix, we briefly sketch the proof that weak solutions defined by (7.4)

are necessarily smooth, classical solutions as well, by indicating how to get the nec-
essary derivative bounds.

Time-derivative. Rewriting the second boundary term on the right-hand side
of (7.4) using its convolution structure, as∫ t

0

Gy(x, τ ; 0)Bh(t− τ) dτ,

and differentiating in t, we obtain

Gy(x, t; 0)Bh(0) +
∫ t

0

Gy(x, τ ; 0)Bh′(t− τ) dτ,

for which the first term is bounded and smooth for x, t > 0, and the second by the
same estimate as in (7.15) is bounded by

C|x|−2

∫ t

0

|h′(t− τ)| dτ ≤ C|x|−2 log(1 + t).

Differentiating the first and third terms, with respect to t and integrating the
third term by parts in y, yields

(A.1)

∫ ∞

0

G(x, t; y)g(y) dy −
∫ t

t/2

∫ ∞

0

Gy(x, t− s; y)Q(u)s(y, s) dy ds

−
∫ t/2

0

∫ ∞

0

Gyt(x, t− s; y)Q(u)(y, s) dy ds,

from which, in combination with the boundary estimate already performed, we may
readily obtain a short-time bound |ut| ≤ C|x|−2t−1 by Picard iteration.

Spatial-derivatives. Likewise, differentiating (7.14) with respect to x, we may
bound the x-derivative of the boundary term

∫ t

0 GyB ds by

C

∫ t

0

τ−1/2(|h′| + |h|)(t− τ)| dτ ≤ C log(1 + t).
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Differentiating the first and third terms of the right-hand side of (7.4), with respect
to x and integrating the third term by parts in y, yields

(A.2)

∫ ∞

0

G(x, t; y)g(y) dy −
∫ t

t/2

∫ ∞

0

Gx(x, t− s; y)Q(u)y(y, s) dy ds

−
∫ t/2

0

∫ ∞

0

Gyx(x, t− s; y)Q(u)(y, s) dy ds,

from which, in combination with the boundary estimate already performed, we obtain
a short-time bound |ux| ≤ Ct−1/2 by Picard iteration. From the bounds on |ut| and
|ux|, finally, we obtain bounds on |uxx| by the equation satisfied by u.

REFERENCES

[1] J. Alexander, R. Gardner, and C.K.R.T. Jones, A topological invariant arising in the
analysis of traveling waves, J. Reine Angew. Math., 410 (1990), pp. 167–212.

[2] B. Barker, J. Humpherys, K. Rudd, and K. Zumbrun, Stability of viscous shocks in isen-
tropic gas dynamics, Comm. Math. Phys., 281 (2008), pp. 231–249.

[3] L.Q. Brin, Numerical testing of the stability of viscous shock waves, Doctoral thesis, Indiana
University (1998).

[4] L.Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comput., 70 (2001),
pp. 1071–1088.

[5] L. Brin and K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock
waves, Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001).
Mat. Contemp., 22 (2002), pp. 19–32.

[6] T. Bridges, G. Derks, and G. Gottwald, Stability and instability of solitary waves of the
fifth-order KdV equation: A numerical framework, Phys. D, 172 (2002), pp. 190–216.

[7] N. Costanzino, J. Humpherys, T. Nguyen, and K. Zumbrun, Spectral stability of noncharac-
teristic boundary layers of isentropic Navier–Stokes equations, Arch. Ration. Mech. Anal.,
to appear.

[8] R. Gardner and C.K.R.T. Jones, A stability index for steady state solutions of boundary
value problems for parabolic systems, J. Differential Equations, 91 (1991), pp. 181–203.

[9] R. Gardner and C.K.R.T. Jones, Traveling waves of a perturbed diffusion equation arising
in a phase field model, Indiana Univ. Math. J., 38 (1989), pp. 1197–1222.

[10] R. Gardner and K. Zumbrun, The Gap Lemma and geometric criteria for instability of
viscous shock profiles, Commun. Pure Appl. Math., 51 (1998), pp. 797–855.

[11] E. Grenier and O. Gues, Boundary layers for viscous perturbations of noncharacteristic
quasilinear hyperbolic problems, J. Differential Equations, 143 (1998), pp. 110–146.

[12] E. Grenier and F. Rousset, Stability of one-dimensional boundary layers by using Green’s
function, Commun. Pure Appl. Math., 54 (2001), pp. 1343–1385.

[13] O. Guès, G. Métivier, M. Williams, and K. Zumbrun, Multidimensional stability of small-
amplitude noncharacteristic boundary layers, preprint (2007).

[14] O. Guès, G. Métivier, M. Williams, and K. Zumbrun, Viscous boundary value problems
for symmetric systems with various multiplicities, J. Differential Equations, 244 (2008),
pp. 309–387.

[15] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1981.

[16] P. Howard and K. Zumbrun, Stability of undercompressive viscous shock waves, in press, J.
Differential Equations, 225 (2006), pp. 308–360.

[17] J. Humpherys, O. Lafitte, and K. Zumbrun, Stability of viscous shock profiles in the high
Mach number limit, preprint (2007).

[18] P. Howard and M. Raoofi, Pointwise asymptotic behavior of perturbed viscous shock profiles,
Adv. Differential Equations, 11 (2006), pp. 1031–1080.

[19] P. Howard, M. Raoofi, and K. Zumbrun, Sharp pointwise bounds for perturbed shock waves,
J. Hyperbolic Differential Equations, 3 (2006), pp. 297–374.

[20] J. Humpherys and K. Zumbrun, Spectral stability of small amplitude shock profiles for dis-
sipative symmetric hyperbolic–parabolic systems, Z. Angew, ed., Math. Phys., 53 (2002),
pp. 20–34.



2350 SHANTIA YARAHMADIAN AND KEVIN ZUMBRUN

[21] T. Kapitula and B. Sandstede, Stability of bright solitary-wave solutions to perturbed non-
linear Schrödinger equations, Phys. D, 124 (1998), pp. 58–103.

[22] T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag, Berlin, Heidelberg
(1985).

[23] S. Kawashima, S. Nishibata, and P. Zhu, Asymptotic stability of the stationary solution to
the compressible Navier-Stokes equations in the half space, Commun. Math. Phys., 240
(2003), pp. 483–500.

[24] T.P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with
boundary effect, J. Differential Equations, 133 (1997), pp. 296–320.

[25] T.P. Liu and S.-H. Yu, Propagation of stationary viscous Burgers shock under the effect of
boundary, Arch. Ration. Mech. Anal., 139 (1997), pp. 57–82.

[26] A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in
the half space for a one-dimensional system of compressible viscous gas, Commun. Math.
Phys., 222 (2001), pp. 449–474.

[27] C. Mascia and K. Zumbrun, Pointwise Green’s function bounds for shock profiles with degen-
erate viscosity, Arch. Ration. Mech. Anal., 169 (2003), pp. 177–263.

[28] C. Mascia and K. Zumbrun, Stability of large-amplitude shock profiles of hyperbolic–parabolic
systems, Arch. Ration. Mech. Anal., 172 (2004), pp. 93–131.

[29] G. Métivier and K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear
hyperbolic problems, Mem. Amer. Math. Soc., 175(826):vi+107 (2005).

[30] F. Rousset, Stability of small amplitude boundary layers for mixed hyperbolic-parabolic sys-
tems, Trans. Amer. Math. Soc., 355 (2003), pp. 2291–3008.

[31] F. Rousset, Inviscid boundary conditions and stability of viscous boundary layers, Asymptot.
Anal., 26 (2001), pp. 285–306.
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Abstract. The higher order total variation-based model for image restoration proposed by
Chan, Marquina, and Mulet in [SIAM J. Sci. Comput., 22 (2000), pp. 503–516] is analyzed in one
dimension. A suitable functional framework in which the minimization problem is well posed is
being proposed, and it is proved analytically that the higher order regularizing term prevents the
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particular cases, some curvature dependent functionals.
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1. Introduction. Deblurring and denoising of images are fundamental problems
in image processing and gave rise in the past few years to a vast variety of techniques
and methods touching different fields of mathematics. Among them, variational meth-
ods based on the minimization of some energy functional have been successfully em-
ployed to treat a fairly general class of image restoration problems. Typically, such
functionals present a fidelity term, which penalizes the distance between the recon-
structed image u and the noisy image g with respect to a suitable metric, and a
regularizing term, which makes high frequency noise energetically unfavorable.

When the fidelity term is given by the squared L2 distance multiplied by a pa-
rameter λ > 0 and the regularizing term is represented by the total variation, we are
led to the following minimization problem:

(1.1) min
{
|Du|(Ω) + λ

∫
Ω

|u− g|2 dx : u ∈ BV (Ω)
}
,

which was proposed by Rudin, Osher, and Fatemi in [13]. Here Ω is an open bounded
domain in one or two dimensions, BV (Ω) denotes the space of functions of bounded
variations in Ω, and |Du|(Ω) stands for the total variation of u in Ω. The main feature
of the total variation-based image restoration is perhaps represented by the tendency
to yield (almost) piecewise constant solutions or, in other words, “blocky” images.
Typically, one observes that ramps (i.e., affine regions) in the original image give rise
to staircase-like structures in the reconstructed image, a phenomenon which is often
referred to as the staircase effect. This means that the original edges are well preserved
by this method but also that many artificial discontinuities can be generated by the
presence of noise, while the finer details of the objects contained in the image may
not be properly recovered.

Several variants of (1.1) have been subsequently proposed in order to fix these
drawbacks. In this paper we follow the approach of Chan, Marquina, and Mulet [6]:
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Since the total variation does not distinguish between jumps and smooth transitions,
their idea is to consider an additional penalization of the discontinuities by taking
second derivatives into account. More precisely, they propose a regularizing term of
the form

(1.2)
∫

Ω

|∇u| dx+
∫

Ω

ψ(|∇u|)h(Δu) dx,

where ψ is a function that must satisfy suitable conditions at infinity in order to allow
jumps.

In this paper we consider the following one-dimensional (1D) version of (1.2):

(1.3) Fp(u) :=
∫ b

a

|u′| dx+
∫ b

a

ψ(|u′|)|u′′|p dx,

where a < b are real numbers, p ∈ [1,+∞), and ψ : R →]0,+∞[ is a bounded Borel
function satisfying suitable integrability assumptions (see (2.1) and (3.1)). We remark
that by taking

ψ(t) :=
1

(1 + t2)
1
2 (3p−1)

the functional (1.3) takes the form∫ b

a

|u′| dx+
∫

Graph u

|k|p dH1,

where k denotes the curvature of the graph of u and H1 stands for the 1D Hausdorff
measure. This seems to suggest a broader applicability of our results: Functionals of
this kind are often encountered in many computer vision and graphics applications,
such as, among the others, corner preserving geometry denoising and segmentation
with depth (see, e.g., [3], [15], and the references contained therein).

Our main analytical objective is twofold:
(i) to set up a proper functional framework where the minimization problem

corresponding to

Fp(u) + λ

∫ b

a

|u− g|2 dx

is well posed;
(ii) to give an analytical proof of the fact that the higher order regularizing term

eliminates the staircase effect.
We carry out the first part of this program in sections 2 and 3 by using the theory of
relaxation (see [7] for a general introduction): We regard Fp as defined for all functions
in the Sobolev space W 2,p(]a, b[), we extend it to L1(]a, b[) by setting Fp(u) := +∞ if
u ∈ L1(]a, b[)\W 2,p(]a, b[), and then we identify its lower semicontinuous envelope with
respect to the strong L1 convergence. The two cases p = 1 and p > 1 require a different
treatment, and, in fact, the analysis turns out to be considerably more delicate in the
case p = 1. Moreover, the domains of the relaxed functionals are quite peculiar (see
Definitions 2.1 and 3.1) and display properties that are qualitatively different in the
two cases. In particular, it turns out that piecewise constant functions corresponding
to images with genuine edges are approximable by sequences with bounded energy
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only for p = 1. The extension of these relaxation results to higher dimensions will be
the subject of a subsequent paper.

The second part of the program is carried out in section 4. We start by exhibit-
ing an analytical example of staircasing for the Rudin–Osher–Fatemi model (Theo-
rem 4.3). More precisely, we show that if g has the form g = g1 + h, with g1 an affine
function (which represents the original “clean” signal) and h a highly oscillating noise,
then, for certain choices of h, the reconstructed signal u may display a stairlike or
piecewise constant structure, even if h is uniformly small. In particular, we note that

(a) the discontinuity set of u is much larger than the discontinuity set of the
original signal g1,

(b) the derivatives of u and u1 are very far apart,
where u1 denotes the solution to the Rudin–Osher–Fatemi minimization problem cor-
responding to the datum g1. Although we do not attempt to give a formal definition
of staircasing, we consider the presence/absence of (a) and (b) as a way to detect
the presence/absence of the staircase effect. In Theorems 4.5 and 4.8 we prove that
the new model eliminates the effect by showing that (a) and (b) do not occur. More
precisely, we show that whenever the datum g is of the form g = g1 + h, with g1 a
regular signal and h a highly oscillating noise close to 0 in the L∞-weak* topology,
the reconstructed image u is regular as well (in particular, no new artificial disconti-
nuities are created) and u and u1 are close in some strong norm (W 1,q-norm for every
q > 1 or C1-norm, depending on whether p = 1 or p > 1), where u1 is the solution
corresponding to the clean signal g1.

For completeness we conclude by mentioning that other approaches have been
considered to avoid staircasing: The works by Geman and Reynolds [9] and Cham-
bolle and Lions [5] contain a different use of higher order derivatives as regularizing
terms; in [2], Blomgren, Chan, and Mulet propose a BV -H1 interpolation approach,
while Kindermann, Osher, and Jones avoid in [11] the use of second derivatives by
considering a sort of nonlocal total variation.

2. The case p = 1. We start by studying the compactness properties and the
relaxation of (1.3) in the case p = 1. Throughout this section ψ : R → ]0,+∞[ will
be a bounded Borel function such that

(2.1) M :=
∫ +∞

−∞
ψ(t) dt < +∞

and

(2.2) inf
t∈K

ψ(t) > 0 for every compact set K ⊂ R.

Let Ψ1 : R → [0,M ] be the increasing function defined by

Ψ1(t) :=
∫ t

−∞
ψ(s) ds,

and let Ψ−1
1 : [0,M ] → R be its inverse function.

Given a bounded open interval ]a, b[ in R, we let F1 : L1(]a, b[) → [0,+∞] be the
functional defined by

(2.3) F1(u) :=

⎧⎨⎩
∫ b

a

|u′| dx+
∫ b

a

ψ(u′)|u′′| dx if u ∈W 2,1(]a, b[),

+∞ otherwise.
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The first step in the study of (2.3) will consist in identifying the subspace of L1

functions which can be approximated by energy bounded sequences. In order to do so,
we need to introduce some notation and recall some basic facts about BV functions
of one variable. This will be the content of the next subsection.

2.1. BV functions of one variable. We recall that a function u ∈ L1(]a, b[)
belongs to BV (]a, b[) if and only if

(2.4) sup

{∫ b

a

uϕ′ dx : ϕ ∈ C1
c (]a, b[), |ϕ| ≤ 1

}
< +∞.

Note that this implies that the distributional derivative u′ of u is a bounded Radon
measure in ]a, b[. We will often consider the Lebesgue decomposition

u′ = (u′)aL1 + (u′)s,

where (u′)a is the density of the absolutely continuous part of u′ with respect to the
Lebesgue measure L1 on ]a, b[ while (u′)s is its singular part. We will denote the
total variation measure of u′ by |u′|. In particular, |u′|(]a, b[) equals the value of the
supremum in (2.4). For every function u ∈ BV (]a, b[) the following left and right
approximate limits

u−(y) := lim
ε→0+

1
ε

∫ y

y−ε

u(x) dx, u+(y) := lim
ε→0+

1
ε

∫ y+ε

y

u(x) dx,

respectively, are well defined at every point y ∈ ]a, b[. In fact, u−(y) is well defined
also at y = b while u+(y) exists also at y = a. The functions u− and u+ coincide
L1-a.e. with u and are left and right continuous, respectively. Moreover, it turns out
that the set Su := {y ∈ ]a, b[ : u−(y) �= u+(y)} is at most countable. The set Su is
often referred to as the set of essential discontinuities or jump points of u.

It is well known that, in turn, the singular part (u′)s splits into the sum of an
atomic measure concentrated on Su and a singular diffuse measure (u′)c, called the
Cantor part of u′:

(u′)s = [u]H0 Su + (u′)c,

where we set [u] := u+ − u− and H0 stands for the counting measure. Finally, we
recall that every u ∈ BV (]a, b[) is differentiable at L1-a.e. y in ]a, b[ with derivative
given by (u′)a(y). In this case, we will often write, with a slight abuse of notation,
u′(y) instead of (u′)a(y).

We say that a sequence {uk} of functions in BV (]a, b[) weakly star converges in
BV (]a, b[) to a function u ∈ BV (]a, b[) if un → u in L1(]a, b[) and u′k ⇀ u′ weakly∗ in
Mb(]a, b[), where Mb(]a, b[) is the space of bounded Radon measures.

We will also need sometimes the notion of total variation for a function defined
everywhere. We recall that u : ]a, b[ → R has bounded pointwise total variation over
the interval ]c, d[ ⊂ ]a, b[ if

Var (u; ]c, d[) := sup
k∑

i=1

|u(yi) − u(yi−1)| < +∞,

where the supremum is taken over all finite families y0, y1, . . . , yk such that c < y0 <
y1 < · · · < yk < d, k ∈ N. It is easy to see that if u has bounded pointwise total
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variation in ]a, b[, then it admits left and right limits at every point, it belongs to
BV (]a, b[), and |u′|(]c, d[) ≤ Var (u; ]c, d[) for every interval ]c, d[ ⊂ ]a, b[. Conversely,
if u ∈ BV (]a, b[), the precise representatives u− and u+ have bounded pointwise total
variation and satisfy

|u′|(]c, d[) = Var (u−; ]c, d[) = Var (u+; ]c, d[)

for every interval ]c, d[ ⊂ ]a, b[.
Finally, we recall the Helly theorem: For every bounded sequence of functions

uk : ]a, b[ → R such that supk Var (uk; ]a, b[) < +∞, there exist u, with pointwise total
variation in ]a, b[, and a subsequence (not relabeled) such that uk → u pointwise.

We refer to [14] and [10] for an exhaustive exposition of the properties of BV
functions of one variable.

2.2. Compactness. To define the subspace of L1 functions that can be approx-
imated by energy bounded sequences, for every function u ∈ BV (]a, b[) we consider
the sets

Z+[(u′)a] :=
{
x ∈ ]a, b[ : lim

ε→0+

1
2ε

∫ x+ε

x−ε

(u′)a dx = +∞
}
,(2.5)

Z−[(u′)a] :=
{
x ∈ ]a, b[ : lim

ε→0+

1
2ε

∫ x+ε

x−ε

(u′)a dx = −∞
}
.(2.6)

It is also convenient to define

Z[(u′)a] := Z+[(u′)a] ∪ Z−[(u′)a].

Definition 2.1. Let X1
ψ(]a, b[) be the set of all functions u ∈ BV (]a, b[) such

that v := Ψ1 ◦ (u′)a belongs to BV (]a, b[) and the positive part ((u′)c)+ and the neg-
ative part ((u′)c)− of the measure (u′)c are concentrated on Z+[(u′)a] and Z−[(u′)a],
respectively.

Remark 2.2. Note that if u ∈ X1
ψ(]a, b[), then the limits

(2.7) (u′)a
−(y) := lim

ε→0+

1
ε

∫ y

y−ε

(u′)a dx, (u′)a
+(y) := lim

ε→0+

1
ε

∫ y+ε

y

(u′)a dx

exist in R for every y. More precisely, (u′)a
− exists also at y = b, while (u′)a

+ is well
defined also at y = a. Indeed, since v = Ψ1 ◦ (u′)a is a BV function, it admits a
precise representative ṽ such that the right and left limits exist at every point, and
the same property holds for Ψ−1

1 (ṽ). As Ψ−1
1 (ṽ) = (u′)a L1-a.e. in ]a, b[, the limits

considered in (2.7) are everywhere well defined. Moreover, the set S(u′)a := Sv is at
most countable and

(2.8) (u′)a
− = (u′)a

+ on ]a, b[ \ S(u′)a .

We also remark that (u′)a
− and (u′)a

+ are left and right continuous, respectively, which,
in turn, implies that the functions defined by

(u′)a
∨(x):= max

{
(u′)a

+(x), (u′)a
−(x)
}
, (u′)a

∧(x):= min
{

(u′)a
+(x), (u′)a

−(x)
}

if x ∈ ]a, b[ and by

(u′)a
∨(a) = (u′)a

∧(a) := (u′)a
+(a), (u′)a

∨(b) = (u′)a
∧(b) := (u′)a

−(b)



2356 G. DAL MASO, I. FONSECA, G. LEONI, AND M. MORINI

are upper and lower semicontinuous in [a, b], respectively. By (2.8) we have

Z+[(u′)a] \ S(u′)a = {x ∈ ]a, b[ : (u′)a
∧(x) = +∞} \ S(u′)a ,

Z−[(u′)a] \ S(u′)a = {x ∈ ]a, b[ : (u′)a
∨(x) = −∞} \ S(u′)a .

Therefore, ((u′)c)+ is concentrated on the set {x ∈ ]a, b[ : (u′)a
∧(x) = +∞} and

((u′)c)− is concentrated on the set {x ∈ ]a, b[ : (u′)a
∨(x) = −∞}.

Before we proceed we show that the space X1
ψ(]a, b[) contains functions with

nontrivial Cantor part when ψ satisfies suitable decay estimates at infinity.
Proposition 2.3. Assume that ψ : R → ]0,+∞[ is a bounded Borel function

satisfying (2.1), (2.2), and

(2.9) ψ(t) ≤ c

tα

for all t ≥ 1 and for some c > 0, α > 1. Then there exists u ∈ X1
ψ(]a, b[) with

(u′)c �= 0.
Proof. For simplicity we take ]a, b[ = ]0, 1[.
Step 1. We start by recalling the definition of the generalized Cantor set Dδ,

where δ ∈ ]0, 1
2 [ (see, for instance, [8, Chapter 1, section 2.4]). The construction is

entirely similar to the one of the (ternary) Cantor set with the only difference that
the middle intervals removed at each step have length 1 − 2δ times the length of the
intervals remaining from the previous step. To be more precise, remove from [0, 1]
the interval I11 := (δ, 1 − δ). At the second step remove from each of the remaining
closed intervals [0, δ] and [1 − δ, 1] the middle intervals, denoted by I12 and I22, of
length δ(1 − 2δ). Continuing in this fashion at each step n we remove 2n−1 middle
intervals I1n, . . . , I2n−1n, each of length δn−1(1 − 2δ). The generalized Cantor set Dδ

is defined as

Dδ := [0, 1] \
∞⋃

n=1

2n−1⋃
k=1

Ikn.

The set Dδ is closed (since its complement is given by a family of open intervals), and

L1 (Dδ) = 1 −
∞∑

n=1

2n−1∑
k=1

L1 (Ikn) = 1 −
∞∑

n=1

2n−1∑
k=1

δn−1 (1 − 2δ)

= 1 − (1 − 2δ)
∞∑

n=1

(2δ)n−1 = 0.

Next, we recall the definition of the corresponding Cantor function fδ. Set

gn :=
1

(2δ)n

⎛⎝1 −
n∑

j=1

2j−1∑
k=1

χIkj

⎞⎠ ,

and define fn(x) :=
∫ x

0 gn(t) dt. It can be shown that {fn} converges uniformly to a
continuous nondecreasing function fδ such that fδ(0) = 0, fδ(1) = 1, and f ′

δ = (f ′
δ)c

is supported on Dδ.
Step 2. We claim that it is enough to find a constant δ ∈ ]0, 1

2 [ for which it
is possible to construct a continuous integrable function wδ : ]0, 1[ → [0,+∞] such
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that Ψ1 ◦ wδ ∈ BV (]0, 1[) and wδ(x) = +∞ if and only if x ∈ Dδ. Indeed, setting
uδ(x) :=

∫ x

0 wδ(t) dt + fδ(x), we have that uδ ∈ BV (]0, 1[), uδ is continuous, and
(u′δ)a = wδ so that Z+[(u′δ)a] = Z[(u′δ)a] = Dδ and Ψ1 ◦(u′δ)a ∈ BV (]0, 1[). Moreover,
(u′δ)c = (f ′

δ)c is supported on Dδ = Z+[(u′δ)a]. Hence, uδ belongs to X1
ψ(]a, b[).

Step 3. It remains to construct wδ for a suitable δ ∈ ]0, 1
2 [. Consider a convex

function φ : ]0, 1[ → [0,+∞) such that

(2.10) lim
x→0+

φ(x) = lim
x→1−

φ(x) = +∞, φ

(
1
2

)
= 0,

and

(2.11)
∫ 1

0

φ(x) dx = 1.

Choose s > 0 so large that

(2.12) α >
s+ 1
s

.

For x ∈ Ikn (see Step 1) define

(2.13) φkn(x) := 2sn + φ

(
x− akn

δn−1 (1 − 2δ)
+

1
2

)
,

where akn is the midpoint of the interval Ikn. Finally, set

wδ :=
∞∑

n=1

2n−1∑
k=1

φknχIkn
+ IDδ

,

where IDδ
is the indicator function of the set Dδ, that is,

IDδ
(x) :=

{
+∞ if x ∈ Dδ,
0 otherwise.

Using the fact that ∫
Ikn

φkn dx = (2sn + 1) δn−1 (1 − 2δ) ,

which follows from (2.11) and a change of variables, we have∫ 1

0

wδ dx =
∞∑

n=1

2n−1∑
k=1

(2sn + 1) δn−1 (1 − 2δ) <∞

for δ < 1
2s+1 . To estimate the total variation of v := Ψ1 ◦ wδ, we consider the

approximating sequence

vm(x) :=
{

Ψ1 ◦ φkn(x) if x ∈ Ikn, 1 ≤ k ≤ 2n−1, 1 ≤ n ≤ m,
M otherwise.

By (2.9), (2.10), (2.13), and the convexity of φ, it can be seen that

Var (vm; Ikn) = 2(M − Ψ1(2sn)) = 2
∫ +∞

2sn

ψ(t) dt ≤ 2c
α− 1

1
2sn(α−1)

.
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It follows that

Var (vm; ]0, 1[) ≤ 2c
α− 1

m∑
n=1

2n−1∑
k=1

1
2sn(α−1)

≤ 2c
α− 1

∞∑
n=1

1
2sn(α−1)−n+1

.

The last series is finite, thanks to (2.12). Therefore, the vm’s have equibounded total
variations, and, since vm → v in L1(]0, 1[), we conclude that v ∈ BV (]0, 1[).

Energy bounded sequences are compact in X1
ψ(]a, b[), as made precise by the

following theorem.
Theorem 2.4. Let {uk} be a sequence of functions bounded in L1(]a, b[) such

that

(2.14) C := sup
k

F1(uk) < +∞.

Then there exist a subsequence (not relabeled) {uk} and a function u ∈ X1
ψ(]a, b[) such

that

uk ⇀ u weakly∗ in BV (]a, b[),(2.15)
Ψ1 ◦ u′k ⇀ Ψ1 ◦ (u′)a weakly∗ in BV (]a, b[),(2.16)

u′k → (u′)a pointwise L1-a.e. in ]a, b[.(2.17)

Proof. By (2.3) and (2.14) we have that each uk belongs to W 2,1(]a, b[) and

(2.18) C1 := sup
k

∫ b

a

[ |uk| + |u′k| + ψ(u′k)|u′′k| ] dx < +∞.

Let us define

(2.19) vk := Ψ1 ◦ u′k.

As Ψ1 is Lipschitz in R, the functions vk belong to W 1,1(]a, b[) and

(2.20) v′k = ψ(u′k)u′′k L1-a.e. on ]a, b[.

It follows from (2.1) and (2.14) that

(2.21)
∫ b

a

[ |vk| + |v′k| ] dx ≤M(b− a) + C.

By (2.18) and (2.21) and the Helly theorem, passing to a subsequence if necessary, we
may assume that

uk ⇀ u weakly∗ in BV (]a, b[)

and

(2.22) vk (x) → v (x) for all x ∈ ]a, b[

for some u ∈ BV (]a, b[) and v : ]a, b[ → [0,M ] with pointwise bounded variation. Note
that (2.22) determines the values of v at every x ∈ ]a, b[.

Since Ψ−1
1 is continuous, we obtain

(2.23) u′k → w := Ψ−1
1 (v) pointwise in ]a, b[.
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Since by (2.18) we have supk ‖u′k‖1 < +∞, it follows from Fatou’s lemma and (2.23)
that w is integrable, and so

(2.24) w is finite L1-a.e. in ]a, b[.

Moreover, w has left and right limits in R at each point x ∈ ]a, b[, denoted by w−(x)
and w+(x), respectively, and

(2.25) w(x) = w−(x) = w+(x) except for a countable set of points x.

We now split the remaining part of the proof into two steps.
Step 1. We prove that

(2.26) w = (u′)a L1-a.e. in ]a, b[.

If not, we have L1({w �= (u′)a}) > 0. By (2.24) there exists t0 > 0 such that

L1({w �= (u′)a} ∩ {|w| < t0}) > 0,

and, in particular, we may find an infinite number of disjoint open intervals I such
that

(2.27) L1({w �= (u′)a} ∩ {|w| < t0} ∩ I) > 0.

By a change of variables we obtain

(2.28)
∫

I

ψ(u′k)|u′′k | dx ≥
∫ Mk

mk

ψ(t) dt,

where

mk := inf
I
u′k and Mk := sup

I
u′k.

We claim that at least one of the two sequences {mk} and {Mk} is divergent. Indeed, if
not, a subsequence of {u′k} would be bounded in L∞(I). This implies that u′ ∈ L∞(I)
and that u′k ⇀ u′ weakly∗ in L∞(I). As u′k → w pointwise L1-a.e. in I, we deduce
that u′ = w L1-a.e. in I, which contradicts (2.27). Hence, the claim holds. If

(2.29) lim
k→∞

Mk = +∞,

then by (2.23) and (2.27)

(2.30) lim sup
k→∞

mk < t0.

From (2.28), (2.30), and (2.29) we obtain

lim inf
k→∞

∫
I

ψ(u′k)|u′′k| dx ≥
∫ +∞

t0

ψ(t) dt > 0.

Analogously, if limk mk = −∞, then

lim inf
k→∞

∫
I

ψ(u′k)|u′′k | dx ≥
∫ −t0

−∞
ψ(t) dt > 0.



2360 G. DAL MASO, I. FONSECA, G. LEONI, AND M. MORINI

In any case, we can choose an arbitrarily large number m of disjoint intervals I
satisfying (2.27). Adding the contributions of each interval we obtain

lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k | dx ≥ mmin
{∫ +∞

t0

ψ(t) dx,
∫ −t0

−∞
ψ(t) dt

}
,

which contradicts (2.18) for m large enough. This concludes the proof of (2.26).
Step 2. To prove that u ∈ X1

ψ(]a, b[), it remains to show that the positive part
((u′)c)+ and the negative part ((u′)c)− of the measure (u′)c are concentrated on
Z+[(u′)a] and Z−[(u′)a], respectively, that is,

(2.31) ((u′)c)± (]a, b[ \ Z±[(u′)a]) = 0.

To this purpose we introduce the sets

E+[u′] :=

{
x ∈ ]a, b[ : lim

ε→0+

(u′)+ (]x− ε, x+ ε[)
2ε

= +∞
}
,(2.32)

E−[u′] :=

{
x ∈ ]a, b[ : lim

ε→0+

(u′)− (]x− ε, x+ ε[)
2ε

= +∞
}
,(2.33)

E[u′] :=
{
x ∈ ]a, b[ : lim

ε→0+

|u′|(]x− ε, x+ ε[)
2ε

= +∞
}
.

Since ((u′)s)+ = ((u′)+)s is concentrated on E+[u′] and ((u′)s)− = ((u′)−)s is con-
centrated on E−[u′] (see, e.g., [1, Theorem 2.22]), to prove (2.31) it is enough to show
that

(2.34) E+[u′] \ Z+[(u′)a] and E−[u′] \ Z−[(u′)a] are at most countable.

We show only that E+[u′] \ Z+[(u′)a] is at most countable, since the other property
can be proved in a similar way. Assume, by contradiction, that E+[u′] \ Z+[(u′)a] is
not countable. Since by (2.5) and (2.26)

Z+[(u′)a] ⊂ {x ∈ ]a, b[ : max{w−(x), w+(x)} = +∞},

by (2.25) there exists t0 > 0 such that

(E+[u′] \ Z+[(u′)a]) ∩ {w < t0} is uncountable.

Fix t1 > t0, and let x1, . . . , xm be m distinct points in (E+[u′]\Z+[(u′)a])∩{w < t0}.
By (2.32) there exists ε > 0 such that the intervals Ij := ]xj − ε, xj + ε[ are pairwise
disjoint and

(2.35)
(u′)+ (]xj − ε, xj + ε[)

2ε
> t1 for i = 1, . . . ,m.

By a change of variables we obtain

(2.36)
∫

Ij

ψ(u′k)|u′′k | dx ≥
∫ Mkj

mkj

ψ(t) dt,

where

mkj := inf
Ij

u′k and Mkj := sup
Ij

u′k.
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By (2.23) and the fact that w (xj) < t0, we deduce that

(2.37) lim sup
k→∞

mkj < t0

for j = 1, . . . ,m. On the other hand, (2.15) and (2.35) yield

lim inf
k→∞

1
2ε

∫ xj+ε

xj−ε

(u′k)+ dx ≥ (u′)+ (]xj − ε, xj + ε[)
2ε

> t1

(this can be seen as a particular case of the Reshetnyak lower semicontinuity theorem,
with f = (·)+). This implies that lim infk→∞ Mkj > t1 for j = 1, . . . ,m. Hence, also
by (2.36) and (2.37) we obtain

lim inf
k→∞

m∑
j=1

∫
Ij

ψ(u′k)|u′′k | dx ≥
m∑

j=1

lim inf
k→∞

∫
Ij

ψ(u′k)|u′′k| dx ≥ m

∫ t1

t0

ψ(t) dt,

which contradicts (2.18) for m large enough. This shows (2.34) and concludes the
proof of the theorem.

2.3. Relaxation. The following theorem, which is the main result of the sec-
tion, is devoted to the characterization of the relaxation of F1 with respect to strong
convergence in L1(]a, b[).

Theorem 2.5. Let F1 : L1(]a, b[) → [0,+∞] be defined by

F1(u) := inf
{

lim inf
k→∞

F1(uk) : uk → u in L1(]a, b[)
}

for every u ∈ L1(]a, b[). Then

(2.38)

F1(u) =

⎧⎨⎩|u
′|(]a, b[) + |v′|(]a, b[ \ Su) +

∑
x∈Su

Φ(νu, (u′)a
−, (u

′)a
+) if u ∈ X1

ψ(]a, b[),

+∞ otherwise,

where v := Ψ1 ◦ (u′)a, νu := sign(u+ − u−), and

(2.39)
Φ(1, t1, t2) :=

∫ +∞

t1

ψ(t) dt+
∫ +∞

t2

ψ(t) dt,

Φ(−1, t1, t2) :=
∫ t1

−∞
ψ(t) dt+

∫ t2

−∞
ψ(t) dt.

Remark 2.6. For every x ∈ Su we have

Φ(νu(x), (u′)a
−(x), (u′)a

+(x)) = |v′|({x}) + Φ̂(νu(x), (u′)a
−(x), (u′)a

+(x)),

where

Φ̂(1, t1, t2) :=
∫ +∞

max{t1,t2}
ψ(t) dt and Φ̂(−1, t1, t2) :=

∫ min{t1,t2}

−∞
ψ(t) dt.

In particular, for every Borel set B ⊂ ]a, b[

|v′|(B \ Su) +
∑

x∈Su∩B

Φ(νu, (u′)a
−, (u

′)a
+)

= |v′|(B) +
∑

x∈Su∩B

Φ̂(νu, (u′)a
−, (u

′)a
+) ≥ |v′|(B).
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Proof of Theorem 2.5. Let G be the functional defined by the right-hand side of
(2.38). We prove that, for every uk → u in L1(]a, b[), we have

(2.40) G(u) ≤ lim inf
k→∞

F1(uk).

It is enough to consider sequences {uk} for which the liminf is a limit and has a finite
value and uk → u pointwise L1-a.e. in ]a, b[. Then uk belongs to W 2,1(]a, b[) and
(2.14) is satisfied. This implies that

(2.41) |u′|(]a, b[) ≤ lim inf
k→∞

∫ b

a

|u′k| dx.

Moreover, it follows from Theorem 2.4 that u ∈ X1
ψ(]a, b[) and that, up to a subse-

quence, {u′k} converges to (u′)a pointwise L1-a.e. in ]a, b[.
Let F be a finite subset of Su. We want to prove that

(2.42) |v′|(]a, b[ \ F ) +
∑
x∈F

Φ(νu, (u′)a
−, (u

′)a
+) ≤ lim inf

k→∞

∫ b

a

ψ(u′k)|u′′k| dx.

We write F as {x1, . . . , xm}, with a < x1 < · · · < xm < b. For every ε > 0 there
exists δ = δ(ε) ∈ ]0, ε[ such that a < x1 − δ < x1 + δ < x2 − δ < x2 + δ < · · · <
xm−1 − δ < xm−1 + δ < xm − δ < xm + δ < b and

|u(xj − δ) − u−(xj)| < ε, |u(xj + δ) − u+(xj)| < ε,(2.43)
|(u′)a(xj − δ) − (u′)a

−(xj)| < ε, |(u′)a(xj + δ) − (u′)a
+(xj)| < ε,(2.44)

uk(xj − δ) → u(xj − δ), uk(xj + δ) → u(xj + δ) as k → ∞,(2.45)
u′k(xj − δ) → (u′)a(xj − δ), u′k(xj + δ) → (u′)a(xj + δ) as k → ∞,(2.46)

|(u′)a(xj − δ)| + |(u′)a(xj + δ)| + ε <
|[u](xj)| − 4ε

2δ

for j = 1, . . . ,m.
Since vk → v pointwise L1-a.e. in ]a, b[ and v′k = ψ(u′k)u′′k L1-a.e. in ]a, b[, we

obtain

|v′|(]xj + δ, xj+1 − δ[) ≤ lim inf
k→∞

∫ xj+1−δ

xj+δ

ψ(u′k)|u′′k | dx

for j = 1, . . . ,m−1. A similar result holds for the intervals ]a, x1 − δ[ and ]xm + δ, b[.
Let Fδ be the union of the intervals [xj − δ, xj + δ] for j = 1, . . . ,m. Summing with
respect to j and adding the contributions of the intervals ]a, x1 − δ[ and ]xm + δ, b[,
we obtain

(2.47) |v′|(]a, b[ \ Fδ) ≤ lim inf
k→∞

∫
]a,b[\Fδ

ψ(u′k)|u′′k | dx.

We consider now the interval Iδ
j := [xj − δ, xj + δ], assuming that [u](xj) =

u+(xj) − u−(xj) > 0. By the mean value theorem there exists yδ
kj ∈ ]xj − δ, xj + δ[

such that

(2.48) u′k(yδ
kj) =

uk(xj + δ) − uk(xj − δ)
2δ

≥ [u](xj) − 4ε
2δ

,
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where the last inequality follows from (2.43) and (2.45) for k sufficiently large. By a
change of variables we obtain∫ [u](xj)−4ε

2δ

u′
k(xj−δ)

ψ(t) dt ≤
∫ yδ

kj

xj−δ

ψ(u′k)|u′′k | dx,

∫ [u](xj)−4ε

2δ

u′
k(xj+δ)

ψ(t) dt ≤
∫ xj+δ

yδ
kj

ψ(u′k)|u′′k | dx.

Adding these inequalities and taking the limit as k → ∞ we obtain, thanks to (2.46),

(2.49)
∫ [u](xj)−4ε

2δ

(u′)a(xj−δ)

ψ(t) dt+
∫ [u](xj)−4ε

2δ

(u′)a(xj+δ)

ψ(t) dt ≤ lim inf
k→∞

∫ xj−δ

xj−δ

ψ(u′k)|u′′k | dx.

Similarly, if [u](xj) < 0, then we have

(2.50)
∫ (u′)a(xj−δ)

[u](xj)+4ε

2δ

ψ(t) dt+
∫ (u′)a(xj+δ)

[u](xj)+4ε

2δ

ψ(t) dt ≤ lim inf
k→∞

∫ xj−δ

xj−δ

ψ(u′k)|u′′k | dx.

From (2.47), (2.49), and (2.50) we deduce that

|v′|(]a, b[ \ Fδ) +
∑

[u](xj)>0

⎛⎝∫ [u](xj)−4ε

2δ

(u′)a(xj−δ)

ψ(t) dt +
∫ [u](xj)−4ε

2δ

(u′)a(xj+δ)

ψ(t) dt

⎞⎠
+
∑

[u](xj)<0

(∫ (u′)a(xj−δ)

[u](xj)+4ε

2δ

ψ(t) dt +
∫ (u′)a(xj+δ)

[u](xj)+4ε

2δ

ψ(t) dt

)

≤ lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k | dx.

Taking the limit as ε→ 0 (which implies δ(ε) → 0) we obtain (2.42), thanks to (2.44).
Since Su is at most countable, (2.40) can be obtained from (2.42) by taking the

supremum over all finite sets F contained in Su.
Conversely, let u ∈ X1

ψ(]a, b[). We claim that there exists a sequence {uk} in
W 2,1 (]a, b[) such that uk → u in L1 (]a, b[) and

(2.51) G (u) ≥ lim sup
k→∞

F1 (uk) .

It is clearly enough to consider the case G (u) < +∞.
We divide the proof into three steps.
Step 1. We prove (2.51) under the additional assumptions that (u′)a is bounded

and that Su = {x1, . . . , xm}, with x1 < · · · < xm. Note that, in this case, Z[(u′)a] = ∅
and, hence, (u′)c = 0.

Construct a sequence {vk} in W 1,1(]a, b[) such that vk → v = Ψ1 ◦ (u′)a pointwise
L1-a.e. in ]a, b[, Ψ1(−‖(u′)a‖∞) ≤ vk ≤ Ψ1(‖(u′)a‖∞), and∫ b

a

|v′k(x)| dx→ |v′| (]a, b[) .

Setting wk := Ψ−1
1 (vk), we have wk ∈W 1,1(]a, b[), thanks to (2.2),

(2.52) wk → (u′)a pointwise L1-a.e. in ]a, b[,
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and ‖wk‖∞ ≤
∥∥(u′)a∥∥

∞. Find δk → 0+ such that

(2.53) wk (xj − δk) → (u′)a
− (xj) , wk (xj + δk) → (u′)a

+ (xj) for j = 1, . . . ,m

and

(2.54)

∫ xj−δk

xj−1+δk

|v′k| dx→ |v′|(]xj−1, xj [) for j = 2, . . . ,m,∫ x1−δk

a

|v′k| dx→ |v′|(]a, x1[),
∫ b

xm+δk

|v′k| dx→ |v′|(]xm + δk, b[).

By (2.52) and by the dominated convergence theorem we have

(2.55) u+(xj−1) +
∫ xj−δk

xj−1+δk

wk(s) ds −→ u+(xj−1) +
∫ xj

xj−1

(u′)a ds = u−(xj)

for j = 2, . . . ,m, with the obvious changes for j = 1 and j = m+ 1.
To deal with the jump point xj , assume first that

(2.56) u+ (xj) − u− (xj) > 0.

In this case, we need to construct functions fkj ∈ C2([xj − δk, xj + δk]) that satisfy
the following properties: There exists ykj ∈ ]xj − δk, xj + δk[ such that

fkj (xj − δk) = u+ (xj−1) +
∫ xj−δk

xj−1+δk

wk (s) ds, fkj (xj + δk) = u+ (xj) ,(2.57)

f ′
kj (xj − δk) = wk (xj − δk) , f ′

kj (xj + δk) = wk (xj + δk) ,(2.58)

f ′′
kj(x) > 0 for x ∈ ]xj − δk, ykj [, f ′′

kj(x) < 0 for x ∈ ]ykj , xj + δk[,(2.59) ∣∣∣∣fkj (xj − δk) − min
[xj−δk,ykj ]

fkj

∣∣∣∣ ≤ 1
k ,

∣∣∣∣fkj (xj + δk) − max
[ykj ,xj+δk]

fkj

∣∣∣∣ ≤ 1
k ,(2.60)

where we replace xj−1 and xj−1 − δk by a in the case j = 1.
We now discuss briefly the existence of such functions. We observe that the latter

conditions in (2.57)–(2.59) imply that the graph of fkj in the interval [ykj , xj + δk[
lies below the straight line passing through the point (xj + δk, u+(xj)) with slope
wk(xj + δk), i.e.,

fkj(x) ≤ u+(xj) + wk(xj + δk)(x− xj − δk)

for x ∈ [ykj , xj + δk[. It is then easy to see that the inequality

(2.61) u+ (xj) − 2wk (xj + δk) δk − u+ (xj−1) −
∫ xj−δk

xj−1+δk

wk (s) ds > 0

allows us to fulfill also the former conditions in (2.57)–(2.59), as well as (2.60). By
(2.53), (2.55), and (2.56), inequality (2.61) is satisfied when δk is small enough.

If the left-hand side of (2.56) is negative, then we choose fkj so that (2.57) and
(2.58) hold, and there exists ykj ∈ ]xj − δk, xj + δk[ such that

f ′′
kj(x) < 0 for x ∈ ]xj − δk, ykj [, f ′′

kj(x) > 0 for x ∈ ]ykj , xj + δk[,∣∣∣∣fkj (xj − δk) − max
[xj−δk,xj+δk]

fkj

∣∣∣∣ ≤ 1
k ,

∣∣∣∣fkj (xj + δk) − min
[xj−δk,xj+δk]

fkj

∣∣∣∣ ≤ 1
k .

In the same way the construction is possible if δk is small enough.
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We are now ready to define the approximating sequence

uk(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u+ (a) +
∫ x

a

wk (s) ds if a ≤ x < x1 − δk,

fkj (x) if xj − δk ≤ x < xj + δk, j = 1, . . . ,m,

u+ (xj−1)+
∫ x

xj−1+δk

wk (s) ds if xj−1+δk ≤ x < xj − δk, j = 2, . . . ,m,

u+ (xm) +
∫ x

xm+δk

wk (s) ds if xm + δk ≤ x < b.

Let us define x0 := a and xm+1 := b. Since wk → (u′)a in L1 (]a, b[), we have

uk (x) → u+ (xj−1) +
∫ x

xj−1

(u′)a (s) ds = u (x)

for every x ∈ ]xj−1, xj [ and j = 1, . . . ,m+ 1 and, in turn, uk → u in L1 (]a, b[). As

∫ xj−δk

xj−1+δk

|u′k| dx+
∫ xj−δk

xj−1+δk

ψ (u′k) |u′′k| dx =
∫ xj−δk

xj−1+δk

|wk| dx+
∫ xj−δk

xj−1+δk

ψ (wk) |w′
k| dx

≤
∫ xj

xj−1

|wk| dx+
∫ xj−δk

xj−1+δk

|v′k| dx,

by (2.54) and the fact that wk → (u′)a in L1 (]a, b[) we have

lim sup
k→∞

(∫ xj−δk

xj−1+δk

|u′k| dx+
∫ xj−δk

xj−1+δk

ψ (u′k) |u′′k| dx
)

≤
∫ xj

xj−1

∣∣(u′)a∣∣ dx+ |v′| (]xj−1, xj [) .(2.62)

Similarly,

lim sup
k→∞

(∫ x1−δk

a

|u′k| dx+
∫ x1−δk

a

ψ (u′k) |u′′k| dx
)

≤
∫ x1

a

∣∣(u′)a∣∣ dx+ |v′| (]a, x1[) ,(2.63)

lim sup
k→∞

(∫ b

xm+δk

|u′k| dx +
∫ b

xm+δk

ψ (u′k) |u′′k| dx
)

≤
∫ b

xm

∣∣(u′)a∣∣ dx+ |v′| (]xm, b[) .(2.64)

Assume that [u](xj) = u+(xj) − u−(xj) > 0. Then (2.56) holds for the functions uk
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if k is sufficiently large. By (2.58), (2.59), (2.60), and a change of variables we obtain∫ xj+δk

xj−δk

|u′k| dx+
∫ xj+δk

xj−δk

ψ (u′k) |u′′k| dx

=
∫ xj+δk

xj−δk

|f ′
kj | dx+

∫ xj+δk

xj−δk

ψ
(
f ′

kj

) ∣∣f ′′
kj

∣∣ dx
≤ fkj (xj + δk) − fkj (xj − δk) +

∫ f ′
kj(ykj)

wk(xj−δk)

ψ (t) dt

+
∫ f ′

kj(ykj)

wk(xj+δk)

ψ (t) dt+
2
k
.(2.65)

By (2.59) we have

(2.66) f ′
kj (ykj) = max

[xj−δk,xj+δk]
f ′

kj ≥ 1
2δk

[fkj (xj + δk) − fkj (xj − δk)] .

By (2.57) and the fact that wk → (u′)a in L1 (]a, b[) we obtain

fkj (xj + δk) − fkj (xj − δk) → u+ (xj) −
(
u+ (xj−1) +

∫ xj

xj−1

(u′)a
ds

)
= [u] (xj) .

In turn, using (2.66), we get that f ′
kj (ykj) → ∞. Thus, letting k → ∞ in (2.65) and

using (2.53), we infer

lim sup
k→∞

(∫ xj+δk

xj−δk

|u′k| dx +
∫ xj+δk

xj−δk

ψ (u′k) |u′′k| dx
)

≤ [u] (xj) +
∫ +∞

(u′)a
−(xj)

ψ (t) dt+
∫ +∞

(u′)a
+(xj)

ψ (t) dt.(2.67)

Similarly, if [u] (xj) = u+ (xj) − u− (xj) < 0, we find

lim sup
k→∞

(∫ xj+δk

xj−δk

|u′k| dx +
∫ xj+δk

xj−δk

ψ (u′k) |u′′k| dx
)

≤ |[u] (xj)| +
∫ (u′)a

−
(xj)

−∞
ψ (t) dt+

∫ (u′)a

+
(xj)

−∞
ψ (t) dt.(2.68)

Summing over j in (2.62), (2.67), and (2.68) and combining with (2.63) and (2.64),
inequality (2.51) follows.

Step 2. Assume only that u ∈ X1
ψ(]a, b[) and that Su is finite. We claim that there

exists a sequence {uk} such that uk → u in L1 (]a, b[), each uk satisfies the hypotheses
of Step 1, and

(2.69) G (u) ≥ lim sup
k→∞

G (uk) .

Note that, if (2.69) holds, then, by applying Step 1 to each uk, we may find a
sequence ukm ∈ W 2,1 (]a, b[) converging to uk in L1 (]a, b[) and satisfying

G (uk) ≥ lim sup
m→∞

F1 (ukm) .
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By (2.69) we then have

G (u) ≥ lim sup
k→∞

lim sup
m→∞

F1 (ukm) ,

and a standard diagonalization argument now yields the existence of a sequence mk →
∞ such that ukmk

→ u in L1 (]a, b[) and

G (u) ≥ lim sup
k→∞

F1 (ukmk
) .

In the construction of the sequence satisfying (2.69), we need to consider the
precise representatives (u′)a

∨ and (u′)a
∧ defined in Remark 2.2. We recall that (u′)a

∨
is upper semicontinuous while (u′)a

∧ is lower semicontinuous, and so for each k ∈ N

we may decompose the open sets {(u′)a
∧ > k} and {(u′)a

∨ < −k} into the union of two
finite sequences of pairwise disjoint open sets U+

kj and U−
kj , that is,⋃

j

U+
kj = {(u′)a

∧ > k} ,
⋃
j

U−
kj = {(u′)a

∨ < −k} ,

such that

(2.70) diam
(
U+

kj

)
≤ L1({(u′)a

∧ > k}), diam
(
U−

kj

)
≤ L1({(u′)a

∨ < −k})

for every j. Note that, setting v∨ := Ψ1 ◦ (u′)a
∨ and v∧ := Ψ1 ◦ (u′)a

∧, we have

(2.71) |v′|(]c, d[) = Var (v∨; ]c, d[) = Var (v∧; ]c, d[)

for every interval ]c, d[ ⊂ ]a, b[.
For every set U±

kj , we fix a nonnegative function g±kj ∈ C1
c (U±

kj) such that

(2.72)
∫

U±
kj

g±kj (x) dx = ((u′)c)±
(
U±

kj

)
,

and (g±kj)′ has only one zero in the interior of the support of g±kj . Then we define

(2.73) g+
k :=

∑
j
g+

kj , g−k :=
∑

j
g−kj , gk := g+

k − g−k , wk := T k
−k ◦ (u′)a + gk,

where, for any pair of constants h < k, the truncation function T k
h is defined by

T k
h (t) :=

⎧⎪⎨⎪⎩
h for t ≤ h,

t for h ≤ t ≤ k,

k for t ≥ k.

We claim that

(2.74) wk L1 ⇀ (u′)a L1 + (u′)c weakly∗ in Mb (]a, b[) .

Define

Ak :=
{

(u′)a
∧ > k

}
∪
{

(u′)a
∨ < −k

}
.
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Since by the Chebychev inequality

(2.75) kL1(Ak) → 0,

it suffices to show that

(2.76)

⎛⎝∑
j

g±kj

⎞⎠ L1 ⇀
(
(u′)c)± weakly∗ in Mb (]a, b[) .

Let ϕ ∈ C0 (]a, b[) and ε > 0. By uniform continuity, there exists δ = δ (ε) > 0 such
that |ϕ (x) − ϕ (y)| ≤ ε for all x, y ∈ ]a, b[ with |x− y| ≤ δ. In view of (2.70) and
(2.75), for all k sufficiently large and for all j we have that diam (U±

kj) ≤ δ. Let us fix
y±kj ∈ U±

kj . Then by (2.72)∣∣∣ ∫
U±

kj

ϕ (x) g±kj (x) dx−
∫

U±
kj

ϕ (x) d
(
(u′)c)± (x)

∣∣∣
=

∣∣∣∣∣
∫

U±
kj

[
ϕ(x) − ϕ

(
y±kj

)]
g±kj(x) dx −

∫
U±

kj

[
ϕ(x) − ϕ

(
y±kj

)]
d
(
(u′)c)± (x)

∣∣∣∣∣
≤ ε

(∫
U±

kj

g±kj(x) dx +
(
(u′)c)± (U±

kj)

)
≤ 2ε

(
(u′)c)± (

U±
kj

)
.

Summing over j and using the fact that the measures (
∑

j g
+
kj)L1 and ((u′)c)+ are

concentrated on {(u′)a
∧ > k}, while the measures (

∑
j g

−
kj)L1 and ((u′)c)− are con-

centrated on {(u′)a
∨ < −k} (see Remark 2.2), we obtain (2.76).

Moreover, we claim that

(2.77) lim
k→∞

∫ b

a

|wk| dx =
∫ b

a

| (u′)a | dx+ | (u′)c | (]a, b[) .

Indeed, using (2.72), (2.73), and Remark 2.2, we deduce that∫ b

a

|wk| dx ≤
∫
{|(u′)a|≤k}

∣∣(u′)a∣∣ dx + kL1(Ak) +
∑

j

∫
U+

kj

g+
kj dx +

∑
j

∫
U−

kj

g−kj dx

≤
∫ b

a

∣∣(u′)a∣∣ dx+ kL1(Ak) +
∑

j

(
(u′)c)+ (

U+
kj

)
+
∑

j

(
(u′)c)− (U−

kj)

≤
∫ b

a

∣∣(u′)a∣∣ dx+ kL1(Ak) +
∣∣(u′)c∣∣ (]a, b[) ,

and the limit superior inequality follows from (2.75). The limit inferior inequality
follows from (2.74) and the lower semicontinuity of the total variation.

Set

(2.78) uk (x) := u+ (a) +
∫ x

a

wk (s) ds+
∑

xj<x, xj∈Su

[u] (xj)

and vk := Ψ1 ◦ (u′k)a = Ψ1 ◦ wk.
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We claim that uk → u in L1 (]a, b[) . For x ∈ ]a, b[ by (2.74) and (2.77) it follows
that ∫ x

a

wk dy →
∫ x

a

(u′)a
dy + (u′)c (]a, x[) ,

and so uk converges to u pointwise L1-a.e. and, in turn, in L1 (]a, b[).
Next, we show that

(2.79) lim sup
k→∞

G (uk) ≤ G (u) .

From (2.77) we get

(2.80) |u′k| (]a, b[) → |u′| (]a, b[) .

Moreover, as vk = T
Ψ1(k)
Ψ1(−k) ◦ v L1-a.e. in the open set Vk := ]a, b[ \ supp gk, we have

|v′k| ≤ |v′| as measures in Vk. In particular, this yields |v′k| (]a, b[ \ (Ak ∪ Su)) ≤
|v′| (]a, b[ \ (Ak ∪ Su)) and, hence,

(2.81) |v′k| (]a, b[ \ (Ak ∪ Su)) ≤ |v′| (]a, b[ \ (A∞ ∪ Su)) ,

where

A∞ :=
⋂
k

Ak =
{

(u′)a
∧ = +∞

}
∪
{

(u′)a
∨ = −∞

}
.

Using the properties of g+
kj , we have

|v′k|
({

(u′)a
∧ > k

}
\ Su

)
=
∑

j

∫
U+

kj

ψ
(
k + g+

kj

) ∣∣∣∣(g+
kj

)′∣∣∣∣ dx
= 2
∑

j

∫ k+sup g+
kj

k

ψ(t) dt ≤ 2H0
({
j : ((u′)c)+

(
U+

kj

)
> 0
})∫ ∞

k

ψ (t) dt .(2.82)

We claim that

2H0
({
j : ((u′)c)+

(
U+

kj

)
> 0
})∫ ∞

k

ψ (t) dt

≤ |v′|
({

(u′)a
∧ > k

}
\ Su

)
+ 4
∫ ∞

k

ψ (t) dt.

Indeed, if ((u′)c)+(U+
kj) > 0, then there exists a connected component I+

kj =]akj , bkj [
of U+

kj\Su such that ((u′)c)+(I+
kj) > 0. Assume that I+

kj ⊂⊂]a, b[. Then by Remark 2.2
we may find ckj ∈ I+

kj such that (u′)a
∧(ckj) = +∞, while (u′)a

∧(akj), (u′)a
∧(bkj) ≤ k.

Hence, by (2.71)

|v′|
(
U+

kj \ Su

)
≥ |v′|

(
I+
kj

)
≥ 2
∫ ∞

k

ψ(t) dt.

Summing over all such intervals and adding the possible contribution of the intervals
I+
kj with at least one end point in {a, b}, we obtain the claim. In turn, by (2.82) we

have

|v′k|
({

(u′)a
∧ > k

}
\ Su

)
≤ |v′|

({
(u′)a

∧ > k
}
\ Su

)
+ 4
∫ ∞

k

ψ (t) dt.
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A similar estimate holds for the set {(u′)a
∨ < −k} \ Su, thus, yielding

(2.83) lim sup
k→∞

|v′k| (Ak \ Su) ≤ |v′| (A∞ \ Su) .

Combining (2.81) with (2.83) we obtain

lim sup
k→∞

|v′k| (]a, b[ \ Su) ≤ |v′| (]a, b[ \ Su) .

Next, we show that

(2.84) lim
k→∞

∑
x∈Suk

Φ
(
νuk

, (u′k)a
− , (u

′
k)a

+

)
=
∑

x∈Su

Φ
(
νu, (u′)

a
− , (u

′)a
+

)
.

Note that Suk
= Su and νuk

(x) = νu (x) for all k by (2.78). Moreover, for every
x ∈ Su if (u′)a

+ (x) ∈ R, then
∣∣(u′)a

+ (y)
∣∣ ≤ k0 for all y in a right neighborhood of x

and for some integer k0. Thus, by (2.73) and (2.78) we have that (u′k)a(y) = (u′)a (y)
for k ≥ k0 and for L1-a.e. y in the same right neighborhood. In turn, by (2.7) we infer
(u′k)a

+ (x) = (u′)a
+ (x) for all k ≥ k0. If (u′)a

+ (x) = ∞, then for all k we have (u′)a
+ > k

in a right neighborhood of x by right continuity (see Remark 2.2). By construction
this implies that (u′k)a = wk ≥ k L1-a.e. in the same right neighborhood. Thus,
(u′k)a

+ (x) ≥ k → (u′)a
+ (x). Similarly, (u′k)a

−(x) → (u′)a
−(x) so that

Φ
(
νuk

(x) , (u′k)a
− (x) , (u′k)a

+ (x)
)
→ Φ

(
νu (x) , (u′)a

− (x) , (u′)a
+ (x)

)
.

Hence, (2.84) follows. This, together with (2.80) and (2.83), yields (2.79).
Step 3. Let now u be an arbitrary function in X1

ψ(]a, b[) such that G (u) < +∞. As
in the previous step it suffices to construct uk ∈ X1

ψ(]a, b[) satisfying the hypotheses
of Step 2, converging to u in L1 (]a, b[) and such that (2.79) holds. Write Su = {xj},
and for each k define Sk

u := {xj : j ≤ k} and

uk (x) = u+ (a) +
∫ x

a

(u′)a
dt+ (u′)c (]a, x[) +

∑
xj<x, xj∈Sk

u

[u] (xj) .

It is clear that {uk} converges to u in L1 (]a, b[) and that |u′k| (]a, b[) → |u′| (]a, b[).
Moreover, |v′k| (]a, b[ \ Su) = |v′| (]a, b[ \ Su) and

lim
k→∞

∑
x∈Suk

Φ
(
νuk

, (u′k)a
− , (u

′
k)a

+

)
= lim

k→∞

∑
x∈Sk

u

Φ
(
νu, (u′)

a
− , (u

′)a
+

)
=
∑

x∈Su

Φ
(
νu, (u′)

a
− , (u

′)a
+

)
.

This concludes the proof of the theorem.
We end the section with a compactness result for energy bounded sequences in

X1
ψ(]a, b[).

Corollary 2.7. Let {uk} be a sequence of functions in X1
ψ(]a, b[) bounded in

L1(]a, b[) and such that

(2.85) C := sup
k

F1(uk) < +∞.
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Then there exist a subsequence (not relabeled) {uk} and a function u ∈ X1
ψ(]a, b[) such

that

uk ⇀ u weakly∗ in BV (]a, b[),(2.86)
Ψ1 ◦ (u′k)a ⇀ Ψ1 ◦ (u′)a weakly∗ in BV (]a, b[),(2.87)

(u′k)a → (u′)a pointwise L1-a.e. in ]a, b[.

Proof. It is well known that convergence in measure is metrizable with the fol-
lowing metric:

d (u1, u2) :=
∫ b

a

|u1 − u2|
1 + |u1 − u2|

dx,

where u1 and u2 are (equivalent classes of) measurable functions.
By Theorems 2.4 and 2.5, for every k ∈ N we may find wk ∈ W 2,1(]a, b[) such

that

(2.88)
∫ b

a

|uk − wk| dx ≤ 1
k
, d ((u′k)a, w′

k) ≤ 1
k
,

and

F1(wk) ≤ C + 1.

By Theorem 2.4 we may find a subsequence (not relabeled) of {wk} and a function
u ∈ X1

ψ(]a, b[) such that (2.15), (2.16), and (2.17) hold (with wk in place of uk).
It now follows from (2.88) that uk → u in L1(]a, b[) and (u′k)a → (u′)a in measure
and, hence, pointwise L1-a.e. in ]a, b[, up to a further subsequence. From the bound
(2.85), the uniqueness of the limit, and the invertibility of Ψ1, we deduce (2.86) and
(2.87).

3. The case p > 1. In this section we analyze the functional (1.3) in the case
p > 1.

Let us state precisely the standing assumptions. Throughout this section p de-
notes any exponent in ]1,+∞[, ψ : R → ]0,+∞[ is a bounded Borel function satisfying

(3.1) M :=
∫ +∞

−∞
(ψ(t))1/p dt < +∞

in addition to (2.2), and Ψp : R → [0,M ] denotes the antiderivative of ψ1/p defined
by

(3.2) Ψp(t) :=
∫ t

−∞
(ψ(s))1/p ds.

The function Ψ−1
p : [0,M ] → R stands for the inverse function of Ψp.

We now consider the functional Fp : L1(]a, b[) → [0,+∞] defined by

(3.3) Fp(u) :=

⎧⎨⎩
∫ b

a

|u′| dx+
∫ b

a

ψ(u′)|u′′|p dx if u ∈W 2,p(]a, b[),

+∞ otherwise.
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It turns out that piecewise smooth functions with bounded derivative and nonempty
discontinuity set cannot be approximated by sequences with equibounded energy.
This is a consequence of Remark 3.2(i) and Theorem 3.3 below, and to this end we
introduce a suitable space of functions. Recall that Z±[(u′)a] are the sets defined in
(2.5) and (2.6), while (u′)s denotes the singular part of the gradient measure u′.

Definition 3.1. Let Xp
ψ(]a, b[) be the set of all functions u ∈ BV (]a, b[) such

that v := Ψp◦(u′)a belongs to W 1,p(]a, b[), and the positive part ((u′)s)+ and the neg-
ative part ((u′)s)− of the measure (u′)s are concentrated on Z+[(u′)a] and Z−[(u′)a],
respectively.

Remark 3.2. (i) It follows immediately from the definition that if u ∈ Xp
ψ(]a, b[),

then (u′)a = Ψ−1
p (v) is continuous on [a, b] with values in R. In particular, it turns

out that

Z±[(u′)a] = {x ∈ ]a, b[ : (u′)a = ±∞}.

By the hypothesis on the support of the singular part (u′)s, we have limx→x0(u′)a(x) =
+∞ for every jump point x0 with u+(x0) − u−(x0) > 0 and limx→x0(u′)a(x) = −∞
for every jump point x0 with u+(x0)−u−(x0) < 0. This means that if Su is nonempty,
then u cannot have bounded derivative outside the discontinuity set. In particular,
piecewise constant functions are not included in the class Xp

ψ(]a, b[).
(ii) We observe that the function (u′)a is differentiable L1-a.e. in ]a, b[ with

(3.4) v′ = ψ
1
p ((u′)a) ((u′)a)′ .

To see this, we consider the open set

Ak := {x ∈ ]a, b[ : −k < (u′)a < k}.

Since by (2.2) the function Ψ−1
p is Lipschitz continuous in the interval [Ψp(−k),Ψp(k)]

and v ∈ W 1,p(]a, b[), by the chain rule, we have that (u′)a = Ψ−1
p ◦ v ∈ W 1,p(Ak)

and, in particular, it is differentiable L1-a.e. in Ak, and (3.4) holds. Since (u′)a is
integrable, we have that

L1

(
]a, b[ \

⋃
k

Ak

)
= 0,

and the conclusion follows.
(iii) It is easy to check that Xp

ψ(]a, b[) may contain discontinuous functions. An
example is given by the following construction: Let ψ : R → ]0,+∞[ be defined by

ψ(t) :=

⎧⎨⎩1 if |t| ≤ 1,
1
|t|α if |t| > 1,

where α is any number in ]1,+∞[, and let p ∈ ]1, α+1
2 [. Consider now the discontin-

uous functions u : ]−1, 1[ → R given by

u(x) :=

{
−|x|β if x ≤ 0,
1 + xβ if x > 0,
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with

0 < β < 1 − p− 1
α− p

.

A simple computation shows that the function Ψp ◦ (u′)a belongs to W 1,p(]−1, 1[),
which in turn implies that u ∈ Xp

ψ(]−1, 1[).
(iv) Finally, the same construction of Proposition 2.3 shows that, for every ad-

missible ψ satisfying (2.9), the space Xp
ψ(]a, b[) contains a function with nontrivial

Cantor part if p is sufficiently close to 1. We omit the details of this fact, which can
be easily checked following step by step the proof of Proposition 2.3.

The next theorem is the counterpart of Theorem 2.4 for the case p > 1. It
establishes that energy bounded sequences are relatively compact in Xp

ψ(]a, b[). The
proof is similar to the one of Theorem 2.4; nevertheless, since this is the main result
of this section we reproduce it in full detail for the reader’s convenience.

Theorem 3.3. Let {uk} be a sequence of functions bounded in L1(]a, b[) and such
that

(3.5) C := sup
k

Fp(uk) < +∞.

Then there exist a subsequence (not relabeled) {uk} and a function u ∈ Xp
ψ(]a, b[) such

that

uk ⇀ u weakly∗ in BV (]a, b[),(3.6)

Ψp ◦ u′k ⇀ Ψp ◦ (u′)a weakly in W 1,p(]a, b[),
u′k → (u′)a pointwise in ]a, b[.(3.7)

Proof. By (3.3) and (3.5) we may assume that each uk belongs to W 2,p(]a, b[) and
that

(3.8) C1 := sup
k

∫ b

a

[ |uk| + |u′k| + ψ(u′k)|u′′k|p ] dx < +∞.

Let us define

(3.9) vk := Ψp ◦ u′k.

As Ψp is Lipschitz in R, the functions vk belong to W 1,p(]a, b[) and

(3.10) v′k = (ψ(u′k))1/pu′′k L1-a.e. on ]a, b[.

It follows from (3.1) and (3.5) that

(3.11)
∫ b

a

[ |vk|p + |v′k|p ] dx ≤Mp(b − a) + C1.

By (3.8) and (3.11), passing to a subsequence (not relabeled), we may assume that

uk ⇀ u weakly∗ in BV (]a, b[)

and

(3.12) vk ⇀ v weakly in W 1,p(]a, b[)

for some functions u ∈ BV (]a, b[) and v ∈W 1,p(]a, b[; [0,M ]).
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Since Ψ−1
p is continuous, we obtain

(3.13) u′k = Ψ−1
p ◦ vk → w := Ψ−1

p ◦ v pointwise in ]a, b[.

Note, also, that w is continuous with values in R.
We now split the remaining part of the proof into two steps.
Step 1. We prove that

(3.14) w = (u′)a L1-a.e. on ]a, b[.

If not, arguing as for (2.27), we may find t0 > 0 and an infinite number of disjoint
open intervals I such that

(3.15) L1 ({w �= (u′)a} ∩ {|w| < t0} ∩ I) > 0.

By Hölder’s inequality and a change of variables, we obtain

(3.16)

∫
I

ψ(u′k)|u′′k|p dx ≥ 1
L1(I)p−1

(∫
I

(ψ(u′k))1/p|u′′k| dx
)p

≥ 1
(b − a)p−1

(∫ Mk

mk

(ψ(t))1/p dt

)p

,

where mk := infI u
′
k and Mk := supI u

′
k.

Reasoning as in the first step of the proof of Theorem 2.4, we can show that at
least one of the two sequences {mk} and {Mk} is divergent. If limk Mk = +∞, then
by (3.13) lim supk mk < t0 and, in turn, from (3.16) we obtain

lim inf
k→∞

∫
I

ψ(u′k)|u′′k|p dx ≥ 1
(b− a)p−1

(∫ +∞

t0

(ψ(t))1/p dt

)p

> 0.

Analogously, if limk mk = −∞, then

lim inf
k→∞

∫
I

ψ(u′k)|u′′k|p dx ≥ 1
(b− a)p−1

(∫ t0

−∞
(ψ(t))1/p dt

)p

> 0.

In any case, for an arbitrarily large number m of disjoint intervals I satisfying (3.15),
adding the contributions of each interval we obtain

lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k |p dx

≥ m

(b− a)p−1
min

{(∫ +∞

t0

(ψ(t))1/p dt

)p

,

(∫ t0

−∞
(ψ(t))1/p dt

)p
}
,

which contradicts (3.8) for m large enough. This concludes the proof of (3.14) and,
in turn, of (3.7).

Step 2. To prove that u ∈ Xp
ψ(]a, b[), it remains to show that the positive part

((u′)s)+ and the negative part ((u′)s)− of the measure (u′)s are concentrated on
Z+[(u′)a] and Z−[(u′)a], respectively.
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Arguing as in Step 2 of the proof of Theorem 2.4, one can see that it is enough
to show

(3.17) E+[u′] \ Z+[(u′)a] and E−[u′] \ Z−[(u′)a] are empty,

where E+[u′] and E−[u′] are the sets introduced in (2.32) and (2.33). We show only
that E+[u′] \ Z+[(u′)a] is empty, since the other property can be proved in the same
way.

Assume, by contradiction, that E+[u′] \ Z+[(u′)a] contains a point x0. Denote
t0 := 2|w(x0)|, fix any t1 > t0, and choose ε0 > 0 such that

(3.18)
1

(2ε0)p−1

(∫ t1

t0

(ψ(t))1/p dt

)p

> C,

where C is the constant appearing in (3.5). By (2.32) there exists 0 < ε < ε0 such
that

(3.19)
(u′)+ (]x0 − ε, x0 + ε[)

2ε
> t1.

Set I := ]x0 − ε, x0 + ε[. By Hölder’s inequality and a change of variables (see (3.16)),
we obtain

(3.20)
∫

I

ψ(u′k)|u′′k|p dx ≥ 1
(2ε0)p−1

(∫ Mk

mk

(ψ(t))1/p dt

)p

,

where mk := infI u
′
k and Mk := supI u

′
k. By (3.13) and the fact that w(x0) < t0, we

deduce that

(3.21) lim sup
k→∞

mk < t0.

On the other hand, reasoning as at the end of the proof of Theorem 2.4, we deduce
from (3.6) and (3.19) that

lim inf
k→∞

1
2ε

∫ x0+ε

x0−ε

(u′k)+ dx ≥ (u′)+ (]x0 − ε, x0 + ε[)
2ε

> t1,

which implies that

(3.22) lim inf
k→∞

Mk > t1.

From (3.18), (3.20), (3.21), and (3.22) we obtain

lim inf
k→∞

∫
I

ψ(u′k)|u′′k|p dx ≥ 1
(2ε0)p−1

(∫ t1

t0

(ψ(t))1/p dt

)p

> C,

which contradicts (3.8). This shows (3.17) and concludes the proof of the theo-
rem.

We next identify the relaxation of Fp with respect to strong convergence in
L1(]a, b[).

Theorem 3.4. Let Fp : L1(]a, b[) → [0,+∞] be defined by

(3.23) Fp (u) := inf
{

lim inf
k→∞

Fp (uk) : uk → u in L1(]a, b[)
}
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for every u ∈ L1(]a, b[). Then

(3.24) Fp (u) =

⎧⎨⎩|u′|(]a, b[) +
∫ b

a

|v′|p dx if u ∈ Xp
ψ(]a, b[),

+∞ otherwise,

where v := Ψp ◦ (u′)a.
Proof. We sketch the proof focusing only on the main changes with respect to

the proof of Theorem 2.5. Let Gp be the functional defined by the right-hand side of
(3.24).

We start by showing that

(3.25) Gp(u) ≤ lim inf
k→∞

Fp(uk)

whenever uk → u in L1(]a, b[). It is enough to consider sequences {uk} for which
the liminf is a limit and has a finite value. Then uk belongs to W 2,1(]a, b[) and (3.5)
is satisfied. Setting vk := Ψp ◦ u′k, by Theorem 3.3, we have vk ⇀ v weakly in
W 1,p(]a, b[). Using the fact that |v′k|p = ψ(u′k)|u′′k|p, we deduce that

(3.26)
∫ b

a

|v′|p dx ≤ lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k|p dx.

Inequality (3.25) follows now from (3.26) and the lower semicontinuity of the total
variation.

We split the proof of the limsup inequality into several steps.
Step 1. Let u ∈ Xp

ψ(]a, b[) be such that (u′)s = 0. We claim that there exists a
sequence {uk} in W 2,p(]a, b[) such that uk → u in L1(]a, b[) and

(3.27) lim sup
k→∞

Fp(uk) ≤ Gp(u).

Define wk := ((u′)a ∨ −k) ∧ k. Using the fact that (u′)a ∈W 1,p(A2k), where

A2k := {x ∈ ]a, b[ : −2k < (u′)a < 2k}

as observed in Remark 3.2(ii), one sees that wk ∈ W 1,p(]a, b[). Define

uk(x) := u+(a) +
∫ x

a

wk(y) dy.

It is easy to see that uk → u in L1(]a, b[) and (3.27) holds.
Step 2. Assume that u ∈ Xp

ψ(]a, b[), (u′)c = 0, and Su is finite. We claim that
there exists a sequence {uk} of functions in Xp

ψ(]a, b[), with (u′k)s = 0, such that
uk → u in L1(]a, b[) and

(3.28) lim sup
k→∞

Gp(uk) ≤ Gp(u).

Since the construction is local, it is enough to consider the case Su = {x0} for some
x0 ∈ ]a, b[ with [u](x0) > 0. By the properties of Xp

ψ(]a, b[), we can find two sequences
xk ↗ x0 and yk ↘ x0 such that

u(xk) → u−(x0), u(yk) → u+(x0), and (u′)a(xk) = (u′)a(yk) → (u′)a(x0) = +∞.
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Consider the affine functions hk(x) := u(xk) + (u′)a(xk)(x − xk). For every k suffi-
ciently large there exists zk ∈ ]xk, b[ such that hk(zk) = u+(x0). Since (u′)a(xk) →
+∞ and xk → x0, we have that zk → x0 as k → ∞. Define

uk(x) :=

⎧⎪⎨⎪⎩
u(x) if a < x ≤ xk,

hk(x) if xk < x ≤ zk,

u(x+ yk − zk) + u+(x0) − u(yk) if zk < x < b.

Using the fact that (u′)a(xk) = (u′)a(yk), it is easy to check that uk ∈ Xp
ψ(]a, b[),

with (u′k)s = 0, uk → u in L1(]a, b[), and (3.28) holds.
Step 3. Assume that u ∈ Xp

ψ(]a, b[) and (u′)c = 0. We claim that there exists a
sequence of functions uk in Xp

ψ(]a, b[), with (u′k)c = 0 and Suk
finite, such that uk → u

in L1(]a, b[) and (3.28) holds.
To see this, it is enough to consider the same approximation constructed in Step 3

of the proof of Theorem 2.5.
Step 4. Assume that u ∈ Xp

ψ(]a, b[). We claim that there exists a sequence of
functions uk in Xp

ψ(]a, b[), with (u′k)c = 0, such that uk → u in L1(]a, b[) and (3.28)
holds.

Since (u′)a is continuous from ]a, b[ into R and integrable (see Remark 3.2), we
have that K := {x ∈ ]a, b[ : |(u′)a| = +∞} is relatively closed in ]a, b[ with zero L1

measure. Hence, we may find a sequence of open sets Ak ⊂ ]a, b[ such that Ak ↘ K.
Let {Ik

j }j be the collection of all connected components of Ak intersecting K. Let
ckj := (u′)s(Ik

j ) > 0. By the properties of Xp
ψ(]a, b[), for every j we may choose

xk
j ∈ Ik

j ∩ K such that (u′)a(xk
j ) = +∞ if ckj > 0 and (u′)a(xk

j ) = −∞ if ckj < 0.
Define

uk(x) := u+(a) +
∫ x

a

(u′)a(y) dy +
∑

j: xk
j ≤x

ckj .

Using the definition of Xp
ψ(]a, b[), one can check that∑

j

ckj δxk
j
⇀ (u′)s weakly∗ in Mb(]a, b[)

and |
∑

j c
k
j δxk

j
|(]a, b[) → |(u′)s|(]a, b[) as k → ∞. Using this fact it is easy to see that

the sequence {uk} meets all of the requirements.
By combining Steps 1–4 with a diagonal argument, one can finally prove that

(3.27) holds for every u in Xp
ψ(]a, b[).

Corollary 3.5. Let {uk} be a sequence of functions in Xp
ψ(]a, b[) bounded in

L1(]a, b[) and such that

(3.29) C := sup
k

Fp(uk) < +∞.

Then there exists a subsequence (not relabeled) {uk} and a function u ∈ Xp
ψ(]a, b[)

such that

uk ⇀ u weakly∗ in BV (]a, b[),(3.30)

Ψp ◦ (u′k)a ⇀ Ψp ◦ (u′)a weakly in W 1,p(]a, b[),(3.31)
(u′k)a → (u′)a pointwise in ]a, b[.(3.32)
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Proof. With an argument entirely similar to the one used in the proof of Corol-
lary 2.7 we can extract a subsequence {uk} which satisfies (3.30) and (3.31). In turn,
(3.31) and the continuity of Ψ−1

p in R imply (3.32).

4. The staircase effect. The purpose of this section is to show analytically that
the presence of the higher order term in the functional F prevents the occurrence of
the so-called staircase effect, as opposed to what happens in image reconstructions
based on the total variation functional.

4.1. The Rudin–Osher–Fatemi model. We start by showing that staircase-
like structures do appear in solutions to the Rudin–Osher–Fatemi problem, i.e., in
minimizers for the functional ROFλ,g : BV (]a, b[) → R defined by

ROFλ,g(w) := |w′|(]a, b[) + λ

∫ b

a

(w − g)2 dx,

where λ > 0 is the fidelity parameter and g ∈ L2(]a, b[) is the given “signal” to be
processed. This fact is well known and numerically observed in many situations. We
provide here a simple analytical example. A different example is provided in [12], and
a more detailed analysis on the nature of the staircase effect in the Rudin–Osher–
Fatemi model can be found in a recent paper of Caselles, Chambolle, and Novaga [4].
Our example will be constructed by means of the following proposition which deals
with minimizers of ROFλ,g when g is a monotone function.

Proposition 4.1. Let g : [a, b] → [0, 1] be a nondecreasing function such that
g+(a) = 0 and g−(b) = 1. Let g−1 denote the left-continuous generalized inverse of g,
defined by

(4.1) g−1(c) := inf{x ∈ [a, b] : g(x) ≥ c}

for every c ∈ [0, 1], and assume that there exist 0 < c1 < c2 < 1 such that

(4.2) 2λ
∫ g−1(c1)

a

(c1 − g(x)) dx = 1 and 2λ
∫ b

g−1(c2)

(g(x) − c2) dx = 1.

Then the function u, defined by

u(x) :=

⎧⎪⎨⎪⎩
c1 if a ≤ x ≤ g−1(c1),
g(x) if g−1(c1) < x ≤ g−1(c2),
c2 if g−1(c2) < x ≤ b,

is the unique minimizer of ROFλ,g in BV (]a, b[).
Remark 4.2. Since∫ g−1(c)

a

(c− g(x)) dx =
∫ c

0

g−1(y) dy,
∫ b

g−1(c)

(g(x) − c) dx =
∫ 1

c

g−1(y) dy

for all c ∈ [0, 1], the continuity of the integral implies that condition (4.2) is satisfied
for every λ sufficiently large.

Proof of Proposition 4.1. We split the proof into two steps.
Step 1. We assume first that u is absolutely continuous. In order to prove the

minimality of u, by density it suffices to show that ROFλ,g(u + ϕ) ≥ ROFλ,g(u) for
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every ϕ ∈ C1([a, b]), which, in turn, due to the convexity of ROFλ,g, is equivalent to
proving that

(4.3)
d+

dε
ROFλ,g(u + εϕ)

∣∣∣∣
ε=0

≥ 0 for every ϕ ∈ C1([a, b]),

where d+

dε denotes the right derivative. By a straightforward computation, we have

(4.4)
d+

dε
ROFλ,g(u+ εϕ)

∣∣∣∣
ε=0

=
∫
{u′=0}

|ϕ′| dx+
∫
{u′>0}

ϕ′ dx+ 2λ
∫ b

a

(u− g)ϕdx.

Consider now the function θ : [a, b] → [0, 1] defined by θ(x) := 2λ
∫ x

a (u− g) dt. Using
(4.2) and the definition of u, one can check that θ(a) = θ(b) = 0, 0 ≤ θ ≤ 1, and
θ ≡ 1 in [g−1(c1), g−1(c2)]. In particular, {u′ > 0} ⊂ [g−1(c1), g−1(c2)] ⊂ {θ = 1} so
that by (4.4)

d+

dε
ROFλ,g(u + εϕ)

∣∣∣∣
ε=0

≥
∫ b

a

ϕ′θ dx+ 2λ
∫ b

a

(u− g)ϕdx = 0,

where the last equality is obtained by integrating by parts and by using the fact that
θ′ = 2λ(u − g) and θ(a) = θ(b) = 0. This shows (4.3) and concludes the proof of
Step 1.

Step 2. In the general case, we construct a sequence {gk} ⊂ AC([g−1(c1), g−1(c2)])
of nondecreasing functions such that gk(g−1(c1)) = c1, gk(g−1(c2)) = c2, and gk → g
in L2([g−1(c1), g−1(c2)]). Let g̃k be the function coinciding with gk in [g−1(c1), g−1(c2)]
and with g elsewhere in [a, b], and, analogously, let uk coincide with gk in the inter-
val [g−1(c1), g−1(c2)] and with u elsewhere. For any v ∈ BV (]a, b[), by applying the
previous step we obtain

ROFλ,g̃k
(v) ≥ ROFλ,g̃k

(uk) = ROFλ,g(u).

The minimality of u follows by letting k → ∞. Finally, uniqueness is a consequence
of the strict convexity of ROFλ,g.

As a corollary of the previous result, we can prove analytically the occurrence of
the staircase effect in a very simple case. Let g (x) := x, x ∈ [0, 1], be the original 1D
image to which we add the “noise”

hn (x) :=
i

n
− x if

i− 1
n

≤ x <
i

n
, i = 1, . . . , n,

where n ∈ N, so that the resulting degraded 1D image is given by the staircase function

(4.5) gn(x) :=
i

n
if

i− 1
n

≤ x <
i

n
, i = 1, . . . , n.

Note that, even though hn → 0 uniformly, the reconstructed image un preserves the
staircase structure of gn. Indeed, we show that there exists a nondegenerate interval
I ⊂ [0, 1] such that each un coincides with the degraded 1D image gn in I for all
n ∈ N. More precisely, we have the following theorem.

Theorem 4.3 (staircase effect). Let λ > 4, let gn be as in (4.5), and let un be
the unique minimizer of ROFλ,gn in BV (]0, 1[). Then for all n sufficiently large there
exist 0 < an < bn < 1, with

an → 1√
λ
, bn → 1 − 1√

λ
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as n → ∞, such that un = gn on [an, bn] and un is constant on each interval [0, an)
and (bn, 1].

Proof. Let g−1
n denote the generalized inverse function of gn defined by (4.1) with

g replaced by gn. As both {gn} and {g−1
n } converge uniformly to g(x) = x and since

λ > 4, one can check that for n large enough there exist 0 < c
(n)
1 < c

(n)
2 < 1 satisfying

2λ
∫ g−1

n

(
c
(n)
1

)
0

(
c
(n)
1 − gn

)
dx = 1 and 2λ

∫ 1

g−1
n

(
c
(n)
2

) (gn − c
(n)
2

)
dx = 1

with c
(n)
1 → c1 and c

(n)
2 → c2 as n→ ∞, where c1 and c2 are defined by

(4.6) 2λ
∫ c1

0

(c1 − x) dx = 1 and 2λ
∫ 1

c2

(x − c2) dx = 1.

By Proposition 4.1, the unique minimizer un of ROFλ,gn in BV (]0, 1[) takes the form

un(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c
(n)
1 if 0 ≤ x ≤ g−1

n

(
c
(n)
1

)
,

gn(x) if g−1
n

(
c
(n)
1

)
< x ≤ g−1

n

(
c
(n)
2

)
,

c
(n)
2 if g−1

n

(
c
(n)
2

)
< x ≤ 1.

The conclusion follows by observing that an := g−1
n (c(n)

1 ) → c1 and bn := g−1
n (c(n)

2 ) →
c2 and that c1 = 1√

λ
and c2 = 1 − 1√

λ
, thanks to (4.6).

4.2. Absence of the staircase effect: The case p = 1. Next, we show that
the presence of the higher order term in the functional F1 prevents the occurrence
of the staircase effect. We begin with the case p = 1. We consider the minimization
problem

(4.7) min

{
F1 (u) + λ

∫ b

a

(u− g)2 dx : u ∈ X1
ψ(]a, b[)

}
,

where F1 is the relaxed functional given in (2.38). To prove the absence of the
staircase effect we need the following auxiliary result that is of independent interest.

Proposition 4.4. Assume that ψ : R → ]0,+∞[ is a bounded Borel func-
tion satisfying (2.1) and (2.2). Let g : [a, b] → R be Lipschitz continuous, and let
u ∈ X1

ψ(]a, b[) be a solution of the minimization problem (4.7). Then u is Lipschitz
continuous and u′ ∈ BV (]a, b[).

Proof. The plan of the proof is the following. We will show that the discontinuity
set Su is empty and that the left and right limits (u′)a

− and (u′)a
+, respectively, defined

in (2.7), are finite everywhere on ]a, b] and on [a, b[, respectively. Note that this will
imply that the sets Z±[(u′)a] (see (2.5) and (2.6)) are empty and, in turn, that
u ∈W 1,1(]a, b[) by the properties of the space X1

ψ(]a, b[). Moreover, recalling that the
functions (u′)a

∨ and (u′)a
∧ defined in Remark 2.2 are upper and lower semicontinuous on

[a, b], it will also follow that both (u′)a
− and (u′)a

+ are bounded, yielding the Lipschitz
continuity of u. In turn, the fact that u′ ∈ BV (]a, b[) is a consequence of the local
Lipschitz continuity of Ψ−1

1 .
Step 1. We start by showing that Su is empty. We argue, by contradiction,

assuming that Su contains a point x0. Without loss of generality, we may suppose that
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νu(x0) = 1; i.e., u+(x0) > u−(x0). We also assume that 1
2 (u+(x0) + u−(x0)) ≥ g(x0).

In the following, it is convenient to think of u as coinciding everywhere with its lower
semicontinuous representative u∧ := min{u−, u+}.

Find ε > 0 so small that

(4.8)
∑

x∈Su

x∈]x0,x0+ε[

|[u](x)| < [u](x0)
4

,

and let C > 0 satisfy

(4.9) C > 2‖g′‖∞ and
1
2

(u+(x0) + u−(x0)) + Cε > u−(x0 + ε).

For t ∈ [0, 1] consider the affine function

ht(x) :=
(1 − t)

2
(u+(x0) + u−(x0)) + t

(
1
4
u−(x0) +

3
4
u+(x0)

)
+ C(x − x0)

and note that, by (4.9), there exists xt ∈]x0, x0 + ε[ such that

(4.10)
(
xt, ht

(
xt
))

∈ Γu and g < ht < u in
]
x0, x

t
[
,

where Γu stands for the extended graph of u defined by

Γu := {(x, t) ∈ ]a, b[×R : min{u−(x), u+(x)} ≤ t ≤ max{u−(x), u+(x)}}.

Let ut be the function defined by

(4.11) ut(x) :=

{
ht(x) if x ∈ ]x0, x

t[,
u(x) otherwise,

and note that

λ

(∫ b

a

|u− g|2 dx −
∫ b

a

|ut − g|2 dx
)

≥ λ

(∫ b

a

|u− g|2 dx−
∫ b

a

|u1 − g|2 dx
)

=: η > 0

(4.12)

for every t ∈ [0, 1]. Now it is convenient to approximate u with functions having only
finitely many jump points. Hence, the following approximation procedure is needed
only when Su is infinite. In this case, write Su = {x0, x1, . . . , xj , . . . }, for each k
define Sk

u := {xj : 0 ≤ j ≤ k}, and for x ∈ ]a, b[ set

uk (x) = u+ (a) +
∫ x

a

(u′)a
dt+ (u′)c (]a, x[) +

∑
xj<x, xj∈Sk

u

[u] (xj) .

Note that, since uk → u in L∞(]a, b[), for k large enough it follows from (4.9) and
(4.10) that for every t ∈ [0, 1] there exists xt

k ∈ ]x0, x0 + ε[ such that(
xt

k, h
t
(
xt

k

))
∈ Γuk

and g < ht < uk in
]
x0, x

t
k

[
,



2382 G. DAL MASO, I. FONSECA, G. LEONI, AND M. MORINI

where Γuk
denotes the extended graph of uk. For all such k, we consider the compari-

son function ut
k defined as in (4.11), with u and xt replaced by uk and xt

k, respectively.
Using the uniform convergence of {uk} to u and (4.10), we have that xt ≤ lim infk x

t
k,

which yields ut ≥ lim supk u
t
k L1-a.e. on ]a, b[. Moreover, uk → u in F1 energy. Hence,

also by (4.12) we may find k so large that for t ∈ [0, 1]

λ

(∫ b

a

|uk−g|2 dx−
∫ b

a

|ut
k−g|2 dx

)
≥ λ

(∫ b

a

|uk−g|2 dx−
∫ b

a

|u1
k−g|2 dx

)
≥ η

2
,(4.13)

F1(uk) + λ

∫ b

a

|uk − g|2 dx ≤ F1(u) + λ

∫ b

a

|u− g|2 dx+
η

4
.(4.14)

Let us fix k satisfying (4.13) and (4.14). We claim that there exists t̄ ∈ [0, 1] such
that xt̄

k is a continuity point for uk. Indeed, if not, then for every t ∈ [0, 1] there
exists a jump point xj , with 1 ≤ j ≤ k, such that xt

k = xj and the point (xt
k, h

t(xt
k))

belongs to the corresponding vertical segment of the extended graph of uk. Setting
Ij := {t ∈ [0, 1] : xt

k = xj} and σj := {(xj , h
t(xj)) : t ∈ Ij}, it is clear that

[0, 1] = ∪k
j=1Ij and H1(σj) = H1({(x0, h

t(x0)) : t ∈ Ij}). Thus,

∑
x∈Su

x∈]x0,x0+ε[

|[u](x)| ≥
k∑

j=1

H1(σj) = H1
(
{(x0, h

t(x0)) : t ∈ [0, 1]}
)

=
[u](x0)

4
,

in contradiction with (4.8).
Since from now on t̄ and k are fixed, to simplify the notation we set x̂ := xt̄

k,
û := ut̄

k, ĥ := ht̄, and v̂ := Ψ1 ◦ (û′)a. By construction (see (4.11)) we have

(4.15) |û′|(]a, b[) ≤ |u′k|(]a, b[).

Next, we claim that

(4.16) (u′)a
−(x̂) ≤ ĥ′(x̂) = C.

If (u′)a
−(x̂) ≤ 0, there is nothing to prove. If (u′)a

−(x̂) > 0, then by left continuity
(u′)a

−(y) > 0 for y sufficiently close to x̂, which, in turn, implies (u′)c(]y, x̂[) ≥ 0 by
the properties of X1

ψ(]a, b[). Since Suk
is finite and x̂ is a continuity point, for y in a

left neighborhood of x̂ we can write

ĥ(x̂) = uk(x̂) = uk(y) +
∫ x̂

y

(u′)a(s) ds+ (u′)c(]y, x̂[) > ĥ(y) +
∫ x̂

y

(u′)a(s) ds,

where we have used the fact that uk(x̂) = ĥ(x̂) and ĥ < uk in a left neighborhood of
x̂. Claim (4.16) follows.

Now, recalling that Φ(1, t1, t2) = 2Ψ1(+∞)−Ψ1(t1)−Ψ1(t2) for every t1, t2 ∈ R
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by (2.39) and using Remark 2.6, we estimate

|v′|([x0, x̂] \ Su) +
∑

x∈Su∩[x0,x̂]

Φ
(
νu, (u′)a

−, (u
′)a

+

)
≥ |v′|(]x0, x̂]) + Φ

(
1, (u′)a

−(x0), (u′)a
+(x0)

)
≥ |Ψ1

(
(u′)a

+(x0)
)
− Ψ1

(
(u′)a

−(x̂)
)
| + |Ψ1

(
(u′)a

+(x̂)
)
− Ψ1

(
(u′)a

−(x̂)
)
|

+ Φ
(
1, (u′)a

−(x0), (u′)a
+(x0)

)
= |Ψ1

(
(u′)a

+(x0)
)
− Ψ1

(
(u′)a

−(x̂)
)
| + |Ψ1

(
(u′)a

+(x̂)
)
− Ψ1

(
(u′)a

−(x̂)
)
|

+ 2Ψ1(+∞) − Ψ1

(
(u′)a

−(x0)
)
− Ψ1

(
(u′)a

+(x0)
)

(4.17)

≥ −Ψ1

(
(u′)a

−(x̂)
)

+ 2Ψ1(+∞) − Ψ1

(
(u′)a

−(x0)
)

+ |Ψ1

(
(u′)a

+(x̂)
)
− Ψ1

(
(u′)a

−(x̂)
)
|

= Ψ1(C) − Ψ1

(
(u′)a

−(x̂)
)

+ 2Ψ1(+∞) − Ψ1

(
(u′)a

−(x0)
)
− Ψ1(C)

+ |Ψ1

(
(u′)a

+(x̂)
)
− Ψ1

(
(u′)a

−(x̂)
)
|

≥ |Ψ1(C) − Ψ1

(
(u′)a

+(x̂)
)
| + Φ

(
1, (û′)a

− (x0), (û′)a
+ (x0)

)
= |v̂′| ([x0, x̂] \ Sû) +

∑
x∈Sû∩[x0,x̂]

Φ
(
νû, (û′)

a
− , (û

′)a
+

)
,

where in the last inequality we have used (4.11) and (4.16). Collecting (4.13), (4.15),
and (4.17) we deduce that

F1(û) + λ

∫ b

a

|û− g|2 +
η

2
≤ F1(uk) + λ

∫ b

a

|uk − g|2

and, in turn, by (4.14)

(4.18) F1(û) + λ

∫ b

a

|û− g|2 dx < F1(u) + λ

∫ b

a

|u− g|2 dx,

which contradicts the minimality of u.
If 1

2 (u+(x0)+u−(x0)) < g(x0), then we proceed in a similar manner: The compar-
ison function û is now constructed by replacing uk with an affine function (defined as
before and with C and t properly chosen) in a left neighborhood of x0. The argument
is completely analogous to the previous one, and we omit the details.

Step 2. We finally show that (u′)a
− and (u′)a

+ are finite everywhere in ]a, b] and in
[a, b[, respectively. We give the details only for (u′)a

−, since one can argue for (u′)a
+ in

an entirely similar way.
Recall that, by the previous step, u is continuous. Once again, we reason, by

contradiction, by assuming that there exists x̄ ∈ ]a, b] such that |(u′)a
−(x̄)| = +∞.

Without loss of generality, we may suppose that (u′)a
−(x̄) = +∞. Using Remark 2.2

and the differentiability properties of BV functions we may choose a point x1 ∈ ]a, x̄[
such that u is differentiable at x1 and

u(x1) �= g(x1), u′(x1) = (u′)a
−(x1) = (u′)a

+(x1), u′(x1) > 2‖g′‖∞, |v′|(]a, x1]) > 0.

The first condition is a consequence of the fact that g is Lipschitz and u cannot be
Lipschitz in any left neighborhood of x̄, since |(u′)a

−(x̄)| = +∞. The last condition
follows easily from the fact that (u′)a cannot be constant L1-a.e. on ]a, x̄[. Assume
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that u(x1) > g(x1). Then, by our choice of x1 and by the previous step, we can find
ε ∈ [0, 1

2 [, with

(4.19) Ψ1(u′(x1)) − Ψ1((1 − ε)u′(x1)) < |v′|([x1, b[),

such that the affine function h(x) := u(x1) + (1− ε)u′(x1)(x− x1) satisfies one of the
following conditions: Either there exists a point x2 ∈ ]x1, b[ for u such that

(4.20) h(x2) = u(x2) and g < h < u in ]x1, x2[

or

(4.21) g < h < u in ]x1, b[.

In the latter case, we set x2 := b. We now consider the comparison function

û(x) :=

{
h(x) if x ∈ ]x1, x2[,
u(x) otherwise,

and we denote v̂ := Ψ1 ◦ (û′)a. We claim that (4.18) holds, contradicting the mini-
mality of u. By (4.20) and (4.21) in any case we have

λ

∫ b

a

|û− g|2 dx < λ

∫ b

a

|u− g|2 dx.

Moreover, if x2 < b, we have |û′|([x1, x2]) = u(x2) − u(x1) ≤ |u′|([x1, x2]), while if
x2 = b, we have |û′|([x1, b[) = u−(b) − u(x1) ≤ |u′|([x1, b[) so that in both cases
|û′|([a, b[) ≤ |u′|(]a, b[). Hence, (4.18) will follow if we show that |v̂′|([x1, x2]) ≤
|v′|([x1, x2]), where [x1, x2] is replaced by [x1, b[ if x2 = b. To see this, we first assume
that (4.20) holds. Arguing as for (4.16), we deduce (u′)a

−(x2) ≤ h′(x2) = (1−ε)u′(x1).
Therefore, using the properties of x1, we have

|v′|([x1, x2]) = |v′|(]x1, x2[) + |v′|({x2})
≥ Ψ1(u′(x1)) − Ψ1((u′)a

−(x2)) + |Ψ1((u′)a
−(x2)) − Ψ1((u′)a

+(x2))|
= Ψ1(u′(x1)) − Ψ1((1 − ε)u′(x1)) + Ψ1((1 − ε)u′(x1)) − Ψ1((u′)a

−(x2))
+|Ψ1((u′)a

−(x2)) − Ψ1((u′)a
+(x2))|

≥ Ψ1(u′(x1)) − Ψ1((1 − ε)u′(x1)) + |Ψ1((1 − ε)u′(x1)) − Ψ1((u′)a
+(x2))|

= |v̂′|([x1, x2]).

If (4.21) holds, then by (4.19) we obtain

|v′|([x1, b[) > Ψ1(u′(x1)) − Ψ1((1 − ε)u′(x1)) = |v̂′|([x1, b[).

If u(x1) < g(x1), we modify the previous argument in the following way. We now
choose ε ∈ [0, 1

2 [ satisfying (4.19) with |v′|([x1, b[) replaced by |v′|(]a, x1]) and such
that the affine function h(x) defined before satisfies one of the following conditions:
Either there exists a point x2 ∈ ]a, x1[ such that h(x2) = u(x2) and u < h < g in
]x2, x1[ or u < h < g in ]a, x1[. In the latter case, we set x2 := a. We now consider
the comparison function

û(x) :=

{
h(x) if x ∈ ]x2, x1[,
u(x) otherwise,

and we proceed exactly as before to show (4.18).
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We now turn to the main theorem of this subsection.
Theorem 4.5. Assume that ψ : R → ]0,+∞[ is a bounded Borel function satis-

fying (2.1) and (2.2), let g : [a, b] → R be Lipschitz continuous, and let {hn} satisfy

(4.22) hn ⇀ 0 weakly∗ in L∞ (]a, b[) .

Define An as the class of all solutions to (4.7), with g replaced by gn := g+hn. Then
for n large enough every solution un ∈ An is Lipschitz continuous. Moreover,

(4.23) lim sup
n→∞

sup
w∈An

‖w‖1,∞ < +∞

and for every sequence {un} ⊂ An there exists a subsequence (not relabeled) and a
solution u to (4.7) such that un → u in W 1,p(]a, b[) for all p ∈ [1,+∞[.

Proof. It will be enough to prove that for any (sub)sequence {un} ⊂ An we may
extract a further subsequence (not relabeled) and find a solution u to (4.7) such that
un is Lipschitz continuous for n large enough,

(4.24) lim sup
n→∞

‖un‖1,∞ < +∞,

and un → u in W 1,p(]a, b[) for all p ∈ [1,+∞[. Since the sequence hn is bounded in
L∞ (]a, b[), for any w ∈ X1

ψ(]a, b[) we have

sup
n

(
F1 (un) + λ

∫ b

a

(un − gn)2 dx

)
≤ F1 (w) + λ

∫ b

a

(w − gn)2 dx ≤ C <∞

for a suitable constant C > 0 independent of n. By Corollary 2.7 there exist a
subsequence not relabeled and a function u ∈ X1

ψ(]a, b[) such that

(4.25) un ⇀ u weakly∗ in BV (]a, b[)

and

(4.26) u′n → (u′)a pointwise L1-a.e. in ]a, b[.

Moreover, since also the functions h2
n are equibounded, upon extracting a further

subsequence we may find f ∈ L∞(]a, b[) such that

(4.27) h2
n ⇀ f weakly∗ in L∞(]a, b[).

It is convenient to “localize” the functional F1: For every Borel set B ⊂ ]a, b[ and for
w ∈ X1

ψ(]a, b[) we set

(4.28) F1(w;B) := |w′|(B) + |v′|(B \ Sw) +
∑

x∈Sw∩B

Φ
(
νw, (w′)a

−, (w
′)a

+

)
,

where v := Ψ1 ◦ (w′)a. We divide the remaining part of the proof into two steps.
Step 1. We claim that u is a solution of the minimization problem (4.7) and that,

for every open interval I = ]c, d[, with a ≤ c < d ≤ b and c, d ∈ [a, b] \ S(u′)a ,

(4.29) lim
n→∞

F1 (un; I) = F1 (u; I) .
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To see this, note that for each n ∈ N

λ

∫
I

(un − gn)2 dx = λ

∫
I

(un − g)2 dx− 2λ
∫

I

(un − g)hn dx+ λ

∫
I

h2
n dx.

By (4.22), (4.25), and (4.27) it follows that

(4.30) lim
n→∞

∫
I

(un − gn)2 dx =
∫

I

(u− g)2 dx+
∫

I

f dx.

Recall, also, that by lower semicontinuity

(4.31) lim inf
n→∞

F1 (un;A) ≥ F1 (u;A)

for every open set A ⊂ ]a, b[.
By the minimality of un, for every w ∈ X1

ψ(]a, b[) we have

F1 (w) +λ
∫ b

a

(w − g)2 dx − 2λ
∫ b

a

(w − g)hn dx+ λ

∫ b

a

h2
n dx

= F1 (w) + λ

∫ b

a

(w − gn)2 dx ≥ F1 (un) + λ

∫ b

a

(un − gn)2 dx.

Using (4.31) (with A = ]a, b[) and once again (4.22) and (4.27), we get

F1 (w) + λ

∫ b

a

(w − g)2 dx+ λ

∫ b

a

f dx ≥ lim sup
n→∞

(
F1 (un) + λ

∫ b

a

(un − gn)2 dx

)

≥ lim inf
n→∞

(
F1 (un) + λ

∫ b

a

(un − gn)2 dx

)

≥ F1 (u) + λ

∫ b

a

(u− g)2 dx + λ

∫ b

a

f dx.

Given the arbitrariness of w ∈ X1
ψ(]a, b[) this implies that u is a solution of the

minimization problem (4.7). Moreover, taking w = u in the previous inequalities and
using (4.30) we deduce (4.29) for I = ]a, b[; i.e.,

(4.32) lim
n→∞

F1(un) = F1(u).

It remains to prove (4.29) for every open interval of the form I = ]c, d[, with c,
d ∈ [a, b]\S(u′)a . To this end, fix one such interval and assume, by contradiction, that

(4.33) lim sup
n→∞

F1 (un; I) > F1 (u; I) .

As u is continuous by Proposition 4.4, our assumption on I implies that the end
points c and d do not charge F1 (u; ·) so that F1 (u; I) = F1

(
u; I ∩ ]a, b[

)
. Therefore,

combining (4.31), (4.32), and (4.33) we obtain

F1(u) = F1

(
u; I ∩ ]a, b[

)
+ F1

(
u; ]a, b[ \ I

)
= F1 (u; I) + F1

(
u; ]a, b[ \ I

)
< lim sup

n→∞
F1 (un; I) + lim inf

n→∞
F1

(
un; ]a, b[ \ I

)
≤ lim

n→∞
F1(un) = F1(u),

which is a contradiction. This concludes the proof of (4.29).



A HIGHER ORDER MODEL FOR IMAGE RESTORATION 2387

Step 2. We now show that un is Lipschitz continuous for n large enough and that
(4.24) holds. Note that the convergence of un to u in W 1,p(]a, b[) for all p ∈ [1,+∞[
will then easily follow from (4.24) and (4.26). Assume, by contradiction, that the
conclusion is false. Then, arguing as at the beginning of the proof of Proposition 4.4,
we may find a subsequence (not relabeled) and points xn ∈ ]a, b[ such that one of the
following two cases holds:

(i) xn /∈ S(u′
n)a and |(u′n)a(xn)| → +∞;

(ii) xn ∈ Sun for every n ∈ N.
Assume that (i) holds and, without loss of generality, that (u′n)a(xn) → +∞. Upon
extracting a further subsequence, we may also assume that xn → x0 ∈ [a, b]. Re-
call that, by Proposition 4.4 and by the previous step, the function u is Lipschitz
continuous. Hence, there are two cases: Either

(4.34) F1(u; {x0} ∩ ]a, b[) = 0

or

(4.35) x0 ∈ S(u′)a , (u′)a
±(x0) ∈ R, F1(u; {x0}) = |Ψ1((u′)a

+(x0)) − Ψ1((u′)a
−(x0))|.

Assume first that (4.34) holds. Set L := ‖u′‖∞ and fix ε so small that

F1 (u; Iε) <
∫ +∞

L+1

ψ(t) dt,

where Iε := ]x0 − ε, x0 + ε[ ∩ ]a, b[. By (4.29) we also have

(4.36) F1 (un; Iε) <
∫ +∞

L+1

ψ(t) dt

for n large enough. On the other hand, by (4.26) there exists y ∈ Iε such that
(u′n)a(y) < L + 1 for n large. Moreover, taking into account (i), we also have
(u′n)a(xn) > L+ 1 for n large enough. Thus,

F1 (un; Iε) ≥ |v′n|(Iε) ≥ |Ψ1((u′n)a(xn))−Ψ1((u′n)a(y))| ≥ Ψ1((u′n)a(xn))−Ψ1(L+1).

Passing to the limit as n→ ∞, we then obtain

lim inf
n→∞

F1 (un; Iε) ≥ Ψ1(+∞) − Ψ1(L+ 1) =
∫ +∞

L+1

ψ(t) dt,

which contradicts (4.36).
In case (4.35) holds, then x0 ∈ ]a, b[. Set

(4.37)
η := 2Ψ1(+∞)−Ψ1((u′)a

+(x0))−Ψ1((u′)a
−(x0))−|Ψ1((u′)a

+(x0))−Ψ1((u′)a
−(x0))| > 0,

and choose ε such that both x0 − ε and x0 + ε belong to ]a, b[ \ S(u′)a and

F1 (u; Iε) < |Ψ1((u′)a
+(x0)) − Ψ1((u′)a

−(x0))| +
η

3
,(4.38)

|Ψ1((u′)a
±(y)) − Ψ1((u′)a

±(x0))| < η

4
for y ∈ I±ε ,(4.39)
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where Iε := ]x0 − ε, x0 + ε[, I+
ε := ]x0, x0 + ε[, and I−ε := ]x0 − ε, x0[. Note that by

(4.29) and (4.38) we have

(4.40) F1 (un; Iε) < |Ψ1((u′)a
+(x0)) − Ψ1((u′)a

−(x0))| +
η

3

for n large enough. Moreover, by (4.26) and (4.39) we may find y−, y+ ∈ Iε, with
y− < x0 < y+, such that

(4.41) y± /∈ S(u′
n)a and

∣∣Ψ1

(
(u′n)a

(
y±
))

− Ψ1

(
(u′)a

±(x0)
)∣∣ < η

4

for n large enough. As y− < xn < y+ for n sufficiently large, we have

F1 (un; Iε) ≥ |v′n|(Iε) ≥ |Ψ1((u′n)a(xn)) − Ψ1((u′n)a(y−))|
+ |Ψ1((u′n)a(xn)) − Ψ1((u′n)a(y+))|(4.42)

≥ |Ψ1((u′n)a(xn)) − Ψ1((u′)a
−(x0))|+|Ψ1((u′n)a(xn)) − Ψ1((u′)a

+(x0))|− η

2
,

where the last inequality follows from (4.41). Letting n → ∞ in (4.42) and recalling
(4.37) we deduce

lim inf
n→∞

F1 (un; Iε) ≥ 2Ψ1(+∞) − Ψ1((u′)a
+(x0)) − Ψ1((u′)a

−(x0)) − η

2

= |Ψ1((u′)a
+(x0)) − Ψ1((u′)a

−(x0))| +
η

2
,

which contradicts (4.40). This concludes the proof of (4.24) if (i) holds.
Assume now that (ii) holds, and let x0 ∈ [a, b] be the limit of a subsequence

(not relabeled) of {xn}. Passing to a further subsequence, we may also assume that
νun(xn) is constant, say, 1 (the other case is analogous). Again, either (4.34) or (4.35)
holds. If (4.34) holds, we may choose, as before, ε so small that (4.36) holds. On the
other hand, by (4.26) there exists y ∈ Iε such that (u′n)a(y) < L+ 1 for n large, and,
thus, taking into account (ii), we have

F1 (un; Iε) ≥ |v′n|(Iε \ {xn}) + Φ(1, (u′n)a
−(xn), (u′n)a

+(xn))

≥ |Ψ1((u′n)a(y)) − Ψ1(+∞)| =
∫ +∞

(u′
n)a(y)

ψ(t) dt >
∫ +∞

L+1

ψ(t) dt,

which contradicts (4.36). If (4.35) holds, then we may argue exactly as for case (i),
with the only difference that (4.42) must be replaced by

F1 (un; Iε) ≥ |v′n|(Iε \ {xn}) + Φ(1, (u′n)a
−(xn), (u′n)a

+(xn))

≥ |Ψ1((u′n)a
−(xn)) − Ψ1((u′n)a(y−))| +

∣∣Ψ1((u′n)a
+(xn)) − Ψ1

(
(u′n)a

(
y+
))∣∣

+ Φ(1, (u′n)a
−(xn), (u′n)a

+(xn))

≥ 2Ψ1(+∞) − Ψ1((u′)a
−(x0)) − Ψ1((u′)a

+(x0)) − η

2
= |Ψ1((u′)a

+(x0)) − Ψ1((u′)a
−(x0))| +

η

2
,

where we have used (4.37) and (4.41). The last chain of inequalities contradicts (4.40)
and concludes the proof of the theorem.
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4.3. Absence of the staircase effect: The case p > 1. We now turn to the
case p > 1. We consider the minimization problem

(4.43) min

{
Fp (u) + λ

∫ b

a

|u − g|2 dx : u ∈ Xp
ψ(]a, b[)

}
,

where Fp is the relaxed functional given in (3.24). We start with two auxiliary results.
Proposition 4.6. Let p > 1, and assume that ψ : R → ]0,+∞[ is a bounded

Borel function satisfying (2.2) and (3.1). Let g be Lipschitz continuous, and let un be
a sequence in Xp

ψ(]a, b[) such that supn Fp(un) < +∞ and un → g in L2(]a, b[). Then
g ∈ C1([a, b]) ∩Xp

ψ(]a, b[). Moreover, un ∈ C1([a, b]) for n large enough and un → g

in C1([a, b]).
Proof. By the assumptions and by Corollary 3.5 we deduce that g ∈ Xp

ψ(]a, b[).
The fact that g ∈ C1([a, b]) now follows from Remark 3.2(i). To prove the last part
of the statement we start by showing that (u′n)a → g′ uniformly in ]a, b[. Again, by
Corollary 3.5, the whole sequence un satisfies

(4.44) Ψp ◦ (u′n)a ⇀ Ψp ◦ g′ weakly in W 1,p(]a, b[),

which implies, in particular, that

(4.45) (Ψp ◦ (u′n)a)([a, b]) ⊂ [Ψp(−2‖g′‖∞),Ψp(2‖g′‖∞)] for n large enough.

Since by (2.2) Ψ−1
p is Lipschitz continuous on [Ψp(−2‖g′‖∞),Ψp(2‖g′‖∞)], it follows

from (4.44) and (4.45) that (u′n)a → g′ uniformly in ]a, b[. In turn, by Definition 3.1
we have that u′n = (u′n)a in ]a, b[. In particular, un ∈ C1 ([a, b]) by Remark 3.2(i) and
un → g in C1 ([a, b]).

Proposition 4.7. Let p and ψ be as in the previous proposition. Then, for every
C > 0, there exists λ = λ(C) with the following property: For all g ∈ C1 ([a, b]) ∩
Xp

ψ(]a, b[), with ‖g‖C1([a,b]) ≤ C and Fp(g) ≤ C, and for all λ ≥ λ, every solution u

to (4.43) belongs to C1([a, b]).
Proof. Assume, by contradiction, that for every n ∈ N there exist gn ∈ C1 ([a, b])∩

Xp
ψ(]a, b[), with ‖g′n‖∞ ≤ C and Fp(gn) ≤ C, and a solution un to

min

{
Fp (u) + n

∫ b

a

|u− gn|2 dx : u ∈ Xp
ψ(]a, b[)

}

which does not belong to C1([a, b]). Owing to Proposition 4.6 we may assume, without
loss of generality, that gn → g in C1([a, b]) for a suitable function g ∈ C1([a, b]) ∩
Xp

ψ(]a, b[). Moreover, by minimality, we have

Fp (un) + n

∫ b

a

|un − gn|2 dx ≤ Fp(gn) ≤ C.

It follows, in particular, that supn Fp(un) < +∞ and un → g in L2(]a, b[). By
Proposition 4.6 we conclude that un ∈ C1([a, b]) for n large enough, which gives a
contradiction.
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The next theorem shows that also in the case p > 1 the staircase effect does not
occur.

Theorem 4.8. Let ψ and p be as in Proposition 4.6, let g ∈ C1 ([a, b])∩Xp
ψ(]a, b[),

and let hn satisfy (4.22). For λ > 0 and n ∈ N let Aλ,n ⊂ Xp
ψ(]a, b[) be the class of

the solutions to the minimization problem (4.43), with g replaced by gn := g+hn. Let
λ be as in Proposition 4.7, with C := max{‖g‖C1([a,b]),Fp(g)}. Then for all λ ≥ λ we
have Aλ,n ⊂ C1 ([a, b]) for n sufficiently large. Moreover,

(4.46) lim
λ→∞

lim sup
n→∞

sup
u∈Aλ,n

‖u− g‖C1([a,b]) = 0.

Proof. We start by showing the second part of the statement. Assume, by contra-
diction, that (4.46) does not hold. Then there exist δ > 0, a sequence of real numbers
λk → +∞, and, for every k, a sequence of integers nk

j → ∞ as j → ∞ such that for
every k, j

(4.47) ‖uλk,nk
j
− g‖C1([a,b]) ≥ δ

for a suitable function uλk,nk
j
∈ Aλk,nk

j
, with the understanding that

‖uλk,nk
j
− g‖C1([a,b]) = +∞ if uλk,nk

j
�∈ C1([a, b]).

Arguing exactly as in Step 1 of the proof of Theorem 4.5 we can show that for every
k there exist a subsequence (still denoted by nk

j ) and a solution uk to (4.43), with λ
replaced by λk, such that

(4.48) uλk,nk
j
⇀ uk weakly∗ in BV (]a, b[) and Fp(uλk,nk

j
) → Fp(uk)

as j → ∞. Moreover, since g ∈ C1 ([a, b]) ∩Xp
ψ(]a, b[), we have, by minimality, that

(4.49) Fp (uk) + λk

∫ b

a

|uk − g|2 dx ≤ Fp(g),

which shows, in particular, that uk → g in L2(]a, b[). Combining (4.48) and (4.49)
and using a diagonal argument, we may find a subsequence nk

jk
such that

sup
k

Fp(uλk,nk
jk

) < +∞ and uλk,nk
jk

→ g in L2(]a, b[).

Proposition 4.6 then implies that uλk,nk
jk

→ g in C1([a, b]), which contradicts (4.47).
Finally, the first part of the statement follows from a similar argument, by con-

tradiction, as a consequence of Propositions 4.6 and 4.7 and from the fact that if
un ∈ Aλ,n then, up to subsequences, un converges to a solution of (4.43).
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Abstract. We construct new types of entire solutions for a class of monostable delayed lattice
differential equations with global interaction by mixing a heteroclinic orbit of the spatially averaged
ordinary differential equations with traveling wave fronts with different speeds. We also establish
the uniqueness of entire solutions and the continuous dependence of such an entire solution on
parameters, such as wave speeds, for the spatially discrete Fisher-KPP equation.

Key words. entire solution, traveling wave front, heteroclinic orbit, delayed lattice differential
equation, monostable nonlinearity

AMS subject classifications. 35B40, 35R10, 37L60, 58D25

DOI. 10.1137/080727312

1. Introduction. We consider the following delayed lattice differential equa-
tions:

u′n (t) = D
∑

i∈Z\{0}
I (i) [un−i (t) − un (t)] − dun (t) +

∑
i∈Z

J (i) b (un−i (t− τ)) ,(1.1)

where D > 0 is a given constant, τ ≥ 0, I(i) = I(−i) ≥ 0, J(i) = J(−i) ≥ 0,∑
i∈Z\{0} I(i) = 1,

∑
i∈Z

J(i) = 1,
∑

i∈Z\{0} e
λ|i|I(i) < ∞, and

∑
i∈Z

eλ|i|J(i) < ∞
for every λ ≥ 0. The birth function b ∈ C2(R), and we assume that there exists a
constant K > 0 such that

b (0) = dK − b (K) = 0

and that
(H1) for u ∈ (0,K), there hold b(u) > du, b′ (u) ≥ 0, and b(u) ≤ b′(0)u;
(H2) b′ (K) < d < b′ (0).

A specific function b(u) = pue−αu with p > 0 and α > 0, which has been widely used
in the mathematical biology literature, satisfies the above conditions for a wide range
of parameters p and α.

A special case when I(i) = 0 for |i| �= 1 and I(1) = 1
2 is

u′n =
D

2
[un+1 + un−1 − 2un] − dun +

∑
i∈Z

J (i) b (un−i (t− τ)) .(1.2)
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This system was derived by Weng, Huang, and Wu [40] for the dynamics of growth of
a single species population with two age classes distributed over a patchy environment
consisting of all integer nodes of a one-dimensional (1-D) lattice. Another special case
when τ = 0, J(0) = 1, and J(i) = 0 for |i| > 0 is

u′n (t) = D
∑

i∈Z\{0}
I (i) [un−i (t) − un (t)] + f (un (t)) ,(1.3)

which was derived by Bates and Chmaj [1] as an l2-gradient flow for a Helmholtz-free
energy functional with general long range interactions. Both lattice systems include,
as a special example, the following spatially discrete Fisher-KPP equation:

u′n(t) =
D

2
[un+1 + un−1 − 2un] + f (un (t)) .(1.4)

It is shown in [25] that (1.1) admits a nondecreasing traveling wave front φc(n+ct)
satisfying φc(−∞) = 0 and φc(+∞) = K for every c ≥ c∗ > 0. Furthermore,
limξ→−∞ φc(ξ)e−λ1(c)ξ = 1 and limξ→−∞ φ′c(ξ)e

−λ1(c)ξ = λ1(c) for c > c∗, where c
and λ1(c) satisfy

Δ (λ, c) = D
∑

i∈Z\{0}
I (i)

(
e−λi − 1

)
− cλ− d+ b′ (0) e−λcτ

∑
i∈Z

J (i) e−λi = 0(1.5)

and c∗ is determined by Δ(λ, c) = 0 and ∂
∂λΔ(λ, c) = 0. More precisely, there exist

c∗ > 0 and λ∗ > 0 such that
(D1) if 0 < c < c∗ and λ > 0, then Δ(λ, c) > 0;
(D2) if c = c∗, then the equation Δ(λ, c∗) = 0 has a double real root λ1(c∗) =

λ2(c∗) with 0 < λ1(c∗) = λ2(c∗) = λ∗ such that Δ(λ, c∗) > 0 for λ �= λ∗;
(D3) if c > c∗, then the equation Δ(λ, c) = 0 has two positive real roots λ1(c) and

λ2(c) with 0 < λ1(c) < λ∗ < λ2(c) such that λ′1(c) < 0, λ′2(c) > 0, d
dc{cλ1(c)} < 0,

and

Δ(λ, c) =

⎧⎨⎩
> 0 for λ < λ1(c),
< 0 for λ ∈ (λ1(c), λ2(c)) ,
> 0 for λ > λ2(c).

We note that in [25] (see also [1], where bistable waves were considered) there is a
further assumption on the kernel I; that is, the support of I contains either i = 1 or
two relatively prime integers, to ensure φ′c(ξ) > 0 for every c ≥ c∗. It is interesting to
note that, for c > c∗, we can confirm φ′c(ξ) > 0 for any ξ ∈ R without this assumption.
In fact, for a fixed c > c∗, their proof of the existence of nondecreasing traveling
wave fronts φc with φc(−∞) = 0, φc(+∞) = K, and limξ→−∞ φc(ξ)e−λ1(c)ξ = 1 is
independent of this assumption; so is the proof of limξ→−∞ φ′c(ξ)e−λ1(c)ξ = λ1(c).
We now note that φ′c(ξ) ≥ 0 for ξ ∈ R. Assume that there exists ξ0 ∈ R such that
φ′c(ξ0) = 0. Then there must be φ′′c (ξ0) = 0. It is obvious that φc satisfies

cφ′′c (ξ) = D
∑

i∈Z\{0}
I(i) [φ′c(ξ − i) − φ′c(ξ)] − dφ′c(ξ)

+
∑
i∈Z

J(i)b′ (φc (ξ − i− cτ))φ′c (ξ − i− cτ) ,

which implies that
∑

i∈Z\{0} I(i)φ
′
c(ξ0 − i) = 0. By

∑
i∈Z\{0} I(i) = 1, there exists

a i0 ∈ N such that I(i0) > 0 and φ′c(ξ0 − i0) = 0. Let ξ1 = ξ0 − i0. A similar
argument yields φ′c(ξ0 − 2i0) = φ′c(ξ1 − i0) = 0. Continuing this procedure, we have
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φ′c(ξ0 −mi0) = 0 for all m ∈ N, a contradiction to the fact limξ→−∞ φ′c(ξ)e
−λ1(c)ξ =

λ1(c). Therefore, we have φ′c(ξ) > 0 for ξ ∈ R. Of course, to prove φ′c(ξ) > 0 for the
case c = c∗ the above assumption on the support of I seems necessary. Since in what
follows in this paper we use only the traveling wave fronts φc with c > c∗, we shall
not require this assumption.

In the remainder of this paper, we always normalize the traveling wave front
φc(n+ ct) so that φc(0) = K

2 . Then, for each c ∈ (c∗,+∞), we set

αc = lim
z→−∞

φc(z)e−λ1(c)z.(1.6)

Furthermore, we define Ac > 0 for each c ∈ (c∗,+∞) by

Ac = inf
{
A > 0 : A ≥ φc(z)e−λ1(c)z for any z ∈ R

}
.(1.7)

It is easy to see that Ac ≥ αc.
Our focus is on the so-called entire solutions; here an entire solution of (1.1) is

a solution defined for all (n, t) ∈ Z × R. In what follows, we say that a sequence of
functions Φp(t) = {Φn,p(t)}n∈Z converges to a function Φp0(t) = {Φn,p0(t)}n∈Z in T
if, for every compact set S ⊂ Z × R, the functions Φn,p(t) and d

dtΦn,p(t) converge
uniformly in (n, t) ∈ S to Φn,p0(t) and d

dtΦn,p0(t) as p→ p0.
One of our main results can be stated as follows.
Theorem 1.1. Let Γ(t) be a heteroclinic orbit of the following functional differ-

ential equation:
d

dt
u(t) = −du(t) + b(u(t− τ)),

which is increasing and satisfies Γ(−∞) = 0, Γ(+∞) = K, limt→−∞ e−λ∗tΓ(t) = K,
and Γ(t) ≤ Keλ∗t for all t ∈ R, where λ∗ > 0 is the unique real root of the equation λ+
d−b′(0)e−λτ = 0. Then for every c1, . . . , cm, c′1, . . . , c

′
l > c∗, θ0, θ1, . . . , θm, θ

′
1, . . . , θ

′
l ∈

R, and χ ∈ {0, 1}, there exists an entire solution Φ(t) = {Φn(t)}n∈Z of (1.1) such that

max
{

max
1≤i≤m

φci (n+ cit+ θi) , max
1≤j≤l

φc′j

(
−n+ c′jt+ θ′j

)
, χΓ (t+ θ0)

}
(1.8)

≤ Φn(t) ≤ min
{
ϑ+

m(n, t), ϑ−l (n, t), ϑ0(n, t)
}

on (n, t) ∈ Z × R, where

ϑ+
m(n, t) = min

1≤i≤m

⎧⎨⎩φci (n+ cit+ θi) + χKeλ∗(t+θ0)

+
∑

1≤j≤m,j 	=i

Acje
λ1(cj)(n+cjt+θj) +

∑
1≤j≤l

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j)

⎫⎬⎭ ,

ϑ−l (n, t) = min
1≤i≤l

⎧⎨⎩φc′i
(−n+ c′it+ θ′i) + χKeλ∗(t+θ0)

+
∑

1≤j≤m

Acje
λ1(cj)(n+cjt+θj) +

∑
1≤j≤l,j 	=i

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j)

⎫⎬⎭ ,

ϑ0(n, t) = χΓ (t+ θ0) +
∑

1≤j≤m

Acje
λ1(cj)(n+cjt+θj) +

∑
1≤j≤l

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j),

and m, l ∈ N ∪ {0} with χ+m+ l ≥ 2. Moreover, the following statements hold:



ENTIRE SOLUTIONS IN DELAYED LATTICE EQUATIONS 2395

(i) For any n ∈ Z, Φ′
n(t) > 0 for t ∈ R.

(ii) limt→∞ supn∈Z |Φn(t) −K| = 0 and limt→−∞ sup|n|≤N0
|Φn(t)| = 0 for every

given N0 ∈ N.
(iii) If m ≥ 1, then limn→∞ ‖Φn(·) −K‖L∞[a,+∞) = 0 for every a ∈ R; if l ≥ 1,

then limn→−∞ ‖Φn(·) −K‖L∞[a,+∞) = 0 for every a ∈ R.
(iv) If χ = 1 and m = 0 (l = 0, respectively), then Φn(t) converges uniformly on

t ∈ [a, b] to Γ(t+ θ0) as n→ +∞ (n→ −∞, respectively) for any a, b ∈ R with a < b.
(v) If χ = 1, then Φn(t) ∼ Keλ∗(t+θ0) as t→ −∞ for every n ∈ Z.
(vi) If χ = 0, then, for every n ∈ Z, there exist B2(n) > B1(n) > 0 such that

B1(n)ecmaxλ1(cmax)t < Φn(t) < B2(n)ecmaxλ1(cmax)t for every t� −1,

where cmax = max{max1≤i≤m ci,max1≤j≤l c
′
j}.

(vii) If we denote Φ(t) by Φc1,...,cm;c′1,...,c′l;θ1,...,θm;θ′
1,...,θ′

l;θ0
(t) when χ = 1 and

denote Φ(t) by Φc1,...,cm;c′1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
l
(t) when χ = 0, then

Φc1,...,cm;c′1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
l
;θ0

(t)

converges to Φc1,...,cm;c′1,...,c′l;θ1,...,θm;θ′
1,...,θ′

l
(t) as θ0 → −∞ in T and uniformly on

(n, t) ∈ Z × (−∞, a] for every a ∈ R; Φc1,...,cm;c′1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
l
;θ0

(t) converges to
K as θ0 → +∞ in T and uniformly on (n, t) ∈ Z × [a,+∞) for every a ∈ R.

(viii) Φc1,...,cm;c′1,...,c′l;θ1,...,θm;θ′
1,...,θ′

l;θ0
(t) converges to

Φc1,...,ci−1,ci+1,...,cm;c′1,...,c′
l
;θ1,...,θi−1,θi+1,...,θm;θ′

1,...,θ′
l
;θ0

(t)

as θi → −∞ in T and uniformly on (n, t) ∈ {n : n ≤ N0, n ∈ Z} × (−∞, a] for every
N0 ∈ Z and a ∈ R. Φc1,...,cm;c′1,...,c′

l
;θ1,...,θm;θ′

1,...,θ′
l
;θ0

(t) converges to

Φc1,...,cm;c′1,...,c′j−1,c′j+1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
j−1,θ′

j+1,...,θ′
l
;θ0

(t)

as θ′j → −∞ in T and uniformly on (n, t) ∈ {n : n ≥ N0, n ∈ Z} × (−∞, a] for every
N0 ∈ Z and a ∈ R. Similar results hold for Φc1,...,cm;c′1,...,c′l;θ1,...,θm;θ′

1,...,θ′
l
(t).

(ix) Φ(t) converges to K as θi → +∞ in T and uniformly on (n, t) ∈ {n : n ≥
N0, n ∈ Z} × [a,+∞) for every N0 ∈ Z and a ∈ R; Φ(t) converges to K as θ′j → +∞
in T and uniformly on (n, t) ∈ {n : n ≤ N0, n ∈ Z} × [a,+∞) for every N0 ∈ Z and
a ∈ R.

From (iv) and (v) of Theorem 1.1 and the fact λ∗ < cmaxλ1(cmax), it follows that
Φc1,...,cm;c′1,...,c′l;θ1,...,θm;θ′

1,...,θ′
l;θ0

(t) are completely different from

Φc1,...,cm;c′1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
l
(t).

Theorem 1.1 applies to the spatially discrete Fisher-KPP equation (1.4), where
f ∈ C2 satisfies f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, f(u) > 0, and f(u) ≤ f ′(0)u
for u ∈ (0, 1). In this case, K = 1, d = maxu∈[0,1] |f ′(u)|, and b(u) = du + f(u). The
existence, uniqueness, and stability of traveling wave fronts of (1.4) were studied in
Chen, Fu, and Guo [3], Chen and Guo [4, 5], and Zinner [44]; the entire solutions of
(1.4) were studied by Guo and Morita [18] and Guo [19]. However, there seem to be no
results on the uniqueness of entire solutions of (1.4) and the continuous dependence on
parameters c1, . . . , cm, c′1, . . . , c

′
l, θ0, θ1, . . . , θm, θ

′
1, . . . , c

′
l given by Theorem 1.1. The

following theorem is devoted to this topic and is a spatially discrete version of results
of Hamel and Nadirashvili [20], where the reaction-diffusion Fisher-KPP equation was
considered.
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Theorem 1.2. For any c, c′ > c∗, θ0, θ, θ′ ∈ R, and 
, 
′, χ ∈ {0, 1} with 
 +

′ + χ ≥ 2, there exists a unique entire solution Φ(t) = {Φn(t)}n∈Z of (1.4) such that
(i)–(ix) of Theorem 1.1 hold and

max {
φc (n+ ct+ θ) , 
′φc′ (−n+ c′t+ θ′) , χΓ (t+ θ0)}(1.9)
≤ Φn(t)

≤ min
{

φc (n+ ct+ θ) + χef ′(0)(t+θ0) + 
′Ac′e

λ1(c′)(−n+c′t+θ′),


′φc′ (−n+ c′t+ θ′) + χef ′(0)(t+θ0) + 
Ace
λ1(c)(n+ct+θ),

χΓ (t+ θ0) + 
Ace
λ1(c)(n+ct+θ) + 
′Ac′e

λ1(c′)(−n+c′t+θ′)
}

on (n, t) ∈ Z × R. In particular, when 
 = 
′ = χ = 1, the entire solutions
Φ = Φc,c′,θ,θ′,θ0 depend continuously on (c, c′, θ, θ′, θ0) ∈ (c∗,+∞)2 × R

3 in T ; when

 = 
′ = 1 and χ = 0, the entire solutions Φ = Φc,c′,θ,θ′ depend continuously on
(c, c′, θ, θ′) ∈ (c∗,+∞)2 × R

2 in T ; when 
 = χ = 1 and 
′ = 0, the entire so-
lutions Φ = Φc,θ,θ0 depend continuously on (c, θ, θ0) ∈ (c∗,+∞) × R

2 in T ; when

′ = χ = 1 and 
 = 0, the entire solutions Φ = Φc′,θ′,θ0 depend continuously on
(c′, θ′, θ0) ∈ (c∗,+∞) × R

2 in T .
We note that when 
′ = χ = 0 and 
 = 1, Φn(t) = Φn;c,θ(t) = φ(n + ct + θ) for

(n, t) ∈ Z × R; when 
 = χ = 0 and 
′ = 1, Φn(t) = Φn;c′,θ′(t) = φ(−n + c′t + θ′)
for (n, t) ∈ Z × R; and when 
 = 
′ = 0 and χ = 1, Φn(t) = Φn;θ0(t) = Γ(t + θ0) for
(n, t) ∈ Z×R. Therefore, similarly to the discussions in Hamel and Nadirashvili [20],
it follows from Theorems 1.1 and 1.2 that the functions Φc,c′,θ,θ′,θ0(t) (Φc,c′,θ,θ′(t),
Φc,θ,θ0(t), Φc′,θ′,θ0(t), respectively) established by Theorem 1.2 are the 5-D (4-D, 3-D,
and 3-D, respectively) manifold of entire solutions of (1.4). In addition, (1.4) possesses
two 2-D manifolds of entire solutions of traveling wave type, namely, Φ+

c,θ(t) = {φc(n+
ct + θ)}n∈Z and Φ−

c′,θ′(t) = {φc′(−n+ c′t + θ′)}n∈Z, and a 1-D manifold of spatially
homogeneous entire solutions, namely, Γ(t + θ0). Let M5 (M4, M+

3 , M−
3 , M+

2 ,
M−

2 , and M1, respectively) be the above 5-D (4-D, 3-D, 3-D, 2-D, 2-D, and 1-D,
respectively) manifold of entire solutions. Then, from Theorems 1.1 and 1.2, it follows
that M4 is on the boundary of M5 (via taking the limit θ0 → −∞) and M+

3 (or
M−

3 ) is on the boundary of M5 (via taking the limit θ → −∞) (or θ′ → −∞). M+
2

(or M−
2 ) is on the boundary of M4 (via taking the limit θ′ → −∞) (or θ → −∞)

and is also on the boundary of M+
3 (or M−

3 ) (via taking the limit θ0 → −∞). M1 is
on the boundary of M+

3 (or M−
3 ) (via taking the limit θ → −∞) (or θ′ → −∞). In

particular, M+
2 (or M−

2 ) is on the boundary of M5 (via taking the limits θ′ → −∞
and θ0 → −∞) (or θ → −∞ and θ0 → −∞), and M1 is on the boundary of M5 (via
taking the limits θ → −∞ and θ′ → −∞). We can also easily show that the functions
Φc,c′,θ,θ′,θ0 converge to Φ+

c,θ as θ′ → −∞ and θ0 → −∞ in T and to Φ−
c′,θ′ as θ → −∞

and θ0 → −∞ in T , and that Φc,c′,θ,θ′,θ0 converge to Φθ0 as θ → −∞ and θ′ → −∞
in T .

Contrasting to [18, 20], we require only f(u) ≤ f ′(0)u for any u ∈ (0, 1) other than
f ′(u) ≤ f ′(0). We also note some differences on the uniqueness of entire solutions up to
a spatial-temporal translation between a reaction-diffusion equation and its spatially
discrete analogue (see a similar remark for the bistable nonlinearity reported by Wang,
Li, and Ruan [39]). Namely, consider the reaction-diffusion KPP equation

d

dt
u(x, t) = DΔu(x, t) + f(u),(1.10)
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for which the existence of entire solutions was established by Hamel and Nadirashvili
([20, Theorems 1.1, 1.3, and 1.4 and Corollary 1.5]). For comparison, we consider
only the entire solutions established by [20, Theorem 1.3], corresponding to the case
χ = 0 and 
 = 
′ = 1 in our Theorem 1.2. The entire solution vc,c′,h,h′(x, t) of
(1.10) established by [20, Theorem 1.3] and satisfying (1.4) of [20] is unique for each
given (c, c′, h, h′) ∈ (c∗,+∞)2 × R

2. Consequently, it is easy to see that for any
(h̄, h̄′) �= (h, h′),

vc,c′,h̄,h̄′(x, t) = vc,c′,h̄,h̄′(x+ x0, t+ t0) for (x, t) ∈ R
2,

where

x0 =
c
(
h̄′ − h′

)
− c′

(
h̄− h

)
c+ c′

, t0 =

(
h̄′ − h′

)
+
(
h̄− h

)
c+ c′

.

But for (1.4) if (θ̄, θ̄′) �= (θ, θ′), then Φn;c,c′,θ̄,θ̄′(t) = Φn+n0;c,c′,θ,θ′(t + t0) for any
(n, t) ∈ Z × R if and only if

c
(
h̄′ − h′

)
− c′

(
h̄− h

)
c+ c′

∈ Z,

and, hence, n0 = c(h̄′−h′)−c′(h̄−h)
c+c′ , t0 = (h̄′−h′)+(h̄−h)

c+c′ . When (c̄, c̄′) �= (c, c′), as proved
by [24, Theorem 1.1], there exists no (x0, t0) ∈ R

2 such that vc̄,c̄′,h,h′(·, ·) = vc,c′,h,h′(·+
x0, · + t0) on R

2 for (1.10). Similarly, for (1.4), there exists no (n0, t0) ∈ Z × R such
that Φn;c̄,c̄′,h,h′(t) = vn+n0;c,c′,h,h′(t) for any (n, t) ∈ Z × R.

There have been extensive studies about the dynamics of lattice delay systems
(1.1), as reported in a recent survey by Gourley and Wu [16]. In particular, the
asymptotic speed of propagation and the existence of monotone traveling waves were
studied in [25, 40]. The existence, uniqueness, and stability of traveling wave solutions
of (1.1) and (1.2) with monostable and bistable nonlinearities have henceforth been
studied; see Ma and Zou [26] for the bistable case and Ma and coworkers [25, 27] for
the monostable case. Also, Gourley and Wu [17] proved for (1.2) that if the birth
rate is so small that a patch alone cannot sustain a positive equilibrium, then the
whole population in the patchy environment will become extinct; and if the birth rate
is large enough that each patch can sustain a positive equilibrium and if the matu-
ration time is moderate, then the model exhibits nonlinear oscillations characterized
by the occurrence of multiple periodic traveling waves. A stage-structured model for
a single species on a finite 1-D spatial lattice was also studied in [22]. Related re-
sults on traveling waves of lattice differential equations (without delay) can be found
in Cahn, Chow, and Van Vleck [2], Chen, Fu, and Guo [3], Chen and Guo [4, 5],
Chow [10], Mallet-Paret [28], Wu and Zou [42], and references therein. We note that
some progress has been made as well for 2-D lattice delay differential equations; see,
for example, Cheng, Li, and Wang [8, 9], Shi, Li, and Cheng, [32], and Weng et al.
[41]. In addition, Wang, Li, and Ruan [35, 36, 37] studied traveling wave solutions of
reaction-diffusion equations with spatial-temporal delay.

The aforementioned studies also suggest that these wave solutions φc(n+ ct) are
defined for all t ∈ R. They often determine the long time behavior of the solutions of
Cauchy-type problems and constitute an important part of global attractors, which
consist of entire solutions. However, the global attractors can be quite complicated,
and recent studies for reaction-diffusion equations with continuous spatial variables
have showed the existence of many new types of entire solutions arising from the
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simple traveling wave fronts, and these entire solutions combined provide essential
information about the global attractors; see Chen and Guo [6], Chen, Guo, and Ni-
momiya [7], Fukao, Morita, and Nimomiya [14], Guo and Morita [18], Hamel and
Nadirashvili [20, 21], and Yagisita [43]. For the Fisher-KPP nonlinearity and bistable
nonlinearity, these entire solutions behave as two (opposite) wave fronts of positive
speed(s) approaching each other from both sides of the x-axis and then annihilate in a
finite time. Similar results hold true for nonlocal reaction-diffusion equations with de-
layed monostable and bistable nonlinearities ([24, 38]). Morita and Ninomiya [30] and
Guo [19] have constructed other types of entire solutions for reaction-diffusion equa-
tions and discrete diffusive equations with bistable nonlinearity, respectively, which
are different from those obtained in [6, 7, 14, 18, 20, 21, 24, 38, 43]. In particular, Li,
Liu, and Wang [23] established the existence of entire solutions for reaction-advection-
diffusion equations in cylinders, where the ignition temperature nonlinearity has been
studied. As reported in [30], entire solutions play also very important roles in some
other areas, for example, transient dynamics, distinct history of two solutions, etc.

The remainder of this paper is organized as follows: In section 2, we show how sys-
tems (1.1) arise from some areas, such as population biology. In section 3, we establish
some existence and comparison results, which are needed in what follows. In section 4,
we show the existence of heteroclinic orbit Γ(t) connecting two equilibria 0 and K.
Section 5 is devoted to Theorem 1.1, and then Theorem 1.2 is proved in section 6.

2. Important particular cases. In this section, we derive from a structured
population model a particular case of systems along with an explicit formula to cal-
culate J(i).

Consider a single species population with age structures distributed over a patchy
environment consisting of all integer nodes of a 1-D lattice. Let wn(t) be the density
of juvenile individuals in the nth patch and at time t, vn(t, a) be the density of
individuals with age a in the nth patch and at time t, and τ > 0 the length of a
juvenile period. Then

wn (t) =
∫ τ

0

vn (t, a) da.

Let un(t) be the density of mature individuals in the nth patch and at time t. Assume
that the spatial dispersal of juvenile individuals and mature individuals is isotropic
and can be long range (see Murray [31]). Assume that the diffusion rate of juvenile
individuals with age a is D(a) ≥ 0 and the diffusion rate of mature individuals is a
constant D > 0. Let K(n− i) and I(n− i) be the probability distributions of juvenile
individuals and mature individuals traveling from the ith patch to the nth patch,
respectively. Then we have

K(i) ≥ 0, I(i) ≥ 0, K(i) = K(−i), I(i) = I(−i),
∑

i∈Z\{0}
K(i) = 1,

∑
i∈Z\{0}

I(i) = 1.

Since only the mature population can reproduce, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂
∂tvn (t, a) + ∂

∂avn (t, a) = D (a)
∑

i∈Z\{0}K (n− i) [vi (t, a) − vn (t, a)]

−μ (a) vn (t, a) , 0 < a < τ,

vn (t, 0) = b̂ (un (t)) ,
d
dtun (t) = D

∑
i∈Z\{0} I (n− i) [ui (t) − un (t)] − d̂ (un (t)) + vn (t, τ) ,

(2.1)
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where μ(a) denotes the death rate of the juvenile individuals with age a ∈ (0, τ),
b̂ : R+ → R+ is the birth function, and d̂ : R+ → R+ is the death function of mature
individuals.

For fixed s ≥ −τ , let V s
n (t) = vn(t, t − s) for s ≤ t ≤ s + τ . Then V s

n (s) =
vn(s, 0) = b̂(un(s)). From (2.1),

d

dt
V s

n (t) =
∂

∂t
vn (t, a)

∣∣∣∣
a=t−s

+
∂

∂a
vn (t, a)

∣∣∣∣
a=t−s

(2.2)

= D (t− s)
∑

i∈Z\{0}
K (i)

[
V s

n−i (t) − V s
n (t)

]
− μ (t− s)V s

n (t) .

Note that the grid function V s
n (t) can be viewed as the discrete spectral of a

periodic function vs(t, ω) by discrete Fourier transform [15, 34]:

vs (t, ω) =
1√
2π

∞∑
n=−∞

e−i(nω)V s
n (t) ,(2.3)

V s
n (t) =

1√
2π

∫ π

−π

ei(nω)vs (t, ω)dω,(2.4)

where i is the imaginary unit. Applying (2.2) and (2.3) yields

∂

∂t
vs (t, ω) =

⎡⎣D (t− s)
∑

k∈Z\{0}
K (k)

(
e−ikω − 1

)
− μ (t− s)

⎤⎦ vs (t, ω)

=

⎡⎣−2D (t− s)
∑

k∈Z\{0}
K (k) sin2

(
kω

2

)
− μ (t− s)

⎤⎦ vs (t, ω) .

Solving the equation, we get

vs (t, ω) = exp

⎧⎨⎩−2
∑

k∈Z\{0}
K (k) sin2

(
kω

2

)∫ t

s

D (z − s) dz −
∫ t

s

μ (z − s) dz

⎫⎬⎭
×vs (s, ω) .

By the inverse discrete Fourier transform (2.4), we obtain

V s
n (t) =

1√
2π
e−

∫
t
s

μ(z−s)dz

×
∫ π

−π

ei(nω) exp

⎧⎨⎩−2αs

∑
k∈Z\{0}

K (k) sin2

(
kω

2

)⎫⎬⎭ vs (s, ω) dω,

where αt−s =
∫ t

s
D(z−s)dz =

∫ t−s

0
D(z)dz. Noting that V s

n (s) = vn(s, 0) = b̂(un(s)),
by (2.3) we have

vs (s, ω) =
1√
2π

∑
j∈Z

e−i(jω)V s
j (t) =

1√
2π

∑
j∈Z

e−i(jω)b̂ (uj (s)) .
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Hence,

V s
n (t) =

1
2π
e−

∫ t
s

μ(z−s)dz
∑
j∈Z

b̂ (uj (s))(2.5)

×
∫ π

−π

ei((n−j)ω) exp

⎧⎨⎩−2αs

∑
k∈Z\{0}

K (k) sin2

(
kω

2

)⎫⎬⎭ dω.

Let t = s+ τ , μ̂ = e−
∫ t

s
μ(z−s)dz = e−

∫ τ
0

μ(z)dz , and α =
∫ τ

0
D(z)dz. Then (2.5) yields

vn (t, τ) =
μ̂

2π

∑
j∈Z

βα (n− j) b̂ (uj (s)) =
μ̂

2π

∑
j∈Z

βα (n− j) b̂ (uj (t− τ)) ,

where

βα (j) =
∫ π

−π

ei(jω) exp

⎧⎨⎩−2α
∑

k∈Z\{0}
K (k) sin2

(
kω

2

)⎫⎬⎭ dω.

Thus, the last equality of (2.1) becomes

d

dt
un (t) = D

∑
i∈Z\{0}

I (i) [un−i (t) − un (t)] − d̂ (un (t))(2.6)

+
μ̂

2π

∑
j∈Z

βα (n− j) b̂ (uj (t− τ)) , t > 0.

Let d̂(u) = du, b(u) = μ̂b̂(u), and J(i) = 1
2πβα(i); then (2.6) reduces to (1.1).

In particular, the case when I(i) = K(i) = 0 for |i| �= 1 and I(1) = K(1) = 1
2

was studied by Weng, Huang, and Wu [40]. In this case, (2.6) reduces to (1.2). When
D(a) ≡ 0, we have α = 0, and it follows that (2.6) reduces to

d

dt
un (t) = D

∑
i∈Z\{0}

I (i) [un−i (t) − un (t)] − d̂ (un (t)) + μ̂b̂ (un (t− τ)) , t > 0.

When τ = 0, α = 0, and μ̂ = 1, we have

d

dt
un (t) = D

∑
i∈Z\{0}

I (i) [un−i (t) − un (t)] − d̂ (un (t)) + b̂ (uj (t)) , t > 0,

which coincides with (1.3).
When the diffusion rate D(a) and death rate μ(a) of the juvenile individuals are

independent of age a, namely, D0 ≡ D(a) and γ ≡ μ(a) for a ∈ [0, τ ], we have

d

dt
wn (t) = D0

∑
i∈Z\{0}

K (i) [wn−i (t) − wn (t)] − γun (t) + b̂ (un(t))(2.7)

− e−γτ

2π

∑
j∈Z

βα (n− j) b̂ (uj (t− τ)) , t > 0.

We note that it is easy to prove that
∑

j∈Z

1
2πβα(j) = 1. It seems difficult to prove

βα(j) ≥ 0 for general kernel
∑

i∈Z\{0}K(i) = 1 though it was proved by Weng, Huang,
and Wu [40] for the case when K(i) = 0 for |i| �= 1 and K(±1) = 1

2 . Nevertheless,
in the remainder of this paper, we consider (1.1) for general kernel functions I(i) and
J(i) satisfying the assumptions in section 1.
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3. Preliminaries. Consider the initial value problem{
u′n (t) = D

∑
i∈Z\{0} I (i) [un−i (t) − un (t)] − dun (t) +

∑
i∈Z

J (i) b (un−i (t− τ)) ,

un (s) = ϕn (s) ,
(3.1)
where n ∈ Z, t > 0, and s ∈ [−τ, 0].

Definition 3.1. A sequence of continuous differentiable functions {vn(t)}n∈Z,
t ∈ [−τ, l), l > 0, is called a supersolution (subsolution) of (3.1) on [0, l) if

v′n (t) ≥ (≤)D
∑

i∈Z\{0}
I(i) [vn−i (t) − vn (t)] − dvn (t)(3.2)

+
∑
i∈Z

J (i) b (vn−i (t− τ))

for all t ∈ [0, l).
Lemma 3.2. For any ϕ = {ϕn}n∈Z with ϕn ∈ C([−τ, 0], [0,K]), (3.1) admits

a unique solution u(t;ϕ) = {un(t;ϕ)}n∈Z on [0,+∞) satisfying un(s) = ϕn(s) and
0 ≤ un(t) ≤ K for s ∈ [−τ, 0], t ∈ [−τ,+∞), and n ∈ Z. For any pair of supersolution
w+

n (t) and subsolution w−
n (t) of (3.1) on [0,+∞) with 0 ≤ w−

n (t) ≤ K, 0 ≤ w+
n (t) ≤ K

for t ∈ [−τ,+∞), n ∈ Z, and w+
n (s) ≥ w−

n (s) for s ∈ [−τ, 0], n ∈ Z, there holds
w+

n (t) ≥ w−
n (t) for t ≥ 0, n ∈ Z.

Note that (3.1) is equivalent to{
un (t) = ϕn (0) e−(D+d)t +

∫ t

0
e(D+d)(s−t)Hn [u] (s) ds, t > 0,

un (t) = ϕn (t) , t ∈ [−τ, 0] ,

where Hn[u](t) = D
∑

i∈Z\{0} I(i)un−i(t) +
∑

i∈Z
J(i)b(un−i(t− τ)). Lemma 3.2 can

be proved using an argument used in [26, Lemma 4.1].
Consider also the following linear initial value problem:{

u′n (t) = D
∑

i∈Z\{0} I (i) [un−i (t) − un (t)] − dun (t) + b′ (0)
∑

i∈Z
J (i)un−i (t− τ) ,

un (s) = ϕn (s) ∈ C ([−τ, 0] ,R) ,
(3.3)
where n ∈ Z, t > 0, and s ∈ [−τ, 0].

Before stating the following theorem, we first define a Banach space l∞ by

l∞ =
{
ξ = {ξi}i∈Z

, ξi ∈ R : sup
i∈Z

|ξi| <∞
}

with the norm ‖ξ‖l∞ = supi∈Z |ξi|.
Theorem 3.3. For any ϕ = {ϕn}n∈Z with ϕ ∈ C([−τ, 0], l∞), (3.3) admits a

unique solution u(t) := u(t;ϕ) = {un(t;ϕ)}n∈Z on [0,+∞). Furthermore, if ϕ1, ϕ2 ∈
C([−τ, 0], l∞) satisfy ϕ1

n(s) ≤ ϕ2
n(s) for any n ∈ Z and s ∈ [−τ, 0], then un(t;ϕ1) ≤

un(t;ϕ2) holds for any n ∈ Z and t > 0.
Proof. Let X = l∞. Set X+ = {ξ ∈ l∞ : ξi ≥ 0 for each i ∈ Z}. Then it is easy

to see that X+ is a closed cone of X . Let T (t) = e−(D+d)t; it is obvious that {T (t)}
is a strongly continuous semigroup on X . In particular, it is strongly positive. Now
let C = C([−τ, 0], X) be the Banach space of continuous functions from [−τ, 0] into
X with the supremum norm. Set C+ = {Φ ∈ C : Φ(s) ∈ X+, s ∈ [−τ, 0]}. Then C+ is
a positive cone of C. For any continuous function w : [−τ,+∞) → X , define wt ∈ C,
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t ∈ [0,+∞), by wt(s) = w(t + s), s ∈ [−τ, 0]. Then the map t �→ wt is a continuous
function from [0,+∞) to C.

Define f : C → X by

f (w) = {fi (w)}i∈Z

for w = {wi}i∈Z ∈ C, where

fi (w) = D
∑

j∈Z\{0}
I (j)wi−j(0) + b′(0)

∑
k∈Z

J (k)wi−k(−τ).

It is not difficult to verify that f : C → X is globally Lipschitz continuous. Further-
more, since for any v, w ∈ C with v ≥ w in C,

fi (v) − fi (w) = D
∑

j∈Z\{0}
I (j) vi−j(0) −D

∑
j∈Z\{0}

I (j)wi−j(0)

+ b′(0)
∑
k∈Z

J (k) vi−k(−τ) − b′(0)
∑
k∈Z

J (k)wi−k(−τ)

≥ 0,

it follows that f(v) ≥ f(w) in X for any v, w ∈ C with v ≥ w, which implies that
f : C → X is quasi-monotone in the sense that

lim
h→0

1
h

dist
(
(v (0) − w (0)) + h [f (v) − f (w)] , X+

)
= 0

for any v, w ∈ C with v ≥ w.
Note that (3.3) is equivalent to{

u (t) = T (t)u (0) +
∫ t

0
T (t− s) f (us) ds,

u (t) = ϕ (t) ,
t > 0,
t ∈ [−τ, 0] .(3.4)

TakeM0 = maxt∈[−τ,0] ‖ϕ(t)‖l∞ . Furthermore, define a vector-valued function v+(·) =
{v+

n (·)}n∈Z : [−τ,+∞) → X by{
v+

n (t) = M0, t ∈ [−τ, 0] ,

v+
n (t) = M0e

(b′(0)−d)t, t > 0 for any n ∈ Z.
(3.5)

It is easy to verify that v+ satisfies

v+ (t) ≥ T (t) v+ (s) +
∫ t

s

T (t− r) f
(
v+

r

)
dr for any t > s ≥ 0.(3.6)

Define v−(·) = {v−n (·)}i∈Z : [−τ,+∞) → X by v−(·) = −v+(·). Then v− satisfies

v− (t) ≤ T (t) v− (s) +
∫ t

s

T (t− r) f
(
v−r

)
dr for any t > s ≥ 0.(3.7)

Now we use the conclusions of [29]. By setting S(t, s) = T (t, s) = T (t − s) for any
t ≥ s ≥ 0 and B(t,Φ) = f(Φ), the existence and uniqueness of the solution u(t;ϕ)
follows from [29, Corollary 5].
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For any ϕ1, ϕ2 ∈ C with ϕ1 ≤ ϕ2 in C, again applying [29, Corollary 5], we have

v− (t) ≤ u
(
t;ϕ1

)
≤ u

(
t;ϕ2

)
≤ v+ (t) in X for any t ≥ 0,

via letting

M0 = max
{

max
s∈[−τ,0]

∥∥ϕ1 (s)
∥∥

l∞
, max
s∈[−τ,0]

∥∥ϕ2 (s)
∥∥

l∞

}
in (3.5). This implies the solution semiflow is order preserving. The proof is com-
plete.

Remark 3.1. Assume that the continuous functions w± = {w±
n }n∈Z : [−τ,+∞) →

l∞ satisfy (3.6) and (3.7), respectively, and w+
n (s) ≥ w−

n (s) for any (n, s) ∈ Z×[−τ, 0];
then we have w+

n (t) ≥ w−
n (t) for any (n, t) ∈ Z × [0,+∞).

Theorem 3.4. Assume that

w−
n (t) ∈ C ([−τ,∞), (−∞,K]) and w+

n (t) ∈ C ([−τ,∞), [0,∞))

satisfy w−
n (t) ≤ w+

n (t) for any t ∈ [−τ, 0] and n ∈ Z and

d

dt
w+

n (t) ≥ D
∑

i∈Z\{0}
I(i)

[
w+

n−i (t) − w+
n (t)

]
− dw+

n (t)(3.8)

+ b′(0)
∑
i∈Z

J (i)w+
n−i (t− τ) ,

d

dt
w−

n (t) ≤ D
∑

i∈Z\{0}
I(i)

[
w−

n−i (t) − w−
n (t)

]
− dw−

n (t)(3.9)

+ b′(0)
∑
i∈Z

J (i)w−
n−i (t− τ)

for any t > 0 and n ∈ Z. Then there holds w+
n (t) ≥ w−

n (t) for any t > 0 and n ∈ Z.
Proof. Put wn(t) := w−

n (t) − w+
n (t), n ∈ Z, t ∈ [−τ,+∞). Then wn(t) is

continuous and bounded from above by K, and w(t) := supn∈Z wn(t) is continuous
on [−τ,∞). We use a contradiction argument to prove the assertion. Suppose that
the assertion is not true. Let M0 > 0 be such that M0 + d − b′(0)e−M0τ > 0. Then
there exists t0 > 0 such that w(t0) > 0 and

w (t0) e−M0t0 = sup
t≥−τ

{
w (t) e−M0t

}
> w (s) e−M0s for all s ∈ [−τ, t0).(3.10)

Let {nj}j∈N be a sequence so that wnj (t0) > 0 for all j ≥ 1 and limj→∞ wnj (t0) =
w(t0). Let {tj}j∈N ⊂ (0, t0] so that

wnj (tj) e−M0tj = max
t∈[0,t0]

{
wnj (t) e−M0t

}
.(3.11)

Since

wnj (t0) e−M0t0 ≤ wnj (tj) e−M0tj ≤ w (tj) e−M0tj ≤ w (t0) e−M0t0 ,

we have limj→+∞ w(tj)e−M0tj = w(t0)e−M0t0 . Then there must be limj→+∞ tj = t0
due to (3.10). In view of wnj (t0)e−M0(t0−tj) ≤ wnj (tj) ≤ w(t0)e−M0(t0−tj), we obtain
limj→+∞ wnj (tj) = w(t0).
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Following (3.11), for each j ≥ 1, we have

0 ≤ d

dt

{
wnj (t) e−M0t

}
t=tj

=
[
w′

nj
(tj) −M0wnj (tj)

]
e−M0tj ,

and, hence, w′
nj

(tj) ≥M0wnj (tj). Then it follows from (3.8) and (3.9) that

0 ≥ w′
nj

(tj) −D
∑

i∈Z\{0}
I (i)

[
wnj−i (tj) − wnj (tj)

]
+ dwnj (tj)

− b′ (0)
∑
i∈Z

J (i)
[
w−

nj−i (tj − τ) − w+
nj−i (tj − τ)

]
≥ (M0 +D + d)wnj (tj) −D

∑
i∈Z\{0}

I (i)wnj−i (tj) − b′ (0)w (tj − τ)

≥ (M0 +D + d)wnj (tj) −Dw (tj) − b′ (0)w (tj − τ) .

Taking j → +∞, we have

0 ≥ (M0 +D + d)w (t0) −Dw (t0) − b′ (0) eM0(t0−τ)
[
w (t0 − τ) e−M0(t0−τ)

]
≥ (M0 + d)w (t0) − b′ (0) eM0(t0−τ)w (t0) e−M0t0

=
[
M0 + d− b′ (0) e−M0τ

]
w (t0) .

In view of M0 + d − b′(0)e−M0τ > 0, we obtain that w(t0) ≤ 0, which contradicts
to w(t0) > 0. Consequently, we conclude that w+

n (t) ≥ w−
n (t) for all n ∈ Z and

t ∈ (0,+∞). This completes the proof.

4. Existence of heteroclinic orbits. In this section, we show the existence
of a heteroclinic orbit connecting the equilibria u ≡ 0 and u ≡ K for the following
functional differential equation:

d

dt
u(t) = −du(t) + b(u(t− τ)).(4.1)

There are now various methods developed to establish the existence of such a hetero-
clinic orbit, for example, Faria, Huang, and Wu [11], Faria and Trofimchuk [12, 13],
Li, Wang, and Wu [24], and Smith [33]. However, except for Faria and Trofimchuk
[13], these results do not give the exponential decay rate of the heteroclinic orbit
connecting the equilibria u ≡ 0 and u ≡ K at minus infinity. At the same time, the
results in [13] are not directly applicable (see the condition (A1) of [13]) and do not
ensure the monotonicity of the heteroclinic orbit.

Define

Λ (λ) = λ+ d− b′ (0) e−λτ ;

then it is easy to prove that the equation Λ(λ) = 0 has one and only one real root
λ∗ > 0 such that Λ(λ) < 0 for any λ < λ∗ and Λ(λ) > 0 for any λ > λ∗.

Define an operator S : C(R, [0,K]) → C(R, [0,K]) by

S (u) (t) = e−dt

∫ t

−∞
edsb (u (s− τ)) ds for any u ∈ C (R, [0,K]) .
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Proposition 4.1.

(i) If u ∈ C(R, [0,K]), then S(u) ∈ C1(R, [0,K]).
(ii) For any u, v ∈ C(R, [0,K]) with u ≤ v, S(u) ≤ S(v).
(iii) For any u ∈ C(R, [0,K]), if u(·) is increasing in R, then so is S(u)(·).
Let b′′max = maxu∈[0,K] |b′′(u)|. Define

u (t) = Kmin
{
eλ∗t, 1

}
and u (t) = max

{
Keλ∗t

(
1 −Meεt

)
, 0
}
,

where ε ∈ (0, λ∗) and M > 1 with

1 − (d+ λ∗) e−ετ

d+ λ∗ + ε
− (d+ λ∗)Ke−λ∗τ b′′max

Mb′ (0) (d+ 2λ∗)
> 0.

Lemma 4.2. For any t ∈ R, S(u)(t) ≤ u(t) and u(t) ≤ S(u)(t).
Proof. First, we prove S(u)(t) ≤ u(t). When t ≥ 0, u(t) = K. Therefore,

S (u) (t) = e−dt

∫ t

−∞
edsb (u (s− τ)) ds

≤ e−dt

∫ t

−∞
edsb (K)ds = dKe−dt

∫ t

−∞
edsds = K = u (t) .

When t < 0, u(t) = Keλ∗t. Noting that d+ λ∗ = b′(0)e−λ∗τ , we have

S (u) (t) = e−dt

∫ t

−∞
edsb (u (s− τ)) ds ≤ e−dt

∫ t

−∞
edsb′(0)u (s− τ) ds

≤ b′ (0)Ke−dt

∫ t

−∞
edseλ∗(s−τ)ds =

b′ (0) e−λ∗τK

d+ λ∗
eλ∗t = u (t) .

Now we prove u(t) ≤ S(u)(t). Let t0 = 1
ε ln 1

M < 0 such that 1−Meεt0 = 0. When
t ≥ t0, u(t) = 0, and, hence, u(t) ≤ S(u) (t). When t < t0, u(t) = Keλ∗t(1 −Meεt) ≤
Keλ∗t. In this case, we have

S (u) (t) = e−dt

∫ t

−∞
edsb (u (s− τ)) ds

≥ e−dt

∫ t

−∞
eds

[
b′ (0)u (s− τ) − b′′maxu

2 (s− τ)
]
ds

≥ e−dt

∫ t

−∞
eds

[
b′ (0)Keλ∗(s−τ)

(
1 −Meε(s−τ)

)
− b′′maxK

2e2λ∗(s−τ)
]
ds

=
b′ (0)Ke−λ∗τ

d+ λ∗
eλ∗t − Mb′ (0)Ke−(λ∗+ε)τ

d+ λ∗ + ε
e(λ∗+ε)t − b′′maxK

2e−2λ∗τ

d+ 2λ∗
e2λ∗t

≥ u (t) +
Mb′ (0)Ke−λ∗τ

d+ λ∗

[
1 − (d+ λ∗) e−ετ

d+ λ∗ + ε
− (d+ λ∗)Ke−λ∗τ b′′max

Mb′ (0) (d+ 2λ∗)

]
e(λ∗+ε)t

≥ u (t) .

The proof is complete.
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Theorem 4.3. There exists a heteroclinic solution Γ(t) of (4.1), which is in-
creasing on R and satisfies limt→−∞ e−λ∗tΓ(t) = K, Γ(+∞) = K, Γ(t) ≤ Keλ∗t, and
Γ′(t) > 0 for every t ∈ R.

Proof. By an argument similar to that of [42, Theorem 3.1], we can get a nonde-
creasing solution Γ(t) which meets the theorem except Γ′(t) > 0 for any t ∈ R. Since
Γ′(t) satisfies

Γ′′(t) = −dΓ′(t) + b′ (Γ(t− τ)) Γ′(t− τ) ∀t ∈ R,

we have

Γ′(t) = e−d(t−s)Γ′(s) +
∫ t

s

e−d(t−r)b′ (Γ(t− τ)) Γ′(r − τ)dr for any s < t.

Note that Γ′(t) ≥ 0 for any t ∈ R. Then it is easy to see that if Γ′(t0) > 0 for some
t0 ∈ R, then Γ′(t) > 0 for all t > t0. In view of limt→−∞ e−λ∗tΓ(t) = K, we know
that there exists a sequence {ti} with ti → −∞ as i → +∞ such that Γ(ti) > 0
for any i ∈ N. Hence, we conclude Γ′(t) > 0 for any t ∈ R. This completes the
proof.

5. Proof of Theorem 1.1. In this section, we prove Theorem 1.1.
Lemma 5.1. Suppose that u(t;ϕ) = {un(t;ϕ)}n∈Z is a solution of (1.1) with

initial value ϕ = {ϕn}n∈Z with ϕn ∈ C([−τ, 0], [0,K]); then there exists a positive
constant M∗ > 0 such that for any ϕ = {ϕn}n∈Z with ϕn ∈ C([−τ, 0], [0,K]) and
t > τ , |u′n(t;ϕ)| ≤M∗ and |u′′n(t;ϕ)| ≤M∗.

Proof. Denote un(t;ϕ) by un(t). Let M ′ = 2DK + 2dK. It is easy to see that
|u′n(t;ϕ)| ≤M ′ for any t > 0. For t > τ , there is

u′′n (t) = D
∑

i∈Z\{0}
I(i)

[
u′n−i (t) − u′n (t)

]
− du′n (t) +

∑
i∈Z

J (i) b′ (un−i (t− τ)) u′n−i (t− τ) .

Set M ′′ = 2DM ′ + dM ′ + M ′b′(0). Then |u′′n(t;ϕ)| ≤ M ′′. Note that M ′ and M ′′

are independent of ϕ and t > τ . Take M∗ = max{M ′,M ′′}. This completes the
proof.

Lemma 5.2. Let uk(t;ϕk) = {uk
n(t;ϕk)}n∈Z be a solution of the following initial

value problem:⎧⎪⎨⎪⎩
d
dtu

k
n (t) = D

∑
i∈Z\{0} I (i) [un−i (t) − un (t)]

−dun (t) +
∑

i∈Z
J (i) b (un−i (t− τ)) , t > 0,

uk
n (t) = ϕk

n (t) , t ∈ [−τ, 0] ,

where

ϕk
n (t) = max

{
max

1≤i≤m
φci (n+ ci (t− k) + θi) ,

max
1≤j≤l

φc′j

(
−n+ c′j (t− k) + θ′j

)
, χΓ ((t− k) + θ0)

}
.



ENTIRE SOLUTIONS IN DELAYED LATTICE EQUATIONS 2407

Then vk
(
t;ϕk

)
=
{
uk

n

(
t+ k;ϕk

)}
n∈Z

satisfies

lim sup
t>−k,k→+∞

vk
n (t) ≤ φci (n+ cit+ θi) + χKeλ∗(t+θ0) +

∑
1≤j≤m,j 	=i

Acje
λ1(cj)(n+cjt+θj)

+
∑

1≤j≤l

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j) for 1 ≤ i ≤ m,(5.1)

lim sup
t>−k,k→+∞

vk
n (t) ≤ φc′i

(−n+ c′it+ θ′i) + χKeλ∗(t+θ0) +
∑

1≤j≤m

Acje
λ1(cj)(n+cjt+θj)

+
∑

1≤j≤l,j 	=i

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j) for 1 ≤ i ≤ l,(5.2)

lim sup
t>−k,k→+∞

vk
n (t) ≤ χΓ (t+ θ0) +

∑
1≤j≤m

Acje
λ1(cj)(n+cjt+θj)

+
∑

1≤j≤l

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j).(5.3)

Proof. We prove only (5.1), because the proofs of (5.2) and (5.3) are similar to
that of (5.1). Assume m ≥ 1. Consider i = 1. Let

wk
n (t) = uk

n (t) − φc1 (n+ c1(t− k) + θ1) .

Then wk
n(t) satisfies

d

dt
wk

n (t) = D
∑

i∈Z\{0}
I (i) [wn−i (t) − wn (t)] − dvn (t) +

∑
i∈Z

J (i) b (un−i (t− τ))

−
∑
i∈Z

J (i) b (φc1 (n− i+ c1 (t− τ) + θ1))

≤ D
∑

i∈Z\{0}
I (i) [wn−i (t) − wn (t)] − dwn (t) + b′ (0)

∑
i∈Z

J (i)wn−i (t− τ) .

Since

χKeλ∗((t−k)+θ0) +
∑

2≤j≤m

Acje
λ1(cj)(n+cj(t−k)+θj) +

∑
1≤j≤l

Ac′j
eλ1(c′j)(−n+c′j(t−k)+θ′

j)

is a solution of (3.3) with

ϕn (s) = χKeλ∗((s−k)+θ0) +
∑

2≤j≤m

Acje
λ1(cj)(n+cj(s−k)+θj)

+
∑

1≤j≤l

Ac′j
eλ1(c′j)(−n+c′j(s−k)+θ′

j)
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for any s ∈ [−τ, 0] and n ∈ Z, then by Theorem 3.4 and

χKeλ∗((s−k)+θ0) +
∑

2≤j≤m

Acje
λ1(cj)(n+cj(s−k)+θj)

+
∑

1≤j≤l

Ac′j
eλ1(c′j)(−n+c′j(s−k)+θ′

j)

≥ max
{

max
1≤i≤m

φci (n+ ci (t− k) + θi) ,

max
1≤j≤l

φc′j

(
−n+ c′j (t− k) + θ′j

)
, χΓ ((t− k) + θ0)

}
−φc1 (n+ c1(s− k) + θ1)

for any s ∈ [−τ, 0] and n ∈ Z, we have

wk
n (t) ≤ χKeλ∗((t−k)+θ0) +

∑
2≤j≤m

Acje
λ1(cj)(n+cj(t−k)+θj)

+
∑

1≤j≤l

Ac′j
eλ1(c′j)(−n+c′j(t−k)+θ′

j) for any t > 0.

That is,

uk
n (t) ≤ φc1 (n+ c1(t− k) + θ1) + χKeλ∗((t−k)+θ0) +

∑
2≤j≤m

Acje
λ1(cj)(n+cj(t−k)+θj)

+
∑

1≤j≤l

Ac′j
eλ1(c′j)(−n+c′j(t−k)+θ′

j) for any t > 0.

By the arbitrariness of k ∈ N, we have that (5.1) holds.
When m = 0, the inequality (5.1) reduces to the following:

lim sup
t>−k,k→+∞

vk
n (t) ≤ χKeλ∗(t+θ0) +

∑
1≤j≤l

Ac′j
eλ1(c′j)(−n+c′jt+θ′

j),

which holds obviously. This completes the proof.
Proof of Theorem 1.1. Define vk(t) = {vk

n(t)}n∈Z with vk
n(t) := un(t + k;ψk) for

any (n, t) ∈ Z × [−τ − k,+∞), where

ψk =
{
ψk

n (s)
}

k∈Z
,

ψk
n (s) = max

{
max

1≤i≤m
φci (n+ ci (s− k) + θi) ,

max
1≤j≤l

φc′j

(
−n+ c′j (s− k) + θ′j

)
, χΓ ((s− k) + θ0)

}
< K

for any (n, s) ∈ Z × [−τ, 0]. Note that

max
{

max
1≤i≤m

φci (n+ cit+ θi) , max
1≤j≤l

φc′j

(
−n+ c′jt+ θ′j

)
, χΓ (t+ θ0)

}
≤ vk

n (t) ≤ vk+1
n (t) ≤ min

{
K,ϑ+

m(n, t), ϑ−l (n, t), ϑ0(n, t)
}

(5.4)

for any (n, t) ∈ Z × [−τ − k,+∞). From Lemma 5.1 and by a diagonal extraction
process, there exists a subsequence {vki(t) = {vki

n (t)}n∈Z : i ∈ N} such that vki(t)
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converges to a function Φ(t) = {Φn(t)}n∈Z in T ; that is, for any compact set S ⊂ Z×R,
vki

n (t) and d
dtv

ki
n (t) converge uniformly in (n, t) ∈ S to Φn(t) and d

dtΦn(t), respectively.
In view of vk

n(t) ≤ vk+1
n (t) for any t > −k, we have limk→+∞ vk

n(t) = Φn(t) for any
(n, t) ∈ Z×R. The limit function is unique, whence all of the functions vk(t) converge
to the function Φ(t) in T as k → +∞. Since uki(t) = {uki

n (t)}n∈Z satisfies (1.1), the
limit function Φ(t) = {Φn(t)}n∈Z is an entire solution of (1.1). In particular, it follows
from (5.4) that (1.8) holds on (n, t) ∈ Z × R.

Now we show (i); that is, d
dtΦn(t) > 0 on R for every n ∈ Z. Since

ψk
n (s) = max

{
max

1≤i≤m
φci (n+ ci (s− k) + θi) ,

max
1≤j≤l

φc′j

(
−n+ c′j (s− k) + θ′j

)
, χΓ ((s− k) + θ0)

}
≤ max

{
max

1≤i≤m
φci (n+ ci (s+ ε− k) + θi) ,

max
1≤j≤l

φc′j

(
−n+ c′j (s+ ε− k) + θ′j

)
, χΓ ((s+ ε− k) + θ0)

}
= ψk

n (s+ ε)

for any ε > 0, s ∈ [−τ, 0], and n ∈ Z, we have uk
n(t;ψk(·)) ≤ uk

n(t;ψk(· + ε)) for any
(n, t) ∈ Z× [−τ,+∞). On the other hand, ψk

n(s+ ε) ≤ uk
n(s+ ε;ψk(·)) for any ε > 0,

s ∈ [−τ, 0], and n ∈ Z, and, hence,

uk
n

(
t;ψk (·)

)
≤ uk

n

(
t;uk

n

(
· + ε;ψk (·)

))
= uk

n

(
t+ ε;ψk (·)

)
for any (n, t) ∈ Z × [−τ,+∞). Thus, it follows from the arbitrariness of ε > 0; that
uk

n (t) is increasing on t; that is, vk (t) is increasing on t. Therefore, Φ′
n (t) ≥ 0 on R

for every n ∈ Z. Since Φ′
n (t) satisfies

Φ′′
n (t) = D

∑
i∈Z\{0}

I (i)
[
Φ′

n−i (t) − Φ′
n (t)

]
− dΦ′

n (t) +
∑
i∈Z

J (i) b′ (Φn−i (t− τ))Φ′
n−i (t− τ) ,(5.5)

we have that Φ′
n (t) satisfies

Φ′
n (t) = Φ′

n (s) e−(D+d)(t−s) +
∫ t

s

e−(D+d)(t−r)Rn (Φ) (r) dr for any s < t,

where Rn(Φ)(t) = D
∑

i∈Z\{0} I(i)Φ
′
n−i(t)+

∑
i∈Z

J(i)b′(Φn−i(t− τ))Φ′
n−i(t− τ) ≥ 0.

Obviously, for each n ∈ Z, if there exists t0 ∈ R such that Φ′
n(t0) > 0, then Φ′

n(t) > 0
for any t > t0. Therefore, there must be Φ′

n(t) > 0 for any (n, t) ∈ Z × R. We
argue by a contradiction. In fact, assume that, for some n1 ∈ Z, there is t1 such
that Φ′

n1
(t1) = 0 and, hence, then Φ′

n1
(t) = 0 for any t ≤ t1, which implies that

limt→−∞ Φn1(t) = Φn1(t1) > 0. But following from (1.8), we have limt→−∞ Φn1(t) =
0, which yields a contradiction.

Now we prove (vii). For the sake of convenience, we denote

Φc1,...,cm;c′1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
l
;θ0

(t)
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by Φ(t; θ0) and Φc1,...,cm;c′1,...,c′
l
;θ1,...,θm;θ′

1,...,θ′
l
(t) by Φ(t;−∞). For χ ∈ {0, 1}, let

ψk(t)χ =
{
ψk

n (s)χ

}
k∈Z

,

ψk
n (s)χ = max

{
max

1≤i≤m
φci (n+ ci (s− k) + θi) ,

max
1≤j≤l

φc′j

(
−n+ c′j (s− k) + θ′j

)
, χΓ ((s− k) + θ0)

}
,

and vk(t)χ = {vk
n(t)χ}n∈Z with vk

n(t)χ := un(t + k;ψk(·)χ) for any (n, t) ∈ Z ×
[−τ−k,+∞). Set v̄k(t) = vk(t)1−vk(t)0 = {vk

n(t)1−vk
n(t)0}n∈Z. Then v̄k(t) satisfies

0 ≤ v̄k(t) ≤ K for any t ∈ [−τ − k,+∞) and

d

dt
v̄k

n (t) ≤ D
∑

i∈Z\{0}
I(i)

[
v̄k

n−i (t) − v̄k
n (t)

]
− dv̄k

n (t) + b′(0)
∑
i∈Z

J (i) v̄k
n−i (t− τ) .

Noting that v̄k
n(s) ≤ Keλ∗(s+θ0) for any s ∈ [−τ − k,−k] and wk

n(t) = Keλ∗(t+θ0)

satisfies

d

dt
wk

n (t) = D
∑

i∈Z\{0}
I(i)

[
wk

n−i (t) − wk
n (t)

]
− dwk

n (t) + b′(0)
∑
i∈Z

J (i)wk
n−i (t− τ)

for any t ∈ [−τ − k,+∞), it follows from Theorem 3.4 that 0 ≤ v̄k
n(t) ≤ Keλ∗(t+θ0)

for any (n, t) ∈ Z× [−τ −k,+∞) and k ∈ N. Note that limk→+∞ vk
n(t)0 = Φn(t;−∞)

and limk→+∞ vk
n(t)1 = Φn(t; θ0) for any (n, t) ∈ Z × R. Therefore, there must be

0 < Φn(t; θ0) − Φn(t;−∞) ≤ Keλ∗(t+θ0) for all (n, t) ∈ Z × R, which implies that
Φ(t; θ0) converges uniformly on (n, t) ∈ Z× (−∞, a] to Φ(t;−∞) as θ0 → −∞ for any
a ∈ R. For any sequence θk

0 → −∞ (k → +∞), the functions Φ(t; θk
0 ) converge to a

solution of (1.1) in T , which turns out to be Φ(t;−∞). The limit does not depend
on the sequence θk

0 , whence all of the functions Φ(t; θ0) converge to Φ(t;−∞) in T as
θ0 → −∞. The assertion as θ0 → +∞ is obvious.

We next prove (viii). Assume χ = 1. Similarly to that in (vii), we denote

Φc1,...,cm;c′1,...,c′l;θ1,...,θm;θ′
1,...,θ′

l;θ0
(t)

by Φ(t)θi and Φc1,...,ci−1,ci+1,...,cm;c′1,...,c′
l
;θ1,...,θi−1,θi+1,...,θm;θ′

1,...,θ′
l
;θ0

(t) by Φ(t)∞. Set

ψk(t)θi =
{
ψk

n (s)θi

}
k∈Z

,

ψk
n (s)θi

= max
{

max
1≤j≤m

φcj (n+ cj (s− k) + θj) ,

max
1≤j≤l

φc′j

(
−n+ c′j (s− k) + θ′j

)
,Γ ((s− k) + θ0)

}
,

and vk(t)θi = {vk
n(t)θi}n∈Z with vk

n(t)θi := un(t + k;ψk(·)θi) for any (n, t) ∈ Z ×
[−τ − k,+∞). Take

ψk(t)∞ =
{
ψk

n (s)∞
}

k∈Z
,

ψk
n (s)∞ = max

{
max

j∈{1,...,i−1,i+1,...,m}
φcj (n+ cj (s− k) + θj) ,

max
1≤j≤l

φc′j

(
−n+ c′j (s− k) + θ′j

)
,Γ ((s− k) + θ0)

}
,
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and vk(t)∞ = {vk
n(t)∞}n∈Z with vk

n(t)∞ := un(t + k;ψk(·)∞) for any (n, t) ∈ Z ×
[−τ − k,+∞). Set v̂k(t) = vk(t)θi − vk(t)∞ = {vk

n(t)θi − vk
n(t)∞}n∈Z. Then v̂k(t)

satisfies 0 ≤ v̂k
n(t) ≤ K for any (n, t) ∈ Z × [−τ − k,+∞) and

d

dt
v̂k

n (t) ≤ D
∑

i∈Z\{0}
I(i)

[
v̂k

n−i (t) − v̂k
n (t)

]
− dv̂k

n (t) + b′(0)
∑
i∈Z

J (i) v̂k
n−i (t− τ) .

Noting that v̂k
n(s) ≤ φci(n+ cis+ θi) ≤ Acie

λ1(ci)(n+cis+θi) for any s ∈ [−τ − k,−k]
and that w̄k

n(t) = Acie
λ1(ci)(n+cit+θi) satisfies

d

dt
w̄k

n (t) = D
∑

i∈Z\{0}
I(i)

[
w̄k

n−i (t) − w̄k
n (t)

]
− dw̄k

n (t) + b′(0)
∑
i∈Z

J (i) w̄k
n−i (t− τ)

for any t ∈ [−τ−k,+∞), it follows from Theorem 3.4 that 0 ≤ v̂k
n(t) ≤ Acie

λ1(ci)(n+cit+θi)

for any (n, t) ∈ Z × [−τ − k,+∞) and k ∈ N. Since limk→+∞ vk(t)θi = Φ(t)θi and
limk→+∞ vk(t)∞ = Φ(t)∞, we have 0 < Φn(t)θi − Φn(t)∞ ≤ Acie

λ1(ci)(n+cit+θi)

for all (n, t) ∈ Z × R, which implies that Φ(t)θi converges uniformly on (n, t) ∈
{n : n ≤ N0, n ∈ Z} × (−∞, a] to Φ(t)∞ as θi → −∞ for any N0 ∈ Z and a ∈ R. For
any sequence θk

i → −∞ (k → +∞), the functions Φ(t)θk
i

converge to a solution of
(1.1), which must be Φ(t)∞. Since the limit is independent of the sequence θk

i , all of
the functions Φ(t)θi converge to Φ(t)∞ in T as θi → −∞. The assertion as θ′j → −∞
and the case χ = 0 can be proved similarly.

Using the inequality (1.8), we can prove (ii)–(vi) and (ix) of Theorem 1.1.

6. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. We prove
only the continuous dependence of the entire solution on the parameters c, c′, θ, θ′,
and θ0 and the uniqueness of the entire solutions satisfies (1.9). Other conclusions
follow immediately from Theorem 1.1.

Consider (1.4) or

u′n(t) =
D

2
[un+1 + un−1 − 2un] + f (un (t)) ,(6.1)

where f satisfies the conditions given after (1.4). Let φc(n + ct) be a traveling wave
front of (6.1) with wave speed c > c∗. As done in section 1, we normalize φc(n+ct) so
that φ(0) = 1

2 . Then the functions φc(z) are continuous with respect to c ∈ (c∗,+∞)
in the norms C1

loc(R) (see [20, p. 1267] for the definition of these norms). Indeed, if
cl → c ∈ (c∗,+∞), then by the unique boundedness of |φ′cl

(z)| and |φ′′cl
(z)| in z ∈ R

on l ∈ N and by a diagonal extraction process, there exists a subsequence cli such
that φcli

→ φ in C1
loc(R), where φ is a solution of

cφ′ (z) =
D

2
[φ (z + 1) + φ (z − 1) − 2φ (z)] + f (φ (z)) in z ∈ R.

Obviously, φ is nondecreasing in R and is not a constant and φ(0) = 1
2 . By the

assumptions of f , we have φ(−∞) = 0 and φ(+∞) = 1. Thus, φ is a traveling wave
front of (6.1) with wave speed c. Following Chen and Guo [5], we have φ ≡ φc. Finally,
the whole sequence φcl

→ φc0 in C1
loc(R) as l → +∞. In view of [4, 5], we know that

αc and Ac defined by (1.6) and (1.7), respectively, are still valid for (6.1). In addition,
there exactly is λ∗ = f ′(0) for (6.1).

Lemma 6.1. For (6.1), αc = limz→−∞ φc (z) e−λ1(c)z is continuous in c ∈
(c∗,+∞).
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Proof. Fix c0 ∈ (c∗,+∞) and let cl → c0 as l → +∞ with cl > c∗ for each l ∈ N.
Then by Chen and Guo [4] (see also Ma, Weng, and Zou [25]), we know that, for
each c ∈ (c∗,+∞), there exists a unique traveling wave front φ̃c such that φ̃′c(·) > 0,
φ̃c(−∞) = 0, φ̃c(+∞) = 1, and

lim
z→−∞

φ̃c (z) e−λ1(c)z = 1.

Then we have that φ̃cl
→ φ̃c0 in C1

loc(R) as l → +∞. In fact, since cl → c0 as l → +∞,
then there exist a subsequence cli and a function φ̃ such that φ̃cli

→ φ̃ in C1
loc(R),

where φ̃ is nondecreasing and satisfies

cφ̃′ (z) =
D

2

[
φ̃ (z + 1) + φ̃ (z − 1) − 2φ̃ (z)

]
+ f

(
φ̃ (z)

)
in z ∈ R.

On the other hand, by Chen and Guo [4], there exist two constants q > 1 and β > 1,
independent of cl, such that

eλ1(cl)z − qeβλ1(cl)z ≤ φcl
(z) ≤ eλ1(cl)z + qeβλ1(cl)z for any z ∈ R

and therefore, as l → ∞,

eλ1(c0)z − qeβλ1(c0)z ≤ φ̃ (z) ≤ eλ1(c0)z + qeβλ1(c0)z for any z ∈ R,

which implies that φ̃(z) is not a constant and satisfies φ̃(z)e−λ1(c0)z = 1. Then it
follows from Chen and Guo [5] (see also Ma, Weng, and Zou [25]) that φ̃ ≡ φ̃c0 .
Consequently, the whole sequence φ̃cl

→ φ̃c0 in C1
loc(R) as l → +∞.

Now let φ̃c0 (ς0) = 1
2 and φ̃cl

(ςl) = 1
2 . Then we have that ςl → ς0 as l → +∞.

Assume that this assertion is not true. Take ςl → ς �= ς0 as l → +∞ (up to extraction
of some subsequence). If |ς| < ∞, then, by φ̃cl

→ φ̃c0 in C1
loc (R) as l → +∞, we

have φ̃c0 (ς) = 1
2 = φ̃c0 (ς0), which is impossible since d

dz φ̃c0 (z) > 0 for any z ∈ R and
ς �= ς0. If ς = +∞, then φ̃cl

(ς0 + 1) < φ̃cl
(ςl) = 1

2 for sufficiently large l implies that
φ̃c0 (ς0 + 1) ≤ 1

2 = φ̃c0 (ς0), which is also impossible. Similarly, ς = −∞ is impossible.
Thus, we conclude that ςl → ς0 as l → +∞.

Again applying Chen and Guo [5], we have that φc0(·) = φ̃c0(ς0 + ·) and φcl
(·) =

φ̃cl
(ςl + ·). Since

lim
z→−∞

φc0 (z) e−λ1(c0)(z+ς0) = lim
z→−∞

φ̃c0 (z + ς0) e−λ1(c0)(z+ς0) = 1,

we have limz→−∞ φc0(z)e−λ1(c0)z = eλ1(c0)ς0 = αc0 . Similarly, we have

lim
z→−∞

φcl
(z) e−λ1(cl)z = eλ1(cl)ςl = αcl

.

Finally, there holds αcl
→ αc0 as l → +∞. This completes the proof.

Recall that

Ac = inf
{
A > 0 : Aeλ1(c)z ≥ φc (z) in z ∈ R

}
.

Lemma 6.2. For (6.1), Ac is continuous on c ∈ (c∗,+∞).
Proof. Fix c0 ∈ (c∗,+∞) and let cl → c0 as l → +∞ with cl > c∗ for each

l ∈ N. We prove the theorem by way of contradiction. Assume Acl
→ A0 ∈ R ∪ {∞}
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as l → ∞ (up to extraction of some subsequence) and A0 �= Ac0 . Since Acl
≥

e−λ1(cl)zφcl
(z) for any z ∈ R, A0 ≥ e−λ1(c0)zφc0(z) and, hence, A0 > Ac0 . Fix

b = min{A0+Ac0

2 , Ac0 + 1}. Then there exists L ∈ N such that for any l > L, Acl
> b.

On the other hand, since αcl
→ αc0 ≤ Ac0 and λ1(cl) → λ1(c0), there exists a

constant Z0 > 0, independent of cl, such that φcl
(z)e−λ1(cl)z ≤ b for any |z| > Z0.

For z ∈ [−Z0, Z0], by φc0(z)e−λ1(c0)z ≤ Ac0 , φcl
(z) → φc0(z) in C1

loc(R), and the
equicontinuity of e−λ1(cl)z on l, there exists L′ > L such that φcl

(z)e−λ1(cl)z ≤ b for
any l > L′ and z ∈ [−Z0, Z0]. Therefore, φcl

(z)e−λ1(cl)z ≤ b for any l > L′ and z ∈ R,
which contradicts Acl

> b for any l > L.
Before proving Theorem 1.2, we first consider the following linear Cauchy prob-

lem: {
d
dtun (t) = D

2 [un+1 (t) + un−1 (t) − 2un (t)] + f ′ (0)un (t) , t > 0,
un (0) = u0

n,
(6.2)

where u0 = {u0
n}n∈Z ∈ l∞. By Theorem 3.3, we know that (6.2) admits a unique

solution u(t) = u(t;u0) = {un(t)}n∈Z on t ∈ [0,+∞). By using the discrete Fourier
transformation, we can exactly solve the solution u(t) = {un(t)}n∈Z of (6.2) as follows:

un(t) =
1
π
ef ′(0)t

+∞∑
i=−∞

u0
i

∫ π

0

cos ((i− n)ω) eDt(cos ω−1)dω.(6.3)

This formulation is very crucial for the proof of Theorem 1.2.
Proof of Theorem 1.2. We prove only the case 
 = 
′ = χ = 1. Consider a

sequence

(ck, c′k, θk, θ
′
k, θ0,k) → (c, c′, θ, θ′, θ0) ∈ (c∗,+∞)2 × R

3 as k → +∞.

For given (ck, c′k, θk, θ
′
k, θ0,k) and (c, c′, θ, θ′, θ0), it follows from Theorem 1.1 that there

exist entire solutions Φck;c′
k
;θk;θ′

k
;θ0,k

(t) and Φc;c′;θ;θ′;θ0(t) of (1.4) satisfying (1.9). For
the sake of convenience, set Φk(t) = {Φk

n(t)}n∈Z = Φck;c′k;θk;θ′
k;θ0,k

(t) and Φ(t) =
{Φn(t)}n∈Z = Φc;c′;θ;θ′;θ0(t).

Using Lemma 5.1, there exists a function Φ̃(t) = {Φ̃n(t)}n∈Z such that Φk
n(t) →

Φ̃n(t) as k → ∞ (up to extraction of some subsequence) in T . In particular, the
function Φ̃(t) = {Φ̃n(t)}n∈Z is also an entire solution of (6.1) (or (1.4)). By passage
to the limit k → +∞ in (1.9), the function Φ̃(t) = {Φ̃n(t)}n∈Z fulfills the estimates

max {φc (n+ ct+ θ) ,Γ (t+ θ0) , φc′ (−n+ c′t+ θ′)}(6.4)

≤ Φ̃n (t) ≤ min
{

1, φc (n+ ct+ θ) + eλ∗(t+θ0) + Ac′e
λ1(c′)(−n+c′t+θ′),

Γ ( t+ θ0) + Ace
λ1(c)(n+ct+θ) + Ac′e

λ1(c′)(−n+c′t+θ′),

φc′ (−n+ c′t+ θ′) + eλ∗(t+θ0) +Ace
λ1(c)(n+ct+θ)

}
for any (n, t) ∈ Z × R.

Let us now prove that Φ̃n(t) = Φn(t) for any (n, t) ∈ Z × R. Recall that the
functions vk(t) = {vk

n(t)}n∈N, which are solutions of the Cauchy problems

d

dt
vk

n (t) =
D

2
[
vk

n+1 (t) + vk
n−1 (t) − 2vk

n (t)
]
+ f

(
vk

n (t)
)
, t > −k, n ∈ N,
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with the initial conditions

vk
n (−k) = vk

n,0 = max {φc (n− ck + θ) ,Γ (−k + θ0) , φc′ (−n− c′k + θ′)} ,

converge to the function Φ(t) = {Φn(t)}n∈N in T ; see the proof of Theorem 1.1. Let
us now compare the functions Φ̃(t) to the functions vk(t) for t > −k. Following (6.4),
we get that∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣(6.5)

≤

⎧⎪⎨⎪⎩
ef ′(0)(−k+θ0) +Ac′e

λ1(c′)(−n−c′k+θ′) if n ≥ n+
k + 2,

Ace
λ1(c)(n−ck+θ) + Ac′e

λ1(c′)(−n−c′k+θ′) if n−
k + 1 ≤ n ≤ n+

k − 1,
ef ′(0)(−k+θ0) +Ace

λ1(c)(n−ck+θ) if n ≤ n−
k − 2

for sufficiently large k, where n−
k and n+

k are two integers defined as follows:

n−
k = int

[
−c′k +

f ′ (0)
λ1 (c′)

k + θ′ − 1
λ1 (c′)

ln
1
αc′

− f ′ (0)
λ1 (c′)

θ0

]
,

n+
k = int

[
ck − f ′ (0)

λ1 (c)
k − θ +

1
λ1 (c)

ln
1
αc

+
f ′ (0)
λ1 (c)

θ0

]
.

n−
k is obtained by comparing φc′(−n−c′k+θ′) and Γ(−k+θ0) and using the asymptotic

behaviors of φc′ and Γ. Similarly, we obtain n+
k .

For any x ∈ R, define

int[x] = max {m : m ∈ Z,m ≤ x} .

Fix t0 > −k. For any n ∈ Z and k ∈ N with k > −t0, define

ak
n =

1
2π
e−D(t0+k)

∫ π

0

cos (nw) eD(t0+k) cos wdw.

By Weng, Huang, and Wu [40], we know that ak
n = ak

−n > 0 for any n ∈ Z and∑+∞
n=−∞ ak

n = 1. Furthermore, for n > 1 there is

ak
n =

1
2π

∫ π

0

cos (nw) eD(t0+k)[cos w−1]dw =
1

2nπ

∫ π

0

eD(t0+k)[cos w−1]d sin (nw)

=
D (t0 + k)

2nπ

∫ π

0

sin (nw) sinweD(t0+k)[cos w−1]dw

=
D (t0 + k)

4nπ

∫ π

0

[cos ((n− 1)w) − cos ((n+ 1)w)] eD(t0+k)[cos w−1]dw

=
D (t0 + k)

2n
(
ak

n−1 − ak
n+1

)
,

which implies that ak
n−1 > ak

n+1 for any n ∈ N. By the symmetry, ak
−n−1 < ak

−n+1

for any n ∈ N.
We claim that, for any given η ∈ (0,+∞), there hold

ak
int[ηk] → 0 and ak

int[ηk]−1 → 0 as k → +∞.(6.6)
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Consider ak
int[ηk] → 0 as k → +∞. If the assertion is false, then we can assume

that ak
int[ηk] → δ > 0 as k → +∞ (up to extraction of some subsequence). Taking k

sufficiently large such that int[ηk]
2 > 4

δ + 1 and ak
int[ηk] >

δ
2 , by ak

n−1 > ak
n+1 for n ∈ N,

we have
∑int[ηk]

n=0 ak
n > 1, which contradicts the fact

∑+∞
n=−∞ ak

n < 1. Therefore,
limk→+∞ ak

int[ηk] = 0. Similarly, we have limk→+∞ ak
int[ηk]−1 = 0. For any m > N ,

m∑
n=N≥1

ak
n =

D (t0 + k)
2N

(
ak

N−1 − ak
N+1

)
+
D (t0 + k)
2(N + 1)

(
ak

N − ak
N+2

)
+
D (t0 + k)
2(N + 2)

(
ak

N+1 − ak
N+3

)
+ · · · + D (t0 + k)

2(m− 1)
(
ak

m−2 − ak
m

)
+
D (t0 + k)

2m
(
ak

m−1 − ak
m+1

)
=
D (t0 + k)

2N
ak

N−1 +
D (t0 + k)
2(N + 1)

ak
N − D (t0 + k)

N (N + 2)
ak

N+1

− D (t0 + k)
(N + 1) (N + 3)

ak
N+2 − · · · − D (t0 + k)

(m− 3) (m− 1)
ak

m−2

− D (t0 + k)
(m− 2)m

ak
m−1 −

D (t0 + k)
2(m− 1)

ak
m − D (t0 + k)

2m
ak

m+1

≤ D (t0 + k)
2N

ak
N−1 +

D (t0 + k)
2(N + 1)

ak
N .

Therefore,

∞∑
n=N≥1

ak
n ≤ D (t0 + k)

2N
ak

N−1 +
D (t0 + k)
2(N + 1)

ak
N .

Consequently, we obtain that for any given η > 0,

∞∑
n=int[ηk]

ak
n → 0 and

∞∑
n=int[ηk]+1

ak
n → 0 as k → +∞(6.7)

due to D(t0+k)
[ηk] → D

η as k → +∞.

Now fix (n0, t0) ∈ Z×R; we estimate Φ̃n0(t0)− vk
n0

(t0) as k → +∞. We compare
Φ̃n(t) − vk

n(t) with a solution of the linear equation

d

dt
un (t) =

D

2
[un+1 (t) + un−1 (t) − 2un (t)] + f ′ (0)un (t) , t > −k,

with the initial condition un(−k) = |Φ̃n(−k) − vk
n(−k)|. Using (6.3), we deduce that
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n0

(t0)
∣∣∣

≤ 1
π
ef ′(0)(t0+k)

+∞∑
n=−∞

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]
∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣ dw

≤ 1
π
ef ′(0)(t0+k)

+∞∑
n=n+

k +2

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]
∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣ dw

+
1
π
ef ′(0)(t0+k)

∫ π

0

cos
((
n+

k + 1 − n0

)
w
)
eD(t0+k)[cos w−1]

∣∣∣Φ̃n (−k) − vk
n (−k)

∣∣∣ dw
+

1
π
ef ′(0)(t0+k)

∫ π

0

cos
((
n+

k − n0

)
w
)
eD(t0+k)[cos w−1]

∣∣∣Φ̃n (−k) − vk
n (−k)

∣∣∣ dw
+

1
π
ef ′(0)(t0+k)

n+
k −1∑

n=n−
k +1

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]
∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣ dw

+
1
π
ef ′(0)(t0+k)

∫ π

0

cos
((
n−

k − n0

)
w
)
eD(t0+k)[cos w−1]

∣∣∣Φ̃n (−k) − vk
n (−k)

∣∣∣ dw
+

1
π
ef ′(0)(t0+k)

∫ π

0

cos
((
n−

k − 1 − n0

)
w
)
eD(t0+k)[cos w−1]

∣∣∣Φ̃n (−k) − vk
n (−k)

∣∣∣ dw
+

1
π
ef ′(0)(t0+k)

n−
k −2∑

n=−∞

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]
∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣ dw.

Call I, II, III, IV, V, VI, and VII the seven terms on the right-hand side of this last
inequality. We have

I =
1
π
ef ′(0)(t0+k)

+∞∑
n=n+

k +2

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]
∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣ dw

≤ 1
π
ef ′(0)(t0+k)

+∞∑
n=n+

k +2

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]ef ′(0)(−k+θ0)dw

+
Ac′

π
ef ′(0)(t0+k)

+∞∑
n=n+

k
+2

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]eλ1(c′)(−n−c′k+θ′)dw

= I1 + I2.

Obviously,

I1 =
1
π
ef ′(0)(t0+k)

+∞∑
n=n+

k +2

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]ef ′(0)(−k+θ0)dw

= 2ef ′(0)(t0+θ0)
+∞∑

n=n+
k

+2

ak
n−n0

→ 0 as k → +∞

due to the fact n+
k +2−n0

k > cλ1(c)−f ′(0)
2λ1(c) > 0 for sufficiently large k and (6.7). In
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addition, we have

I2 =
Ac′

π
ef ′(0)(t0+k)

+∞∑
n=n+

k +2

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]eλ1(c′)(−n−c′k+θ′)dw

= 2Ac′e
(f ′(0)−λ1(c′)c′)kef ′(0)(t0+θ′)

+∞∑
n=n+

k +2

ak
n−n0

e−λ1(c′)n

≤ 2Ac′e
f ′(0)(t0+θ′)

+∞∑
n=n+

k
+2

ak
n−n0

→ 0 as k → ∞.

Consider II. In this case, let

0 ≤ δ =
(
ck − f ′ (0)

λ1 (c)
k − θ +

1
λ1 (c)

ln
1
αc

+
f ′ (0)
λ1 (c)

θ0

)
− n+

k < 1.

Then we have

II = 2ef ′(0)(t0+k)ak
n+

k +1−n0

∣∣∣Φ̃n+
k +1 (−k) − vk

n+
k +1

(−k)
∣∣∣

≤ 2ef ′(0)(t0+k)ak
n+

k +1−n0

[
ef ′(0)(−k+θ0) +Ac′e

λ1(c′)(−n+
k −1−c′k+θ′)

]
+ 2ef ′(0)(t0+k)ak

n+
k +1−n0

[
Ac′e

λ1(c′)(−n+
k −1−c′k+θ′) +Ace

λ1(c)(n+
k +1−ck+θ)

]
= 2ef ′(0)(t0+k)ak

n+
k +1−n0

[
ef ′(0)(−k+θ0) + 2Ac′e

λ1(c′)(−n+
k −1−c′k+θ′)

]
+ 2ef ′(0)(t0+k)ak

n+
k

+1−n0
Ace

λ1(c)
{(

ck− f′(0)
λ1(c)

k−θ+ 1
λ1(c)

ln 1
αc

+ f′(0)
λ1(c)

θ0

)
−δ+1−ck+θ

}

= 2ef ′(0)(t0+k)ak
n+

k +1−n0

[
ef ′(0)(−k+θ0) + 2Ac′e

λ1(c′)(−n+
k −1−c′k+θ′)

]
+

2Ac

αc
eλ1(c)(1−δ)+f ′(0)(t0+θ0)ak

n+
k +1−n0

→ 0 as k → +∞.

Similarly, we have that III→ 0 as k → +∞. For IV, we have

IV =
1
π
ef ′(0)(t0+k)

×
n+

k −1∑
n=n−

k
+1

∫ π

0

cos ((n− n0)w) eD(t0+k)[cos w−1]
∣∣∣Φ̃n (−k) − vk

n (−k)
∣∣∣ dw

≤ 2ef ′(0)(t0+k)

n+
k −1∑

n=n−
k +1

ak
n−n0

[
Ace

λ1(c)(n−ck+θ) + Ac′e
λ1(c′)(−n−c′k+θ′)

]

= 2ef ′(0)(t0+k)

n+
k −1∑
n=0

ak
n−n0

[
Ace

λ1(c)(n−ck+θ) + Ac′e
λ1(c′)(−n−c′k+θ′)

]
+ 2ef ′(0)(t0+k)

−1∑
n=n−

k +1

ak
n−n0

[
Ace

λ1(c)(n−ck+θ) + Ac′e
λ1(c′)(−n−c′k+θ′)

]
= IV1 + IV2.
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Consider IV1. Then

IV1 = 2ef ′(0)(t0+k)

n+
k
−1∑

n=0

ak
n−n0

[
Ace

λ1(c)(n−ck+θ) + Ac′e
λ1(c′)(−n−c′k+θ′)

]

≤ 2Ac′e
−(λ1(c′)c′−f ′(0))kef ′(0)t0+λ1(c′)θ′

n+
k∑

n=0

ak
n−n0

+ 2Ace
f ′(0)(t0+k)

n+
k −1∑

n=int[n+
k /2]

ak
n−n0

eλ1(c)(n−ck+θ)

+ 2Ace
f ′(0)(t0+k)

int[n+
k /2]∑

n=0

ak
n−n0

eλ1(c)(n−ck+θ)

≤ 2Ac′e
−(λ1(c′)c′−f ′(0))kef ′(0)t0+λ1(c′)θ′

+ 2Ace
f ′(0)(t0+k)eλ1(c)((n+

k −1)−ck+θ)
∞∑

n=int[n+
k /2]

ak
n−n0

+ 2Ace
λ1(c)(int[n+

k /2]−ck+θ)ef ′(0)(t0+k)

= IV1
1 + IV2

1 + IV3
1.

It is easy to see that IV1
1 ≤ 2Ac′e

−(λ1(c
′)c′−f ′(0))kef ′(0)t0+λ1(c′)θ′ → 0 as k → +∞,

because λ1(c′)c′ − f ′(0) > 0. By virtue of

ef ′(0)(t0+k)eλ1(c)((n+
k −1)−ck+θ)

≤ Ace
f ′(0)(t0+k)e

λ1(c)
{(

ck− f′(0)
λ1(c)

k−θ+ 1
λ1(c)

ln 1
αc

+ f′(0)
λ1(c)

θ0

)
−1−ck+θ

}
=

1
αc
ef ′(0)(t0+θ0)−λ1(c)

and n+
k

2 − n0 >
cλ1(c)−f ′(0)

4λ1(c) k for sufficiently large k, we have

IV2
1 = 2Ace

f ′(0)(t0+k)eλ1(c)((n+
k −1)−ck+θ)

∞∑
n=int[n+

k /2]
ak

n−n0
→ 0 as k → +∞.

Moreover, we have

IV3
1 = 2Ace

λ1(c)(int[n+
k /2]−ck+θ)ef ′(0)(t0+k)

≤ 2Ace
λ1(c)

(
1
2

[
ck− f′(0)

λ1(c) k−θ+ 1
λ1(c) ln 1

αc
+

f′(0)
λ1(c) θ0

]
−ck+θ

)
ef ′(0)(t0+k)

= 2Ace
f ′(0)t0+

1
2 ln 1

αc
+ 1

2 f ′(0)θ0+
1
2 λ1(c)θe−

1
2 [λ1(c)c−f ′(0)]k

→ 0 as k → +∞.

We can prove that IV2, V, VI, and VII converge to zero as k → +∞ by arguments
similar to those for IV1, III, II, and I, respectively.

Eventually, |Φ̃n0(t0) − vk
n0

(t0)| → 0 as k → +∞. Since vk
n0

(t0) → Φn0(t0) and
(n0, t0) ∈ Z × R is arbitrary, we obtain that Φn(t) = Φ̃n(t) for any (n, t) ∈ Z × R.
The limit function being unique, the whole sequence Φk converges to Φ as k → +∞.

Using the same estimates as above, we can prove that the entire solution of (1.4)
satisfying (1.9) is unique.



ENTIRE SOLUTIONS IN DELAYED LATTICE EQUATIONS 2419

Acknowledgments. The authors thank the referees for their valuable comments
and suggestions on the original manuscript.

REFERENCES

[1] P.W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration.
Mech. Anal., 150 (1999), pp. 281–305.

[2] J.W. Cahn, S.-N. Chow, and E.S. Van Vleck, Spatially discrete nonlinear diffusion equa-
tions, Rocky Mountain J. Math., 25 (1995), pp. 87–118.

[3] X. Chen, S.-C. Fu, and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monos-
table dynamics on lattices, SIAM J. Math. Anal., 38 (2006), pp. 233–258.

[4] X. Chen and J.-S. Guo, Existence and asymptotic stability of travelling waves of discrete
quasilinear monostable equations, J. Differential Equations, 184 (2002), pp. 549–569.

[5] X. Chen and J.-S. Guo, Uniqueness and existence of travelling waves of discrete quasilinear
monostable dynamics, Math. Ann., 326 (2003), pp. 123–146.

[6] X. Chen and J.-S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion
equation, J. Differential Equations, 212 (2005), pp. 62–84.

[7] X. Chen, J.-S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with
balanced bistable nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), pp. 1207–
1237.

[8] C.P. Cheng, W.T. Li, and Z.C. Wang, Spreading speeds and traveling waves in a delayed
population model with stage structure on a two-dimensional spatial lattice, IMA J. Appl.
Math., 73 (2008), pp. 592–618.

[9] C.P. Cheng, W.T. Li, and Z.C. Wang, Asymptotic Stability of Traveling Wavefronts in a
Delayed Population Model with Stage Structure on a Two-dimensional Spatial Lattice,
submitted.

[10] S.-N. Chow, Lattice dynamical systems, in Dynamical Systems, Lecture Notes in Math. 1822,
J.W. Macki and P. Zecca, eds., Springer, Berlin, 2003, pp. 1–102.

[11] T. Faria, W. Huang, and J. Wu, Travelling waves for delayed reaction-diffusion equations
with global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462A (2006),
pp. 229–261.

[12] T. Faria and S. Trofimchuk, Nonmonotone travelling waves in a single species reaction
diffusion equation with delay, J. Differential Equations, 228 (2006), pp. 357–376.

[13] T. Faria and S. Trofimchuk, Positive heteroclinics and traveling waves for scalar population
models with a single delay, Appl. Math. Comput., 185 (2007), pp. 594–603.

[14] Y. Fukao, Y. Morita, and H. Ninomiya, Some entire solutions of the Allen-Cahn equation,
Taiwanese J. Math., 8 (2004), pp. 15–32.

[15] R.R. Goldberg, Fourier Transform, Cambridge University Press, New York, 1965.
[16] S.A. Gourley and J. Wu, Delayed nonlocal diffusive systems in biological invasion and dis-

ease spread, in Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun. 48,
American Mathematical Society, Providence, RI, 2006, pp. 137–200.

[17] S.A. Gourley and J. Wu, Extinction and periodic oscillations in an age-structured population
model in a patchy environment, J. Math. Anal. Appl., 289 (2004), pp. 431–445.

[18] J.-S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application
to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), pp. 193–212.

[19] Y.-J.L. Guo, Entire solutions for a discrete diffusive equation, J. Math. Anal. Appl., 347
(2008), pp. 450–458.

[20] F. Hamel and N. Nadirashvili, Entire solutions of the KPP Equation, Comm. Pure Appl.
Math., 52 (1999), pp. 1255–1276.

[21] F. Hamel and N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP
equation in R

N , Arch. Ration. Mech. Anal., 157 (2001), pp. 91–163.
[22] Y. Kyrychko, S.A. Gourley, and M.V. Bartuccelli, Dynamics of a stage-structured popu-

lation model on an isolated finite lattice, SIAM J. Math. Anal., 37 (2006), pp. 1688–1708.
[23] W.T. Li, N.W. Liu, and Z.C. Wang, Entire solutions in reaction-advection-diffusion equations

in cylinders, J. Math. Pures Appl., 90 (2008), pp. 492–504.
[24] W.T. Li, Z.C. Wang, and J. Wu, Entire solutions of monostable reaction-diffusion equations

with delayed nonlinearity, J. Differential Equations, 245 (2008), pp. 102–129.
[25] S. Ma, P. Weng, and X. Zou, Asymptotic speeds of propagation and traveling wavefronts in a

non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), pp. 1858–1890.
[26] S. Ma and X. Zou, Propagation and its failure in a lattice delayed differential equation with

global interaction, J. Differential Equations, 212 (2005), pp. 129–190.



2420 ZHI-CHENG WANG, WAN-TONG LI, AND JIANHONG WU

[27] S. Ma and X. Zou, Existence, uniqueness and stability of traveling waves in a discrete reaction-
diffusion monostable equation with delay, J. Differential Equations, 217 (2005), pp. 54–87.

[28] J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical sys-
tems, J. Dynam. Differential Equations, 11 (1999), pp. 49–127.

[29] R.H. Martin and H.L. Smith, Abstract functional equations and reaction-diffusion systems,
Trans. Amer. Math. Soc., 321 (1990), pp. 1–44.

[30] Y. Morita and H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equa-
tions, J. Dynam. Differential Equations, 18 (2006), pp. 841–861.

[31] J.D. Murray, Mathematical Biology, Springer, Berlin, 1989.
[32] Z.X. Shi, W.T. Li, and C.P. Cheng, Stability and Uniqueness of Traveling Wavefronts in

a Two-dimensional Lattice Differential Equation with Delay, Appl. Math. Comput., to
appear.

[33] H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive
and Cooperative Systems, Math. Surveys and Monogr. 41, American Mathematical Society,
Providence, RI, 1995.

[34] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford,
1962.

[35] Z.C. Wang, W.T. Li, and S. Ruan, Travelling wave fronts of reaction-diffusion systems with
spatio-temporal delays, J. Differential Equations, 222 (2006), pp. 185–232.

[36] Z.C. Wang, W.T. Li, and S. Ruan, Existence and stability of traveling wave fronts in reaction
advection diffusion equations, J. Differential Equations, 238 (2007), pp. 153–200.

[37] Z.C. Wang, W.T. Li, and S. Ruan, Traveling fronts in monostable equations with nonlocal
delayed effects, J. Dynam. Differential Equations, 20 (2008), pp. 573–607.

[38] Z.C. Wang, W.T. Li, and S. Ruan, Entire solutions in bistable reaction-diffusion equations
with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), pp. 2047–2084.

[39] Z.C. Wang, W.T. Li, and S. Ruan, Entire Solutions in Lattice Delayed Differential Equations
with Global Interaction: Bistable Case, submitted.

[40] P. Weng, H. Huang, and J. Wu, Asymptotic speed of propagation of wave fronts in a lattice
delay differential equation with global interaction, IMA J. Appl. Math., 68 (2003), pp. 409–
439.

[41] P. Weng, J. Wu, H. Huang, and J. Ling, Asymptotic speed of propagation of wave fronts
in a 2D lattice delay differential equation with global interaction, Can. Appl. Math. Q., 11
(2003), pp. 377–414.

[42] J. Wu and X. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave
solutions of lattice differential equations, J. Differential Equations, 135 (1997), pp. 315–357.

[43] H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling
fronts, Publ. Res. Inst. Math. Sci., 39 (2003), pp. 117–164.

[44] B. Zinner, Existence of travelling wavefront solutions for the discrete Nagumo equation, J.
Differential Equations, 96 (1992), pp. 1–27.



SIAM J. MATH. ANAL. c© 2009 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 2421–2436

AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF
LAGERSTROM∗

S. P. HASTINGS† AND J. B. MCLEOD‡

Abstract. The equation studied is u′′ + n−1
r
u′ + εuu′ + ku′2 = 0, with boundary conditions

u (1) = 0, u (∞) = 1. This model equation has been studied by many authors since it was introduced
in the 1950s by P. A. Lagerstrom. We use an elementary approach to show that there is an infinite
series solution which is uniformly convergent on 1 ≤ r < ∞. The first few terms are easily derived,
from which one quickly deduces the inner and outer asymptotic expansions, with no matching proce-
dure or a priori assumptions about the nature of the expansion. We also give a short and elementary
existence and uniqueness proof which covers all ε > 0, k ≥ 0, and n ≥ 1.

Key words. matched asymptotics, singular perturbation, boundary value problem
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1. Introduction. The main problem is to investigate the asymptotics as ε→ 0
of the boundary value problem

(1) u′′ +
n− 1
r

u′ + εuu′ + ku′2 = 0,

with

(2) u (1) = 0, u (∞) = 1.

We consider the cases k = 0 and k = 1. Our interest in these problems, originally
due to Lagerstrom in the 1950s [6], [7], was stimulated by two recent papers by Popovic
and Szmolyan [10], [11], who adopt a geometric approach to the problem when k = 0,
and there are many papers which use methods of matched asymptotics or multiple
scales, with varying degrees of rigor. We will review some of this work below. The
point of this paper is to give a completely rigorous and relatively short answer to
the problem without making any appeal either to geometric methods or to matched
asymptotics. We can express the solution as an infinite series, uniformly convergent
for all values of the independent variable. From this series we obtain the inner and
outer asymptotic expansions with no a priori assumption about the nature of these
expansions. An important and, as far as we know, original feature is that there is no
“matching.”

Lagerstrom came up with these problems as models of viscous incompressible
(k = 0) and compressible (k = 1) flow, so much of his work centered on n = 2 or 3,
but he also discussed general n ≥ 1 [8]. The infinite series we develop can be obtained
for any real number n. What n controls is the rate of convergence of the series.
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For ε = k = 0, there is an obvious distinction between n > 2 and n ≤ 2. If n > 2,
then the problem (1)–(2) has the unique solution

(3) u = 1 − 1
rn−2

,

so that the solution with ε small is presumably some sort of perturbation of this. If
n ≤ 2, then there is no such solution. A consequence is that the convergence as ε→ 0
is more subtle when n ≤ 2 than when n > 2. Our analysis will show that there is little
prospect of discussing the behavior for small ε if n < 2, but fortunately we can handle
all n ≥ 2. Although it has been thought that finding the asymptotics when k = 1
is considerably more difficult than when k = 0 [3], we will show that our technique
covers each case with comparable effort.

Our methods are not restricted to Lagerstrom’s problems (1)–(2). In subsequent
work (in preparation), we will show that there is a general method which can yield
similar results for a class of singularly perturbed boundary value problems.

We start in section 2 by showing that each of these problems has one and only one
solution for any n ≥ 1 and any ε > 0. This is based on a simple shooting argument plus
a comparison principle. These results have been obtained before, but our proof is quite
short. In the subsequent sections we develop the integral equation referred to above
and show how it leads with relative ease to the inner and outer expansions. These
expansions go back to Lagerstrom and Kaplun, with rigorous justification of some of
the features to be found in [1] or [11], for example. We find the exposition in Hinch’s
book [3] particularly clear (though nonrigorous), and make that work our point of
comparison in checking that we get the same expansions as were found previously.

2. Existence and uniqueness. As far as we know, the first existence proof was
by Hsiao [4], who considered only n = 1 and sufficiently small ε > 0. Subsequently Tam
gave what seems to be the first proof valid for all ε > 0 and k ≥ 0 [14]. Subsequent
proofs by MacGillivray [9], Cohen, Lagerstrom, and Fokas [1], Hunter, Tajdari, and
Boyer [5], each of which covers all ε > 0, and by several other authors, e.g., [12], [10],
for restricted ranges of ε, add to the variety of techniques which have been shown
to work. Uniqueness is proved in [5] (for k = 0) by use of a contraction mapping
theorem, and in [1] by essentially a comparison method. The goal of [10] is not to
give a short proof, but to illustrate the application of geometric perturbation theory
to a much studied problem in matched asymptotic expansions. The proofs we give of
existence and uniqueness are considerably shorter than the others we have seen.

Theorem 1. There exists a unique solution to the problem (1)–(2) for any k ≥ 0,
ε > 0, and n ≥ 1.

Proof. Like some others, starting with [14], we prove existence using a shooting
method by considering the initial value problem

u′′ +
n− 1
r

u′ + εuu′ + ku′2 = 0,(4)

u (1) = 0, u′ (1) = c,(5)

for each c > 0. Since u′ = 0 implies that u′′ = 0 and u is constant, any solution to
this problem is positive and increasing. As was observed in [14],

u′′ + εuu′ ≤ 0,
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and so from (5),

u′ +
1
2
εu2 ≤ c.

In particular, since u′ ≥ 0,

(6) u ≤
√

2c
ε
,

so the solution exists, and satisfies this bound, on [1,∞). Therefore, limr→∞ u (r)
exists. Writing the equation in the form

(7)
(
rn−1u′

)′
+ (εu+ ku′)

(
rn−1u′

)
= 0

and integrating twice gives

rn−1u′ (r) = ce−ku(r)−ε
∫

r
1

u(s)ds,(8)

u (r) =
∫ r

1

c

sn−1
e−ku−

∫
s
1

εudtds.(9)

If u (2) < 1, then since u is increasing, (9) implies that

u (2) > p (c) =
∫ 2

1

c

sn−1
e−ε−kds.

From this and (6), we see that there are c1 and c2, with 0 < c1 < c2, such that if
c = c1, then u (∞) < 1, while if c = c2, then u (∞) > u (2) ≥ 1. Further, from (8) for
any r > R > 2,

u (r) = u (R) + c

∫ r

R

1
sn−1

e−ku−
∫ s
1

εudtds.

If n > 2, the second term is bounded above by c
(n−2)Rn−2 , while if 1 ≤ n ≤ 2 and

R ≥ 2, it is bounded by c
∫∞

R e−ε(s−2)p(c)ds. Hence, this term tends to zero as R → ∞,
uniformly for r ≥ R, c1 ≤ c ≤ c2. Since u (R) is a continuous function of c, for any
R, it follows that u (∞) is also continuous in c, and so there is a c with u (∞) = 1,
giving a solution to (1)–(2).

For uniqueness, suppose that there are two solutions of (1)–(2), say u1 and u2,
with u′1 (1) > u′2 (1) > 0. Then u1 > u2 on some maximal interval, say (1, X) where
X ≤ ∞. For the same initial conditions, if ε = k = 0, then direct integration shows
that u1 > u2 on (1,∞), and, moreover, u1 (∞) > u2 (∞). We then raise ε and
k, looking for a pair (ε1, k1) such that u1 (X) = u2 (X) for some X ≤ ∞, and if
0 ≤ ε < ε1 or 0 ≤ k < k1, no such X exists. Hence, at (ε1, k1) , u1 ≥ u2 on [0,∞).
If, at (ε1, k1) , X < ∞, then u1 and u2 must be tangent at X, since u1 − u2 has a
minimum there, contradicting the uniqueness of initial value problems for (1). Hence,
X = ∞, and u1 > u2 on (1,∞).

Observe from (7) that if u′1 (r) = u′2 (r) for some r, then
(
rn−1 (u′1 − u′2)

)′
< 0,

since u1 > u2, so that there cannot be oscillations in u′1−u′2. Hence, u1 (∞) = u2 (∞)
implies that there is an R with u′1 (R) = u′2 (R) and u′1 < u′2 on (R,∞). Integrating
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(7), and recalling that u1 (∞) = u2 (∞) , gives

rn−1 (u′1 − u′2) |∞R =
1
2
εRn−1

(
u2

1 − u2
2

)
|R

+
1
2
ε (n− 1)

∫ ∞

R

sn−2
(
u2

1 − u2
2

)
ds− k

∫ ∞

R

sn−1
(
u′21 − u′22

)
ds.

The left-hand side is zero, and all the terms on the right are positive, giving the
necessary contradiction.

Remark 1. The existence theorem in [10] has one added part. It is shown there
that as ε→ 0, the solution tends to a so-called singular solution obtained by taking a
formal limit as ε→ 0. See [10] for details. This limit result follows from our rigorous
asymptotic expansions given below.

Remark 2. There would seem to be no difficulty in extending the existence proof
even to n < 1, but the uniqueness proof does use essentially the fact that n ≥ 1.

3. The infinite series (with k = 0, n ≥ 2). Starting again with (1), and
u (1) = 0, we first consider the case k = 0 and obtain

(10) rn−1u′ = Be−ε
∫

r
1

u(t)dt

for some constant B. Since u (∞) = 1, (10) implies that u′ (r) is exponentially small
as r → ∞. Hence we can rewrite (10) as

rn−1u′ = Ce−εr−ε
∫

r
∞(u−1)dt,

so that

u− 1 = C

∫ r

∞

1
tn−1

e−εt−ε
∫ t
∞(u−1)dsdt.

Setting εr = ρ, εt = τ , and εs = σ, we obtain

(11) u (ρ) − 1 = Cεn−2

∫ ρ

∞

1
τn−1

e−τe−
∫ τ
∞(u(σ)−1)dσdτ,

where we use the arguments ρ and σ to indicate that we mean the rescaled version of
u. Here C is a constant satisfying

(12) −1 = Cεn−2

∫ ε

∞

1
τn−1

e−τe−
∫

τ
∞(u−1)dσdτ.

Since for each ε there is a unique solution, this determines a unique C, dependent on
ε.

We now consider the integral

(13)
∫ ∞

τ

(1 − u (σ)) dσ,

which appears in the exponent in (12). This integral has been seen to converge for
each ε, but we need a bit more, namely, that it is bounded uniformly in ε ≤ τ < ∞
as ε→ 0. To see this, we note that as a function of σ, u satisfies

d2u

dσ2
+
n− 1
σ

du

dσ
+ u

du

dσ
= 0

u = 0 when σ = ε, u (∞) = 1.
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Denoting the unique solution by uε (σ) , we claim that if 0 < ε1 < ε2, then uε1 > uε2

for ε2 ≤ σ <∞. If this is false, then ε1 and ε2 can be chosen so that uε1 (σ0) = uε2 (σ0)
for some σ0 ≥ ε2. But then the problem

d2u

dσ2
+
n− 1
σ

du

dσ
+ u

du

dσ
= 0,

u (σ0) = uε1 (σ0) , u (∞) = 1,

has two solutions, contradicting our earlier uniqueness proof.
A consequence of this is that

∫∞
ε2

(1 − uε1 (σ)) dσ <
∫∞

ε2
(1 − uε2 (σ)) dσ, which

implies that the integral in the exponent in (12), including the minus sign in front, is
bounded below independently of τ ≥ ε and of ε. We then see that the τ -integral in
(12) approaches −∞ as ε→ 0, and hence that

lim
ε→0+

Cεn−2 = 0.

Since
∫ τ

∞ (u− 1) dσ > 0, it follows from (11) that if

En−1 (ρ) =
∫ ∞

ρ

1
τn−1

e−τdτ,

then

(14) |u (ρ) − 1| < Cεn−2En−1 (ρ) .

For purposes of future estimates, we make the obvious remark that

(15) En−1 (ρ) =

⎧⎪⎨⎪⎩
O
(
ρ2−n

)
as ρ→ 0 if n > 2,

O (log ρ) as ρ→ 0 if n = 2,
O
(
ρ1−ne−ρ

)
as ρ→ ∞.

Hence if n > 2, there is a constant K such that

(16) En−1 (ρ) ≤ K min
(
ρ2−n, ρ1−ne−ρ

)
.

The method now is to work from (11). As observed before, since u′ (r) is expo-
nentially small as r → ∞, the integral term

∫∞
ρ

(u− 1) dσ converges. Hence, for given
ε > 0 and ρ0 > 0, and any ρ ≥ ρ0,

(17)

u (ρ)−1 = Cεn−2

∫ ρ

∞

1
τn−1

e−τ

{
1 −

∫ τ

∞
(u− 1) dσ +

1
2

(∫ τ

∞
(u− 1)dσ

)2

− · · ·
}
dτ,

where the series in the integrand converges uniformly for ρ0 ≤ τ <∞.
In fact, we will need to use this series for all ρ ≥ ε. Thus we need to check its

convergence in this interval. This follows from (14) and (15), which imply that for
any ρ ≥ ε, if n ≥ 2, then

(18)
∣∣∣∣∫ ∞

ρ

(u (s) − 1) ds
∣∣∣∣ < Cεn−2

∫ ∞

ε

En−1 (s) ds
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and

εn−2

∫ ∞

ε

En−1 (s) ds =

{
o (1) as ε→ 0 if n > 2,
O (1) as ε→ 0 if n = 2.

Hence for n > 2 and any C, the series in the integrand of (17) converges uniformly on
[ε,∞).

Now set

Φ = Cεn−2

∫ ∞

ε

En−1 (s) ds.

We note that if n > 2, then Φ → 0 as ε→ 0, while if n = 2, then Φ → 0 as C → 0.
We proceed to solve (17) by iteration. Thus, the first approximation is, from (16),

u (ρ) − 1 = Cεn−2

∫ ρ

∞

1
τn−1

e−τdτ +O
(
Φ2
)
,

and we obtain the second approximation by substituting this back into (17). Repeat-
ing this, we reach

(19)

u− 1 = −Cεn−2En−1 +
(
Cεn−2

)2 ∫ ρ

∞

1
τn−1

e−τ

(∫ τ

∞
En−1dσ

)
dτ

+
1
2
(
Cεn−2

)3 ∫ ρ

∞

1
τn−1

e−τ

(∫ τ

∞
En−1dσ

)2

dτ

−
(
Cεn−2

)3 ∫ ρ

∞

1
τn−1

e−τ

∫ τ

∞

{∫ σ

∞

1
sn−1

e−s

(∫ s

∞
En−1dt

)
ds

}
dσdτ +O

(
Φ4
)
,

as Φ → 0.
To obtain C, we need to be able to evaluate each of these terms for small ρ

(in particular, for ρ = ε), and this is a matter of integration by parts. Thus, for
nonintegral n,

En−1 (ρ) =
∫ ∞

ρ

e−τ

τn−1
dτ = − ρ2−n

2 − n
e−ρ +

1
2 − n

∫ ∞

ρ

e−τ

τn−2
dτ

= − ρ2−n

2 − n
e−ρ +

1
2 − n

En−2,(20)

and this can be repeated to give En−1 as a sum of terms of the form ckρ
ke−ρ and

En−p, until 0 < n− p < 1. Then

En−p =
∫ ∞

0

e−τ

τn−p
dτ −

∫ ρ

0

e−τ

τn−p
dτ

= Γ (p+ 1 − n) −
∫ ρ

0

e−τ

τn−p
dτ,

and we can then continue to integrate by parts as far as we like. (If n is an integer,
we will reach

∫∞
ρ

e−τ

τ dτ , which introduces a logarithm.)
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Thus En−1 (ρ) can be expressed as a sum of terms of the form ckρ
ke−ρ, and so

obviously the same is true of E2
n−1 , with e−2ρ in place of e−ρ. Also,∫ ρ

∞
En−1 (τ) dτ =

∫ ρ

∞

(∫ ∞

τ

e−σ

σn−1
dσ

)
dτ

=
[
τ

(∫ ∞

τ

e−σ

σn−1
dσ

)] ∣∣∣ρ
∞

+
∫ ρ

∞

e−τ

τn−2
dτ

= ρEn−1 − En−2,(21)

so that
∫ ρ

∞ En−1dτ can be expressed as the same type of sum. Hence the second term
in (19) gives a sum of terms of the form Ek (2ρ) and the third and fourth terms a sum
involving Ek (3ρ).

We now carry the process through in the most interesting cases, n = 2, 3.

4. The case k = 0, n = 2. When n = 2 we are interested in

E1 (ρ) =
∫ ∞

ρ

1
τ
e−τdτ

= −e−ρ log ρ+
∫ ∞

ρ

e−τ log τdτ

= −e−ρ log ρ+
∫ ∞

0

e−τ log τdτ −
∫ ρ

0

e−τ log τdτ

= −e−ρ log ρ− γ − ρ (log ρ− 1) e−ρ +O
(
ρ2 log ρ

)
, for small ρ,

= − log ρ− γ + ρ+O
(
ρ2 log ρ

)
.(22)

(See, for example, [2, Chapter 1].) Also, for future purposes, using (20) we obtain

E2 (ρ) =
e−ρ

ρ
− E1 (ρ)(23)

=
1
ρ

+ log ρ+ (γ − 1) − 1
2
ρ+O

(
ρ2 log ρ

)
as ρ→ 0.(24)

Looking now at (19), with ρ = ε, we see that as ε→ 0,

C log ε→ −1

and

C =
1

log 1
ε

+O

(
1(

log 1
ε

)2
)
.

Hence the series in (19) is in powers of 1
log 1

ε

.

Also, we will work our approximations (in order to compare the results with those
of Hinch in [3]) to order 1

log2( 1
ε ) , so that (for example)

u =
a (r)

log
(

1
ε

) +
b (r)

log2
(

1
ε

) +O

(
log−3 1

ε

)
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for any fixed value of r (ρ of order ε). This, as we shall see, necessitates finding

C =
1

log
(

1
ε

) {1 +
A

log
(

1
ε

) +
B

log2
(

1
ε

) +O

(
log−3

(
1
ε

))}

and requires use of all the terms in (19).
With this in mind, we look at the second term of (19). Thus from (21),

(25)
∫ ∞

ρ

E1dτ = −ρE1 + e−ρ,

so that the second term is

C2

∫ ρ

∞

1
τ
e−τ

(
τE1 − e−τ

)
dτ = C2

{∫ ρ

∞
e−τE1dτ −

∫ ρ

∞

e−2τ

τ
dτ

}

= C2

{[
−e−τE1

]
|ρ∞ − 2

∫ ρ

∞

e−2τ

τ
dτ

}
= C2

(
−e−ρE1 (ρ) + 2E1 (2ρ)

)
.(26)

From (22), the second term is therefore

C2 (log ρ+ γ − 2 log 2ρ− 2γ +O (ρ))

= C2 (− log ρ− γ − 2 log 2 + O (ρ))(27)

as ρ→ 0.
In the third and fourth terms of (19) we need only the leading terms; i.e., we can

ignore the equivalent of γ + 2 log 2 in (27). Using (25) the third term becomes

(28)
1
2
C3

∫ ρ

∞

e−τ

τ

(
e−τ − τE1

)2
dτ =

1
2
C3 (log ρ+O (1)) as ρ→ 0.

Finally, in the fourth term, the integrand in the τ -integral is just the second term
(as a function of σ), so that from (25), the fourth term is

(29) M = −C3

∫ ρ

∞

e−τ

τ

[∫ τ

∞

{
−e−σE1 (σ) + 2E1 (2σ)

}
dσ

]
dτ.

It is seen from (25) that for any τ ≤ ∞,
∫ τ

0
E1 (σ) dσ converges. Hence we can

write the inner integral above in the form
∫ 0

∞ +
∫ τ

0
, and it follows that

M = −C3

∫ ρ

∞

e−τ

τ
{K + r (τ)} dτ,

where K is a constant, r is bounded, and r (τ) = O (τ log τ) as τ → 0. It further
follows that

M = C3 (KE1 (ρ) +O (1)) as ρ→ 0.
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We can evaluate K using (25) and (22):∫ ∞

0

E1 (2σ) dσ =
1
2

∫ ∞

0

E1 (u)du =
1
2
,

∫ ∞

0

e−σE1 (σ) dσ =
[
−
(
e−σ − 1

)
E1

]∞
0

−
∫ ∞

0

(
e−σ − 1

) e−σ

σ
dσ

= lim
σ→0

{−E1 (2σ) + E1 (σ)} = lim
σ→0

(log 2σ − log σ) = log 2.(30)

Hence, from (29), the fourth term of (19) is

(31) C3 {E1 (ρ) (log 2 − 1) +O (1)} = −C3 {(log 2 − 1) log ρ+O (1)} as ρ→ 0.

Now setting ρ = ε and using (27), (28), and (31), we obtain that

−1 = −C (− log ε− γ +O (ε)) + C2 (− log ε− γ − 2 log 2 +O (ε))

+
1
2
C3 (log ε+O (1)) − C3 {(log 2 − 1) log ε+O (1)}

as ε→ 0. Hence,

1
log
(

1
ε

) = C

(
1 − γ

log
(

1
ε

))− C2

(
1 − γ + 2 log 2

log
(

1
ε

) )
(32)

+ C3

(
3
2
− log 2

)
+ O

(
log−4

(
1
ε

))
,

and

C =
1

log
(

1
ε

) +
A

log2
(

1
ε

) +
B

log3
(

1
ε

) +O

(
1

log4
(

1
ε

)) ,
where

−γ +A− 1 = 0,

B − γA− 2A+ (γ + 2 log 2) +
3
2
− log 2 = 0.

Hence,

A = γ + 1,

B = γ2 + 2γ +
1
2
− log 2.

Thus, for fixed r, ρ of order ε, we have, with λ = log
(

1
ε

)
,

u− 1 =

(
1
λ

+
γ + 1
λ2

+
(γ + 1)2 − 1

2 − log 2
λ3

)
(log r + log ε+ γ)

+
1
λ2

(
1 +

2 (γ + 1)
λ

)
(− log r − log ε− γ − 2 log 2)

+
1
λ3

(
3
2
− log 2

)
(log r + log ε) +O

(
λ−4

)
,
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so that, after cancellation,

u =
log r
λ

+
γ log r
λ2

+O
(
λ−3

)
.

This is the “inner expansion.” For the “outer expansion,” i.e., fixed ρ, r of order 1
ε ,

we use (19), truncated to second order, to get

u− 1 = −E1 (ρ)
(

1
λ

+
γ + 1
λ2

)
+

1
λ2

(
2E1 (2ρ) − e−ρE1 (ρ)

)
+O

(
λ−3

)
.

These results are in accordance with those of Hinch and of others on this problem.

5. The case k = 0, n = 3. Here we are interested in (from (22) and (23))

E2 (ρ) =
e−ρ

ρ
− E1 (ρ) =

1
ρ

+ log ρ+ (γ − 1) − 1
2
ρ+O

(
ρ2 log ρ

)
as ρ→ 0.

Thus, the first term on the right of (19) evaluated at ρ = ε is

−C
(
1 + ε log ε+ (γ − 1) +O

(
ε2
))

as ε→ 0.

The second term is

(Cε)2
∫ ρ

∞

1
τ2
e−τ

(∫ τ

∞
E2dσ

)
dτ

= (Cε)2
{[

−E2 (τ)
∫ τ

∞
E2 (σ) dσ

]ρ

∞
+
∫ ρ

∞
E2

2dτ

}

= (Cε)2
{
−E2 (ρ)

∫ ρ

∞
E2 (τ) dτ +

∫ ρ

∞
E2

2dτ

}
.

From (23) we see that∫ ρ

∞
E2

2dτ = −1
ρ

+ log2 ρ+O (log ρ) as ρ→ 0,

while from (21), ∫ ρ

∞
E2dτ = ρE2 − E1 = 1 + log ρ+ γ +O (ρ log ρ) ,

E2

∫ ρ

∞
E2dτ =

1
ρ

log ρ+
γ + 1
ρ

+O
(
log2 ρ

)
.

In all, the second term is

(Cε)2
{
−1
ρ

log ρ− γ + 2
ρ

+O
(
log2 ρ

)}
.

It is readily verified that the third and fourth terms in (19) giveO{C3ε3( 1
ρ log2 ρ)},

which is negligible. Thus, evaluating (19) at ρ = ε, we have

−1 = −Cε
(

1
ε

+ log ε+ γ − 1
)

+ (Cε)2
(
−1
ε

log ε− γ + 2
ε

)
+O

(
C3ε2 log2 ε

)
,
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so that

C = 1 − 2ε log ε− ε (2γ + 1) +O
(
ε2 log2 ε

)
.

Then, for fixed r, ρ of order ε, we have

u− 1 = −ε (1 − 2ε log ε− ε (2γ + 1))
(

1
εr

+ log ε+ log r + γ − 1
)

+ ε2
(
− 1
εr

(log ε+ log r) − γ + 2
εr

)
+O

(
ε2 log2 ε

)
,

u = 1 − 1
r
− ε log ε

(
1 − 1

r

)
− ε

(
log r +

log r
r

)
+ ε (1 − γ)

(
1 − 1

r

)
+O

(
ε2 log2 ε

)
.

For fixed ρ, r of order ε−1, we again use (19), to give

u− 1 = −ε (1 − 2ε log ε− ε (2γ + 1))E2 (ρ)

+ ε2
{
E1 (ρ)E2 (ρ) − ρE2

2 (ρ) −
∫ ∞

ρ

E2
2dτ

}
+O

(
ε3
)
.(33)

Again, these results are in agreement with those of Hinch, and others, although (33)
gives one term further.

Remark 3. It is of interest to consider what happens when n < 2, since, at least
for n ≥ 1, there still exists a unique solution. Equation (19) is still valid at ρ = ε,
but since En−1 (ρ) is no longer singular at ρ = 0 for n < 2, (19) with ρ = ε becomes
merely an implicit equation for Cεn−2. This tells us that C → 0, since εn−2 → ∞,
but we no longer get an asymptotic expansion. In particular, it is no longer obvious
that C is unique. Of course, we know this from Theorem 1 if n ≥ 1.

6. The case k = 1. We can in fact treat a generalization, which causes no
further difficulties,

(34) u′′ +
n− 1
r

u′ + f (u)u′2 + εu u′ = 0,

with the same boundary conditions. As before, we will compare our results with those
of Hinch in [3].

As remarked in the proof of Theorem 1, the solution will necessarily have u′ > 0
so that conditions on f (u) are necessary only for 0 ≤ u ≤ 1. We require only that f
be continuous and positive in this interval.

Then (34) can be written as(
rn−1u′

)′
rn−1u′

+ f (u)u′ + εu = 0,

so that

log
(
rn−1u′

)
= −F (u) − ε

∫ r

1

udt+A
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for some constant A, where

F (u) =
∫ u

0

f (s) ds.

This becomes

eF (u)u′ =
C

rn−1
e−εr−ε

∫
r
∞(u−1)ds,

or, on integration,

G (u) −G (1) = C

∫ r

∞

1
tn−1

e−εt−ε
∫ t
∞(u−1)dsdt,

where

G (u) =
∫ u

0

eF (v)dv.

In order to keep the manipulations simple and effect comparisons, we will consider
from here the Lagerstrom model, where f (u) = 1, F (u) = u, G (u) = eu − 1. Then,
with εr = ρ, εt = τ , we have

(35) eu − e = Cεn−2

∫ ρ

∞

1
τn−1

e−τe−
∫ τ
∞(u−1)dσdτ,

and writing

u− 1 =
u− 1
eu − e

(eu − e) ,

we get

(36) eu − e = Cεn−2

∫ ρ

∞

1
τn−1

e−τe−
∫

τ
∞

u−1
eu−e (eu−e)dσdτ.

As in section 3, we can integrate by parts, and since 0 ≤ u−1
eu−e ≤ 1 in 0 ≤ u < 1,

we will develop a convergent series as before. To get the first three terms (necessary
to give Hinch’s accuracy when n = 2), we have from (36) that

eu − e = Cεn−2

∫ ρ

∞

1
τn−1

e−τ

{
1 −

∫ τ

∞

u− 1
eu − e

(eu − e) dσ(37)

+
1
2

(∫ τ

∞

u− 1
eu − e

(eu − e) dσ
)2

+ · · ·
}
dτ.

As before, since eu−e→ 0 exponentially fast as ρ→ ∞, the series in the integrand
converges uniformly for large τ , so that (37) is valid for large ρ. But again we need to
extend it down to ρ = ε. From (35) we have

eu − e ≤ Cεn−2En−1 (ρ) ,

and so the convergence proof is the same as that preceding (19).
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Before proceeding further with n = 2, we make a couple of remarks about the
simpler case n > 2. Then, as we saw in section 5, only two terms are necessary to
give the required accuracy, and then (37) gives

eu − u = Cεn−2

∫ ρ

∞

e−τ

τn−1

{
1 −

∫ τ

∞

u− 1
eu − e

(eu − e) dσ + · · ·
}
,

and since u−1
eu−e appears in what is already the highest order term, we can replace it

by its limit as u→ 1, i.e., 1
e . Thus we get, to the required order,

eu − e = −Cεn−2En−1 −
(
Cεn−2

e

)∫ ρ

∞

e−τ

τn−1

∫ τ

∞
(eu − e)dσdτ.

(We will proceed more carefully for n = 2.) This, apart from the factor 1
e , is the same

equation dealt with in section 5 (with eu − e in place of u− 1), and the solution can
be written down from there. If we had a general function f in place of 1, we would
get

eF (u) − eF (1) = −Cεn−2En−1 −
Cεn−2

eF (1)f (1)

∫ ρ

∞

e−τ

τn−1

(∫ τ

∞

(
eF (u) − eF (1)

)
dσ

)
dτ.

Turning now to the case n = 2 and F (u) = u, we need three terms on the right
of (37). Thus,

(38)
u− 1
eu − e

=
1
e
− 1

2e2
(eu − e) +O (eu − e)2 as u→ 1.

We follow the method used just before (19) and obtain from (37) that

eu − e

= −Cεn−2En−1 +
1
e

(
Cεn−2

)2 ∫ ρ

∞

1
τn−1

e−τ

(∫ τ

∞
En−1dσ

)
dτ

+
1

2e2
(
Cεn−2

)3 ∫ ρ

∞

1
τn−1

e−τ

(∫ τ

∞
E2

n−1dσ

)
dτ

+
1

2e2
(
Cεn−2

)3 ∫ ρ

∞

1
τn−1

e−τ

(∫ τ

∞
En−1dσ

)2

dτ

− 1
e2
(
Cεn−2

)3 ∫ ρ

∞

1
τn−1

e−τ

∫ τ

∞

{∫ σ

∞

1
sn−1

e−s

(∫ s

∞
En−1dt

)
ds

}
dσdτ +O

(
Φ4
)

= −Cεn−2En−1 + F1 + F2 + F3 + F4 +O
(
Φ4
)
,

say. As before, if n > 2, then this is valid for any C as ε → 0, uniformly in ρ ≥ ε,
while if n = 2, it is valid as C → 0.

For n = 2 we can continue to follow the argument in section 4. Thus, as ρ→ 0,

F1 =
1
e
C2 (− log ρ− γ − 2 log 2 +O (ρ)) ,

F3 =
1

2e2
C3 (log ρ+O (1)) ,

F4 = − 1
e2
C3 [(log 2 − 1) log ρ+O (1)] .
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The term F2 did not appear before. Only the highest order term is needed for our
expansion and this is

− 1
2e2

C3

(∫ ρ

∞

1
τ
e−τdτ

)∫ ∞

0

E2
1dσ.

Now ∫ ∞

0

E2
1dσ =

[
τE2

1

]∞
0

+ 2
∫ ∞

0

τ
e−τ

τ
E1dτ

= 2
∫ ∞

0

e−τE1dτ = 2 log 2 from (30) .

Thus,

F2 =
1
e2
C3E1

(
log 2 +O

(
ρ log2 ρ

))
= − 1

e2
C3 ((log 2) log ρ+O (1)) ,

and, evaluating at ρ = ε, we have

1 − e = C (log ε+ γ +O (ε))

− 1
e
C2 (log ε+ γ + 2 log 2 +O (ε))

+
1

2e2
C3 log ε (−2 log 2 + 1 − 2 log 2 + 2) +O

(
C3
)
,

e− 1
log 1

ε

= C

(
1 − γ

log
(

1
ε

))− 1
e
C2

(
1 − γ + 2 log 2

log
(

1
ε

) )

+
1

2e2
C3

(
3 − 4 log 2 +O

(
Cε

log ε

)
+O

(
C2ε

log ε

)
+O

(
C3

log ε

))
.

Hence if

C =
e− 1

log
(

1
ε

) +
A

log2
(

1
ε

) +
B

log3
(

1
ε

) +O

(
log−4

(
1
ε

))
,

then

−γ (e− 1) +A− (e− 1)2

e
= 0,

A =
e− 1
e

(γe+ e− 1) ,

B −Aγ +
(e− 1)2

e
(γ + 2 log 2) − 2A (e− 1)

e
+

1
2e2

(e− 1)3 (3 − 4 log 2) = 0.

We can of course calculate B, but in fact its value will be irrelevant to the level of
approximation that we take.
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Then, for fixed r (ρ of order ε), we have, with l = log
(

1
ε

)
,

eu − e = (e− 1)
{

1
l

+
γ + 1 − 1

e

l2
+
B/ (e− 1)

l3

}
(log ε+ log r + γ)

+
1
e

(e− 1)2
{

1
l2

+
2
(
γ + 1 − 1

e

)
l3

}
(− log ε− log r − γ − 2 log 2)

+
1

2e2
(e− 1)3

l3
(3 − 4 log 2) (log ε+ log r) +O

(
l−3
)

= 1 − e+
(e− 1) log r

l
+
γ (e− 1) log r

l2
+O

(
l−3
)
.(39)

(Note that the definitions ofA andB were such that u = 0 at r = 1 up to and including
order l−2, so that to that order there can be only terms in log r, not constant terms.
We do not need the explicit value of B.) To obtain u, we have to invert, so that

u = log
{

1 +
e− 1
l

log r +
γ (e− 1)

l2
log r +O

(
l−3
)}

.

For fixed ρ, r of order ε−1, we have

eu−e = −e− 1
l

(
1 +

γ + 1 − 1
e

l

)
E1 (ρ)+

(e− 1)2

el2
(
2E1 (2ρ) − e−ρE1 (ρ)

)
+O

(
l−3
)
.

Thus

u− 1 =
1
e

(eu − e) − 1
2e2

(eu − e)2 + · · ·

= −e− 1
e

(
1 +

γ + 1 − 1
e

l

)
E1 (ρ)
l

+
(e− 1)2

e2
(2E1 (2ρ) − e−ρE1 (ρ))

l2

− (e− 1)2

2e2
E2

1 (ρ)
l2

+O
(
l−3
)
.(40)

Again, these results are consistent with those of Hinch and others, except that Hinch
has an algebraic mistake which in (40) replaces γ + 1 − 1

e by γ − 1 + 1
e .

7. Final remarks. Starting with Lagerstrom, the terms involving log ε in the
inner expansions have been considered difficult to explain. They are often called
“switchback” terms, because there is nothing obvious in the equation which indicates
the need for such terms, and because, starting with an expansion in powers of ε,
one finds inconsistent results which are resolved only by adding terms of lower order,
that is, powers of ε log ε. The recent approach to the problem by geometric pertur-
bation theory explains this by reference to a “resonance phenomenon,” which is too
complicated for us to describe here [10], [11].

In our work, the necessity for such terms is seen already from (11) and the resulting
expansion (17):

u (ρ)−1 = Cεn−2

∫ ρ

∞

1
τn−1

e−τ

{
1 −

∫ τ

∞
(u− 1) dσ +

1
2

(∫ τ

∞
(u− 1)dσ

)2

− · · ·
}
dτ.
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In the existence proof it was seen in (9) that C = O (1) as ε→ 0. On the right of (17)
the first term is simply −Cεn−2En−1 (ρ) , and the simple expansions given for E1 and
E2 show immediately the need for the logarithmic terms. There is no “switchback,”
because the procedure does not start with any assumption about the nature of the
expansion, and there is no need for a “matching.”

A number of authors have noted that the outer expansion is a uniformly valid
asymptotic expansion on [1,∞), and therefore it “contains” the inner expansion [5],
though this is more subtle when k = 1 [13]. Our twist on this is that both expansions
are contained in the uniformly convergent series defined implicitly by (17). The simple
derivation of this series via the integral equation (11) is new, as far as we know.

Acknowledgment. We thank the referees for some very helpful comments. In
particular, they called our attention to earlier proofs of the existence and uniqueness
results, in some cases by techniques similar to ours.
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VECTOR FIELDS FOR MEAN VALUE COORDINATES∗
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Abstract. We find vector fields F that provide the representation v =
∫
∂D

rF · dr/
∫
∂D

F · dr
for any compact 2-D manifold D ⊂ R

2 with piecewise smooth boundary ∂D and v ∈ R
2, and the

representation v =
∫∫
∂M

rF · dS/
∫∫
∂M

F · dS for any compact 3-D manifold M ⊂ R3 and v ∈ R3.

Our method exploits properties of conservative fields in R
2 and divergence free vector fields in R

3.
Discrete versions, which are more general than Floater’s mean value coordinates, are derived from
the above representations with a special choice of F, either by taking points on the boundaries of
D ⊂ R2 and M ⊂ R3 or by considering representations on boundaries of polygons in R2 or polyhedra
in R3.

Key words. star-shaped region, mean value coordinates, conservative and divergence free vector
fields, Stoke’s theorem, divergence theorem, spherical harmonics
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1. Introduction. Representation of points and functionals on a set by its ex-
treme points or boundary is an important problem in mathematics and its applica-
tions. Barycentric coordinates, the Krein–Millman theorem, and Choquet’s theorem
are examples of such a representation. Recently, in conjunction with the construction
of one-one transformations and parametrizations of meshes in R

3, Floater [2] has found
an explicit formula for the representation of points that lie in the kernel of star-shaped
polygons in R

2 in terms of extreme points of the polygon. Because of its usefulness
in computer graphics and its potential applications in functional approximation and
interpolation, the idea has been quickly extended to star-shaped polyhedrons in R

3

(see [3], [4], [5], [6], [7]). Floater’s original idea was motivated by the mean value
property of harmonic functions; i.e., if φ is harmonic in a region Ω ⊂ R

2, then for any
disc D(v, r) ⊂ Ω with center at v and radius r,

(1.1) φ(v) =
1

2πr

∫
∂D

φ(r)ds,

where ds =
∣∣dr

dt

∣∣ dt for a parametrization r = r(t) of ∂D. He observed that a class
of real-valued piecewise linear functions defined on a triangular mesh in R

2, which
he calls convex combination functions, shares discretely some properties of harmonic
functions. Forcing the mean value property (1.1) on the convex combination functions
produces the new coordinates, which he calls the mean value coordinates. The problem
of computing these coordinates then reduces to integrating elementary trigonometric
functions over the unit circle or the unit sphere (see [2], [3], [7]).

This paper explores the connection between mean value coordinates with conser-
vative vector fields on compact 2-D manifolds in R

2 and divergence free vector fields
on compact 3-D manifolds in R

3 that provide a mathematical foundation, and puts
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mean value coordinates in a more general mathematical setting. In particular we find
vector fields F that provide the representation

v =

∫
∂D r F(r − v) · dr∫
∂D

F(r − v) · dr

for any compact 2-D manifold D ⊂ R
2 with piecewise smooth boundary ∂D and for

any vector v ∈ R
2, and

v =

∫∫
∂M r F(r − v) · dS∫∫
∂M F(r − v) · dS

for any compact 3-D manifold M ⊂ R
3 and v ∈ R

3. We shall refer to these as mean
value representations. Our method exploits properties of conservative and divergence
free vector fields. With a special choice of F and restricting to points on the boundaries
of the manifolds or by considering the representations on the boundaries of polygons in
R

2 and polyhedra in R
3, discrete versions of mean value representation are obtained,

which are more general than Floater’s mean value coordinates.
In section 2 a search for vector fields that provide the mean value representation

in R
2 leads to a class of vector fields

F =
[

1
xy

Φ
(x
r
,
y

r

)
,
−1
y2

Φ
(x
r
,
y

r

)]T

,

where Φ is an arbitrary real-valued differentiable function on the unit circle S
1. For

these F, the vector fields xF, yF are conservative on R
2 \ {0}. Further, if

Φ(cos θ, sin θ) = − cos θ sin2 θ

(
1 +

∞∑
k=2

ak cos kθ + bk sinkθ

)
,

with |
∑∞

k=2 ak cos kθ + bk sin kθ| ≤ 1, then the corresponding F provides a mean
value representation. A more general form of Floater’s mean value coordinates is
derived from the particular choice of Φ(cos θ, sin θ) = − cos θ sin2 θ, i.e., Φ(x

r ,
y
r ) =

−xy2

r3 , and hence F(x, y) := [−y/r3, x/r3]T . The derivation exploits properties of path
independent integrals of conservative fields. A similar search in section 3 for vector
fields that provide the mean value representations in R

3 leads to a class

F(r) =
[

1
xyz

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)
,

1
x2z

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)
,

1
x2y

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)]T

,

where Φ : S
2 → R is an arbitrary differentiable function and ρ := (x2 + y2 + z2)1/2.

In this case xF, yF, and zF are divergence free on R
3 \ {0}. Further, if

Φ
(
x

ρ
,
x

ρ
,
x

ρ

)
=
x2yz

ρ4

(
1 + Ψ

(
x

ρ
,
x

ρ
,
x

ρ

))
= sin3 φ cos2 θ sin θ cosφ (1 + Ψ(sinφ cos θ, sinφ sin θ, cosφ)),

where Ψ is orthogonal to the first order spherical harmonics and |Ψ| ≤ 1, then F
provides a mean value representation in R

3. The derivation of Floater’s type mean
value coordinates in R

3 is carried out in section 4. Here we take Ψ = 0, and hence
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Φ(x
ρ ,

y
ρ ,

z
ρ ) = x2yz

ρ4 and F = r
ρ4 , and consider compact 3-D manifolds with polyhedral

faces of any topology. The integral of
∫∫

∂M rF · dS over the boundary of such a
manifold M is the sum of the integrals over its faces. The integral

∫∫
S rF · dS over

each face S is evaluated using Stoke’s theorem. This is done by finding vector fields A,
B, C such that xF = curl(A) yF = curl(B), zF = curl(C), which is possible since
div(xF) = div(yF) = div(zF) = 0. This leads to a simple formula for the integrals
over the faces of the boundary of M , from which discrete versions of the mean value
representation or Floater’s type mean value coordinates are obtained. If all the faces
are triangular, the procedure leads to a unique solution. In all other cases the solutions
are not unique.

2. Representation on boundaries of compact 2-D manifolds in R
2. Let

D ⊂ R
2 be a compact 2-D manifold with piecewise smooth boundary ∂D, which is

assumed to be oriented in the positive direction; i.e., if one travels along this direction,
the region D lies on his left. We want to find a vector field F = [F1(x, y), F2(x, y)]T

such that for any D ⊂ R
2 and v ∈ R

2,

(2.1)
∫

∂D

(r − v)F(r − v) · dr = 0

and

(2.2)
∫

∂D

F(r − v) · dr �= 0,

so that

(2.3) v =

∫
∂D

r F(r − v) · dr∫
∂D F(r − v) · dr .

Without loss of generality, we may assume that v = 0 so that the problem reduces to
finding F such that for any D

(2.4)∫
∂D

r F · dr =
[∫

∂D

xF1(x, y)dx + xF2(x, y)dy,
∫

∂D

yF1(x, y)dx + yF2(x, y)dy
]T

= 0

and (2.2) holds, i.e.,
∫

∂D F(r) · dr �= 0.
First, suppose that F is continuously differentiable on a domain that contains D.

By Green’s theorem, (2.4) holds if

∂(xF1)
∂y

=
∂(xF2)
∂x

and
∂(yF1)
∂y

=
∂(yF2)
∂x

,

or, equivalently,

(2.5) x
∂F2

∂x
− x

∂F1

∂y
= −F2 and y

∂F2

∂x
− y

∂F1

∂y
= F1.

The equations in (2.5) give F2 = −x
y F1, which together with the first equation of (2.5)

lead to

(2.6) x
∂F1

∂x
+ y

∂F1

∂y
= −2F1.
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The general solution of (2.6) that vanishes at infinity is F1(x, y) = 1
xy Φ

(
x
r ,

y
r

)
, where

Φ is an arbitrary real-valued differentiable function defined on the unit circle S
1 and

r := ||r|| = (x2 +y2)1/2. Further, Φ
(

x
r ,

y
r

)
is the general solution of the corresponding

homogeneous equation.
Proposition 2.1. Let

(2.7) F = [F1, F2]T :=
[

1
xy

Φ
(x
r
,
y

r

)
,
−1
y2

Φ
(x
r
,
y

r

)]T

,

where Φ is an arbitrary real-valued differentiable function on the unit circle S
1. Then

(2.8)

xF =
[
1
y
Φ
(x
r
,
y

r

)
,
−x
y2

Φ
(x
r
,
y

r

)]T

and yF =
[

1
x

Φ
(x
r
,
y

r

)
,
−1
y

Φ
(x
r
,
y

r

)]T

are conservative vector fields on any region not containing the origin with potential
functions φ1 and φ2, respectively, where

φ1(x, y) =
∫

1
y
Φ
(x
r
,
y

r

)
dx = −

∫
x

y2
Φ
(x
r
,
y

r

)
dy,(2.9)

φ2(x, y) =
∫

1
x

Φ
(x
r
,
y

r

)
dx = −

∫
1
y
Φ
(x
r
,
y

r

)
dy.(2.10)

Proof. Using the fact that x∂Φ
∂x + y ∂Φ

∂y = 0, it is straightforward to verify that
xF = �φ1 and yF = �φ2.

It follows from Proposition 2.1 that the integrals of xF and yF over the boundary
of any 2-D manifold in R

2 that does not contain the origin are zero. We also require
their integrals over any closed curve that encloses the origin to be zero, and it suffices
to integrate over the unit circle S

1. We have∫
S1

xF · dr = −
∫ 2π

0

1
sin2 θ

Φ(cos θ, sin θ)dθ,(2.11)

∫
S1

yF · dr = −
∫ 2π

0

1
cos θ sin θ

Φ(cos θ, sin θ)dθ.(2.12)

If

(2.13) Φ(cos θ, sin θ) = − cos θ sin2 θ(1 + ψ(cos θ, sin θ)),

where

ψ(cos θ, sin θ) :=
∞∑

k=2

ak cos kθ + bk sin kθ

is a differentiable function, then (2.11) and (2.12) give∫
S1

xF · dr =
∫ 2π

0

cos θ(1 + ψ(cos θ, sin θ))dθ = 0,(2.14)

∫
S1

yF · dr =
∫ 2π

0

sin θ(1 + ψ(cos θ, sin θ))dθ = 0,(2.15)
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since 1 + ψ is orthogonal to cos θ and sin θ.
We now state the results and complete the proof.
Theorem 2.2. Let F be as in Proposition 2.1 with Φ in (2.13). Then for any

compact 2-D manifold D ⊂ R
2 with piecewise smooth boundary ∂D and for v ∈

R
2 \ ∂D,

(2.16)
∫

∂D

(r − v) F(r − v) · dr = 0.

Further, if |ψ| ≤ 1,

(2.17) v =

∫
∂D

r F(r − v) · dr∫
∂D F(r − v) · dr

for any v ∈ R
2.

We first prove a lemma, from which one can deduce that (2.2) holds if |ψ| ≤ 1.
Lemma 2.3. For any compact 2-D manifold D ⊂ R

2 with piecewise smooth bound-
ary,

(2.18)
∫

∂D

F · dr =

{
−
∫∫

D
1
r3

(
1 + ψ

(
x
r ,

y
r

))
dxdy if 0 �∈ D,∫∫

R2\D
1
r3

(
1 + ψ

(
x
r ,

y
r

))
dxdy if 0 ∈ D.

In particular,
∫

∂D
F · dr �= 0 if |ψ| ≤ 1.

Proof. If 0 �∈ D, by Green’s theorem∫
∂D

F · dr =
∫∫

D

∂

∂x

(
−1
y2

Φ
)
− ∂

∂y

(
1
xy

Φ
)
dxdy

=
∫∫

D

1
xy2

Φ
(x
r
,
y

r

)
− 1
xy2

{
x
∂Φ
∂x

+ y
∂Φ
∂y

}
dxdy

=
∫∫

D

1
xy2

Φ
(x
r
,
y

r

)
dxdy

= −
∫∫

D

1
r3

(
1 + ψ

(x
r
,
y

r

))
dxdy.(2.19)

If 0 ∈ D, take a disc DR, with center at the origin and radius R, that contains
D. By (2.19),∫

∂DR

F · dr −
∫

∂D

F · dr = −
∫∫

DR\D

1
r3

(
1 + ψ

(x
r
,
y

r

))
dxdy

so that∫
∂D

F · dr =
∫

∂DR

F · dr +
∫∫

DR\D

1
r3

(
1 + ψ

(x
r
,
y

r

))
dxdy

= − 1
R

∫ 2π

0

1 + ψ(cos θ, sin θ)dθ +
∫∫

DR\D

1
r3

(
1 + ψ

(x
r
,
y

r

))
dxdy.

Taking the limit as R → ∞ gives the second formula in (2.18).
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Proof of Theorem 2.2. If v �∈ ∂D, (2.16) follows from Proposition 2.1 and (2.14)
and (2.15). Equation (2.17) follows from (2.16) and Lemma 2.3.

If v ∈ ∂D, for any ε > 0, we replace an appropriate segment of ∂D that contains
v by a circular arc with center at v and radius ε, so that v lies outside the resulting
piecewise smooth curve, which we call ∂Dε. Then (2.17) holds for ∂Dε for all ε > 0,
and therefore holds in the limit as ε→ 0.

If we choose ψ = 0 in (2.13) so that

(2.20) Φ(cos θ, sin θ) = − cos θ sin2 θ,

a more general form of Floater’s mean value coordinates [2] can be deduced as a
corollary. The proof here, which is different from the existing methods (see [2], [3], [5]
[6]), provides a better understanding why they work.

Corollary 2.4. Let D ⊂ R
2 be a compact 2-D manifold with piecewise smooth

boundary ∂D, and let vj ∈ ∂D, j = 1, 2, . . . , k > 2, be arranged in the positive
orientation. Then for any v ∈ R

2,

(2.21) v =

∑k
j=1 wjvj∑k

j=1 wj

,

where

(2.22) wj :=
tan(αj−1/2) + tan(αj/2)

||vj − v|| , j = 1, 2, . . . , k − 1,

and αj is the angle at v of the oriented triangle [v,vj ,vj+1] with |αj | < π and takes
a positive value if the vector vj

||vj|| −
vj+1

||vj+1|| is in the counterclockwise orientation and
a negative value otherwise.

Proof. Take ψ = 0 in (2.13) so that Φ
(

x
r ,

y
r

)
= −xy2

r3 and F(r) ≡ F(x, y) :=
[−y/r3, x/r3]T . By (2.9) and (2.10), xF = �φ1 and yF = �φ2, where

φ1(x, y) = −1
y

∫
xy2

r3
dx =

y

r
,(2.23)

φ2(x, y) =
∫
xy2

yr3
dy =

−x
r
.(2.24)

Hence the vector [φ1(x, y), φ2(x, y)]T = [y,−x]T /r is the rotation of the [x, y]T /r along
the unit circle in the clockwise direction through an angle of π/2. Let vj = [xj , yj ],
j = 1, 2, . . . , k, vk+1 := v1. Then for j = 1, 2, . . . , k,∫ vj+1

vj

r F · dr = [φ1(vj+1), φ2(vj+1)]T − [φ1(vj), φ2(vj)]T

= [yj+1,−xj+1]T /||vj+1|| − [yj ,−xj ]T /||vj ||.

The vector [yj+1,−xj+1]T /||vj+1||− [yj ,−xj ]T /||vj || is parallel to vj+1/||vj+1||+
vj/||vj || and∥∥∥∥ [yj+1,−xj+1]T

||vj+1||
− [yj ,−xj ]T

||vj ||

∥∥∥∥ =
∥∥∥∥ vj+1

||vj+1||
− vj

||vj ||

∥∥∥∥
= tan(αj/2)

∥∥∥∥ vj+1

||vj+1||
+

vj

||vj ||

∥∥∥∥ ,
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where αj is the angle at the origin, 0, of the triangle
[
0, vj

||vj|| ,
vj+1

||vj+1||
]
. Hence∫ vj+1

vj

r F · dr = tan(αj/2)
{

vj+1

||vj+1||
+

vj

||vj ||

}
with the convention that αj takes the positive sign if vj+1

||vj+1||−
vj

||vj|| is counterclockwise
and the negative sign if it is clockwise. Hence for v ∈ R

2,∫ vj+1

vj

(r − v) F(r − v) · dr = tan(αj/2)
{

vj − v
||vj − v|| +

vj+1 − v
||vj+1 − v||

}
,

where αj is the angle at v of triangle [v,vj ,vj+1]. Substituting this into

k∑
j=1

∫ vj+1

vj

(r − v) F(r − v) · dr =
∫

∂D

(r − v) F(r − v) · dr = 0

gives (2.21) with wj given by (2.22).

3. Representation on boundaries of compact 3-D manifolds in R
3. As

in the previous section, we want to find a differentiable vector field F(r) = [F1(x, y, z),
F2(x, y, z), F3(x, y, z)]T , r = [x, y, z]T ∈ R

3 \ {0}, that satisfies

(3.1)
∫∫

∂M

r F(r) · dS = 0

and

(3.2)
∫∫

∂M

F(r) · dS �= 0

for any compact 3-D manifold M ∈ R
3 with piecewise smooth boundary ∂M. We

assume that the positive orientation of ∂M is one in which its normal points away
from M. Then if (3.1) and (3.2) hold, then, for any v ∈ R

3,

(3.3) v =

∫∫
∂M r F(r − v) · dS∫∫
∂M F(r − v) · dS .

A similar search as in the previous section requiring that xF, yF, and zF be
divergence free, i.e., div(xF) = div(yF) = div(zF) = 0, shows that Fi, i = 1, 2, 3, are
solutions of the partial differential equation

(3.4) x
∂U

∂x
+ y

∂U

∂y
+ z

∂U

∂z
= −3U.

The general solution of (3.4) that vanishes at infinity is

(3.5) U(x, y, z) =
1
xyz

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)
,

where Φ : S
2 → R is an arbitrary differentiable function on the unit sphere S

2 ⊂ R
3,

ρ := (x2 + y2 + z2)1/2, and Φ
(

x
ρ ,

y
ρ ,

z
ρ

)
is the general solution of the corresponding

homogeneous equation. To state the results, we define spherical harmonics

Cm
� (φ, θ) := Nm

� P
m
� (cosφ) cosmθ, m = 0, 1, . . . , 
,

Sm
� (φ, θ) := Nm

� P
m
� (cosφ) sinmθ, m = 1, 2, . . . 
,
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where Pm
� are the associated Legendre polynomials and Nm

� are normalization con-
stants (see [9]).

Theorem 3.1. Let

(3.6)

F(r) ≡ F(x, y, z) :=
[

1
xyz

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)
,

1
x2z

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)
,

1
x2y

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)]T

,

where Φ : S
2 → R is an arbitrary differentiable function. Then xF, yF, and zF are

divergence free on R
3 \ {0}.

Further, if

Φ
(
x

ρ
,
x

ρ
,
x

ρ

)
:=

x2yz

ρ4

(
1 + Ψ

(
x

ρ
,
x

ρ
,
x

ρ

))
= sin3 φ cos2 θ sin θ cosφ (1 + Ψ(sinφ cos θ, sinφ sin θ, cosφ))(3.7)

and

(3.8) Ψ(sinφ cos θ, sinφ sin θ, cosφ) :=
∞∑

�=2

{
�∑

m=0

am
� Cm

� (φ, θ) +
�∑

m=1

bm� Sm
� (φ, θ)

}
,

then for any compact 3-D manifold M in R
3 with piecewise smooth boundary and for

v ∈ R
3 \ ∂M,

(3.9)
∫∫

∂M

(r − v) F(r − v) · dS = 0.

In addition, if |Ψ| ≤ 1, then for any v ∈ R
3,

(3.10) v =

∫∫
∂M r F(r − v) · dS∫∫
∂M

F(r − v) · dS .

Proof. Suppose F is as in (3.6), where Φ : S
2 → R is an arbitrary differentiable

function on the unit sphere S
2. Then

div(xF) =
1
xyz

(
x
∂Φ
∂x

+ y
∂Φ
∂y

+ z
∂Φ
∂z

)
= 0, (x, y, z) ∈ R

3 \ {0},

since Φ(x
ρ ,

y
ρ ,

z
ρ) satisfies

x
∂Φ
∂x

+ y
∂Φ
∂y

+ z
∂Φ
∂z

= 0.

Similarly, div(yF) = div(zF) = 0.
Suppose Φ is given by (3.7) and (3.8). To prove (3.9) we may assume v = 0, so

it reduces to proving (3.1). Since xF, yF, and zF are divergence free, (3.1) holds for
any compact 3-D manifold M that does not contain the origin. To prove that (3.1)
holds for any M that contains the origin, it suffices to prove that it holds for the unit
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ball B with boundary ∂B = S
2. In spherical polar coordinates,∫∫

S2

xF · dS =
∫ 2π

0

∫ π

0

Φ(sinφ cos θ, sinφ sin θ, cosφ)
sinφ cosφ sin θ cos θ

dφdθ,(3.11)

∫∫
S2

yF · dS =
∫ 2π

0

∫ π

0

Φ(sinφ cos θ, sinφ sin θ, cosφ)
sinφ cosφ cos2 θ

dφdθ,(3.12)

∫∫
S2

zF · dS =
∫ 2π

0

∫ π

0

Φ(sinφ cos θ, sinφ sin θ, cosφ)
sin2 φ cos2 θ sin θ

dφdθ.(3.13)

By (3.7) and (3.11)–(3.13),∫∫
S2

r F · dS ≡
∫∫

S2

[x, y, z]TF · dS

=
∫ 2π

0

∫ π

0

(1 + Ψ) [C1
1 (φ, θ), S1

1 (φ, θ), C0
1 (φ, θ)]T sinφdφdθ,

where

C0
1 (φ, θ) = cosφ, C1

1 (φ, θ) = sinφ cos θ, S1
1(φ, θ) = sinφ sin θ

are the first order spherical harmonics. Since 1 + Ψ is orthogonal to C0
1 , C

1
1 , and S1

1 ,
it follows that

∫∫
S2 r F · dS = 0.

To prove (3.10) we first show that (3.2) holds. The same argument as in the proof
of Lemma 2.3 using the divergence theorem gives

(3.14)
∫∫

∂M

F · dS =

⎧⎨⎩
∫∫∫

M
1
ρ4

(
1 + Ψ

(
x
ρ ,

y
ρ ,

z
ρ

))
dxdydz if 0 �∈M,

−
∫∫∫

R3\M
1
ρ4

(
1 + Ψ

(
x
ρ ,

y
ρ ,

z
ρ

))
dxdydz if 0 ∈M.

In particular,
∫∫

∂M
F · dS �= 0 if |Ψ| ≤ 1. Hence (3.10) follows from (3.9) for v �∈ ∂M.

A limiting argument as in the proof of Theorem 2.2 shows that it also holds for v ∈
∂M.

4. Mean value coordinates in R
3. We now apply the results in Theorem 3.1

to compute mean value coordinates in R
3. An explicit expression for mean value

coordinates for points that lie in the kernel of a star-shaped polyhedron in R
3 is

given in [3]. An algorithm for computing these coordinates for all points in R
3 can be

found in [6], but no explicit expression is given there. In this section we derive a new
formula for mean value coordinates for points in R

3 with respect to the boundary of
any compact 3-D manifold with polyhedral faces of any topology. In the case where
all the faces of ∂M are triangular, the formula is equivalent to that in [3].

Consider F = [F1, F2, F3]T in (3.6), where Ψ is given by (3.7) as in Theorem 3.1.
Throughout this section we shall assume that Ψ ≡ 0 so that Φ takes the simplest
form:

Φ
(
x

ρ
,
y

ρ
,
z

ρ

)
=
x2yz

ρ4

and

(4.1) F ≡ F(r) =
r
ρ4
, ρ �= 0.
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Now

curl(F) = �
(

1
ρ4

)
× r +

1
ρ4

curl(r)

=
−4
ρ6

r × r = 0

and

div(F) = �
(

1
ρ4

)
· r +

1
ρ4

div(r) = − 1
ρ4
, ρ �= 0.

Since

div(xF) = div(yF) = div(zF) = 0,

we want to find vector fields A,B,C such that

(4.2) xF = curl(A), yF = curl(B), zF = curl(C), ρ �= 0,

so that Stoke’s theorem can be applied to evaluate the integrals of xF, yF, zF over
the polyhedral faces of ∂M.

By (4.2)

curl(xF) = � (div(A)) −�2A,

so that if div(A) = 0, the vector components of A satisfy Poisson’s equations

(4.3) �2A = −curl(xF), ρ �= 0.

Similarly, if div(B) = div(C) = 0,

�2B = −curl(yF),(4.4)

�2C = −curl(zF), ρ �= 0.(4.5)

Now

curl(xF) = �x× F + x curl(F) = [0,−F3, F2]T =
1
ρ4

[0,−z, y]T ,

curl(yF) = �y × F + y curl(F) = [F3, 0,−F1]T =
1
ρ4

[z, 0,−x]T ,

curl(zF) = �z × F + z curl(F) = [−F2, F1, 0]T =
1
ρ4

[−y, x, 0]T ,

so that by (4.3)–(4.5),

�2A =
1
ρ4

[0, z,−y]T ,(4.6)

�2B =
1
ρ4

[−z, 0, x]T ,(4.7)

�2C =
1
ρ4

[y,−x, 0]T , ρ �= 0.(4.8)
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We look for divergence free solutions, A,B,C, of Poisson’s equations (4.6), (4.7),
(4.8), which satisfy (4.2) and vanish at infinity.

Proposition 4.1. The vector fields

(4.9) A =
1

2ρ2
[0, z,−y]T , B =

1
2ρ2

[−z, 0, x]T , C =
1

2ρ2
[y,−x, 0]T

are divergence free and satisfy (4.2). Further, they are unique divergence free solutions
of (4.6), (4.7), (4.8) that satisfy (4.2) and vanish at infinity.

Proof. It is straightforward to verify that A,B,C satisfy (4.2) and div(A) =
div(B) = div(C) = 0. Hence they are particular solutions of (4.6), (4.7), (4.8), re-
spectively. To prove uniqueness, we consider (4.6), in which the general solution is

Ag =
[
U,U +

z

2ρ2
, U − y

2ρ2

]T

,

where U is the general solution of the corresponding homogeneous equation, which
is the Laplace equation. The conditions that div(Ag) = 0, curl(Ag) = xF, and Ag

vanishes at infinity imply U = 0. Hence Ag = A. The proof of uniqueness of B and
C is the same.

Consider a 3-D manifold, M ⊂ R
3, with polyhedral faces (not necessarily planar)

of arbitrary topology, and each face has piecewise linear boundaries. Let F be the
set of all its faces, which are oriented with their normals pointing away from M. The
orientation of each face induces an orientation on the edges that form its boundary.
Let V be the set of all vertices of ∂M.

Proposition 4.2. Let S be a face of ∂M whose boundary is the union of oriented
line segments [vj ,vj+1], j = 1, 2, . . . , k = k(S), vk+1 = v1. Then for any v �∈ ∂S,

(4.10)
∫∫

S

(r − v)F(r − v) · dS =
1
2

k∑
j=1

αj nj ,

where αj ∈ (0, π) is the angle at v of the triangle [v,vj ,vj+1] and

(4.11) nj =
(vj+1 − v) × (vj − v)

||(vj+1 − v) × (vj − v)|| .

Proof. We assume without loss of generality that v = 0. By Stoke’s theorem

∫∫
S

r F · dS =
[∫∫

S

x F · dS,
∫∫

S

y F · dS,
∫∫

S

z F · dS
]T

=
[∫

∂S

A · dr,
∫

∂S

yB · dr,
∫

∂S

C · dr
]T

(4.12)

=
k∑

j=1

[∫
[vj,vj+1]

A · dr,
∫

[vj ,vj+1]

B · dr,
∫

[vj ,vj+1]

C · dr
]T

.(4.13)
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Let vj = [xj , yj , zj]T . A straightforward computation gives∫
[vj ,vj+1]

A · dr = −
∣∣∣∣∣ yj zj

yj+1 zj+1

∣∣∣∣∣
(

αj

2||vj+1 × vj ||

)
,

∫
[vj,vj+1]

B · dr =

∣∣∣∣∣ xj zj

xj+1 zj+1

∣∣∣∣∣
(

αj

2||vj+1 × vj ||

)
,

∫
[vj,vj+1]

C · dr = −
∣∣∣∣∣ xj yj

xj+1 yj+1

∣∣∣∣∣
(

αj

2||vj+1 × vj ||

)
,

which, by (4.13), leads to (4.10) and (4.11).
The next step in the computation of the mean value coordinates is to express the

sum on the right of (4.10) in terms of vj − v, j = 1, 2, . . . , k:

(4.14)
1
2

k∑
j=1

αj nj =
k∑

j=1

aj(S)(vj − v),

where aj(S) ≡ avj (S) so that

0 =
∑
S∈F

∫∫
S

(r − v)F(r − v) · dS =
∑
S∈F

k(S)∑
j=1

aj(S)(vj − v),

which would lead to

(4.15) v =

∑
S∈F

∑k(S)
j=1 aj(S)vj∑

S∈F
∑k(S)

j=1 aj(S)
=

∑
p∈V λp p∑
p∈V λp

,

where

(4.16) λp :=
∑
S⊂F
p∈S

ap(S).

If k = 3, aj(S) can be obtained uniquely by taking the inner products of the
expressions in (4.14) with n� or v� − v, 
 = 1, 2, 3. Taking the inner product with n�

gives

a�+2(S) =
1

2n� · (v�+2 − v)

3∑
j=1

n� · nj αj , 
 = 1, 2, 3,

where aj = aj+3 and nj = nj+3 for all j. These coordinates are the same as those
obtained earlier in [3] for the representation of points in the kernel of 3-D star-shaped
manifolds. We have shown that they are applicable to all points in R

3 with respect to
the boundaries of more general manifolds. If k > 3, the representation (4.14) exists,
but is not unique. We shall derive a formula for aj(S) in (4.14) for the general case,
which reduces to the above formula when k = 3. The idea is to express

(4.17)
1
2

k∑
j=1

αj nj = b�,0(v − v�) + b�,1(v − v�+1) + b�,2(v − v�+2)
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for 
 = 1, 2, . . . , k, where bk+1,i = b1,i, i = 0, 1, 2, and define

aj(S) :=
1
k
(bj,0 + bj−1,1 + bj−2,2), j = 1, 2, . . . , k.

Then

1
2

k∑
j=1

αj nj =
1
k

k∑
�=1

2∑
i=0

b�,i(v − v�+i)

=
1
k

k∑
j=1

2∑
i=0

bj−i,i(v − vj)

=
k∑

j=1

aj(S)(v − vj),

as required by (4.14) so that (4.15) holds.
To compute the coefficients b�,i, i = 0, 1, 2, taking the inner product of (4.17) with

n�, n�+1, and n�+2 leads to

b�,2 =
1

2 v�+2 · n�

k∑
j=1

n� · nj αj ,

b�,0 =
1

2 v� · n�+1

k∑
j=1

n�+1 · nj αj ,

and

b�,1 =
1

2 v�+1 · n�+2

k∑
j=1

n�+2 · nj αj −
v� · n�+2

2 v� · n�+1 v�+1 · n�+2

k∑
j=1

n�+1 · nj αj

for 
 = 1, 2, . . . , k.
Remark. In general, the functions Φ and Ψ in (3.7) and (3.8), respectively, define

the vector field

F(r) =
g(r)
ρ4

r, r = (x, y, z) ∈ R
3 \ {0},

where

g(r) := 1 + Ψ
(

r
ρ

)
,

and F provides mean value representations. Since

(4.18) F(r) = −g(r) �
(

1
2ρ2

)
and

(4.19) div(xF(r)) = 0, div(yF(r)) = 0, div(zF(r)) = 0,

the system (4.18), (4.19) can be discretized by the mimetic finite difference schemes
(see [1], [8], and the references therein) to give a large class of mean value type
coordinates.
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COLLISIONS IN THREE-DIMENSIONAL FLUID STRUCTURE
INTERACTION PROBLEMS∗

MATTHIEU HILLAIRET† AND TAKÉO TAKAHASHI‡

Abstract. This paper deals with a system composed of a rigid ball moving into a viscous
incompressible fluid over a fixed horizontal plane. The equations of motion for the fluid are the
Navier–Stokes equations, and the equations for the motion of the rigid ball are obtained by applying
Newton’s laws. We show that for any weak solution of the corresponding system satisfying the energy
inequality, the rigid ball never touches the plane. This result is the extension of that obtained in
[M. Hillairet, Comm. Partial Differential Equations, 32 (2007), pp. 1345–1371] in the two-dimensional
setting.
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1. Introduction. In the last decade, several studies showed that collisions be-
tween rigid bodies in a fluid would lead to great difficulties in the mathematical
treatment of fluid-structure interaction models. For example, in [4, p. 287], Feireisl
constructs a solution in which a sphere remains stuck to the ceiling of the cavity re-
gardless of the intensity of the gravity. This example emphasizes that collisions would
lead to unphysical solutions to standard mathematical systems. Indeed, Starovoitov
proves also that several solutions exist when contact occurs [11, 12]. Therefore, at
least one of these solutions does not represent a physical configuration.

Before handling the description of these collisions, several studies proved they do
not occur in fluid structure systems. In [15], Vázquez and Zuazua prove no collision
can occur between particles for a one-dimensional toy model. Then Starovoitov ob-
tains a criterion for the velocity field of solutions [12] in the multidimensional setting.
Namely, he proves no collision can occur if the gradient of the velocity field is suffi-
ciently integrable. Finally, two parallel studies [8, 9] prove a no-collision result when
there is only one body in a bounded (or partially bounded) two-dimensional cavity.
In the first case, the author considers a rigid disk inside a bigger disk. In the second
case, the author considers a rigid disk above a ramp. The aim of the present study is to
extend these two-dimensional results to three-dimensional comparable configurations,
i.e., for a rigid sphere above a ramp in R

3.

1.1. Mathematical model. We consider a homogeneous rigid sphere B with
radius 1 and density ρB. We denote by G its center (of mass), by V (resp., ω) its
translation (resp., angular) velocity, and by m (resp., J) its mass (resp., inertia).
Notice that ω is a vector in R

3 and J = JI3, where J ∈ (0,∞), and I3 is the 3 × 3
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‡Institut Elie Cartan UMR 7502, INRIA–Nancy-Université–CNRS, POB 239, Vandœuvre-lès-

Nancy 54506, France, and Team-Project CORIDA, INRIA Nancy Grand-Est, 615 rue du Jardin
Botanique, POB 54600, Villers-lès-Nancy, France (takeo8@gmail.com). This author was supported
in part by ANR grants JCJC06 137283 and BLAN07-2 202879.

2451



2452 MATTHIEU HILLAIRET AND TAKÉO TAKAHASHI

identity matrix. The velocity field of B reads V+ω×(x−G) for all x ∈ B. The sphere
evolves over a ramp P . The remainder of the cavity R

3
+ is denoted by F . It contains

an incompressible viscous and Newtonian fluid which does not slip on boundaries and
has constant density ρF = 1 and viscosity μ. The whole system evolves only through
the interactions between solid and fluid without any external force field.

The evolution of the fluid is described by (u, p), a velocity/pressure field satisfying
the incompressible Navier–Stokes equations:

(1.1)
{
∂tu + u · ∇u = div T(u, p)

div u = 0
in F ,

where T(u, p) is the Newtonian stress tensor:

T(u, p) = 2μD(u) − pI3.

Here D(u) stands for the symmetric part of the gradient of u.
To describe the evolution of B, we apply Newton’s laws assuming continuity of

the stress-tensor of the fluid on ∂B. It yields

(1.2)

⎧⎪⎪⎨⎪⎪⎩
−
∫

∂B
T(u, p)n dσ = mV̇,

−
∫

∂B
T(u, p)n × (x − G) dσ = Jω̇.

Here n stands for the normal to ∂B directed towards B. As J is a scalar matrix, the
inertial term Jω × ω vanishes in the conservation of momentum.

This system is complemented with the boundary conditions

(1.3) u|∂B = V + ω × (x − G), u|P = 0, u|∞ = 0

and initial conditions

(1.4) u(0, ·) = u0, V(0) = V0, ω(0) = ω0, G(0) = G0.

For short, we shall refer to the whole system (1.1)–(1.3) as (FSIS) for fluid-solid
interaction system. We emphasize that this system is strongly coupled. On the one
hand, the position of the sphere B fixes the domain F where the incompressible
Navier–Stokes equations (1.1) have to be solved and the movement of B fixes the
boundary conditions for (1.1) on ∂B. In particular, we lay stress upon these time-
dependences, denoting by F(t) (resp., B(t)) the domain occupied by the fluid (resp.,
the solid body) at time t in the following. We shall reserve the notation B (resp., F)
for the sphere (resp., the fluid) as “actors” in the scenarios provided by our solutions
to (FSIS). On the other hand, the solution (u, p) prescribes the displacement of B via
the computation of the forces and torques applied to B:

−
∫

∂B
T(u, p)n dσ, −

∫
∂B

T(u, p)n × (x − G) dσ.

Our main result is that no collision can occur between B and P in finite time in
solutions to (FSIS). This reads as follows.

Theorem 1.1. Given T > 0, let (u,G) be a weak solution to (FSIS) over
(0, T ) with initial data (u0,G0). Then there exists a decreasing function hmin ∈
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C([0, T ]; (0,∞)) depending only on initial data (u0,G0) such that h(t) := dist(B(t),P)
satisfies

h(t) � hmin(t) ∀ t ∈ (0, T ).

This result has been expected ever since the computations of Cooley and O’Neill
[1] in the slow motion regime. However, until now no rigorous mathematical result
has been available in the full nonlinear case. We emphasize that this result still holds
true when one adds a reasonable external force field f , for example, the gravity or
f ∈ L2((0, T )×R

3
+). In section 3, we provide an interpretation for the weak formulation

of (FSIS) explaining how the distance can be estimated from below with a suitable test
function. Then we construct a test function explicitly. In section 4, the interpretation
of the weak formulation is applied to the constructed test function. Technical details
are postponed to the appendix.

As mentioned in Theorem 1.1, our result applies to any weak solution to (FSIS).
However, the Cauchy theory of weak solutions has been developed only in bounded and
in exterior domains (to our knowledge) so that we do not know whether one solution
exists to (FSIS). For the sake of completeness, we extend classical results for the
Cauchy theory of (FSIS) to a half-space in the next section. Eventually, we obtain
that, for a sufficiently large class of initial data (u0,G0), the system (FSIS) pre-
dicts that no collision can occur between B and P .

1.2. Notation. Throughout, bold symbols stand for vectors. Given a ∈ R
3 we

denote by a⊗ a the symmetric matrix with entries aiaj. Coordinates x = (x1, x2, x3)
are centered on P . For example, we have P := {(x1, x2, 0), (x1, x2) ∈ R

2}. The
half-space above P is R

3
+ and R

3
++ stands for {(x1, x2, x3) with x3 > 1}. This is the

domain where the center of mass G can evolve as long as no collision between B and
P occurs.

Given G ∈ R
3 and δ > 0, we denote by B(G, δ) the sphere with center G and

radius δ. For short, we also set BG = B(G, 1). This is the domain occupied by B when
its center of mass meets G. In this case, the fluid domain FG is the complementary of
BG in R

3
+. If the orthogonal projection of G on P is the center of coordinates, we have

G = Gh = (0, 0, 1 + h) with h = dist(BG,P). In this case the suitable parameter is h
and not G. Thus, when using notation with h as subscript instead of G, we implicitly
mean that the subscript should be Gh. For example, Bh := BGh

.
In the whole paper, we denote by η : [0,∞) → [0, 1] a smooth function such that

η(s) =
{

1 if s < 1
2 ,

0 if s > 1,

and we set ηα = η(·/α) for all parameters α > 0.
We use the classical Lebesgue and Sobolev spaces Lα(A), W β,α(A), Hβ(A) with

A an open set, α � 1, and β � 0. We define

H = {φ ∈ L2(R3
+) ; divφ = 0, φ · n = 0 on P},

V = {φ ∈ H1(R3
+) ; divφ = 0, φ = 0 on P}.

We recall that H and V are closed subspaces of L2(R3
+) and H1

0 (R3
+), respectively.

Thus, they form Hilbert spaces with respect to the induced inner products. For an
open subset A ⊂ R

3
+, we also consider the following Hilbert spaces:

H(A) = {φ ∈ H ; D(φ) = 0 in A},
V(A) = {φ ∈ V ; D(φ) = 0 in A}.



2454 MATTHIEU HILLAIRET AND TAKÉO TAKAHASHI

To simplify, if G ∈ R
3
++, we set

H(G) = H(BG), V(G) = V(BG).

For all G ∈ R
3
++, we also denote by ρG the function

ρG(x) =
{
ρB if x ∈ BG,

1 if x ∈ FG.

If v ∈ H(G), from [14, p. 18], there exists a unique pair (V[v],ω[v]) ∈ R
3 × R

3 such
that

v|BG = V[v] + ω[v] × (x − G).

In particular, if (u,v) ∈ H(G)2,∫
R3

+

ρGu · v dx =
∫

R3
+\BG

u · v dx +mV[u] ·V[v] + Jω[u] · ω[v].

2. Cauchy theory. First, we give the definition of weak solution to (FSIS).
Definition 2.1. Given G0 ∈ R

3
++ and u0 ∈ H(G0), a pair (u,G) is called a

weak solution to (FSIS) on (0, T ) with initial data (u0,G0) if

G ∈W 1,∞(0, T ; R
3
++), with G(0) = G0,(2.1)

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V),(2.2)

u = V + ω × (x − G) in BG, with V = Ġ;(2.3)

if for all v ∈ C([0, T ];H1
0(R3

+))∩H1(0, T ;L2(R3
+)) with compact support in (0, T )×R

3
+

and such that v ∈ V(G(t)) for all t ∈ [0, T ],

(2.4) −
∫ T

0

∫
R3

+

ρGu · ∂tv dy dt+ 2μ
∫ T

0

∫
R3

+

D(u) : D(v) dy dt

−
∫ T

0

∫
R3

+

u ⊗ u : D(v) dy dt = 0;

if for all v ∈ C([0, T ];L2(R3
+)) with compact support in [0, T ) × R

3
+ and such that

v ∈ H(G(t)) for all t ∈ [0, T ] we have

(2.5) W : t 
→
∫

R3
+

ρGu · v dx ∈ C([0, T ]) with W (0) =
∫

R3
+

ρG0u0 · v dx;

if the energy estimate holds true:

1
2

∫
R3

+

ρG|u|2 dx+2μ
∫ t

0

∫
R3

+

|D(u)|2 dx ds � 1
2

∫
R3

+

ρG0 |u0|2 dx for a.a. t ∈ (0, T ).

Before going to our existence result for such weak solutions, let us recall some of
their straightforward properties. First, combining (2.2) and (2.3) yields that u(t, ·) ∈
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V(G(t)) for almost all t ∈ (0, T ). Moreover, it follows from standard arguments that
the pair (V,ω) such that (2.3) holds satisfies

(2.6) |V|2 + |ω|2 � C

∫
R3

+

ρG|u|2 dx,

where C depends only on ρB. In particular, the pair (V,ω) associated to a weak
solution (u,G) belongs to L∞(0, T ).

The result of well-posedness we obtain for (FSIS) can be stated as follows.
Theorem 2.2. Assuming G0 ∈ R

3
++ and u0 ∈ H(G0), there exists at least one

maximal weak solution (T0, (U,G)) to (FSIS) with initial data (U0,G0). Moreover,
we have the alternative:

• T0 = ∞,
• T0 <∞ and G3(t) → 1 as t→ T0.

The proof of Theorem 2.2 given in what follows is inspired by methods developed
in other papers, and since we use many similar arguments, we choose to present here
only the main ideas and refer to the appropriate references to avoid repeating technical
calculations which are not the main interest of this paper. From now on (G0,u0) ∈
R

3
++ × H(G0) is a fixed initial condition. We denote (V0,ω0) = (V[u0],ω[u0]) and

d0 := dist(BG0 ,P). Due to our assumption, there holds d0 > 0. The remainder of the
section is devoted to the proof of Theorem 2.2.

2.1. Strong solutions for an approximate system. As in [7], we prove the
existence of weak solutions by first obtaining strong solutions for an approximate
problem of (FSIS). More precisely, we consider an even nonnegative function κ ∈
C∞

0 (R) such that κ(s) = 0 if |s| � 1. We define for all ε > 0

(2.7) Kε(x) =
c

ε3
κ

(∣∣∣x
ε

∣∣∣2) (x ∈ R
3).

The constant c is chosen so that∫
R3

Kε(x) dx = 1 ∀ ε > 0.

Then, for all u ∈ L2((0, T ) × R
3
+) and for all ε > 0, we set

uε(t,x) =
∫

R
3
+

Kε(x − y)u(t,y) dy.

Let us consider the following problem, which approximates (FSIS):

∂tu − μΔu + (uε · ∇)u + ∇p = 0 in FG(t), t ∈ (0, T ),(2.8)

div u = 0 in FG(t), t ∈ (0, T ),(2.9)

u = 0 on P , t ∈ (0, T ),(2.10)

u|∞ = 0, t ∈ (0, T ),(2.11)

u = Ġ + ω × (x − G) on ∂BG, t ∈ (0, T ),(2.12)
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mG̈ = −
∫

∂BG

T(u, p)n dσ +
1
2

∫
∂BG

((uε − u) · n)u dσ in (0, T ),(2.13)

Jω̇ = −
∫

∂BG

(x − G) × T(u, p)n dσ

+
1
2

∫
∂BG

((uε − u) · n)(x − G) × u dσ in (0, T ).
(2.14)

We complete the system with the initial conditions

(2.15) u(0, ·) = u0, Ġ(0) = V0, ω(0) = ω0, G(0) = G0.

We define the space Ĥ1(A) by

Ĥ1(A) = {q ∈ L2
loc(A) ; ∇q ∈ L2(A)}.

We denote

FT = {(t,x) ∈ [0, T ] × R
3 ; x ∈ FG(t)}.

Consider a smooth mapping X : R
3
++×FG0 → R

3 such that for all G ∈ R
3
++, X(G, ·)

is a C∞-diffeomorphism from FG0 onto FG. Moreover, suppose that the mappings

(G,y) 
→ DGD
α
y X(G,y), α ∈ N

3,

exist and are continuous and compactly supported in FG0 . For any g : FT → R
3,

we denote by gX : [0, T ]×FG0 → R
3 the mapping gX(t,y) = g(t,X(G(t),y)) for all

t � 0 for all y ∈ FG0 . We use similar notation for g : FT → R.
We introduce the following function spaces in a variable domain:

L2(0, T ;H2(F(t))) = {u ; uX ∈ L2(0, T ;H2(FG0))},
H1(0, T ;L2(F(t))) = {u ; uX ∈ H1(0, T ;L2(FG0))},

C([0, T ], H1(F(t))) = {u ; uX ∈ C([0, T ], H1(FG0))},

L2(0, T ; Ĥ1(F(t))) = {p ; pX ∈ L2(0, T ; Ĥ1(FG0))}.

Theorem 2.3. Assume the initial conditions satisfy

dist(BG0 ,P) = d0 > 0, u0 ∈ V(G0).

Then, given ε > 0, there exist a time T > 0 depending only on ‖u0‖L2(R3
+) and a

4-uplet (u,G, ω, p) satisfying

G ∈ H2(0, T ), dist(BG(t),P) � d0

2
> 0 ∀ t ∈ [0, T ],(2.16)

u ∈ L2(0, T ;H2(F(t))) ∩ C([0, T ];H1(F(t))) ∩H1(0, T ;L2(F(t))),(2.17)

p ∈ L2(0, T ; Ĥ1(F(t))), ω ∈ H1(0, T ),(2.18)

and satisfying (2.8)–(2.14) almost everywhere on [0, T ] or in the trace sense.
Proof. One can obtain local existence of strong solutions to (2.8)–(2.14) via

arguments similar to those in the proof of Theorem 1.1 in [2] (see also [3, 13, 10] for
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results obtained applying similar techniques). For the sake of brevity, we compute
only energy estimates here in order to prove that these local strong solutions can be
continued up to collision between B and P . We refer the reader to the mentioned
articles for technical details.

First, we multiply (2.8) by u, (2.13) by Ġ, and (2.14) by ω. We deduce the energy
estimate

(2.19)
1
2

∫
R3

+

ρG(t)|u|2(t) dx + 2μ
∫ t

0

∫
R3

+

|D(u)|2 dx ds =
1
2

∫
R3

+

ρG0 |u0|2 dx.

From the above estimate and (2.6) we obtain a time T > 0 depending on
∫

R3
+
ρG0

|u0|2 dx such that (2.16) holds for all ε.
Then we introduce a smooth function Υ with compact support in B(G0, 1+d0/4)

and such that Υ = 1 on BG0 . We also set

wR =
1
2

(
Ġ× (x − G) + |x − G|2ω

)
,

uR(t,x) = curl
[
Υ
(
x − G(t) + G0

)
wR(t,x)

]
.

The function uR has a compact support in B(G0, 1 + d0/4) and satisfies

div uR = 0, uR = Ġ + ω × (x − G) on B(t).

We multiply (2.8) by

ϕ = ∂tu + (uR · ∇)u − (u · ∇)uR,

which yields

(2.20)
∫
F(t)

(∂tu + uε · ∇u) ·ϕ dx =
∫
F(t)

div T(u, p) ·ϕ dx.

Using the regularization of the nonlinear term, we obtain the existence of a constant
C0 depending only on ‖u0‖L2(R3

+) such that the left-hand side of (2.20) can be written
as

LHS =
∫
F(t)

|∂tu|2 dx +Rl with |Rl| � C0

∫
F(t)

|∇u|2 dx +
1
2

∫
F(t)

|∂tu|2 dx.

Concerning the right-hand side of (2.20), we apply the same arguments as in the proof
of Lemma 4.3 in [3] and obtain (see [3, (4.24)])

RHS = −μ d
dt

∫
F(t)

|D(u)|2 dx + Ir +Rr,

where

Ir =
∫

∂B(t)

T(u, p)n ·
[
G̈ + ω̇ × (x − G) − ω × Ġ

]
dσ,

and, with the same convention as previously for C0, we obtain

|Rr| � C0

[
1 +
∫
F(t)

|∇u|2 dx

]
.
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Finally, using (2.13)–(2.14), we deduce

Ir = −
[
m|G̈|2 + J |ω̇|2 −mG̈ · (ω × Ġ)

]
+ R̃r,

with

R̃r =
1
2

∫
∂B(t)

(u − uε) · n
(
Ġ + ω × (x − G)

)
·
(
G̈ − ω × Ġ + ω̇ × (x − G)

)
dσ.

In this last integral, extending the rigid velocity fields to B(G, 1 + d0/4) in a similar
fashion to that in uR, we obtain, after integration by parts,

|R̃r| � C0 +
m

2
|G̈|2 +

J

2
|ω̇|2.

Combining all these estimates, we finally deduce

μ
d
dt

[∫
F(t)

|∇u|2 dx

]
+

1
2

[
m|G̈|2 + J |ω̇|2 +

∫
F(t)

|∂tu|2 dx

]

� C0

[
1 +
∫

R3
+

|∇u|2 dx

]
.

As a consequence, we have obtained that the mapping t 
→ ‖u‖H1(F(t)) is bounded on
[0, T ].

2.2. Convergences. As in the assumptions of our theorem, we assume that the
initial condition u0 belongs to H(G0); we introduce a sequence u0k ∈ V(G0) such
that

u0k → u0 in H(G0).

We also take a sequence εk → 0. Then, applying Theorem 2.3, we can consider a
(uniform) time T such that, for all k, the corresponding solutions (uk,Gk, ωk, pk)
exist on [0, T ] and satisfy

dist(BGk(t),P) >
d0

2
∀ t ∈ [0, T ], ∀ k.

In the following, we extend uk with the value of the rigid velocity field Vk + ωk ×
(x − Gk) on the solid domain. From (2.19), the following holds:

uk is bounded in L∞(0, T ;L2(R3
+)) ∩ L2(0, T ;H1

0 (R3
+)),

so that, up to a subsequence (which we do not relabel), we can assume

uk ⇀ u in L2(0, T ;H1(R3
+))-weak and L∞(0, T ;L2(R3

+))-weak∗,(2.21)

Gk → G in C([0, T ]; R
3
++).(2.22)

Taking any U ∈ D((0, T ) × R
3
+) such that D(U) = 0 in a neighborhood of BG(t)

for all t ∈ (0, T ), we can multiply (2.8) by U for k sufficiently large. Integrating by
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parts and using Reynolds’ transport theorem yields

(2.23) −
∫ T

0

∫
R3

+

ρGkuk · ∂tU dx ds

+
∫ T

0

∫
R3

+

(uk ⊗ uk) : D(U) dx ds+ 2μ
∫ T

0

∫
R3

+

D(uk) : D(U) dx ds

=
∫ T

0

∫
F

Gk(t)

[
((uk

εk − uk) · ∇)U
]
·uk dx− 1

2

∫ T

0

∫
∂B

Gk(t)

(U·uk)((uk
εk −uk)·n) dσ.

In order to pass to the limit in this weak formulation, we need to prove L2-compactness
of the uk. As usual, this is the main difficulty of the proof. The procedure to prove this
compactness property follows closely the method developed in [7]. The main difference
here is that our cavity is unbounded. Therefore, we do not look for a compactness
property of the sequence uk on the whole domain but only locally in space. Indeed,
with the help of Friedrichs’ lemma (see [6, Lemma II.4.2]) we have the following:
for all relatively compact O ⊂ R

3
+, for any γ > 0 there exist I = I(γ,O) ∈ N and

functions ψj ∈ L∞(O), j = 1, . . . , I, such that

(2.24)
∥∥uk − u

∥∥2
L2(0,T ;L2(O))

�
I∑

j=1

∫ T

0

(∫
O
ρG
(
uk(t) − u(t)

)
· ψj dy

)2

dt+ γ
∥∥∇uk −∇u

∥∥2
L2(0,T ;L2(O))

.

Due to the uniform bound on uk in L2(0, T ;H1
0 (R3

+)), our remaining task is to prove
that, for any ψ ∈ L∞(O), there exists a subsequence (which we do not relabel) for
which there holds

(2.25) lim
k→∞

∫ T

0

(∫
O
ρG
(
uk(t) − u(t)

)
· ψ dy

)2

dt = 0.

As a first step, we obtain results similar to those of (2.25) for another family
of test functions (not included in L∞(O). To this end, we divide the segment [0, T ]
into N segments [ti−1, ti], with Δt = ti − ti−1 = T/N , i = 1, . . . , N . For all i and
for δ < d0

2 , we consider an orthonormal basis (ei,δ
j ) of V(B(G(ti), 1 + δ)). Without

further restrictions, we assume all the ei,δ
j with compact support. We also consider

the set of piecewise linear functions in t:

(2.26) Uδ(t,x) = ei−1,δ
j (x) +

t− ti
Δt

(
ei,δ

l (x) − ei−1,δ
j (x)

)
for t ∈ [ti−1, ti], j, l ∈ N, i ∈ {1, . . . , N}. There exists a countable set of functions
satisfying (2.26).

It is worth noting that, since G is uniformly continuous, for N big enough, the
functions Uδ of the above form satisfy D(Uδ(t)) = 0 in B(G(t), 1 + δ/2) for all t. In
particular, these functions are in C([0, T ]; V(G(t))). These functions are important to
approximate continuous functions in time with value in H(G(t)) and thus functions in
L2(0, T ; H(G(t))) (see Lemmas 4.1 and 4.2 in [7]). From (2.22), there exists k0 = k0(δ)
such that for k � k0,

D(Uδ) = 0 in BGk(t) ∀ t ∈ [0, T ]

for all functions satisfying (2.26).
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We multiply (2.8) by Uδ satisfying (2.26). After similar computations to those
leading to (2.23), we obtain

(2.27)
d

dt

∫
R3

+

ρGkuk ·Uδ dx = −2μ
∫
Fk(t)

D(uk) : D(Uδ) dx

+
∫
Fk(t)

(
∂tUδ + (uk

ε · ∇)Uδ
)
· uk dx − 1

2

∫
∂B

Gk(t)

(Uδ · uk)((uk
ε − uk) · n) dσ.

Following the estimates of [7], using Arzelà and Ascoli and the diagonal Cantor pro-
cedure, we obtain that for all Uδ satisfying (2.26), we have

(2.28)
∫

R3
+

ρGkuk · Uδ dx →
∫

R3
+

ρGu · Uδ dx in C([0, T ]).

However, as Gk → G in C([0, T ]), and uk is bounded in L∞(0, T ;L2(R3
+)) ∩ L2(0, T ;

H1
0 (R3

+)), this also leads to

(2.29)
∫

R
3
+

ρGuk · Uδ dx →
∫

R
3
+

ρGu · Uδ dx in C([0, T ]).

Via a density argument (see Lemmas 4.1 and 4.2 in [7] for details), we might
extend this convergence result to all U ∈ C([0, T ];L2(R3

+)), div U = 0, D(U) = 0 in
B(G(t), 1),

(2.30)
∫

R3
+

ρGuk ·U dx →
∫

R3
+

ρGu · U dx in C([0, T ]),

and to all U ∈ L2(0, T ;L2(R3
+)), div U = 0, D(U) = 0 in B(G(t), 1),

(2.31)
∫

R
3
+

ρGuk · U dx →
∫

R
3
+

ρGu ·U dx in L2(0, T ).

Relation (2.30) implies in particular that u satisfies the initial conditions.
However, in (2.25), no assumption is made on the velocity field ψ over BG. In order

to reduce (2.25) to the above convergence result, we need to project such ψ ∈ L∞(O)
on velocity fields which are rigid over BG. Similarly, uk is rigid on BGk , so we also
modify uk slightly to obtain a function with the same properties but which is rigid
in BG. To this end, we extend uk by 0 in R

3 \ R
3
+, and since uk = 0 on P , we have

uk ∈ L2(0, T ;H1(R3)). We set

ûk(t,y) = uk(t,y + Gk(t) − G(t)).

We have

div ûk = 0, ûk = 0 on {y ∈ R
3 ; y3 = G3 −Gk

3}, D(uk) = 0 in BG

and

(2.32) ‖ûk − uk‖L2((0,T )×R3) � ‖Gk − G‖L∞(0,T )‖∇uk‖L2((0,T )×R3) → 0.

We define

L2(R3) =
{
v ∈ L2(R3) ; div v = 0 in R

3
}
.
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Following [7] (see (4.37) in [7]), there exists a function Λ : L2(R3) → L2(R3) such
that for all v ∈ L2(R3), u = Λ(v) satisfies

u = v in BG0, u = 0 in R
3 \ B

(
G0, 1 +

d0

4

)
,

‖u‖L2(R3) � c‖v‖L2(R3).

Moreover,

if v ∈ C([0, T ];L2(R3)), then Λv ∈ C([0, T ];L2(R3)),

and

if v ∈ L2(0, T ;L2(R3)), then Λv ∈ L2(0, T ;L2(R3)).

We also define Λ̌t : L2(R3) → L2(R3) as follows:

Λ̌tv̌(y) = [Λv̌] (y + G0 − G(t)),

where

v̌(x) = v(x + G(t) − G0).

Then, as in [7], we consider

uk(x, t) = uk + Λ̌t(ûk − uk).

This function is rigid in BG(t) and

(2.33) ‖uk − uk‖L2((0,T )×R3) → 0.

We are now in a position to prove (2.25) by using (2.31). Assume thatψ ∈ L∞(O).
We set

Ik :=
∫ T

0

(∫
O
ρG
(
uk(t) − u(t)

)
·ψ dy

)2

dt

and

Ik =
∫ T

0

(∫
O
ρG
(
uk(t) − u(t)

)
· ψ dy

)2

dt.

From (2.33), to prove that Ik goes to 0, it is sufficient to prove that Ik goes to 0.
Then, given G ∈ R

3
+ such that dist(BG,P) > 0, we denote by P (G) the orthogonal

projection from L2(R3
+, ρGdx) onto H(G) and introduce

ψ̃(t,x) = P (G(t))ψ(x).

We notice that ψ̃ ∈ L∞(0, T ;L2(R3
+)), div ψ̃ = 0, D(ψ̃) = 0 in B(G(t), 1) and

Ik :=
∫ T

0

(∫
O
ρG
(
uk(t) − u(t)

)
· ψ̃ dy

)2

dt.



2462 MATTHIEU HILLAIRET AND TAKÉO TAKAHASHI

We set

Ĩk :=
∫ T

0

(∫
O
ρG
(
uk(t) − u(t)

)
· ψ̃ dy

)2

dt

and notice that, as before, if Ĩk goes to 0, then Ik goes to 0. However, since ψ̃ ∈
L∞(0, T ;L2(R3

+)) we can take U = ψ̃ in (2.31). Consequently, we obtain that there
exists a subsequence we do not relabel such that Ik → 0. This ends the proof of
L2-compactness of the sequence uk. In particular we conclude from (2.24) that∥∥uk − u

∥∥
L2(0,T ;L2(O))

→ 0.

Combining (2.33) and the above relation, we obtain that∥∥uk − u
∥∥

L2(0,T ;L2(BG))
→ 0.

This implies that

Ġk → Ġ and ωk → ω in L2(0, T ).

Using the above compactness, we can pass to the limit in (2.23) in the first three
terms. For the two terms of the last line of (2.23), we proceed as follows. First, we
can notice that ∫

F
Gk(t)

∣∣uk
εk − uk

∣∣2 dx � Cεk‖uk‖2
H1(F

Gk(t)
)

and thus ∫ T

0

∫
F

Gk(t)

[
((uk

εk − uk) · ∇)U
]
· uk dx → 0,

as k → ∞.
Second, from the choice of κ and Kε (see (2.7)), we can easily check that

uk
εk = Ġk + ωk × (x − Gk) in B(Gk(t), 1 − εk).

As a consequence, using Lemma 4.10 in [5], we conclude that∫
∂B

Gk(t)

∣∣uk
εk − uk

∣∣2 dσ � Cεk

∫
B

Gk(t)

∣∣∇uk
εk −∇uk

∣∣2 dx.

The above inequality implies that

−1
2

∫ T

0

∫
∂B

Gk(t)

(U · uk)((uk
εk − uk) · n) dσ → 0,

as k → ∞.
Finally, we can pass to the limit in (2.23) and obtain the weak formulation (2.4) for

smooth test functions. We can pass from smooth test functions to the required regu-
larity for v by applying the same approximation technique as when we obtained (2.29).
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3. Constructing test functions. Let us begin with some notation. We intro-
duce (r, θ, z), the cylindrical coordinates associated to (x1, x2, x3):

x1 = r cos(θ), x2 = r sin(θ), x3 = z.

Given h > 0 and l > 0, we denote by Ωh,l the cylindric domain under Bh with radius l:

(3.1) Ωh,l := {(r, θ, z) ∈ Fh such that r ∈ [0, l), z ∈ (0, 1 + h)}.

We notice that whenever l < 1, the upper boundary of Ωh,δ is parametrized by (r, θ):

(r, θ, z) ∈ ∂Ωh,l ∩ ∂Bh ⇔ {r ∈ [0, δ) and z = δh(r)} ,

where, for arbitrary nonnegative h,

(3.2) δh(s) := 1 + h−
√

1 − s2 ∀ s ∈ [0, 1).

As in [9], we estimate the distance between B and P from below with a suitable
choice of test function in the weak formulation. To this end, we introduce an approx-
imation of the Stokes solution for a given position of B in R

3
+ (namely, Bh). We call

these approximations “static functions” and denote them by (wh)h>0. Given a weak
solution (u,G) to (FSIS) in (0, T ), we construct admissible test functions by setting

(3.3)
w̃ : (0, T ) × R

3
+ −→ R

3,

(t,x) 
−→ ζ(t)wh(t)(x1 −G1(t), x2 −G2(t), x3)

for arbitrary ζ ∈ D(0, T ). In this definition h(t) stands for the distance between the
sphere and the ramp at time t.

Applying the weak formulation, we obtain∫ T

0

∫
R3

+

[ρGu · w̃t + (u⊗ u − 2μD(u)) : D(w̃)] dx dt = 0.

In this equation, the key ingredient is∫
R3

+

D(u) : D(wh) dx.

It shall behave like ḣ/hα with an exponent α to be made precise. The other terms
appear as remainders. We shall bound them by an integrable (in time) function. This
relies on the following lemma.

Lemma 3.1. Given h > 0, r0 > 0, and (u,w) ∈ H1
0(R3

+)× (H(Gh)∩C∞(Fh)), we
assume w is with compact support. Then there exists C depending only on the size of
the support of w such that

(3.4)

∣∣∣∣∣
∫

R3
+

u ·w dx

∣∣∣∣∣ � C‖∇u‖L2(R3
+)

[
‖w‖2,2 + ‖w‖L2(R3

+\Ωh,r0 )
]
,

where

‖w‖2
2,2 =

∫ r0

0

(
δh(r)2

[∫ δh(r)

0

sup
θ∈(0,2π)

{|w(r, θ, z)|2)} dz

])
r dr.
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If, moreover, w ∈ V(Gh), we have

(3.5)

∣∣∣∣∣
∫

R3
+

u⊗ u : D(w) dx

∣∣∣∣∣ � C‖∇u‖2
L2(R3

+)

[
‖w‖∞,2 + ‖D(w)‖L∞(Fh\Ωh,r0)

]
,

where

‖w‖∞,2 = sup
r∈(0,r0)

⎧⎨⎩δh(r)
3
2

[∫ δh(r)

0

sup
θ∈(0,2π)

{|∇w(r, θ, z)|2} dz

] 1
2

⎫⎬⎭ .

Proof. We denote by I1 and I2 the two integrals we want to estimate in (3.5)
and (3.4).

We first deal with I1. As D(w) = 0 in Bh, we might restrict the integration
domain to Fh. We split the integral into an integral in Fh \ Ωh,r0 and an integral in
Ωh,r0 : I1 = Iin

1 + Iout
1 with

|Iout
1 | =

∣∣∣∣∣
∫
Fh\Ωh,r0

u⊗ u : D(w) dx

∣∣∣∣∣ � ‖u‖2
L2(Supp(w))‖D(w)‖L∞(Fh\Ωh,r0 ).

Because Supp(w) is bounded and u ∈ H1
0 (R3

+), we can use the Poincaré inequality.
Concerning the integral in Ωh,r0 , we have

Iin
1 =

∫ 2π

0

∫ r0

0

∫ δh(r)

0

[u(r, θ, z) ⊗ u(r, θ, z) : D(w)(r, θ, z)] r dz dr dθ.

Using a Hölder inequality with respect to the z-variable, we deduce

|Iin
1 | � C

∫ 2π

0

∫ r0

0

[∫ δh(r)

0

|u(r, θ, z)|4dz

] 1
2
[∫ δh(r)

0

|D(w)|2 dz

] 1
2

r dr dθ.

Then a direct generalization of the Poincaré inequality (see Lemma 12 in [9]) implies[∫ δh(r)

0

|u(r, θ, z)|4 dz

] 1
2

� Cδh(r)
3
2

[∫ δh(r)

0

|∇u(r, θ, z)|2 dz

]
.

Substituting this in Iin
1 and using again a Hölder inequality, we then obtain (3.5).

To estimate I2, we decompose it in the same manner as I1, and with the same
proof, we deduce that there exists C = C(Supp(w)) such that

|Iout
2 | � C‖∇u‖L2(R3

+)‖w‖L2(R3
+\Ωh,r0).

It remains to estimate the integral in Ωh,r0 :

Iin
2 =

∫ 2π

0

∫ r0

0

∫ δh(r)

0

[u(r, θ, z) ·w(r, θ, z)] r dz dr dθ.

As above, a Hölder inequality in the z-variable associated to the Poincaré inequality
implies

|Iin
2 | � C

∫ 2π

0

∫ r0

0

[∫ δh(r)

0

|∇u(r, θ, z)|2 dz

] 1
2

δh(r)

[∫ δh(r)

0

|w|2 dz

] 1
2

r dr dθ.

We conclude by using a Cauchy–Schwarz inequality.
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3.1. Explicit formula. From now on h is a fixed positive parameter. As in [9],
we introduce a velocity field which is a good approximation (in a sense to be made
precise) to the solution to the Stokes problem

(3.6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div T(w, q) = 0

div w = 0
in Fh,

w|P = 0,
w|∂Bh

= e3.

At first, we focus on the divergence-free and boundary conditions. So we introduce
a potential vector field ah and set wh = curlah. One choice for ah could be

as
h(x) :=

ηh0(|x − Gh| − 1)
2

(e3 × (x − Gh)) ∀x ∈ Fh, with h0 > 0.

The field ws
h := curlas

h satisfies the divergence-free and boundary conditions regard-
less of the value of h0 < h. However, when h goes to 0, this particular velocity field
does not take advantage of the particular shape of the aperture between B and P .
Thus, we need to find another velocity field, especially in this aperture, in Ωh,1/2.

As we want to obtain an approximation of the Stokes problem, we construct a
velocity field in which the fluid escapes from under the sphere with the most efficiency.
Consequently, we want the velocity field to be planar and radial in each plane. Thus,
our potential vector field reads, in cylindrical coordinates,

ad
h(r, θ, z) =

(
−φd

h(r, z) sin(θ), φd
h(r, z) cos(θ), 0

)� ∀ (r, θ, z) ∈ Ωh,1/2,

so that, for all (r, θ, z) ∈ Ωh,1/2,

wd
h(r, θ, z) =

(
−∂zφ

d
h(r, z) cos(θ),−∂zφ

d
h(r, z) sin(θ), ∂rφ

d
h(r, z) +

φd
h(r, z)
r

)�

.

We set, in order to fit boundary conditions (this shall be critical in Lemma 3.2),

φd
h(r, z) = rχo

(
z

δh(r)

)
, with χo(s) =

s2(3 − 2s)
2

∀ s ∈ (0, 1).

From now on, we set h0 = (
√

17/16− 1)/2. It remains to interpolate ws
h and wd

h

so that we obtain

ah(x) =
{
η1/2(r)ad

h(r, θ, z) + (1 − η1/2(r))as
h(x) in Ωh,1/2,

as
h(x) in R

3
+ \ Ωh,1/2

and wh = curl ah. Explicitly, in Ωh,1/2, we have

(3.7) wh(r, θ, z) = η1/2(r)wd
h(r, θ, z) + (1 − η1/2(r))ws

h(x) + rem0(x),

where, denoting by nπ3(x) = (x1, x2, 0)�/
√
x2

1 + x2
2, we have

rem0(x) = η′1/2(r)nπ3(x) ×
(
ad

h(r, θ, z) − as
h(x)

)
in Ωh,1/2.
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3.2. From static to moving test function. The main point in this subsection
is to prove that, given a weak solution to (FSIS) (u,G) and ζ ∈ D(0, T ), the function
w̃ constructed in (3.3) is a suitable test function. To this end, we need to extend wh

on R
3
+ first. This is possible thanks to the following technical result.
Lemma 3.2. Given h > 0, we have

wh(x) = e3, ah(x) = (e3 × x)/2 ∀x ∈ ∂Bh,

wh(x) = 0, ah(x) = 0 ∀x ∈ P .

Proof. We set λ = z/δh(r) and differentiations of λ by subscripts. We have

(3.8) ∂zφ
d
h(r, z) = rλzχ

′
o(λ), ∂rφ

d
h(r, z) = χo(λ) + rλrχ

′
o(λ).

Computing with the value of λ yields

λz =
1

δh(r)
, λr = − zδ′h(r)

(δh(r))2
.

Our choice for χo implies that

χo(0) = χ′
o(0) = 0, χo(1) =

1
2
, χ′

o(1) = 0.

Replacing λ by 0 in (3.8) yields

φd
h(r, z) = ∂zφ

d
h(r, z) = ∂rφ

d
h(r, z) = 0 on P .

Consequently, ad
h = wd

h = 0 on P . Replacing λ by 1,

∂zφ
d
h(r, z) = 0, φd

h(r, z) =
r

2
, ∂rφ

d
h(r, z) =

1
2

on ∂Bh.

Consequently, ad
h(x) = (e3 × x)/2 and wd

h = e3 on Bh.
Concerning the smooth part, a straightforward computation leads to

ws
h(x) = ηh0(|x − Gh| − 1)e3 + η′h0

(|x − Gh| − 1)
x − Gh

|x − Gh|
× (e3 × (x − Gh))

2
.

Due to our choice, we have

ηh0(|x − Gh| − 1) = 1, η′h0
(|x − Gh| − 1) = 0 on ∂Bh.

Consequently as
h(x) = (e3 × x)/2 and ws

h = e3 on ∂Bh. Then

ηh0(|x − Gh| − 1) = 0, η′h0
(|x − Gh| − 1) = 0 if |x − Gh| � 1 + 2h0 =

√
17/16.

Moreover, if x ∈ P \ Ωh,1/4, we have r > 1/4 and, as Gh = (0, 0, 1 + h),

|x − Gh|2 > (1 + h)2 + (1/4)2 > 17/16.

Consequently, as
h(x) = ws

h(x) = 0 for x ∈ P \ Ωh,1/4.
It remains to check that boundary conditions are satisfied in the transition region,

i.e., when x ∈ Ωh,1/2 \ Ωh,1/4. On P , we remark that wd
h(x) = ws

h(x) = 0 = as
h(x) =
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ad
h(x) = 0. Interpolating the potential vector fields, we obtain wh = 0 on P . Finally,

on Bh ∩ Ωh,1/4 we have already computed

wd
h(x) = ws

h(x) = e3 and as
h(x) = ad

h(x) = (e3 × x)/2.

Interpolating the potential vector fields, we deduce wh(x) = e3. This concludes the
proof.

Remark 3.1. According to this lemma, we extend ah (resp., wh ) to R
3
+ with

the value (e3 × x)/2 (resp., e3) in Bh. In what follows, we consider the functions a :
(h,x) → ah(x) and w : (h,x) → wh(x). Denoting by Qc = {(h,x) ∈ (0, 1)×R

3 ; x ∈
Bh}, standard analytic arguments imply a ∈ C∞(Qc)∩C∞(((0, 1)×R

3
+)\Qc). We note

that wh vanishes as soon as |x−Gh| > (
√

17/16− 1)/2 and |x| > 1/2. Consequently,
the above lemma implies w ∈ H1((h̄, 1) × R

3
+) for any h̄ > 0 and, after standard

composition arguments, this yields

w̃ ∈ C([0, T ]; H1(R3
+)) ∩H1(0, T ; L2(R3

+))

as long as h(t) ∈ (h̄, 1] for all t ∈ (0, T ). So, w̃ is a suitable test function for the weak
formulation as long as h(0, T ) ⊂ (h̄, 1).

3.3. Estimate of remainder terms. In order to exploit the weak formulation
with our test function, we need to dominate remainder terms according to Lemma 3.1.
We begin with estimates on Sobolev norms of wh.

By construction, our test functions behave differently under the sphere (in Ωh,δ)
and above the sphere (in Fh \ Ωh,δ for arbitrary fixed δ > 0). Above the sphere we
have the following.

Lemma 3.3. Given α � 0 and δ > 0 there exists C(α, δ) <∞ such that

‖ah‖Hα(Fh\Ωh,δ) � C(α, δ) ∀h ∈ (0, 1).

Proof. By construction the restriction a : Qc,δ → R
3, with

Qc,δ := {(h,x) ∈ [0, 1] × R3
+ with x /∈ Ωh,δ},

is smooth and with compact support.
Inside Ωh,1/4, estimates rely essentially on dominations of integrals:∫ 1

4

0

rα dr
[δh(r)]β

.

We refer the reader to the appendix for such computations.
Lemma 3.4. The family (wh)0<h<1 is uniformly bounded in L2(R3

+).
Proof. Because of the previous lemma, we focus on wd

h inside Ωh,1/4.
In this region, we have

(wd
h(r, θ, z))1 = −∂zφ

d
h(r, z) cos(θ), (wd

h(r, θ, z))2 = −∂zφ
d
h(r, z) sin(θ),

and

(wd
h(r, θ, z))3 = ∂rφ

d
h(r, z) +

φd
h(r, z)
r

.

Thus

|wd
h(r, θ, z)| � |∂zφ

d
h(r, z)| + |∂rφ

d
h(r, z)| +

|φd
h(r, z)|
r

.
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Applying Lemma A.3, this leads to

|wd
h(r, θ, z)| � C

(
1 +

r

δh(r)

)
∀ (r, θ, z) ∈ Ωh,1/4, ∀h ∈ (0, 1).

The result then follows from Lemma A.1 with (α, β) = (3, 1).
As a technical device for applying Lemma 3.1, we have the following.
Lemma 3.5. Let us define

wh(r, θ, z) = |∂rwd
h(r, θ, z)| +

|∂θwd
h(r, θ, z)|
r

+ |∂hwd
h(r, θ, z)| ∀ (r, θ, z) ∈ Ωh,1/4.

Then

(3.9)
∫ 1

4

0

(
δh(r)2

[∫ δh(r)

0

sup
θ∈(0,2π)

|wh(r, θ, z)|2 dz

])
r dr

is uniformly bounded for h ∈ (0, 1).
Proof. A straightforward computation yields, for all (r, θ, z) ∈ Ωh,1/4,

|∂rwd
h(r, θ, z)| � C

(
|∂rzφ

d
h(r, z)| + |∂rrφ

d
h(r, z)| +

∣∣∣∣∂rφ
d
h(r, z)
r

− φd
h(r, z)
r2

∣∣∣∣)
and

|∂θwd
h(r, θ, z)|
r

� |∂zφ
d
h(r, z)|
r

,

|∂hwd
h(r, θ, z)| � |∂hφ

d
h(r, z)|
r

+ |∂hrφ
d
h(r, z)| + |∂hzφ

d
h(r, z)|.

Combining the above inequalities with Lemma A.3, we deduce there exists a constant
C independent of h such that

|wh(r, θ, z)| � C

(
1

δh(r)
+

r

δh(r)2

)
for all (r, θ, z) ∈ Ωh,1/4. Consequently,∫ 1/4

0

(
δh(r)2

[∫ δh(r)

0

sup
θ∈(0,2π)

|wh(r, θ, z)|2 dz

])
r dr � C

∫ 1/4

0

(δh(r) + 1)r dr.

As the last integral remains bounded when h goes to 0, the same holds for the integral
of wh.

Then, to dominate the trilinear form, we need the following result.
Lemma 3.6. We set

dwh(r, θ, z) = |∂rwd
h(r, θ, z)| +

|∂θwd
h(r, θ, z)|
r

+ |∂zwd
h(r, θ, z)| ∀ (r, θ, z) ∈ Ωh,1/4.

Then the quantity

(3.10) sup
r∈(0,1/4)

⎧⎨⎩δh(r)
3
2

[∫ δh(r)

0

sup
θ∈(0,2π)

{|dwh(r, θ, z)|2} dz

] 1
2

⎫⎬⎭
is uniformly bounded for h ∈ (0, 1).
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Proof. As in the previous proof, there exists a constant C independent of h such
that

|dwh(r, θ, z)| � C

(
1

δh(r)
+

r

δh(r)2

)
for all (r, θ, z) ∈ Ωh,1/4. Therefore∫ δh(r)

0

|dwh(r, z)|2 dz � C

(
1

δh(r)
+

r2

δh(r)3

)
and

sup
r∈(0,1/4)

⎧⎨⎩δh(r)
3
2

[∫ δh(r)

0

sup
θ∈(0,2π)

{|dwh(r, θ, z)|2} dz

] 1
2

⎫⎬⎭ � C sup
r∈(0,1/4)

(δh(r) + r),

which is uniformly bounded when h ∈ (0, 1).
Finally, there holds the following lemma, which is reminiscent of works by Starovoitov.
Lemma 3.7. There exists a constant C > 0 such that

|∇wh|22 � C

h
∀h ∈ (0, 1).

Proof. Given h > 0 we already noticed that

wh(x) = wd
h(x) ∀x ∈ Ωh,1/4.

Consequently,

|∇wh(x)| � |∂zwd
h(x)| ∀x ∈ Ωh,1/4.

With the explicit formula for wd
h, we have |∂zwd

h| � |∂zzφ
d
h|, where |∂zzφ

d
h(r, z)| =

r

δ2h(r)
χ′′

o (λ). Consequently,

|∇wh|22 � 2π
∫ 1

4

0

r3 dr
δh(r)3

∫ 1

0

|χ′′
o(s)|2 ds.

As χ is a polynomial with degree 3, its second derivative does not vanish, and nei-
ther does the s-integral. Then we obtain the result by applying Lemma A.1 with
α = β = 3.

3.4. Our test function and the Stokes problem. First, we prove that our
choice is a good one because it is a good approximation of the solution to the Stokes
problem.

Lemma 3.8. There exist qh ∈ C∞(Fh) and fh ∈ C∞
c (Fh) such that

(3.11)
{
μΔwh −∇qh = fh
div wh = 0

in Fh,

where there exists an absolute constant C for which∫ 2π

0

∫ 1
4

0

(
δh(r)2

[∫ δh(r)

0

|fh|2 dz

])
r dr dθ + ‖fh‖2

L2(Fh\Ωh,1/4) � C.
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Proof. By construction, we have wh = curl ãd
h + curl ãs

h, where

ãd
h(x) =

{
η1/2(r)ad

h(x), x ∈ Ωh,1/2,

0 else,
ãs

h(x) =
{

(1 − η1/2(r))as
h(x), x ∈ Ωh,1/2,

as
h(x) else.

Then, according to Lemma 3.3, the smooth part ãs
h is bounded in any Sobolev space

uniformly in h. Consequently, f̃h = μΔ curl ãs
h is bounded in all Sobolev spaces. We

have

μΔwh = μΔ curl ãd
h + f̃h.

In the following we write φ̃d
h(r, z) = η1/2(r)φd

h(r, z) for all (r, θ, z) ∈ Ωh,1/2. Let us
recall that in cylindrical coordinates we have

Δ =
∂r[r∂r]
r

+
∂θθ

r2
+ ∂zz .

Consequently,

[
Δ curl ãd

h

]
1

= −
[
∂rrzφ̃

d
h +

∂rzφ̃
d
h

r
− ∂zφ̃

d
h

r2
+ ∂zzzφ̃

d
h

]
cos(θ)

and

[
Δ curl ãd

h

]
2

= −
[
∂rrzφ̃

d
h +

∂rzφ̃
d
h

r
− ∂zφ̃

d
h

r2
+ ∂zzzφ̃

d
h

]
sin(θ),

[
Δ curl ãd

h

]
3

= ∂rrrφ̃
d
h + 2

∂rrφ̃
d
h

r
− ∂rφ̃

d
h

r2
+
φ̃d

h

r3
+ ∂zz

[
∂rφ̃

d
h +

φ̃d
h

r

]
.

We remark here that

∂zzzφ̃
d
h(r, z) = −6

r η1/2(r)
δ3h(r)

.

Consequently, denoting by Φ a primitive of s 
→ −6sη1/2(s)/(δh(s))3, we have

∇Φ(r) = (∂zzzφ
d
h cos(θ), ∂zzzφ

d
h sin(θ), 0)�.

We set

qh(x) = μΦ(r) + μ∂z

[
∂rφ̃

d
h +

φ̃d
h

r

]
, f̌h = μΔ curl ãd

h −∇qh.

In particular μΔwh − ∇qh = f̃h + f̌h, so that our result follows from the same re-
sult for f̌h. Denoting by f̌1, f̌2, f̌3 the Cartesian components of f̌h, straightforward
computations show that

|f̌1|2 + |f̌2|2 � 4

[
∂rrzφ̃

d
h +

∂rzφ̃
d
h

r
− ∂zφ̃

d
h

r2

]2

.
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As η′1/2 vanishes uniformly in Ωh,1/4, Lemma 3.3 implies there exists a universal
constant C such that

|f̌1|2 + |f̌2|2 � C

[
1 +
∣∣∣∣∂rrzφ

d
h +

∂rzφ
d
h

r
− ∂zφ

d
h

r2

∣∣∣∣]2 .
Then, for the same reasons, we have

|f̌3|2 � C

[
1 +
∣∣∂rrrφ

d
h

∣∣+ ∣∣∣∣2∂rrφ
d
h

r

∣∣∣∣+ ∣∣∣∣φd
h

r3
− ∂rφ

d
h

r2

∣∣∣∣]2 .
Replacing with the size computed in Lemma A.3, we obtain

|f̌h(x)|2 � C

(
r

δ2h(r)
+

1
δh(r)

)2

.

Consequently, for arbitrary r ∈ (0, 1/2)∫ δh(r)

0

|f̌h|2 dz � C

(
r2

δh(r)3
+

1
δh(r)

)
and ∫ 2π

0

∫ 1/2

0

δh(r)2
∫ δh(r)

0

|f̌h|2 dzr dr dθ � C

∫ 1/2

0

(
r3

δh(r)
+ rδh(r)

)
dr,

which is uniformly bounded for h ∈ (0, 1). This concludes the proof.
As a direct corollary, we get the following lemma.
Lemma 3.9. There exist Km <∞ and a function ñ3 : [0, 1] → R+ such that, for

any h < 1 and w ∈ V(Gh) such that w = Vw + Rw × (x − Gh) in Bh, we have

(3.12)

∣∣∣∣∣2μ
∫

R3
+

D(wh) : D(w) dx − ñ3(h)Vw · e3

∣∣∣∣∣ � Km‖∇w‖L2(R3
+).

Moreover, there exist hm > 0 and a constant c > 0 such that ñ3(h) � c/h for all
h < hm.

Proof. Given h > 0 and w ∈ V(Gh), we apply the Stokes identity with (3.11) and
obtain

(3.13) 2μ
∫

R3
+

D(wh) : D(w) dx =
∫

∂Bh

T(wh, ph)n · w dσ −
∫
Fh

fh ·w dx.

For symmetry reasons, there exists ñ3 : (0, 1) → R such that∫
∂Bh

T(wh, ph)n dσ = ñ3(h)e3

and ∫
∂Bh

(x − Gh) × T(wh, ph)n dσ = 0.

On the other hand, applying (3.4) and Lemma 3.8, we also deduce∣∣∣∣∫
Fh

fh · w dx
∣∣∣∣ � C‖∇w‖L2(R3

+) ∀h ∈ (0, 1),
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where C is a positive constant. Finally, we have obtained the existence of a constant
K such that, for arbitrary h ∈ (0, 1) and w ∈ V(G),∣∣∣∣∣2μ

∫
R3

+

D(wh) : D(w) dx− ñ3(h)Vw · e3

∣∣∣∣∣ � K‖∇w‖L2(R3
+).

In order to estimate ñ3, we take w = wh in (3.13) and obtain

(3.14) ñ3 =
∫

∂Bh

T(wh, ph)n · e3 dσ = 2μ
∫

R3
+

|D(wh)|2 dx +
∫
Fh

fh ·wh dx.

Dealing as previously with the last integral, we deduce that∣∣∣∣∫
Fh

fh · wh dx
∣∣∣∣ � K‖∇wh‖L2(R3

+) ∀h ∈ (0, 1).

But, applying Lemma 3.7, we have that

2μ
∫

R3
+

|D(wh)|2 dx = μ

∫
R3

+

|∇wh|2 dx � C

h
∀h ∈ (0, 1).

Consequently, the asymptotic behavior of the right-hand side in (3.14) when h goes to
0 is prescribed by the first integral. Hence, there exist hm > 0 and constants c̃, c > 0
such that

ñ3(h) � c̃

∫
R3

+

|D(wh)|2 dx � c

h
∀h ∈ (0, hm).

4. Proof of Theorem 1.1. We let the reader convince himself that Theorem 1.1
is a direct consequence of the following theorem.

Theorem 4.1. Given (u,G) a weak solution to (FSIS) on (0, T ) with initial data
(u0,G0), we assume there exists 0 � τ0 < τ1 � T for which

h(t) := dist(B(t),P) � 1 ∀ t ∈ [τ0, τ1].

Then there exists C(‖u0‖L2(R3
+)) < ∞ depending only on the L2-norm of initial data

such that

h(t) � h(τ0) exp
[
−C(‖u0‖L2(R3

+))(1 +
√
T )
]

∀ t ∈ (τ0, τ1).

The remainder of this paper is devoted to the proof of this result. From now on
(u,G) is a given weak solution to (FSIS) with initial data (u0,G0). For simplicity,
we assume that h(t) � 1 for all t ∈ (0, T ). This means that τ0 = 0 and τ1 = T in the
assumptions of our theorem.

As mentioned before, we estimate the distance h from below with our approxi-
mation of the Stokes problem. So, from now on, (wh)h∈(0,1) are the approximations
constructed in section 3.1. Given 0 < t0 < t1 < 1, we set

ζε(t) = ηε(dist(t, [t0, t1])).

Then ζε ∈ D(0, T ) whenever ε is sufficiently small. Consequently, according to Re-
mark 3.1, for ε sufficiently small

w̃ε : (0, T ) × R
3
+ −→ R

3,

(t,x) 
−→ ζε(t)wh(t)(x1 −G1(t), x2 −G2(t), x3)
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can be taken as a test function in (2.4):

(4.1)
∫

(0,T )×R3
+

[ρGu · ∂tw̃ε + (u ⊗ u − 2μD(u)) : D(w̃ε)] dx dt = 0.

In the following, we set

I1 :=
∫

(0,T )×R3
+

ρGu · ∂tw̃ε dt dx,

I2 :=
∫

(0,T )×R3
+

u ⊗ u : D(w̃ε) dt dx,

I3 :=
∫

(0,T )×R3
+

D(u) : D(w̃ε) dt dx.

After a change of variables, we have for almost all t ∈ (0, T )∫
R3

+

D(u)(t, ·) : D(w̃ε)(t, ·) dx = ζε(t)
∫

R3
+

D(u)(t, x1 +G1, x2 +G2, x3) : D(wh(t)) dx.

Thus, applying Lemma 3.9,∫
R3

+

D(u)(t, x1 +G1, x2 +G2, x3) : D(wh(t)) dx = ḣñ3(h) + E(t),

where |E(t)| = KM |∇u(t, ·)|2. Consequently,

(4.2) I3 =
∫ T

0

ζε(t)ḣ(t)ñ3(h(t)) dt+ Ẽ,

where

(4.3) |Ẽ| � KM

√
T‖u0‖2.

Similarly, for almost all t ∈ (0, T ),∫
R3

+

[u⊗ u](t, ·) : D(w̃ε)(t, ·) dx

= ζε(t)
∫

R3
+

[ρGh
u ⊗ u](t, x1 +G1, x2 +G2, x3) : D(wh(t))(x) dx.

Consequently, applying Lemma 3.1 together with Lemmas 3.6 and 3.3, we obtain∣∣∣∣∣
∫

R3
+

[u ⊗ u](t, ·) : D(w̃ε)(t, ·) dx

∣∣∣∣∣ � Km‖∇u‖2
L2(R3

+).

Thus,

(4.4) |I2| � Km‖u0‖2
L2(R3

+).

Finally, computing ∂tw̃ε we have, after our change of variable,

I1 = Iχ
1 + Iw

1 ,
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where

Iχ
1 :=

∫ T

0

∫
R3

+

[ρGh
u](t, x1 +G1, x2 +G2, x3)] · ζ′ε(t)wh(t)(x) dx dt

and

Iw
1 :=

∫ T

0

ζε(t)
∫

R3
+

[ρGh
u](x1 +G1, x2 +G2, x3)

·
[
ḣ∂hwh − V1∂x1wh − V2∂x2wh

]
(x) dx dt.

Applying the Cauchy–Schwarz inequality and Lemma 3.4 on wh, we deduce that

|Iχ
1 | � C

[∫ t0

t0−ε

|ζ′ε(t)| ‖u(t, ·)‖L2(R3
+) dt+

∫ t1+ε

t1

|ζ′ε(t)| ‖u(t, ·)‖L2(R3
+) dt

]
,

and therefore, using the uniform L2-bound on u, we obtain

(4.5) |Iχ
1 | � K‖u0‖L2(R3

+).

Finally, applying (3.4) in Lemma 3.1 together with (3.9) in Lemma 3.5, we conclude
that

|Iw
1 | � Km

∫ T

0

[|ḣ|2 + |V1|2 + |V2|2]
1
2 ‖∇u‖L2(R3

+) dt,

so that, with standard energy estimate,

(4.6) |Iw
1 | � Km

√
T‖u0‖2

L2(R3
+).

Gathering (4.2), (4.4), (4.5), (4.6) with (4.1) yields∣∣∣∣∣
∫ T

0

ζε(t)ḣ(t)ñ3(h(t)) dt

∣∣∣∣∣ � Km(1 +
√
T )
{
‖u0‖L2(R3

+) + ‖u0‖2
L2(R3

+)

}
,

where we emphasize that Km depend only on our choice for the approximation of the
solution to the Stokes problem, but not on ε. Thus, letting ε go to 0, as h and ñ3 are
continuous functions, we obtain

|N3(h(t1)) −N3(h(t0))| � Km(1 +
√
T )
{
‖u0‖L2(R3

+) + ‖u0‖2
L2(R3

+)

}
,

where N3 is a primitive of ñ3 which vanishes in h = 1, for example. Applying
Lemma 3.9, we have ñ3(h) � c/h when 0 < h < hm for some c > 0 and hm > 0, and
we finally deduce

| ln(h(t)/h(t0))| � Km(1 +
√
T )
{
‖u0‖L2(R3

+) + ‖u0‖2
L2(R3

+)

}
.

Because h is continuous, letting t0 tend to 0, we finally obtain

h(t) � h(0) exp
[
−Km(1 +

√
T )
{
‖u0‖L2(R3

+) + ‖u0‖2
L2(R3

+)

}]
.

This is the expected result.
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Appendix. Detailed description of φd
h. In this section we estimate the size

of φd
h and its derivatives. We recall that

φd
h(r, θ, z) = rχo(z/δh(r)), with χo(s) =

s2(3 − 2s)
2

.

In order to compare functions in the following, we introduce the following conventions.
Given families (fh : Ωh,1/4 → R)h∈(0,1) and (gh : Ωh,1/4 → R)h∈(0,1) we denote fh ≺ gh

if there exists an absolute constant such that

|fh(x)| � Cgh(x) ∀x ∈ Ωh,1/4 and h < 1.

Given nonnegative functions f : (0, 1) → R
+ and g : (0, 1) → R

+, we also denote

f(s) ∼ g(s) ∀s ∈ (0, 1)

if there exist two positive constants c and C such that

cf(s) � g(s) � Cf(s) ∀s ∈ (0, 1).

First, we compute typical L1(0, 1/4)-sizes of functions r 
→ rα/(δh(r))β .
Lemma A.1. Given (α, β) ∈ (R+)2, we have the following estimations for all

h ∈ (0, 1): ∫ 1
4

0

rα

δh(r)β
dr ∼

{
1 if α > 2β − 1,

h
(α+1)−2β

2 if α < 2β − 1.

Proof. As in [9], we remark that, for all h ∈ (0, 1), we have

h+
s2

2
� δh(s) � h+ s2 ∀s ∈ (0, 1/4).

Consequently, we can replace δh(r) by h + γr2 with some generic parameter γ > 0,
and we are bound to calculate

Iα,β :=
∫ 1/4

0

rα

(h+ γr2)β
dr,

in which we set r =
√
hs. This yields

Iα,β := h
(α+1)−2β

2

∫ 1

4
√

h

0

sα

(1 + γs2)β
ds.

Consequently, if α > 2β−1, the integral behaves like Ch−
(α+1)−2β

2 , and we obtain the
first case, while if α < 2β − 1, the integral goes to a finite positive value as h → ∞,
and we obtain the second case.

We now compare λ(r, z, h) = z/δh(r) to member functions (r, θ, z) 
→ rα/(δh(r))β

in Ωh,1/4.
Lemma A.2. We have the following sizes:

λ ≺ 1, λr ≺ r/δh, λz ≺ 1/δh, λh ≺ 1/δh,
λrh ≺ r/δ2h, λzh ≺ 1/δ2h, λrr ≺ 1/δh, λrz ≺ r/δ2h,

λrrz ≺ 1/δ2h, λrrr ≺ r/δ2h.
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Proof. The reader may rapidly check that all the derivatives of δh are independent
of h and that all the odd ones are bounded by r over (0, 1/4). Then in Ωh,1/4 we have
z ∈ (0, δh(r)), and consequently λ ≺ 1. Then

λr = −λδ
′
h

δh
, λz =

1
δh
, λh = − λ

δh
.

As δ′ is bounded by r necessarily independent of h, we get λr ≺ r/δh and λz ≺ 1/δh,
λh ≺ 1/δh. To the next order, we get

λrz = −δ
′
h

δ2h
, λrr = λ

(
2

(δ′h)2

δ2h
− δ′′h
δh

)
, λrh = −2

λδ′h
δ2h

, λzh = − 1
δ2h
.

As δ′′ is bounded independently of h and r2 � h+ r2, we obtain

λrz ≺ r

δ2h
, λrr ≺ 1

δh
, λrh ≺ r

δh
, λzh ≺ 1

δ2h
.

Finally,

λrrz =
1
δh

(
2

(δ′h)2

δ2h
− δ′′h
δh

)
, λrrr = λ

(
6
δ′′hδ

′
h

δ2h
− 6

(δ′h)3

δ3h
− δ

(3)
h

δh

)
.

And, as δ(3)h is bounded by r and r2 � δh,

λrrz ≺ 1
δ2h
, λrrr ≺ r

δ2h
.

Then we obtain the following lemma.
Lemma A.3. We have the following sizes:

φd
h ≺ r, ∂rφ

d
h ≺ 1, ∂zφ

d
h ≺ r/δh, ∂rφ

d
h/r − φd

h/r
2 ≺ r/δh,

∂hφ
d
h ≺ r/δh, ∂rhφ

d
h ≺ 1/δh, ∂zhφ

d
h ≺ r/δ2h, ∂rzφ

d
h/r − ∂zφ

d
h/r

2 ≺ r/δ2h,

∂rrφ
d
h ≺ r/δh, ∂rzφ

d
h ≺ 1/δh, ∂zzφ

d
h ≺ r/δ2h,

∂rrrφ
d
h ≺ 1/δh, ∂rzzφ

d
h ≺ 1/δ2h, ∂rrzφ

d
h ≺ r/δ2h, ∂zzzφ

d
h ≺ r/δ3h.

Proof. By definition, we have φd
h(r, z) = rχo(λ), where χo is a fixed polynomial

and, according to the previous lemma, λ is bounded. Consequently, we obtain φd
h ≺ r.

In the following, we shall drop all dependencies of χo in λ. Due to the same argu-
ment as for χo, all those quantities depending only on χo are bounded independently
of (h, r, z) in Ωh,1/4.

So, we compute

∂rφ
d
h = χo + rλrχ

′
o, ∂zφ

d
h = rλzχ

′
o, ∂hφ

d
h = rλhχ

′
o.

Applying the previous lemma and r2 � δh(r), we get

∂rφ
d
h ≺ 1, ∂zφ

d
h ≺ r/δh, ∂hφ

d
h ≺ r/δh, ∂rφ

d
h/r − φd

h/r
2 = λrχ

′
o ≺ r/δh.

To the next order, we obtain, as λz is independent of z,

∂rrφ
d
h = (2λr + rλrr)χ′

o + r(λr)2χ′′
o ,

∂rzφ
d
h = (λz + rλrz)χ′

o + rλrλzχ
′′
o ∂zzφ

d
h = r(λz)2χ′′

o ,

∂zhφ
d
h = rλzλhχ

′′
o + rλhzχ

′
o, and ∂rhφ

d
h = λhχ

′
o + rλrhχ

′
o + rλrλhχ

′′
o .
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As above,

∂rrφ
d
h ≺ r/δh, ∂rzφ

d
h ≺ 1/δh, ∂zzφ

d
h ≺ r/δ2h, ∂rhφ

d
h ≺ 1/δh, ∂zhφ

d
h ≺ r/δ2h

and

∂rzφ
d
h

r
− ∂zφ

d
h

r2
= λrzχ

′
o + λrλzχ

′′
o ≺ r/δ2h.

To the next order, we obtain

∂rrrφ
d
h = (3λrr + rλrrr)χ′

o + (3λ2
r + 3rλrrλr))χ′′

o + r(λr)3χ(3)
o ,

and thus ∂rrrφ
d
h ≺ 1/δh; and

∂rzzφ
d
h = (λ2

z + 2rλrzλz)χ′′
o + r(λz)2λrχ

(3)
o ,

so ∂rzzφ
d
h ≺ 1/δ2h; and

∂rrzφ
d
h = (2λrz + rλrrz)χ′

o + (2λrλz + r(λrrλz + 2λrzλr)χ′′
o + r(λr)2λzχ

(3)
o ,

so ∂rrzφ
d
h ≺ r/δ2h. Finally, ∂zzzφ

d
h = r(λz)3χ(3)

o , so that ∂zzzφ
d
h ≺ r/δh

3.
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ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS FOR
NONSMOOTH DIFFERENTIAL EQUATIONS WITH APPLICATION

TO THE NONSMOOTH VAN DER POL OSCILLATOR∗

ADRIANA BUICĂ† , JAUME LLIBRE‡ , AND OLEG MAKARENKOV§

Abstract. In this paper we study the existence, uniqueness, and asymptotic stability of the
periodic solutions of the Lipschitz system ẋ = εg(t, x, ε), where ε > 0 is small. Our results extend
the classical second Bogoliubov theorem for the existence of stable periodic solutions to nonsmooth
differential systems. As an application we prove the existence of asymptotically stable 2π-periodic
solutions of the nonsmooth van der Pol oscillator ü+ ε (|u| − 1) u̇+ (1 + aε)u = ελ sin t. Moreover,
we construct the so-called resonance curves that describe the dependence of the amplitude of these
solutions as a function of the parameters a and λ. Finally we compare such curves with the resonance
curves of the classical van der Pol oscillator ü+ ε

(
u2 − 1

)
u̇+ (1 + aε)u = ελ sin t.

Key words. periodic solution, asymptotic stability, averaging theory, nonsmooth differential
system, nonsmooth van der Pol oscillator

AMS subject classifications. 34C29, 34C25, 47H11

DOI. 10.1137/070701091

1. Introduction. In this paper we study the existence, uniqueness, and asymp-
totic stability of the T -periodic solutions of the system

(1.1) ẋ = εg(t, x, ε),

where ε > 0 is a small parameter, and the function g ∈ C0(R × R
k × [0, 1],Rk) is

T -periodic in the first variable and locally Lipschitz with respect to the second. For
this class of differential systems, the study of the T -periodic solutions can be made
using the averaging function

(1.2) g0(v) =
∫ T

0

g(τ, v, 0)dτ

and looking for the periodic solutions that starts near some v0 ∈ g−1
0 (0).

In the case that g is of class C1, we recall the stable periodic case of the second Bo-
goliubov’s theorem [6, Chap. 1, section 5, Theorem II] which states If det (g0)′(v0) �= 0
and ε > 0 is sufficiently small, then system (1.1) has a unique T -periodic solu-
tion in a neighborhood of v0. Moreover, if all the eigenvalues of the Jacobian matrix
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(g0)′(v0) have negative real part, then this periodic solution is asymptotically stable.
This theorem has a long history and includes results by Fatou [15], Mandelstam and
Papaleksi [31], and Krylov and Bogoliubov [25, section 2].

{M

L

F(t)

C
R

Fig. 1.1. Circuit scheme for the classical triode oscillator (see [3, Chap. VIII, section 2,
Figure 348], [30, Chap. I, section 5, Figure 1], and [36, section 3.1.7, Figures 3–5]).

i(u)

u0

i(u)

u0

(a) (b)

i(u)

u0

(c)

+u0

+u1

-u0-u1

2p

p-δ

p+δ

+u0-u0

p

2p

-u0

p

Fig. 1.2. Characteristics of the triode of the circuit of Figure 1.1. (a) Triode in a harsh regime
(see [3, Chap. IV, section 7, Figure 212b], [30, Chap. I, section 5, comments for eqs. 5.3–5.4]);
(b) triode with saturation (see [3, Chap. VIII, section 3, Figure 364]); (c) triode without saturation
(see [3, Chap. IX, section 7, Figure 482]).

The Bogoliubov result provided a theoretical justification for some resonance phe-
nomena which appear in many real physical systems. One of the most significant ex-
amples is the classical triode oscillator whose scheme is drawn in Figure 1.1 and whose
current u is described by the second order differential equation

(1.3) ü+
1
LC

(RC −Mi′(u)) u̇+ ω2u =
1
LC

F (t),

where R = εR0, M = εM0, ω
2 = 1 + εb, F (t) = ελ sin t, ε > 0, is assumed to be

small and the triode characteristic i(u) is drawn in Figure 1.2(a). The analysis of the
diagram of bifurcation of the periodic solutions in this system is performed in almost
every book on nonlinear oscillations (see Andronov, Witt, and Khaikin [3, Chap. VIII,
section 2], Malkin [30, Chap. I, section 5], and Nayfeh and Mook [36, section 3.1.7])
but with the smooth approximation i(u) = i(a)(u) = S0 + S1u − 1

3S3u
3 (leading to

the classical van der Pol equation). Therefore it is natural to look for a technique
that permits one to avoid this smooth approximation and allows one to work with the
original shape of the triode characteristic drawn in Figure 1.2(a).

Though the unforced equation (1.3) (i.e., for F = 0) with i described by Fig-
ure 1.2(b) and Figure 1.2(c) is well studied (see [3, Chap. VIII, section 3 and Chap. IX,
section 7]), the question about resonances in these equations when F �= 0 (e.g.,
F (t) = ελ sin t) is still partially open. In this direction Levinson [29] uncovered a
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family of solutions of (1.3) of remarkable singular structure and Levi [28] completed
the study of the limit behavior of all solutions. The present paper complements these
results by describing the location of asymptotically stable periodic solutions of (1.3).

Studying (1.3) with the triode characteristic given by Figure 1.2(a), 1.2(b), or 1.2(c)
we finally note that there exists a change of variables (see, for example, how Levinson
changed equation 2.0 in [29]) that allows one to rewrite (1.3) into the form (1.1) with
some function g that is not C1 but is Lipschitz with respect to the second variable.
Therefore the goal of this work is to generalize the results on the existence of a stable
periodic solution of the second Bogoliubov theorem to the case that the function g of
(1.1) is only Lipschitz.

C2 C1

R

F1(t)F2 

(t)

L

Chua's

diode

vC2
vC1

iL

Fig. 1.3. Forced Chua’s circuit (see [5, 11, 20, 35, 40]).

i(v)

v

(Ga+Gb)Bp

GaBp

Bp

2Bp

-(Ga+Gb)Bp

-GaBp

-Bp

-2Bp

0

Fig. 1.4. Nonlinear characteristic of the Chua’s diode of the circuit drawn at Figure 1.3 given
by i(v) = Gbv + (1/2)(Ga − Gb) (|v + Bp| − |v −Bp|) , where Ga, Gb, Bp ∈ R are some constants
depending on the properties of the Chua’s diode (see [10]).

Another motivation of this paper comes from the forced Chua’s circuit (see Fig-
ure 1.3) studied in a large number of papers in the modern electrical engineering. This
circuit is described by the three-dimensional system

C1
dvC1

dt
=
vC2 − vC1

R
− i(vC1) + F1(t),

C2
dvC2

dt
=
vC1 − vC2

R
+ iL,(1.4)

L
diL
dt

= −vC2 + F2(t, vC2),

where i(v) (the characteristic of the Chua’s diode) is a piecewise linear function, as it
is represented in Figure 1.4. The recent literature provides insight into the numerical
simulations of (1.4) (see [40, 20], where F1 �= 0 and F2 �= 0, [5, 35], where F1 = 0
and F2 is periodic, or [11] where both F1 and F2 are periodic). Generalization of
the Bogoliubov result for (1.1) with Lipschitz right-hand part will allow for the first
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time the theoretical detection of asymptotically stable periodic solutions of (1.4) in
the case that C1 is large enough. Eventually this theoretical analysis may provide
new interesting parameters of the forced Chua’s circuit for doing additional numerical
experiments.

k1

k2

m

P(x)

x00

x
F(t, x, x)

.

-1

-(k1+k2)

1

k1

(a) (b)

Fig. 1.5. A prototypic device presented in (a) where a driven mass is attached to a immovable
beam via a spring with piecewise linear stiffness like in (b); see, e.g., [7], [24, Chap. I, p. 16 and
Chap. IV, p. 100], and [38].

On the other hand, part of the interest in generalizing the Bogoliubov result comes
from mechanics, where differential systems with piecewise linear stiffness describe
various oscillating processes. One of these systems is exhibited by the device drawn
in Figure 1.5(a), where a forced mass is attached to a spring whose stiffness changes
from k1 to k1 + k2 when the mass coordinate crosses 0 in the negative direction. This
device is governed by the second order differential equation

(1.5) mẍ+ P (x) = F (t, x, ẋ),

where the piecewise linear stiffness P is drawn in Figure 1.5(b). Depending on the
particular configuration of the device of Figure 1.5(a), different expressions for F
in (1.5) must be considered. Thus we have that F (t, x, ẋ) = −f(x)ẋ +M cosωt with
piecewise constant f for a shock-absorber and jigging conveyor (see [24, Chap. I, p. 16
and Chap. IV, p. 100]), where the original Bogoliubov result is employed without
justification). The function F takes the simpler form F (t, x, ẋ) = −cẋ + MQ(t) for
an impact resonator, and F (t, x, ẋ) = −cẋ+M sinωt for a cracked-body model (see
[38, 7], where only numerical experiments are performed). In each of these situations
(1.5) can be rewritten in the form (1.1) with g Lipschitz, provided that the constant
k2 and the amplitude of the force F are sufficiently small. Therefore the extension of
the Bogoliubov result to the nonsmooth case that we shall do will allow one to justify
the resonances that appeared in all these results. We note that the recent report by
Los Alamos National Laboratory [13] describes the increasing interest in a specific
form of the model of Figure 1.5(a) called the cracked-body model and, particularly, in
the suspension bridge models. Consequently the results of this paper can be applied
to such models.

A first model of a one-dimensional suspended bridge is drawn in Figure 1.6(a).
It is represented (see [16, 27]) by the beam bending under its own weight and being
supported by cables whose restoring force due to elasticity is proportional to u+ (see
Figure 1.6(b)), where u = u(t, x) is the displacement of a point at a distance x from
one end of the bridge at time t and u is measured in the downward direction. Looking
for u of the form u(t, x) = z(t) sin(πx/L) and considering F (x, t) = h(t) sin(πx/L),
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An immovable object

Force F(t,x)

Nonlinear springs under tension

A bending beam with hinged ends

u +

u0 1

(b)

1

(a)

Fig. 1.6. (a) The first idealization of the suspension bridge: the beam bending under its own
weight is supported by the nonlinear cables (see [27, Figure 2]); (b) characteristic of stiffness of
nonlinear springs.

we arrive (see [16]) at the following particular case of differential equation (1.5):

(1.6) mz̈ + δż + c(π/L)4z + dz+ = mg + h(t),

where the constant m > 0 is the mass per unit of length, δ > 0 is a small viscous
damping coefficient, c > 0 measures the flexibility or stiffness of the bridge, L > 0
is the length of the bridge, d > 0 represents the stiffness of nonlinear springs, and
h is a continuous T -periodic force modelling wind, marching troops, or cattle (see
[19] for details). Considering c > 0 and d > 0 fixed and assuming that either c > 0
and h(t) are sufficiently small, or that c > 0 is fixed and h(t) is sufficiently large,
or that c > 0 is sufficiently small and h(t) fixed, Glover, Lazer, and McKenna [16],
Lazer and McKenna [27], and Fabry [14] proved various theorems on the location of
asymptotically stable T -periodic solutions in (1.6). The question What happens with
these solutions when d > 0, δ > 0, and h(t) are all sufficiently small? was open and
can be solved using the generalization of the Bogoliubov result that we provide. Lazer
and McKenna proved in [26] that the Poincaré map for (1.6) is differentiable, but we
note that this is not sufficient for applying the original Bogoliubov result.

We end the list of possible applications noting that system (1.4) describing the
Chua’s circuit (Figure 1.3) appeared recently for studying the so-called negative slope
mechanical systems (see Awrejcewicz [4, section 8.2.2]). So our results can also be
applied to these mechanical systems.

These applications require generalizations of the second Bogoliubov theorem for
Lipschitz right-hand parts. To the best of our knowledge Mitropol’skii was the first to
consider such a kind of generalization. Assuming that g is Lipschitz, g0 ∈ C3(Rk,Rk),
and all the eigenvalues of the matrix (g0)′(v0) have negative real part, Mitropol’skii
[34] developed the Bogoliubov result proving the existence and uniqueness of a T -
periodic solution of system (1.1) in a neighborhood of v0. There was great progress
weakening the assumptions of the existence result (see Samoilenko [39] and Mawhin
[32]), but this progress did not take place in the case of the uniqueness. Moreover,
the asymptotic stability of the T -periodic solution remained unstudied in the case of
Lipschitz systems for a long time. It has been done recently by Buică and Daniilidis in
[8] for Lipschitz systems (1.1) assuming that the function v �→ g(t, v, 0) is differentiable
at v0 for almost any t ∈ [0, T ] and that the eigenvectors of the matrix (g0)′(v0) are
orthogonal.
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In section 2, assuming that g is piecewise differentiable in the second variable,
we prove in Theorem 2.5 that the stable periodic solution of the Bogoliubov theorem
persists when g is not necessary C1. Theorem 2.5 follows from this more general The-
orem 2.1 whose hypotheses do not use any differentiability—neither of g, nor of g0.
Assuming only continuity for g, we show in Theorem 2.9 the existence of a nonasymp-
totically stable T -periodic solution of system (1.1) if the Brouwer topological degree
of −g0 is negative. In section 3 we illustrate our results constructing the resonance
curves of the nonsmooth van der Pol oscillator, also studied in [18], and compare these
curves with the resonance curves of the classical van der Pol oscillator, which were
constructed by Andronov and Witt [1, 2].1

2. Main results. Throughout the paper Ω ⊂ R
k will be an open set. For any

δ > 0 we denote Bδ(v0) =
{
v ∈ R

k : ‖v − v0‖ ≤ δ
}
. We have the following main

result on the existence, uniqueness, and asymptotic stability of T -periodic solutions
for system (1.1).

Theorem 2.1. Let g ∈ C0(R × Ω × [0, 1],Rk) and v0 ∈ Ω. Assume the following
four conditions.

(i) For some L > 0 we have that ‖g(t, v1, ε) − g(t, v2, ε)‖ ≤ L ‖v1 − v2‖ for any
t ∈ [0, T ], v1, v2 ∈ Ω, ε ∈ [0, 1].

(ii) For any γ > 0 there exists δ > 0 such that∥∥∥∥∥
∫ T

0

g(τ, v1 + u(τ), ε)dτ −
∫ T

0

g(τ, v2 + u(τ), ε)dτ

−
∫ T

0

g(τ, v1, 0)dτ +
∫ T

0

g(τ, v2, 0)dτ

∥∥∥∥∥ ≤ γ‖v1 − v2‖

for any u ∈ C0([0, T ],Rk), ‖u‖ ≤ δ, v1, v2 ∈ Bδ(v0), and ε ∈ [0, δ].
(iii) Let g0 be the averaged function given by (1.2) and consider that g0(v0) = 0.
(iv) There exist q ∈ [0, 1), α, δ0 > 0, and a norm ‖·‖0 on R

k such that ‖v1 + αg0(v1)
−v2 − αg0(v2)‖0 ≤ q‖v1 − v2‖0 for any v1, v2 ∈ Bδ0(v0).

Then there exists δ1 > 0 such that for every ε ∈ (0, δ1], system (1.1) has exactly one T -
periodic solution xε with xε(0) ∈ Bδ1(v0). Moreover, the solution xε is asymptotically
stable and xε(0) → v0 as ε→ 0.

When the solution x(·, v, ε) of system (1.1) with the initial condition x(0, v, ε) = v
is well defined on [0, T ] for any v ∈ Bδ0(v0), the map v �→ x(T, v, ε) is also well
defined and is called the Poincaré map at time T of system (1.1). In order to prove
the existence, uniqueness, and stability of the T -periodic solutions of system (1.1)
stated in Theorem 2.1, it is sufficient to study the same properties for the fixed points
of this Poincaré map.

Before proving Theorem 2.1 we state and prove two lemmas. In order to state the
first lemma, we need to introduce the function

gε(v) =
∫ T

0

g(τ, x(τ, v, ε), ε)dτ

1At the final stage of publishing of this paper, we have been informed by Prof. Michael Guevara
that the resonance curves mentioned appeared for the first time in [Balth. van der Pol, Tijdschr. Ned
Rad Gen., (1924) (in Dutch)], an English translation appeared in [Phil. Mag., vol. 3, 1927, p. 65]. We
thank Prof. Guevara for calling our attention to those papers and some other historical background
on resonance curves.
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and to note that by writing the equivalent integral equation of system (1.1) we have

x(T, v, ε) = v + εgε(v).

Lemma 2.2. Let g ∈ C0(R×Ω× [0, 1],Rk) and δ0 > 0 be such that Bδ0(v0) ⊂ Ω. If
(i) is satisfied, then there exist δ ∈ [0, δ0] and L1 > 0 such that the map (v, ε) �→ gε(v)
is well defined and continuous on Bδ0(v0) × [0, δ] and

‖gε(v1) − gε(v2)‖ ≤ L1‖v1 − v2‖ for any ε ∈ [0, δ], v1, v2 ∈ Bδ0(v0).

If both (i) and (ii) are satisfied, then for any γ > 0 there exists δ ∈ [0, δ0] such that

‖gε(v1) − g0(v1) − gε(v2) + g0(v2)‖ ≤ γ‖v1 − v2‖

for any v1, v2 ∈ Bδ(v0) and ε ∈ [0, δ].
Proof. Using the continuity of the solution of a differential system with respect to

the initial data and the parameter (see [37, Chap. 4, section 23, statements G and D]),
we obtain the existence of ε0 > 0 such that x(t, v, ε) ∈ Ω for any t ∈ [0, T ], v ∈ Bδ0(v0),
and ε ∈ [0, ε0]. Using the Grönwall–Bellman lemma (see [17, Lemma 6.2] or [12,
Chap. II, section 11]) from the representation x(t, v, ε) = v + ε

∫ t

0
g(τ, x(τ, v, ε), ε)dτ

and the property (i), we obtain ‖x(t, v1, ε) − x(t, v2, ε)‖ ≤ eεLT ‖v1 − v2‖ for all t ∈
[0, T ], v1, v2 ∈ Bδ0(v0), and ε ∈ [0, ε0]. Therefore y(t, v, ε) =

∫ t

0
g(τ, x(τ, v, ε), ε)dτ

satisfies the property

(2.1) ‖y(t, v1, ε) − y(t, v2, ε)‖ ≤ L1‖v1 − v2‖

for all t ∈ [0, T ], v1, v2 ∈ Bδ0(v0), ε ∈ [0, ε0], and L1 = LTeε0LT . Since gε(v) =
y(T, v, ε) the first part of the lemma has been proven.

Taking into account that x(t, v, ε) = v + εy(t, v, ε), we have

(2.2) y(T, v1, ε) − y(T, v1, 0) − y(T, v2, ε) + y(T, v2, 0) = I1(v1, v2, ε) + I2(v1, v2, ε),

where

I1(v1, v2, ε) =
∫ T

0

[g(τ, v2 + εy(τ, v1, ε), ε) − g(τ, v2 + εy(τ, v2, ε), ε)]dτ,

I2(v1, v2, ε) =
∫ T

0

[(g(τ, v1 + εy(τ, v1, ε), ε) − g(τ, v2 + εy(τ, v1, ε), ε))]dτ

−
∫ T

0

(g(τ, v1, 0) − g(τ, v2, 0))dτ.

Since (t, υ, ε) �→ y(t, υ, ε) is bounded on [0, T ] × Bδ0(v0) × [0, ε0], we have that
εy(t, υ, ε) → 0 as ε → 0 uniformly with respect to t ∈ [0, T ] and v ∈ Bδ0(v0).
Decreasing ε0 > 0, if necessary, we get that v2 + εy(t, v1, ε) ∈ Ω for any t ∈ [0, T ],
v1, v2 ∈ Bδ0(v0), ε ∈ [0, ε0]. By assumption (i) and relation (2.1) we obtain that
‖I1(v1, v2, ε)‖ ≤ T · εLL1‖v1 − v2‖ for all ε ∈ [0, ε0], v1, v2 ∈ Bδ0(v0).

We fix γ > 0 and take δ > 0 given by (ii). Without loss of generality we can
consider that δ ≤ min{δ0, ε0, γ/(2TLL1)}. Therefore assumption (ii) implies that
‖I2(v1, v2, ε)‖ ≤ (γ/2)‖v1−v2‖ for any ε ∈ [0, δ], v1, v2 ∈ Bδ(v0). Substituting the ob-
tained estimations for I1 and I2 into (2.2) we have ‖y(T, v1, ε)−y(T, v1, 0)−y(T, v2, ε)+
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y(T, v2, 0)‖ ≤ (εTLL1 + γ/2)‖v1− v2‖ ≤ γ‖v1 − v2‖ for any ε ∈ [0, δ], v1, v2 ∈ Bδ(v0).
Hence the proof is complete.

Lemma 2.3. Let g0 : Ω → R
k, satisfying assumption (iv) for some q ∈ (0, 1),

α, δ0> 0, and a norm ‖ · ‖0 on R
k. Then ‖v1 + εg0(v1) − v2 − εg0(v2)‖0 ≤

(1 − ε(1 − q)/α) ‖v1 − v2‖0 for any v1, v2 ∈ Bδ0(v0) and any ε ∈ [0, α].
Proof. Indeed, the equality v + εg0(v) = (1 − ε/α)v + ε/α (v + αg0(v)) implies

that the Lipschitz constant of the function I + εg0 with respect to the norm ‖ · ‖0 is
(1 − ε/α) + ε/α q = 1 − ε(1 − q)/α.

Proof of Theorem 2.1. By Lemma 2.2 we have that there exists δ1 ∈ [0, δ0] such
that

(2.3) ‖gε(v1) − g0(v1) − gε(v2) + g0(v2)‖0 ≤ ((1 − q)/(2α))‖v1 − v2‖0

for any ε ∈ [0, δ1], v1, v2 ∈ Bδ1(v0). First we prove that there exists ε1 ∈ [0, δ1] such
that for every ε ∈ [0, ε1] there exists vε ∈ Bδ1(v0) such that x(·, vε, ε) is a T -periodic
solution of (1.1) by showing that there exists vε such that x(T, vε, ε) = vε. Using (iii)
and (iv) we have

‖v + αg0(v) − v0‖0 ≤ q‖v − v0‖0 for any v ∈ Bδ1(v0).

Therefore we have that the map I + αg0 maps Bδ1(v0) into itself. From Lemma 2.2
we have that there exists ε0 > 0 such that the map (v, ε) �→ gε(v) is well defined
and continuous on Bδ1(v0) × [0, ε0]. We deduce that there exists ε1 > 0 sufficiently
small such that, for every ε ∈ [0, ε1], the map I +αgε maps Bδ1(v0) into itself as well.
Therefore, by the Brouwer theorem (see, for example, [23, Theorem 3.1]) we have that
Bδ1(v0) contains at least one fixed point of the map I+αgε for any ε ∈ [0, ε1]. Denote
this fixed point by vε. Then we have gε(vε) = 0 and x(T, vε, ε) = vε for any ε ∈ [0, ε1].

Now we prove that x(·, vε, ε) is the only T -periodic solution of (1.1) starting near
v0 and that, moreover, it is asymptotically stable. Knowing that x(T, v, ε) = v+εgε(v)
we write the following identity:

(2.4) x(T, v, ε) = v + εg0(v) + ε (gε(v) − g0(v)) .

Using Lemma 2.3 we have from (2.3) and (2.4) that

‖x(T, v1, ε) − x(T, v2, ε)‖0 ≤ (1 − ε(1 − q)/α+ ε(1 − q)/(2α))‖v1 − v2‖0

= (1 − ε(1 − q)/(2α))‖v1 − v2‖0

for all v1, v2 ∈ Bδ1(v0) and ε ∈ [0, δ1]. We proved before that there exists ε1 > 0
such that for every ε ∈ [0, ε1] there exists vε ∈ Bδ1(v0) with x(·, vε, ε) a T -periodic
solution of (1.1). Since ε(1 − q)/(2α) > 0 and ε1 ≤ δ1, the last inequality implies
that for each ε ∈ [0, δ1], the T -periodic solution x(·, vε, ε) is the only T -periodic
solution of (1.1) in Bδ1(v0) and, moreover (see [23, Lemma 9.2]), it is asymptotically
stable.

Remark 2.4. We note that a similar result close to Theorem 2.1 is contained in
[8, Theorem 3.5]. But instead of the assumption (iv) with a fixed α > 0, it is assumed
in [8] with any α > 0 sufficiently small. Anyway, notice that Lemma 2.3 implies that
it is the same to assume (iv) for only one α > 0 or for all α > 0 sufficiently small. The
advantage of our Theorem 2.1 is that it does not require differentiability of g(t, ·, ε)
at any point, while [8] needs it at v0. See also Remark 2.8.
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In general it is not easy to check assumptions (ii) and (iv) in the applications of
Theorem 2.1. Thus we also give the following theorem based on Theorem 2.1 which
assumes certain type of piecewise differentiability instead of (ii) and deals with prop-
erties of the matrix (g0)′(v0) instead of the Lipschitz constant of g0.

For any set M ⊂ [0, T ] measurable in the sense of Lebesgue we denote by mes(M)
the Lebesgue measure of M (see [21, Chap. V, section 3]).

Theorem 2.5. Let g ∈ C0(R×Ω× [0, 1],Rk) satisfying (i). Let g0 be the averaged
function given by (1.2) and consider v0 ∈ Ω such that g0(v0) = 0. Assume that

(v) given any γ̃ > 0 there exist δ̃ > 0 and M ⊂ [0, T ] with mes(M) < γ̃ such that
for every v ∈ Bδ̃(v0), t ∈ [0, T ] \M , and ε ∈ [0, δ̃] we have that g(t, ·, ε) is
differentiable at v and ‖g′v(t, v, ε) − g′v(t, v0, 0)‖ ≤ γ̃.

Finally assume that
(vi) g0 is continuously differentiable in a neighborhood of v0 and the real parts of

all the eigenvalues of (g0)′(v0) are negative.
Then there exists δ1 > 0 such that for every ε ∈ (0, δ1], system (1.1) has exactly one T -
periodic solution xε with xε(0) ∈ Bδ1(v0). Moreover, the solution xε is asymptotically
stable and xε(0) → v0 as ε→ 0.

For proving Theorem 2.5 we need two preliminary lemmas.
Lemma 2.6. Let g ∈ C0(R×Ω× [0, 1],Rk) satisfying (i). If (v) holds, then (ii) is

satisfied.
Proof. Let γ > 0 be an arbitrary number. We show that (ii) holds with δ = δ̃/2,

where δ̃ is given by (v) applied with γ̃ = min{γ/(4L), γ/(4T )}. We consider also
M ⊂ [0, T ] given by (v) applied with the same value of γ̃.

Let u ∈ C0([0, T ],Rk), ‖u‖ ≤ δ, and F (v) =
∫ T

0 g(τ, v+u(τ), ε)dτ−
∫ T

0 g(τ, v, 0)dτ.
Let v1, v2 ∈ Bδ(v0) and ε ∈ [0, δ]. We have F (v) = F1(v) + F2(v), where F1(v) =∫

M
(g(τ, v+u(τ), ε)−g(τ, v, 0))dτ and F2(v) =

∫
[0,T ]\M

(g(τ, v+u(τ), ε)−g(τ, v, 0))dτ .
By (i) we have that ‖F1(v1) − F1(v2)‖ ≤ 2L · mes(M)‖v1 − v2‖ < 2Lγ̃‖v1 − v2‖ ≤
(γ/2)‖v1 − v2‖. On the other hand, using (v), we will prove that a similar relation
holds for F2. In order to do this, we denote h(τ, v) = g(τ, v+u(τ), ε)−g(τ, v, 0). Notice
that for each τ ∈ [0, T ] \M we can write h′v(τ, v) = (g′v(τ, v+ u(τ), ε)− g′v(τ, v0, 0))−
(g′v(τ, v, 0)−g′v(τ, v0, 0)). As a direct consequence of (v) we deduce that ‖h′v(τ, v)‖ ≤ 2γ̃
for all v ∈ Bδ(v0) and τ ∈ [0, T ] \M . Now applying the mean value theorem for the
function h(τ, ·), we have ‖h(τ, v1)−h(τ, v2)‖ ≤ 2γ̃‖v1−v2‖ for all τ ∈ [0, T ]\M and all
v1, v2 ∈ Bδ(v0). Then ‖F2(v1)−F2(v2)‖ ≤

∫
[0,T ]\M

‖h(τ, v1)−h(τ, v2)‖dτ ≤ 2T γ̃‖v1−
v2‖ ≤ (γ/2)‖v1 − v2‖. Therefore we have proved that ‖F (v1) − F (v2)‖ ≤ γ‖v1 − v2‖,
which coincides with (ii).

Lemma 2.7. Let g0 : Ω → R
k satisfying assumption (vi) for some v0 ∈ Ω. Then

there exist q ∈ [0, 1), α, δ0 > 0 and a norm ‖ · ‖0 on R
k such that (iv) is satisfied.

Proof. If λ is an eigenvalue of α(g0)′(v0), then λ + 1 is an eigenvalue of I +
(αg0)′(v0). Since the eigenvalues of α(g0)′(v0) tend to 0 as α → 0 and have negative
real parts, then there exists α ∈ [0, 1) such that the absolute values of all the eigen-
values of I+α(g0)′(v0) are less than one. Therefore (see [22, p. 90, Lemma 2.2]) there
exist q̃ ∈ [0, 1) and a norm ‖ · ‖0 on R

k such that sup‖ξ‖0≤1 ‖ξ + α(g0)′(υ0)ξ‖0 ≤ q̃.

By continuous differentiability of g0 in a neighborhood of v0 we have that ‖g0(v1)−
g0(v2) − (g0)′(v0)(v1 − v2)‖ / ‖v1 − v2‖ ≤ ‖g0(v1) − g0(v2) − (g0)′(v2)(v1 − v2)‖ +
‖(g0)′(v2)(v1−v2)−(g0)′(v0)(v1−v2)‖/‖v1−v2‖ → 0 as max{‖v1−v0‖, ‖v2−v0‖} → 0.
Therefore taking into account that all norms on R

k are equivalent, there exists δ0 > 0
such that ‖g0(v1) − g0(v2) − (g0)′(v0)(v1 − v2)‖0 ≤ (1 − q̃)/(2α) ‖v1 − v2‖0 for all
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v1, v2 ∈ Bδ0(v0). Then

‖v1+αg0(v1) − v2 − αg0(v2)‖0

≤ α‖g0(v1) − g0(v2) − (g0)′(v0)(v1 − v2)‖0 + ‖v1 − v2 + α(g0)′(v0)(v1 − v2)‖0

≤ (1 + q̃)/2 ‖v1 − v2‖0

for all v1, v2 ∈ Bδ0(v0).
Proof of Theorem 2.5. Lemmas 2.6 and 2.7 imply that assumptions (ii) and (iv) of

Theorem 2.1 are satisfied. Therefore the conclusion of the theorem follows by applying
Theorem 2.1.

It was observed by Mitropol’skii in [34] that in spite of the fact that g(t, ·, ε)
in (1.1) is only Lipschitz, sometimes the function g0 turns out to be differentiable
in applications. In particular we will see in section 3 that this is the case for the
nonsmooth van der Pol oscillator.

Clearly if g ∈ C1(R×R
k × [0, 1],Rk), then (i) and (v) hold in any open bounded

set Ω ⊂ R
k. Therefore Theorem 2.5 is a generalization of the stable periodic case of

the second Bogoliubov theorem formulated in the introduction.
Remark 2.8. Theorem 2.5 does not require the eigenvectors of (g0)′(v0) to be

orthogonal as in [8, Theorem 3.6]. Moreover, assumption (H2) of [8] is more restrictive
than (v).

For completeness we also give the following theorem on the existence of nonasymp-
totically stable T -periodic solutions for (1.1). In the theorem below, d(F, V ) denotes
the Brouwer topological degree of the vector field F ∈ C0(Rk,Rk) on the open and
bounded set V ⊂ R

k (see [23, Chap. 2, section 5.2]).
Theorem 2.9. Let g ∈ C0(R×R

k × [0, 1],Rk). Assume that there exists an open
bounded set V ⊂ R

k such that g0(v) �= 0 for any v ∈ ∂V and
(vii) d(−g0, V ) < 0.

Then there exists ε0 > 0 such that for any ε ∈ (0, ε0] system (1.1) has at least one
nonasymptotically stable T -periodic solutions xε with xε(0) ∈ V.

Proof. Since g0(v) �= 0 for any v ∈ ∂V , then from Mawhin’s theorem [32] (or [33,
section 5]) we have that there exists ε0 > 0 such that

(2.5) d(−g0, V ) = d(I − x(T, ·, ε), V ) for any ε ∈ (0, ε0].

By [23, Theorem 9.6] for any asymptotically stable T -periodic solution xε of (1.1)
we have that d(I − x(T, ·, ε), Bδ(xε(0))) = 1 for δ > 0 sufficiently small. Therefore if
all the possible T -periodic solutions of (1.1) with ε ∈ (0, ε0] had been asymptotically
stable, then the degree d(I−x(T, ·, ε), V ) would have been nonnegative, contradicting
(vii) and (2.5).

Remark 2.10. Assumptions (iii) and (iv) imply that d(−g0, V ) = 1 (see [23,
Theorem 5.16]).

Finally thinking in terms of the application to the nonsmooth van der Pol oscilla-
tor, we formulate the following theorem which combines Mawhin’s theorem (see [32]
or [33, Theorem 3]) and Theorems 2.5 and 2.9. In this theorem ([g0]i)′(j) stays for the
derivative of the ith component of the function g0 with respect to the jth variable.

Theorem 2.11. Let g ∈ C0(R × Ω × [0, 1],R2). Let v0 ∈ Ω be such a point that
g0(v0) = 0 and g0 is continuously differentiable in a neighborhood of v0.

(a) If det (g0)′(v0) �= 0, then there exists ε0 > 0 such that for any ε ∈ (0, ε0]
system (1.1) has at least one T -periodic solution xε satisfying xε(0) → v0 as
ε→ 0.
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(b) If (i) and (v) hold and

(2.6) det (g0)′(v0) > 0 and ([g0]1)
′
(1)(v0) + ([g0]2)

′
(2)(v0) < 0,

then there exists ε0 > 0 such that for any ε ∈ (0, ε0] system (1.1) has exactly
one T -periodic solution xε such that xε(0) → v0 as ε → 0. Moreover, the
solution xε is asymptotically stable.

(c) If det (g0)′(v0) < 0, then there exists ε0 > 0 such that for any ε ∈ (0, ε0]
system (1.1) has at least one nonasymptotically stable T -periodic solution xε

such that xε(0) → v0 as ε→ 0.
Proof. Statement (a) is added for the completeness of the formulation of Theo-

rem 2.11 and it follows from Mawhin’s theorem (see [32] or [33, Theorem 3]).
On the other hand, it is a simple calculation to show that (2.6) implies that

all the eigenvalues of (g0)′(v0) have negative real part. Therefore assumption (vi) of
Theorem 2.5 is also satisfied and statement (b) follows from this theorem.

Statement (c) follows from Theorem 2.9. Indeed, since det (g0)′(v0) < 0, it implies
(see [23, Theorem 5.9]) that d(g0, Bρ(v0)) is defined for any ρ > 0 sufficiently small
and that d(g0, Bρ(v0)) = det(g0)′(v0) < 0.

3. Application to the nonsmooth van der Pol oscillator. In [18] Hogan
first demonstrated the existence of a limit cycle for the nonsmooth van der Pol equa-
tion ü+ε(|u|−1)u̇+u = 0. This equation governs the circuit drawn at Figure 1.1 with
the triode characteristic i(u) = S0 +S1u−S2u|u| whose derivative i′(u) = S1−2S2|u|
is nondifferentiable (see Nayfeh and Mook [36, section 3.3.4], where the same stiffness
characteristic appears in mechanics). In this paper we extend this study by consider-
ing the van der Pol problem on the location of stable and unstable periodic solutions
of the perturbed equation

(3.1) ü+ ε (|u| − 1) u̇+ (1 + aε)u = ελ sin t,

where a is a detuning parameter and ελ sin t is an external force. We assume that
ε > 0 is sufficiently small, and we consider that the parameters a and λ vary in R.

We finally note that standard change of variables (see example in section 3) brings
(1.3) into the form (1.1), with g sufficiently smooth to satisfy the hypotheses of the
second Bogoliubov theorem. But we remind the reader that our aim is to apply directly
Theorem 2.5, in the same way that Andronov and Witt applied Bogoliubov theorem
to the classical van der Pol oscillator

(3.2) ü+ ε
(
u2 − 1

)
u̇+ (1 + aε)u = ελ sin t,

which can be found in [1, Figure 4] or in [30, Chap. I, section 16, Figure 15].
A function u is a solution of (3.1) if and only if (z1, z2) = (u, u̇) is a solution of

the system

(3.3)
ż1 = ż2,

ż2 = −z1 + ε[−az1 − (|z1| − 1)z2 + λ sin t].

After the change of variables(
z1(t)
z2(t)

)
=

(
cos t sin t
− sin t cos t

)(
x1(t)
x2(t)

)
,
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system (3.3) takes the form

(3.4)

ẋ1 = ε sin(−t) [−a(x1 cos t+ x2 sin t)

− (|x1 cos t+ x2 sin t| − 1) (−x1 sin t+ x2 cos t) + λ sin t] ,

ẋ2 = ε cos(−t) [−a(x1 cos t+ x2 sin t)

− (|x1 cos t+ x2 sin t| − 1) (−x1 sin t+ x2 cos t) + λ sin t] .

The corresponding averaged function g0, calculated using (1.2), is given by

(3.5)
[g0]1(M,N) = πaN − πλ+ πM − 4

3M
√
M2 +N2,

[g0]2(M,N) = −πaM + πN − 4
3N

√
M2 +N2,

and it is continuously differentiable in R
2\{0}.

In short, by statement (a) of Theorem 2.11, the zeros (M,N) ∈ R
2 of this function

with the property that det (g0)′(M,N) �= 0 determine the 2π-periodic solutions of
(3.3) emanating from the solution of the unperturbed system

(3.6)
u1(t) = M cos t+N sin t,

u2(t) = −M sin t+N cos t.

We have the following expression for the determinant:

(3.7) det (g0)′(M,N) = π2(1 + a2) +
32
9

(M2 +N2) − 4π
√
M2 +N2.

Following Andronov and Witt [1] we are concerned with the dependence of the ampli-
tude of the solution (3.6) with respect to a and λ. Thus we decompose this solution
as follows:

(3.8) u1(t) = A sin(t+ φ), u2(t) = A cos(t+ φ),

where (M,N) is related to (A, φ) by

(3.9) M = A sinφ, N = A cosφ.

Substituting (3.9) into (3.5) and (3.7) we obtain

(3.10)
[g0((A sinφ,A cosφ))]1 = −(4/3) ·A|A| sinφ+ πaA cosφ+ πA sinφ− πλ,

[g0((A sinφ,A cosφ))]2 = −(4/3) ·A|A| cosφ− πaA sinφ+ πA cosφ,

and, respectively,

(3.11) det (g0)′((A sinφ,A cosφ)) = π2(1 + a2) +
32
9
A2 − 2π|A|.

Looking for the zeros (A, φ) of (3.10), we find the implicit formula

(3.12) A2

(
a2 +

(
1 − 4

3π
|A|
)2
)

= λ2
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Fig. 3.1. Dependence of the amplitude of stable (solid curves) and unstable (dash curves) 2π-
periodic solutions of the nonsmooth periodically perturbed van der Pol equation (3.1) on the detuning
parameter a obtained over formulas (3.12), (3.16), and (3.17) for different values of λ. The curve I
is plotted with λ = 0.4, II with λ = 3π/16, III with some λ =

√
0.4 ∈ (3π/16, 9

√
3π/64), IV with

λ = 9
√

3π/64, and V with λ = 1.5. Point P is 2/
√

3.

for determining A. Observe that the number of positive zeros of (3.12) coincide with
the number of zeros of the equation A2

(
a2 +

(
1 − 4

3πA
)2) = λ2. To estimate this

number we define

f(A) = A2

(
a2 +

(
1 − 4

3π
A

)2
)

− λ2,

and we have

f ′(A) = 2A

(
a2 +

(
1 − 4

3π
A

)2
)

− 8
3π
A2

(
1 − 4

3π
A

)
.

Since f ′ has one or two zeros, then (3.12) has one, two, or three positive solutions A
for any fixed a and λ. In order to understand the different situations that can appear,
we follow Andronov and Witt, who suggested in [1] (see also [2]) to construct the
so-called resonance curves, namely, the curves A in function of a, for λ fixed. The
equation of this curve is given by formula (3.12). Some curves (3.12) corresponding to
different values of λ are drawn in Figure 3.1. The way for describing these resonance
curves (3.12) is borrowed from [30, Ch. 1, section 5], where the classical van der Pol
equation is considered.

When λ = 0 the curve (3.12) is formed by the axis A = 0 and the isolated
point (0, 3π/4). When λ > 0 but sufficiently small, the resonance curve consists of
two branches: instead of A = 0 we have the curve of the type I − I, and instead of
the point (0, 3π/4) we obtain an oval I ′ − I ′ surrounding this point. When λ > 0
increases, the oval I ′ − I ′ and the branch I − I tend to each other, and, for a certain
λ, there exists only one branch II− II with a double point P. The value of this λ can
be obtained assuming that (3.12) has for a = 0 a double root and, therefore, (3.11)
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should be zero. Solving jointly (3.12) and (3.11) with a = 0 we obtain λ = 3π/16 and
P = 2π/8. If λ > 3π/16, then we have curves of the type III which take form V when
λ > 0 crosses the value λ = 9

√
3π/64. From here, if λ < 3π/16, then (3.12) has three

real roots when |a| is sufficiently small, and only one root when |a| is greater than
a certain number which depends on λ. When 3π/16 < λ < 9

√
3π/64 (3.12) has one,

three, and again one solution according to whether a < a1, a1 < a < a2, and a > a2,
respectively, where a1, a2 depend on λ. The amplitude curves of type V provide exactly
one solution of (3.12) for any value of a. The value λ = 9

√
3π/64, which separates the

curves where (3.12) has three solutions from the curves where (3.12) has one solution,
is obtained from the property that (3.12) with this λ has a double root for some a and
thus this value of a vanishes (3.11). Therefore λ = 9

√
3π/64 is the point separating

the interval (0, λ) where the system formed by (3.12) and

(3.13) π2(1 + a2) +
32
9
A2 − 2π|A| = 0

has at least one solution from the interval (λ,∞) where (3.12)–(3.13) has no solutions.
In short, we have studied the amplitudes of the 2π-periodic solutions of system

(3.3) depending on a and λ, when a physical system described by (3.3) possesses
2π-periodic oscillations and when some of them are asymptotically stable. To find
the answer we have used statement (b) of Theorem 2.11. Assumption (i) is obviously
satisfied with Ω = R

2. The next statement shows that the right-hand side of system
(3.4) satisfies (v).

Proposition 3.1. Let v0 ∈ R
2, v0 �= 0. Then the right-hand side of (3.4) satisfies

(v) for any a, λ ∈ R.
The proof of Proposition 3.1 is given in section 4.
Thus we have to study the signs of (3.11) and ([g0]1)

′
M (A sinφ,A cosφ)

+ ([g0]2)
′
N (A sinφ,A cosφ). We have

([g0]1)
′
M (M,N) + ([g0]2)

′
N(M,N) = 2

(
π − 2

√
M2 +N2

)
,

and therefore the conditions for the asymptotic stability of the 2π-periodic solutions
of (3.3) near (3.6) are

(3.14) π2(1 + a2) +
32
9

(M2 +N2) − 4π
√
M2 +N2 > 0

and

(3.15) 2
(
π − 2

√
M2 +N2

)
< 0.

Substituting (3.9) into the inequalities (3.14) and (3.15), we obtain the following
equivalent inequalities in terms of the amplitude A:

(3.16) π2(1 + a2) +
32
9
A2 − 2π|A| > 0

and

(3.17) 2π − 4|A| < 0.

Conditions (3.16) and (3.17) mean that the asymptotically stable 2π-periodic solutions
of (3.3) correspond to those parts of resonance curves under consideration which are
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outside the ellipse (3.13) and above the line A = π/2. All the results are collected in
Figure 3.1, where it is easy to see that for any detuning parameter a and any amplitude
λ > 0, (3.1) possesses at least one asymptotically stable 2π-periodic solution with
amplitude close to A obtained from (3.12). Among all the asymptotically stable 2π-
periodic solutions of (3.1), there exists exactly one whose fixed neighborhood does not
contain any nonasymptotically stable 2π-periodic solution of (3.1) for sufficiently small
ε > 0. The amplitude of this asymptotically stable 2π-periodic solution is obtained
from (3.16)–(3.17).

To compare the changes due to nonsmoothness in the behavior of the resonance
curves, we give in Figure 3.2 the resonance curves of the classical van der Pol oscilla-
tor (3.2).
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Fig. 3.2. Dependence of the amplitude of stable (solid curves) and unstable (dash curves) 2π-
periodic solutions of the classical periodically perturbed van der Pol equation (3.2) on the detuning
parameter a for different values of λ. Following Andronov and Witt (see [1, Figure 4]), curve I

is plotted with λ =
√

0.4, II with λ = 4
√

3/9, III with some 4
√

3/9 < λ <
√

32/27, IV with

λ =
√

32/27, and V with λ = 2. Point P is 2/
√

3.

The formulas of Figure 3.1 can be compared with the formulas for Figure 3.2.
In fact, the corresponding expressions (3.12)–(3.13) and (3.14)–(3.15) are (see the
formulas (5.21)–(5.22) and (16.6)–(16.7) of [30])

A2

(
a2 +

(
1 − A2

4

)2
)

= λ2,

1 − a2 −A2 +
3
16
A4 = 0,

and

1 + a2 − (M2 +N2) +
3
16

(M2 +N2)2 > 0,

2 − (M2 +N2) < 0,
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respectively, when we consider the classical van der Pol equation (3.2).
It can be checked that the eigenvectors of the matrix (g0)′((A sinφ,A cosφ)) are

orthogonal only for A = 0, so Theorem 3.6 from [8] cannot be applied. At the same
time assumption (H2) from [8] is not satisfied for our problem (see Remark 2.8).

4. Appendix.
Proof of Proposition 3.1. As before, [v]i is the ith component of the vector

v ∈ R
2. Let g(t, v) = |[v]1 cos t+ [v]2 sin t|, and notice that it is enough to prove

that g : [0, 2π] × R
2 → R satisfies (v). In the case that [v0]2 �= 0, denote θ(v) =

arctan(−[v]1/[v]2) if [v0]2 = 0, denote θ(v) = arctan(−[v]1/[v]2) if [v0]1[v]2 < 0,
θ(v0) = π/2, and, respectively, θ(v) = arctan(−[v]1/[v]2) + π if [v0]1[v]2 > 0. In any
case notice that the function v �→ θ(v) is continuous in every sufficiently small neigh-
borhood of v0. Fix γ̃ > 0. Let M be the union of two intervals centered in θ(v0)
(respectively, θ(v0) + 2π if θ(v0) < 0) and in θ(v0) + π, each of length γ̃/2. Denote
them M1 and M2. Take δ̃ > 0 such that θ(v) ∈ M1 for all v ∈ Bδ̃(v0). Of course,
also θ(v) + π ∈ M2 for all ‖v − v0‖ ≤ δ̃. This implies that for fixed t ∈ [0, 2π] \M ,
[v]1 cos t+[v]2 sin t has constant sign for all v ∈ Bδ̃(v0), which further gives that g(t, ·)
is differentiable and g′v(t, v) = g′v(t, v0) for all v ∈ Bδ̃(v0). Hence (v) is fulfilled.
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Abstract. In this paper, we investigate a nonlocal periodic reaction-diffusion population model
with stage structure. In the case of unbounded spatial domain, we establish the existence of the
asymptotic speed of spread and show that it coincides with the minimal wave speed for monotone
periodic traveling waves. In the case of bounded spatial domain, we obtain a threshold result on the
global attractivity of either zero or a positive periodic solution.
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1. Introduction. Age structure has been an interesting topic in population dy-
namics (see, e.g., [1, 2, 3, 5, 6, 7, 9, 14, 17, 18, 20] and the references therein), since
we can investigate the separate quantities of immature and mature populations in an
age-structured population model. To derive a model for a single species of population
with age structure and diffusion, we usually assume that individuals move around not
only after maturity, but also while immature. For a standard argument, Metz and
Diekmann [14] give

∂u

∂t
+
∂u

∂a
= D(a)

∂2u

∂x2
− μ(a)u,

where u(t, a, x) is the density of the population of the species at time t ≥ 0, age a ≥ 0,
and location x in a spatial domain Ω; D(a) ≥ 0 and μ(a) ≥ 0 are the diffusion rate
and the death rate of the population at age a, respectively.

To study the behaviors of immature individuals and mature individuals, we can
also divide the population of a species into two groups: immature population and
mature population. For simplicity, we assume that the maturation time (or the length
of the juvenile period) is the same for all juvenile individuals, denoted by τ ≥ 0. For
distributed maturation delay, see, e.g., [2, 3] and the references therein. Assume that
the diffusion rate and death rate are age-dependent for immature individuals, but
age-independent for mature individuals. As a result, we have the following system for
a single species of population with age structure and diffusion (see also [5, 17, 18, 20]):

(1.1)⎧⎪⎪⎨⎪⎪⎩
∂tu(t, a, x) + ∂au(t, a, x) = dj(a)Δu − μj(a)u(t, a, x), t > 0, 0 < a < τ, x ∈ Ω,

u(t, 0, x) = f(um(t, x)), t ≥ −τ, x ∈ Ω,

∂tum(t, x) = dmΔum − g(um(t, x)) + u(t, τ, x), t > 0, x ∈ Ω,
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where u(t, a, x) is the density of the population at time t ≥ −τ , age a ≥ 0, location
x ∈ Ω, um(t, x) is the density of the mature population, f(um) and g(um) are the
birth rate and the mortality rate of mature individuals, respectively, dj(a) ≥ 0 is the
diffusion rate of the immature individuals at age a ∈ (0, τ), dm ≥ 0 is the diffusion
rate of the mature individuals, μj(a) > 0 denotes the per capita mortality rate of
juveniles at age a, u(t, τ, x) is the adults recruitment term for those of maturation age
τ , Δ is the Laplacian operator.

In fact, the dynamics of many populations is influenced greatly by the time varying
environments (e.g., due to seasonal variation). For example, in a one year period, the
birth rate may be high in spring and summer and low in winter, while in winter more
individuals might be at risk of death because of low temperature, lack of food, or some
other reasons. Moreover, populations usually like to move in warm weather during the
spring and summer time. Therefore, it is more realistic to consider a nonautonomous
version of (1.1) for population dynamics. In particular, a periodic model, in which the
birth rate, mortality rates, and diffusion rates are assumed to be periodic in time, is
probably the simplest but nonetheless interesting and realistic case. In this paper, we
consider the following model:

(1.2)⎧⎪⎪⎨⎪⎪⎩
∂tu(t, a, x) + ∂au(t, a, x) = dj(t, a)Δu− μj(t, a)u(t, a, x), t > 0, a ∈ (0, τ), x ∈ Ω,

u(t, 0, x) = f(t, um(t, x)), t ≥ −τ, x ∈ Ω,

∂tum(t, x) = dm(t)Δum − g(t, um(t, x)) + u(t, τ, x), t > 0, x ∈ Ω,

where dj(t, a) ≥ 0 and μj(t, a) ≥ 0 denote the diffusion rate and the per capita
mortality rate of juveniles at age a at time t, respectively; dm(t) ≥ 0 denotes the
diffusion rate of mature individuals at time t; f(t, um) and g(t, um) are the birth and
mortality rates of mature individuals at time t, respectively.

Similarly as in [18] (see also [16]), we integrate along characteristics to reduce the
system (1.2) to one equation with nonlocal terms. Let v(r, a, x) = u(a+ r, a, x), where
r is regarded as a parameter. It follows that⎧⎪⎪⎨⎪⎪⎩

∂av(r, a, x) =
[
∂tu(t, a, x) + ∂au(t, a, x)

]
t=r+a

= dj(a+ r, a)Δv(r, a, x) − μj(a+ r, a)v(r, a, x),

v(r, 0, x) = f(r, um(r, x)).

Integrating the last equation, we obtain

v(r, a, x) =
∫

Ω

Γ(ζ(r, a), x − y)F (r, a)f(r, um(r, y))dy,

where Γ is the fundamental solution associated with the partial differential operator
∂t − Δ and

(1.3) ζ(r, a) =
∫ a

0

dj(s+ r, s)ds, F (r, a) = exp
(
−
∫ a

0

μj(s+ r, s)ds
)
.

Since u(t, a, x) = v(t− a, a, x), it follows that

(1.4) u(t, a, x) =
∫

Ω

Γ(ζ(t − a, a), x− y)F (t− a, a)f(t− a, um(t− a, y))dy.
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Set

a(t) := ζ(t− τ, τ), b(t) := F (t− τ, τ), f−τ (t, u) := f(t− τ, u).

Substituting (1.4) into the equation for um in (1.2), we finally reduce the age-structured
population model (1.2) to the following time-delayed reaction-diffusion equation for
mature individuals:

(1.5)⎧⎪⎪⎨⎪⎪⎩
∂tum(t, x)

= dm(t)Δum − g(t, um(t, x)) + b(t)
∫
Ω Γ(a(t), x− y)f−τ (t, um(t− τ, y))dy,

um(s, x) = φ(s, x), s ∈ [−τ, 0], x ∈ Ω,

where φ(t, x) is an initial function to be specified later. For simplicity, dropping all
m’s and writing um(t, x) as u(t, x), we investigate the following system:

(1.6)⎧⎪⎨⎪⎩
∂tu(t, x) = d(t)Δu − g(t, u(t, x)) + b(t)

∫
Ω

Γ(a(t), x− y)f−τ (t, u(t− τ, y))dy,

u(s, x) = φ(s, x), s ∈ [−τ, 0], x ∈ Ω.

Basically we assume that dj(t, a) and μj(t, a) are periodic in t ≥ 0 with the period
ω > 0 for a ∈ (0, τ), and that d(t), g(t, u), and f(t, u) are periodic in t with the period
ω > 0 for u ∈ R+. This implies that a(t) = a(t+ ω), d(t) = d(t+ ω), b(t) = b(t+ ω),
g(t, u) = g(t + ω, u), and f(t, u) = f(t + ω, u) for all t ≥ 0, u ∈ R+. Moreover, we
assume d(t) ≥ d > 0 for all t ≥ 0, and

(H1) f ∈ C1([−τ,+∞) × R+,R+), g ∈ C1(R2
+,R+), f(t, 0) = 0 for t ≥ −τ ,

fu(t, u) > 0 for all t ≥ −τ and u ≥ 0, g(t, 0) = 0 for t ≥ 0, and there
exists l1 > 0 such that |g(t, u)−g(t, v)| ≤ l1|u−v| for all t ≥ 0 and u, v ∈ R+;

(H2) G(t, u, v) := −g(t, u) + b(t)f−τ (t, v) is strictly subhomogeneous in (u, v) in
the sense that for any α ∈ (0, 1), G(t, αu, αv) > αG(t, u, v) for all u, v ≥ 0;

(H3) there exists positive number L > 0 such that G(t, L̄, L̄) ≤ 0 for all t ≥ 0,
L̄ ≥ L.

The purpose of this paper is to study the asymptotic speed of spread and periodic
traveling waves of (1.6) in the infinite spatial domain, and the global attractivity of
zero or a positive periodic solution of (1.6) in a bounded spatial domain. The asymp-
totic speed of spread (in short, spreading speed) was first introduced by Aronson and
Weinberger [4] for reaction-diffusion equations and has been an important ecological
metric in a wide range of ecological applications; see, e.g., [10, 11, 18] and the refer-
ences therein. Intuitively, the spreading speed c∗ in a spatial epidemic model can be
interpreted as: if one runs at a speed c > c∗, then one will leave the epidemic behind;
whereas if one runs at a speed c < c∗, then one will eventually be surrounded by
the epidemic. Traveling wave solutions have also been investigated extensively for a
variety of evolution systems; see, e.g., [5, 10, 11, 17, 18] and the references therein. For
the autonomous case of (1.6), the dynamics, including spreading speed and traveling
waves, have been studied extensively. So, Wu and Zou [17] investigated traveling wave
fronts in the case where Ω = R, g(u) = βu. Gourley and Kuang [5] established the
linear stabilities of two spatially homogeneous equilibrium solutions, studied traveling
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wave fronts in the case where Ω = R, f(u) = αu, and g(u) = βu2, and obtained a
global convergence theorem in the case of bounded intervals. Thieme and Zhao [18]
studied the traveling wave solutions, minimal wave speed, and asymptotic speed of
spread in the case of Ω = R

n. Xu and Zhao [20] established a threshold dynamic and
global attractivity of the positive steady state when Ω is a bounded domain in R

n.
This paper is organized as follows. In section 2, we first establish the well-

posedness and the comparison principle for (1.6) with Ω = R, then prove the existence
of the spreading speed c∗ for solutions of (1.6) with initial data having compact sup-
ports, and show that it coincides with the minimal wave speed for monotone periodic
traveling waves, by appealing to the theory of the spreading speed and traveling waves
for monotone periodic semiflows developed in [10, 11]. In section 3, we use the theory
of monotone and subhomogeneous dynamical systems to investigate the global dy-
namics of (1.6) in a bounded domain Ω ⊆ R

n, and obtain a threshold result for global
attractivity of either zero or a positive periodic solution.

2. Spreading speed and traveling waves. In this section, we consider that
the population diffuses in an unbounded spatial domain and study (1.6) with Ω = R:

(2.1)⎧⎪⎨⎪⎩
∂tu(t, x) = d(t)Δu − g(t, u(t, x)) + b(t)

∫
R

Γ(a(t), x− y)f−τ (t, u(t− τ, y))dy,

u(t, x) = φ(t, x), t ∈ [−τ, 0], x ∈ R.

In the following, we first apply the threshold dynamics in a scalar periodic and time-
delayed equation, developed by Xu and Zhao [21], to the spatially homogeneous system
associated with (2.1) to find a periodic solution of (2.1). Then we use the theory of
abstract functional differential equations and reaction-diffusion systems to establish
the existence of solutions to (2.1) and a comparison principle. Finally, we prove that
the solution periodic semiflow of (2.1) satisfies all the assumptions on monotone peri-
odic semiflows in [10], and hence, we obtain the existence of the spreading speed and
traveling wave solutions for (2.1).

Let Y be the space of all continuous functions from [−τ, 0] to R with the usual
supreme norm ‖ · ‖Y (i.e., Y = C([−τ, 0],R)), and let Y+ = C([−τ, 0],R+). Then
(Y,Y+) is an ordered Banach space. For ϕ, ψ ∈ Y, we write ϕ ≤ ψ if ψ − ϕ ∈ Y+,
ϕ < ψ if ψ−ϕ ∈ Y+ \ {0}, ϕ� ψ if ψ−ϕ ∈ int(Y+). Moreover, we define Yr = {ϕ ∈
Y : 0 ≤ ϕ ≤ r} for any r ∈ Y with r 	 0.

Let X be the set of all bounded and continuous functions from R into R and
X+ = {ϕ ∈ X;ϕ(x) ≥ 0 for all x ∈ R}. For ϕ, ψ ∈ X, we write ϕ ≤ ψ(ϕ � ψ) if
ϕ(x) ≤ ψ(x) (ϕ(x) < ψ(x)) for all x ∈ R, ϕ < ψ if ϕ ≤ ψ but ϕ 
= ψ. It is easy to see
that X+ is a positive cone of X. Define Xr = {ϕ ∈ X : 0 ≤ ϕ ≤ r} for any r ∈ X with
r 	 0. We equip X with the compact open topology, i.e., um → u in X means that
the sequence of um(x) converges to u(x) as m → ∞ uniformly for x in any compact
set on R. Define

‖ u ‖X=
∞∑

k=1

max|x|≤k |u(x)|
2k

∀u ∈ X,

where | · | denotes the usual norm in R. Then (X, ‖ · ‖X) is a normed space. Let dX(·, ·)
be the distance induced by the norm ‖ · ‖X. It follows that the topology in the metric
space (X, dX) is the same as the compact open topology in X. Moreover, (Xr, dX) is a
complete metric space.
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Let C be the set of continuous functions from [−τ, 0] into X, C+ = {ϕ ∈ C,ϕ(s) ∈
X+, s ∈ [−τ, 0]} and Cr = {ϕ ∈ C : 0 ≤ ϕ ≤ r} for any r ∈ Y with r 	 0. Then
C+ is a positive cone of C. For convenience, we also identify an element ϕ ∈ C as a
function from [−τ, 0] × R into R defined by ϕ(s, x) = ϕ(s)(x) for any s ∈ [−τ, 0] and
x ∈ R. For ϕ, ψ ∈ C, we write ϕ ≤ ψ(ϕ � ψ) if ϕ(s, x) ≤ ψ(s, x) (ϕ(s, x) < ψ(s, x))
for all s ∈ [−τ, 0], x ∈ R, ϕ < ψ if ϕ ≤ ψ but ϕ 
= ψ. For any continuous function
w(·) : [−τ, b) → X, b > 0, we define wt ∈ C by wt(s) = w(t + s) for all t ∈ [0, b),
s ∈ [−τ, 0]. It is then easy to see that t → wt is a continuous function from [0, b) to
C. Moreover, we also equip C with the compact open topology and define the norm
on C:

‖ u ‖C=
∞∑

k=1

max|x|≤k,s∈[−τ,0] |u(s, x)|
2k

∀u ∈ C,

where | · | denotes the usual norm in R.
For any constant N > 0, N̂ denotes the constant function with value N in Y, X,

or C.
Now we consider the spatially homogeneous system associated with (2.1). Letting

u(t, x) = w(t), we have

(2.2)

⎧⎨⎩
dw(t)
dt

= −g(t, w(t)) + b(t)f−τ (t, w(t− τ)),

w(t) = ϕ(t), t ∈ [−τ, 0], ϕ ∈ Y+.

The linearized equation associated with (2.2) at w = 0 is

(2.3)

⎧⎨⎩
dw(t)
dt

= −gu(t, 0)w(t) + b(t)∂uf−τ (t, 0)w(t− τ),

w(t) = ϕ(t), t ∈ [−τ, 0], ϕ ∈ Y+.

Since g, b, and f−τ are periodic functions in t ≥ 0, we can easily see that for any ϕ ∈
Y+, (2.3) admits a unique solution w(t, ϕ) existing for all t ≥ −τ with w(s, ϕ) = ϕ(s)
for s ∈ [−τ, 0], and wt(ϕ) ∈ Y+ for all t ≥ 0, where {wt}t≥0 is the solution semiflow
for (2.3) defined by wt(ϕ)(s) = w(t + s, ϕ) for all s ∈ [−τ, 0], t > 0.

Define the Poincaré map of (2.3) P : Y+ → Y+ by P (ϕ) = wω(ϕ) for all ϕ ∈ Y+,
and let r = r(P ) be the spectral radius of P . The following two results come from [21].

Proposition 2.1 (see [21, Proposition 2.1]). r = r(P ) is positive and is an
eigenvalue of P with a positive eigenfunction ϕ∗. Moreover, if τ = kω for some
integer k ≥ 0, then r − 1 has the same sign as

∫ ω

0 [−gu(t, 0) + b(t)∂uf−τ (t, 0)]dt.
Theorem 2.2 (see [21, Theorem 2.1]). Let (H1)–(H3) hold. The following state-

ments are valid.
(i) If r ≤ 1, then zero solution is globally asymptotically stable for (2.2) with

respect to Y+.
(ii) If r > 1, then (2.2) has a unique positive ω-periodic solution β∗(t), and β∗(t)

is globally asymptotically stable with respect to Y+ \ {0}.
In the remainder of this section, we further assume that

(H4) r = r(P ) > 1.
By the proof of [21, Theorem 2.1] and (H3), it is easy to see that β∗(t) ∈ [0, L] for all
t ≥ −τ and [0̂, L̂] is positively invariant for (2.1). Define β∗

0 ∈ YL̂ as β∗
0 (s) = β∗(s)

for all s ∈ [−τ, 0].
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Consider {
∂tu(t, x) = d(t)Δu, t > 0,

u(0, x) = φ(x), x ∈ R, φ ∈ X.
(2.4)

The solution of (2.4) can be expressed as

(2.5) u(t, x, φ) =
∫

R

Γ(η(t), x − y)φ(y)dy, t ≥ 0,

where η(t) =
∫ t

0
d(s)ds. According to [8, Chapter II], (2.4) admits an evolution opera-

tor U(t, s) : X → X, 0 ≤ s ≤ t, which satisfies U(t, t) = I, U(t, s)U(s, ρ) = U(t, ρ) for
all 0 ≤ ρ ≤ s ≤ t, and U(t, 0)(φ)(x) = u(t, x, φ) for t ≥ 0, x ∈ R, and φ ∈ X, where
u(t, x, φ) is the solution of (2.4). Moreover, for any 0 ≤ s < t, U(t, s) is a compact
and positive operator on X, and U(t, s)(φ)(x) > 0 for all 0 ≤ s < t, x ∈ R, and φ ∈ X

provided that φ(x) ≥ 0 and φ 
≡ 0.
Define B : [0,∞) × C → X by B(t, φ) := −g(t, φ(0, ·)) + b(t)

∫
R

Γ(a(t), · −
y)f−τ (t, φ(−τ, y))dy for any t ∈ [0,∞), φ ∈ C. Then (2.1) becomes{

∂tu(t, x) = d(t)Δu +B(t, ut), t > 0,

u(t, x) = φ(t, x), t ∈ [−τ, 0], x ∈ R,
(2.6)

which can be written as an integral equation

(2.7) u(t, ·, φ) = U(t, 0)φ(0, ·) +
∫ t

0

U(t, s)B(s, us)ds, t ≥ 0, φ ∈ C,

whose solutions are called mild solutions to (2.6).
Theorem 2.3. Let (H1)–(H4) hold. For any φ ∈ CL̂, system (2.1) has a unique

mild solution u(t, x, φ) with u0(·, ·, φ) = φ and ut(·, ·, φ) ∈ CL̂ for all t ≥ 0, and
u(t, x, φ) is a classic solution when t > τ . Moreover, if û(t, x) and ū(t, x) are a
pair of lower and upper solutions of (2.1), respectively, with û0(·, ·) ≤ ū0(·, ·), then
ût(·, ·) ≤ ūt(·, ·) for all t ≥ 0.

Proof. We first show that B is quasi-monotone on [0,∞) × CL̂ in the sense that

(2.8) lim
h→0+

d(ψ(0, ·) − φ(0, ·) + h[B(t, ψ) −B(t, φ)],X+) = 0

for all φ, ψ ∈ CL̂ with φ(s, x) ≤ ψ(s, x) for all s ∈ [−τ, 0], x ∈ R. In fact, for any
φ, ψ ∈ CL̂ with φ(s, x) ≤ ψ(s, x) for all (s, x) ∈ [−τ, 0] × R, we have

ψ(0, ·) − φ(0, ·) + h[B(t, ψ) −B(t, φ)]

= ψ(0, ·) − φ(0, ·) + h[−(g(t, ψ(0, ·)) − g(t, φ(0, ·)))]

+ h

[∫
R

Γ(a(t), · − y)b(t)(f−τ (t, ψ(−τ, y)) − f−τ (t, φ(−τ, y)))dy
]

≥ ψ(0, ·) − φ(0, ·) − h(g(t, ψ(0, ·)) − g(t, φ(0, ·)))

≥ (1 − hl1)(ψ(0, ·) − φ(0, ·)).

Thus, for 1 − hl1 > 0, ψ(0, ·) − φ(0, ·) + h[B(t, ψ) − B(t, φ)] ∈ X+, and hence, (2.8)
holds. Then by [13, Corollary 5] (for v− = 0̂, v+ = L̂, S+ = S− = S = T ≡ U ,
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B+ = B− = B), (2.1) admits a unique mild solution u(t, ·, φ) on [−τ,∞) for any
φ ∈ CL̂ and ut(·, ·, φ) ∈ CL̂ for all t ≥ 0. Moreover, the comparison principle holds for
lower and upper solutions.

In order to study the spreading speed and traveling waves, we introduce the
assumptions in [10, 11]. Let u ∈ C. Define the reflection operator R by R[u](θ, x) :=
u(θ,−x) for all θ ∈ [−τ, 0], x ∈ R. Given y ∈ R, define the translation operator Ty

by Ty[u](θ, x) := u(θ, x − y) for all θ ∈ [−τ, 0], x ∈ R. Let Q : Cb∗ → Cb∗ be a map,
where b∗ ∈ Y with b∗ 	 0. Assume the following:

(A1) Q[R[u]] = R[Q[u]], Ty[Q[u]] = Q[Ty[u]] ∀y ∈ R.
(A2) Q : Cb∗ → Cb∗ is continuous with respect to the compact open topology.
(A4) Q : Cb∗ → Cb∗ is monotone in the sense that Q[u] ≥ Q[v] whenever u ≥ v in

Cb∗ .
(A5) Q : Yb∗ → Yb∗ admits exactly two fixed points 0 and b∗, and for any positive

number ε, there is an α ∈ Yb∗ with ‖ α ‖Y< ε such that Q[α] 	 α.
(A6) One of the following two conditions holds:

(a) Q[Cb∗ ] is precompact in Cb∗ .
(b′) The set Q[Cb∗ ](0, ·) is precompact in X, and there is a positive number

ς ≤ τ such that Q[u](θ, x) = u(θ + ς, x) for −τ ≤ θ ≤ −ς, the operator

S[u](θ, x) :=

{
u(0, x), −τ ≤ θ < −ς,
Q[u](θ, x), −ς ≤ θ ≤ 0

is continuous on Cb∗ , and S[D](·, 0) is precompact in Y for any T -
invariant set D ⊆ Cb∗ with D(0, ·) being precompact in X. A set W ⊆
Cb∗ is said to be T -invariant if TyW = W for all y ∈ R.

Recall that a family of operators {Φt}t≥0 is an ω-periodic semiflow on a metric
space (X, ρ) with the metric ρ, provided that {Φt} satisfies

(i) Φ0(v) = v ∀v ∈ X ;
(ii) Φt(Φω(v)) = Φt+ω(v) ∀t ≥ 0, v ∈ X ;
(iii) Φ(t, v) = Φt(v) is continuous in (t, v) on [0,+∞) ×X .
Define a family of operators {Qt}t≥0 on CL̂ by

Qt(φ)(s, x) = u(t+ s, x, φ) ∀t ≥ 0, s ∈ [−τ, 0], x ∈ R, φ ∈ CL̂,

where u(t, x, φ) is the mild solution of (2.1) with u(s, x) = φ(s, x) for s ∈ [−τ, 0],
x ∈ R. Note that for any (t0, φ0) ∈ R+ × CL̂, we have

‖ Qt(φ) −Qt0(φ0) ‖C≤‖ Qt(φ) −Qt(φ0) ‖C + ‖ Qt(φ0) −Qt0(φ0) ‖C.

Note that U(t, 0)ϕ is continuous in (t, ϕ) ∈ [0,∞) × X with respect to the compact
open topology. By a similar argument as in [12, Theorem 8.5.2], it follows that Qt(φ)
is continuous at (t0, φ0) with respect to the compact open topology. Thus, {Qt}t≥0 is
an ω-periodic semiflow on CL̂.

Lemma 2.4. For each t > 0, Qt is strictly subhomogeneous.
Proof. For any φ ∈ CL̂ with φ 
≡ 0, let u(t, x, φ) be the solution of (2.1) with

u(s, x) = φ(s, x) for s ∈ [−τ, 0], x ∈ R. Fix k ∈ (0, 1). Since G(t, u, v) is strictly
subhomogeneous in (u, v), we have

∂t(ku(t, x))

= d(t)Δ(ku) − kg(t, u(t, x)) + kb(t)
∫

R

Γ(a(t), x− y)f−τ (t, u(t− τ, y))dy

≤ d(t)Δ(ku) − g(t, ku(t, x)) + b(t)
∫

R

Γ(a(t), x− y)f−τ (t, ku(t− τ, y))dy.
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Thus, ku(t, x, φ) is a lower solution of (2.1) with ku(s, x, φ) = kφ(s, x) for s ∈
[−τ, 0], x ∈ R. Then, ku(t, x, φ) ≤ u(t, x, kφ) for t ≥ 0, where u(t, x, kφ) is the so-
lution of (2.1) with u(s, x, kφ) = kφ(s, x) for (s, x) ∈ [−τ, 0] × R.

Let w(t, x) = u(t, x, kφ)−ku(t, x, φ). Then w(s, x) = 0 for (s, x) ∈ [−τ, 0]×R and
w(s, x) ≥ 0 for (s, x) ∈ [−τ,∞)×R. We further show that w(t, x) > 0 for all t > 0, x ∈
R. For simplicity, we write F̃ (t, u(t, x), v(t, x)) = −g(t, u(t, x)) + b(t)

∫
R

Γ(a(t), x −
y)f−τ (t, v(t, y))dy. It follows that

(2.9)

∂w(t, x)
∂t

=
∂u(t, x, kφ)

∂t
− k

∂u(t, x, φ)
∂t

= d(t)Δu(t, x, kφ) + F̃ (t, u(t, x, kφ), u(t− τ, x, kφ))

−k[d(t)Δu(t, x, φ) + F̃ (t, u(t, x, φ), u(t− τ, x, φ))]

= d(t)Δw(t, x) + [F̃ (t, u(t, x, kφ), u(t− τ, x, kφ)) − F̃ (t, ku(t, x, φ), ku(t− τ, x, φ))]

+[F̃ (t, ku(t, x, φ), ku(t− τ, x, φ)) − kF̃ (t, u(t, x, φ), u(t− τ, x, φ))]

= d(t)Δw(t, x) − g(t, u(t, x, kφ)) + g(t, ku(t, x, φ)) + h(t, x)

+b(t)
∫

R

Γ(a(t), x− y)[f−τ (t, u(t− τ, y, kφ)) − f−τ (t, ku(t− τ, y, φ))]dy

≥ d(t)Δw(t, x) − g(t, u(t, x, kφ)) + g(t, ku(t, x, φ)) + h(t, x)

≥ d(t)Δw(t, x) − l1w(t, x) + h(t, x),

where h(t, x) = F̃ (t, ku(t, x, φ), ku(t − τ, x, φ)) − kF̃ (t, u(t, x, φ), u(t − τ, x, φ)). Let
Ũ(t, s) : X → X, 0 ≤ s ≤ t, be the evolution operator of{

∂tu(t, x) = d(t)Δu − l1u(t, x), t > 0,

u(0, x) = ψ(x), x ∈ R, ψ ∈ X.

Then Ũ(t, s)(ψ)(x) = e−l1(t−s)U(t, s)(ψ)(x) for all t ≥ s ≥ 0, x ∈ Ω, ψ ∈ C, where
U(t, s) is the evolution operator of (2.4). Thus, the equation

(2.10)

{
∂tu(t, x) = d(t)Δu − l1u(t, x) + h(t, x),
u(0, x) = ψ(x), x ∈ R, ψ ∈ X

can be written as

(2.11) u(t, x, ψ) = Ũ(t, 0)(ψ)(x) +
∫ t

0

Ũ(t, s)h(s, x)ds, t ≥ 0, x ∈ R, ψ ∈ C.

By (H2), we have h(t, x) > 0 for all t > 0, x ∈ R. It then follows from (2.11) and
the property of Ũ(t, s) that for any ψ ≥ 0 with ψ 
≡ 0, the solution of (2.10) satisfies
u(t, x, ψ) > 0 for all t > 0, x ∈ R. Then by (2.9) and the comparison principle, we have
w(t, x) > 0 for all t > 0, x ∈ R. Therefore, u(t, x, kφ) > ku(t, x, φ) for all t > 0, x ∈ R,
and hence, Qt(kφ) > kQt(φ) for all t > 0, which indicates that for each t > 0, Qt is
strictly subhomogeneous.
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Lemma 2.5. For any ϕ ∈ CL̂ with ϕ 
≡ 0, u(t, x, ϕ) > 0 for all t ≥ τ , x ∈ R.
Proof. Let ϕ ∈ CL̂ with ϕ 
≡ 0. By Theorem 2.3, u(t, x, ϕ) ≥ 0 for all t ≥ 0 and

x ∈ R. It follows from (H1) that for any t > 0, u(t, x, ϕ) satisfies

∂tu(t, x) = d(t)Δu − g(t, u(t, x, ϕ)) + b(t)
∫

R

Γ(a(t), x − y)f−τ (t, u(t− τ, y, ϕ))

≥ d(t)Δu − g(t, u(t, x, ϕ))
≥ d(t)Δu − l1u(t, x, ϕ).

By [19, Theorem 5.5.4], u(t, x, ϕ) > 0 for all t > 0, x ∈ R, provided that ϕ(0, ·) > 0.
Now we show that for any ϕ ∈ CL̂ with ϕ 
≡ 0 and ϕ(0, ·) = 0, there exists

t0 = t0(ϕ) ∈ [0, τ ] such that u(t0, ·, ϕ) > 0. Assume, by contradiction, that for some
ϕ ∈ CL̂ with ϕ 
≡ 0 and ϕ(0, ·) = 0 we have u(t, ·, ϕ) ≡ 0 for all t ∈ [0, τ ]. It follows
from (2.7) that

0 =
∫ t

0

U(t, s)b(s)
∫

R

Γ(a(s), x− y)f−τ (s, us(−τ, y))dyds, t ∈ [0, τ ],

which implies that
∫

R
Γ(a(s), x − y)f−τ (s, us(−τ, y))dy= 0 for any s ∈ [0, τ ], and

hence, f−τ (s, us(−τ, y)) = 0 for any s ∈ [0, τ ], y ∈ R. Then by (H1), us(−τ, y) = 0 for
any s ∈ [0, τ ], y ∈ R. That is, ϕ ≡ 0, a contradiction. Thus, we have u(t0, ·, ϕ) > 0 for
some t0 = t0(ϕ) ∈ [0, τ ]. Then for any t > t0, Ũ(t, t0)[u(t0, ·, ϕ)](x) = e−l1(t−t0)U(t, t0)
[u(t0, ·, ϕ)](x) > 0, and hence, by the comparison principle, we have u(t, x, ϕ) > 0 for
all t > t0, x ∈ R.

Therefore, for any ϕ ∈ CL̂ with ϕ 
≡ 0, u(t, x, ϕ) > 0 for all t > τ, x ∈ R.

Lemma 2.6. For any t > 0, Qt satisfies (A1), (A2), (A4), and (A6) with b∗ = L̂,
and Qω satisfies (A5) with b∗ = β∗

0 , where β∗
0 ∈ YL̂ with β∗

0(s) = β∗(s) for all
s ∈ [−τ, 0].

Proof. It is easy to see that Qt satisfies (A1), (A2), and (A4) with b∗ = L̂ for any
t > 0.

Let Q̂t = Qt|Y
L̂

. Then Q̂t : YL̂ → YL̂ is the ω-periodic semiflow generated by
(2.2). Moreover, it is not difficult to see that Q̂t is strictly monotone for any t ≥ τ and
strongly monotone for any t ≥ 2τ on YL̂. Note that (2.2) has a positive ω-periodic
solution β∗(t) which is globally asymptotically stable in YL̂ \{0}. We see that Q̂ω has
only two fixed points 0 and β∗

0 in YL̂, where β∗
0 (s) = β∗(s) for all s ∈ [−τ, 0]. Thus,

by the Dancer–Hess connecting orbit lemma (see, e.g., [23]), the map Q̂ω admits a
strictly monotone full orbit {ϕn}∞−∞ ⊆ Yβ∗

0
connecting 0 to β∗

0 and ϕn < ϕn+1 for any
n = 0,±1,±2, . . . . For any n̄ ∈ N such that n̄ω ≥ 2τ , since Q̂n̄ω is strongly monotone,
we have Q̂n̄ω(ϕn) = Q̂n̄

ω(ϕn) � Q̂n̄
ω(ϕn+1) = Q̂n̄ω(ϕn+1) for any n = 0,±1,±2, . . . .

That is, ϕn+n̄ω � ϕn+1+n̄ω for any n = 0,±1,±2, . . . . Therefore, ϕn � ϕn+1 for any
n = 0,±1,±2, . . . , and hence, Qω satisfies (A5) with b∗ = β∗

0 .
Now we show that Qt satisfies (A6)(a) with b∗ = L̂ for t > τ . Fix t0 > τ and set

a = t0− τ , b = t0. Let u(t, ϕ) be the solution of (2.1) with u0(ϕ) = ϕ ∈ CL̂ and define
the Kuratowski measure of noncompactness of a subset A of X as

α(A) = inf{r > 0 : A has a finite cover of diameter ≤ r}.
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First we prove that {u(t, ϕ) : a ≤ t ≤ b, ϕ ∈ CL̂} is compact in X. By (2.7), for any
ε ∈ (0, a), t ∈ [a, b], and ϕ ∈ CL̂, we have

u(t, ϕ)

= U(t, 0)ϕ(0, ·) +
∫ t−ε

0

U(t, s)B(s, us)ds+
∫ t

t−ε

U(t, s)B(s, us)ds

= U(t, t− ε)
[
U(t− ε, 0)ϕ(0, ·) +

∫ t−ε

0

U(t− ε, s)B(s, us)ds
]

+
∫ t

t−ε

U(t, s)B(s, us)ds

= U(t, t− ε)u(t− ε, ϕ) +
∫ t

t−ε

U(t, s)B(s, us)ds.

Since {u(t− ε, ϕ), t ∈ [a, b], ϕ ∈ CL̂} is bounded in X+ and U(t, t− ε) is compact, we
have

α({U(t, t− ε)u(t− ε, ϕ), t ∈ [a, b], ϕ ∈ CL̂}) = 0.

It is easy to see {U(t, s)B(s, us) : t ∈ [a, b], s ∈ [0, t], ϕ ∈ CL̂} is bounded in X+. Let
N > 0 such that ‖ U(t, s)B(s, us) ‖X≤ N for all t ∈ [a, b], s ∈ [0, t], ϕ ∈ CL̂. By the
fact of α(A) ≤ δ(A), where δ(A) is the diameter of A ⊆ X, we have

α

({∫ t

t−ε

U(t, s)B(s, us)ds : t ∈ [a, b], s ∈ [t− ε, t], ϕ ∈ CL̂

})
≤ 2εN.

Thus,

α({u(t, ϕ) : t ∈ [a, b], ϕ ∈ CL̂})

≤ α({U(t, t− ε)u(t− ε, ϕ), t ∈ [a, b], ϕ ∈ CL̂})

+ α

({∫ t

t−ε

U(t, s)B(s, us)ds : t ∈ [a, b], s ∈ [t− ε, t], ϕ ∈ CL̂

})
≤ 2εN.

Letting ε → 0, we have α({u(t, ϕ) : t ∈ [a, b], ϕ ∈ CL̂}) = 0, and hence, {u(t, ϕ) : t ∈
[a, b], ϕ ∈ CL̂} is precompact in X.

Given a compact interval I ⊆ R, let K = min{K1 > 0 : I ⊆ [−K1,K1]}. Since
{u(t, ϕ) : t ∈ [a, b], ϕ ∈ CL̂} is precompact in X, {u(t, ϕ)|I : t ∈ [a, b], ϕ ∈ CL̂} is
equicontinuous in X, and hence, for any ε > 0, there exists δ > 0 such that

(2.12) |u(t, x1, ϕ) − u(t, x2, ϕ)| < ε

for all t ∈ [a, b] and ϕ ∈ CL̂, provided that x1, x2 ∈ I and |x1 − x2| < δ.
Let [a1, b1] be any bounded interval on R with a1 > 0 and let U0(t) be the

semigroup generated by ut = Δu. Then U0(t)ϕ(x) =
∫ +∞
−∞ Γ(t, x − y)ϕ(y)dy for all

t > 0, x ∈ R, ϕ ∈ X.
By the properties of Γ, we can find an N0 > 0 such that

∫
|y|≥N0

Γ(b1, y)dy ≤ ε.

Since ∂Γ(t,y)
∂t > 0 for all t > 0 and y2 > 2t, we have

∫
|y|≥N1

Γ(t, y)dy ≤ ε for all

t ∈ [a1, b1], where N1 = max{N0,
√

2b1}. Moreover, since
∫ N1

−N1
Γ(t, y)dy is continuous

in t ∈ [a1, b1], there is a δ1 > 0 such that |
∫ N1

−N1
(Γ(t1, y)−Γ(t2, y))dy| < ε provided that
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t1, t2 ∈ [a1, b1] and |t1 − t2| < δ1. Therefore, for any t1, t2 ∈ [a1, b1] and |t1 − t2| < δ1,
ψ ∈ XL̂, x ∈ I,

|(U0(t1)ψ)(x) − (U0(t2)ψ)(x)|

=
∣∣∣∣∫

R

Γ(t1, x− y)ψ(y)dy −
∫

R

Γ(t2, x− y)ψ(y)dy
∣∣∣∣

=
∣∣∣∣∫

R

(Γ(t1, y) − Γ(t2, y))ψ(x − y)dy
∣∣∣∣

≤
∣∣∣∣∣
∫
|y|≤N1

(Γ(t1, y) − Γ(t2, y))ψ(x− y)dy

∣∣∣∣∣+

∣∣∣∣∣
∫
|y|≥N1

(Γ(t1, y) − Γ(t2, y))ψ(x − y)dy

∣∣∣∣∣
< 2εL.

It follows from the continuity of η(t) in t ∈ R+ and definitions of U0(t) and U(t, s)
that there exists δ2 > 0 such that

|(U(t1, 0)ϕ(0, ·))(x) − (U(t2, 0)ϕ(0, ·))(x)| < 2εL

for all x ∈ I, ϕ ∈ CL̂, provided that t1, t2 ∈ [a, b] and |t1 − t2| < δ2. Let δ̄ ∈
(0,min{ε, δ2}). Then for x ∈ I, ϕ ∈ CL̂, t1, t2 ∈ [a, b], and |t1 − t2| < δ̄, we have

(2.13)

|u(t1, x, ϕ) − u(t2, x, ϕ)|

≤ |(U(t1, 0)ϕ(0, ·))(x) − (U(t2, 0)ϕ(0, ·))(x)|

+
∣∣∣∣∫ t1

0

(U(t1, s)B(s, us))(x)ds −
∫ t2

0

(U(t2, s)B(s, us))(x)ds
∣∣∣∣

≤ 2Lε+ 2N · 2K δ̄

≤ 2(L+ 2KN)ε,

where N was defined in the former paragraph of this proof. This implies that u(t, x, ϕ)
is equicontinuous in t ∈ [a, b] for x ∈ I and ϕ ∈ CL̂.

Consequently, by (2.12) and (2.13), for any ϕ ∈ CL̂, θ1, θ2 ∈ [−τ, 0], x1, x2 ∈ I
with |θ1 − θ2| < δ̄ and |x1 − x2| < δ, we have

|ut0(ϕ)(θ1, x1) − ut0(ϕ)(θ2, x2)|

= |u(t0 + θ1, x1, ϕ) − u(t0 + θ2, x2, ϕ)|

≤ |u(t0 + θ1, x1, ϕ) − u(t0 + θ1, x2, ϕ)| + |u(t0 + θ1, x2, ϕ) − u(t0 + θ2, x2, ϕ)|

≤ (2L+ 2K+1N + 1)ε,

which indicates that {ut0(ϕ) : ϕ ∈ CL̂} is equicontinuous for (θ, x) ∈ [−τ, 0] × I.
Therefore, {ut0(ϕ) : ϕ ∈ CL̂} is precompact in CL̂ and (A6)(a) follows fromQt0(CL̂) =
{ut0(ϕ) : ϕ ∈ CL̂} for t0 > τ .

Finally, we show that Qt satisfies (A6)(b′) with b∗ = L̂ for 0 < t ≤ τ . Fix
t1 ∈ (0, τ ] and define

S[ϕ](θ, x) :=

{
ϕ(0, x), −τ ≤ θ < −t1,
Qt1(ϕ)(θ, x), −t1 ≤ θ ≤ 0
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for any ϕ ∈ CL̂. By the above analysis, we know that {u(t, ϕ) : a ≤ t ≤ b, ϕ ∈ CL̂}
is precompact in X for any 0 < a ≤ b. In particular, fixing a = b = t1, we can easily
see that {ut1(ϕ)(0, ·), ϕ ∈ CL̂} = {u(t1, ·, ϕ), ϕ ∈ CL̂} is precompact in X, that is,
Qt1 [CL̂](0, ·) is precompact in X.

Since Qt is an ω-periodic semiflow, it is easy to see that S[ϕ] is continuous on
CL̂. Let D be a T -invariant subset of CL̂ (i.e., TyD = D for all y ∈ R) with D(0, ·)
being precompact in X. Now we show that for any given compact interval I ⊆ R,
S[D] is equicontinuous on [−τ, 0]× I, that is, for any ε > 0, there exist δ1, δ2 > 0 such
that |S[ϕ](θ1, x1) − S[ϕ](θ2, x2)| < ε for any ϕ ∈ D if θ1, θ2 ∈ [−τ, 0], x1, x2 ∈ I, and
|θ1 − θ2| < δ1, |x1 − x2| < δ2.

Since S[ϕ](θ, x) = ϕ(0, x) for all ϕ ∈ D, θ ∈ [−τ,−t1], x ∈ I, and D(0, ·) is
precompact in X, it is obvious that S[D] is equicontinuous on [−τ,−t1] × I.

Note that there exists N > 0 such that ‖ U(t, s)B(s, us) ‖X≤ N for all t ∈
[0, t1], s ∈ [0, t], ϕ ∈ CL̂. Let δ0 = min{ε/(2KN), t1}. Then for any t < δ0, x ∈ I, and
ϕ ∈ D, we have

(2.14)
∣∣∣∣∫ t

0

U(t, s)B(s, us)(x)ds
∣∣∣∣ < 2KNδ0 = ε.

Let F(t, ψ) := U(t, 0)ψ for (t, ψ) ∈ [0, δ0] ×D(0, ·). Then F is continuous on [0, δ0] ×
D(0, ·) and F([0, δ0]×D(0, ·)) is precompact in X. Thus, for the above I, there exists
δ2 > 0 such that for x1, x2 ∈ I and |x1 − x2| < δ2, we have

(2.15) |U(t, 0)ψ(x1) − U(t, 0)ψ(x2)| < ε ∀t ∈ [0, δ0], ψ ∈ D(0, ·).

Moreover, since F is uniformly continuous on [0, δ0]×D(0, ·), there exists δ1 > 0, δ3 > 0
such that ‖ F(t̄1, ψ1) − F(t̄2, ψ2) ‖X< ε/2K if t̄1, t̄2 ∈ [0, δ0], ψ1, ψ2 ∈ D(0, ·), and
|t̄1−t̄2| < δ1, ||ψ1−ψ2||X < δ3. In particular, we have ‖ U(t̄1, 0)ψ−U(t̄2, 0)ψ ‖X< ε/2K

if t̄1, t̄2 ∈ [0, δ0], ψ ∈ D(0, ·), and |t̄1 − t̄2| < δ1. Then

(2.16)
|U(t̄1, 0)ψ(x)−U(t̄2, 0)ψ(x)| < ε ∀ψ ∈ D(0, ·), x ∈ I, t̄1, t̄2 ∈ [0, δ0], and |t̄1−t̄2| < δ1.

By (2.14)–(2.16), we can easily obtain that if θ1, θ2 ∈ [−t1, δ0 − t1], x1, x2 ∈ I and
|θ1 − θ2| < δ1, |x1 − x2| < δ2, then for any ϕ ∈ D,

|S[ϕ](θ1, x1) − S[ϕ](θ2, x2)|

= |Qt1 [ϕ](θ1, x1) −Qt1 [ϕ](θ2, x2)|

= |u(t1 + θ1, x1, ϕ) − u(t1 + θ2, x2, ϕ)|

≤ |(U(t1 + θ1, 0)ϕ(0, ·))(x1) − (U(t1 + θ2, 0)ϕ(0, ·))(x2)|

+

∣∣∣∣∣
∫ t1+θ1

0

U(t1 + θ1, s)B(s, us)(x1)ds−
∫ t1+θ2

0

U(t1 + θ2, s)B(s, us)(x2)ds

∣∣∣∣∣
≤ |(U(t1 + θ1, 0)ϕ(0, ·))(x1) − (U(t1 + θ1, 0)ϕ(0, ·))(x2)|

+ |(U(t1 + θ1, 0)ϕ(0, ·))(x2) − (U(t1 + θ2, 0)ϕ(0, ·))(x2)| + 2ε

< 4ε,

which implies that S[D] is equicontinuous on [−t1, δ0 − t1] × I.
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By a similar argument as for (A6)(a), it is easy to see that S[D] is equicontinuous
on [δ0 − t1, 0] × I.

Therefore, S[D] is equicontinuous on [−τ, 0] × I, and hence, S[D] is precompact
in CL̂. Thus, (A6)(b′) is valid for Qt, t ∈ (0, τ ].

It then follows from Lemma 2.6 and [11, Theorems 2.11 and 2.15] that Qω has an
asymptotic speed of spread c∗ω > 0.

Consider the linearized system of (2.1) at the zero solution:

(2.17)⎧⎪⎨⎪⎩
∂tu(t, x) = d(t)Δu − gu(t, 0)u(t, x) + b(t)∂uf−τ (t, 0)

∫
R

Γ(a(t), x − y)u(t− τ, y)dy,

u(t, x) = φ(t, x), t ∈ [−τ, 0], x ∈ R.

For α > 0, let u(t, x) = e−αxv(t). Substituting u(t, x) into (2.17) yields

e−αxv′(t)
= d. (t)α2e−αxv(t) − gu(t, 0)v(t)e−αx + b(t)∂uf−τ (t, 0)v(t− τ)

∫
R

Γ(a(t), y)e−α(x−y)dy.

Since Γ(t, x) is even in x and by [18, Proposition 4.2], we obtain

(2.18)

v′(t) = d(t)α2v(t) − gu(t, 0)v(t) + b(t)∂uf−τ (t, 0)v(t− τ)
∫

R

Γ(a(t), y)eαydy,

= d(t)α2v(t) − gu(t, 0)v(t) + b(t)∂uf−τ (t, 0)v(t− τ)
∫

R

Γ(a(t), y)e−αydy,

= d(t)α2v(t) − gu(t, 0)v(t) + b(t)∂uf−τ (t, 0)v(t− τ)eα2a(t).

Then u(t, x) = e−αxv(t) satisfies (2.17) with φ(s, x) = e−αxv(s) for s ∈ [−τ, 0] and
x ∈ R if v(t) satisfies (2.18) for t ≥ 0.

Let Mt be the linear solution map defined by (2.17) and let v(t, v0) be the solution
of (2.18) with v(s, v0) = v0(s) for s ∈ [−τ, 0], v0 ∈ Y. Define Bt

α(v0) := Mt(v0e−αx)(0).
It is not difficult to see that Bt

α(v0) = v(t, v0), and hence, Bt
α is the solution map

associated with (2.18) on Y.
Let γ(α) be the spectral radius of the Poincaré map associated with (2.18), and

[21, Proposition 2.1] implies that γ(α) > 0. It follows from the proof of [21, Proposition
2.1] that there exists a positive ω-periodic function w(t) such that v(t) = eλ(α)tw(t)
is a solution of (2.18), where λ(α) = ln γ(α)

ω . Define ψ ∈ Y by ψ(θ) = eλ(α)θw(θ) for
all θ ∈ [−τ, 0]. Clearly, v(t, ψ) = eλ(α)tw(t) for all t ≥ 0. Then we have

Bt
α(ψ)(θ) = v(t+ θ, ψ) = eλ(α)teλ(α)θw(t+ θ) ∀θ ∈ [−τ, 0], t ≥ 0.

By the ω-periodicity of w(t), it follows that

Bω
α(ψ)(θ) = eλ(α)ωeλ(α)θw(θ) = eλ(α)ωψ(θ) ∀θ ∈ [−τ, 0],

that is, Bω
α (ψ) = eλ(α)ωψ. This implies that eλ(α)ω is the principle eigenvalue of Bω

α

with positive eigenfunction ψ.
Let Φ(α) := 1

α ln eλ(α)ω = λ(α)ω
α = ln γ(α)

α . Then we have the following result.
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Proposition 2.7. Assume that (H1)–(H4) hold. Let c∗ω be the asymptotic speed
of spread of Qω. Then c∗ω = infα>0 Φ(α) = infα>0

lnγ(α)
α .

Proof. When α = 0, (2.18) becomes (2.3). It follows from (H4) that γ(0) > 1, and
hence (C7) in [11] is satisfied. Now we prove that Φ(∞) = ∞. By (2.18), we have

v′(t) ≥ [α2d(t) − gu(t, 0)]v(t) ∀t ≥ 0,

and hence,

w′(t)
w(t)

≥ α2d(t) − gu(t, 0) − λ(α).

Then

0 =
∫ ω

0

w′(t)
w(t)

dt ≥
∫ ω

0

(α2d(t) − gu(t, 0))dt− λ(α)ω,

which implies that

λ(α)ω ≥ α2

∫ ω

0

d(t)dt −
∫ ω

0

gu(t, 0)dt.

Therefore,

Φ(α) =
λ(α)ω
α

≥ α

∫ ω

0

d(t)dt−
∫ ω

0
gu(t, 0)dt
α

.

Letting α→ ∞, we can easily obtain Φ(∞) = ∞.
Since G(t, ·, ·) is subhomogeneous in (u, v), it follows from [23, Lemma 2.3.2] that

G(t, u, v) ≤ Gu(t, 0, 0)u+Gv(t, 0, 0)v, that is,

−g(t, u) + b(t)f−τ (t, v) ≤ −gu(t, 0)u+ b(t)∂uf−τ (t, 0)v,

and hence, we have

−g(t, u(t, x)) + b(t)
∫

R

Γ(a(t), x− y)f−τ (t, u(t− τ, y))dy

≤ −gu(t, 0)u(t, x) + b(t)∂uf−τ (t, 0)
∫

R

Γ(a(t), x− y)u(t− τ, y)dy.

By the comparison principle, we have Qω(ϕ) ≤ Mω(ϕ) for any ϕ ∈ Cβ∗
0
. Thus, [11,

Theorem 3.10] implies that c∗ω ≤ infα>0 Φ(α).
Let K > 0 such that K − gu(t, 0) > 0 for all t ∈ [0, ω]. Set Ḡ(t, u, v) = Ku +

G(t, u, v). Then Ḡu(t, 0, 0) > 0, Ḡv(t, 0, 0) > 0 for all t ∈ [0, ω]. It is easy to see that
for any ε ∈ (0, 1), there exists δ = δ(ε) ∈ (0, L) such that

Ḡ(t, u, v) ≥ (1 − ε)Ḡu(t, 0, 0)u+ (1 − ε)Ḡv(t, 0, 0)v ∀(u, v) ∈ [0, δ]2,

and hence, for any (u, v) ∈ [0, δ]2,

G(t, u, v) = −Ku+ Ḡ(t, u, v) ≥ [(1 − ε)Gu(t, 0, 0) − εK]u+ (1 − ε)Gv(t, 0, 0)v.
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Moreover, there exists ξ = ξ(δ) > 0 such that for any ϕ ∈ Cξ̂, we have

0 ≤ u(t, x, ϕ) ≤ u(t, x, ξ̂) < δ ∀x ∈ R, t ∈ [0, ω].

Thus, for any ϕ ∈ Cξ̂, u(t, x, ϕ) satisfies

∂tu(t, x) ≥ d(t)Δu(t, x) + [(1 − ε)gu(t, 0) − εK]u(t, x)

+ (1 − ε)b(t)∂uf−τ (t, 0)
∫

R

Γ(a(t), x− y)u(t− τ, y)dy ∀t ∈ [0, ω].

Let M ε
t , t ≥ 0, be the solution maps associated with the linear system

∂tu(t, x) = d(t)Δu(t, x) + [(1 − ε)gu(t, 0) − εK]u(t, x)

+ (1 − ε)b(t)∂uf−τ (t, 0)
∫

R

Γ(a(t), x− y)u(t− τ, y)dy ∀t ∈ [0, ω].

The comparison principle implies that M ε
t (ϕ) ≤ Qt(ϕ) for all ϕ ∈ Cξ̂, t ∈ [0, ω]. In

particular, M ε
ω(ϕ) ≤ Qω(ϕ) for all ϕ ∈ Cξ̂. By a similar analysis for M ε

t as for Mt, it
follows from [11, Theorem 3.10] that infα>0 Φε(α) ≤ c∗ω.

Therefore, infα>0 Φε(α) ≤ c∗ω ≤ infα>0 Φ(α) for all ε ∈ (0, 1). Letting ε → 0, we
have c∗ω = infα>0 Φ(α).

Let c∗ = c∗ω
ω = 1

ω infα>0 Φ(α) = 1
ω infα>0

ln γ(α)
α . The following result shows that

c∗ is the spreading speed of solutions of (2.1) with initial functions having compact
support.

Theorem 2.8. Assume that (H1)–(H4) hold and let c∗ = c∗ω/ω. Then the follow-
ing statements are valid.

(1) For any c > c∗, if ϕ ∈ Cβ∗
0

with 0 ≤ ϕ � β∗
0 and ϕ(·, x) = 0 for x outside a

bounded interval, then

lim
t→∞,|x|≥ct

u(t, x, ϕ) = 0.

(2) For any c < c∗, if ϕ ∈ Cβ∗
0

with ϕ 
≡ 0, then

lim
t→∞,|x|≤ct

(u(t, x, ϕ) − β∗(t)) = 0.

Proof. Conclusion (1) follows from [10, Theorem 2.1]. By Lemma 2.4 and [10,
Theorem 2.1], for any c < c∗, there is a positive number σ such that, if ϕ ∈ Cβ∗

0
with

ϕ(·, x) > 0 for x on an interval of length 2σ, then limt→∞,|x|≤ct(u(t, x, ϕ)−β∗(t)) = 0.
It follows from Lemma 2.5 that for any ϕ ∈ Cβ∗

0
with ϕ 
≡ 0, Qt(ϕ) 	 0 for all t > 2τ .

We can fix t0 > 2τ and take Qt0(ϕ) as a new initial value for u(t, x, ϕ). Then by the
above analysis, conclusion (2) is valid.

We say u(t, x) = U(t, x − ct) is an ω-periodic traveling wave of (2.1) connecting
β∗(t) to 0 if it is a solution of (2.1), U(t, ξ) is ω-periodic in t, and U(t,−∞) = β∗(t)
and U(t,∞) = 0 uniformly for t ∈ [0, ω]. By [10, Theorems 2.2 and 2.3], we have the
following result about traveling waves of (2.1).

Theorem 2.9. Assume that (H1)–(H4) hold. Let c∗ be defined as c∗ = c∗ω/ω. Then
for any c ≥ c∗, (2.1) has an ω-periodic traveling wave solution U(t, x− ct) connecting
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β∗(t) to 0 such that U(t, s) is continuous and nonincreasing in s. Moreover, for any
c < c∗, (2.1) has no ω-periodic traveling wave U(t, x− ct) connecting β∗(t) to 0.

3. Dynamics in a bounded domain. In this section, we consider (1.6) in a
bounded spatial domain

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu(t, x) = d(t)Δu − g(t, u) + b(t)
∫

Ω

Γ(a(t), x − y)f−τ (t, u(t− τ, y))dy,

(t, x) ∈ (0,∞) × Ω,

Bu(t, x) = 0 on (0,∞) × ∂Ω,

u(t, x) = φ(t, x), t ∈ [−τ, 0], x ∈ Ω,

(3.1)

where Ω ⊆ R
n is a bounded domain with boundary ∂Ω of class C1+θ(0 < θ ≤ 1),

the boundary condition is either Bu = u (Dirichlet boundary condition) or Bu =
(∂u/∂ν) + α(x)u (Robin type boundary condition) for some nonnegative function
α ∈ C1+θ(∂Ω,R), and ∂u/∂ν denotes the differentiation in the direction of outward
normal ν to ∂Ω.

Let p ∈ (1,∞) be fixed. For each β ∈ (1
2 + 1

2p , 1), let Xβ be the fractional power
space of Lp(Ω) with respect to −Δ and the boundary condition Bu = 0 (see, e.g.,
[8]). Then Xβ is an ordered Banach space with the positive cone X

+
β consisting of

all nonnegative functions in Xβ , and X
+
β has nonempty interior int(X+

β ). Moreover,
Xβ ⊆ C1+ν(Ω̄) with continuous inclusion for ν ∈ [0, 2β − 1 − 1

p ). Denote the norm on
Xβ by ‖ · ‖β. Then there exists a constant kβ > 0 such that ‖ φ ‖∞:= maxx∈Ω̄ |φ(x)| ≤
kβ ‖ φ ‖β for all φ ∈ Xβ .

Let C̄ = C([−τ, 0],Xβ) and C̄+ = C([−τ, 0],X+
β ). For convenience, we identify an

element φ ∈ C̄ as a function from [−τ, 0] × Ω̄ to R defined by φ(s, x) = φ(s)(x). For
any N ≥ L, let C̄N̂ = {φ ∈ C̄ : 0 ≤ φ(s, x) ≤ N, (s, x) ∈ [−τ, 0]× Ω̄}. For any function
y(·) : [−τ, b) → Xβ , where b > 0, define yt ∈ C̄, by yt(s) = y(t+ s) for all s ∈ [−τ, 0],
t ∈ [0, b).

Note that the differential operator Δ generates an analytic semigroup Ū0(t) on
Lp(Ω) and that the standard parabolic maximum principle (see, e.g., [15, Corol-
lary 7.2.3]) implies that the semigroup Ū0(t) : Xβ → Xβ is strongly positive in the
sense that Ū0(t)(X+

β \ {0}) ⊆ int(X+
β ) for all t > 0. By a similar analysis as in section

2, we can write (3.1) as an integral equation (2.7) with u0 = φ ∈ C̄+. It then follows
from [13, Corollary 5] that, for any φ ∈ C̄L̂, (3.1) has a unique mild solution u(t, x, φ)
with u0(·, ·, φ) = φ and ut(·, ·, φ) ∈ C̄L̂ for all t ≥ 0. Moreover, u(t, x, φ) is a classic
solution when t > τ and the comparison theorem holds for (3.1).

Define a family of operators {Qt}t≥0 on C̄+ by

Qt(φ)(s, x) = u(t+ s, x, φ) ∀φ ∈ C̄+, x ∈ Ω̄, t ≥ 0, s ∈ [−τ, 0].

Similarly as in section 2, we can show that {Qt}t≥0 is a monotone ω-periodic semiflow
on C̄+; u(t, x, φ) > 0 for t > τ , x ∈ Ω̄, φ ∈ C̄+ with φ 
≡ 0, and hence, Qt is
strongly positive for t > 2τ ; moreover, Qt is compact on C̄+ for all t > τ . Let
n1 = min{n ∈ N, nω > 2τ}. Then Qn1ω is compact and strongly positive on C̄+. We
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can further show that the periodic semiflow {Qt}t≥0 is point dissipative on C̄+. By
[23, Theorem 1.1.3], we have the following result.

Lemma 3.1. Let (H1)–(H3) hold. Then Qn1ω admits a global attractor on C̄+.
Consider the linearized system of (3.1) at the zero solution

(3.2)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tũ(t, x) = d(t)Δũ − gu(t, 0)ũ(t, x) + b(t)∂uf−τ (t, 0)
∫

Ω

Γ(a(t), x− y)ũ(t− τ, y)dy,

t > 0, x ∈ Ω,

Bũ(t, x) = 0, t > 0, x ∈ ∂Ω,

ũ(s, x) = φ(s, x), s ∈ [−τ, 0], x ∈ Ω, φ ∈ C̄.

Similarly as in Theorem 2.3, we can show that the comparison principle holds for
(3.2), and hence, the solution map ũt of (3.2) is monotone increasing for all t ≥ 0.

Now we consider (3.1) and (3.2) as n1ω-periodic systems. Define the Poincaré
map of (3.2) P1 : C̄ → C̄ by P1(φ) = ũn1ω(φ) for all φ ∈ C̄, where ũn1ω(φ)(s, x) =
ũ(n1ω + s, x, φ) for all (s, x) ∈ [−τ, 0] × Ω̄, and ũ(t, x, φ) is the solution of (3.2) with
ũ(s, x) = φ(s, x) for all (s, x) ∈ [−τ, 0] × Ω̄. Similarly as in section 2, we can obtain
that P1 is also compact and strongly positive. Let r1 = r(P1) be the spectral radius
of P1. By the Krein–Rutman theorem (see, e.g., [8, Theorem 7.2]), r1 > 0 and P1 has
a positive eigenfunction φ̄ ∈ int(C̄+) corresponding to r1.

Lemma 3.2. Let μ = − 1
n1ω ln r1. Then there exists a positive n1ω-periodic func-

tion v(t, x) such that e−μtv(t, x) is a solution of (3.2).
Proof. By the definitions of r1 and φ̄, we have P1φ̄ = r1φ̄. Let ũ(t, x, φ̄) be the

solution of (3.2) with ũ(s, x) = φ̄(s, x) for all s ∈ [−τ, 0], x ∈ Ω. Since φ̄	 0, it is not
difficult to see that ũ(·, ·, φ̄) 	 0. Let μ = − 1

n1ω ln r1 and v(t, x) = eμtũ(t, x, φ̄) for all
t ≥ −τ, x ∈ Ω. Then r1 = e−n1ωμ and v(t, x) > 0 for all t ∈ [−τ,∞), x ∈ Ω. Moreover,

(3.3)
vt(t, x)

= eμtũt(t, x, φ̄) + μeμtũ(t, x, φ̄)

= eμt[d(t)Δũ − gu(t, 0)ũ(t, x, φ̄)

+ b(t)∂uf−τ (t, 0)
∫

Ω

Γ(a(t), x− y)ũ(t− τ, y, φ̄)dy] + μv

= d(t)Δv − gu(t, 0)v(t, x) + eμτ b(t)∂uf−τ (t, 0)
∫

Ω

Γ(a(t), x− y)v(t− τ, y)dy + μv

for all (t, x) ∈ (0,∞) × Ω. Thus, v(t, x) is a solution of n1ω-periodic equation (3.3)
with Bv = 0 on (0,∞) × ∂Ω and v(s, x) = eμsφ̄(s, x) for all s ∈ [−τ, 0], x ∈ Ω.

For any θ ∈ [−τ, 0], x ∈ Ω, we have

v(n1ω+θ, x) = eμ(n1ω+θ) ·P1(φ̄)(θ, x) = eμ(n1ω+θ) ·r1φ̄(θ, x) = eμθ ·ũ(θ, x, φ̄) = v(θ, x).

Therefore, v0(θ, ·) = vn1ω(θ, ·) for all θ ∈ [−τ, 0], and hence, the existence and unique-
ness of solutions of (3.3) imply that

v(t, x) = v(t+ n1ω, x) ∀t ≥ −τ, x ∈ Ω,
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that is, v(t, x) is an n1ω-periodic solution of (3.3). Clearly, e−μtv(t, x) is a solution
of (3.2).

Define P0 : C̄ → C̄ by P0(φ) = ũω(φ) for all φ ∈ C̄, where ũ(t, x, φ) is the solution
of (3.2) with ũ(s, x) = φ(s, x) for all s ∈ [−τ, 0], x ∈ Ω. Let r0 = r(P0) be the spectral
radius of P0.

Theorem 3.3. Let (H1)–(H3) hold. For any φ ∈ C̄+, denote by u(t, x, φ) the
solution of (3.1) with u(s, x) = φ(s, x) for all (t, x) ∈ [−τ, 0] × Ω. Then the following
two statements are valid.

(i) If r0 < 1, then limt→∞ ‖ u(t, ·, φ) ‖β= 0 for every φ ∈ C̄+.
(ii) If r0 > 1, then (3.1) admits a unique positive ω-periodic solution u∗(t, x) and

limt→∞ ‖ u(t, ·, φ) − u∗(t, ·) ‖β= 0 for all φ ∈ C̄+ \ {0}.
Proof. Since P1 = ũn1ω, P0 = ũω, and ũn1ω = ũn1

ω , where ũt is the solution
map of (3.2), by the properties of spectral radius of linear operators, we know that
r(P1) = (r(P0))n1 , i.e., r1 = (r0)n1 . Note that the qualitative solutions of (3.1) and
(3.2) do not change whether we consider them as n1ω-periodic systems or ω-periodic
systems. The conditions in Theorem 3.3 can be replaced by r1 < 1 and r1 > 1,
respectively. In the following, we will consider (3.1) and (3.2) as n1ω-periodic systems
and prove the theorem under the conditions of r1 < 1 and r1 > 1.

In the case where r1 < 1, we have μ = − 1
n1ω ln r1 > 0. By Lemma 3.2, (3.2)

has a solution ũ(t, x) := ũ(t, x, φ̄) = e−μtv(t, x) with ũ(s, x) = φ̄(s, x) for all (s, x) ∈
[−τ, 0]×Ω, where φ̄ ∈ int(C̄+) is the positive eigenfunction of P1 corresponding to r1
and v(t, x) is n1ω-periodic in t ≥ −τ . Then v is bounded on [−τ,∞) × Ω̄, and hence,
there exists ρ > 0 such that ‖ v(t, ·) ‖∞≤ ρ for all t ≥ −τ . Thus, limt→∞ ‖ ũ(t, ·) ‖∞=
0. By the basic analysis of solutions of (3.2), it follows that limt→∞ ‖ ũ(t, ·) ‖β= 0.

Given φ ∈ C̄+, since limδ→0+(φ̄ − δφ) = φ̄ ∈ int(C̄+) for any ε > 0, there exists
δφ > 0, such that φ̄ − δφ ∈ Bε(φ̄) ⊆ C̄+ for 0 < δ ≤ δφ, where Bε(φ̄) is an open
ball in C̄+ centered at φ̄ with radius ε. Therefore, φ̄ ≥ δφφ in C̄+. It then follows
from the comparison principle that ũ(t, x) ≥ δφũ(t, x, φ) for all t ≥ −τ, x ∈ Ω̄, where
ũ(t, ·, φ) is the solution of (3.2) with ũ(s, x) = φ(s, x) for all (s, x) ∈ [−τ, 0]×Ω. Thus,
limt→∞ ‖ ũ(t, ·, φ) ‖∞= 0, and hence, limt→∞ ‖ ũ(t, ·, φ) ‖β= 0 for any φ ∈ C̄+.

Note that a solution of (3.1) satisfies

∂tu(t, x) ≤ d(t)Δu− gu(t, 0)u(t, x) + b(t)∂uf−τ (t, 0)
∫

Ω

Γ(a(t), x − y)u(t− τ, y)dy

for any t > 0, x ∈ Ω. Similarly to the proof of Theorem 2.3, we can show that the
comparison theorem for abstract functional differential equations [13, Proposition 3]
can be applied to (3.1) and (3.2). Therefore, for any φ ∈ C̄+, u(t, ·, φ) ≤ ũ(t, ·, φ) for
all t ≥ −τ , where u(t, ·, φ) and ũ(t, ·, φ) are solutions of (3.1) and (3.2), respectively.
It then follows that solutions of (3.1) satisfy limt→∞ ‖ u(t, ·, φ) ‖β= 0 for all φ ∈ C̄+.

In the case where r1 > 1, we have μ < 0. Let C̄0 = {φ ∈ C̄+ : φ 
≡ 0}, ∂C̄0 =
C̄+ \ C̄0 = {0}. Similarly to the proof of Lemma 2.5, we can show that for any φ ∈ C̄0,
the solution u(t, x, φ) of (3.1) satisfies u(t, x, φ) > 0 for all t > τ , x ∈ Ω. It follows
that Qt(C̄0) ⊆ int(C̄+) for all t > 2τ . Clearly, Qt(0) = 0 for all t ≥ 0. We now have
the following claim.

Claim. Zero is a uniform weak repeller for C̄0 in the sense that there exists δ0 > 0
such that limt→∞ sup ‖ Qt(φ) ‖β≥ δ0 for all φ ∈ C̄0.
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Indeed, we consider the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
ε(t, x) = d(t)Δuε − (gu(t, 0) + ε)uε(t, x)

+ b(t)(∂uf−τ (t, 0) − ε)
∫

Ω

Γ(a(t), x − y)uε(t− τ, y)dy,

Buε(t, x) = 0, t > 0, x ∈ ∂Ω,

uε(s, x) = φ(s, x), s ∈ [−τ, 0], x ∈ Ω, φ ∈ C̄.

(3.4)

Define the Poincaré map of (3.4) Pε : C̄ → C̄ by

Pε(φ) = uε
n1ω(φ) ∀φ ∈ C̄,

where

uε
n1ω(φ)(s, x) = uε(n1ω + s, x, φ) ∀(s, x) ∈ [−τ, 0] × Ω̄

and uε(t, x, φ) is the solution of (3.4) with uε(s, x) = φ(s, x) for all s ∈ [−τ, 0], x ∈ Ω.
Let rε = r(Pε) be the spectral radius of Pε. Since r1 = r(P1) > 1, there exists
a sufficiently small positive number ε1 such that rε > 1 for all ε ∈ [0, ε1). We fix
an ε ∈ (0, ε1). Since limu→0+

g(t,u)
u = gu(t, 0) and limu→0+

f−τ (t,u)
u = ∂uf−τ (t, 0)

uniformly for t ∈ [0, n1ω], there exists δε > 0 such that g(t, u) < (gu(t, 0) + ε)u and
f−τ (t, u) > (∂uf−τ (t, 0)− ε)u for u ∈ (0, δε), t ∈ [0, n1ω]. Let δ0 = δε/kβ . Suppose, by
contradiction, that there exists φ0 ∈ C̄0 such that limt→∞ sup ‖ Qt(φ) ‖β< δ0. Then
there exists t0 > τ such that ‖ u(t, ·, φ0) ‖∞≤ kβ ‖ u(t, ·, φ0) ‖β< δε for all t ≥ t0.
Therefore, u(t, x, φ0) satisfies

(3.5)
∂tu(t, x)

> d(t)Δu − (gu(t, 0) + ε)u(t, x) + b(t)(∂uf−τ (t, 0) − ε)
∫
Ω Γ(a(t), x− y)u(t− τ, y)dy

for t ≥ t0, x ∈ Ω. Let φ̄ε be the positive eigenfunction of Pε associated with rε
and με = − 1

n1ω ln rε. Then by Lemma 3.2, the solution uε(t, x, φ̄ε) of (3.4) with
uε(s, x) = φ̄ε(s, x) for all s ∈ [−τ, 0], x ∈ Ω, satisfies uε(t, x, φ̄ε) = e−μεtvε(t, x),
where vε(t, x) is a positive n1ω-periodic function in t ≥ −τ . Since u(t, x, φ0) > 0 for
all t ≥ τ , x ∈ Ω, there exists ζ > 0 such that

u(t0 + s, x, φ0) ≥ ζuε(s, x, φ̄ε) = ζφ̄ε(s, x) ∀s ∈ [−τ, 0], x ∈ Ω̄.

By (3.5) and the comparison theorem, we have

u(t, x, φ0) ≥ ζuε(t− t0, x, φ̄ε) = ζe−με(t−t0)vε(t, x) ∀t ≥ t0, x ∈ Ω̄.

Since με < 0, it follows that u(t, x, φ0) is unbounded, a contradiction. Thus, the claim
is true.

By the claim above,Qn1ω is weakly uniformly persistent with respect to (C̄0, ∂C̄0).
Since Qn1ω admits a global attractor on C̄+, it follows from [23, Theorem 1.3.3] that
Qn1ω is uniformly persistent with respect to (C̄0, ∂C̄0) in the sense that there exists
δ1 > 0 such that limn→∞ inf ‖ Qn

n1ω(φ) ‖β≥ δ1 for all φ ∈ C̄0.
Note that Qn1ω is compact, point dissipative, and uniformly persistent. It follows

from [23, Theorem 1.3.6] that Qn1ω : C̄0 → C̄0 admits a global attractor A0 and
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has a fixed point φ̂ in A0. Similarly as in the proof of Lemma 2.4, we can show
that Qn1ω is strictly subhomogeneous. Then [22, Lemma 1] implies that Qn1ω has
at most one fixed point. Thus, Qn1ω has a unique equilibrium φ̂ in C̄0. Clearly, by
the strong monotonicity of Qn1ω, we have φ̂ ∈ int(C̄+). Moreover, it follows from
[23, Theorem 2.3.2] that A0 = {φ̂} since Qn1ω is strongly monotone and strictly
subhomogeneous. Thus, φ̂ is globally attractive in C̄0 for Qn1ω.

Let u(t, x, φ̂) be the solution of (3.1) with u(s, x) = φ̂(s, x) for all (s, x) ∈ [−τ, 0]×
Ω. Since φ̂ is a fixed point of Qn1ω and is globally attractive in C̄0, u(t, x, φ̂) is an
n1ω-periodic solution of (3.1) which attracts all solutions of (3.1) in C̄+ \ {0}. That
is,

lim
t→∞

‖ u(t, ·, φ) − u(t, ·, φ̂) ‖β= 0 ∀ φ ∈ C̄0.

Now we show that u(t, x, φ̂) is also ω-periodic. Since Qn1ω(φ̂) = φ̂, we have Qω(Qn1ω

(φ̂)) = Qω(φ̂), i.e., Qn1ω(Qω(φ̂)) = Qω(φ̂), which implies that Qω(φ̂) is also a fixed
point of Qn1ω. By the fact that φ̂	 0 and the fact that Qω is monotone, it follows that
Qω(φ̂) 	 0. Note that Qn1ω has a unique fixed point in int(C̄+). Then Qω(φ̂) = φ̂,
that is, φ̂ is a fixed point of Qω, and hence, u(t, x, φ̂) is an ω-periodic solution of
(3.1). Thus, u∗(t, x) := u(t, x, φ̂) for all (t, x) ∈ [−τ,∞)× Ω̄, is the desired ω-periodic
solution.
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EXISTENCE OF SOLUTIONS FOR A MODEL DESCRIBING THE
DYNAMICS OF JUNCTIONS BETWEEN DISLOCATIONS∗

NICOLAS FORCADEL† AND RÉGIS MONNEAU‡

Abstract. We study a dynamical version of a multiphase field model of Koslowski and Ortiz
for planar dislocation networks. We consider a two-dimensional vector field which describes phase
transitions between constant phases. Each phase transition corresponds to a dislocation line, and
the vectorial field description allows the formation of junctions between dislocations. This vector
field is assumed to satisfy a nonlocal vectorial Hamilton–Jacobi equation with nonzero viscosity. For
this model, we prove the existence for all time of a weak solution.

Key words. dislocation dynamics, nonlocal equations, junctions, parabolic system of equations
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1. Introduction.

1.1. Physical motivation. Dislocations are line defects in crystal, and their
motion is at the origin of plastic properties of metals (see, for instance, the book of
Hirth and Lothe [13]). The typical length of these dislocation lines is of the order of the
micrometer, and their typical thickness is of the order of the nanometer. Dislocation
lines exist in almost all metals. At low temperatures, these lines are contained in their
crystallographic plane, called the slip plane. When an elastic stress field is applied,
these lines can move in their slip plane. The normal velocity of these lines is then
proportional to the effective stress in the material.

Another important property of dislocations is that each dislocation line is charac-
terized by a vector quantity, called the Burgers vector (see [13] for more details). To
explain this briefly, let us say that this Burgers vector reflects the microscopic nature
of the dislocation defect in a crystal lattice. To fix the ideas, let us consider three
unit vectors b1, b2, and b3 in the plane such that

(1.1) b1 + b2 + b3 = 0.

Then each dislocation line can be of three different natures: with Burgers vector b1,
with Burgers vector b2, or with Burgers vector b3. The Burgers vector is an invariant
of the dislocation line and then does not change during the evolution of the dislocation.

A consequence of the existence of this Burgers vector is the possibility for the
dislocation lines to create some triple junctions, with three dislocation lines, respec-
tively, of Burgers vector b1, b2, and b3, satisfying (1.1). Indeed, in real crystals, we
can observe such junctions. We can even observe networks of dislocations related
by junctions. Those self-organized structures are called Frank networks (see Figure
1.1). See, also, for instance, p. 190 in Hull and Bacon [14] for such networks in body-
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Fig. 1.1. Frank networks observed with electron microscopy.

centered cubic (BCC) iron or p. 188 for hexagonal networks in face-centered cubic
(FCC) crystals.

In the present paper, we consider a special case of a set of dislocations contained in
a single slip plane, where the dislocations can move. We are interested, in particular,
in the motion of the junctions between dislocations, which has not been studied a lot,
both from the modeling point of view and from the mathematical analysis point of
view (see, for instance, the work of Rodney, Le Bouar, and Finel [20]). Let us mention,
for the stationary case, the work of Cacace and Garroni [9]. The goal of the present
paper is to propose and to study a model for the dynamics of junctions of dislocations.

Nevertheless, the question of junctions has several other physical applications,
and there is a lot of literature on this subject. Let us mention, for instance, the
problem of crystal growth or grain growth (see Taylor [23, 24] and Bronsard and
Reitich [8]). We also refer to Bonnet [7] for problems concerning the minimization of
the Mumford–Shah functional.

1.2. A phase field model for the dynamics of junctions. In a phase field
model, the dislocation can be represented as the phase transition of a phase parameter
ρ(x) = ρ1(x)e1+ρ2(x)e2 ∈ R

2 defined for x = x1e
1+x2e

2 in the plane R
2 with (e1, e2)

an orthonormal basis. As in the work of Koslowski and Ortiz [15], we consider only
the case of a periodic distribution of dislocations, reducing the problem on the torus,
for x ∈ T

2 = R
2/Z2. Then the energy of the dislocations, in the presence of a constant

exterior applied resolved stress σ0 ∈ R
2, is then given (see [15]) by

(1.2) E(ρ) =
∫

T2

−1
2
(
C0 � ρ

)
· ρ− σ0 · ρ+W (ρ).

In (1.2) and throughout the paper, we denote by A · B the scalar product between
two vectors A,B ∈ R

2. The precise meaning of the whole expression (1.2) will be
explained later.

For any phase transition between two states ρ = A and ρ = B, the difference
B − A needs physically to be the Burgers vector of the dislocation, i.e., a vector of
the lattice Λ = Za1 + Za2 of the crystal we are considering, with a general given
basis (a1, a2). This information is encoded in the potential W : R

2 −→ R+, which is
assumed to be minimal on Λ and to have the periodicity of the lattice Λ:

(1.3) W (ρ+ a) = W (ρ) for any a ∈ Λ.
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b3

ρ ∼ 0

ρ ∼ b1
b2 b1

ρ ∼ b1 + b2 = −b3

Fig. 1.2. The junction of three dislocations as phase transitions of ρ.

In other words, because ρ can be defined up to addition of any vector of the lattice Λ,
only the transitions of ρ between two phases, i.e., two constant vectors of the lattice Λ,
are physically meaningful. In particular, in this model, junctions of three dislocations
of Burgers vectors b1, b2, b3 ∈ Λ with b1 + b2 + b3 = 0 are expected, like, for instance,
as the phase transitions between the states 0, b1,−b3 (see Figure 1.2).

In the expression giving the energy (1.2), the kernel C0(x) is a 2×2 symmetric ma-
trix which takes into account the long range elastic interactions between dislocations
and (

C0 � ρ
)
i

=
∑

j=1,2

C0
ij � ρj for i = 1, 2,

where � denotes the usual convolution on the torus T
2. For instance, in the particular

case of isotropic elasticity, for k = (k1, k2) ∈ Z
2, the k-Fourier coefficient of the matrix

C0 is given (see [15] and also a limit case of the Peierls–Nabarro model in Alvarez et
al. [3]) by

(1.4) Ĉ0(k) = − μ

2|k|

(
1

(1 − ν)
k ⊗ k + k⊥ ⊗ k⊥

)
,

where k⊥ = (−k2, k1) is the vector obtained by a rotation of k of angle π/2. Here,
μ > 0 is a Lamé coefficient and ν ∈ (−1, 1/2) is the Poisson ratio of the material.

The fact that the matrix −Ĉ0(k) is nonnegative is related to the fact that
the elastic energy is nonnegative. This insures that the elastic part of the energy∫

T2 − 1
2 (C0 � ρ) · ρ created by the dislocations is nonnegative. The fact that the ma-

trix Ĉ0(k) is not proportional to the identity reflects the fact that the existence of a
Burgers vector associated to the dislocation line (that can be seen in the phase transi-
tion of ρ) creates some anisotropic elastic stress, even if we work in the framework of
isotropic elasticity. The stress created by a dislocation line has somehow a preferred
direction which is given by its Burgers vector.

When the material is submitted to an exterior shear stress, it makes the dis-
locations move. The dynamics of a given dislocation line is physically given by its
normal velocity, which is called the resolved Peach–Koehler force. This force is the
sum of the resolved exterior shear stress and the stress created by all of the dislocation
lines, including the line itself. The total resolved stress σ[ρ] is then formally given by
the opposite of the gradient of the energy, i.e., −E ′(ρ), and can be expressed as the
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following nonlocal quantity:

(1.5) σ[ρ] = σ0 + C0 � ρ−W ′
ρ(ρ).

Let us remark that one mathematical difficulty in the computation of this stress comes
from the term C0 � ρ, which, from the point of view of the regularity, behaves like
∇ρ, because of the linear growth of Ĉ0(k) in k. We have now to write an evolution
equation for ρ, keeping in mind that the normal velocity has to be proportional to
the stress, which means roughly speaking that

ρ = ρ̄b1 with ρ̄(t, x) ∈ R

has to satisfy

(1.6)
ρ̄t

|∇ρ̄| = σ̄[ρ̄] with σ̄[ρ̄] = b1 · σ[ρ̄b1].

Indeed, (1.6) is an equation very difficult to study mathematically, because σ̄[ρ̄] be-
haves like ∇ρ̄. Up to our knowledge no results exist for (1.6), even in a framework of
viscosity solutions for nonlocal equations. Indeed, one of the mathematical difficulties
is due to the fact that, even putting the matrix C0 to zero, (1.6) would become an
equation like the Burgers equation, because of the presence of the derivative of the
potential W in σ̄[ρ̄], and could then create shocks in finite time. The presence of C0 in
the stress, even if this corresponds to a kind of degenerate diffusion (when ∇ρ̄ = 0) in
the equation, does not help sufficiently to get a good framework for a suitable notion
of the solution to (1.6).

Because of these high mathematical difficulties and because our goal is really to
deal with the dynamics of junctions of dislocations, we simplify mathematically the
equation adding an artificial small viscosity ε ∈ (0, 1) and considering, instead of
(1.6), the following equation:

(1.7) ρ̄t = σ̄[ρ̄]|∇ρ̄| + εΔρ̄.

If the solution for the limit case ε = 0 is smooth enough, it seems reasonable to think
that the solution to (1.7) is a good approximation. Moreover, any reasonable solution
of the limit equation for ε = 0 should probably be seen as a limit of the solution to
the ε-equation when ε goes to zero. Even numerically, if we would like to compute
the solution in the limit case ε = 0, every classical numerical method introduces a
numerical diffusion, which can be more or less interpreted as the additional viscosity
ε > 0 in (1.7). For all of these reasons, (1.7) seems a good candidate for the evolution
equation. As we will see in this paper, it is then mathematically possible to deal with
this equation and to prove the existence of a global solution to (1.7). Nevertheless,
even the study of this equation with ε-viscosity is not so simple, because, for instance,
the uniqueness of the solution to (1.7) remains an open (and probably very difficult)
problem in general.

As explained above, our goal is really to generalize (1.7) to take into account the
evolution of junctions. To this end, we assume that the phase parameter ρ(t, x) ∈ R

2

satisfies the following evolution equation:

(1.8)

⎧⎪⎪⎨⎪⎪⎩
(ρk)t = |∇ρ|−1

∑
i=1,2

∑
j=1,2

(σ[ρ])i∇jρi∇jρk + εΔρk for k = 1, 2

in (0, T ) × T
2,

ρ(0, x) = ρ0(x) on T
2,
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where σ is given in (1.5), ρt = ∂ρ
∂t and ∇jρi = ∂ρi

∂xj
for i, j = 1, 2, and

|∇ρ|2 =
∑

i=1,2

∑
j=1,2

|∇jρi|2.

Here, we can check easily that (1.8) reduces to (1.7) when ρ = ρ̄b1 for any Burgers
vector b1 satisfying |b1| = 1. For this reason, (1.8) seems to be a nice model to describe
the general dynamics of junctions of dislocations.

Finally, let us mention that our model (1.8) has some similarities with the model
of Allen and Cahn [2] on the motion of curved boundaries in which they consider
gradient flow associated with a free-energy functional. This led to the study of scalar
Ginzburg–Landau-type diffusion equations like

ut = Δu−W ′(u).

1.3. Main result. We need to introduce some assumptions that we will com-
ment on below.

We make the following assumption on the kernel C0 : T
2 −→ R

2×2
sym.

(A) We assume that there exists a constant m > 0 such that, for any k ∈ Z
2, the

Fourier coefficients of the kernel Ĉ0(k) =
∫

T2 dx e
−2iπk·xC0(x) satisfy Ĉ0(k) = M(k),

where for any ξ = (ξ1, ξ2) ∈ R
2 and any p = (p1, p2) ∈ R

2

(1.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M ∈ C∞ (

R
2\ {0} ; R

2×2
sym

)
, M(−ξ) = M(ξ), M(ξ) = |ξ|M

(
ξ

|ξ|

)
,

|ξ| |p|2
m

≥ −
∑
i=1,2

∑
j=1,2

pi ·Mij(ξ) · pj ≥ m|ξ| |p|2 with |p|2 =
∑

i=1,2

(pi)2.

We also make the following assumption on the potential W : T
2 −→ R+.

(B) We assume that W ∈ C2 and W satisfies (1.3).
Condition (1.3) of assumption (B) is natural for the potential W , as explained

in subsection 1.2. In assumption (B), we assume moreover that W is smooth enough
(here C2).

Assumption (A) requires more comments. First of all, remark that assumption
(A) is satisfied by the matrix C0 given by Koslowski and Ortiz [15] for isotropic
elasticity (see (1.4)). Moreover, for general elasticity, the matrix −Ĉ0(k) has to be
symmetric and nonnegative, because it corresponds physically to the nonnegative
elastic energy of the dislocations. The last point concerns the 1-homogeneity in k of
the matrix Ĉ0(k). Indeed, this is a general fact, when we compute Ĉ0(k) for general
linear elasticity (see, for instance, the computation in the case of cubic elasticity
done in Alvarez et al. [3]). Indeed, we start with a three-dimensional (3D) elastic
energy, which behaves like the square of the H1-norm of the displacement. When we
consider dislocations in a single plane, as in the present model, this naturally reduces
the problem from a 3D to a 2D problem and creates an energy as the square of the
H

1
2 -norm of the phase parameter, i.e., an energy like

∑
k∈Z2 |k||ρ̂|2, which is directly

reflected into the 1-homogeneity in k of the matrix Ĉ0(k).
Then we have the following result for the model of dynamics of junctions between

dislocations.
Theorem 1.1 (existence of a solution). Under assumptions (A) and (B), if

ρ0 ∈ (H1(T2))2, then, for any constant applied stress σ0 ∈ R
2 and for any time

T > 0, there exists a solution ρ of (1.8) with ρ ∈ C0([0, T ); (L
4
3 (T2))2).
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As mentioned above, the uniqueness of the solution is not known. Let us also
mention that (1.8) is a nonlocal system of scalar equations and can be sketched as
the following equation:

(1.10) vt = |∇v|2 + Δv.

Indeed, this comes from our assumption (A) that the convolution with the kernel
behaves like a first order operator. A lot of work has been done on equations (or
systems) like (1.10). Let us mention, for instance, the works of Boccardo, Murat, and
Puel [4, 5, 6] in which they study general equations including (1.10) and prove the
existence result.

Equation (1.10) is also similar to the Navier–Stokes equations written for the
potential A such that the velocity of the fluid is given by u = curl A (see, for instance,
Leray [17]).

1.4. Organization of the paper. In section 2, we study an approximate prob-
lem of (1.8) where the right-hand side is approached by some term at most linear in
the solution. The main result is proved in section 3. In a first subsection, we give
some a priori estimates for the solution of the approximate problem, and then, in a
second subsection, we pass to the limit in the approximate problem.

1.5. Notation. In what follows, we will denote by C a generic constant, which
will then satisfy C + C = C, C · C = C, and so on. We also use the following set:

W 2,1;p(QT ) =
{
u ∈ Lp(QT ); ut ∈ Lp(QT ) and

∂2u

∂xi, ∂xj
∈ Lp(QT ) for i, j = 1, 2

}
,

where QT = (0, T ) × T
2.

2. An approximate problem. We first start to approximate the right-hand
side of (1.8) by some term at most linear in the solution. To this end, we introduce a
function hn defined by

hn(r) = h0(r − n)

with

h0(r) =

⎧⎪⎨⎪⎩
1 if r ≤ 0,

1 − r if 0 ≤ r ≤ 1,

0 if r ≥ 1.

We then look at the following approximate problem:

(2.1)

{
ρt − εΔρ = fn[ρ] on QT := (0, T ) × T

2,

ρ(0, ·) = ρ0 on T
2,

where

fn[ρ] = hn(|∇ρ|) |∇ρ|−1 (∇ρ)T · ∇ρ · σ[ρ]

and σ[ρ] is given in (1.5) and is at most linear in ρ.
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The natural idea to find a solution to (2.1) is to define the map Φ which associates
to any function u, the solution ρ = Φ(u) of

(2.2)

{
ρt − εΔρ = fn[u] on QT := (0, T ) × T

2,

ρ(0, ·) = ρ0 on T
2,

and to prove that Φ has a fixed point in a suitable space. This way, we will prove the
following result.

Theorem 2.1 (existence of a solution for the approximate problem). If ρ0 ∈
(H1(T2))2, then, for any n ≥ 1 and any T > 0, there exists a solution ρn of (2.1)
with ρn ∈ L2((0, T ); (H2(T2))2) ∩C0([0, T ); (L2(T2))2).

In this section, we will give the proof of this theorem. In a first subsection, we
will collect some preliminary results, and, in a second subsection, we will prove that
Φ has a fixed point.

2.1. Preliminary results. The following lemma will be important.
Lemma 2.2 (estimate on C0 � ρ). For any p ∈ (1,+∞), there exists a constant

C (depending on p and on the constant m defined in assumption (A)) such that, for
any ρ ∈

(
W 1,p(T2)

)2, we have

(2.3)
∥∥C0 � ρ

∥∥
(Lp(T2))2

≤ C‖∇ρ‖(Lp(T2))2×2 .

Partial proof of Lemma 2.2. Let us make the proof for p = 2. We have, with
σ = σ[ρ],

|C0 � ρ|2(L2(T2))2 =
∑
k∈Z2

∣∣∣ ̂(C0 � ρ)(k)
∣∣∣2

=
∑
k∈Z2

∣∣∣Ĉ0(k) · ρ̂(k)
∣∣∣2

≤ 1
m2

∑
k∈Z2

|k|2|ρ̂(k)|2

≤ 1
(2πm)2

∑
k∈Z2

∣∣∣∇̂ρ(k)
∣∣∣2

=
1

(2πm)2
|∇ρ|2(L2(T2))2×2

which provides the result in the case p = 2.
The proof for the general case p ∈ (1,+∞) is given in Appendix A.

An immediate corollary is the following estimate on the stress.
Corollary 2.3 (estimate on σ[ρ]). For any p ∈ (1,+∞), there exists a constant

C (depending on p, on the constant σ0, on the potential W , and on the constant m
defined in assumption (A)) such that, for any ρ ∈ (W 1,p(T2))2, we have

(2.4) ‖σ[ρ]‖(Lp(T2))2 ≤ C
(
1 + ‖∇ρ‖(Lp(T2))2×2

)
.

We will also need the following result.
Lemma 2.4 (estimate on fn[u]). If u ∈ (H1(T2))2, then fn[u] ∈ (L2(T2))2 with

the following estimate:

‖fn[u]‖(L2(T2))2 ≤ C(n+ 1)
(
1 + ‖∇u‖L2(T2)2×2

)
,
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where the constant C depends on σ0, on the potential W , and on the constant m
defined in assumption (A).

Proof of Lemma 2.4. Since supp(hn) ⊂ [0, n+ 1], the following holds:

(2.5) |fn[u]| ≤ (n+ 1)|σ[u]|,

where we have used the fact that |BT ·B ·p| ≤ |B|2|p| for B ∈ R
2×2 and p ∈ R

2. Then

‖fn[u]‖(L2(T2))2 ≤(n+ 1)‖σ[u]‖(L2(T2))2

≤C(n+ 1)
(
1 + ‖∇u‖L2(T2)2×2

)
,

where we have used Corollary 2.3.
We now recall some classical results. We start with the following parabolic esti-

mates for the following equation:

(2.6)

{
gt − εΔg = f on QT := (0, T ) × T

2,

g(0, ·) = g0 on T
2.

Proposition 2.5 (parabolic estimates for the heat equation). Let g0 ∈ H1(T2)
and f ∈ L2(QT ). Then there exists a unique solution g to (2.6) with

(2.7) g ∈ L2
(
(0, T );H2

(
T

2
))

∩ L∞ ((0, T );H1
(
T

2
))
, gt ∈ L2(QT ).

We have the following estimate:

sup
0≤t≤T

‖g(t)‖H1(T2) + ‖g‖L2((0,T );H2(T2)) + ‖gt‖L2((0,T );L2(T2))

≤ CT

(
‖f‖L2(QT ) + ‖g0‖H1(T2)

)
,(2.8)

where the constant CT depends only on T and ε.
Moreover, we have

(2.9) sup
0≤t≤T

∫
T2

g2(t) + 4ε
∫ T

0

∫
T2

|∇g|2 ≤ 4
∫

T2

(
g0
)2

+ 16T
∫ T

0

∫
T2

f2.

Proof of Proposition 2.5. For the proof of (2.7)–(2.8), we refer to Evans [11,
Theorem 5, p. 360].

To prove (2.9), we simply multiply (2.6) by g and integrate over T
2 and (0, t),

taking the supremum for 0 ≤ t ≤ T . We get

(2.10)

sup
0≤t≤T

∫
T2

g2(t)
2

≤ sup
0≤t≤T

(∫
T2

g2(t)
2

+ ε

∫ t

0

∫
T2

|∇g|2
)

≤
∫

T2

(
g0
)2

2
+
∫ T

0

∫
T2

|g f |

and

(2.11) ε

∫ T

0

∫
T2

|∇g|2 ≤
∫

T2

g2(T )
2

+ ε

∫ T

0

∫
T2

|∇g|2 ≤
∫

T2

(
g0
)2

2
+
∫ T

0

∫
T2

|g f |.

Summing (2.10) and (2.11), we finally get

sup
0≤t≤T

∫
T2

g2(t)
2

+ ε

∫ T

0

∫
T2

|∇g|2 ≤
∫

T2

(
g0
)2

+ 2
∫ T

0

∫
T2

|g f |.
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We now use the fact that

2
∫ T

0

∫
T2

|g f | ≤ 2

(∫ T

0

∫
T2

g2

) 1
2

·
(∫ T

0

∫
T2

f2

) 1
2

≤ 2
(
T sup

0≤t≤T

∫
T2

g2(t)
) 1

2

·
(∫ T

0

∫
T2

f2

) 1
2

≤ 1
4

sup
0≤t≤T

∫
T2

g2(t) + 4T
∫ T

0

∫
T2

f2,

which implies the result.
We also recall the following theorem.
Theorem 2.6 (Schaefer’s fixed point theorem). Let X be a real Banach space.

Suppose that

Φ : X → X

is a continuous and compact mapping. Assume further that the set

{u ∈ X, u = λΦ(u) for some λ ∈ [0, 1]}

is bounded. Then Φ has a fixed point.
For the proof of this theorem, we refer to Evans [11, Theorem 4, p. 504].
Finally, we will need some compactness argument and a weak continuity property

contained in the following two classical results.
Proposition 2.7 (compactness). We recall that

W 2,1;2(QT ) =
{
g ∈ L2

(
(0, T );H2

(
T

2
))
, gt ∈ L2(QT )

}
.

Then the injection

W 2,1;2(QT ) −→ L2
(
(0, T );H1

(
T

2
))

is compact.

For the proof of this result, we refer to Lions [18, Theorem 5.1, p. 58].
Proposition 2.8 (continuity). With the notation of Proposition 2.7, let us con-

sider a sequence (gm)m such that

gm ⇀ g weakly in W 2,1;2(QT ).

We assume, also, that gm
|t=0 = ρ0. Then

g|t=0 = ρ0.

This result is classical, but for the reader’s convenience we give the proof in Appendix
A.

2.2. Proof of Theorem 2.1. We are now ready to make the proof of Theo-
rem 2.1. To this end, for any T > 0, we set

XT = L2
(
(0, T );H1

(
T

2
))
.
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In all that follows, the index n is assumed fixed. We first remark that if u ∈ X2
T , then

fn[u] ∈ (L2(QT ))2, and then we can consider the solution ρ of

(2.12)

{
ρt − εΔρ = fn[u] on QT := (0, T ) × T

2,

ρ(0, ·) = ρ0 on T
2,

which satisfies ρ ∈ X2
T because of the parabolic estimates of Proposition 2.5. Then

we set Φ(u) = ρ and see that Φ maps X2
T into X2

T . We will prove that Φ admits a
fixed point using Schaefer’s fixed point theorem. We do the proof in four steps.

Step 1 (weak continuity of Φ). Let us consider sequences (um)m, (ρm)m such that{
um ∈ X2

T , ρm = Φ(um),

um −→ u in X2
T .

From Lemma 2.4, we deduce that

(2.13) ||fn[um]||(L2(QT ))2 ≤ C(n+ 1)
(

1 + ||um||X2
T

)
.

From the parabolic estimates (Proposition 2.5), we deduce that ρm is bounded in
(W 2,1;2(QT ))2; i.e., there exists a constant C > 0 such that

(2.14) ||ρm||(W 2,1;2(QT ))2 ≤ C.

Therefore, up to a subsequence, we have

ρm ⇀ ρ in
(
W 2,1;2(QT )

)2
,

and, from Proposition 2.8, we deduce that

ρ|t=0 = ρ0 on T
2.

We now claim that

(2.15) fn[um] −→ fn[u] in L1(QT ).

Indeed, we can write

fn[u] = gn(∇u) · σ[u] with gn(∇u) := hn(|∇u|) |∇u|−1 (∇u)T · ∇u.

From Lemma 2.2, for p = 2, and the continuity of W ′, we already deduce that

(2.16) σ[um] −→ σ[u] in L2(QT ).

From the convergence of um to u in X2
T , we deduce that, up to a subsequence, we

have ∇um −→ ∇u a.e. in QT . Now, from the fact that gn is continuous and bounded,
we deduce, in particular, that

(2.17) gn(∇um) −→ gn(∇u) in L2(QT ).

Then the convergence (2.15) follows from (2.16) and (2.17).
Therefore, we conclude that ρ solves (2.12). Finally, by uniqueness of the solutions

of (2.12), we deduce that the limit ρ does not depend on the choice of the subsequence
and then that the full sequence converges:

ρm ⇀ ρ weakly in
(
W 2,1;2(QT )

)2
, with ρ = Φ(u).
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Step 2 (compactness of Φ). The compactness (and the usual strong continuity) of
Φ follows from the compactness of the injection (W 2,1;2(QT ))2 −→ X2

T (see Proposi-
tion 2.7).

Step 3 (a priori bounds on the solutions of u = λΦ(u) for T small). Let us consider
a solution u of

(2.18) u = λΦ(u) for some λ ∈ [0, 1].

Then, from the parabolic estimates (2.9), we have

sup
0≤t≤T

∫
T2

|u(t)|2 + 4ε
∫ T

0

∫
T2

|∇u|2

≤ 4
∫

T2

∣∣ρ0
∣∣2 + 16T

∫ T

0

∫
T2

|λfn[u]|2

≤ 4
∫

T2

∣∣ρ0
∣∣2 + 32TC2(n+ 1)2

(
T +

∫ T

0

∫
T2

|∇u|2
)
,

where, in the third line, we have used Lemma 2.4 and the fact that |λ| ≤ 1. Therefore,
for

(2.19) T ≤ T ∗ :=
(
16C2(n+ 1)2

)−1
ε

we have

sup
0≤t≤T

∫
T2

|u(t)|2 + 2ε
∫ T

0

∫
T2

|∇u|2 ≤ 4
∫

T2

∣∣ρ0
∣∣2 + 2εT ,

which proves that there exists a constant C > 0 such that any solution of (2.18)
satisfies

||u||X2
T
≤ C.

We can then apply Schaefer’s fixed point theorem (Theorem 2.6) to deduce that Φ has
a fixed point on X2

T , and, therefore, there is a solution ρ of (2.1) on the time interval
(0, T ) if T satisfies (2.19), i.e., if T is small enough independently on the initial data
ρ0.

Step 4 (solution for any time). Let us call ρ(ρ0, t) the function ρ(t, ·) obtained at
Step 3 as a solution of (2.1) on the time interval [0, T ∗) with initial data ρ0. From
the parabolic estimates (Proposition 2.5), we also know that ρ(t, ·) ∈ (H1(T2))2 for
any t ∈ [0, T ∗). Then we can define with τ = T ∗/2

u(0) = ρ0 and u(t) = ρ (u(kτ), t) if kτ ≤ t < (k + 1)τ with k ∈ N.

Using the fact that ut ∈ L2
loc((0,+∞); (L2(T2))2) and the fact that the problem is

invariant by translation in time, we can easily check that u solves (2.1) for any T > 0
and provides the desired solution ρn = u of Theorem 2.1.

This ends the proof of Theorem 2.1.
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3. A priori estimates and proof of Theorem 1.1.

3.1. A priori estimates. We have the following a priori estimates.
Lemma 3.1 (a priori estimates). There exists a constant C > 0 such that, for all

T > 0, n ≥ 1, and 0 < ε < 1, any solution ρn of (2.1) given by Theorem 2.1 satisfies

(3.1) ‖ρn‖2

L∞
(

(0,T );
(

H
1
2 (T2)

)2
) ≤ Ce

CT
ε ,

(3.2) ‖ρn‖2

L2

(
(0,T );

(
H

3
2 (T)

)2
) ≤ C

ε
e

CT
ε ,

and

(3.3)
∥∥∥hn(|∇ρn|)|∇ρn|− 1

2∇ρn · σ[ρn]
∥∥∥2

(L2(QT ))2
≤ Ce

CT
ε .

Proof of Lemma 3.1.
Step 1 (preliminaries on the energy). We first recall the expression of the energy

for a general Z
2-periodic smooth function ρ(x) = (ρ1(x), ρ2(x)):

E(ρ) =
∫

T2

−1
2
(
C0 � ρ

)
· ρ− σ0 · ρ+W (ρ).

For future use, we start to evaluate from below the first term in the energy, using
Fourier series ∫

T2

−
(
C0 � ρ

)
· ρ =

∑
k∈Z2

− ̂(C0 � ρ)(k) · ρ̂∗(k)

=
∑
k∈Z2

−
(
Ĉ0(k) · ρ̂(k)

)
· ρ̂∗(k)

≥ m
∑
k∈Z2

|k| |ρ̂(k)|2,

where we have used, in the first line, the fact that ρ and C0 are real, and, in the last
line, we have used assumption (A). Then we define

||ρ||2(
Ḣ

1
2 (T2)

)2 :=
∑
k∈Z2

|k| |ρ̂(k)|2.

Similarly, we compute∫
T2

−
(
C0 � (∇ρ)T

)
: ∇ρ

= (2π)2
∑
k∈Z2

−
(
Ĉ0(k) · ρ̂(k) ⊗ (ik)

)
: (ik)∗ ⊗ ρ̂∗(k)

= (2π)2
∑
k∈Z2

−|k|2
(
Ĉ0(k) · ρ̂(k)

)
: ρ̂∗(k)

≥ (2π)2m
∑
k∈Z2

|k|3 |ρ̂(k)|2,
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where we have used assumption (A) in the last line. Then we define

||ρ||2(
Ḣ

3
2 (T2)

)2 :=
∑
k∈Z2

|k|3 |ρ̂(k)|2.

Step 2 (estimate on the time derivative of the energy). Let us fix T > 0. We
know that any solution ρn given by Theorem 2.1 belongs to the space W 2,1;2(QT ). In
particular, using the following general fact (because of assumption (A))∫

T2

−
(
C0 � ρ

)
· ρ = Re

(∑
k∈Z2

−|k|
(
Ĉ0

(
k

|k|

)
· ρ̂(k)

)
· ρ̂∗(k)

)
we deduce that the energy E(ρn(t)) is well-defined for almost every t ∈ [0, T ) and
that, for almost every time t ∈ [0, T ), we have

d

dt
E(ρn(t)) =

∫
T2

−σ[ρn] · ρn
t

=
∫

T2

−hn(|∇ρn|)|∇ρn|−1 |∇ρn · σ[ρn]|2 − εσ[ρn] · Δρn

=
∫

T2

−hn(|∇ρn|)|∇ρn|−1 |∇ρn · σ[ρn]|2

−
∫

T2

ε
{
W ′′(ρn) : ((∇ρn)T · ∇ρn) −

(
C0 � (∇ρn)T

)
: ∇ρn

}
.

Therefore,

d

dt
E(ρn(t)) +

∫
T2

hn(|∇ρn|)|∇ρn|−1 |∇ρn · σ[ρn]|2

≤ Cε

{∫
T2

|∇ρn|2 +
(
C0 � (∇ρn)T

)
: ∇ρn

}
.(3.4)

But now (with a generic constant C)

‖∇ρn‖2
(L2(T2))2×2 ≤ C

∑
k∈Z2

|k|2|ρ̂n(k)|2

≤ C
∑
k∈Z2

|k| 32 |ρ̂n(k)| · |k| 12 |ρ̂n(k)|

≤ C

(∑
k∈Z2

1
2α

|k|3|ρ̂n(k)|2 +
α

2
|k||ρ̂n(k)|2

)

≤ C

(∫
T2

− 1
α

(
C0 � (∇ρn)T

)
: ∇ρn +

∫
T2

−α
(
C0 � ρn

)
· ρn

)
,

where ρ̂n(k) are the Fourier coefficients of ρn and α is a constant which will be precised
later. We then deduce finally that

(3.5)

d

dt
E(ρn(t)) +

∫
T2

hn(|∇ρn|)|∇ρn|−1 |∇ρn · σ[ρn]|2

≤ −Cε
(

1 − 1
α

)∫
T2

−
(
C0 � (∇ρn)T

)
: ∇ρn + Cεα

∫
T2

−
(
C0 � ρn

)
· ρn

≤ −Cε‖ρn(t)‖2(
Ḣ

3
2 (T2)

)2 + Cε

(
1 + E(ρn(t)) +

∣∣σ0
∣∣ ∣∣∣∣∫

T2

ρn(t)
∣∣∣∣)

for α chosen large enough, with C a suitable positive constant.



2530 NICOLAS FORCADEL AND RÉGIS MONNEAU

Step 3 (estimate on the time derivative of the mean value of the solution). Inte-
grating in space equation (2.1), we get

d

dt

∫
T2

ρn(t) =
∫

T2

hn(|∇ρn|)|∇ρn|−1 (∇ρn)T · ∇ρn · σ[ρn]

and then

(3.6)
d

dt

∣∣∣∣∫
T2

ρn(t)
∣∣∣∣ ≤

∫
T2

(hn(|∇ρn|)|∇ρn|) 1
2 ·
((
hn(|∇ρn|)|∇ρn|−1

) 1
2 |∇ρn · σ[ρn]|

)
≤
∫

T2

(
1 + |σ0|

)
hn(|∇ρn|)|∇ρn|

+
1

4(1 + |σ0|)h
n(|∇ρn|)|∇ρn|−1|∇ρn · σ[ρn]|2.

Step 4 (estimate on the energy). Setting

(3.7) Fn(t) = 1 + E(ρn(t)) +
(
1 + |σ0|

) ∣∣∣∣∫
T2

ρn(t)
∣∣∣∣+
(
1 + |σ0|

)4
,

we deduce from (3.5) and (3.6) that

d

dt
Fn(t) +

3
4

∫
hn(|∇ρn|)|∇ρn|−1|∇ρn · σ[ρn]|2

≤− Cε‖ρn(t)‖2(
Ḣ

3
2 (T2)

)2 + Cε

(
1 + E(ρn(t)) + |σ0|

∣∣∣∣∫
T2

ρn(t)
∣∣∣∣)

+
(
1 + |σ0|

)2 ∫
T2

hn(|∇ρn|)|∇ρn|.

Now we remark that(
1 + |σ0|

)2 ∫
T2

hn(|∇ρn|)|∇ρn| ≤
(
1 + |σ0|

)2 ∫
T2

|∇ρn|

≤ Cε

2

∫
T2

|∇ρn|2 +

(
1 + |σ0|

)4
2Cε

.

Using the fact that (since the domain is bounded)∫
T2

|∇ρn|2 ≤ ‖ρn(t)‖2(
Ḣ

3
2 (T2)

)2 ,

we get

d

dt
Fn(t) +

3
4

∫
T2

hn(|∇ρn|)|∇ρn|−1|∇ρn · σ[ρn]|2 +
Cε

2
‖ρn(t)‖2(

Ḣ
3
2 (T2)

)2(3.8)

≤ Cε

(
1 + E(ρn(t)) +

∣∣σ0
∣∣ ∣∣∣∣∫

T2

ρn(t)
∣∣∣∣)+

(
1 + |σ0|

)4
2Cε

≤ C

ε
Fn(t).
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This implies, using the Gronwall lemma,

(3.9) Fn(t) ≤ Fn(0)e
C
ε t.

Step 5 (estimate on ρn). Let us first remark that

(3.10) E(ρn(t)) ≥
∫

−1
2
(
C0 � ρn

)
· ρn −

∣∣σ0
∣∣ ∣∣∣∣∫

T2

ρn(t)
∣∣∣∣ .

Using (3.9), (3.10), and the definition of Fn(t) yields∫
T2

−1
2
(
C0 � ρn

)
· ρn +

∣∣∣∣∫
T2

ρn(t)
∣∣∣∣ ≤ Ce

C
ε t.

Using Step 1, we then get

‖ρn‖2

L∞
(

(0,T );
(

Ḣ
1
2 (T2)

)2
) ≤ Ce

C
ε T and

∣∣∣∣∫
T2

ρn(t)
∣∣∣∣ ≤ Ce

C
ε T .

This implies (3.1). Taking the integral
∫ T

0 in (3.8) and using the fact that ∀t ≤ T ,
Fn(t) ≥ 0, we get

‖hn(|∇ρn|)|∇ρn|− 1
2 |∇ρn · σ[ρn]|‖2

(L2(QT ))2 + εC‖ρn‖2

L2
(
(0,T );

(
Ḣ

3
2 (T2)

)) ≤ Ce
C
ε T ,

which implies (3.2) and (3.3).

3.2. Proof of Theorem 1.1. We are now able to prove Theorem 1.1. In this
section, we denote by C a generic constant which can depend on ρ0, ε, and T but
which does not depend on n.

Proof of Theorem 1.1. Let T > 0. The idea of the proof is to pass to the limit
in (2.1). The only difficulty is to prove that the nonlinear term fn[ρn] converges in a
certain sense to |∇ρ|−1(∇ρ)T · ∇ρ · σ[ρ], where ρ is the limit of ρn in an appropriate
norm. The proof is decomposed into five steps.

Step 1 (a priori bound on fn[ρn]). We have the following estimate on fn[ρn]:

(3.11) ‖fn[ρn]‖(
L

4
3 (QT )

)2 ≤ C.

To prove this, let us write

fn[ρn] =
(
|∇ρn|−1(∇ρn)T

)
·
(
|∇ρn| 12

)(
hn(|∇ρn|)|∇ρn|− 1

2∇ρn · σ[ρn]
)
.

Using (3.3), we have that the last term is bounded in (L2(QT ))2 by C. Moreover,
the first term is bounded by 1 in (L∞(QT ))2×2, and then we just have to bound the
term |∇ρn| 12 in L4(QT ). Using (3.2), we have

(3.12) ‖|∇ρn| 12 ‖L4(QT ) =
(∫

QT

|∇ρn|2
) 1

4

≤ ‖ρn‖
1
2

L2

(
(0,T );

(
H

3
2 (T)

)2
) ≤ C.

This implies (3.11).
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Step 2 (strong convergence of ∇ρn in L2((0, T ); (L
4
3 (T2))2×2)). Using the parabolic

estimates for the heat equation (see [16, Chapter 4.3, p. 80 and Chapter 4.9, p. 341])
and Step 1, we get

(3.13) ‖∇ρn‖
W

1
2
; 4
3

(
(0,T );

(
L

4
3 (T2)

)2×2
) ≤ C

where, for a Banach space B,

W
1
2 ;p((0, T );B) =

{
g ∈ Lp((0, T );B),

∫ T

0

∫ T

0

‖g(t) − g(s)‖p
B

|t− s| 12 p+1
dt ds <∞

}

is equipped with the following norm:

‖g‖
W

1
2
;p((0,T );B)

:=

(∫ T

0

∫ T

0

‖g(t) − g(s)‖p
B

|t− s| 12 p+1
dt ds

) 1
p

.

Moreover, using (3.2) we get

(3.14) ‖∇ρn‖
L2

(
(0,T );

(
H

1
2 (T2)

)2×2
) ≤ C.

We then use the following lemma.
Lemma 3.2 (compactness result). Let (gn)n be a sequence uniformly bounded in

L2
(

(0, T );H
1
2

(
T

2
))

∩W 1
2 ; 43

(
(0, T );L

4
3

(
T

2
))

;

then, for a subsequence,

gn → g strongly in L2
(

(0, T );L
4
3

(
T

2
))
.

Formally, the proof uses the fact that H
1
2 ⊂ L

4
3 with compact injection in space,

while the compactness in time comes from (3.13). We refer to Simon [21, Corollary 5,
p. 86] for a more general result and for the proof of this lemma.

Using (3.13), (3.14), and Lemma 3.2, we then deduce that, for a subsequence,
∇ρn → ∇ρ strongly in L2((0, T ); (L

4
3 (T2))2) and almost everywhere.

Step 3. (weak convergence of σ[ρn] in L2((0, T ); (L4(T2))2)). We have H
1
2 (T2) ⊂

L4(T2) with continuous injection (see Adams [1, Theorem 7.57, p. 217]). So L2((0, T );
H

1
2 (T2)) ⊂ L2((0, T );L4(T2)) with continuous injection. We then deduce from (3.2)

that

(3.15) ‖∇ρn‖L2((0,T );(L4(T2))2×2) ≤ C.

Using Lemma 2.2, we then get

(3.16)
∥∥C0 � ρn

∥∥
L2((0,T );(L4(T2))2) ≤ C.

Using the fact that the application W
2,1, 4

3
x,t (QT ) 
→ L

4
3 (QT ) is compact and the con-

verse of the Lebesgue theorem, we deduce that W ′(ρn) → W ′(ρ) almost everywhere.
This implies that σ[ρn] ⇀ σ[ρ] in L2((0, T ); (L4(T2))2).
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Step 4. (passing to the limit). Using Steps 2 and 3 and the fact that |∇ρn|−1∇ρn

is bounded by 1, we deduce that

fn[ρn] → |∇ρ|−1(∇ρ)T · ∇ρ · σ[ρ] in the distributions sense.

By passing to the limit in (2.1), we obtain

(3.17) ρt − εΔρ = |∇ρ|−1(∇ρ)T · ∇ρ · σ[ρ] in D′ ((0, T ) × T
2
)
.

Step 5 (initial condition). Using the fact that ρn
t are bounded uniformly in L

4
3 (QT )

(by parabolic estimates for the heat equation and Step 1), we deduce that (uniformly
in n)

‖ρn(t+ h) − ρn(t)‖(
L

4
3 (T2)

)2 ≤ Ch
1
4 ‖ρn

t ‖
L

4
3

(
(0,T );

(
L

4
3 (T2)

)2
)

and then ρ ∈ C0((0, T ); (L
4
3 (T2))2) and ρ|t=0 = ρ0.

This achieves the proof of Theorem 1.1.

Appendix A.
Full proof of Lemma 2.2. Here we do the proof for any p ∈ (1,+∞). Under

assumption (A), there exists a constant C > 0 depending only on p such that the
following result holds for any ρ̃ ∈W 1,p(R2):

∣∣C̃0 �R2 ρ̃
∣∣
(Lp(R2))2

≤ C

m
|∇ρ̃|(Lp(R2))2×2 ,

where the Fourier transform of C̃0 satisfies ̂̃C0

= M with M as in (1.9).
This result can be found in the scalar case on R

n in Stein [22, Proposition 5,
p. 251] or Coifman, Meyer [10, Theorem 9, p. 39 and Proposition 2, p. 41]. See, also,
Calderon–Zygmund inequalities Theorem 2.7.2 in Morrey [19]. Here the convolution
by C̃0 is a multiplier operator in the class S1 of pseudodifferential operators. We then
get the result in the vectorial case, summing the scalar components. See, also, the
book of Garroni and Menaldi [12] for complements on integro-differential operators.

The fact that the result holds on the torus T
2 is then classical. We prove it for

the convenience of the reader. To this end, we consider a smooth function ϕ such that

ϕ(x) = 1 on [−1/3, 1/3]2, supp ϕ ⊂ [−2/3, 2/3]2, and 0 ≤ ϕ ≤ 1

such that ∑
k∈Z2

ϕ(x − k) = 1.

For any smooth function ρ : R
2 −→ R

2, which is Z
2-periodic, we then set for K > 0

(S2Kρ)(x) =
∑

|k|≤2K, k∈Z2

ϕ(x − k)ρ(x).
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Therefore, we get for K > 0 large enough

|BK |
{∣∣C̃0 �R2 ρ

∣∣
Lp((−1/2,1/2)2)

+ 0(1/K)
}

≤
∣∣C̃0 �R2 ρ

∣∣
Lp(BK)

≤
∣∣C̃0 �R2 (S2Kρ)

∣∣
Lp(R2)

+
∣∣C̃0 �R2 (ρ− (S2Kρ))

∣∣
Lp(BK)

≤ C

m
|∇(S2Kρ)|Lp(R2) +

∣∣C̃0 �R2 (ρ− (S2Kρ))
∣∣
Lp(BK)

≤ C

m
|B2K |

{
|∇ρ|(Lp(−1/2,1/2))2×2 + 0(1/K)

}
+ |ρ|(L∞(R2))2 |BK |

∫
|z|≥K−1

∣∣C̃0(z)
∣∣.

Using the fact that
∫
|z|≥K−1

|C̃0(z)| = O(1/K), dividing by |BK |, and taking the
limit as K −→ +∞, we get∣∣C̃0 �R2 ρ

∣∣
(Lp(T2))2

≤ C

m

|B2|
|B1|

|∇ρ|(Lp(T2))2×2 ,

i.e., ∣∣C0 �T2 ρ
∣∣
(Lp(T2))2

≤ 4C
m

|∇ρ|(Lp(T2))2×2

with

C0(x) =
∑
k∈Z2

C̃0(x − k).

We then get the final result by density of smooth functions in (W 1,p(T2))2.
Proof of Proposition 2.8. For simplicity of notation, we denote by g(t) the function

x 
→ g(t, x). We have∥∥gm(t) − ρ0
∥∥

(L2(T2))2
≤
∫ t

0

ds ‖gm
t (s)‖(L2(T2))2

≤
√
t ‖gm

t ‖(L2(QT ))2 .

Using the fact that gm is bounded uniformly in W 2,1;2(QT ) (this is a consequence of
the fact that gm ⇀ g in W 2,1;2(QT )), we get

(A.1)
∥∥gm(t) − ρ0

∥∥
(L2(T2))2

≤ C
√
t.

Now let ϕ ∈ C∞
c ([0,+∞),R) be such that ϕ ≥ 0. Using (A.1), we get that∫ t

0

ds
∥∥gm(s) − ρ0

∥∥2

(L2(T2))2
ϕ(s) ≤ C

∫ t

0

ds s ϕ(s).

Using Fatou’s lemma, we deduce that∫ t

0

(∥∥g(s) − ρ0
∥∥2

(L2(T2))2
− Cs

)
ϕ(s) ≤ 0.

Using that ϕ ≥ 0 is arbitrary, we deduce that, for almost every t, we have∥∥g(t) − ρ0
∥∥2

(L2(T2))2
≤

√
Ct.

This implies the result.
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MINIMIZATION OF ELECTROSTATIC FREE ENERGY AND THE
POISSON–BOLTZMANN EQUATION FOR MOLECULAR

SOLVATION WITH IMPLICIT SOLVENT∗

BO LI†

Abstract. In an implicit-solvent description of the solvation of charged molecules (solutes), the
electrostatic free energy is a functional of concentrations of ions in the solvent. The charge density
is determined by such concentrations together with the point charges of the solute atoms, and the
electrostatic potential is determined by the Poisson equation with a variable dielectric coefficient.
Such a free-energy functional is considered in this work for both the case of point ions and that of
ions with a uniform finite size. It is proved for each case that there exists a unique set of equilibrium
concentrations that minimize the free energy and that are given by the corresponding Boltzmann
distributions through the equilibrium electrostatic potential. Such distributions are found to depend
on the boundary data for the Poisson equation. Pointwise upper and lower bounds are obtained for
the free-energy minimizing concentrations. Proofs are also given for the existence and uniqueness
of the boundary-value problem of the resulting Poisson–Boltzmann equation that determines the
equilibrium electrostatic potential. Finally, the equivalence of two different forms of such a boundary-
value problem is proved.

Key words. implicit solvent, electrostatic free energy, ionic concentrations, electrostatic poten-
tials, the Poisson–Boltzmann equation, variational methods, nonlinear elliptic interface problems

AMS subject classifications. 35J, 35Q, 49S, 82D, 92C

DOI. 10.1137/080712350

1. Introduction. It has long been realized that the electrostatic potential of a
charged molecular system extremizes an electrostatic free-energy functional [3, 6, 12,
13, 15, 18, 20, 26, 28, 29]. In a simple setting, this functional is given by

F [c1, . . . , cM ;ψ] =
∫ ⎧⎨⎩− ε

8π
|∇ψ|2 + ρψ + β−1

M∑
j=1

cj
[
ln

(
Λ3cj

)
− 1

]
−

M∑
j=1

μjcj

⎫⎬⎭ dx,

where c1, . . . , cM are ionic concentrations, ψ is an electrostatic potential, ε is the di-
electric constant, ρ is the charge density defined to be a linear combination of the ionic
concentrations, β is the inverse thermal energy, Λ is the thermal de Broglie wavelength,
and μj is the chemical potential of the jth ionic species. Throughout, we use the elec-
trostatics CGS units. We also use log x to denote the natural logarithm of x > 0.
Extremizing this functional with respect to the concentrations and the potential lead
to the Boltzmann distribution of concentrations and the Poisson equation for the
equilibrium potential, respectively [3, 6, 12, 13, 15, 26, 28]. Notice, however, that this
free-energy functional is concave with respect to the electrostatic potential. There-
fore, the extremizing concentrations and potential do not minimize this free-energy
functional, rather they form an unstable saddle point of the system [1, 6, 12, 13]. This
flaw of theory is removed in the free-energy minimization approach that was proposed
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Fig. 1. The geometry of a solvation system with an implicit solvent.

in [12, 20]. The key point in this new approach is that the electrostatic free-energy
functional depends solely on the ionic concentrations and the electrostatic potential
is determined by such concentrations through the Poisson equation. In the recent
article [5], this free-energy minimization approach was revisited and applied to the
implicit-solvent (or continuum-solvent) description of solvation.

The present work is a mathematical study of the free-energy minimization ap-
proach to the electrostatics applied to the solvation of molecules with an implicit-
solvent. Such application introduces additional mathematical complications due to
the presence of point charges in solutes and the dielectric boundaries. We consider
both the case of point ions—ions modeled as points without volumes—and that of
ions with a uniform finite size. The finite-size effect of ions is known to be important
in continuum modeling of electrostatics in molecular systems. Our analysis shows par-
ticularly that the free-energy minimizing ionic concentrations are uniformly bounded
from above and away from zero at each spatial point. This uniform boundedness,
which is proved by somewhat tedious constructions, is a consequence of the prop-
erty that the free-energy minimizing concentrations have a large entropy. We do not
consider the more general case of ions with different sizes for which there seems no
explicit Boltzmann distributions.

Consider now the solvation of charged molecules with an implicit solvent [27]. We
divide the entire region Ω of the solvation system into the region of solute molecules
Ωm ⊂ R

3 that is possibly multiply connected, the region of solvent (such as salted
water) Ωs ⊂ R

3, and the solute-solvent interface Γ = ∂Ωm ∩ ∂Ωs; cf. Figure 1. This
interface Γ serves as the dielectric boundary. Assume the solutes consist of N atoms
with the ith one located at xi and carrying a charge Qi. Assume also there are M
ionic species in the solvent with qj = ezj the buck charge of the jth ionic species,
where e is the elementary charge and zj the valence of jth ionic species. Denote by
cj = cj(x) the local concentration at x ∈ Ωs of the jth ionic species. Following the
common assumption that the mobile ions in the solvent cannot penetrate the dielectric
boundary Γ, we define cj(x) = 0 for all x ∈ Ωm and 1 ≤ j ≤M.

We consider two mean-field approximations of the electrostatic free energy of the
solvation system as functionals of the local ionic concentrations c = (c1, . . . , cM ) in the
solvent region. In the first one, point ions are assumed, and the related electrostatic
free-energy functional is given by [5, 12, 19, 20, 26]

F0[c] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠ψdx

+ β−1
M∑

j=1

∫
Ωs

cj
[
log

(
a3cj

)
− 1

]
dx−

M∑
j=1

∫
Ωs

μjcjdx.(1.1)
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In the second approximation, all ions are assumed to have a uniform linear size, and
the related free-energy functional is given by [3, 20]

Fa[c] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠ψdx

+ β−1
M∑

j=0

∫
Ωs

cj
[
log

(
a3cj

)
− 1

]
dx−

M∑
j=1

∫
Ωs

μjcj dx,(1.2)

where the summation in the β−1 term starts from j = 0 and

(1.3) c0(x) = a−3

⎡⎣1 −
M∑

j=1

a3cj(x)

⎤⎦ ∀x ∈ Ωs.

In (1.1) and (1.2), ψ is the electrostatic potential of the solvation system,

(1.4) ψvac(x) =
N∑

i=1

Qi

εm|x− xi|

defines the electrostatic potential generated by all the point charges Qi at xi in a
medium with the dielectric constant εm (usually taken as that in the vacuum), a > 0
is a constant, and μj is the constant chemical potential of the jth ionic species. The
constant a > 0 represents in (1.1) a nonphysical cut-off which is often chosen to be
the thermal de Broglie wavelength and in (1.2) the uniform linear size of ions.

The electrostatic potential ψ is determined by the Poisson equation

(1.5) ∇ · εΓ∇ψ = −4πρ in Ω,

where εΓ is the dielectric coefficient and ρ is the charge density, together with a
boundary condition which is usually taken to be

(1.6) ψ = ψ0 on ∂Ω,

where ψ0 is a given function. The dielectric coefficient is defined to be

(1.7) εΓ(x) =

{
εm if x ∈ Ωm,

εs if x ∈ Ωs,

where εm and εs are the dielectric constants of the solutes and the solvent, respectively.
The charge density is given by

(1.8) ρ =
N∑

i=1

Qiδxi +
M∑

j=1

qjcj in Ω,

where δxi denotes the Dirac delta function centered at xi.
The first two terms in (1.1) or (1.2) represent the internal electrostatic energy,

which are often written formally as the integral of ρψ/2 over the entire region Ω.
Based on Born’s definition [2], the contribution to the electrostatic free energy due to
the solute point charges is given as the first term in (1.1) or (1.2) though the reaction
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field ψ−ψvac. The β−1 term represents the ideal gas entropy. The term 1−
∑M

j=1 a
3cj

in (1.2) is the concentration of solvent molecules. It describes the effect of finite size
of ions. The last term in (1.1) or (1.2) accounts for a constant chemical potential in
the system. The osmotic pressure from the mobile ions is dropped, since it is only an
additive constant to the free-energy functional in the present setting. We remark that
the use of notations F0 and Fa does not indicate that we can obtain the functional
F0 by simply setting a = 0 in Fa.

In this work, we prove the following results:
(1) For each of the free-energy functionals (1.1) and (1.2), there admits a unique

minimizer c1, . . . , cM , which is also the unique equilibrium, in an admissible
set of concentrations. Moreover, such concentrations and the correspond-
ing equilibrium electrostatic potential ψ are related by the boundary-data
dependent Boltzmann distributions

(1.9) cj(x) =

⎧⎪⎪⎨⎪⎪⎩
c∞j e

−βqj[ψ(x)−ψ̂0(x)/2] for point ions,

c∞j e
−βqj[ψ(x)−ψ̂0(x)/2]

1 + a3
∑M

i=1 c
∞
i e

−βqi[ψ(x)−ψ̂0(x)/2]
for finite-size ions,

for a.e. x ∈ Ωs and 1 ≤ j ≤ M , where c∞j = a−3eβμj and ψ̂0 ∈ H1(Ω) is
determined by

(1.10)

⎧⎨⎩
∫

Ω

εΓ∇ψ̂0 · ∇ηdx = 0 ∀η ∈ H1
0 (Ω),

ψ̂0 = ψ0 on ∂Ω.

The free-energy minimizing concentrations are shown to be uniformly bounded
above and below away from zero. These results are summarized in Theo-
rems 2.3–2.5 and Lemmas 3.4 and 3.5.

(2) The equilibrium electrostatic potential ψ is the unique solution to the boundary-
data dependent Poisson–Boltzmann equation (PBE) [3, 4, 10, 11, 16, 17, 20,
31], together with the boundary condition (1.6),

(1.11) ∇ · εΓ∇ψ + 4πχΩs

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2) = −4π
N∑

i=1

Qiδxi in Ω

for the case of point ions, and
(1.12)

∇·εΓ∇ψ+4πχΩs

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2)

1 + a3
∑M

i=1 c
∞
i e

−βqi(ψ−ψ̂0/2)
= −4π

N∑
i=1

Qiδxi in Ω

for the case of finite-size ions, where χΩs is the characteristic function of Ωs.
These equations can be written together as

(1.13) ∇ · εΓ∇ψ − 4πχΩsB
′

(
ψ − ψ̂0

2

)
= −4π

N∑
i=1

Qiδxi in Ω,
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where B′ is the derivative of the function B : R → R defined by
(1.14)

B(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M∑
j=1

β−1c∞j e
−βqjψ for point ions,

β−1a−3 log

⎛⎝1 + a3
M∑

j=1

c∞j e
−βqjψ

⎞⎠ for finite-size ions.

See Theorem 2.1.
(3) The boundary-value problem of the PBE (1.13) and (1.6) is equivalent to the

elliptic interface problem

(1.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · εm∇ψ = −4π
N∑

i=1

Qiδxi in Ωm,

∇ · εs∇ψ − 4πB′

(
ψ − ψ̂0

2

)
= 0 in Ωs,

�ψ� = �εΓ∇ψ · n� = 0 on Γ,
ψ = ψ0 on Ω.

Here and below, we denote for any function u on Ω, um = u|Ωm , us = u|Ωs ,,
and �u� = us − um on Γ. See Theorem 2.2.

Two variations of the PBE (1.11) with ψ0 = 0 are commonly used [8, 15, 29].
First, we have by the Taylor expansion and the electrostatic neutrality

∑M
j=1 c

∞
j = 0

that

M∑
j=1

qjc
∞
j e

−βqjψ ≈ −

⎛⎝ M∑
j=1

βq2j c
∞
j

⎞⎠ψ,

if |ψ| is small, leading to the linearized PBE [9]

∇ · εΓ∇ψ − εsκ
2χΩsψ = −4π

N∑
i=1

Qiδxi in Ω,

where κ =
√

4πβ
∑M

i=1 q
2
j c

∞
j /ε

2
s is the ionic strength or the inverse Debye–Hückel

screening length. Clearly, all of our results for the nonlinear PBE (1.11) hold true for
the linearized PBE. Second, for the common z : −z type of salt such as NaCl in the
solution, we have M = 2, c∞1 = c∞2 , and q1 = −q2 = ze. The PBE (1.11) reduces to
the following sinh PBE:

∇ · εΓ∇ψ − 8πzec∞1 χΩs sinh(βzeψ) = −4π
N∑

i=1

Qiδxi in Ω.

In proving the existence of minimizers of the functionals F0 and Fa, we use de la
Vallée Poussin’s criterion [25] of the sequential compactness in L1(Ω). The unique-
ness of such minimizers follows basically from the convexity of these functionals. A
crucial step in defining and deriving equilibriums of F0 and Fa is the construction of
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L∞-concentrations that are bounded below in Ωs by a positive constant and that have
low free energies. Such constructions are made by increasing the entropy of ionic con-
centrations through their small perturbations. The effect of inhomogeneous Dirichlet
boundary data to the Boltzmann distributions and, hence, to the PBE can be useful
to guide practical numerical computations. The equivalence of the two formulations
is a common property for many physical problems. The interface formulation of the
boundary-value problem of the PBE has been used for numerical computations using
boundary integral method [22–24]. The finite-size effect is important in modeling
electrostatics [3, 20].

The rest of the paper is organized as follows: In section 2, we state our main
results; in section 3, we provide some lemmas; in section 4, we prove our theorems
on the boundary-value problem of PBE; in section 5, we prove our theorems on the
free-energy minimization. Finally, in Appendix, we give the proof of two lemmas.

2. Main results. Throughout the rest of the paper, we make the following
assumptions:

A1. The set Ω ⊂ R
3 is nonempty, bounded, open, and connected. The sets

Ωm ⊂ R
3 and Ωs ⊂ R

3 are nonempty, bounded, and open, and satisfy that
Ωm ⊂ Ω and Ωs = Ω \ Ωm. The N points x1, . . . , xN for some integer N ≥ 1
belong to Ωm. Both ∂Ω and Γ are of C2. The unit exterior normal at the
boundary of Ωs is denoted by n; cf. Figure 1.

A2. M ≥ 2 is an integer. All a > 0, β > 0, Qi ∈ R (1 ≤ i ≤ N), qj ∈ R and
μj ∈ R (1 ≤ j ≤M), εm > 0, and εs > 0 are constants;

A3. The functions ψvac and εΓ are defined in (1.4) and (1.7), respectively. The
boundary data ψ0 is the trace of a given function, also denoted by ψ0, in
W 2,∞(Ω).

Boundary values are understood as traces. When no confusion arises, the capital
letter C, with or without a subscript, denotes a positive constant that can depend on
all Ωm, Ωs, Ω, Γ, εm, εs, a, β, N , M , xi, and Qi (1 ≤ i ≤ N), qj and μj (1 ≤ j ≤M),
and ψ0.

For any open set U ⊆ R
3 that contains all x1, . . . , xN , we denote

H1
∗ (U) =

{
u ∈W 1,1(U) : u|Uα ∈ H1(Uα)∀α > 0

}
,

where Uα = U \ (∪N
i=1B(xi, α)) and B(xi, α) denotes the ball centered at xi with

radius α.
Definition 2.1. A function ψ ∈ H1

∗ (Ω) is a weak solution to the boundary-value
problem of the PBE (1.13) and (1.6), if ψ = ψ0 on ∂Ω, χΩsB(ψ) ∈ L2(Ωs), and
(2.1)∫

Ω

[
εΓ∇ψ · ∇η + 4πχΩsB

′

(
ψ − ψ̂0

2

)
η

]
dx = 4π

N∑
i=1

Qiη(xi) ∀η ∈ C∞
c (Ω).

We remark that if φ ∈ H1(U) for some bounded and smooth domain U ⊂ R
3,

then eφ and, hence, B(φ) may not be in L1(U). For example, let U = B(0, 1) be the
unit ball of R

3 and α ∈ (0, 1/2). Define φ(x) = |x|−α for any x ∈ U . Then φ ∈ H1(U)
and that eφ 
∈ L1(U). Notice by (1.14) that χΩsB(ψ) ∈ L2(Ωs) is equivalent to
χΩse

−βqjψ ∈ L2(Ωs) or χΩse
−βqj(ψ−ψ̂0/2) ∈ L2(Ωs) (j = 1, . . . ,M), which in turn are

equivalent to χΩsB(ψ − ψ̂0/2) ∈ L2(Ωs).
Theorem 2.1. There exists a unique weak solution ψ ∈ H1

∗ (Ω) to the boundary-
value problem of the PBE (1.13) and (1.6). Moreover, ψ ∈ C(Ω \ (∪N

i=1B(xi, α))
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for any α > 0 such that the closure of ∪N
i=1B(xi, α) is contained in Ωm, and ψ ∈

C∞((Ωm \ {x1, . . . , xN}) ∪ Ωs).
Definition 2.2. A function ψ : Ω → R is a weak solution of the interface

problem (1.15), if the following are satisfied: ψm ∈ H1
∗ (Ωm) and

(2.2)
∫

Ωm

εm∇ψ · ∇ηdx = 4π
N∑

i=1

Qiη(xi) ∀η ∈ C∞
c (Ωm);

ψs ∈ H1(Ωs), χΩsB(ψ) ∈ L2(Ωs), and

(2.3)
∫

Ωs

[
εs∇ψ · ∇η + 4πχΩsB

′

(
ψ − ψ̂0

2

)
η

]
dx = 0 ∀η ∈ C∞

c (Ωs);

and the third and fourth equations in (1.15) hold true.
Theorem 2.2. A function ψ : Ω → R is a weak solution to the boundary-value

problems (1.13) and (1.6), if and only if it is a weak solution to the boundary-value
problem (1.15).

Let U ⊂ R
3 be a nonempty, bounded, and open set. Let f ∈ L1(U). Assume

(2.4) sup
0�=ξ∈L∞(U)∩H1

0 (U)

∫
U
fξ dx

‖ξ‖H1(U)
<∞.

Since L∞(U)∩H1
0 (U) is dense in H1

0 (U), we can identify f as an element in H−1(U),
the dual of H1

0 (U), with

〈f, ξ〉 =
∫

U

fξdx ∀ξ ∈ L∞(U) ∩H1
0 (U),

and we write f ∈ L1(U) ∩ H−1(U). The H−1(U) norm of f is given by (2.4). We
define

X =

⎧⎨⎩c = (c1, . . . , cM ) ∈ L1
(
Ω,RM

)
: c = 0 a.e. Ωm and

M∑
j=1

qjcj ∈ H−1(Ω)

⎫⎬⎭ ,

‖c‖X =
M∑

j=1

‖cj‖L1(Ωs) +

∥∥∥∥∥∥
M∑

j=1

qjcj

∥∥∥∥∥∥
H−1(Ω)

∀c = (c1, . . . , cM ) ∈ X.

Clearly, (X, ‖ · ‖X) is a Banach space.
Let α ∈ R and define Sα : [0,∞) → R by Sα(0) = 0 and Sα(u) = u(α + log u) if

u > 0. It is easy to see that Sα is bounded below on [0,∞) and strictly convex on
(0,∞). Define

V0 =
{

(c1, . . . , cM ) ∈ X : cj ≥ 0 a.e. Ωs and
∫

Ω

S0(cj) dx <∞, j = 1, . . . ,M
}
,

W0 =
{

(c1, . . . , cM ) ∈ V0 : there exists p >
3
2

such that cj ∈ Lp(Ω), j = 1, . . . ,M
}
,

Va =

⎧⎨⎩(c1, . . . , cM ) ∈ V0 : c0 = a−3

⎛⎝1 −
M∑

j=1

a3cj

⎞⎠ ≥ 0 a.e. Ωs

⎫⎬⎭ .
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Clearly, all V0, W0, and Va are nonempty and convex. For any c = (c1, . . . , cM ) ∈ V0,
there exists a unique weak solution ψ = ψ(c) of the boundary-value problem (1.5) and
(1.6) with the charge density ρ given by (1.8); in particular, ψ − ψvac is harmonic in
Ωm, cf. Lemma 3.2. We shall call ψ = ψ(c) the electrostatic potential corresponding
to c. Therefore, F0 : V0 → R and Fa : Va → R are well defined. We use V, F to denote
V0, F0 or W0, F0 or Va, Fa.

Definition 2.3. An element c = (c1, . . . , cM ) ∈ V is an equilibrium of F : V →
R, if
(2.5)
there exist γ1 > 0 and γ2 > 0 such that γ1 ≤ cj(x) ≤ γ2 a.e. x ∈ Ωs, j = 1, . . . ,M,

for the case of point ions, or

(2.6) there exists θ0 ∈ (0, 1) such that a3cj(x) ≥ θ0 a.e. x ∈ Ωs, j = 0, 1, . . . ,M,

for the case of finite-size ions; and

δF [c]e := lim
t→0

F [c+ te] − F [c]
t

= 0 ∀e ∈ X ∩ L∞ (
Ω,RM

)
.

Definition 2.4. An element c ∈ V is a local minimizer of F : V → R, if there
exists ε > 0 such that F [d] ≥ F [c] for any d ∈ V with ‖d− c‖X < ε.

Theorem 2.3. There exists a unique minimizer of F0 : V0 → R. It is also the
unique local minimizer of F0 : V0 → R.

It is an open question if the unique minimizer of F0 : V0 → R is an equilibrium
of F0 : V0 → R as defined in Definition 2.3. The answer to this question would be yes
if this minimizer were in W0 or if mind∈V0 F0[d] = mind∈W0 F0[d], neither of which is
clearly true. This is the reason we introduce the class of concentrations W0. See the
proof of Lemma 3.4 in Appendix.

Theorem 2.4.

(1) There exists a unique equilibrium c = (c1, . . . , cM ) of F0 : W0 → R. It is also
the unique global minimizer and the unique local minimizer of F0 : W0 → R.

(2) If ψ = ψ(c) is the corresponding electrostatic potential, then the Boltzmann
distributions (1.9) for point ions holds true and ψ is the unique weak solu-
tion to the corresponding boundary-value problem of PBE (1.11) and (1.6).
Moreover,

min
d∈W0

F0[d] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
∫

Γ

1
8π

(
ψ − φ̂0

)
εΓ∂n

(
ψ − ψ̂0

)
dS

−
∫

Ωs

εs

8π

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx− β−1
M∑

j=1

∫
Ωs

c∞j e
−βqj(ψ−ψ̂0/2)dx.(2.7)

Theorem 2.5.

(1) There exists a unique equilibrium c = (c1, . . . , cM ) of Fa : Va → R. It is also
the unique global minimizer and the unique local minimizer of Fa : Va → R.

(2) If ψ = ψ(c) is the corresponding electrostatic potential, then the Boltzmann
distributions (1.9) for finite-size ions holds true and ψ is the unique weak
solution to the corresponding boundary-value problem of PBE (1.12) and (1.6).



2544 BO LI

Moreover,

min
d∈Va

Fa[d] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
∫

Γ

1
8π

(
ψ − φ̂0

)
εΓ∂n

(
ψ − ψ̂0

)
dS

−
∫

Ωs

εΓ
8π

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx− β−1a−3

∫
Ωs

(2.8) ⎡⎣1 + log

⎛⎝1 + a3
M∑

j=1

c∞j e
−βqj(ψ−ψ̂0/2)

⎞⎠⎤⎦ dx.
3. Some lemmas. The key point of our first lemma below is the existence and

continuity across the interface Γ of the normal flux for a solution of an elliptic interface
problem. In terms of electrostatics, this means that the electrostatic potential and
the normal component of electrostatic displacement are continuous across dielectric
boundaries. These seem to be known results. For completeness, we give a proof here.

Lemma 3.1. Let U ⊂ R
3 be an open set such that Γ ⊂ U ⊆ Ω. Let g ∈

L1(U) ∩H−1(U). Suppose u ∈ H1(U) satisfies

(3.1)
∫

U

εΓ∇u · ∇ηdx =
∫

U

gηdx ∀η ∈ C∞
c (U).

Then �u� = 0 on Γ. If in addition g ∈ L2(U), then �εΓ∂nu� = 0 on Γ.
Proof. Fix an open ball B ⊂ U such that Γ ∩ B 
= ∅. Let η ∈ C∞

c (U) with
supp η ⊂ B. Let nj with 1 ≤ j ≤ 3 be the jth component of n, the unit normal at the
Γ, pointing from Ωs to Ωm. It follows from the fact that u ∈ H1(Ω) and integration
by parts that

−
∫

B

u∂jη dx =
∫

B

(∂ju)η dx

=
∫

B∩Ωm

(∂ju)η dx +
∫

B∩Ωs

(∂ju)η dx

= −
∫

B∩Ωm

u∂jη dx−
∫

Γ∩B

umηnj dS −
∫

B∩Ωs

u∂jη dx+
∫

Γ∩B

usηnj dS

= −
∫

B

u∂jη dx+
∫

Γ∩B

(us − um)ηnj dS, j = 1, 2, 3.

This and the arbitrariness of η imply �u� = 0 on Γ.
To show the continuity of εΓ∇u ·n across Γ, we fix an open set U0 ⊂ R

3 such that
Γ ⊂ U0 ⊂ U0 ⊂ U and that the boundary ∂U0 is C2. By the fact that u ∈ H1(U) and
g ∈ L2(U), and by (3.1), we have

(εt∇ut)|U0∩Ωt ∈ L2
(
U0 ∩ Ωt,R

3
)

and

(∇ · εt∇ut)|U0∩Ωt = −g ∈ L2(U0 ∩ Ωt), t = m, s.

Therefore, by Theorem 1.2 in [30], the trace of (εt∇ut)|U0∩Ωt · ν ∈ H−1/2(∂(U0 ∩Ωt))
exists, and also by (3.1),

(3.2)∫
U0∩Ωt

εt∇ut · ∇ηdx =
∫

U0∩Ωt

gηdx+
∫

∂(U0∩Ωt)

(εt∇ut · ν)ηdS ∀η ∈ C∞
c (U0 ∩ Ωt),
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where ν denotes the unit exterior normal of the boundary ∂(U0 ∩ Ωt) which contains
Γ and t = m, s. Notice that the normals ν at Γ from both sides U0 ∩Ωm and U0 ∩Ωs

are in opposite directions.
These traces are determined independent of the choice of U0. In fact, if Q0 ⊂ R

3

is another open set such that Γ ⊂ Q0 ⊂ Q0 ⊂ U and the boundary ∂Q0 is C2,
then the traces (εm∇um)|Q0∩Ωm · ν ∈ H−1/2(∂(Q0 ∩ Ωm)) and (εs∇us)|Q0∩Ωs · ν ∈
H−1/2(∂(Q0 ∩ Ωm)) exist, and (3.2) holds true for t = m, s when U0 is replaced by
Q0. Consider now (3.2) with t = m. Choose any η ∈ C1

c (U0 ∩Q0) such that η = 0 on
∂(U0 ∩ Ωm) \ Γ and on ∂(Q0 ∩ Ωm) \ Γ. Extend η by η = 0 to outside U0 ∩Q0. By
(3.2) with t = m and the corresponding equation with U0 replaced by Q0, we obtain
that ∫

∂(U0∩Ωm)

(εm∇um · ν)ηdS =
∫

∂(Q0∩Ωm)

(εm∇um · ν)ηdS.

The arbitrariness of η then implies that the trace of (εm∇um · ν)|U0∩Ωm on Γ de-
termined by U0 is the same as that determined by Q0. By the same argument, we
see that the trace of (εs∇us · n)|U0∩Ωs on Γ determined by U0 is the same as that
determined by Q0.

Now, by the fact that U0 = (U0 ∩Ωm)∪ (U0 ∩Ωs) and (U0 ∩Ωm)∩ (U0 ∩Ωs) = ∅,
and by our convention for the direction of the unit normal n along Γ, we obtain from
(3.1) and (3.2) that for any η ∈ C∞

c (U) with supp η ⊂ U0∫
Γ

(
εm

∂um

∂n
− εs

∂us

∂n

)
ηdS = 0.

The arbitrariness of η implies �εΓ∂nu� = 0 on Γ.
Let L : H−1(Ω) → H1(Ω) be the linear operator defined as follows: for any

ξ ∈ H−1(Ω), Lξ ∈ H1
0 (Ω) is the unique function in H1

0 (Ω) that satisfies

(3.3)
1

4π

∫
Ω

εΓ∇ (Lξ) · ∇v dx = ξ(v) ∀v ∈ H1
0 (Ω).

It is easy to see that 〈ξ, η〉 = ξ(Lη) defines an inner product of H−1(Ω). Denote by |||·|||
the corresponding norm of H−1(Ω), i.e., |||ξ||| =

√
〈ξ, ξ〉 =

√
ξ(Lξ) for any ξ ∈ H−1(Ω).

One can verify that there exist C1 = C1(Ω, εm, εs) > 0 and C2 = C2(εm, εs) > 0 such
that

(3.4) C1|||ξ||| ≤ ‖ξ‖H−1(Ω) ≤ C2|||ξ||| ∀ξ ∈ H−1(Ω).

It follows from [21] (with minor modifications) that there exists a unique G ∈
H1

∗ (Ω) such that G = 0 on ∂Ω and

(3.5)
∫

Ω

εΓ∇G · ∇ηdx = 4π
N∑

i=1

Qiη(xi) ∀η ∈ C∞
c (Ω).

Clearly, G − ψvac is harmonic in Ωm and G ∈ W 1,p(Ω) for any p ∈ [1, 3/2). Notice
that the function ψ̂0 ∈ H1(Ω) defined in (1.10) is harmonic in Ωm ∪ Ωs.

The next lemma gives a solution decomposition of the Poisson equation (1.5) with
its right-hand side consisting of Dirac masses and a function in H−1(Ω) that represents
the density of ionic charges. This decomposition is a mathematical formulation of the
Born cycle [2].
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Lemma 3.2. Let f ∈ L1(Ω) ∩ H−1(Ω) be such that f = 0 in Ωm. Then ψ :=
G+ ψ̂0 + Lf is the unique function in H1

∗ (Ω) that satisfies ψ = ψ0 on ∂Ω and

(3.6)
∫

Ω

εΓ∇ψ · ∇ηdx = 4π
N∑

i=1

Qiη(xi) + 4π
∫

Ωs

fηdx ∀η ∈ C∞
c (Ω).

Moreover, Lf and ψ − ψvac are harmonic in Ωm, and

N∑
i=1

Qi (Lf) (xi) =
∫

Ωs

Gfdx.(3.7)

Proof. From the definition of G, ψ̂0, and L (cf. (3.5), (1.10), and (3.3)), we easily
verify that the function ψ is in H1

∗ (Ω), ψ = ψ0 on ∂Ω, and (3.6) holds true. If
ψ̄ ∈ H1

∗ (Ω) satisfies ψ̄ = 0 on ∂Ω and
∫
Ω
εΓ∇ψ̄ · ∇η dx = 0 for all η ∈ C∞

c (Ω), then
clearly ψ̄ ∈ H1

0 (Ω) and in fact ψ̄ = 0 a.e. Ω. This proves the needed uniqueness.
By the fact that f = 0 in Ωm and the definition of L (cf. (3.3)), Lf is harmonic

in Ωm. The fact that ψ− ψvac is harmonic in Ωm follows from (3.6) with η ∈ C∞
c (Ω)

so chosen that supp η ⊂ Ωm and

∫
Ωm

εm∇ψvac · ∇ηdx = 4π
N∑

i=1

Qiη(xi) ∀η ∈ C∞
c (Ωm).

It remains to prove (3.7). Denote ψc = Lf ∈ H1
0 (Ω). Let α > 0 be sufficiently

small and let Bα = ∪N
i=1B(xi, α). By the fact that G is harmonic in Ωm \ Bα and

G− ψvac is harmonic in Ωm, we obtain by a series of routine calculations that

∫
Ωm

εm∇G · ∇ψcdx =
∫

Ωm\Bα

εm∇G · ∇ψcdx+
∫

Bα

εm∇G · ∇ψcdx

= −
∫

Ωm\Bα

εm(ΔG)ψcdx+
∫

∂(Ωm\Bα)

εmψc
∂G

∂ν
dS +O(α)

= −
∫

Γ

εmψc|m
∂G|m
∂n

dS +
∫

∂Bα

εmψc
∂G

∂ν
dS +O(α)

= −
∫

Γ

εmψc|m
∂G|m
∂n

dS +
∫

∂Bα

εmψc
∂ (G− ψvac)

∂ν
dS

+
N∑

i=1

∫
∂B(xi,α)

εmψc
∂ψvac

∂ν
dS +O(α)

→ −
∫

Γ

εmψc|m
∂G|m
∂n

dS + 4π
N∑

i=1

Qiψc(xi) as α→ 0,

where ν is the exterior unit normal of ∂(Ωm \Bα) and ν = −n on Γ by our convention
for the direction of n. Consequently, by the continuity of εΓ∇G · n across Γ (cf.
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Lemma 3.1), the fact that G is harmonic in Ωs, and G = ψc = 0 on ∂Ω, we obtain

4π
N∑

i=1

Qiψc(xi) =
∫

Γ

εsψc|s
∂G|s
∂n

dS +
∫

Ωm

εm∇G · ∇ψcdx

=
∫

Ωs

εs(ΔG)ψcdx+
∫

Ωs

εs∇G · ∇ψcdx+
∫

Ωm

εm∇G · ∇ψcdx

=
∫

Ω

εΓ∇G · ∇ψcdx.(3.8)

Since ψc = Lf ∈ H1
0 (Ω) is harmonic in Ωm, we also have by the properties of G

(cf. [21]) and integration by parts that

∫
Ωm

εm∇G · ∇ψcdx =
∫

Ωm\Bα

εm∇G · ∇ψcdx+
∫

Bα

εm∇G · ∇ψcdx

= −
∫

Ωm\Bα

εmGΔψcdx+
∫

∂(Ωm\Bα)

εmG
∂ψc

∂ν
dS +O(α)

= −
∫

Γ

εmG|m
∂ψc|m
∂n

dS +
∫

∂Bα

εmG
∂ψc

∂ν
dS +O(α)

→ −
∫

Γ

εmG|m
∂ψc|m
∂n

dS as α→ 0.(3.9)

Let Ĝ ∈ H1(Ωm) be such that Ĝ = G on Γ = ∂Ωm. Replacing G in (3.9) by Ĝ and
repeating the same calculations, we obtain

(3.10)
∫

Ωm

εm∇G · ∇ψcdx =
∫

Ωm

εm∇Ĝ · ∇ψcdx.

Define G : Ω → R by G(x) = Ĝ(x) if x ∈ Ωm and by G(x) = G(x) if x ∈ Ωs. Clearly,
G ∈ H1

0 (Ω). Since ψc = Lf and f = 0 in Ωm, we, thus, have by (3.8) and (3.10) that

4π
N∑

i=1

Qiψc(xi) =
∫

Ωm

εm∇Ĝ · ∇ψcdx+
∫

Ωs

εs∇G · ∇ψcdx

=
∫

Ω

εΓ∇G · ∇ψcdx = 4π
∫

Ω

Gfdx = 4π
∫

Ωs

Gfdx.

This implies (3.7).
By Lemma 3.2, the potential ψ = ψ(c1, . . . , cM ) corresponding to a set of concen-

trations (c1, . . . , cM ) is well defined with f =
∑M

j=1 qjcj and is given by

(3.11) ψ(c1, . . . , cM ) = G+ ψ̂0 + L

⎛⎝ M∑
j=1

qjcj

⎞⎠ .
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Moreover, the functional F0 : V0 → R and Fa : Va → R can be rewritten as

F0[c] =
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠L

⎛⎝ M∑
j=1

qjcj

⎞⎠ dx+
M∑

j=1

∫
Ωs

μ0jcjdx

+ β−1
M∑

j=1

∫
Ωs

S−1(cj)dx + E0, ∀c = (c1, . . . , cM ) ∈ V0,(3.12)

Fa[c] =
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠L

⎛⎝ M∑
j=1

qjcj

⎞⎠ dx+
M∑

j=1

∫
Ωs

μajcjdx

+ β−1
M∑

j=0

∫
Ωs

S−1(cj)dx + Ea ∀c = (c1, . . . , cM ) ∈ Va,(3.13)

respectively, where

μ0j(x) = qjG(x) +
1
2
qjψ̂0(x) + 3β−1 log a− μj ∀x ∈ Ωs, j = 1, . . . ,M,(3.14)

E0 =
1
2

N∑
i=1

Qi

(
G+ ψ̂0 − ψvac

)
(xi),(3.15)

μaj(x) = qjG(x) +
1
2
qjψ̂0(x) − μj ∀x ∈ Ωs, j = 1, . . . ,M,(3.16)

Ea =
1
2

N∑
i=1

Qi

(
G+ ψ̂0 − ψvac

)
(xi) + 3β−1a−3(log a)|Ωs|,(3.17)

where |E| denotes the Lebesgue measure of a Lebesgue measurable set E ⊂ R
3.

Lemma 3.3. Let D ⊂ R
3 be a bounded and open set. Let α ∈ R. Let {u(k)} be a

sequence of functions in L1(D) such that u(k) ≥ 0 a.e. D for each k ≥ 1 and that

sup
k≥1

∫
D

Sα

(
u(k)

)
dx <∞.

Then there exists a subsequence {u(kj)} of {u(k)} such that {u(kj)} converges weakly
in L1(D) to some u ∈ L1(D) with u ≥ 0 a.e. D and

∫
D

Sα(u) dx ≤ lim inf
k→∞

∫
D

Sα

(
u(k)

)
dx.

Proof. Since Sα : [0,∞) → R is bounded below, by passing to a subsequence if
necessary, we may assume that the limit

(3.18) A := lim
k→∞

∫
D

Sα

(
u(k)

)
dx = lim inf

k→∞

∫
D

Sα

(
u(k)

)
dx
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exists and is finite. Since Sα(λ)/λ → +∞ as λ → +∞, {u(k)} is weakly sequentially
compact in L1(D) by de la Vallée Poussin’s criterion [25]. Therefore, this sequence
has a subsequence, not relabeled, that converges weakly in L1(D) to some u ∈ L1(D).
Clearly, u ≥ 0 a.e. D.

Let ε > 0. By (3.18), there exists an integer K > 0 such that

(3.19)
∫

D

Sα

(
u(k)

)
dx ≤ A+ ε ∀k > K.

By Mazur’s theorem [7, 32], there exist convex combinations v(k) of u(K+1), . . . , u(K+k)

for all k ≥ 1 such that v(k) → u in L1(D). Let v(k) =
∑k

j=1 λk,ju
(K+j) with λk,j ≥ 0

for all j and k, and
∑k

j=1 λk,j = 1 for all k. Since Sα : [0,∞) → R is convex, we have
by Jensen’s inequality and (3.19) that

(3.20) Sα

(
v(k)

)
≤

k∑
j=1

λk,jSα

(
u(K+j)

)
≤

k∑
j=1

λk,j(A+ ε) = A+ ε ∀k ≥ 1.

Since v(k) → u in L1(D), there exists a subsequence {v(kj)} of {v(k)} such that
vkj (x) → u(x) a.e. x ∈ D. Consequently, since Sα : [0,∞) → R is continuous and
bounded below, we have by Fatou’s lemma and (3.20) that

∫
D

Sα(u(x)) dx =
∫

D

lim
j→∞

Sα

(
vkj (x)

)
dx ≤ lim inf

j→∞

∫
D

Sα

(
vkj (x)

)
dx ≤ A+ ε,

concluding the proof by the arbitrariness of ε > 0.
The next two lemmas state some boundedness of concentrations that have low

free energies. Their proofs are somewhat tedious, and are given in Appendix A.
Lemma 3.4. Let c = (c1, . . . , cM ) ∈ W0 satisfy that c 
∈ L∞(Ω,RM ) or there

exists j ∈ {1, . . . ,M} with |{x ∈ Ωs : cj(x) < α}| > 0 for all α > 0. Then for
any ε > 0 there exist ĉ = (ĉ1, . . . , ĉM ) ∈ W0 that satisfies (2.5) with c replaced by ĉ,
‖ĉ− c‖X < ε, and F0[ĉ] < F0[c].

Lemma 3.5. Let c = (c1, . . . , cM ) ∈ Va and c0 be defined by (1.3). Assume there
exists j ∈ {0, 1, . . . ,M} such that |{x ∈ Ωs : a3cj(x) < α}| > 0 for all α > 0. Let
ε > 0. Then there exists ĉ = (ĉ1, . . . , ĉM ) ∈ Va that satisfies (2.6) with c replaced by
ĉ, ‖ĉ− c‖X < ε, and Fa[ĉ] < Fa[c].

4. The Poisson–Boltzmann equation: Proof of Theorems 2.1 and 2.2.
Proof of Theorem 2.1. It is easy to verify that the function B : R → R defined in
(1.14) is convex for both the case of point ions and that of finite-size ions. Let

K :=
{
u ∈ H1(Ω) : u = ψ0 on ∂Ω and χΩsB(u) ∈ L2(Ω)

}
.

Clearly, K 
= ∅ since ψ0 ∈ K and K is convex since B : R → R is convex. We show
now that K is closed in H1(Ω). Let uk ∈ K (k = 1, 2, . . . ) and uk → u in H1(Ω)



2550 BO LI

for some u ∈ H1(Ω). Clearly, u = ψ0 on ∂Ω. Up to a subsequence, not relabeled,
uk(x) → u(x) a.e. x ∈ Ω. Since B : R → R is convex and positive, we have

d2

dv2

(
[B(v)]2

)
= 2[B′(v)]2 + 2B(v)B′′(v) > 0 ∀v ∈ R.

Thus, v �→ [B(v)]2 is convex. It then follows from Fatou’s lemma, Jensen’s inequality,
and the H1(Ω)-boundedness of {uk} that

1
|Ωs|

∫
Ωs

[B(u)]2 dx ≤ lim inf
k→∞

1
|Ωs|

∫
Ωs

[B(uk)]2 dx

≤ lim inf
k→∞

[
B

(
1

|Ωs|

∫
Ωs

ukdx

)]2

<∞.

This implies that u ∈ K. Therefore, K is closed in H1(Ω). Since K is convex, it is
also weakly closed in H1(Ω).

Define now J : K → R by

J [u] =
∫

Ω

[
εΓ
2
|∇u|2 + 4πχΩsB

(
u+G− ψ̂0

2

)]
dx ∀u ∈ K,

where G and ψ̂0 are defined in (3.5) and (1.10), respectively. Note that ψ0 ∈ K and
that J [ψ0] <∞. By the Poincaré inequality, there exist constants C3 > 0 and C4 ≥ 0
such that J [u] ≥ C3‖u‖2

H1(Ω) − C4 for all u ∈ K. Thus, α := infu∈K J [u] is finite.
Let vk ∈ K (k = 1, 2 . . . ) be such that limk→∞ J [vk] = α. Then, {vk} is bounded in
H1(Ω) and, hence, it has a subsequence, not relabeled, that weakly converges to some
v ∈ H1(Ω). Since K is weakly closed, v ∈ K. Since the embedding H1(Ω) ↪→ L2(Ω)
is compact, up to a further subsequence, again not relabeled, vk → v a.e. in Ω.
Therefore, since B : R → R is continuous and nonnegative, Fatou’s lemma implies

lim inf
k→∞

∫
Ω

χΩsB

(
vk +G− ψ̂0

2

)
dx ≥

∫
Ω

χΩsB

(
v +G− ψ̂0

2

)
dx.

Since u �→
∫
Ω
εΓ|∇u|2dx is convex and H1(Ω) continuous, it is sequentially weakly

lower semicontinuous. Consequently, lim infk→∞ J [vk] ≥ J [v]. Thus, v is a minimizer
of J : K → R.

Notice that χΩsB
′(v + G − ψ̂0/2) ∈ L2(Ωs). Simple calculations of the first

variation of J : K → R at any η ∈ C∞
c (Ω) leads to∫

Ω

[
εΓ∇v · ∇η + 4πχΩsB

′

(
v +G− ψ̂0

2

)
η

]
dx = 0 ∀η ∈ C∞

c (Ω).

The function ψ = v +G is, thus, a needed solution.
We now prove the uniqueness. Let φ be another weak solution. Let ξ = ψ − φ.

Then, ξ ∈ H1
∗ (Ω), ξ = 0 on ∂Ω, and∫

Ω

{
εΓ∇ξ · ∇η + 4πχΩs

[
B′

(
ψ − ψ̂0

2

)
−B′

(
φ− ψ̂0

2

)]
η

}
dx = 0 ∀η ∈ C∞

c (Ω).
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Choosing the test functions η ∈ C∞
c (Ω) so that supp η ⊂ Ωm, we find that ξ is

harmonic in Ωm. This and the fact that ξ ∈ H1
∗ (Ω) imply that ξ ∈ H1

0 (Ω). Thus, the
above test functions η can be chosen from H1

0 (Ω). In particular, setting η = ξ and
using the convexity of B : R → R, we obtain that ξ = 0 and, hence, ψ = φ in H1(Ω).

Let σ > 0 be such that the closure of Bσ := ∪N
i=1B(xi, σ) is contained in Ωm.

Clearly, the unique weak solution ψ ∈ H1
∗ (Ω) satisfies

(4.1)
∫

Ω\Bσ

εΓ∇ψ · ∇ηdx =
∫

Ω\Bσ

gηdx ∀η ∈ C∞
c

(
Ω \Bσ

)
,

where g = −4πχΩsB
′(ψ − ψ̂0/2) ∈ L2(Ω \ Bσ). Therefore, ψ ∈ C(Ω \ Bσ) by the

standard regularity theory [14]. Since εΓ = εm in Ωm and εΓ = εs in Ωs, ψ is
harmonic in Ωm \ Bσ. Hence, ψ ∈ C∞(Ωm \ Bσ). Notice that B ∈ C∞(R); thus, we
have ψ ∈ C∞(Ωs) by a standard bootstrapping argument.

Proof of Theorem 2.2. Let ψ ∈ H1
∗ (Ω) be a weak solution to the boundary-value

problem (1.13) and (1.6). Clearly, ψm ∈ H1
∗ (Ωm). For any η ∈ C∞

c (Ωm), we extend
η to the entire Ω by defining η = 0 outside Ωm. Then, we obtain (2.2) from (2.1).
Since all xi ∈ Ωm (i = 1, . . . , N), we have ψs ∈ H1(Ωs). Since χΩsB(ψ) ∈ L2(Ωs), it
follows from (1.14) that χΩsB

′(ψ) ∈ L2(Ωs). For any η ∈ C∞
c (Ωs), we, again, extend

η to Ω by defining η = 0 outside Ωs. Then, we obtain (2.3) from (2.1). Finally, by
Lemma 3.1, (4.1), and (1.6), the last two equations in (1.15) hold true. Hence, ψ is a
weak solution to (1.15).

Now let ψ : Ω → R be a solution to the boundary-value problem (1.15). We
first show that ψ ∈ H1

∗ (Ω). Let σ > 0 be small enough so that the closure of
Bσ := ∪N

i=1B(xi, σ) is contained in Ωm. Since ψm ∈ H1
∗ (Ωm), ψm ∈ H1(Ωm \ Bσ).

Thus, the trace ψm|Γ ∈ L2(Γ), and is independent on the choice of σ. Similarly,
ψs ∈ H1(Ωs), and, hence, ψs|Γ ∈ L2(Γ). Fix j ∈ {1, 2, 3}. Define ξj : Ω \Bσ → R by
ξj = ∂jψm in Ωm \Bσ and ξj = ∂jψs in Ωs. Clearly, ξj ∈ L2(Ω \Bσ). Let nj be the
jth component of the unit exterior normal n at Γ, pointing from Ωs to Ωm. Then, for
any η ∈ C∞

c (Ω \Bσ), we have

∫
Ω\Bσ

ξjη dx =
∫

Ωm\Bσ

(∂jψm)η dx+
∫

Ωs

(∂jψs)η dx

= −
∫

Ωm\Bσ

ψ∂jη dx−
∫

Γ

ψmηnj dS −
∫

Ωs

ψ∂jη dx+
∫

Γ

ψsηnj dS

= −
∫

Ω\Bσ

ψ∂jη dx+
∫

Γ

�ψ�njη dS

= −
∫

Ω\Bσ

ψ∂jη dx,

where in the last step we used the fact that �ψ� = 0 on Γ. Thus, ξj = ∂jψ ∈ L2(Ω\Bσ),
and, hence, ψ ∈ H1

∗ (Ω) by the arbitrariness of σ > 0.
Clearly, χΩsB

′(ψ) ∈ L2(Ωs) and ψ = ψ0 on ∂Ω. It remains to show that (2.1)
holds true. Let η ∈ C∞

c (Ω). Let V1 and V2 be two open sets in R
3 such that ∂V1

and ∂V2 are of C2, xi 
∈ V2 for i = 1, . . . , N , and Γ ⊂ V1 ⊂ V 1 ⊂ V2 ⊂ V 2 ⊂ Ω. Let
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ζ ∈ C∞
c (Ω) be such that supp ζ ⊂ V2 and ζ = 1 on V1. Then, (1− ζ)η|Ωm ∈ C∞

c (Ωm),
(1 − ζ)η|Ωs ∈ C∞

c (Ωs), and (1 − ζ(xi))η(xi) = η(xi), i = 1, . . . , N. We, thus, have by
(2.2) and (2.3) that

∫
Ω

[
εΓ∇ψ · ∇η + 4πχΩsB

′

(
ψ − ψ̂0

2

)
η

]
dx

=
∫

Ω

[
εΓ∇ψ · ∇((1 − ζ)η) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
(1 − ζ)η

]
dx

+
∫

Ω

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
ζη

]
dx

=
∫

Ωm

εΓ∇ψ · ∇((1 − ζ)η)dx

+
∫

Ωs

[
εΓ∇ψ · ∇((1 − ζ)η) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
(1 − ζ)η

]
dx

+
∫

V2

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
ζη

]
dx

= 4π
N∑

i=1

Qiη(xi) +
∫

V2

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
ζη

]
dx.(4.2)

We now show that the second term in (4.2) is zero. Notice that ψ|V2 ∈ H1(V2)
and xi 
∈ V2 (1 ≤ i ≤ N). Denoting Vm = V2 ∩ Ωm and Vs = V2 ∩ Ωs, we have by
(2.2) and (2.3) that

∫
Vm

εm∇ψ · ∇ξ dx = 0 ∀ξ ∈ C∞
c (Vm),

∫
Vs

εs∇φ · ∇ξ dx = − 4π
∫

Vs

B′

(
ψ − ψ̂0

2

)
ξ dx ∀ξ ∈ C∞

c (Vs).

Consequently, since χΩsB
′(ψ − ψ̂0/2) ∈ L2(Ωs), we infer from the regularity theory

of elliptic boundary-value problems [14] that ψ|Vm ∈ H2(Vm) and ψ|Vs ∈ H2(Vs), and
that

∇ · εm∇ψ = 0 a.e. Vm,

∇ · εs∇ψ − 4πB′

(
ψ − ψ̂0

2

)
= 0 a.e. Vs.
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Therefore, the trace of εm∇ψ · n and that of εs∇ψ · n on Γ both exist. Moreover,∫
V2

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
ζη

]
dx

=
∫

Vm

εm∇ψ · ∇(ζη)dx +
∫

Vs

[
εs∇ψ · ∇(ζη) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
ζη

]
dx

= −
∫

Vm

(∇ · εm∇ψ)ζη dx−
∫

Γ

(εm∇ψ · n)ζη dS

+
∫

Vs

[
−(∇ · εs∇ψ)(ζη) + 4πχΩsB

′

(
ψ − ψ̂0

2

)
ζη

]
dx+

∫
Γ

(εs∇ψ · n)ζη dS

=
∫

Γ

�ε∇ψ · n�ζη dS

= 0,
(4.3)

where in the last step, we used the third equation of (1.15). Now, since η ∈ C∞
c (Ω)

is arbitrary, we obtain (2.1) from (4.2) and (4.3).

5. Minimization of the electrostatic free energy: Proof of Theorems 2.3,
2.4, and 2.5.

Proof of Theorem 2.3. Let t = 1 + βmax1≤j≤M ‖μ0j‖L∞(Ωs), where μ0j (j =
1, . . . ,M) are defined in (3.14). It follows from (3.12) and (3.4) that there exists
C5 > 0 such that
(5.1)

F0[c] ≥ C5

∥∥∥∥∥∥
M∑

j=1

qjcj

∥∥∥∥∥∥
2

H−1(Ω)

+ β−1
M∑

j=1

∫
Ωs

S−t(cj)dx+E0 ∀c = (c1, . . . , cM ) ∈ V0,

where E0 is defined in (3.15). Let z = infc∈V0 F0[c]. Since S−t : [0,∞) → R is
bounded below, z is finite.

Let c(k) = (c(k)
1 , . . . , c

(k)
M ) ∈ V0 (k = 1, 2, . . . ) be such that limk→∞ F0[c(k)] = z. It

follows from (5.1) that {
∫
Ωs
S−t(c

(k)
j )dx} is bounded for each j = 1, . . . ,M . Therefore,

by Lemma 3.3, up to a subsequence that is not relabeled, {c(k)
j } converges weakly in

L1(Ωs) to some cj ∈ L1(Ωs), and

(5.2)
∫

Ωs

S−t (cj) dx ≤ lim inf
k→∞

∫
Ωs

S−t

(
c
(k)
j

)
dx <∞ j = 1, . . . ,M.

Define cj = 0 on Ωm for all j = 1, . . . ,M . By (5.1), {
∑M

j=1 qjc
(k)
j } is bounded in

H−1(Ω). Since H−1(Ω) is a Hilbert space, {
∑M

j=1 qjc
(k)
j } has a subsequence, again

not relabeled, that weakly converges to some F ∈ H−1(Ω). Let ξ ∈ L∞(Ω) ∩H1
0 (Ω).

We have

F (ξ) = lim
k→∞

∫
Ω

⎛⎝ M∑
j=1

qjc
(k)
j

⎞⎠ ξdx =
∫

Ω

⎛⎝ M∑
j=1

qjcj

⎞⎠ ξdx.

Therefore,
∑M

j=1 qjcj ∈ H−1(Ω) and, hence, c = (c1, . . . , cM ) ∈ V0.
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By (5.2) and the fact that the norm of a Banach space is sequentially weakly
lower semicontinuous, we have z = lim infk→∞ F0[c(k)] ≥ F0[c] ≥ z. This implies that
c ∈ V0 is a global minimizer of F0 : V0 → R.

Let d = (d1, . . . , dM ) ∈ V0 be a local minimizer of F0 : V0 → R. Then for λ ∈ (0, 1)
close to 0, we have by the convexity of F0 : V0 → R that

F0[d] ≤ F0[λc+ (1 − λ)d] ≤ λF0[c] + (1 − λ)F0[d],

leading to F0[d] ≤ F0[c]. Thus, d is also a global minimizer of F0 : V0 → R. Clearly,
(c + d)/2 ∈ V0. Consequently, it follows from the definition of the norm ||| · ||| and
the Cauchy–Schwarz inequality with respect to the inner product 〈ξ, η〉 = ξ(Lη)
(ξ, η ∈ H−1(Ω)) that

0 ≤ F0

[
c+ d

2

]
− min

e∈V0

F0[e]

= F0

[
c+ d

2

]
− 1

2
F0[c] − 1

2
F0[d]

=
1
8

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

M∑
j=1

qj(cj + dj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

− 1
4

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

M∑
j=1

qjcj

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

− 1
4

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

M∑
j=1

qjdj

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ β−1
M∑

j=1

∫
Ωs

[
S−1

(
cj + dj

2

)
− 1

2
S−1 (cj) − 1

2
S−1 (dj)

]
dx

≤ β−1
M∑

j=1

∫
Ωs

[
S−1

(
cj + dj

2

)
− 1

2
S−1 (cj) − 1

2
S−1 (dj)

]
dx.

This, together with the convexity of S−1 on [0,∞), implies that

S−1

(
cj(x) + dj(x)

2

)
=

1
2
S−1 (cj(x))+

1
2
S−1 (dj(x)) ∀j = 1, . . . ,M, ∀x ∈ Ωs\ωs,

for some ωs ⊂ Ωs with |ωs| = 0. Let x ∈ Ωs \ ωs. Then it follows from the definition
of S−1 : [0,∞) → R that cj(x) = 0 if and only if dj(x) = 0 for all j = 1, . . . ,M .
The strict convexity of S0 on (0,∞) then implies that c = d a.e. Ωs. Hence, c = d in
V0.

Proof of Theorem 2.4. (1) Let c = (c1, . . . , cM ) ∈ W0. We show that the following
four statements are equivalent:

(i) c is an equilibrium of F0 : W0 → R;
(ii) The property (2.5) holds true, and

(5.3) qjL

⎛⎝ M∑
j=1

qjcj

⎞⎠ + μ0j + β−1 log cj = 0 a.e. Ωs, j = 1, . . . ,M ;

(iii) c is a global minimizer of F0 : W0 → R;
(iv) c is a local minimizer of F0 : W0 → R.
Assume (i) is true. Then (2.5) holds true by Definition 2.3. Let e = (e1, . . . , eM ) ∈

X ∩ L∞(Ω,RM ). Notice that S′
−1(u) = log u for any u > 0. Thus, for each j ∈

{1, . . . ,M} and each x ∈ Ωs, the mean-value theorem implies the existence of θj(x)
∈ [0, 1] such that

S−1(cj(x) + tej(x)) − S−1(cj(x)) = tej(x) log(cj(x) + tθj(x)ej(x)).
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Hence, by the Lebesgue dominated convergence theorem,

lim
t→0

∫
Ωs

S−1(cj + tej) − S−1(cj)
t

dx =
∫

Ωs

ej log cj dx, j = 1, . . . ,M.

Therefore, it follows from Definition 2.3, the definition of the norm ||| · |||, (3.12), and
(3.4) that

0 = δF0[c]e

= lim
t→0

F0[c+ te] − F0[c]
t

= lim
t→0

⎧⎪⎨⎪⎩1
2
t

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

M∑
j=1

qjej

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
∫

Ωs

⎛⎝ M∑
j=1

qjej

⎞⎠L

⎛⎝ M∑
j=1

qjcj

⎞⎠ dx

+
M∑

j=1

∫
Ωs

μ0jejdx+ β−1
M∑

j=1

∫
Ωs

1
t

[S−1(cj + tej) − S−1(cj)] dx

⎫⎪⎬⎪⎭
=

M∑
j=1

∫
Ωs

⎡⎣qjL
⎛⎝ M∑

j=1

qjcj

⎞⎠ + μ0j + β−1 log cj

⎤⎦ ejdx ∀e ∈ X ∩ L∞ (
Ω,RM

)
.

(5.4)

This implies (5.3). Hence, (ii) is true.
Assume (ii) is true. We show that (iii) is true. By Lemma 3.4, we need only to

show that F0[c] ≤ F0[d] for any fixed d = (d1, . . . , dM ) ∈ W0 that satisfies (2.5) with
c replaced by d. In fact, setting e = (e1, . . . , eM ) = d− c ∈ X ∩ L∞(Ω,RM ), we have
by the convexity of S−1 : [0,∞) → R that

S−1(dj) − S−1(cj) ≥ (dj − cj)S′
−1(cj) = ej log cj a.e. Ωs.

Therefore, it follows from (3.12) and (5.3) that

F0[d] − F0[c] =
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjej

⎞⎠L

⎛⎝ M∑
j=1

qjej

⎞⎠ dx+
∫

Ωs

⎛⎝ M∑
j=1

qjej

⎞⎠L

⎛⎝ M∑
j=1

qjcj

⎞⎠ dx

+
M∑

j=1

∫
Ωs

μ0jejdx+ β−1
M∑

j=1

∫
Ωs

[S−1(dj) − S−1(cj)] dx

≥
M∑

j=1

∫
Ωs

[
qjL

(
M∑
i=1

qici

)
+ μ0j + β−1 log cj

]
ejdx

= 0.

Hence, F0[c] ≤ F0[d], and (iii) is true.
Clearly, (iii) implies (iv).
Finally, assume (iv) is true. By Lemma 3.4, (2.5) holds true. For any e ∈

X∩L∞(Ω,RM ), it is easy to see that δF0[c]e exists, cf. (5.4). Since F0[c+te] ≥ F0[c] for
|t| small enough, we have δF0[c]e = 0. Therefore, c is an equilibrium of F0 : W0 → R,
and (i) is true.
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Let now ψ ∈ H1
∗ (Ω) be the unique weak solution to the boundary-value problem

of the PBE (1.11) and (1.6), cf. Theorem 2.1. Define c = (c1, . . . , cM ) : Ω → R by
(1.9) for point ions and cj(x) = 0 for all x ∈ Ωm and all j = 1, . . . ,M . Clearly,
c ∈ W0. Moreover, by Theorem 2.1, ψ|Ωs ∈ C(Ωs). This implies (2.5). It follows
from (1.11), (1.6), (1.9) for point ions, and Lemma 3.2 with f =

∑M
j=1 qjcj that ψ

is the electrostatic potential corresponding to c; i.e., ψ = G + ψ̂0 + L(
∑M

j=1 qjcj).
This, together with the Boltzmann relations (1.9) for point ions and (3.14), implies
(5.3). Hence, c is an equilibrium, and, thus, a local and global minimizer, of F0 :
W0 → R. The uniqueness of equilibria or local minimizers is equivalent to that of
global minimizers, and can be proved by the same argument used in the proof of
Theorem 2.3.

(2) It is clear that from our definition of c and ψ that we need only to prove
(2.7). Since c is the unique minimizer of F0 : W0 → R and ψ is the corresponding
electrostatic potential determined by (3.11), we have by (1.1) and (1.9) for point ions
that

min
d∈W0

F0[d] = F0[c]

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠ψdx

+ β−1
M∑

j=1

∫
Ωs

cj
[
log

(
a3cj

)
− 1

]
dx −

M∑
j=1

∫
Ωs

μjcjdx

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) −
1
2

M∑
j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
dx

− β−1
M∑

j=1

∫
Ωs

c∞j e
−βqj(ψ−ψ̂0/2)dx.(5.5)

Since ψ is the unique solution to the boundary-value problem of PBE (1.11) and (1.6),
and since ψ̂0 is harmonic in Ωs by (1.10), we have

εsΔ
(
ψ − ψ̂0

)
+ 4π

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2) = 0 a.e. Ωs.

Multiplying both sides of this equation by ψ − ψ̂0 and integrate the resulting terms
over Ωs, we obtain by integration by parts and the fact that by Lemma 3.1 both
ψ − ψ̂0 and εΓ∂n(ψ − ψ̂0) are continuous across Γ,

−
∫

Ωs

εs

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx+
∫

Γ

εΓ

(
ψ − ψ̂0

)
∂n

(
ψ − ψ̂0

)
dS

+ 4π
M∑

j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
dx = 0.

This and (5.5) imply (2.7).
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Proof of Theorem 2.5. (1) We first show that Fa : Va → R is a convex functional.
Define TM = {(u1, . . . , uM ) ∈ R

M : uj > 0 for j = 1, . . . ,M, and
∑M

j=1 uj < 1} and

h(u) =

⎛⎝1 −
M∑

j=1

uj

⎞⎠⎡⎣log

⎛⎝1 −
M∑

j=1

uj

⎞⎠− 1

⎤⎦ ∀u = (u1, . . . , uM ) ∈ TM .

Clearly, TM is convex. We have ∂uiujh(u) = (1−
∑M

k=1 uk)−1 for all 1 ≤ i, j ≤M . Let
H(u) = (∂uiujh) be the Hessian of h : TM → R. Then, for any y = (y1, . . . , yM ) ∈ RM ,
we have y ·H(u)y = (

∑M
k=1 yk)2/(1 −

∑
k=1 uk) ≥ 0. Therefore, H(u) is symmetric,

semidefinite for any u ∈ TM . Hence, h : TM → R is convex. Consequently, since Va

is a convex subset of X and S−1 : [0,∞) → R is convex, we conclude by (3.13) that
Fa : Va → R is convex.

Let now c = (c1, . . . , cM ) ∈ Va. By the same argument used in the proof of
Theorem 2.4, we obtain the equivalence of the following four statements:

(i) c is an equilibrium of Fa : Va → R;
(ii) The property (2.6) holds true, and

(5.6) qjL

(
M∑
i=1

qici

)
+ μaj + β−1 log

(
a3cj

1 − a3
∑M

i=1 ci

)
= 0

a.e. Ωs, j = 1, . . . ,M ;

(iii) c is a global minimizer of Fa : Va → R;
(iv) c is a local minimizer of Fa : Va → R.
Let ψ ∈ H1

∗ (Ω) be the unique weak solution to the boundary-value problem of
the PBE (1.12) and (1.6), cf. Theorem 2.1. Define c = (c1, . . . , cM ) : Ω → R by (1.9)
for finite-size ions and cj(x) = 0 for all x ∈ Ωm and all j = 1, . . . ,M . Clearly, c ∈ Va.
Moreover, by Theorem 2.1, ψ|Ωs ∈ C(Ωs). This implies (2.6). By (1.9) for finite-size
ions, we have

a3
M∑

j=1

cj(x) = 1 − 1

1 + a3
∑M

i=1 c
∞
i e

−βqi

(
ψ−ψ̂0/2

) .
This together with (1.9) for finite-size ions imply that

(5.7)
cj

1 − a3
∑M

i=1 ci
= c∞j e

−βqj

(
ψ−ψ̂0/2

)
, j = 1, . . . ,M.

It follows from (1.12), (1.6), (1.9) for finite-size ions, and Lemma 3.2 with f =∑M
j=1 qjcj that ψ is the electrostatic potential corresponding to c, i.e., ψ = G +

ψ̂0 +L(
∑M

j=1 qjcj). This, together with (5.7) and (3.16), implies (5.6). Hence, c is an
equilibrium, and, thus, a local and global minimizer, of Fa : Va → R. The uniqueness
of equilibria or local minimizers is equivalent to that of global minimizers, and can be
proved by the same argument used in the proof of Theorem 2.3.

(2) We need only to prove (2.8). Since c is the unique minimizer of Fa : Va → R

and ψ is the corresponding electrostatic potential determined by (3.11), we have by
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(1.2), (1.3), and (1.9) for finite-size ions that

min
d∈Va

Fa[d] = Fa[c]

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠ψdx

+ β−1
M∑

j=0

∫
Ωs

cj
[
log

(
a3cj

)
− 1

]
dx−

M∑
j=1

∫
Ωs

μjcjdx

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) −
1
2

M∑
j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
1 + a3

∑M
i=1 c

∞
i e

−βqi(ψ−ψ̂0/2)
dx

− β−1a−3

∫
Ωs

[
1 + log

(
1 + a3

M∑
i=1

c∞i e
−βqi(ψ−ψ̂0/2)

)]
dx.(5.8)

Since ψ is the unique solution to the boundary-value problem of PBE (1.12) and (1.6),
and since ψ̂0 is harmonic in Ωs by (1.10), we have

εsΔ
(
ψ − ψ̂0

)
+ 4π

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2)

1 + a3
∑M

i=1 c
∞
i e

−βqi(ψ−ψ̂0/2)
= 0 a.e. Ωs.

Multiplying both sides of this equation by ψ− ψ̂0 and integrating the resulting terms
over Ωs, we obtain by integration by parts and the fact that by Lemma 3.1 both
ψ − ψ̂0 and εΓ∂n(ψ − ψ̂0) are continuous across Γ,

−
∫

Ωs

εs

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx+
∫

Γ

εΓ

(
ψ − ψ̂0

)
∂n

(
ψ − ψ̂0

)
dS

+ 4π
M∑

j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
1 + a3

∑M
i=1 c

∞
i e

−βqi(ψ−ψ̂0/2)
dx = 0.

This and (5.8) imply (2.8).

Appendix A.
We now prove Lemma 3.4 and Lemma 3.5 by constructing ionic concentrations

that satisfy required conditions and that have lower free energies. The key idea here
is based on the following observation: the function Sα : [0,∞) → R, defined for any
α ∈ R by Sα(0) = 0 and Sα(u) = u(α+ log u) if u > 0, has a unique minimizer which
is a positive number. Moreover, the magnitude |S′

α(u)| is very large if u is close to 0 or
∞. Notice that −Sα represents the entropy of the system. Therefore, small changes
of concentrations near zero or infinity can largely increase the corresponding entropy
and, hence, decrease the free energy.

Proof of Lemma 3.4. We first construct c̄ ∈W0 that satisfies

(A.1) c̄j(x) ≤ γ′2 a.e. x ∈ Ωs, j = 1, . . . ,M,

for some constant γ′2 > 0, ‖c̄− c‖X < ε/2, and F0[c̄] ≤ F0[c] with a strict inequality
if c 
∈ L∞(Ω,RM ). Let A > 0. Define c̄ = (c̄1, . . . , c̄M ) : Ω → R by

(A.2) c̄j(x) =

{
cj(x) if cj(x) ≤ A

0 if cj(x) > A
∀x ∈ Ω, j = 1, . . . ,M.
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Clearly, c̄ ∈ W0 and (A.1) holds true with γ′2 = A. Moreover,
∑M

j=1 ‖c̄j − cj‖L1(Ω) <
ε/4 for A > 0 large enough.

Denote

τj(A) = {x ∈ Ωs : cj(x) > A}, j = 1, . . . ,M.

Since c ∈W0, there exists p > 3/2 such that each cj ∈ Lp(Ω) (1 ≤ j ≤M). Thus,

M∑
j=1

qj c̄j −
M∑

j=1

qjcj = −
M∑

j=1

qjχτj(A)cj → 0 in Lp(Ω) as A→ ∞.

By the definition of L : H−1(Ω) → H1
0 (Ω) and the regularity theory for elliptic

problems [14], we have L(
∑M

j=1 qjχτj(A)cj)|Ωs ∈W 2,p(Ωs) and∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qjχτj(A)cj

⎞⎠∥∥∥∥∥∥
W 2,p(Ωs)

≤ C

∥∥∥∥∥∥
M∑

j=1

qjχτj(A)cj

∥∥∥∥∥∥
Lp(Ωs)

→ 0 as A→ ∞.

Hence, by (3.4) and the embedding W 2,p(Ωs) ↪→ L∞(Ωs) that∥∥∥∥∥∥
M∑

j=1

qj c̄j −
M∑

j=1

qjcj

∥∥∥∥∥∥
2

H−1(Ω)

≤ C

∫
Ωs

⎛⎝ M∑
j=1

qjχτj(A)cj

⎞⎠L

⎛⎝ M∑
j=1

qjχτj(A)cj

⎞⎠ dx

≤ C

∥∥∥∥∥∥
M∑

j=1

qjχτj(A)cj

∥∥∥∥∥∥
L1(Ωs)

∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qjχτj(A)cj

⎞⎠∥∥∥∥∥∥
L∞(Ωs)

≤ C

∥∥∥∥∥∥
M∑

j=1

qjχτj(A)cj

∥∥∥∥∥∥
Lp(Ωs)

∥∥∥∥∥∥L
⎛⎝M∑

j=1

qjχτj(A)cj

⎞⎠∥∥∥∥∥∥
W 2,p(Ωs)

≤ C

∥∥∥∥∥∥
M∑

j=1

qjχτj(A)cj

∥∥∥∥∥∥
2

Lp(Ωs)

→ 0 as A→ ∞.

Therefore, ‖c̄− c‖X < ε if A > 0 is large enough.
Notice that c̄j = cj − χτj(A)cj for all j = 1, . . . ,M . Thus,

1
2

∫
Ωs

⎛⎝ M∑
j=1

qj c̄j

⎞⎠L

⎛⎝ M∑
j=1

qj c̄j

⎞⎠ dx− 1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠L

⎛⎝ M∑
j=1

qjcj

⎞⎠ dx

= −1
2

∫
Ωs

⎛⎝ M∑
j=1

qjχτj(A)cj

⎞⎠L

⎛⎝ M∑
j=1

qjcj +
M∑

j=1

qj c̄j

⎞⎠ dx

≤ 1
2

M∑
j=1

|qj |dj(A)
∫

τj(A)

cjdx,(A.3)
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where

dj(A) =

∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qjcj

⎞⎠∥∥∥∥∥∥
L∞(Ωs)

+

∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qj c̄j

⎞⎠∥∥∥∥∥∥
L∞(Ωs)

.

Since ∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qj c̄j

⎞⎠∥∥∥∥∥∥
L∞(Ωs)

≤ C

∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qj c̄j

⎞⎠∥∥∥∥∥∥
W 2,p(Ωs)

≤ C

∥∥∥∥∥∥
M∑

j=1

qj c̄j

∥∥∥∥∥∥
Lp(Ωs)

→

∥∥∥∥∥∥
M∑

j=1

qjcj

∥∥∥∥∥∥
Lp(Ωs)

as A → ∞, we have max1≤j≤M dj(A) ≤ C as A > 0 large enough. For each fixed
j ∈ {1, . . . ,M} and x ∈ τj(A), we also have

(A.4) S−1(c̄j(x)) − S−1(cj(x)) = −S−1(cj(x)) = −cj(x) log cj(x) ≤ −cj(x) logA.

Therefore, it follows from (3.12), (A.3), and (A.4) that

F0[c̄] − F0[c] ≤
M∑

j=1

(
1
2
|qj |dj(A) + ‖μ0j‖L∞(Ωs) − β−1 logA

)∫
τj(A)

cjdx.

If A > 0 is large enough, this is nonpositive. If c 
∈ L∞(Ω,RM ), then there exists
j ∈ {1, . . . ,M} such that |τj(A)| > 0 for all A > 0. In this case, we have the strict
inequality F0[c̄] < F0[c].

We now construct ĉ ∈ W0 that satisfies (2.5) with c replaced by ĉ, ‖ĉ− c̄‖X < ε/2,
and F0[ĉ] ≤ F0[c̄] with a strict inequality if there exists j ∈ {1, . . . ,M} such that
|{x ∈ Ωs : cj(x) < α}| > 0 for all α > 0, all these implying that ĉ satisfies all the
desired properties. If there exists γ′1 > 0 such that cj(x) ≥ γ′1 for a.e. x ∈ Ωs and
j = 1, . . . ,M , then ĉ = c̄ with A ≥ γ′1 (cf. (A.2)) satisfies all the desired properties
with γ1 = γ′1 and γ2 = γ′2. Assume otherwise there exists j0 ∈ {1, . . . ,M} such that
|{x ∈ Ωs : cj0(x) < α}| > 0 for all α > 0. This means that |{x ∈ Ωs : c̄j0(x) < α}| > 0
for all α > 0.

Define

ρj(α) = {x ∈ Ωs : c̄j(x) < α} ∀α > 0, j = 1, . . . ,M,

I0 = {j ∈ {1, . . . ,M} : |ρj(α)| > 0 ∀α > 0},
I1 = {1, . . . ,M} \ I0.

Clearly, I0 
= ∅. If I1 
= ∅, then there exists α1 > 0 such that

c̄j(x) ≥ α1 a.e. x ∈ Ωs, ∀j ∈ I1.

Define for 0 < α < α1 and 1 ≤ j ≤M

ĉj(x) =

{
c̄j(x) + αχρj(α)(x) if j ∈ I0

c̄j(x) if j ∈ I1
∀x ∈ Ω.

Clearly, ĉ = (ĉ1, . . . , ĉM ) ∈ W0 and (2.5) holds true with c replaced by ĉ, γ1 = α,
and γ2 = γ′2 + α. Moreover,

∑M
j=1 ‖ĉj − c̄j‖L1(Ω) < ε/4 if α > 0 is small enough.
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Furthermore,∥∥∥∥∥∥
M∑

j=1

qj ĉj −
M∑

j=1

qj c̄j

∥∥∥∥∥∥
H−1(Ω)

= α

∥∥∥∥∥∥
∑
j∈I0

qjχρj(α)

∥∥∥∥∥∥
H−1(Ω)

≤ α

∥∥∥∥∥∥
∑
j∈I0

qjχρj(α)

∥∥∥∥∥∥
L2(Ω)

≤ α
∑
j∈I0

|qj |
√
|ρj(α)| → 0 as α→ 0.(A.5)

Hence, ‖ĉ− c̄‖X < ε/2 if α > 0 is small enough.
By the mean-value theorem and the fact that S′

−1(u) = log u for any u > 0,

M∑
j=1

∫
Ωs

[S−1(ĉj) − S−1(c̄j)] dx =
∑
j∈I0

∫
ρj(α)

[S−1(ĉj) − S−1(c̄j)] dx

≤ α log (2α)
∑
j∈I0

|ρj(α)|.

Consequently, it follows from (3.13), (3.4), (A.5) that

F0[ĉ] − F0[c̄] =
1
2

∫
Ωs

⎛⎝ M∑
j=1

qj c̄j + α
∑
j∈I0

qjχρj(α)

⎞⎠L

⎛⎝ M∑
j=1

qj c̄j + α
∑
j∈I0

qjχρj(α)

⎞⎠ dx

− 1
2

∫
Ωs

⎛⎝ M∑
j=1

qj c̄j

⎞⎠L

⎛⎝ M∑
j=1

qj c̄j

⎞⎠ dx+ α
∑
j∈I0

∫
ρj(α)

μ0jdx

+ β−1
∑
j∈I0

∫
ρj(α)

[S−1(ĉj) − S−1(c̄j)] dx

≤ α2

2

∫
Ωs

⎛⎝∑
j∈I0

qjχρj(α)

⎞⎠L

⎛⎝∑
j∈I0

qjχρj(α)

⎞⎠ dx

+ α

∫
Ωs

⎛⎝∑
j∈I0

qjχρj(α)

⎞⎠L

⎛⎝ M∑
j=1

qj c̄j

⎞⎠ dx

+ α
∑
j∈I0

‖μ0j‖L∞(Ωs)|ρj(α)| + α
∑
j∈I0

β−1 log(2α)|ρj(α)|

≤ α2

2

(∑
i∈I0

q2i

) ∑
j∈I0

|ρj(α)| + α

∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qj c̄j

⎞⎠∥∥∥∥∥∥
L∞(Ωs)

∑
j∈I0

|qj ||ρj(α)|

+ α
∑
j∈I0

‖μ0j‖L∞(Ωs)|ρj(α)| + α
∑
j∈I0

β−1 log(2α)|ρj(α)|

= α
∑
j∈J0

⎡⎢⎣α2
⎛⎝∑

j∈I0

q2j

⎞⎠ + |qj |

∥∥∥∥∥∥L
⎛⎝ M∑

j=1

qj c̄j

⎞⎠∥∥∥∥∥∥
L∞(Ωs)

+‖μ0j‖L∞(Ωs) + β−1 log(2α)|

⎤⎥⎦ ρj(α)|.

Since I0 
= ∅, this is strictly negative if α > 0 is small enough.
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Proof of Lemma 3.5. We first construct c̄ = (c̄1, . . . , c̄M ) ∈ Va such that

(A.6) a3c̄0(x) = 1 − a3
M∑

j=1

c̄j(x) ≥ θ1 a.e. x ∈ Ωs

for some constant θ1 ∈ (0, 1), ‖c̄−c‖X < ε/2, and Fa[c̄] ≤ Fa[c] with a strict inequality
if |{x ∈ Ωs : a3c0(x) < α}| > 0 for all α > 0.

Denote for any α > 0

ω0(α) =
{
x ∈ Ωs : a3c0(x) < α

}
.

If there exists a constant α1 > 0 such that |ω0(α1)| = 0, i.e., a3c0(x) ≥ α1 a.e.
Ωs, then (c̄1, . . . , c̄M ) = (c1, . . . , cM ) ∈ Va satisfies all the desired properties with
θ1 = α1/(1 + α1) ∈ (0, 1). Suppose |ω0(α)| > 0 for any α > 0. Let 0 < α < 1/(4M).
Let x ∈ ω0(α). Then there exists some j = j(x) ∈ {1, . . . ,M} such that a3cj(x) ≥
1/(2M). In fact, if this were not true, then a3ci(x) < 1/(2M) for all i = 1, . . . ,M .
Hence, a3c0(x) = 1 − a3

∑M
i=1 ci(x) > 1/2 > α. This would mean that x 
∈ ω0(α), a

contradiction. Denoting

Hj(α) =
{
x ∈ ω0(α) : a3cj(x) ≥ 1

2M

}
, j = 1, . . . ,M,

we, thus, have ω0(α) = ∪M
j=1Hj(α). Since |ω0(α)| > 0, we have |Hj1(α)| > 0 for

some j1 (1 ≤ j1 ≤ M). If |Hj(α) \ Hj1(α)| = 0 for all j 
= j1, then we have
ω0(α) = K̃1(α) ∪ Hj1(α) for some K̃1(α) ⊂ ω0(α) with |K̃1(α)| = 0. Otherwise,
|Hj2(α)\Hj1(α)| > 0 for some j2 
= j1. In case |ω0(α)\[Hj1(α)∪Hj2 (α)]| = 0, we have
ω0(α) = K̃2(α)∪Hj1 (α)∪[Hj2 (α)\Hj1(α)] for some K̃2(α) ⊂ ω0(α) with |K̃2(α)| = 0.
By induction, we see that there existm ∈ {1, . . . ,M}, K̃m(α) ⊂ ω0(α) with |K̃m(α)| =
0, and mutually disjoint sets Kj1(α), . . . ,Kjm(α) ⊆ ω0(α) such that Kji(α) ⊆ Hji(α)
and |Kji(α)| > 0 for i = 1, . . . ,m, and ω0(α) = K̃m(α)∪ [∪m

i=1Kji(α)] . By relabeling,
we may assume that ji = i for i = 1, . . . ,m.

Define now

c̄j(x) =

{
cj(x) − αa−3χKj(α)(x) ∀x ∈ Ω, j = 1, . . . ,m,

cj(x) ∀x ∈ Ω, j = m+ 1, . . . ,M,
(A.7)

c̄0(x) = a−3

⎡⎣1 − a3
M∑

j=1

c̄j(x)

⎤⎦ ∀x ∈ Ωs.

It is easy to see that (c̄1, . . . , c̄M ) ∈ Va. Moreover,

(A.8) a3c̄0(x) = a3c0(x) + αχω0(α)(x) ≥ α a.e. x ∈ Ωs,

implying (A.6) with θ1 = α. Clearly,
∑M

j=1 ‖c̄j − cj‖L1(Ω) ≤ αa−3
∑m

j=1 |Kj(α)|.
Moreover,∥∥∥∥∥∥

M∑
j=1

qj c̄j −
M∑

j=1

qjcj

∥∥∥∥∥∥
H−1(Ω)

≤ αa−3

∥∥∥∥∥∥
m∑

j=1

qjχKj(α)

∥∥∥∥∥∥
L2(Ω)

≤ αa−3

√√√√ m∑
j=1

q2j |Kj(α)|.

Therefore, ‖c̄− c‖X < ε/2, provided that α > 0 is small enough.
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If x ∈ Kj(α) for some j with 1 ≤ j ≤ m, then cj(x) ≥ 1/(2Ma3), and c̄j(x) ≥
1/(4Ma3) since 0 < α < 1/(4M). By the mean-value theorem and the fact that
S′
−1(u) = log u for any u > 0, there exists ηj(x) with c̄j(x) ≤ ηj(x) ≤ cj(x) such that

S−1 [c̄j(x)] − S−1 [cj(x)] = [c̄j(x) − cj(x)] log ηj(x)
≤ −αa−3 log c̄j(x) ≤ αa−3 log

(
4Ma3

)
.

By the same argument using (A.8) and the definition of ω0(α), we obtain

S−1 (c̄0(x)) − S−1 (c0(x)) ≤ αa−3 log
(
a−3α

)
a.e. x ∈ ω0(α).

Consequently, we have by (3.13), (3.4), and the embedding L2(Ωs) ↪→ H−1(Ωs) that

Fa[c̄] − Fa[c] =
1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj − αa−3
m∑

j=1

qjχKj(α)

⎞⎠
L

⎛⎝ M∑
j=1

qjcj − αa−3
m∑

j=1

qjχKj(α)

⎞⎠ dx

− 1
2

∫
Ωs

⎛⎝ M∑
j=1

qjcj

⎞⎠L

⎛⎝ M∑
j=1

qjcj

⎞⎠ dx− αa−3
m∑

j=1

∫
Kj(α)

μajdx

+ β−1
m∑

j=0

∫
ω0(α)

[S−1(c̄j) − S−1(cj)] dx

≤ 1
2
α2a−6

∫
Ωs

⎛⎝ m∑
j=1

qjχKj(α)

⎞⎠L

⎛⎝ m∑
j=1

qjχKj(α)

⎞⎠ dx

− αa−3

∫
Ωs

⎛⎝ m∑
j=1

qjχKj(α)

⎞⎠L

⎛⎝ m∑
j=1

qjcj

⎞⎠ dx

+ αa−3
m∑

j=1

‖μaj‖L∞(Ωs)|Kj(α)|

+ β−1αa−3 log
(
a−3α

)
|ω0(α)| + β−1αa−3 log

(
4Ma3

)
|ω0(α)|

≤ Cα2a−6

∥∥∥∥∥∥
m∑

j=1

qjχKj(α)

∥∥∥∥∥∥
2

L2(Ωs)

+ αa−3

∥∥∥∥L( M∑
j=1

qjcj

)∥∥∥∥
L∞(Ω)

m∑
j=1

|qj ||Kj(α)|

+ αa−3
m∑

j=1

‖μaj‖L∞(Ωs)|Kj(α)| + β−1αa−3 log
(
8Ma3α

) m∑
j=1

|Kj(α)|

= α

M∑
j=1

[
Cαa−6q2j + a−3|qj |

∥∥∥∥L( M∑
j=1

qjcj

)∥∥∥∥
L∞(Ω)

+ a−3‖μaj‖L∞(Ωs)

+ β−1a−3 log
(
8Ma3α

)]
|Kj(α)|,
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where C > 0 is a constant independent of α. Thus, Fa[c̄] − Fa[c] is nonpositive for
α > 0 sufficiently small. It is strictly negative, if |ω0(α)| =

∑m
j=1 |Kj(α)| > 0 for all

α > 0, i.e., if |{x ∈ Ωs : a3c0(x) < α}| > 0 for all α > 0.
We now construct ĉ ∈ Va that satisfies (2.6) with c replaced by ĉ, ‖ĉ− c̄‖X < ε/2,

and Fa[ĉ] ≤ Fa[c̄] with a strict inequality if there exists j ∈ {1, . . . ,M} such that
|{x ∈ Ωs : a3cj(x) < α}| > 0 for all α > 0, all these implying that ĉ satisfies
all the desired properties. If there exists θ2 ∈ (0, 1) such that cj(x) ≥ θ2 for a.e.
x ∈ Ωs and all j = 1, . . . ,M , then ĉ = c̄ with 0 < α < θ2/2 (cf. (A.7)) satisfies
all the desired properties with θ0 = min(θ1, θ2/2). Assume otherwise there exists
j0 ∈ {1, . . . ,M} such that |{x ∈ Ωs : cj0(x) < α}| > 0 for all α > 0. This means that
|{x ∈ Ωs : c̄j0(x) < α}| > 0 for all α > 0.

Define

σj(α) = {x ∈ Ωs : a3c̄j(x) < α} ∀α > 0, j = 1, . . . ,M,

J0 = {j ∈ {1, . . . ,M} : |σj(α)| > 0 ∀α > 0},
J1 = {1, . . . ,M} \ J0.

Clearly, J0 
= ∅. If J1 
= ∅, then there exists α2 > 0 such that

a3c̄j(x) ≥ α2 a.e. x ∈ Ωs, ∀j ∈ J1.

Define for 0 < α < min{α2, θ1/M} and 1 ≤ j ≤M

ĉj(x) =

{
c̄j(x) + αa−3χσj(α)(x) if j ∈ J0

c̄j(x) if j ∈ J1

∀x ∈ Ω.

ĉ0(x) = a−3

⎡⎣1 −
M∑

j=1

a3ĉj(x)

⎤⎦ ∀x ∈ Ωs.

Notice by (A.6) that

a3ĉ0(x) = 1 −
M∑

j=1

a3ĉj(x) = 1 −
M∑

j=1

a3c̄j(x) − α
∑
j∈J0

χσj(α)

≥ θ1 − αM > 0 a.e. x ∈ Ωs.

Thus, ĉ = (ĉ1, . . . , ĉM ) ∈ Va. Clearly, (2.6) holds true for θ0 = min{α, α2, θ1 − αM}.
Applying the same argument used above, we obtain that ‖ĉ − c̄‖X < ε/2 for α > 0
small enough.

We have now by the mean-value theorem that

M∑
j=1

∫
Ωs

[S−1(ĉj) − S−1(c̄j)] dx =
∑
j∈J0

∫
σj(α)

[S−1(ĉj) − S−1(c̄j)] dx

≤ αa−3 log
(
2αa−3

) ∑
j∈J0

|σj(α)|.

Similarly, we have by (2.6) that∫
Ωs

[S−1(ĉ0) − S−1(c̄0)] dx ≤ −αa−3 log
(
a−3θ0

) ∑
j∈J0

|σj(α)|.
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Consequently, we have by (3.13) and a similar argument that

Fa[ĉ] − Fa[c̄] =
1
2

∫
Ωs

⎛⎝ M∑
j=1

qj c̄j + αa−3
∑
j∈J0

qjχσj(α)

⎞⎠
L

⎛⎝ M∑
j=1

qj c̄j + αa−3
∑
j∈J0

qjχσj(α)

⎞⎠ dx

− 1
2

∫
Ωs

⎛⎝ M∑
j=1

qj c̄j

⎞⎠L

⎛⎝ M∑
j=1

qj c̄j

⎞⎠ dx+ αa−3
∑
j∈J0

∫
σj(α)

μajdx

+ β−1
∑
j∈J0

∫
σj(α)

[S−1(ĉj) − S−1(c̄j)] dx

+ β−1

∫
Ωs

[S−1(ĉ0) − S−1(c̄0)] dx

≤ Cα2a−6

∥∥∥∥∥∥
∑
j∈J0

qjχσj(α)

∥∥∥∥∥∥
2

L2(Ωs)

+ αa−3

∥∥∥∥∥∥
M∑

j=1

qj c̄j

∥∥∥∥∥∥
L∞(Ωs)

∑
j∈J0

|qj ||σj(α)|

+ αa−3
∑
j∈J0

‖μaj‖L∞(Ωs)|σj(α)| + β−1αa−3 log(2α/θ0)
∑
j∈J0

|σj(α)|

≤ α
∑
j∈J0

⎡⎢⎣Cαa−6q2j + a−3|qj |

∥∥∥∥∥∥
M∑

j=1

qj c̄j

∥∥∥∥∥∥
L∞(Ωs)

+ a−3‖μaj‖L∞(Ωs)

+β−1a−3 log(2α/θ0)

⎤⎥⎦ |σj(α)|.

Since J0 
= ∅, this is strictly negative if α > 0 is sufficiently small. The case that
J1 = ∅ can be treated similarly.
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WAVE BREAKING AND PERSISTENCE PROPERTIES FOR THE
DISPERSIVE ROD EQUATION∗

ZHENGGUANG GUO† AND YONG ZHOU‡

Abstract. This paper is concerned with some aspects of blow up of solutions and persistence
properties. Firstly, we will try to give sufficient conditions on the initial data, which guarantee finite
time singularity formation for the corresponding solutions. Then a particular class of initial data for
the periodic case is also considered in this paper. Finally, we investigate the persistence properties
of the strong solutions.
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1. Introduction. Although a rod is always three-dimensional, if its diameter is
much less than the axial length scale, one-dimensional equations can give a good de-
scription of the motion of the rod. Recently Dai [18] derived a new (one-dimensional)
nonlinear dispersive equation including extra nonlinear terms involving second-order
and third-order derivatives for a compressible hyperelastic material. The equation
reads

vτ + σ1vvξ + σ2vξξτ + σ3(2vξvξξ + vvξξξ) = 0,

where v(ξ, τ) represents the radial stretch relative to a prestressed state, σ1 �= 0,
σ2 < 0, and σ3 ≤ 0 are constants determined by the prestress and the material
parameters. If one introduces the following transformations

τ =
3
√
−σ2

σ1
t, ξ =

√
−σ2x,

then the above equation turns into

ut − uxxt + 3uux = γ(2uxuxx + uuxxx),(1.1)

where γ = 3σ3/(σ1σ2). In [19], the authors derived that the value range of γ is from
−29.4760 to 3.4174 for some special compressible materials. In this paper, from the
mathematical viewpoint, we regard γ as a real number.

When γ = 1 in (1.1), we recover the shallow water (Camassa–Holm) equation
derived physically by Camassa and Holm in [4] by approximating directly the Hamil-
tonian for Euler’s equations in the shallow water regime, where u(x, t) represents
the free surface above a flat bottom. Recently, the alternative derivations of the
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Camassa–Holm equation were presented in [5, 25, 13]. Some satisfactory results have
been obtained for this shallow water equation recently. Local well-posedness for the
initial datum u0(x) ∈ Hs, with s > 3/2 was proved by several authors [10, 26, 32, 34].
For the initial data with lower regularity, we refer to Molinet’s paper [30] and also
the recent paper [3]. Moreover, wave breaking for a large class of initial data has
been established in [8, 9, 10, 11, 26, 29, 36, 40, 41]. Later, in [20], the first author
considered the Camassa–Holm equation with weakly dissipative term and established
blow-up criteria and sufficient conditions on global existence of the solutions. Re-
cently, in [24], among others, Himonas et al. showed the infinite propagation speed
for the Camassa–Holm equation in the sense that a strong solution of the Cauchy
problem with compact initial profile cannot be compactly supported at any later time
unless it is the zero solution, which is an improvement of previous results in this di-
rection obtained in [6, 21, 22]. These results were recently extended in [23] for a large
range of physically important equations. However, in [38], global existence of weak
solutions is proved, but uniqueness is obtained only under an a priori assumption that
is known to hold only for initial data u0(x) ∈ H1 such that u0−u0xx is a sign-definite
Radon measure (under this condition, global existence and uniqueness was also shown
in [14], in which case a stronger concept of weak solutions can be introduced). Ac-
tually, there are approaches towards unique global weak solutions for initial data in
H1, the important distinction being between conservative solutions [3] and dissipative
solutions [2]. The solitary waves of the Camassa–Holm equation are peaked solitons
[4] with u(x, t) = e−|x−ct|, where c ∈ R is the wave speed. The orbital stability of
the peakons was shown by Constantin and Strauss [16]. An alternative approach is
proposed in the paper [15]. Here it is worth it to point out that the peakons replicate
a feature that is characteristic for the waves of great height-waves of largest amplitude
that are exact solutions of the governing equations for water waves; cf. [7, 35, 12].

If γ = 0, (1.1) is the Benjamin–Bona–Mahony (BBM) equation, a well-known
model for surface waves in a canal [1], and its solutions are global.

For general γ ∈ R, much of the early results were proven by Constantin and
Strauss in [17] first. Local well-posedness of strong solutions to (1.1) was established
by applying Kato’s theory, and some sufficient conditions on the initial data were
found to guarantee the finite blow up of the corresponding solutions for the spatially
nonperiodic case. Later, Zhou [43] proved the well-posedness result in detail, and
various refined sufficient conditions on the initial data were found to guarantee the
finite time blow up of the corresponding solutions for both the spatially periodic
and nonperiodic case; he also applied the best constant of a convolution problem
to establish the corresponding blow-up criteria [44]. Recently, blow-up criteria were
presented in [37, 39, 42]. It should be mentioned that Liu and Zhou improved their
previous results by applying the optimal constant on a kind of Sobolev inequality in
[27] (see also a recent paper [28]). Mustafa [31] established a solution with constant
H1 energy. For γ < 1, the stability of solitary waves was established in [17, 45].

We now finish this introduction by outlining the rest of the paper. In section 2, we
recall the local well-posedness for (1.1) with initial datum u0 ∈ Hs, s > 3/2, and the
lifespan of the corresponding solution is finite if and only if its first-order derivative
blows up. In section 3, we investigate various sufficient conditions of the initial datum
to guarantee the finite time blow up. Persistence properties are established for (1.1)
in section 4.

2. Preliminaries. In this section, we would like to list some useful theorems for
later use.



PROPERTIES FOR THE DISPERSIVE ROD EQUATION 2569

Theorem 2.1 (see [39]). Let the initial datum u0(x) ∈ Hs(Ω), s > 3/2. Then
there exist T = T (‖ u0 ‖) > 0 and a unique solution u(x, t), which depends continu-
ously on the initial datum u0 to (1.1) such that

u ∈ C([0, T );Hs(Ω)) ∩ C1
(
[0, T );Hs−1(Ω)

)
.

Moreover, the following two quantities E1(u) and E2(u) are invariants with respect to
time t for (1.1):

E1(u) =
∫

Ω

(
u2 + u2

x

)
dx, E2(u) =

∫
Ω

(
u3 + γuu2

x

)
dx.

Actually, the local well-posedness was proved for both the periodic and nonperi-
odic case in the above paper; these two invariants play an important role in considering
blow-up phenomenon.

The maximum value of T in Theorem 2.1 is called the lifespan of the solution,
in general. If T < ∞, that is, lim supt↑T ‖ u(., t) ‖Hs= ∞, we say that the solution
blows up in finite time. The following theorem tells us that the solution blows up if
and only if the first-order derivative blows up. This phenomenon coincides physically
with the rod breaking.

Theorem 2.2 (see [17]). Let u0(x) ∈ Hs(Ω), s > 3/2, and u(x, t) be the corre-
sponding solution to problem (1.1), with lifespan T . Then

sup
x∈Ω,0≤t<T

|u(x, t)| ≤ C(‖ u0 ‖H1).(2.1)

T is bounded if and only if

lim
t↑T

inf inf
x∈Ω

{γux(x, t)} = −∞.(2.2)

For γ �= 0, we set

m(t) := inf
x∈Ω

(ux(x, t)sign{γ}), t > 0,(2.3)

where sign{a} in the sign function of a ∈ R and we set m0 := m(0). Then for every
t ∈ [0, T ), there exists at least one point ξ(t) ∈ Ω, with m(t) = ux(ξ(t), t). Just as the
proof given in [11], one can show the following property of m(t).

Theorem 2.3 (see [11]). Let u(t) be the solution to (1.1) on [0, T ), with initial
data u0 ∈ Hs(Ω), s > 3/2, as given by Theorem 2.1. Then the function m(t) is almost
everywhere differentiable on [0, T ), with

dm(t)
dt

= uxt(ξ(t), t), a.e. on(0, T ).

To consider the quantity m(t) for wave breaking comes from an idea of Seliger
[33] originally, the rigorous regularity proof is given in [11] for the Camassa–Holm
equation. As we know, the operator (I − ∂2

x)−1 can be expressed by(
I − ∂2

x

)−1
f = G ∗ f =

∫
Ω

G(x− y)f(y) dy

for all f ∈ L2(Ω), where G(x) is the associated Green’s function. For the periodic
case and the whole line case G(x) = cosh(x−[x]− 1

2 )

2 sinh( 1
2 )

and G(x) = 1
2e

−|x|, respectively,
where [x] denotes the integer part of x.
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In this paper, S := R/Z stands for the unit circle and Ω = R or S. Then (1.1)
can be rewritten as

ut + γuux + ∂xG ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)
= 0.(2.4)

In what follows, just for simplicity, we assume that 0 < γ < 3 and introduce the
following notation:

F (u) =
3 − γ

2
u2 +

γ

2
u2

x.

3. Blow-up phenomena. In this section, we investigate sufficient conditions on
the initial data which guarantee the finite time blow up of the corresponding solutions
to (1.1). Firstly, we consider the following convolution problem. We can compute

G ∗
(
γα2

2
u2 +

γ

2
u2

x

)
(x) =

1
2
e−x

∫ x

−∞
ey

(
γα2

2
u2 +

γ

2
u2

x

)
dy

+
1
2
ex

∫ ∞

x

e−y

(
γα2

2
u2 +

γ

2
u2

x

)
dy

≥ 1
2
e−x

∫ x

−∞
γαeyuuxdy −

1
2
ex

∫ ∞

x

γαe−yuuxdy

=
γα

2
u2 − γα

4

∫ x

−∞
eyu2dy − γα

4

∫ ∞

x

e−yu2dy,

where α is a positive number. So we obtain

G ∗
(
γα2 + γα

2
u2 +

γ

2
u2

x

)
(x) ≥ γα

2
u2(x).

Now we let

α2 + α =
3 − γ

γ
.(3.1)

Therefore,

G ∗
(

3 − γ

2
u2 +

γ

2
u2

x

)
(x) ≥ γα

2
u2(x).(3.2)

Moreover, γα
2 is the best constant if and only if

αu = ux in (−∞, x) and − αu = ux in (x,∞),

which can be solved as u = λe−α|x−y| for some λ, y ∈ R, α is a positive root determined
by (3.1).

The following theorem refines the result first obtained in [17] by admitting a larger
class of initial data.

Theorem 3.1. Assume u0(x) ∈ H3(R) is odd, and u′0(0) < 0. Then the corre-
sponding solution of (1.1) blows up in finite time.

Proof. Let T > 0 is the maximal time of existence of the solution u(x, t) to (1.1),
with initial data u0. As one can check, the function −u(−x, t) is also a solution to
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(1.1), with initial data −u0(−x). By this fact, −u0(−x) = u0(x) and the uniqueness
of solution to (1.1), we get

u(x, t) = −u(−x, t) for all t ∈ [0, T ), x ∈ R.

Differentiating both sides of (2.4) with respect to variable x, we obtain

uxt = −γ
2
u2

x +
3 − γ

2
u2 − γuuxx −

[
G ∗

(
3 − γ

2
u2 +

γ

2
u2

x

)]
(x, t).(3.3)

In view of the above analysis, we have

u(0, t) = uxx(0, t) = 0, t ∈ [0, T ).

Therefore,

dux(0, t)
dt

≤ −γ
2
u2

x(0, t).

From the hypothesis, we have u′0(0) < 0. Therefore, ux(0, t) < 0 for all t ∈ [0, T ).
Solving the above inequality, we get

− 1
ux(0, t)

+
1

u′0(0)
≤ −γ

2
t.

We conclude that there exists T and

T ≤ − 2
γu′0(0)

such that limt↑T ux(0, t) = −∞. Thus, we finish the proof by Theorem 2.2.
The following theorem gives the blow-up phenomenon via initial potential data

y0, which reads as follows.
Corollary 3.1. Suppose y0 ∈ H1(R) is an odd function, satisfies

∫∞
0
e−ξy0(ξ)

dξ < 0. Then the maximum time of existence of the corresponding solution u(x, t) to
(1.1) is finite.

In fact, y0 is an odd function; we can easily check that u0 is also odd. At this time,
u′0(0) =

∫∞
0 e−ξy0(ξ)dξ. By the hypothesis and theorem above, we get the desired

result. We omit the detailed proof for conciseness.
Theorem 3.2. Assume u0 ∈ H3(S), u0 �≡ 0,

∫
S
(u3

0 + γu0u
2
0x)dx = 0, and one of

the following conditions is satisfied:

(i) γ ∈
(

3 sinh
(

1
2

)
2 + sinh

(
1
2

) , 3) ,
(ii) γ ∈

(
0,

3 sinh
(

1
2

)
2 + sinh

(
1
2

)] ,
m(0) < −

√
2

2
α ‖ u0 ‖H1(S) .

Then the corresponding solution to (1.1) blows up in finite time.
Proof. By assumption and the invariance property of E2(u), we have∫

S

u3 + γuu2
xdx =

∫
S

u3
0 + γu0u

2
0xdx = 0.
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Therefore, u(x, t) must change sign, so there exists at least one zero point on S. Then
for each t ∈ [0, T ), suppose there is a ξt ∈ [0, 1] such that u(ξt, t) = 0, for x ∈ S we
have

u2(x, t) =
(∫ x

ξt

uxdx

)2

≤ (x− ξt)
∫ x

ξt

u2
xdx, x ∈

[
ξt, ξt +

1
2

]
.(3.4)

Thus, the relation above and an integration by parts yield∫ ξt+
1
2

ξt

u2u2
xdx ≤

∫ ξt+
1
2

ξt

(x− ξt)u2
x

(∫ x

ξt

u2
x

)
dx

=
∫ ξt+

1
2

ξt

(x− ξt)
(∫ x

ξt

u2
x

)
d

(∫ x

ξt

u2
x

)

≤ 1
4

(∫ ξt+
1
2

ξt

u2
xdx

)2

.(3.5)

Doing a similar estimate on [ξt + 1
2 , ξt + 1], we obtain∫

S

u2u2
xdx ≤ 1

4

(∫
S

u2
xdx

)2

.(3.6)

In view of (3.4), we also have

‖ u(x, t) ‖2
L∞≤ 1

2

∫
S

u2
xdx.(3.7)

Let

q(t) =
∫

S

u3
xdx, t ≥ 0.

Multiplying both sides of (3.3) with u2
x, then integrating by parts, we obtain the

equation for q(t) as

dq(t)
dt

= −γ
2

∫
S

u4
xdx+

3(3 − γ)
2

∫
S

u2u2
xdx− 3

∫
S

u2
xG ∗ F (u)dx

≤ −γ
2

∫
S

u4
xdx−

(
3γ

4 sinh
(

1
2

) − 3(3 − γ)
8

)(∫
S

u2
x

)2

,(3.8)

where we use the fact 1
2 sinh( 1

2 )
≤ G(x) ≤ cosh( 1

2 )

2 sinh( 1
2 )
.

If γ ∈ ( 3 sinh( 1
2 )

2+sinh( 1
2 )
, 3), then 3γ

4 sinh( 1
2 )

− 3(3−γ)
8 ≥ 0. On the other hand, we have∫

S
u2

xdx ≥ 2
3 ‖ u0 ‖2

H1 . Therefore, the above inequality yields

dq(t)
dt

dx = −γ
2

∫
S

u4
xdx+

3(3 − γ)
2

∫
S

u2u2
xdx− 3

∫
S

u2
xG ∗ F (u)dx

≤ −γ
2

∫
S

u4
xdx− 4

9

(
3γ

4 sinh
(

1
2

) − 3(3 − γ)
8

)
‖ u0 ‖4

H1 .(3.9)
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For simplicity, we set μ = 4
9 ( 3γ

4 sinh( 1
2 )

− 3(3−γ)
8 ) and in view of Holder’s inequality, we

get

dq(t)
dt

= −γ
2

∫
S

u4
xdx+

3(3 − γ)
2

∫
S

u2u2
xdx− 3

∫
S

u2
xG ∗ F (u)dx

≤ −γ
2
q

4
3 (t) − μ ‖ u0 ‖4

H1 .(3.10)

First, since q(t) ≤ q0 − μ ‖ u0 ‖4
H1 t, it is easy to find that there exist a time t0 ≥ 0

such that q(t0) < 0. Then for t > t0, we have

dq(t)
dt

≤ −γ
2
q

4
3 (t), with q(t0) < 0.

So the solution to (3.10) satisfies

q(t) ≤
(
q−

1
3 (t0) +

γ

6
(t− t0)

)−3

,

which reaches to −∞ before t arrives at T0 = −6q−
1
3 (t0)/γ + t0.

On the other hand, since∣∣∣∣∫
S

u3
xdx

∣∣∣∣ ≤ C(s) ‖ u0 ‖2
H1‖ u ‖Hs for s ∈

(
3
2
, 3
]
,

then ∫
S

u3
xdx ≥ inf ux(x, t) ‖ u0 ‖2

H1

shows that limt→T0 infx∈S ux(x, t) = −∞.

If γ ∈ (0, 3 sinh( 1
2 )

2+sinh( 1
2 )

], we can derive an equation for m(t) as

dm

dt
= −γ

2
m2 +

3 − γ

2
u2(ξ(t), t) − [G ∗ F (u)](ξ(t), t) = 0.

Now combining the above equation and (3.2) together, we have

dm(t)
dt

≤ −γ
2
m2(t) +

3 − γ − γα

4
‖ u0 ‖2

H1 .(3.11)

If

m(0) < −
(

3 − γ − γα

2γ

) 1
2

‖ u0 ‖H1= −
√

2
2
α ‖ u0 ‖H1 ,

then we can conclude the solution to (3.11) goes to −∞ in finite time. This completes
the proof.

Remark 3.1.

∫
S
u0dx = 0 or

∫
S
y0dx = 0 can be a substitute of the condition∫

S
(u3

0 + γu0u
2
0x)dx = 0; the theorem still holds. If γ = 1, we recover the case for the

Camassa–Holm equation [10]. Moreover, one may find Theorem 3.2 is different from
Theorem 3.4 in [42]. However, in [39], Yin didn’t consider the case (ii) of this theorem
for (1.1).
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4. Persistence properties and unique continuation. In this section, we
shall investigate persistence properties of the solution to (1.1) in L∞-space. The
main idea comes from a recent work of Himonas et al. [24].

Theorem 4.1. Assume that u0(x) ∈ Hs(R) and s > 3
2 , if for some θ ∈ (0, 1),

|u0(x)|, |u0x(x)| ∼ O
(
e−θx

)
as x ↑ ∞.

Then the corresponding strong solution u(x, t) ∈ C([0, T ];Hs(R)) to (1.1) satisfies
that

|u(x, t)|, |ux(x, t)| ∼ O
(
e−θx

)
as x ↑ ∞

uniformly in the time interval [0, T ] before blow up.

Notation.

|u(x)| ∼ O
(
e−θx

)
as x ↑ ∞ if lim

x→∞

|u(x)|
e−θx

= L,

and

|u(x)| ∼ o
(
e−βx

)
as x ↑ ∞ if lim

x→∞

|u(x)|
e−βx

= 0.

Proof. The proof is organized as follows. Firstly, we will give estimates on
‖ u(x, t) ‖∞ and ‖ ux(x, t) ‖∞. Here ‖ · ‖p means the Lp norm. Secondly, we
use the weight function to obtain the desired result.

Multiplying (1.1) by u2n−1, with n ∈ Z
+, then integrating both sides with respect

to x variable, we can get∫
R

u2n−1utdx+ γ

∫
R

u2n−1uuxdx+
∫

R

u2n−1∂xG ∗ F (u)dx = 0.(4.1)

The first term of the above identity is∫
R

u2n−1utdx =
1
2n

d

dt
‖ u(t) ‖2n

2n=‖ u(t) ‖2n−1
2n

d

dt
‖ u(t) ‖2n(4.2)

and ∣∣∣∣∫
R

u2n−1uuxdx

∣∣∣∣ ≤‖ ux(t) ‖∞‖ u(t) ‖2n
2n .(4.3)

In view of Holder’s inequality∫
R

u2n−1∂xG ∗ F (u)dx ≤‖ u(t) ‖2n−1
2n ‖ ∂xG ∗ F (u) ‖2n,(4.4)

so

d

dt
‖ u(t) ‖2n≤ γ ‖ ux(t) ‖∞‖ u(t) ‖2n + ‖ ∂xG ∗ F (u) ‖2n .(4.5)

In view of the Soblev embedding theorem, then there exists a constant M > 0 such
that applying Gronwall’s gives us

‖ u(t) ‖2n≤ eMt

(
‖ u(0) ‖2n +

∫ t

0

‖ ∂xG ∗ F (u) ‖2n dτ

)
.(4.6)
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Note that

lim
p→∞

‖ f ‖p=‖ f ‖∞ when f ∈ L1(R) ∩ L∞(R).(4.7)

Taking limits in (4.6) we obtain

‖ u(t) ‖∞≤ eMt

(
‖ u(0) ‖∞ +

∫ t

0

‖ ∂xG ∗ F (u) ‖∞ dτ

)
.(4.8)

Next, we will establish an estimate on ‖ ux(t) ‖∞ using the same method as above.
Differentiating (1.1) with respect to x variable produces the following equation:

uxt + γuuxx + γu2
x + ∂2

xG ∗ F (u) = 0.(4.9)

Multiplying the above identity by u2n−1
x , considering the second term with integration

by parts, ∫
R

uuxxu
2n−1
x dx = − 1

2n

∫
R

u2n
x uxdx,(4.10)

so we get∫
R

u2n−1
x uxtdx+ γ

∫
R

u2n+1
x dx− γ

2n

∫
R

u2n
x uxdx+

∫
R

u2n−1
x ∂2

xG ∗ F (u)dx = 0.(4.11)

Similarly, one can get the inequality

d

dt
‖ ux(t) ‖2n≤ 2γ ‖ ux(t) ‖∞‖ ux(t) ‖2n + ‖ ∂2

xG ∗ F (u) ‖2n,(4.12)

and therefore, as before, we obtain

‖ ux(t) ‖2n≤ e2Mt

(
‖ ux(0) ‖2n +

∫ t

0

‖ ∂2
xG ∗ F (u) ‖2n dτ

)
.(4.13)

Taking limits in (4.13) to obtain

‖ ux(t) ‖∞≤ e2Mt

(
‖ ux(0) ‖∞ +

∫ t

0

‖ ∂2
xG ∗ F (u) ‖∞ dτ

)
.(4.14)

In order to get the desired result, we introduce the function ψN (x), which is indepen-
dent on t as follows:

ψN (x) =

⎧⎨⎩
1, x ≤ 0,
eθx, x ∈ (0, N),
eθN , x ≥ N,

(4.15)

where N ∈ Z
+. From (1.1) we obtain

ψNut + ψNγuux + ψN∂xG ∗ F (u) = 0,(4.16)

while for (4.9), we get

uxtψN + ψNγuuxx + ψNγu
2
x + ψN∂

2
xG ∗ F (u) = 0.(4.17)
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In order to get the estimate on uxψN , we need to remove the second derivatives, by
using integration by parts, we obtain∣∣∣∣∫

R

ψNuuxx(uxψN )2n−1dx

∣∣∣∣ =
∣∣∣∣∫

R

u(ψNux)2n−1((uxψN )x − uxψ
′
N )dx

∣∣∣∣
=
∣∣∣∣∫

R

u

(
(uxψN )2n

2n

)
x

dx−
∫

R

uuxψ
′
N (uxψN )2n−1dx

∣∣∣∣
≤ 2(‖ u ‖∞ + ‖ ux(t) ‖∞) ‖ uxψN ‖2n

2n,(4.18)

where we use the fact 0 ≤ ψ′
N (x) ≤ ψN (x) a.e. x ∈ R. Next, we will do estimates

on ‖ uψN ‖∞ and ‖ uxψN ‖∞ step-by-step as before what were done on ‖ u ‖∞ and
‖ ux ‖∞, we may get

‖ u(t)ψN ‖∞ + ‖ uxψN ‖∞ ≤ e2Mt(‖ u(0)ψN ‖∞ + ‖ ux(0)ψN ‖∞)

+ e2Mt

∫ t

0

(‖ ψN∂xG ∗ F (u) ‖∞(4.19)

+ ‖ ψN∂
2
xG ∗ F (u) ‖∞)dτ.

On the other hand, computing the integral we see there exists a c1 > 0, depending
only on θ ∈ (0, 1) such that

ψN (x)
∫

R

e−|x−y| 1
ψN (y)

dy ≤ c1.(4.20)

Therefore, one gets

|ψN∂xG ∗ g2(x)| ≤ 1
2
ψN (x)

∫
R

e−|x−y| 1
ψN (y)

ψN (y)g(y)g(y)dy

≤ 1
2
‖ ψNg ‖∞‖ g ‖∞

(
ψN (x)

∫
R

e−|x−y| 1
ψN (y)

dy

)
≤ c1 ‖ ψNg ‖∞‖ g ‖∞ .(4.21)

Similarly,

|ψN∂
2
x G ∗ g2(x)| ≤ c1 ‖ ψNg ‖∞‖ g ‖∞ .(4.22)

Thus, combining (4.21) and (4.22) with (4.19), it follows that there exists a constant
C1 = C1(M,T ) > 0 such that

‖ u(t)ψN ‖∞ + ‖ uxψN ‖∞ ≤ C1(‖ u(0)ψN ‖∞ + ‖ ux(0)ψN ‖∞)

+ C1

∫ t

0

(‖ u(τ) ‖∞ + ‖ ux(τ) ‖∞)

(‖ u(τ)ψN ‖∞ + ‖ ux(τ)ψN ‖∞)dτ

≤ C1

(
‖ u(0)ψN ‖∞ + ‖ ux(0)ψN ‖∞

+
∫ t

0

(‖ u(τ)ψN ‖∞ + ‖ ux(τ)ψN ‖∞)dτ
)
.(4.23)

Then for any N ∈ Z
+ and any t ∈ [0, T ], x > 0, we have

‖ u(t)ψN ‖∞ + ‖ uxψN ‖∞ ≤ C1(‖ u(0)ψN ‖∞ + ‖ ux(0)ψN ‖∞)
≤ C1(‖ u(0)eθx ‖∞ + ‖ ux(0)eθx ‖∞).(4.24)
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Taking the limit as N goes to infinity in (4.24), we obtain(∣∣u(x, t)eθx
∣∣+ ∣∣ux(x, t)eθx

∣∣) ≤ C1

(
‖ u(0)eθx ‖∞ + ‖ ux(0)eθx ‖∞

)
.(4.25)

This completes the proof.
The following result ensures that the only solution which can decay at a deter-

mined rate, at any two distinct times, is the trivial solution u ≡ 0.
Theorem 4.2. Assume that u0(x) ∈ Hs(R) and s > 3

2 , satisfies that for some
δ ∈ (1

2 , 1),

|u0(x)| ∼ o(e−x) and |u0x(x)| ∼ O
(
e−δx

)
as x ↑ ∞,

u(x, t) ∈ C([0, T ];Hs(R)) is the corresponding strong solution to (1.1), and there exists
t1 ∈ (0, T ] for some T > 0 such that

|u(x, t1)| ∼ o
(
e−x

)
as x ↑ ∞,(4.26)

then u ≡ 0.
Proof. Integrating (1.1) from 0 to t1, we get

u(x, t1) − u(x, 0) + γ

∫ t1

0

uuxdτ +
∫ t1

0

∂xG ∗ F (u)dτ = 0.(4.27)

According to the hypothesis, we easily have

u(x, t1) − u(x, 0) ∼ o
(
e−x

)
as x ↑ ∞.(4.28)

At the same time, in view of Theorem 4.1 it follows that∫ t1

0

uuxdτ ∼ O
(
e−2δx

)
as x ↑ ∞,(4.29)

and so ∫ t1

0

uuxdτ ∼ o
(
e−x

)
as x ↑ ∞.(4.30)

If u(x, t) �= 0, the following deduction tells us the last term of (4.27) is infinitesimal
with the same order not higher order of e−x. Thus, a contradiction occurs.∫ t1

0

∂xG ∗ F (u)dτ = ∂xG ∗
∫ t1

0

F (u)dτ

= ∂xG ∗ f(x).(4.31)

However,

0 ≤ f(x) ∼ O
(
e−2δx

)
so that f(x) ∼ o

(
e−x

)
as x ↑ ∞.(4.32)

Therefore,

∂xG ∗ f(x) = −1
2
e−x

∫ x

−∞
eyf(y)dy +

1
2
ex

∫ ∞

x

e−yf(y)dy.(4.33)
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From (4.32) it follows that

ex

∫ ∞

x

e−yf(y)dy = ex

∫ ∞

x

e−yo(e−y)dy = o(1)ex

∫ ∞

x

e−2ydy ∼ o(1)e−x ∼ o(e−x).

If f(x) �= 0, one has that∫ x

−∞
eyf(y)dy ≥ C0 for x large enough.(4.34)

Hence,

−∂xG ∗ f(x) =
1
2
e−x

∫ x

−∞
eyf(y)dy − 1

2
ex

∫ ∞

x

e−yf(y)dy

≥ C0

2
e−x for x large enough.(4.35)

So a contradiction occurs by combination with (4.27)–(4.30) and (4.35). Thus, f(x) ≡
0 and consequently, u(x, t) ≡ 0. The theorem is proved.

At the end of this paper, we would like to make a simple comparison between the
rod equation and the Camassa–Holm equation. In the whole paper, we do not discuss
sufficient conditions to guarantee the global existence of smooth solutions to (1.1) for
general γ, which was discussed in [17].

We know for (1.1), y = u− uxx satisfies

yt + γyxu+ 2γyux +
3(γ − 1)

2
(
u2
)
x

= 0.

It is a pity that we couldn’t obtain the proper particle trajectory line equation to
consider this problem just as it was done for the Camassa–Holm equation. Moreover,
for γ �= 1, few beautiful identities that appeared in the Camassa–Holm equation are
obtained for (1.1).
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