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Abstract. We consider the non-nonlinear optimal transportation problem of minimizing the
cost functional Coo(A) = A-ess SUP (4 4)eQ? |y — | in the set of probability measures on 22 having
prescribed marginals. This corresponds to the question of characterizing the measures that realize
the infinite Wasserstein distance. We establish the existence of “local” solutions and characterize
this class with the aid of an adequate version of cyclical monotonicity. Moreover, under natural
assumptions, we show that local solutions are induced by transport maps.
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1. Introduction. In this paper, we consider the non-nonlinear optimal trans-
portation problem that can be mathematically stated as the problem of minimizing
the cost functional

(1.1) Coo(A) := A-esssup |y — z|
(z,y)€Q?

in the set of probability measures on Q2 having prescribed marginals. Here, and
throughout the paper, we assume that € is a compact subset of R%, d > 1, |- | denotes
the usual Euclidean norm in R%, 4, v are the two (given) Borel probability measures
on Q, and II(u, v) denotes the set of admissible transport plans, i.e., the set of Borel
probability measures A on Q% := Q x Q with first marginal m 4\ = p and second
marginal m3 2A = v. Informally, if A is induced by a transport map 7' : @ — €,
fe., A= (id X T)xp, then Co(N) is simply the maximum of the transport distances
|T(z) — z|.

The problem formulated above corresponds to the question of characterizing the
measures that realize the infinite Wasserstein distance

(Ps) Woo (1, v) = mf{cw(x) = )E—es?sglllp|yf:r| Y= H(u,u)}
z,y)EN?
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between p and v. Clearly, this is the limiting case, as p — oo, of the more familiar
(see, e.g., [1, 2, 32]) p-Wasserstein distance problem

(B) Wylpv) = inf { ([ =eParen)’

which is a model example of a Monge-Kantorovich-type optimal transport problem.
Despite the close relationship, there are fundamental differences between these two
problems. Most importantly, while (P,) is linear in A (removing the 1/p-power does
not change the solution set), the mapping A — C () is not even convex. In particu-
lar, the problem (Pu) is not additive, which implies that, unlike in the case of (P,),
a restriction of an optimal transport plan need not be optimal for its own marginals.

In view of simple examples, it turns out that only imposing this “local optimality”
property can lead to a satisfactory class of solutions. Hence we introduce in this paper
the notion of restrictable solutions; this subclass of minimizers of (1.1) is characterized
by the property that every portion of p is transported onto its target in an optimal
way; see Definition 4.1 below. The existence of a restrictable solution is obtained with
the aid of approximating (Ps,) by the problems (P,). The same strategy also provides
us with the notion of infinite cyclical monotonicity, which is derived from the standard
c-cyclical monotonicity by applying it to the sequence of costs ¢,(x,y) = |z — y|? and
then taking the limit as p — co. A reader familiar with the theory of infinity Laplacian
and related problems [5] should recognize the analogy between restrictable solutions
and absolute minimizers of supremum functionals.

It is one of the main results of this paper that restrictable and infinitely cyclically
monotone solutions coincide; see Theorems 3.4 and 4.4 below. We would like to
emphasize that although both of these notions are derived via an approximation
argument, the proof for their equivalence is completely independent of the derivation.
Moreover, this result holds without any further assumptions on the marginals p and
v. The second principal question we address in this paper is existence and uniqueness
of an optimal transport map. Our main result in this direction, Theorem 5.5, states
that if 4 < £¢, then any infinitely cyclically monotone solution 7 to (Ps) is induced
by amap T : Q — Q, ie., v = (id x T)xp. Regarding the question of uniqueness, we
are able to show that if, in addition to the previous assumptions, the second marginal
v is discrete, then the infinitely cyclically monotone solution to (Ps) is unique.

A major technical difficulty that we are facing in the proofs is the absence of a
useful duality theory, which is due to the nonconvexity of the objective functional
(see section 5.4). As a consequence, we must rely on ad hoc arguments designed for
the problem at hand. On the other hand, it is quite clear from the proofs that the
machinery we are developing applies to more general problems than just (P). In
fact, we could have just as well considered a functional A — A-esssup(, ,yco2 c(z,y),
where ¢(z,y) is, say, nonnegative and lower semicontinuous to begin with. In this
work we concentrate on the model case c¢(x,y) = |y — z| so as to identify the useful
tools and notions without coping with the additional technical difficulties required by
a more general cost ¢, which seems to be the natural next step in this study.

Let us finish this introduction by discussing some applications in which the infinite
Wasserstein distance W, appears. First on our list is the optimal design problem

Z)\GH(/J,7I/)}7 1<p<oo,

Weo(p, v p+d
(1.2) sup { (Mdu )_1
Wy (p, V)P ()~ Hl Lo ()

: (V) € Py (U) % P(U>}
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that appears in [9] in connection with stability estimates for optimal transport maps;
here P and P, .. denote the spaces of probability measures and absolutely continuous
probability measures, respectively, and fl—’; is the Radon—Nikodym derivative of p with
respect to the Lebesgue measure. In [9], the authors prove that if U C R? is a bounded
Lipschitz domain, then the estimate

(1.3) Woo (1, )P < G a(O)1(38) ™ Hl e 0y W (1, v)P

holds for every p > 1. The inequality (1.3) is an intrinsic counterpart of a beautiful
uniform estimate for the optimal transport maps proved in [9] under stronger regu-
larity assumptions. The optimal constant in (1.3) is given by the supremum in (1.2),
and it is conjectured (based on 1-dimensional examples and remarks on increasing
transport maps) that it does not blow up when p — 1.

Second, during the last few years, models of branching processes using in one
way or another tools from the optimal transportation theory have been proposed by
several authors; see, for example, [8, 10, 23, 34]. Roughly speaking, these models
favor joint transportation, which in many real world situations, such as in the de-
sign of communication or irrigation networks, is more economical than individualized
transportation. In particular, in [10] the authors propose minimizing a certain cost
functional (which penalizes diffused measures) on the p-Wasserstein space of proba-
bility measures. It is remarked in [29] that this model is somewhat less realistic than
the others cited above, but it has the advantage of being mathematically simpler.
Moreover, as pointed out in Remark 6.2.7, Chapter 4, and section 0.2 of [29], the use
of the infinite Wasserstein distance W, in the model of [10] produces results which
are closer to the ones derived from the other models.

Then there are applications to PDEs. The metric structure associated with the
oo-Wasserstein distance is a crucial tool in proving the existence of stable solutions for
a compressible fluid model of rotating binary stars in [24]. The same metric was used
also to bound the growth of the wetted regions in the porous medium flow [13] and to
study the long time asymptotics of nonlinear scalar conservation laws [12]. Moreover,
the co-Wasserstein distance is being used in some N-particle approximations of the
Vlaslov equations [21, 22].

Finally, in [11] the authors have considered a mathematical model of the optimal
pricing policy for the use of a public transportation network. This model assumes that
the price of a ticket (for the use of the network) is a function of the distance traveled.
This seems reasonable in the case when each citizen is associated with a single journey,
but it is not so realistic if we allow multiple journeys and an inexpensive season ticket
is available. In the latter case, the price of a season ticket could be assumed to be
a piecewise constant function of the maximal distance traveled, and hence it might
be a good idea to insert a component similar to the functional we have considered
into the model. It is also quite easy to imagine that in many other transportation
problems a significant portion of the total cost is in one way or another connected with
the maximal transportation distance. For example, if we assume that the physical
transportation device (airplane, car, etc.) is the same for all distances, then it has to
be chosen so that the longest transportation can be handled.

2. Existence of global solutions. As pointed out in the introduction, the
objective functional

A= Coo(A) 1= A-esssup |y — |
(zy)€Q?

- inf{tzO:A({(x,y) eyl >t}):O}
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is not linear (and not even convex) in A, contrary to what is usually the case in
classical optimal transport problems. However, it is, quite interestingly, level convex
in the sense that if A\j, A2 € II(u,v), then

Coo(tA1 + (1 —1)A2) < max{Co(A1),Coc(A2)} for all t € (0,1).

Note that this implies that the set of solutions to (Ps) is convex. Moreover, it should
be observed that Co, (A) depends on the measure A only via its support. More precisely,
one has

(2.1) Coo(A) = sup{ly — x| : (2,y) € supp(A)}.

Thanks to this last property, we are in position to give the following existence
result.

PROPOSITION 2.1. Assume that Q is a compact subset of R% and p,v are two
probability measures on ). Then the problem

(Po) Woo(p,v) = inf {COO()\) = )E—es)sesflzlzp ly — x| : X eIy, y)}
@y

admits at least one solution A € II(u,v).

The optimal set of (Py,) may be very large thanks to (2.1).

Example 2.2. Let p := %EQ L0,1)2u[2,3)2 and v := %(6(2,1) +6(1,2)). Then it is clear
that the value of (Ps,) is v/5 and that any admissible transport plan A € II(u,v) is a
solution of (P).

In the proof of Proposition 2.1, we shall use the following lemma.

LEMMA 2.3. If the sequence (A, ), converges weakly to X in II(u,v), then for any
(z,y) € supp(A) there exists a sequence ((Zn,Yn))nen such that

(2.2) (TnsYn) = (x,y) asn — 00  and (Tp,Yn) € supp(An) for alln € N.

Proof. Suppose (z,y) € Q is such that (2.2) does not hold. Then we may assume
without loss of generality that there exists » > 0 such that B((z,y),r) Nsupp(A,) =0
for any n € N. It then obviously follows from the weak convergence that B((x,y),r)N
supp(A) = 0, which concludes the proof. O

Proof of Proposition 2.1. Since the set  is a compact subset of R? and the
measures 1 and v are probability measures on €2, the nonempty set II(y, v) is compact
for the weak convergence of measures (cf. [32, p. 49]). To apply the direct method of
the calculus of variations, it remains to notice that A — Coo(A) is lower semicontinuous
for this topology: this is a direct consequence of (2.1) and Lemma 2.3. 0

3. Infinitely cyclically monotone solutions. The proof of the existence of a
solution to (Ps) given in Proposition 2.1 is intrinsic, but one may obtain this result
also via an approximation argument involving the family of problems (P,),>1 given
by

(B Wylp) = inf{cpu) -(/, |y—xpdx<x,y>)’l’ e nw,u)};

that is, the functional A — C,(X) is being minimized over the set IT(x, v).
Alternative Proof of Proposition 2.1. Under the assumptions made on , u, and
v, for any p > 1 the problem (P,) admits at least one solution vy, € II(y, v); see, e.g.,
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[32, Theorem 1.3]. Since II(y,v) is compact, we infer that (y,),>1 converges weakly
(up to a subsequence) to some o, € II(u,v) as p — oco. Then, for any A € II(u,v),
we have by the optimality of v, and Holder’s inequality that

o = ([ -sten)’ < G = 600

for any p > g > 1. For a fixed ¢ > 1, since the function (z,y) — |y —x|? is continuous
and bounded on Q2 one has Cy(7,) — Cy(7s0) as p — oco. Therefore, taking the limit
in p and then in ¢ in the above inequality we obtain Ceo(Ve0) < Coo(A). Since this
holds for any A € II(p, V), Yoo is a minimizer of (Puo). d

The reason for considering the problems (P,) in this context is not merely the
fact that they provide an alternative route to the existence. Namely, it is known that
an element 7, € II(u,v) is a solution of (P,) if and only if its support is p-cyclically
monotone; that is,

n n
(3.1) S lyi— il <D o) — mil?
=1 i=1

for every n > 2, (x1,%1),.. ., (@n, Yn) € supp(7p), and for every permutation o € S,,.
We refer the reader, for example, to Theorem 3.2 in [2] (or to [20, 28, 33]).

By analogy with the p-cyclical monotonicity when 1 < p < oo, we introduce the
corresponding notion for the case p = oo obtained by taking the limit in (3.1).

DEFINITION 3.1. A transport plan v € II(u,v) is infinitely cyclically monotone
if

121?3)(71 lyi — x| < 121?%” Yo (i) — 4
fOT every n > 27 (xlvyl)a AR (xnayn) € Supp(7)7 and o € Sn

Using again the approximation of (Ps) by the problems (P,), we obtain the
existence of an infinitely cyclically monotone solution to (Ps).

THEOREM 3.2. For 1 <p < o0, lety, € II(u,v) be a solution to (P,). Then any
cluster point oo of (Vp)p>1 in II(p,v) as p — oo is an infinitely cyclically monotone
solution to (Py).

Proof. For simplicity, let us assume that the entire family (v,)p>1 converges
weakly t0 voo € II(u, v). It suffices to show that v, is infinitely cyclically monotone.
To this end, let n > 2, (x1,41),...,(Tn,yn) € supp(y), and o € S,. We apply
Lemma 2.3 to each pair (z;,y;) to obtain the existence of sequences (z,v7),...,
(zP,yP) such that (zf,y?) — (z;,y;) for any i as p — oo, and (z¥,y?) € supp(r,) for
all 1 <p <ooandi=1,...,n. Since the support of 7, is p-cyclically monotone, one
has

n n
Z|yf—xf|p < Z\yg(i)—acﬂp forall 1 < p < co.
i=1 i=1

Taking the 1/p-power on both sides and letting p go to oo, one obtains the desired
inequality. a

Since for any 1 < p < co an admissible transport plan A € II(u, v) is a minimizer
of (P,) if and only if it is p-cyclically monotone, it is natural to ask whether this still
holds for p = oo. It is, however, quite clear that a generic minimizer of (P, ) need
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not be infinitely cyclically monotone; the following gives a counterexample for this
implication.

Example 3.3. As an admissible transport plan for the measures p and v in
Example 2.2 one may take

A= 3 (L2[ (0,12 X b2,1) + L1232 X 6(1,2))-
Then A is a minimizer of ( ~0 ), but it is not infinitely cyclically monotone: for example,
((0,1),(2,1)) and ((3,2),(1,2)) belong to supp(}), and

max{|(0,1) = (1,2)], (3,2) = (2, D]} < max{[(0,1) = (2,1)[,|(3,2) = (1,2)[}-

Notice that in this case, for any 1 < p < oo, problem (P,) admits a unique solution
(up to a p-negligible set) (see [20]), which in fact does not depend on p.

On the other hand, the following result shows that the reverse implication does
hold: infinite cyclical monotonicity is indeed a sufficient condition for an admissible
plan to be a minimizer of (Px).

THEOREM 3.4. Any infinitely cyclically monotone transport plan v € (u,v) is
a solution of the problem (Ps).

Proof. We make a proof by contradiction. Let v € II(u, v) be infinitely cyclically
monotone, and assume that

(3.2) v-esssup |y — x| > 10e + F-esssup |y — z|
(z,y)€Q? (@,y)€N?

for some ¥ € II(p,v) and € > 0.

Since  is compact, there exists a finite family (¢;)1<;<x such that Q C Ule B(c;, e).
We shall denote C := {c1,...,cx} and Vi := B(cy,€), and for any i € {2,...,k} we
set V; := B(ci,e) \ U;;ll Vj; without loss of generality, we assume that V; # ) for all
ie{l,... k}.

Next we define two discrete measures v° and 7° on Q2 by

,YE = Z 'y(‘/z X ‘/j)é(civcj)
1<i,j<k
and
A = Z Vi X Vj) b(cyep)-
1<i,5<k

Notice that since v and 4 have the same marginals, the same holds for v* and 5°. In
particular, one has

(3.3) (z,y) € supp(7®) = there exists & € C such that (Z,y) € supp(5°)
and
(3.4) (Z,9) € supp(7°) = there exists y € C such that (Z,y) € supp(v°).

The following properties will also be useful in our argument.
Claim 1. There exists (xg,yo) in the support of 4° such that

lyo — 0| > He+max{|y— x| : (z,y) € supp(7°)} .
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Claim 2. For any n > 1, (x1,y1),- -, (Tn,yn) € supp(y°), and o € S,

] < e
ggiagxnlyz x| < 4€+1Igggxn|yo<z) 4|

Above, the first claim is simply a counterpart of the antithesis (3.2) for the dis-
cretized measures, while the second says that «¢ is “almost” infinitely cyclically mono-
tone. We postpone the verification of these two claims until the end of this proof.

Let (xo,y0) € supp(7°) be given by Claim 1. Owing to (3.3) and (3.4), we can
recursively define two sequences (Dp,)m>1 and (Ep,)m>0 of subsets of C' by setting
Eo :={yo}, and for m > 1,

D,, := {Z : there exists y € E,,_1 such that (Z,y) € supp(5°)}
and
E,, := {y : there exists & € D,,, such that (Z,y) € supp(7°)}.

We then set D :=J,,~; Dm and E :=J,,~¢ Em-

There are now two alternatives: either xy belongs to D or not.

First case: xg € D. In this case, there exists m > 1 such that x¢y € D,,, and by
going backwards from D,, to Ey it is possible to define two finite families (x;)o<i<m
and (y;)o<i<m—1 such that

for all i € {0,...,m — 1}, (2i,y:) € supp(y°) and  (ziy1,¥:) € supp(F°),
where we have set z,, := z¢. Claim 2 then yields

il —de < R
05%%71@1 zil = og?%?fq'y’ Tit1l

Since maxo<i<m—1|Yi — Ti| > |Yo — 0|, we infer from Claim 1 and the previous
inequality that

max {Iy —x|: (w,y) € SUPPWE)} +e < 055%%—1 lyi — it
Since (zi4+1,y;) € supp(5°) for any i € {0,...,m — 1}, this yields a contradiction.
Second case: xg ¢ D. From the definitions of D and E, we notice the following
two facts:

(3.5) x €D, (z,y) €Esupp(r*) = yEFE
and
(3.6) g€ E, (z,y) €supp(A°) = z€D.

As a consequence of (3.5) and since ¢ and 4° have the same marginals, one has
Y¥(DXE) = 4(DxC) = 35D x C).
Similarly, one has

¥ (D x E) = 3°(C x E) = v°(C x E).
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We then obtain
YD XxE) =A34(DxC) > 3A(DxE) = 4(CxE).

This implies that v¢((C' \ D) x E) = 0, whereas by hypothesis one has (zg,y0) €
(C\ D) x E and v*({(z0,y0)}) > 0 since (zg,yo) belongs to the support of the
discrete measure v°. This yields a contradiction.
To complete the proof of Theorem 3.4, it remains to prove Claims 1 and 2.
Proof of Claim 1. We infer from (3.2) that

gl ({(Ly) |y — x| > 9e + F-esssup |y — xl}) > 0.
(z,y)eN?

As a consequence, there exist 41,42 € {1,...,k} such that

~y ((Vi1 x Vi) N {(m,y) tly—x| > 9e+ F-esssup |y — x|}> > 0.
(z,y)€Q?

Since V,,, C B(¢m, ) for m = iy, i, one then has

(3.7) oz — il = Te+F-esssuply — al,
(z,y)€N?

and (c;,, ¢i,) belongs to the support of v°. On the other hand, if (¢;, , ¢;,) belongs to
the support of 4%, then 4(V}, x V},) > 0, and thus

lcj, —¢j] < 2+ F-esssup |y — x|
(z,y)eQ?

Since this inequality holds whenever (c;,, ¢;j,) € supp(7°), one has

max {|y — z| : (z,y) € supp(§°)} < 2¢e+ F-esssup |y — x|.
(zy)eQ?

This together with (3.7) shows that (zg,yo) := (¢iy, ¢i,) has the desired property.

Proof of Claim 2. Let n > 1, 0 € S,,, and (x;,y;) belong to the support of ¢ for
i e{l,...,n}. Forany ¢ € {1,...,n}, one has (x;,y;) = (c;,,¢;,) for some ji, jo €
{1,..., k} with v(V}, x V},) > 0, and thus there exists (z},y]) € (V}, x V},) Nsupp(7).
As a consequence,

[y — 2| — |y —xs|| < 2¢  forallrse{l,...,n}
Since « is infinitely cyclically monotone, we have

INEPVIIEN -
max lyo) — i = max [y; — i

It follows that

L— | > L
de + 121%)% ‘ya(z) $z| = 1?%); |yz $Z|a
which proves the claim. ]
Remark 3.5. Observe that in the proof above, we in fact always have zg € D;
that is, the first case always occurs. This is a consequence of the conservation of the
masses: all the mass transported to E by 4° originates from D, while all the mass in
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D is transported to E by 7. Since 4° and 4° have the same marginals, this implies
that both plans transport D exactly to E. The fact that the second case never occurs
in the above proof also underlies the recursive construction of Step II in the proof of
Theorem A in [25], even if the arguments are different. That paper deals with the
sufficiency of cyclical monotonicity for optimality in the classical case (see also [31]).

Remark 3.6. There is a variation of the self-contained proof given above that
relies directly on the fact that the total cost Coo(A) = A-esssup(, )eq2 [y — | depends
only on the support of A and not on its density. In the discrete case this means that,
as far as the total cost is concerned, the exact amount of mass transferred from any
given point to another is irrelevant: it matters only whether the amount is positive or
not. Hence in the proof we are allowed to change the transport plans 7. and ., along
with their marginals, as long as we do not change their supports and make sure that
the marginals of the new transport plans agree with each other. Now assuming that
we can change the measures in such a way that all the point masses are of integer
size, the problem can be interpreted as a pairing problem in which the infinite cyclical
monotonicity is both a necessary and sufficient condition for optimality.

The existence of the required integer transport plans with given supports is non-
trivial and follows from Dines’ algorithm [17], which provides positive solutions for a
system of linear equations.

4. Restrictable solutions. In the previous section, we derived the notion of
infinitely cyclically monotone plans from the approximation of the problem (Ps) by
the family of problems (P,). Another interesting notion may be derived in the same
way: let 1 < p < oo and 7, € (i, v) be a solution to (P,). Then it follows from the
linearity of the functional

1= G = [ ly=aPirw)

that any nonzero measure 4’ that is majorized by 7,, i.e., v/(B) < ~,(B) for all Borel
sets B C 2 x §2, is an optimal transport plan for the problem

Cp(7') = inf {Cp(7) : vy € TI(1', ")},

where p/ = m 47" and V' := myx'. In other words, optimality is automatically
inherited by restriction, and hence we may say that a solution v, € II(u, v) of (P,) is
a restrictable solution of this problem. By analogy, we may define a similar notion of
restrictable solutions for problem (Ps,) as follows.

DEFINITION 4.1. A transport plan v € II(u,v) is a restrictable solution of (Px)
if any nonzero Borel measure v in Q x Q that is majorized by v is a solution to the
problem

(P.) inf {)\—ess sup |y — x| : A e II(y, u’)} ,
(z,y)€N?
where ' =11 47 and V' = w47
The reader should notice the obvious abuse of notation above, as the measures u’
and v/ in (P.,) are not, in general, probability measures. However, p/(Q) = /(2) > 0,
and that is really all that is needed.
Ezample 4.2. Tt is quite clear that not every solution of (P,) is restrictable.
Indeed, the optimal plan A considered in Example 3.3 admits the following restriction:

1
N o= 5 (,CQ LS1 X %6(2,1) -+ £2 LSz X %5(172)),
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where 1 := [0, 3] x [$,1] and S5 := [2,3] x [2,3]. But X’ is not optimal for its own
marginals: a better transport plan is the one that takes all the mass that lies in S;
to (1,2) and the mass in Sz to (2,1).

Remark 4.3. The notion of a restrictable solution bears a strong resemblance to
that of an absolute minimizer used in connection with the L> variational problems.
We recall that a locally Lipschitz continuous function v : D — R™, m > 1, is called
an absolute minimizer of the functional S(p, D) := esssup,cp H(z, ¢(z), Dp(x)) if

S(u, V) < S(v, V)

for every open V. CC D and v € Wh>(V) N C(V)) such that v|gy = ulsy. Abso-
lute minimizers were introduced by Aronsson [3, 4]. It has turned out that this is
the proper notion of a solution for this type of minimization problem in the sense
that important properties such as uniqueness, regularity, and characterization via an
Euler-Lagrange equation can be obtained for this class of functions. Absolute mini-
mizers were introduced by Aronsson [3]; see also, e.g., [6, 5, 30, 14] for further details
and background.

It is natural to ask whether any cluster point Yo of (7,)p>1 in II(y, v) as p — oo
is a restrictable solution of (Ps). In view of Theorem 3.2, this can be established by
showing that the restrictable solutions coincide with the class of infinitely cyclically
monotone solutions.

THEOREM 4.4. A transport plan v € II(p,v) is infinitely cyclically monotone if
and only if it is a restrictable solution of the problem (Ps).

Notice that Theorem 3.2 provides the existence of restrictable solutions to (Ps).

Proof. It v € TI(u,v) is infinitely cyclically monotone, then the same holds for
any restriction v/ < «, and Theorem 3.4 then yields that such a restriction v is a
solution of the corresponding problem (P.)).

We now turn to the proof of the sufficiency. Let v € II(u,v) be a restrictable
solution to (Ps), and let us fix points (x1,y1),.--, (Tm,ym) € supp(y), m > 2,
and a permutation o of {1,...,m}. Without loss of generality, we may assume that
(xi,yi) # (x,y;) whenever ¢ # j. Then there is ¢y > 0 such that for all0 < € < g¢, the
sets B; := B(x;,€) X B(y;,€) are pairwise disjoint and v(B;) > 0 for alli=1,...,m.

We define two measures 7 and v, by setting

m m
Y=Y evls and  yi=) aTivle.
=1 i=1

Here T;ﬂ | B, is the push-forward of y| g, by the mapping T"(z,y) := (, Y+ Yoi) = Vi)
and the positive numbers

miny, y(By)
v(Bi)

are chosen so that v/(B;) = ming y(By) > 0 is independent of i. Observe that the
support of T y| g, lies in BY := B(x,€) X B(Yo(i),€) and v, (B{) = v'(B;). Moreover,
the first marginals p/ = m; 7" and p, = m 47, are equal.

Since v is majorized by the restrictable solution ~y, we have

C; 1=

v'-esssup |z — y| = Weo (i, V') = inf {ﬁ-ess sup [z —y| : € I/, V’)} :
(z,y)€N? (z,y)€N2
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where v/ = w9 47’. On the other hand, since the supports of both v" and v, = T2 27,
are contained in the union of the balls B(y;,¢) and v/(B(y;,€)) = vo(B(yi,¢€)) for
every ¢ by the construction of v and +,, we can rearrange v’ to v, by transporting
mass only within the balls B(y;,e). Thereby we obtain that We. (v, v,) < 2e, and
hence

v-esssup |z — y| = Woo (1, V') < W (s Vo) + Woo (Ve V')
(z,y)€EN?

< 2e 4+ v -esssup |z — y|.
(zy)eQ?

Now clearly

v'-esssup |z — y| > max |x; — vl
(z,y)€Q2 l<ism

and

—y| < i 2
Tooeap e S g e weol 426

and thus the preceding inequality yields

x|z —yil < max |zi — Yo + de.
Since this holds for all € > 0 small enough we are done. ]

Observe that for any v € II(u, v) and any Borel set B C Q2 x  such that v(B) > 0,
the measure 7| p is majorized by 7. Thus, if y is a restrictable solution of (P,), then
each such measure | p is an optimal transport plan for its own marginals. It turns
out that in general the converse is false; that is, this family of measures alone does not
suffice for characterizing the restrictable solutions, as shown in Example 4.5. Notice
that this is another difference with the case of integral costs functionals (like the
costs Cp), since for those functionals the converse would be true: if v| g is an optimal
transport plan for its own marginals for any B C Q x Q with v(B) > 0, then v is a
restrictable solution.

Ezample 4.5. Take Q = [0, 1], and let

1 2 2 1
550 + 561 and V= 560 + 551

Then the plan v := 76(0 1+ 6(1 0) is not a restrictable solution since 7/ 76(011) +
6(1’0) is majorized by =, and it is clearly not an optimal transport plan for its own

marginals ' = %60 + %61 and v/ = %50 + %61. On the other hand, one can check that
v|p is an optimal transport plan, for its own marginals, for each Borel set B C Q2.
Notice that the only restrictable solution of (P, ) in this case (which is also the unique
solution to (P,) when p > 1) is yoo = 36(0,0) + 35(170) + 35(171).

In view of the above example, and under some regularity assumption on the
measures i and v, it is possible to obtain the following refined version of Theorem 4.4.

PROPOSITION 4.6. Let v € TI(u,v) be an optimal transport plan, and assume
that neither p nor v concentrates on sets of dimension d — 1. Then the following are
equivalent:

(1) ~ is infinitely cyclically monotone;

(2) for each Borel set B C Q x Q, vy|p is optimal between its projections.
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Proof. We need only prove that under these assumptions (2) implies (1). Assume
by contradiction that  is not infinitely cyclically monotone. Then there exist a family
{(x4,yi) }i=1,... n in supp(y) and a permutation o € S,, such that

max{|z1 — Yo)|,- - [Tn = Yo(m)|} <max{lzy —y1l,. ., (20 — yul}-
By continuity, the same inequality holds true for any family {(«}, y;)}i=1,... » for which
(x},y}) € B(xzi,€) x B(y;,e) for all ¢ = 1,...,n and for some small enough ¢ > 0.
Notice that v(B(w;,¢) x B(y:,¢)) is positive for any 4.

For each i we define g; : [0,e] — RT by g;(r) := v(B(x;,7) x B(y;,r)). Since p
and v do not concentrate on sets of dimension d — 1, the function g; is continuous.
Let o = min; y(B(x;,€) X B(yi,€)), and choose 0 < &; < € so that g;(¢;) = « for all
i; this is possible since lim,_,o g;(r) = 0.

Following now the proof of sufficiency of the previous theorem we obtain that
v|5 for B =, B(z;,&;) X B(y;,&;) and for € > 0 small enough is not an optimal
transport between its marginals, which contradicts (2). 0

Remark 4.7. Tt is natural to ask what happens if |z — y| is replaced by a more
general (real-valued) cost function ¢(z,y); that is, we consider the functional

v = y-esssup c(z,y).
(z,y)€Q?

As expected, the basic existence results, Proposition 2.1 and Theorem 3.2, remain
valid, provided that c is nonnegative and lower semicontinuous with all the relevant
concepts appropriately redefined: in particular, in the definition of infinite cyclical
monotonicity one should replace the support of v with some appropriate set on which
v is concentrated. Moreover, the proof of the equivalence of restrictable and infinitely
cyclically monotone solutions works in this generality if ¢(x, y) is (uniformly) contin-
uous.

5. Existence and uniqueness of an optimal transport map. In this sec-
tion, we prove that under reasonably weak assumptions an infinitely cyclically mono-
tone transport plan is induced by a transport map. Moreover, we start the analysis
of the uniqueness of such transport maps and then comment on our method of proof
in light of the duality issue for problem (P.).

5.1. Properties of transport plans. We begin by considering some generic
properties of transport plans. This subsection is largely independent of the cost,
and the technique detailed below has applications also in the framework of classical
transportation problems involving cost functionals in integral form; see [15].

DEFINITION 5.1. Let y € Q and r > 0, and let v € II(u,v) be a transport plan.
We define

vy H(B(y,r)) = (2 x B(y,r)) Nsuppy).

In other words, v~1(B(y,)) is the set of points whose mass is partially or com-
pletely transported to B(y,r) by . We recognize the slight abuse of notation, but if
~ is thought of as a device that transports mass, then this seems justifiable. Notice
also that y~1(B(y,r)) is a Borel set. In fact, it is a countable union of compact sets
as shown by the equation
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T (2 x B(y,r)) Nsuppy) = 7' (U(Q x B(y,r —1/n)) N suppv)

=J7' (@ x B(y,r — 1/n)) Nsupp~).

n

Since this notion is important in what follows, we recall that when A is £%
measurable, one has

lim LYANB(z,7)) _

b LBz )
for almost every x in A: we shall call such a point x a Lebesgue point of A, this
terminology deriving from the fact that such a point may also be considered as a
Lebesgue point of x 4.

The following lemma, although quite simple, is the cornerstone of the proof of
Theorem 5.5 below.

LEMMA 5.2. Let v € II(u,v), and assume that u < L£%. Then v is concentrated
on a o-compact set R(vy) such that for all (x,y) € R(7) the point x is a Lebesgue
point of v 1(B(y,r)) for all r > 0.

Proof. In the following, we shall denote by Leb(E) the set of points z € E which
are Lebesgue points of E. Let

A:={(z,y) esupp(y) : z ¢ Leb(y }(B(y,r))) for some r > 0};

we first intend to show that v(A) = 0. To this end, for each positive integer n we
consider a finite covering 2 C Uiel(n) B(y?, 5) by balls of radius 5-. We notice that
if (x,y) € supp(y) and z is not a Lebesgue point of y~1(B(y,r)) for some 7 > 0, then
for any n > % and y?* such that |y —y| < i the point = belongs to v~ (B(y?, ﬁ))
but is not a Lebesgue point of this set. Then

e Y U or3)) \a ()

Notice that the set on the right-hand side has Lebesgue measure 0 and thus p-measure
0. It follows that v(A4) < y(7!(A) x Q) = p(n'(A4)) = 0.

Finally, since £¢(7!(A)) = 0, there exists a sequence (Uy)r>0 of open sets such
that

forall k>0, 7' (A)cU,  and Jim L£4Uy) = 0.
— 00

Then the set R(7) := supp(y) N (Up>o(2\ Ux) x Q) has the desired properties. |

The above lemma yields the introduction of the following notion.

DEFINITION 5.3. The couple (z,y) € QxQ is ay-regular point ifx € v~ (B(y,r))
is a Lebesgue point of this set for any positive r.

Notice that any element of the set R(7y) of Lemma 5.2 is a «-regular point.

For future use, we introduce a suitable notation to indicate a cone: let zg, & € R?
with |£] = 1, and let 6 € [0,2]. Then we define

Tr — X

C(z0,&,6) := {xGRd\{xo} : 5215}.

|z — o]
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Notice that if 6 = 0, C(x0,&,0) degenerates to a half-line, while in the case 6 = 2,
C(x0,&,2) is R\ {zo}.

We now remark the following property for the regular points of a transport plan.

PROPOSITION 5.4. Let (zo,y0) be a y-regular point, r > 0, a € (0,1), and
8 > 0. Then for € > 0 sufficiently small the set of points x € v~ 1(B(yo,r)) such that
x € C(xg,&,6) N (B(xg, ) \ B(wg, ag)) has positive LI measure.

Proof. Tt is enough to remark that zo € Leb(y~(B(yo,7))) and then

lim LY(B(xo,€) \ B(xo, ag)) N C(x0,£,6) Ny~ (B(yo, 7))
e—0 Ed(B(Io, 5))

where c(a,0) := Ld((B(mo’%ﬁ(;gifgg)mo(zo75’5))

= c(a,$),

> 0. a

5.2. Existence of an optimal transport map. Our main result in this sub-
section is the following theorem, which states that under the hypothesis that p is ab-
solutely continuous with respect to the Lebesgue measure £?, any optimal infinitely
cyclically monotone transport plan for (Ps) is induced by a transport map. This
generalizes the corresponding result for the problem (P,) when p € |1,00[: if one
assumes that

(5.1) w(B) =0 whenever HY(B) < oo,

then any p-cyclically monotone transport plan is induced by a transport map (see
Remark 4.7 in [20]).

It is in doubt whether (5.1) is sufficient to ensure that the conclusion of Theo-
rem 5.5 holds. In the case p = 1, the hypothesis (5.1) is not sufficient to ensure that
any 1-cyclically monotone transport plan is induced by a transport map. Even worse,
for 1 = L'[o,1) and v = L[99 there exists an optimal (and hence 1-cyclically
monotone) transport plan which is not induced by a transport map; see [2, p. 125].

We now state the main result of this section and refer the reader to section 5.4
for further comments.

THEOREM 5.5. Assume that yu < L%, and let v € I(u,v) be an infinitely cycli-
cally monotone transport plan. Then there exists a Borel transport map T : Q0 —
such that v = (id X T)gp.

Proof. By Proposition 2.1 in [1], it is sufficient to prove that ~ is concentrated
on a ~-measurable graph. In view of Lemma 5.2, it is then sufficient to prove that
R(7) is included in a graph, or more generally that if (zo,yo) and (x¢,y,) are both
~-regular points, then yo = yj.

We divide the proof into two parts and first show that |zo—yo| = |zo—y(|. Arguing
by contradiction, we assume that |zo — yo| < |zo — y{| and suppose for the time being

that xg # 9. Let & = Y=o 0<e<|zo—yol, and 0 < r < |y; — zo| — |yo — zo]-

o —=ol?
We claim that for § := 1 — [22=%l 5ne has
|10 yol
(5.2) max{|z — yol, [ro — y[} < max{|z —yl, [zo — yo|}

for any (z,y) such that z € C(zo, &', §)NB(xo, )\ B(wo, 3¢) and y € B(yo, 7). Indeed,
take (z,y) as above; it then follows from the choice of r that |zg — y| < |zo — y§l,
while on the other hand

T — X9
|z —yol? = |z — mo ( |z — mo| — 2—— - (4o — o) ) + |zo — w0 |?
|z — xo]
< |z — @o| (Jzo — yo| — 2(1 = 8)|wo — yo|) + |zo — yo|* < |zo — w5l
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This proves the claim. We now infer from Proposition 5.4 that the set of points
z € v~ (B(yo,)) such that z € C(zo, &', 6)NB(zo, )\ B(zo, 1¢) has positive measure
when ¢ is small enough. In particular, this set is nonempty for small e, and (5.2)
then clearly contradicts the infinite cyclical monotonicity of «v. As a consequence,
|zo — yo| = |zo — y§| in the case xg # yo.

If 7y = yo, we repeat the argument above with the choices 0 < & < %|zg — yp|,
0 <r < 1lyo — zo|, and § = . Then for any (z,y) such that € C(zo,&,6) N
B(zg,e) \ B(zo, 2¢) and y € B(yo,r), we clearly have |zg — y| < |zo — yj|, and the
other inequality |z — yj|? < |zo — yj|? follows as above.

We now prove by contradiction that yo = y{. Note that since we already know
that |xo — yo| = |xo — y4|, we may assume that |zg — yo| = |zo — yo| > 0. If yo # vy,
we can find ¢ € R? such that

Zo — Yo

o
) To=Y%
|$0 - y()|

<0 and gm .

Next we choose r > 0 such that

sup{€- 2=y e Blyo,r)p < 0
lzo — ¥l

and 6 > 0 such that

_ o
(5.3) o = inf{ "”0_“”” : ‘”"_yg) ;ng(xo,g,é)} >0
lzo — x| |z — Y
as well as
To— T Tg—
(5.4) sup{mz_glj| : |$2—z| sz € C(xo0,§,9), yGB(yO,r)} < 0.

We now claim that for ¢ > 0 small enough, (5.2) holds for any (z,y) such that
z € C(wo,&,6)NB(wg, )\ B(xo, 3¢) and y € B(yo, r). Notice that this claim concludes
the proof of yo = y{, modulo applying Proposition 5.4 as before. To verify that (5.2)
holds, we first notice that (5.4) implies that

(5.5) for all z € C(x0,§,96), y € B(yo,7), lzo —y| < |z—1y

since |z — y|? = |z — 20|? — 2(z0 — z) - (xo — y) + |r0 — y|>. We can also infer from
(5.3) that

|z —yol* < fa = ol (Jzo — 2] — 2alwo — yo) + |zo — yol?
for any © € C(x0,§,96). It follows that
(5.6) for all z € C(zo,&,6) N B(xo,€), lz —yo| < |zo — yol

whenever 0 < £ < 2alzo—yp|. We then get (5.2) from (5.5) and (5.6), which concludes
the proof. 0

5.3. Uniqueness of the infinitely cyclically monotone transport map.
We now consider the question of the uniqueness of the infinitely cyclically monotone
transport map obtained in the preceding section. We recall that when (5.1) holds
and p € |1, 00[, problem (P,) admits a unique (up to a u negligible set) p-cyclically
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monotone transport map (see, for example, [20] and section 5.4). Notice that in
contrast this result does not hold for p = 1, not even under the stronger hypothesis
that u < £¢, as shown by Example 1.3 in [1]: when p = £! Ljo,1] and v = Lt L11,2)5
both transport maps t +— ¢+ 1 and ¢t — 2 — t are optimal.

In the case of problem (P.), the question of uniqueness is largely open. At
the moment, we have only the following partial result stating the uniqueness of the
infinitely cyclically monotone transport map under the hypothesis that v is purely
atomic with finite support.

THEOREM 5.6. Suppose that i < L and v = E?:o a; by, for some (y;)o<i<i C
and positive numbers ag, . ..,ar. Then there exists a unique (up to a p-negligible set)
infinitely cyclically monotone Borel transport map T from p to v.

Proof. Suppose that there are two distinct infinitely cyclically monotone Borel
transport maps T and T, and let us introduce the sets

Uj =T y;) T~ ().

We first claim that it is possible to define a sequence of integers (i(p)),>0 such that
for all p >0, i(p) #i(p+1) and p (Ul((”j”) > 0.

Indeed, the fact that the two transport maps are distinct means that it is possible to

choose two indices i(0) # (1) such that u (U 1((1)) ) > 0. Next we notice that since T
maps i to v,

Yl h zu(m”) > 1 (V) +1(U) > n (V)

Since T also maps u to v, we infer from the above inequality that there exists p # i(1)
such that u (U’Zl)) > 0: we then set i(2) = p and start again from UZ(%). By repeating
the above argument we can build recursively the sequence (i(p))p>0 with the desired
properties.

Since the sequence (i(p))p>o0 takes its values in the finite set {0, ..., k}, we may
assume that there exists some m > 2 such that i(m) = i(0). For any p € {0,...,m—1},
the set U, ip )Jr Y has nonzero Lebesgue measure, so we may choose a Lebesgue point z),

of U ((p)ﬂ) for which |y;p41) — p| # [¥ip) — p| and then set x,, = x¢. By definition,

T(xp) = Yi(py and T(z,) = Yi(p+1) for all p € {0,...,m — 1}.

Since T and T are infinitely cyclically monotone, we have

0<p< Iyz - 'TIU| 0<p< |yz(p+1) xp‘ < Oggnga%(71 |yl(p) - pr|,
so that
(5.7) o AX [Yip) — pl = g max |Yip+1) — Tpl-



THE co-WASSERSTEIN DISTANCE 17

Then let I := {q : |yi(q) — T4l = MaXo<p<m—1 |Yi(p) — Tpl}. We infer from (5.7) and
the choice of the points x, that for any ¢ € I one has |y;q) — T¢| > |Yi(q+1) — 74l-
Since x, is a Lebesgue point of U;((;I;r D there exists # € U Z((;Z;r D arbitrarily close to

x4 for which
[Yitg) — Z1 > |Yi(q) — Zql,
and thus we can choose T € Uii((j;r b such that

(5.8) [Yiq) — | > max{|yig+1) — T, [Wi(q) — Zql}-

We now set &, := & as well as &, := x,, for p # ¢ and notice that (5.7) should in fact

(p+1)

also hold for this new choice of elements , in Uf(p) . This leads to a contradiction

since we can infer from the definition of I, the choice of ¢, and (5.8) that

o IAX Yip) — Tpl = Yi(q) — T
> max{Yig1) = 2| [Wiq) — 2ol = | max [yiper) — Tpl.
This is in contradiction with (5.7) and concludes the proof of the theorem. d

Remark 5.7. The construction of the sequence (z,)o<p<m is close to that pro-
posed in the proof of Theorem 3.4, but it is easier since we do not need that it loops
at xg. Indeed, in the above proof we do not really need that x,, = xg, and we assume
this only for convenience of notation, while in the course of the proof of Theorem 3.4
we intended to use Claim 1 and then had to start from the special xy found there.

At the moment we are not able to generalize this result to the case where v is any
probability measure on 2. On the other hand, it is clear that the above uniqueness
theorem requires that p does not concentrate, as the following example shows.

Ezample 5.8. Assume that pu = H! Lj0,1]x {0}, while v := % (6(0171) + (5(0}1)).
Then any transport map T (i.e., any p-measurable function for which Ty = v) is an
infinitely cyclically monotone optimal transport map from p to v.

5.4. Comments around duality. For 1 < p < oo, the mass transport prob-
lem (P,) may be rewritten as

7 W) = wt{e) = [ - ePdrea) e T}

In this form, the objective functional A — CP()) is linear over the compact convex set
II(p, v), and it is then quite natural to associate with (P,) its dual problem

(D) swp { [ @it + [ vavty) : o) + o) < Iy - |}

where ¢ € L'(du), 9 € L'(dv), and the constraint is required to hold for u a.e. z and
v a.e. y. Due to the regularity of the integrand c,(z,y) := |y — z|?, the supremum
of (D,) is achieved for a couple (¢, p?) where the Kantorovich potential ¢ is con-
tinuous and cj,-concave. We refer the reader, for example, to section 3 of [2], Part I
of [20], section 3.3 of [26], or section 2.4 of [32] for more on the related concepts and
results.

The Kantorovich dual problem (D)) appears to be a fundamental tool in under-
standing and solving the problems of the characterization, existence, and uniqueness
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for an optimal transport map for (P,). For example, the notion of p-cyclical mono-
tonicity (3.1) naturally appears via the equality sup(D,,) = inf(P,); see, e.g., the proof
of Theorem 3.2 in [2] (an alternative and direct proofis, for example, that of Theo-
rem 2.3 in [20]). Moreover, a key point in the construction of an optimal transport
map T, : supp(u) — supp(v) for (P,) is to identify the directions of transportation
(known as transport rays for p = 1), that is, to associate with u a.e. © € supp(p)
Tp(x)—x
understood that this direction may be obtained as the adequate c,-gradient of an op-
timal Kantorovich potential ¢ (see, e.g., [20, 19, 27] or section 2.4 of [32]). In fact, the
definition as well as the regularity properties of the transport rays are deeply linked
with the fact that the support of an optimal transport plan -, for (P,) is p-cyclically
monotone and thus inherits good properties from being included in the subdifferential
of a ¢,-concave function (which, in turn, turns out to be a Kantorovich potential; see,
e.g., section 2.4 of [32]).

In light of the preceding discussion, it is natural to try to develop a duality theory
for the problem (Ps) as well. We hereafter informally discuss this issue.

First, in view of the Example 3.3, it does not seem realistic that one could obtain
useful information from an intrinsic approach. Indeed, the optimal transport plan A
proposed in Example 3.3 is not induced by any transport map, so we cannot expect
that a dual problem directly associated with (Ps,) via some general construction gives
information on the geometry of the optimal transport plans. On the other hand, notice
that Theorems 5.5 and 5.6 do indicate that there exists a unique infinitely cyclically
monotone optimal transport map for the particular problem of Example 3.3.

In view of the results of the two preceding sections, and since the notion of
infinitely cyclically monotone plan was at first obtained via a limiting argument,
one is led to study the asymptotic behavior of the family of dual problems (Dp)
as p — oo. But as mentioned above, (D,) is not directly related to (P,) but to a
reformulation of (P,) which requires taking the p-power of the objective functional
Cp. As a consequence, one should in fact take the %—power of the objective functional

the direction to which the mass present at x is transferred. It is now well

of (D,) and then study the limiting problem as p — oo; unfortunately, our research
in this direction has been unfruitful up to now. Finally, since the functional C, is
not convex in A, the convex duality theory does not apply directly to (P,). But one
may wonder whether it is possible to overcome this difficulty and associate with (P,) a
dual problem with a structure similar to that of (Dp): this is a quite involved question
known as Dudley’s problem (see, e.g., equation (1.1.10) and Remark 2.6.2 in [26]),
and it is out of the scope of the present study.

Despite the above difficulties, we believe that developing a duality theory for the
problem (P.) is an important issue since it would yield a deeper understanding of
the problem of the existence and uniqueness for a particular optimal transport map.
Further explorations in this direction could follow the methods of [7, 16, 18].

Acknowledgments. The authors would like to thank Guy Bouchitté for propos-
ing the problem and for several fruitful discussions. The authors also thank Jouni
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REGULARITY UP TO THE BOUNDARY FOR NONLINEAR
ELLIPTIC SYSTEMS ARISING IN TIME-INCREMENTAL
INFINITESIMAL ELASTO-PLASTICITY*

PATRIZIO NEFF' AND DOROTHEE KNEES#

Abstract. In this paper we investigate the question of higher regularity up to the boundary for
quasi-linear elliptic systems which originate from the time discretization of models from infinitesimal
elasto-plasticity. Our main focus lies on an elasto-plastic Cosserat model. More specifically we show
that the time discretization renders HZ2-regularity of the displacement and H!-regularity for the
symmetric plastic strain €, up to the boundary, provided that the plastic strain of the previous time
step is in H! as well. This result contrasts with classical Hencky and Prandtl-Reuss formulations
where it is known not to hold due to the occurrence of slip lines and shear bands. Similar regularity
statements are obtained for other regularizations of ideal plasticity such as viscosity or isotropic
hardening. In the first part we recall the time continuous Cosserat elasto-plasticity problem, provide
the update functional for one time step, and show various preliminary results for the update functional
(Legendre-Hadamard /monotonicity). Using nonstandard difference quotient techniques we are able
to show the higher global regularity. Higher regularity is crucial for qualitative statements of finite
element convergence. As a result we may obtain estimates linear in the mesh-width h in error
estimates.

Key words. polar materials, perfect plasticity, higher global regularity, quasi-linear elliptic
systems, error estimates, time increments
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1. Introduction.

1.1. Plasticity and Cosserat models. This article addresses the regularity
question for time-incremental formulations of geometrically linear elasto-plasticity.
As a representative model problem we consider generalized continua of Cosserat-
micropolar type.

The basic difference of a Cosserat model as compared with classical continuum
models is the appearance of a nonsymmetric stress tensor which is augmented by a
generalized balance of angular momentum equation allowing one to model interaction
of particles not only by surface forces (classical Cauchy continuum) but also through
surface couples (Cosserat continuum). General continuum models involving indepen-
dent rotations as additional degrees of freedom were first introduced by the Cosserat
brothers in [15]. For an introduction to the theory of Cosserat and micropolar models
we refer the reader to the introduction in [49, 43, 45, 44, 48]; see also [22, 9].

There are a great many proposals for extensions of the elastic Cosserat framework
to infinitesimal elasto-plasticity. We mention only [17, 19, 31, 55]. Recently the finite-
strain formulation has been put into focus; see, e.g., [56, 62, 23] and the references
therein.
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The first author has also proposed an elasto-plastic Cosserat model [45, 44] in a
finite-strain framework. A geometrical linearization of this model has been investi-
gated in [46, 48] and is shown to be well-posed also in the rate-independent limit for
both quasi-static and dynamic processes.

When it comes to numerically solving problems in elasto-plasticity, then it is
common practice to discretize the time evolution in the flow rule for the plastic vari-
able with a backward Euler method and to consider a sequence of discrete-in-time
problems [50]. Provided that the elasto-plastic model has certain variational features
(hyperelasticity of the elastic response, associative flow rule) it is possible to recast
the problem for one time step (called the update problem in the following) itself into a
variational framework: the updated displacement is obtained as a minimizer of some
update functional; see, e.g., [61, 60, 2, 66, 67]. This line of thought can be nicely ex-
tended to finite-strain multiplicative plasticity; see [52, 37, 36, 38] and the references
therein. In the geometrically linear setting the resulting variational update problem
usually has the form of a quasi-linear elliptic system whose corresponding energy has
only linear growth (in case of perfect plasticity).

For qualitative statements on the rate of convergence of finite element methods
it is necessary to know precisely the regularity of the function to be approximated.
This then is the question on the regularity of the solution of the quasi-linear elliptic
system constituting the update problem.

As far as classical rate-independent (perfect) elasto-plasticity is concerned we
remark that global existence for the displacement has been shown only in a very weak,
measure-valued sense, while the stresses could be shown to remain in L?(£2), provided
that a safe load condition is assumed. For these results we refer the reader, for
example, to [3, 13, 64]. If hardening or viscosity is added, then global H!-displacement
solutions are found (see, e.g., [1, 12, 11]), already without safe load assumption. A
complete theory for the classical rate-independent case remains, however, elusive; see
also the remarks in [13].

Since classical perfect plasticity is, therefore, notoriously ill-posed (the updated
displacements have derivatives only in a measure-valued sense) we focus in our in-
vestigation of higher regularity on certain modified update functionals which might
allow for more regular updates. The Cosserat elasto-plastic model in [46] is our basic
candidate. Based on this time-continuous model we investigate the time-incremental
formulation and study the global regularity of minimizers of the corresponding update
functional. In [49] this time-incremental formulation is the basis of a finite element
approximation.

Our focus on Cosserat models is justified by the fact that the Cosserat-type models
are today increasingly advocated as a means to regularize the pathological mesh size
dependence of localization computations where shear failure mechanisms [14, 40, 4]
play a dominant role; for applications in plasticity, see the nonexhaustive list [31, 19,
55, 17].

1.2. Outline of this contribution. Our contribution is organized as follows:
first, we recall the time-continuous geometrically linear elasto-plastic Cosserat model
as introduced in [45, 44] and investigated mathematically in [46, 48, 47].

Referring to the development in [49] we provide in section 2 the corresponding
time-discretized formulation based on a fully implicit backward Euler discretization
of the plastic flow rule in time. It is shown in [49] that at each time step ¢, the
updated displacement field u™ and the updated “Cosserat-microrotation-matrix” A™
can equivalently be obtained from a convex minimization problem which involves only
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data from the previous time step. The plastic strain & is then derived from A™ and u™
via a simple update formula. Furthermore, in [49] it has been shown that the update
problem admits unique minimizers u™ € H'(Q,R?), A" € H'(Q,50(3)), and &} €
L?(2,Sym(3)), provided that the data coming from the previous time step are smooth
enough. In order to quantify the rate of convergence of corresponding finite element
methods for the update problem we investigate the regularity of the displacements
u” by studying the corresponding weak Euler-Lagrange equations. These equations
form a quasi-linear elliptic system of partial differential equations. The main result of
this paper is Theorem 5.2 in section 5, where we formulate a global regularity result
for weak solutions of a rather general class of quasi-linear elliptic systems of second
order. The time-incremental Cosserat plasticity formulation satisfies all the necessary
assumptions of the regularity result, which allows us to show higher regularity to
the extent that for all n € N : u" € H?*(Q,R?), A" € H?*(Q,50(3)), and &) €
H'(€,Sym(3)) if pure Dirichlet data are assumed. Let us remark that it remains an
open problem whether a similar regularity result is also valid for the time-continuous
Cosserat model or other regularized time-continuous plasticity formulations.

The general quasi-linear elliptic systems, which we study in section 5, are of the
following type: Find u € H}(£2) such that for every v € HZ ()

/<M(:E,Vu(x),z(:r)),Vv(m)>dx:/ (f,v) dx.
Q Q

Here, z € L?(,RY) and f € L*(Q,R?) are the given data. For the Cosserat model,
z is identified with (52, A™); the explicit structure of M = M is given in section 2.4.
It is shown that M is rank-one monotone in Vu and Lipschitz continuous but
not differentiable. Consequently, we assume in the general case that the function
M Q x M™* x RN — M™*? ig Lipschitz continuous, is rank-one monotone in Vu,
and induces a Garding inequality. The precise conditions on M are formulated as
R1-R3 in section 5.1. Our main result is Theorem 5.2, where we prove for smooth
domains that u € H?(Q), provided that z € H*(Q2) and f € L?*(2). We emphasize
that we do not need the differentiability of M and that we require M to be rank-one
monotone, only, instead of uniformly or strongly monotone. A further new aspect
compared to systems studied in the literature is the presence of the function z in the
definition of the differential operator.

Let us give a short overview on global regularity results for quasi-linear second
order systems. Systems with quadratic growth or, more generally, with p growth are
studied by several authors. We mention here the books [42, 39, 6] and the paper [53],
where global regularity results for systems of the type

Div M(z, Vu(x)) + f(z) =0, u’{m = 9gp,

are shown for smooth domains assuming that M is differentiable and strongly mono-
tone. Further results for Lipschitz domains were obtained in [21, 20, 57], again as-
suming that M is strongly monotone (or uniformly monotone if p # 2), that it is
differentiable, and that there is a function W such that M = DW. These results
are proved with a difference quotient technique which relies on the standard finite
differences dpu(z) := u(x + h) — u(x).

In [16] the authors study systems where M(z,u, Vu) = B(x)Vu + h(z, u, Vu).
The main assumption in [16] is that B is uniformly positive definite, h is Holder-
continuous with respect to Vu, and h(z,u,-) is uniformly monotone in zero. They
prove that the gradient of solutions belongs locally to certain Campanato—Spanne
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spaces. With our main result we can treat the case where i does not depend on wu,
where it is Lipschitz continuous and monotone but not necessarily uniformly mono-
tone, and where B induces a rank-one positive quadratic form. We obtain u € H?(Q)
globally.

In [58] a nonlinear elliptic system is studied which is more related to our Cosserat

model. There, M is chosen as M(Vu) = h(‘lf(%)“) e(u), where €(u) is the linearized
strain tensor, and it is assumed that h is differentiable except for a finite number of
points and that h is strongly monotone. It is shown for smooth domains that u €
H?(Q) by investigating the regularity of functions us with Div(de(us) + M (e(us))) +
f =0 for 6§ \, 0. The results for us are obtained with standard finite differences.
Further results for related models were obtained in [54, 7]. Let us remark that the
quasi-linear system we are interested in contains the above described systems as special
cases (if p = 2) and that our main result is not covered by the above references. The
local and global regularity of the stress fields of a class of degenerated quasi-linear
elliptic systems is investigated in the papers [10, 33].

Note that higher regularity is not known to hold for the displacements of the
classical limit of our formulation, which is the classical time-incremental Prandtl-
Reuss model. In the first update step this model in turn is nothing else than the total
deformation Hencky plasticity model. The Hencky model does not allow for regular
displacements. Here, it is known that the displacement u € L%(Q,R?’) (see, e.g., [6,
p. 423]), while the classical symmetric stresses satisfy o € HL (£, Sym(3)) NHz=%(Q)
for every 6 > 0 if the data are sufficiently regular and if ) is a Lipschitz domain. See
[59, 24, 5, 51, 18] for the local and [32] for the global result.

The proof of our own regularity result is split into the three classical steps. In the
first step we investigate the tangential regularity of weak solutions in the case where
Q is a cube. Since we assumed rank-one monotonicity, only, we cannot apply the
standard difference quotient technique in this step. Instead, we use finite differences
which are based on inner variations: Apu(z) = u(rh(z)) — u(x), where 7,(z) =
x + ¢*(z)h for h € RY and a cut-off function . This will be explained in more
detail in Remark 5.5. Let us note that these nonstandard differences were recently
applied by Nesenenko [51] in order to obtain higher local regularity for models from
elasto-plasticity with linear hardening. In the second step we prove higher regularity in
directions normal to the boundary. Due to the lack of differentiability of M we cannot
apply the usual arguments (i.e., solving the equation for the normal derivatives) to
obtain the differentiability of Vu in the normal direction. Instead, we exploit the rank-
one monotonicity of M in order to get more information on the missing derivative.
In the final step we prove the result for arbitrary bounded C!!-smooth domains by
the usual localization procedure. The notation is found in the appendix.

2. The infinitesimal elasto-plastic Cosserat model. In this section we re-
call the specific isotropic infinitesimal elasto-plastic Cosserat model which has been
proposed in a finite-strain setting in [44] and which was analyzed in [46]. Moreover,
we derive a discrete formulation. This section does not contain new results; it serves
to provide the clear definition of the problem and to introduce some of the notation.

2.1. Time-continuous infinitesimal elasto-plastic Cosserat model. The
geometrically linear time continuous system in variational form with nondissipative
Cosserat effects reads as follows: for given body forces f(t) € L?(2,R?) and given
Dirichlet data find the displacement u(t) € H(Q,R?), the skew-symmetric microro-
tation A(t) € HY(Q,s50(3)), and the symmetric plastic strain ,(t) € L*(Q2, Sym(3))
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with
/QW(VU,A,Ep(t)) —(f(¢),u)dx+— min w.r.t. (u,A) at fixed €, (¢),
W(Vu, A,e,) = p|lsym Vu — g,
+ pie ||skew(Vu — A)||> + %tr [Vu]® + 2u L? ||V axl(4)]?,

() € O(Tu(t)),  Tr=2u—¢c,), = €Sym@)Nsi(3), =(0) =2,
(2.1) wp, =gp(t,z) -z, A =skew(Vgp(t,z)),
Here, 2 C R? is a bounded smooth domain and I'p C 9 is that part of the boundary
where Dirichlet data are prescribed. The parameters p, A > 0 are the Lamé constants
of isotropic linear elasticity, u. > 0 is the Cosserat couple modulus, and L. > 0 is an
internal length parameter.! The classical symmetric elastic strain sym Vu is denoted
by . The linear operator axl : s0(3) — R® provides the canonical identification
between the Lie algebra so0(3) of skew-symmetric matrices and vectors in R3. The Lie
algebra of trace-free matrices is denoted by s[(3), and dev : M?*3 — sl(3), dev X =
X — %]1 is the orthogonal projection onto s[(3). As regards the plastic flow rule, dx is
the subdifferential of a convex flow potential y : M3*3 — R* acting on the generalized
conjugate forces, i.e., the Eshelby stress tensor T = —0., W(Vu, A,¢,), where W is
the free energy used in (2.1).2
The corresponding system of partial differential equations coupled with the flow
rule is given by (note that || A|[Z:.s = 2||axl(A)||3s for A € s0(3,R))

Dive =—f, x €€, balance of forces,
o =2u(e—ep)+ 2 pc (skew(Vu) — A) + Atrfe] - 1L
—pu L? Aaxl(A) = p. axl(skew(Vu) — A), balance of angular momentum,
ep(t) € OxX(TE), Te=2u(c—¢p),
e, (L, )—gD(t x) =, Ay = skew(Vgp(t, ),
o.diloonr, (t, ) = 0, LIV axi(A).diloo\r, (t ) =0,
ep(0) € Sym( ) Nsl(3).

Note that in this model the force stresses ¢ need not be symmetric and that the
Cosserat effects, active through the microrotations A, appear only in the balance
equations but not in the plastic flow rule since Tr does not depend on A. It is worth
noting that this model is intrinsically thermodynamically correct. If I'p = 0f2, then
the model admits global weak solutions with the regularity [46]:

u € L*([0,T), H'(Q,R?), Aec L=([0,T], H'(2,50(3))),
g, € L>([0,T7], L*(2, Sym(3) N s(3))).

2.2. Backward Euler time discretization of the flow rule. For a numerical
treatment we consider the time discretization of the flow rule with the fully implicit
backward Euler scheme. Let 0 = tg < t1 < --- < ty = T be a subdivision of the

L1Observe that for e = 0 or L. = 0 one recovers the classical Prandtl-Reuss formulation for the
displacement u.

2The specification x = Ix as indicator function of some elastic domain is not necessary at this
point.
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time interval [0,7] with ¢t; —t;_1 = At. Let f"(z) = f(z,t,), and assume that at
time t¢,,_1 a sufficiently regular plastic strain field &) —1 € Sym(3) N sl(3) is given.
We want to determine the updated displacement u™ E HY(Q,R3), the updated skew-
symmetric microrotation A™ € H'(,50(3)) and the updated symmetric plastic strain
el € L*(2, Sym(3) N sl(3)) satisfying

Dive"™ = —f", x€Q,
o =2pu(e" —ep) + 2 e (skew(Vu™) — A") + Atr [¢"] - 1,
(2.2) —uL? Aaxl(A™) = p. axl(skew(Vu™) — A™),

en — —1

en
pT € x(Tg), Tp=2u(" —¢p),
uf, () =gp(e) —z, AR =skew(Vgp(z)),
o™ flao\r,, (7) = 1 L2V axl(A)" it gonrp, () = 0,
n—1

enle LQ(Q Sym(3) N sl(3)).

It is possible to explicitly solve the discretized flow rule (2.2), for g, in terms of 52‘1,
e™, and At. To see this, consider

&‘p 617 n_ .n n __ .n __p p
(2.3) Q€ ox(2u (" —ep)) & 0€Ix(2u(e" —¢p)) A

& 0€den (M llen — en=* + At x(2u (" — gg))) :

Thus we can define the local potential for the local flow rule

n n—1 en — an—l

(24) Vtime( nogn o on— 1 At _MHE _EZ_1H2+AtX(2M(En_En))‘

’Tp? p p
It is easy to see that V'™ is strictly convex in }; thus V'™ admits a unique
minimizer satisfying (2.3),. Moreover, we have

thme(€ 5 5" 1 At HS n71||2+AtX(2,LL (Enfgz))

= @ |2u(e) — €™ + €™ — 52‘1)H2 + At x(2u (" —€p))

1 n n 7
= @ HZ trl&l” + At X(Z ) = V( tl‘ldl)

where X" = 2u(e" — ¢)) and the so-called trial stresses X', = 2u(e" — 5271).

Minimizing V™€ with respect to £, 1s equivalent to minimizing V' with respect to
¥, Proceeding further, we specialize x. Let us define the elastic domain in stress
space

K:={X¢ M3 | ||dev 2] < oy},

with initial yield stress oy, [0y] = [MPa], and corresponding indicator function

07 ||deVZH S U.V’

00, ||dev X|| > oy,

Ig(X) = {

and let x = Ix. We have therefore dx = Ik in the sense of the subdifferential. With
this choice, the unique minimizer of V' is simply characterized by

inf || X" —

Shek trlalH
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n

ia ONto the convex

independent of At. The solution is the orthogonal projection of 3
set K, denoted by

Y= Pr(X0,) = 2u (E” _ EZ) — PK(2,U (En _ En—l)).

trial p
Reintroducing the last result into the balance of forces equation (2.2), delivers
Dive" = —f", z€Q,
(2.5) o™ = Px(2u(e" — E;‘*l)) + 2 pie (skew(Vu™) — A™) + Atr[e"] - 1.
This step is called return mapping [61, 60] in an engineering context of classical
plasticity. At the given plastic strain of the previous time step Eg_l this equation is
the strong form of the update problem for the force-balance equation.

Gathering the previous development the formal problem for the update consists
of determining u" € H'(Q,R?), A" € H'(Q,50(3)), and & € L*(Q2, Sym(3) N sl(3))
satisfying

Dive™ = —f", x€Q,
(2.6) o" = Pg(2u(e" — 5;“1)) + 2 pte (skew(Vu™) — A™) + Atr[e"] - 1L,
—pu L? Aax1(A™) = pe axl(skew (Vu™) — A™).

The updated plastic strain field is then given by

n n 1 n n—
(2.7) €, =¢ —@PK(Q,U,(E —&p ).

For the precise formulation of this system we need the projection operator onto the
yield surface which we recall in the following.

2.3. The projection onto the yield surface. Let K be a convex domain in
stress space defined as

(2.8) K :={SeM”?||devi| <oy}.

The orthogonal projection Px : M3*3 — K onto this set is uniquely given by (see,
e.g., [29, 30])

PK(E):{E, . Y€K,
Y= (ldevy] —oy) qaevsy: T EK
B {z, [dev ¥|| < oy,
= %tr[Z]ﬂqLHd%ZHdevE, [dev X[ > oy.

It is easy to see that Pg is Lipschitz continuous but not differentiable at ¥ with
|[devX| = oy.> From convex analysis it is clear that P represents a monotone
operator which is nonexpansive. Therefore, Pk has Lipschitz constant 1. Observe
also that

(2.10) Pr(%) = %tr 5] 1 + Prc(devy)).

3Consider the simple example p : R — R,

.Z‘, I‘r‘ S Uy7
(2.9) p(z) =
oy I%\’ || > oy.
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For future reference we calculate also

0, |dev X|| < oy,
S — Pr(X) = ”
devX (1 — m) ; ||deV2H > O'y
devy
2.11 — lldev Sl — _devd
( ) [H ev || Uy].;_ ||d6VEH,

I = Px(D)|* = [Ildev S| - oy 13,

where [z]+ := max{0,z}.

2.4. Weak form of the reduced update problem. From now onwards we
take I'p = 0N and assume gp = z; i.e., the body is fixed everywhere on its boundary
and subject only to body forces. This assumption allows us to confine attention to
the simpler setting in H}(Q). We introduce the nonlinear mapping

M MP*3 % Sym(3) x s0(3) — M3*3,
(2.12) Mce(X,ep, A) := Px(2u(sym X —ep)) + Atr [X] 1 + 24 (skew(X) — A).

The weak form of the update problem (2.6) now reads as follows: for given f" €
L?(Q,R?) and el ~' € L?(€2, Sym(3) Nsl(3)) find (u, A™) € H{(Q,R?) x Hj(Q,50(3))
satisfying for all v € H}(Q,R?) and all B € H}(Q,50(3))

(2.13) A(MC(VU”,&:Z,A"),VU)dX:/Q<f",v>dx,
(2.14) w L2 / (DA™ DB)dx = p, / (skew Vu" —A™, B) dx.
Q Q

The updated plastic strain field e is then obtained by (2.7). It is shown in [49] that
for every n the system (2.13)—(2.14) admits a unique weak solution u™ € Hg (2, R3)
and A" € H}(Q,s0(3)). Equation (2.13) represents the quasi-linear elliptic system
for determining ™, which will be discussed with respect to regularity. Together with
5;"_1, e" € HY(Q,Sym(3)), which we will obtain from the regularity result to be proven
below, using (2.7) we see that 7' € H'(, Sym(3)).

LEMMA 2.1 (strong Legendre-Hadamard ellipticity). Let p > 0, 2+ 3X\ > 0,
and 0 < p.. Then the matriz-valued function Mc is strongly rank-one monotone;
i.e., there exists a constant CIH > 0 such that for every X € M3*3 ¢, € Sym(3),

A € 50(3) and for all £,m € R we have
(2.15) (Mo (X +E@n,ep,4) = Mc(X 25, A),E@n) > el €7 In]]*.

Proof. The projection Py itself is monotone, and for g > 0 there is no sign
change. Thus the map X — Pr(2u(sym X —¢,)) is also monotone in X. Since (2.10)
holds we have

(Pre(2ulsym X + €@ 1 - 2)) — P (2ulsym X — ), £ 0n) 2 2 trle o

For the remaining linear contribution we have

Ar[X +€@n L+ 2ucskew(X +E@n— A) — [Mr[X] 1 + 2pu.skew(X — A)], €@ n)
= Atr[€ @ n)* + 2p. [|skew(E @ )| -
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Thus
(2.16)

<MC(X+£®na€paA) _MC(X7€p7A)7£®n>

> 2549 e @ ) + 2y |Iskew(§ @ m)1* = 252, m)? + e (€11 Inl = (& m)?)
split f1e + 12 = pre

= (22—t} dem)® + b eI Il + w2 (1) il = ¢&m)?)

>0

2 2 2 2
> (253 — ) (& m) + it ) Il = w i) Il

if 0 < pl < ?’A%Z“ Thus Mg generates a strongly Legendre-Hadamard elliptic
operator with ellipticity constant ¢}, = min(g, @) d

Obviously, M is Lipschitz continuous: for every X; € M3*3 P, € Sym(3), A; €
50(3) we have

[Mc (X1, Pr, A1) = Mc(Xz, Pe, Ao)|| < Lme ([ X1 — Xo|| + ([ Pr — Paf| + [[A1 — Azf]) -

LEMMA 2.2. Let p > 0, 2u+ 3X > 0, and p. > 0. The operator Mc generates
a strongly monotone operator on Hg (2, R?); that is, there exists a constant cpqy, > 0
such that for every vi,ve € H}(Q,R?) and for all e, € L*(Q,Sym(3)) and A €
L?(Q,50(3)) we have
(2.17)

/ (Mc(Vor,ep, A) = Mc(Vug, ey, A), Vo — Vug) dx > e [Jv1 — U2||§{3(Q,R3) .
Q

Proof. The same calculation as in the proof of Lemma 2.1 yields the estimate
<MC(V’U1, Ep, A) — MC(V’U27 Epy A), VU1 — V7)2>

S 20+ 3\
- 3

tr [Voy — Va]® + 2p1, ||skew (Vo — Vo)) .

Set u = v; — vy and consider

21+ 3\ 2p +

3
— IDiv ul? + pre [[curl ul|? .

(2.18) tr [Vu]® + 2pc [|skew V|| =
The Div/Curl inequality on the space H}(f2) guarantees that there exists C+ > 0
such that

(2.19) Yue Hy(Q,R?): /Q IDivul® + [Jeurlu|® dx > CF Hu||§{é(Q’R3) ;

see, for example, [28]. Applying this inequality to (2.18) implies finally (2.17). 0

It is instructive to realize that although the quadratic form (2.18) is formally
positive in the sense of Necas [41] and strongly Legendre-Hadamard elliptic with
constant coefficients it is impossible to extend the analysis to Dirichlet boundary
conditions given only on a part of the boundary 92. We observe that

2

A
(2.20) H\/;TcskewX + %tr (X]1j = §tr [X]? + pe ||skew X |2
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Let A be the constant-coefficient first order differential operator

AVu = Ve skew(Vu) + \/gtr [Vu] 1.

The corresponding Fourier symbol is given as a linear operator A(¢) : C3 — C3*3
with

(2.21) A(€).6 = /e skew(§ @ @) + 1/ 25 tr[§ @ 4] 1L.

From (2.20) it follows that

A
IA©)-al* = 5 trg @ a]” + pe |lskew € @ 4|

By algebraic completeness of the symbol A(¢) : C3 — C3*3 it is meant
VECTC3 €40:  A(€).G1=0psxs = 1= Ocs.
Recall that the corresponding statement for real &, i.e.,
VECRE €40 A(€).01 = Ogsxs = @ = Ops,

is a consequence of strict Legendre-Hadamard ellipticity of A. If the symbol is alge-
braically complete, then, using the result in Necas [41] the induced quadratic form

/ AV + Jlul? dx
Q

is an equivalent norm on H'(£2,R?). However, we proceed to show that A as defined
in (2.21) corresponding to our quadratic form (2.18) is not algebraically complete.
Proof. To this end we write

A).t=0 = tr[¢®u] =0, and skew((®@4) =0 = (=14, tr[¢®¢& =0.

Consider for simplicity the two-dimensional case:

_far+ifB (&& L&
£_<0é2+iﬁ2>7 §®§—<€2£1 5252)’
tr[ @& = && + &&= of + a3 — (67 + 83) + 2i(c1 1 + az82) = 0.

Choosing ¢ = (i,1)T shows that tr [¢ ® £] = 0, which proves the claim. 0

Thence, the quadratic form is not algebraically complete, and this excludes the
treatment of mixed boundary conditions on u in the following: we are forced to assume
I'p = 09). However, inhomogeneous Dirichlet conditions may be prescribed as far as
the use of the Div/Curl estimate is concerned.

2.5. Variational form of the update problem. Due to the underlying vari-
ational formulation, the weak form (2.13) of the time-incremental Cosserat problem
still has a variational structure. In [49] it is shown that solving (2.13)—(2.14) is equiva-
lent to the following minimization problem: find (u", A") € H}(Q,R?) x H}(£2,50(3))
which minimize the functional

(2.22) Iy (1, A) = Epen (0, A, ) — /Q (F7 ) dx
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in H}(Q,R?) x H}(Q,50(3)). Here, Einer denotes the free energy of the incremental
problem defined by

1 A
Einer (U, A, ) = —/ U (2u(sym(Vu) —e,)) dx + f/ tr [Vu]? dx
21 Jo 2 Ja
(2.23) +uc/ ||skew (Vu) — A|\2dx+uL§/ | DA dx,
Q Q

with a potential function ¥ : M3*3 — R* of the form

21X, dev X || < o,
U(X):= L/ 9 )
1 <§tr [X]? + 20y [[dev X| fay), |dev X|| > oy
1 2 1 2
(2.24) =35 X"~ 5 [ldev X || — Uy]+ .

Clearly, ¥ is convex but not strongly convex outside the yield surface. Moreover, it

has only linear growth outside the yield surface. Note that for the first time step

n = 1 and 62 =0, pe = 0, L. = 0 the functional I} _ (u,0) reduces to the primal

plastic functional of static perfect plasticity (Hencky plasticity) [35, 63, 24, 25, 6].
Calculating the subdifferential of the convex potential shows that

(3, H), |dev Z|| < gy,
DU(N).H =1 .
gtr[E]tr[H]er(devx,devH), ||deV2|| >0'y
(2.25) — (Px(), H).

Hence 0¥ (X)) = Pk (X), motivating the variational structure. The following relation-
ship between the potential ¥ and the projection Py is also valid:

2 2
V(X)) =3 [ X7 = 3 |1 X = Pe(X)]"

For future reference the second differential of the potential ¥ can be calculated in
those points where the potential is differentiable. It holds that

(2.26)
2
1H1", |dev X|| < oy,
D%V (X).(H, H) = { does not exist, [dev X || = oy,
2 dev H||? dev X,H)?
Lt [H]) + oy (“udevx”” — e By ) dev X|| > 0.

The potential ¥ is not strictly rank-one convex in X, since taking H = £ ® n with
(§&;m) = 0 yields

D2U(X).(€ @1, € @) €0 mli* [dev X || < oy,
X SIS D) = [devean|?  (dev X,£@n)?
Ty ( HdevXnH o ||devX|\g ) ) [dev X|| > oy.

Taking X = & ® n shows finally

2 2
€ Il™,  [ldev X[ < oy,

DXV (X).((®@né®n) = {O [[dev X|| > o
9 v
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3. Improved error estimates for Cosserat plasticity. Let h > 0 be the
mesh size of a finite element method, and let V;, € H}(,R?) be a corresponding
discrete finite element space. Let us concentrate on the displacement approximation
only. In [49, Thm. 8] the following error estimate for the discrete solution u)*™ € Vj,
of the Galerkin approximation of (2.23) in V}, has been shown:

Cq
He v o HesT 3 He
(3.1) A i A L
with a constant C; > 0. Here, u=™ = 4™ is the exact solution of (2.13).

Using our regularity result from section 5, i.e., u#=™ € H?(£2,R?), the right-hand
side can be estimated qualitatively. If V}, is chosen to be the space of piecewise linear
finite elements, then it holds [8, p. 107] that

Cs

(3.2) e = b Mgy < 0 P a2 -

In [49] it has also been shown that for p. — 0 the classical Prandtl-Reuss symmetric
Cauchy stresses oY are approximated by the sequence of nonsymmetric stresses o«
whenever a safe load condition is satisfied. The estimate (3.2) strongly suggests
therefore to balance h against p,. to obtain optimal rates of convergence to the classical
solution as in [54], where hardening-type approximations have been considered.

4. Higher regularity for alternative regularized update potentials. Our
regularity result can also be applied to many other problems arising in the context of
infinitesimal plasticity. There exist several other possibilities to regularize the classical
update problem for the Prandtl-Reuss model. We recall the classical update problem:
find a minimizer u"™ € BD(£2,R?) of the functional

(4.1) i (u) = €87 (u,ep™") = / (f",u) dx,
Q

where ££12% denotes the free energy of the classical incremental problem defined by

1
(4.2) Elass(y,¢,) = —/ U (2u(sym(Vu) — g,)) dx —l—/ A tr [Vu]? dx,
21 Ja Q2

with the potential ¥ as in (2.24). There is a vast literature on this Prandtl-Reuss
update problem, mostly for the first time step n = 1, in which case it is the classical
Hencky problem of total deformation plasticity [63, 54, 24, 25]. In this case, the
plastic strain field €, is a symmetric bounded measure [63, 6]. The classical symmetric
Cauchy stresses o = 2u (sym Vu —e,,) + A tr [Vu] 1L satisfy o € L?(£2, Sym(3)); indeed
higher regularity for the stresses can be shown in the sense that o € H (€2, Sym(3))N
Hz=5(Q).
For regularization purposes the following proposals are usually made:

(4.3) EE (u,ep) = i/ U (2u(sym(Vu) —ep)) dx+/ %tr [Vu]> +Reg(Vu, e,) dx,
Q Q

with the function Reg in the form
(4.4)

6
Reg(Vu,ep) = % |dev sym Vu — 5,,||2 ,  Fuchs and Seregin [24, p. 60],
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1

Reg(Vu,ep) = ————%+
2p(1+55)

[lu(devsym Vu —ep)|| — ay]i_ , linear viscosity 7,

)
Reg(Vu,e,) = % |[Vu—ep||*, locally strictly convex in V.

In each case, for 6 > 0 the density of the update problem is then uniformly convex in
the symmetric strain € = sym Vu. Moreover,

A
(4.5) Reg(Vu,ep) + S tr V> > ¢t e — g7,

Korn’s first inequality establishes quadratic growth, and we have uniform convexity
for the regularized problem. Our main regularity result applies therefore also to these
models.

In the case with linear hardening it is simpler to write the update potential
directly. We consider as an example isotropic hardening with the hardening variable
a > 0 (a measure for the accumulated plastic strain in the previous time step). Here,
the energy Einer can be expressed as (cf. [60, p. 124])

1
(4.6) Ei}:lirrd(u, Ep, @) = —/ Whard (2u(sym(Vu) — 6,;),&) dx —|—/ i tr [Vu]2 dx,
2u Jo Q2

with (cf. (2.24))
X2, [dev X[| < oy + H v,
1 H 2 1 2
\I/hard(X,Oé> = 2(1.,.1[1\?13&]) (I[MPa] HX” + 3 tr [X}
+2(oy + Ha)||dev X|| — (oy +Ha)2), |dev X|| > oy + H a
1 2 1 2
(4.7) =S IXI° = -—— [ldev X|| = (0y + Ha)], ,
2 2(1 + qp5rpay) *

whose second derivative coincides with the consistent tangent method introduced al-
ready in [61]. The constant H > 0 is the hardening modulus with dimension [MPa).
In this form it is easy to see that for positive hardening modulus H > 0 the isotropic
hardening update potential is uniformly convex in sym Vu with quadratic growth and
has a Lipschitz continuous derivative. Therefore, our main regularity result applies
also to this functional.* The relative merits of each individual regularization scheme
depend on their ability to balance regularization and approximation. Linear viscosity
and hardening can be justified on physical grounds, but the (small) viscosity param-
eter n > 0 is difficult to estimate, as is the linear hardening modulus H > 0. The
physically motivated regularization terms have the property to control only the sym-
metric part of the displacement gradient. The regularization (4.4),, however, does
not satisfy the linearized frame-indifference condition.

All alternative regularization procedures thus establish local coercivity in the
strains. In contrast, the Cosserat regularization is weaker in the sense that only strong
Legendre-Hadamard ellipticity is reestablished, which, provided that displacement
boundary data are prescribed, suffices for existence, uniqueness, and higher regularity.
Thus the Cosserat approach appears as the weakest regularization among the ones
considered.

4Repin [54, eq. (2.3)] calls (4.4), linear hardening and shows the regularity u® € HZ _(Q,R?),
while for the planar case n = 2 he obtains u® € H?(Q,R?) if ' = 99 is smooth.
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5. The regularity theorem. We know already that problem (2.22) has solu-
tions v € H'(Q,R3). Looking at the system for the microrotations A" at given
Vum € L*(Q,M3*3) we realize at once that the linearity in A™ together with the
Laplacian structure allows us to use standard elliptic regularity results for linear sys-
tems, which yields higher regularity for the microrotations: A" € H?(Q,s0(3)). In
this section we study the regularity of the displacement field u™, which is determined
through (2.13).

5.1. Higher regularity for a quasi-linear elliptic system. The quasi-linear
elliptic system introduced in section 2.4 is a special case of the systems which we
define here below. For d,m, N > 1 and 2 C R? let M : Q x M™*xd x RN — Mm*d
be a matrix-valued function with the following properties.

R1. The mapping M : Q@ x M"™*4 x RYN — M™*9 is a Carathéodory function

which is Lipschitz continuous in the following sense: there exist constants
Ly, Ly > 0 such that for every z,2; € Q, a,a; € M™*? and z,z; € RN we
have

[M(z1,a,2) = M(x2,a,2)|| < La([lall +[|2]]) |21 — 22|,

Mz, a1,21) — M(z,az, 22)|| < La(|lar — azl| + [|21 — 22]]),
M(z,0,0) = 0.

Assumption R1 implies the useful estimate

||M(.T1, ai, Zl) - M(l‘?? az, 22)”
(5.1) < Li(llaall + llz1l) [lzr — @2l + La(llaz — azll + (|21 — 22])).
R2. The mapping M is strongly rank-one monotone. That means that there exists

a constant cpm > 0 such that for every z € Q, a € M™*? 2z ¢ RN, £ € R™,
and 1 € R? we have

(5.2)  (M(z,a+E@n,2) — M(z,a,2),E@n) > e |IE) nl] -

R3. The Garding inequality shall be satisfied: there exist constants Cg > 0,
cc € R such that for every ui,us € HY(Q) with u; — us € HI(Q) and for
every z € L?(Q) the following inequality is valid:

/Q (M(z,Vuy,2) — M(x,Vug, ), V(ug — ug)) dx

2 2
> Cq|[V(u — u2)||L2(Q) =g flur — U2HL2(Q) :

Remark 5.1. If M is differentiable, then the Garding inequality already implies
that M is rank-one monotone; see, for example, [65, Thm. 6.1].

We investigate the regularity properties of weak solutions to the following quasi-
linear elliptic boundary value problem. For given g € Hz(0%), z € L2(Q,RY), and
f e L?(Q,R™) find u € H(Q,R™) with u|pq = g such that for every v € H}(Q,R™)
we have

(5.3) /Q(M(a:,Vu(x),z(:c)),Vv(x)>dX:/Q<f,v>dx.

THEOREM 5.2. Let Q C R? be a bounded C'-smooth domain, m > 1, and N > 1,
and assume that M : Q x M™*4 x RN — M™*? satisfies R1-R3. Furthermore, let
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g€ H3(09), z € HY(Q), and f € L2(Q). Every weak solution u € H*() of (5.3)
with u|lga = g is an element of H?(Y) and satisfies

||u||H2(Q) <c (HQHH%(m) + ”Z”Hl(Q) + ||f||L2(Q) + H“”Hl(Q)) :

Before we prove Theorem 5.2, we apply it to the situation described in section 2.4.
There, m = d = 3 and RY is identified with Sym(3) x s0(3) so that z = (g,, A).
Moreover,

M(z,Vu,z) = Mc(Vu,ep, A)
= Pr(2u(sym Vu — ep)) + A(tr [Vu]) 1L + 2. (skew(Vu) — A).

Since Py is a Lipschitz continuous mapping, we see immediately that assumption R1
is satisfied. R2 is proved in Lemma 2.1, and the Garding inequality is satisfied since
M generates a strongly monotone operator on Hg(); see Lemma 2.2. Therefore,
we have the following result for the reduced update problem (2.6).

THEOREM 5.3. Let Q be C''-smooth, f* € L*(Q), and e~' € H'(Q). Then
u, € H*(Q), A" € H*(Q), and €y € H'(Q).

The proof of Theorem 5.2 is carried out with a difference quotient technique. We
cover the boundary of €2 with a finite number of domains and map each of these do-
mains with a C1! diffeomorphism onto the unit cube in such a way that the image of
the boundary of Q lies on the midplane of the unit cube. We first prove higher regu-
larity in directions tangential to the midplane by estimating difference quotients. The
regularity in the normal direction is then obtained on the basis of the tangential regu-
larity and by using the differential equation together with the rank-one monotonicity
of M.

Since M is nonlinear and since we assumed rank-one monotonicity instead of
strong monotonicity, we cannot use as test functions the usual finite differences of
the type h=1p?(x)(u(z + h) — u(x)), where ¢ is a cut-off function. Instead, we use
differences which are based on inner variations. We begin the proof of Theorem 5.2
by studying a model problem on a half cube.

5.2. A model problem on a half cube. Let C, = {z € R%; |z;| < r, 1 <i < d}
be a cube with side length 2r, C* the upper and lower half cube, respectively, and
M, = {x € Cy; g = 0} the midplane.

LEMMA 5.4. Let Q= Cy, f € L>(Cy), and z € H*(Cy), and assume that u €
HY(C7) with u|pr, = 0 satisfies (5.3). Then for everyr € (0,1) and for 1 <i<d—1
we have O;u € HY(C,7). Moreover, there is a constant ¢, > 0 such that

(5.4) ||aiu||H1(C;) < CT(HUHHl(C;) + ||Z||H1(c;) + ||f||L2(c;))'
Proof. Let r € (0,1) and ¢ € C3°(Cy) with p(z) = 1 on C,. For h € R? we
introduce the mapping
mh:C1 — Rz — 7,(x) = x4 p(2)h.

Let hg = |\<p||;V11,m(Cl) min {1, dist(supp ¢, dC1) }. For every h € R? with |h| < hg and
h parallel to the plane M;, the mapping 75 is a diffeomorphism from C; onto itself
with 7,(C5) = C, 7(My) = My, and 7, (x) = z for every z € dC; see, e.g., [26].
Moreover, 7, has the following properties (if |h| < ho):

Vrn(z) = (L +h®Ve(z)), det[Vr(z)] =1+ (b, Vo(z)),
Vit y) = (L+he V) | 1 —((1+(h, Vo) the V)|

i) T ()
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For a function v : C] — R® we introduce

Apv=voT, — 0, Ahv:v—vOTh_l.

For f,g € L*(Cy), |h| < ho and h || M; the following product rule is valid:

(5.5) /C fA"gdx = —/c

This identity can be shown by a transformation of coordinates y = 7, (x) in the term
(gor, 1)f. Let u € H{(Cy) be a solution of (5.3). For h € R? with |h| < hyg
and h || M; we define the double difference vy, () = A"(Aju(z)). In view of the
assumptions on ¢, hg, and h it follows that v, € H}(Cy). Inserting vy into (5.3)
yields

(5.6) /c* (M(:E,Vu,z),Vvh>dX:/ (f,vp) dx.

Cr

gAhde—/ (forhg)(h,Vy)dx.

1 Cr

Note that Vo, = AMW(Apu) + [(det[V7])"HVARu) h @ V] o 7, !, and therefore
(5.6) is equivalent to

/_ (M(z,Vu, 2), A"W(Apu)) dx

1

= —/ (M(z,Vu, 2), (det[Vr,] (VAR u) h® V) oy, ) dx +/ (f, AP Apu) dx.
Cr Cr

Furthermore, the product rule (5.5) entails
/C (DM, Vi, 2), VApu) dx = — /C (M(x,Vu,2) o 7, VAR h, Vo) dx
+ / B (M(z,Vu, 2), ((det[V7]) (VAW h @ V) or, ') dx
+ /C (f, A" Apu) dx
(5.7) =5 —;—Sg + S5.

Finally we have

/7 (M(z,V(uom),z) — M(z,Vu, z), VAu) dx

= /(f (ApM(z,Vu, 2), VALu) dx
+/c* (M(z,V(uortp),2z) — M(x,Vu, 2) o, VARu) dx
D 6 45y 4 S5+ /Ci Mz, V(uwo ), 2) — M(z, Vau, 2) 0 7, VARu) dx
(58) = SitootS.

The next task is to show that there is a constant ¢ > 0, which does not depend on h,
such that

(5.9) S+ +Sa < el (lull gy + 12l oy + 12 o)) 1Dl gy -
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Due to the Lipschitz assumptions on M we have
3] 41851 < elBIMC, Va2l oy 1l o

< clh| (”“HHl(cl—) + ||Z||L2(cl—)) ||Ahu||H1(cl—) :
Moreover, since f € L?(Cy ), the term S3 can be estimated as

1Sl < e[l 1 fll 2oy 1A0ull i opy -
By inequality (5.1) we see that

1941 < eLa ] (Jull ey + 12010 y) 12l o
+eLa([|V(uom) = (Vu) o Thllp2(cry + ¢ bl ||ZHH1(C;)) [ Anull oy -
The identity V(uo 1) — (Vu) o 1, = (Vu) o 7, (h ® V) leads to
141 < e8] (s oy + 12 lar o) 10001 o

Collecting all the above estimates we finally arrive at inequality (5.9). Géarding’s
inequality (see R3) and Poincaré’s inequality imply that

/ ) M(z,V(uor),z) — M(z,Vu,z), VAru) dx

1

2 2
> Ca ||VAhU||L2(c;) e HAh“HB(c;)
2 2 112
> c(lAnullipcry = 1F 1l o))
Combining the above estimates with (5.8) and (5.9) results finally in
2
||Ahu||H1(c;) <clh| (”U”Hl(c;) + ||Z||H1(c;) + Hf”Lz'(c;)) ||Ahu||H1(c;)
201112
+clh] ||U||H1(c;) )
and the constant c¢ is independent of h. From Young’s inequality we obtain
—1
(5.10) A HAhUHHl(c;) < C(Hu”Hl(c;) + HZHHl(c;) + ”fHLZ(c;))-

It follows from this inequality that d;u € H'(C;) for 1 < i < d — 1 and that
[0:ull g1 -y is bounded by the right-hand side in (5.10); see, e.g., [34]. d

Remark 5.5. If we choose the usual finite differences as test functions, i.e., 0y (z) =
§_n(p?6pu), where 8pu = u(z + h) — u(x), then similar calculations as those for vy,
lead to the estimate

/ ) O () (M(x, Vu(z + h), 2(z)) — M(z, Vu(z), 2(x)), 6, Vu) dx

1

(5.11) <c|h] ||<p26hu||H1(Cl_) ;

compare also (5.8) and (5.9). But now neither R2 nor R3 helps us to find a lower

bound for the left-hand side of (5.11) in terms of ||g025hVu||2LQ(C_), since in general
1

6rVu is not a rank-one matrix, and since we cannot interchange ¢ and M due to the
nonlinearity of M.
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LEMMA 5.6 (regularity in the normal direction). With the same assumptions as
in Lemma 5.4 it follows for every r € (0,1) that Ogu € HY(C,"). Furthermore, there
exists a constant ¢, > 0 such that

(5.12) lull 2oy < CT(||Z||H1(C;) 1 2oy + ||UHH1(C;))-

Proof. Let r € (0,1). Equation (5.3) implies that
(5.13) Div M(z, Vu(x), z(z)) + f(z) =0
for almost every z € C] . Let M, denote the columns of the matrix-valued function
M, ie., Mi(z,a,2) = (M (z,6,2))1<a<m € R™ for 1 < i < d. The Lipschitz
continuity of M and the tangential regularity proved in Lemma 5.4 guarantee that

OiM;(-,Vu,z) € L*(C;) for 1 <i < d— 1 and is bounded by the right-hand side in
(5.4). Together with (5.13) we obtain therefore

d—1
0aMa(- Vu, z) = —f = > 0iM,(-, Vu,z) € L*(C;).
i=1

By Lemma 7.23 in [27] the derivative 94 can be replaced with a finite difference in
the following way: For every ' CC C; and every h € R? with |h| < dist(€',0C,")
and h L M; we have

IN

[6nMa(-, Vu, 2)|| 2 ()

i=1

d-1
<||f|L2(CT) + Z [0: M (-, Vu, Z)||L2(CT)> |hl
(5.14) =:¢g|h|.
Here, 6pv(z) := v(z + h) — v(z) for h € R%. Thus, for every h L M; with |h| <
dist(©2', 0C;) we have
(515) / <(5th(.’£, VU, 2)7 6h8du) dX S Co |h| ||6h6du||L2(Q/) s

where ¢g is the constant from (5.14). We now split the left-hand side into a term
which can be estimated from below due to the rank-one monotonicity of M and
into terms which may be estimated from above using the Lipschitz continuity of M
and the regularity results from Lemma 5.4. For functions v : C{ — R we define
Vo(z) = (Dw(x),...,0q_1v(x),0) € M™% Furthermore, vy(x) := v(z + h) and
eq=(0,...,0,1)T € R With these notations we have

/ (Ma(z, YV + Oqup @ ed, z) — Ma(z, Vu, z), 6,04u) dx
:/ (6pMa(x, Vu, ), 6p,0qu) dx

+ / (Md(x, @’U, + Oqup ® eq, Z) — Md(.’b + h, Vup, Zh)7 6h8du> dx
(5.16) =51+ 5s.

The term S is already estimated in (5.15). From the Lipschitz continuity of M
(see (5.1)) and the regularity results of Lemma 5.4 we obtain by straightforward
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calculations

(5.17)
|S2| < c|[6n0aul| 20 ((HVU + Oqup ® edHLZ(Q/) + ||ZHH1(C;)) |h] + H‘Shv“HLzm/))

< c|h| (”UHHl(c;) + ||Z||H1(c;) + ||8d@u||L2(C:)) ||6hadu||L2(Q’)’

and the constant ¢ is independent of Q' and h. Moreover, choosing £ = dyu; and
1N = eq in (5.2), we obtain for the left-hand side in (5.16) from the rank-one mono-
tonicity of M that

/ (My(z, YV + dyup & ed, z) — Ma(z, Vu, z), 6p,04u) dx
(5.18) > cru |[on0aull?z oy -
Estimates (5.15)—(5.18) together with Young’s inequality finally imply that
(5.19) | [800aull gy < el ey + 12l ey + 00V pagon)

for every h L Mj. The constant ¢ is independent of h and Q' € C, . This implies
that d3u € L*(C,7) and that Haguﬂp(c;) is bounded by the right-hand side in (5.19).
Estimate (5.12) is a combination of (5.19) and (5.4). a

5.3. Proof of Theorem 5.2. Let the assumptions of Theorem 5.2 be valid, and
assume that g = 0. Choose zg € 01, and let U, be a neighborhood of z( such that
there exists a Cb! diffeomorphism ®,, : U,, — C1, where C; is the unit cube in R4,
with the following properties (we omit the index zg): ®(U) = Cy, (U NN) = C7,
OU\Q) = Cf, (U NIN) = My, and (o) = 0. Let u € HE(Q) be a solution for
(5.3) with the data f € L?(Q) and z € H'(Q). It follows that

/Um (M(x, Vi, 2), Vo) dx = / (f,v) dx

UunQ

for every v € H}(QNU). After a transformation of coordinates with y = ®(z) and
U := &1 the previous equation can be written as follows: Let @(y) = u(¥(y)). For
every v € H}(Cy ) we have

/Cl <M(y,va,z),vu>dy=/c (f,v)dy.

1

Here, we use the abbreviations

(5.20) M(y,a,¢) = |det[ VU (y)]| M(T(y), a(VE(y)) ", O)(VE(y)) T,
(5.21) Fy) = |det[VE(y)]] F(T(y)),
(5.22) Z(y) = 2(¥(y))

fory € C7, a € M™*? and ¢ € RY. Tt follows immediately from the properties of the
diffeomorphism @ and from those of M that M satisfies R1-R3 with respect to C} .
Furthermore, f and z have the smoothness required in Lemma 5.4. Thus, Lemmata
5.4 and 5.6 guarantee that @ € H2(C,) for every 7 < 1 and that estimate (5.12) is
valid. After applying the inverse transformation ¥ : C;7 — U N2, we have finally
shown the following: For every zo €  there exists an open neighborhood U}m such
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that U|Uw0 no € H?(U,, N Q) and estimate (5.12) is valid with respect to U,, N Q. The

constants may depend on xg. Since (2 is assumed to be bounded, we can cover Q by
a finite number of the domains U,,, and obtain finally that u € H*(Q) with

(5.23) [ull g2y < eIzl gy + 11l L2y + lullgigay)-

This proves Theorem 5.2 for the case of vanishing Dirichlet conditions. The general
case can be seen as follows. There exists a linear and continuous extension operator
F : H3(8Q) — H2(Q) with (F(g))’aQ = g for every g € H2(); see, for example,
[68]. Then u € H'(Q) with u|sq = g for some g € H? (9Q) is a solution to (5.3) if and
only if there exists an element @ € H}(Q) with u = 4+ F(g) and for every v € H}(Q),
u satisfies

/QW(x,va,z),vmdx:/Q<f,u>dx,

where z = (F(g),2) and M(z,a,%) = M(z,a + F(g)(z),z). Clearly, M satisfies
R1-R3 as well, and by the first part of this proof it follows that @ € H?(2). This
finishes the proof of Theorem 5.2.

6. Discussion. We have shown that the time-incremental Cosserat elasto-
plasticity problem admits H'(£2)-regular updates of the symmetric plastic strain e,
provided that the previous plastic strain e ~! is in H'(Q2) and the domain and data
are suitably regular. Altogether, the time-incremental problem allows the regularity
foralln € N:u™ € H*(Q,R?), e € H'(Q,Sym(3)), and A™ € H?*(2,50(3)). Uniform
bounds in time are missing, and it is an open question whether a similar result holds
for the time-continuous problem.

The presented method of proof for higher regularity uses a difference quotient
method which is based on inner variations and can be extended to more general
problems. This will be the subject of further investigations.

Appendix. Notation. We denote by M3*3 the set of real 3 x 3 second order
tensors, written with capital letters. The standard Euclidean scalar product on M?3*3
is given by (X,Y)ysxs = tr [XY7T], and thus the Frobenius tensor norm is || X||? =
(X, X)nsxs (we use these symbols indifferently for tensors and vectors). The identity
tensor on M3 will be denoted by 11, so that tr [X] = (X, 11). We let Sym and PSym
denote the symmetric and positive definite symmetric tensors, respectively. We adopt
the usual abbreviations of Lie algebra theory; i.e., s0(3) := {X € M?*? | XT = —X}
are skew symmetric second order tensors, and sl(3) := {X € M3*3 | tr[X] = 0}
are traceless tensors. We set sym(X) = (X7 + X) and skew(X) = 3(X — X7)
such that X = sym(X) + skew(X). For X € M3*3 we set for the deviatoric part
devX = X —  tr[X] 11 €s(3).

For a second order tensor X we let X.e; be the application of the tensor X to
the column vector e;. The first and second differential of a scalar-valued function
W (F) are written DpW (F).H and DZW (F).(H, H), respectively. Sometimes we use
also dxW(X) to denote the first derivative of W with respect to X. We employ
the standard notation of Sobolev spaces, i.e., L2(Q), HY2(2), HY*(€), which we use
indifferently for scalar-valued functions as well as for vector-valued and tensor-valued
functions.
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DISLOCATION EQUATIONS*
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Abstract. We are interested in nonlocal eikonal equations arising in the study of the dynamics
of dislocation lines in crystals. For these nonlocal but also nonmonotone equations, only the existence
and uniqueness of Lipschitz and local-in-time solutions were available in some particular cases. In
this paper, we propose a definition of weak solutions for which we are able to prove the existence for
all time. Then we discuss the uniqueness of such solutions in several situations, both in the monotone
and the nonmonotone case.
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1. Introduction. In this article we are interested in the dynamics of defects in
crystals, called dislocations. The dynamics of these dislocations is the main micro-
scopic explanation of the macroscopic behavior of metallic crystals (see, for instance,
the physical monographs of Nabarro [24], Hirth and Lothe [19], or Lardner [21] for
a mathematical presentation). A dislocation is a line moving in a crystallographic
plane, called a slip plane. The typical length of such a dislocation line is of the
order of 107% m. Its dynamics is given by a normal velocity proportional to the
Peach—Koehler force acting on this line.

This Peach—Koehler force may have two possible contributions: the first one is
the self-force created by the elastic field generated by the dislocation line itself (i.e.,
this self-force is a nonlocal function of the shape of the dislocation line); the second
one is the force created by everything exterior to the dislocation line, such as the
exterior stress applied on the material, or the force created by other defects. In this
paper, we study a particular model introduced in Rodney, Le Bouar, and Finel [27].

More precisely, if, at time ¢, the dislocation line is the boundary of an open set
0, ¢ RN with N = 2 for the physical application, the normal velocity to the set €
is given by

(1) Vo =co* ]lﬁt +c1,

where 1q, (z) is the indicator function of the set Q;, which is equal to 1 if z € €
and equal to 0 otherwise. The function co(z,t) is a kernel which depends only on
the physical properties of the crystal and on the choice of the dislocation line, whose
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evolution we follow. In the special case of application to dislocations, the kernel cg
does not depend on time, but to keep a general setting we allow here a dependence
on the time variable. Here x denotes the convolution is space, namely

) (colt) 1)@ = [ cala =901, 1),

and this term appears to be the Peach—Koehler self-force created by the dislocation
itself, while ¢; (z, t) is an additional contribution to the velocity, created by everything
exterior to the dislocation line. We refer the reader to Alvarez et al. [3] for a detailed
presentation and a derivation of this model.

We proceed as in the level-set approach to derive an equation for the dislocation
line. We replace the evolution of a set €; (the strong solution) by the evolution of
a function u such that Q; = {u(-,¢) > 0}. Roughly speaking the dislocation line is
represented by the zero level-set of the function w which solves the following equation:

ou

3) o
u(-,0) =ug in RV,

= (co(-t) * Ly(ys0y () + ci(x,1))|Dul  in RY x (0,7),

where (2) now reads

(4) co(t) * L y>o0y(z) = /N co(z =y, ) 1w >0y (y)dy.
i

Note that (3) is not really a level-set equation since it is not invariant under non-
decreasing changes of functions v — ¢(u), where ¢ is nondecreasing. As noticed by
Slepcev [28], the natural level-set equation should be (11); see section 1.2.

Although (3) seems very simple, there are only a few known results. Under
suitable assumptions on the initial data and on cg, c1, the existence and uniqueness
of the solution is known in two particular cases: either for short time (see [3]), or
for all time under the additional assumption that V,, > 0, which is, for instance,
always satisfied for ¢; satisfying ci(w,t) > [co(-,t)[1myy (see [2, 12, 5] for a level-set
formulation).

In the general case, the existence for all time of solutions to (3) is not known
and, in particular, in the case when the kernel ¢y has negative values; indeed, in this
case, the front propagation problem (3) does not satisfy any monotonicity property
(preservation of inclusions), and therefore, even if a level-set-type equation can be
derived, viscosity solution theory cannot be readily used. At this point, it is worth
pointing out that a key property in the level-set approach is the comparison principle
for viscosity solutions which is almost equivalent to this monotonicity property (see,
for instance, Giga’s monograph [18]). On the other hand, one may try to partly use
viscosity solution theory together with some other approximation and/or compactness
arguments to prove at least the existence of weak solutions (in a suitable sense). But
here also the bad sign of the kernel creates difficulties since one cannot readily use
the classical half-relaxed limits techniques to pass to the limit in the approximate
problems. Additional arguments are needed to obtain weak solutions.

The aim of this paper is to describe a general approach of these dislocations’
dynamics, based on the level-set approach, which allows us to introduce a suitable
notion of weak solutions, to prove the existence of these weak solutions for all time,
and to analyze the uniqueness (or nonuniqueness) of these solutions.
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1.1. Weak solutions of the dislocation equation. We introduce the fol-
lowing definition of weak solutions, which itself uses the definition of L'-viscosity
solutions, recalled in Appendix A.

DEFINITION 1.1 (classical and weak solutions). For any T > 0, we say that a
function u € WH2(RY x [0,T)) is a weak solution of (3) on the time interval [0,T) if
there is some measurable map x : RY x (0,T) — [0, 1] such that u is an L'-viscosity
solution of

5 % — &z, )| Du| in RN x (0,T),
u(-,0) =ug in RN,

where

(6) c(@,t) = o, t) * x(+, 1) (@) + c1(w, 1)

and

(7) L p>op(@) < x(@,1) < Lgu( >0 (2)

for almost all (z,t) € RN x [0,T]. We say that u is a classical solution of (3) if u is
a weak solution to (5) and if

(8) Liuen>03(2) = Ly >0y (2)

for almost all (z,t) € RN x [0,T].

Note that we have x(z,t) = L{y( >0} (2) = Ly >0y (2) for almost all (z,t) €
RN x [0, T for classical solutions.

To state our first existence result, we use the following assumptions.

(HO) ug € WH(RY), —1 < up < 1, and there exists Ry > 0 such that ug(z) = —1
for || > Ry,

(H1) ¢o € C([0,T); L* (RY)), Dyco € L>=([0,T); L* (RY)), c; € C(RN x [0,T)),
and there exist constants Mi, Ly such that, for any =,y € R and t € [0,T],

lei(z,t)] < My and |ei(x,t) —ei(y, )] < Lilz — yl.

In what follows, we denote by My, Ly constants such that, for any (or almost
every) t € [0,T), we have

|CO('7t)|L1(]RN) < MO and |D3:CO('7t)|L1(]RN) < Lo.

Our first main result is the following.

THEOREM 1.2 (existence of weak solutions). Under assumptions (HO)—(H1), for
any T > 0 and for any initial data ug, there exists a weak solution of (3) on the time
interval [0,T) in the sense of Definition 1.1.

Our second main result states that a weak solution is a classical one if the evolving
set is expanding and if the following additional condition is fulfilled

(H2) ¢; and ¢ satisfy (H1), and there exist constants mg, N7 and a positive
function Ny € L'(R™) such that, for any x,h € RNt € [0,T), we have

|co(z, )| < mo,
ler(z 4+ h,t) + c1(x — h,t) — 2¢1(x, )| < Nl\h|27

leo(z + hyt) + co(x — h,t) — 2¢o(z, t)| < No(x)|h\2.
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THEOREM 1.3 (some links between weak solutions and classical continuous vis-
cosity solutions and uniqueness results). Assume (H0)—(H1), and suppose that there
is some & > 0 such that, for all measurable maps x : RN x (0,T) — [0, 1],

(9) for all (z,t) € RN x [0,T], co(-t) % x(-,t)(x) + c1(z,t) > 6,
and that the initial data ug satisfies (in the viscosity sense)
(10) —|ug| = |Dug| < —no in RY

for some mg > 0. Then any weak solution u of (3) in the sense of Definition 1.1 is
a classical continuous viscosity solution of (3). This solution is unique if (H2) holds
and

(1) either 6 >0,

(ii) or 6 =0 and ug is semiconver, i.c., satisfies for some constant C > 0

uo(z + h) + uo(xz — h) — 2ug(z) > —C|h|*  for all z,h € RV,

Assumption (9) ensures that the velocity V,, in (1) is positive for positive §. Of
course, we can state similar results in the case of negative velocity. Assumption (10)
means that ug is a viscosity subsolution of —|v(x)| — |Dv(z)| + no < 0. When uyg is
C1, it follows that the gradient of uy does not vanish on the set {ug = 0} (see [22]
for details). Point (ii) of the theorem is the main result of [2, 5]. We also point out
that, with adapted proofs, only a bound from below could be required in (H2) on
c(x+ h,t)+c1(x — h,t) — 2¢1(x,t) and co(x + h,t) + co(z — h,t) — 2co(x, t).

Remark 1.1. In particular Theorem 1.3 implies uniqueness in the case ¢y > 0 and
¢1 = 0. The general study of nonnegative kernels is provided below (see Theorem 1.5
and Remark 1.3).

1.2. Nonnegative kernel co > 0. In the special case where the kernel cg
is nonnegative, an inclusion principle for the dislocation lines, or equivalently a
comparison principle for the functions of the level-set formulations, is expected (cf.
Cardaliaguet [11] and Slepcev [28]).

Moreover, in the classical level-set approach, all the level-sets of u should have
the same type of normal velocity, and Slepcev [28] remarked that a formulation with
a nonlocal term of the form {u(-,t) > wu(x,t)} is more appropriate. Therefore it is
natural to start studying the following equation (which replaces (3)):

du
(11) ot

u(-,0) =ug in RY

= (CO('vt) * ]l{u(-,t)Zu(z,t)}(x) + 61(33, t))‘DU| in RN X (07T) 5

where x denotes the convolution in space as in (4).

The precise meaning of a viscosity solution of (11) is given in Definition 5.1.

In this context, assumption (HO) can be weakened into the following condition,
which allows us to consider unbounded evolving sets:

(HO') ug € BUC(RYM).

Our main result for this equation is the following.

THEOREM 1.4 (existence and uniqueness). Assume that co > 0 on RY x [0,
and that (HO')—(H1) hold. Then there exists a unique viscosity solution u of (11).

Remark 1.2. The comparison principle for this equation (see Theorem 5.2) is a
generalization of [28, Theorem 2.3]: indeed, in [28], everything takes place in a fixed
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bounded set, whereas here one has to deal with unbounded sets. See also [15] for
related results.

Now we turn to the connections with weak solutions. To do so, if u is the unique
continuous solution of (11) given by Theorem 1.4, we introduce the functions p™, p~ :
RY x [0,T] — R defined by

pJr = ]l{uzo} and p = ]l{u>0} .

Our result is the following.

THEOREM 1.5 (maximal and minimal weak solutions). Under the assumptions
of Theorem 1.4, the mazimal and minimal weak solutions of (3) are the continuous
functions vt,v™ which are the unique L'-viscosity solutions of the equations

oot
(12) ot
vE(2,0) = up(x) in RY,

= ¢[pT)(x,t)|DvE| in RN x (0,T),

where
clpl(w,t) := co(-,t) % p(-, 1) (@) + ci(w,t) in RN x (0,T).

The functions v* satisfy {vF(-,t) > 0} = {u(-,t) > 0} and {v=(-,t) > 0} = {u(-,t) >
0}, where u is the solution of (11).

Moreover, if the set {u(-,t) = 0} has a zero-Lebesgue measure for almost all
t € (0,T), then problem (3) has a unique weak solution which is also a classical one.

Remark 1.3. 1. Theorem 1.5 shows that, in the case when ¢y > 0, Slepcev’s
approach allows us to identify the maximal and minimal weak solutions as being
associated with p*.

2. Equalities {v=(-,t) > 0} = {u(-,t) > 0} and {v*(-,t) > 0} = {u(-,¢) > 0} do
not hold in general (see, for instance, Example 3.1 in section 3).

3. If the set {v*(-,t) = 0} develops an interior, a dramatic loss of uniqueness for
the weak solution of (3) may occur. This is illustrated by Example 3.1 below, where
we are able to build infinitely many solutions after the onset of fattening.

4. We have uniqueness for (3) if {u(-,t) = 0} has a zero-Lebesgue measure for
almost all ¢t € (0,7"). This condition is fulfilled when, for instance, ¢[p] > 0 holds for
any indicator function p and (10) holds (see also Remark 1.1).

1.3. Organization of the paper. In section 2, we recall basic results for the
classical eikonal equation which are used throughout the paper. In section 3, we prove
the existence of weak solutions for (3), namely Theorem 1.2, and give a counterexam-
ple to the uniqueness in general. Let us mention that this first part of the paper, even
if it requires rather deep results of viscosity solution theory, is of a general interest
for a wide audience and can be read without having an expertise in this theory since
one just needs to apply the results which, anyway, are rather natural. In section 4,
we prove Theorem 1.3 in the case of expanding dislocations. The arguments we use
here are far more involved from a technical point of view: in particular we need some
fine estimates of the perimeter of the evolving sets. In section 5, we study the Slepcev
formulation in the case of nonnegative kernels and prove Theorems 1.4 and 1.5. In
spirit, this section is closely related to the classical level-set approach but is more
technical. Finally, for sake of completeness, we recall in Appendix A the definition of
L!-viscosity solutions and a new stability result proved by Barles in [4].
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2. Some basic results for the classical (local) eikonal equation. We want
to recall in this section some basic results on the level-set equation

v _ a(z,t)|Dv| in RN x (0,7T),
(13) ot

v(-,0) =ug in RY,

where T' > 0 and a : RN x [0,T] — R is, at least, a continuous function.

We provide some classical estimates on the solutions to (13) when a satisfies
suitable assumptions. Our result is the following.

THEOREM 2.1. If ug satisfies (HO) and a satisfies the assumptions of c1 in
(H1), then (13) has a unique continuous solution v which is Lipschitz continuous in
RN x [0,T] and which satisfies

(i) —1<v<1inRY x(0,T), v(z,t) = —1 for |z| > Ry + Mit,

(ii) |DU('7t)|OO < |Du0|00 eth;

(iii) |ve(+, 1) < Mi|Dug|oo e™*.

We skip the very classical proof of Theorem 2.1; we just point out that the first
point comes from the comparison result for (13) and the “finite speed of propagation
property” (see Crandall and Lions [14]), while the second one is a basic gradient
estimate (see, for example, Ley [22]), and the last one comes directly from the fact
that the equation is satisfied almost everywhere.

The main consequence of this result is that the solution remains in a compact
subset of the Banach space (C(RY x[0,T]), || ) as long as ug and a satisfy (HO)—(H1)
with fixed constants.

Let us introduce the following.

DEFINITION 2.2 (interior ball property). We say that a closed set K C RN has
an interior ball property of radius r > 0 if, for any v € K, there exists p € RN\ {0}
such that B(x — rl%l,r) C K.

We will also use the following result, due to Cannarsa and Frankowska [10], the
proof of which is given in Appendix B for the sake of completeness.

LEMMA 2.3 (interior ball regularization). Suppose (HO) and that a satisfies the
assumptions of ¢1 in (H1)—(H2) and there exists a constant 6 > 0 such that

>8>0 on RN x[0,7T].

Then there exists a constant vy (depending in particular on 6 > 0 and T and on the
other constants of the problem) such that for the solution v of (13), the set {v(-,t) > 0}
has an interior ball property of radius vy > ~t for t € (0,T).

3. Existence of weak solutions for (3). We aim to solve (3), i.e.,
Ou
ot
u(-,0) =ug in RV,

= (CO('7t) * ]l{u(-,t)ZO}(x) + cl(xat))|Du| in RN X (OvT)7

proving Theorem 1.2, which states the existence of weak solutions as introduced in
Definition 1.1.

A key difficulty in solving (3) comes from the fact that, in this kind of level-set
equation, one may face the so-called nonempty interior difficulty, i.e., that the 0-level-
set of the solution is “fat,” which may mean that it has either a nonempty interior
or a nonzero Lebesgue measure. Clearly, in both cases, 1y, +)>0} is different from
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L{u(.,5y>0}, and this leads to rather bad stability properties for (3) and therefore to
difficulties in proving the existence of a solution (and even more for the uniqueness).
The notion of weak solution (5)—(7) emphasizes this difficulty. On the contrary, if
é(z,t) > 0in RN x [0,T], it is known that the “nonempty interior difficulty” cannot
happen (see Barles, Soner, and Souganidis [6] and Ley [22]), and we recover a more
classical formulation. We discuss this question in the next section as well as some
uniqueness issues for our weak solutions. Let us finally note that weak solutions for
(3) satisfy the following inequalities.

PROPOSITION 3.1. Let u be a weak solution to (3). Then u also satisfies in the
L'-sense

ou _

(14) E < (Car(~7 t) * l{u(-,t)ZO} (:L') — ¢y (-, t) * ]l{u(-,t)>0} (ac) +c (:L‘7 t)) |Du\,
ou . _

(15) 5 = (cg (1) * Lpu >0 () = g (1) * Ly yz03 (2) + ci (2, 1)) [Dul

in RN x (0,T), where ¢f = max(0,cp) and c; = max(0, —co).
Proof of Proposition 3.1. Let ¢ be associated with u as in (5)—(7). Then we have

c(x,t) > CBL(-, t) % Liuc,0)>0) () — ¢y (-, ) % ]l{u(nt)ZO}(x) + c1(z, t)

for every x € RY and almost every ¢ € (0,7). We note that the right-hand side of
the inequality is lower semicontinuous. Following Lions and Perthame [23], v then
solves (15) in the usual viscosity sense. The proof of (14) can be achieved in a similar
way. a

Proof of Theorem 1.2. 1. Introduction of a perturbated equation. First we are
going to solve the equation

ou

e 5=

(co(-,t) * e (u(-,t))(z) + c1(z, 1)) |Du| in RN x (0,T),

where ¥, : R — R is a sequence of continuous functions such that ¥.(¢t) = 0 for
t < —¢,(t) =1 for t >0, and 9. is an affine function on [—¢, 0].

We aim at applying Schauder’s fixed point theorem to a suitable map. We note
that an alternative proof could be given by using techniques developed by Alibaud in

[1].
2. Definition of a map T. We introduce the convex and compact (by Ascoli’s
theorem) subset
X ={uecCRYN x[0,T]) :u=—1in R¥\B(0, Ry + MT),
| Dul, |u|/M < \Du0|ooeLT}

of (C(RN x[0,7T)),|"|s0), for M = Mo+ M; and L = Lo+ Ly, and themap 7 : X — X
defined as follows: if u € C(RY x [0,T]), then 7 (u) is the unique solution v of (13) for

ce(@,t) = o5 t) x e (ul- 1)) (x) + e1(2,1)

_ /RN ol — 2, )0 (ulz, £))dz + 1 (x, 1).
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This definition is justified by the fact that, under assumption (H1) on ¢; and cp, ¢
satisfies (H1) with fixed constants M = My + M; and L = Ly + Lq; indeed M is a
bound on supyg 7 |co(+t)|z1 + M1, while L is estimated by the following calculation:

for all 7,y € RY, ¢t € [0,T], and u € X, we have
(17) Cs(zvt) 7Cs(y7t)

= /RN (co(x — z,t) — coly — z,8))0e(u(z, t))dz + c1(x, t) — c1(y, t)

< [ ool = 20— ol = 2.0lds + fea(w.0) — ea(v.0)
R

< (Lo + L1)|x —yl,

since 0 <. < 1.

Finally, under assumptions (HO)—-(H1), for any u € X, the results of Theorem 2.1
apply to (16), which imply that 7 (u) € X. It follows that 7 is well defined.

3. Application of Schauder’s fixed point theorem to T. The map 7 is continuous
since 1), is continuous by using the classical stability result for viscosity solutions (see,
for instance, (30) in section 4). Therefore 7 has a fixed point u. which is bounded in
W1(RN x [0, T]) uniformly with respect to ¢ (since M and L are independent of ¢).

4. Convergence of the fized point when € — 0. From Ascoli’s theorem, we extract
a subsequence (u. ). which converges locally uniformly to a function denoted by u
(in fact globally since the u.s are equal to —1 outside a fixed compact subset).

The functions x. = ¥ (u.) satisfy 0 < xos < 1. Therefore we can extract a
subsequence—still denoted (y./)—which converges weakly—x in L (RN x [0, 7)) to
some function x : RY x (0,7) — [0, 1]. Therefore, for all p € LL (RN x [0,T]),

loc
T T
(18) / / @Xa/dxdta/ / pxdxdt.
0 JRN 0 JRN

From Fatou’s lemma, if ¢ is nonnegative, it follows that

T T
/ / oz, t)x(x, t)dedt < / / o(x,t) limsup x. (z, t)dzdt
0 RN 0 RN

e’'—0

T
S/ / o(x,t)  limsup  xe (2, t)dxdt
o JrN

e'—=0,x' -z, t' —t

T
0 RN

Since the previous inequalities hold for any nonnegative ¢ € Li (RN x [0,7]), we
obtain that, for almost every (z,t) € RV x (0,7),

X(@,t) < Lgu4y>01 ().

Similarly we get

L0y () < x(z,1).
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Furthermore, setting c. = co* X/ +c1, from (18), we have, for all (z,t) € RN x [0, T],
t t t
/ cer(x,8)ds = / / co(x —y, 8)xe (y, 8)dyds —|—/ c1(z, s)ds
0 o Jr¥ 0

¢
— / c(x, s)ds,
0

where ¢(z,t) = co(-,t) * x(+,t)(x) + c1(z,t). The above convergence is pointwise, but,
noticing that c.s satisfies (H3) (with M := My + M; and L := Lo + L1) and using
Remark A.1, we can apply the stability theorem (Theorem A.3) given in Appendix A.
We obtain that u is an L!-viscosity solution to (5) with ¢ satisfying (6)—(7). O
The following example is inspired from [6].
Ezample 3.1 (counterexample to the uniqueness of weak solutions). Let us con-
sider, in dimension N = 1, the following equation of type (3),
a—U:(la&l () +c1(¢)|DU| in R x (0,2]
(19) ot {U(-,t)>0} 1 s 4l
U(,O) = UQ in ]R,

where we set co(x,t) := 1, c1(x,t) := c1(t) = 2(t — 1)(2—1t), and ug(x) = 1 — |x|. Note
that 1 x 14 = L'(A) for any measurable set A C R, where £*(A) is the Lebesgue
measure on R.

We start by solving auxiliary problems for time in [0,1] and [1,2] in order to
produce a family of solutions for the original problem in [0, 2].

1. Construction of a solution for 0 <t < 1. The function z;(t) = (t — 1)? is the
solution of the ODE

T1(t) =c1(t) + 221 (t) for 0 <t <1, and z(0) =1
(note that #; < 0 in [0, 1]). Consider

ou . ou

20) o =0
u(-,0) =wup inR.

in R x (0, 1],

There exists a unique continuous viscosity solution u of (20). Looking for u under the
form wu(x,t) = v(x,T'(t)) with I'(0) = 0, we obtain that v satisfies

ov )
e I'(t) = a1(t)

v
or

Choosing T'(t) = —x1(t) + 1, we get that v is the solution of

o |ov
ot ox

v(-,0) =up inR.

in R x (0,1],

By the Oleinik-Lax formula, v(z,t) = inf|,_,<; uo(y). Since ug is even, we have, for
all (z,t) € R x [0,1],

ule.d) = inf uo(y) = volla| + D) = volla| 1 (1) + ).
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Therefore, for 0 <t <1,

20 Au(1) >0} = (=z1(t), 21()) and {u(- 1) > 0} = [=z1(2), 21(2)]-

We will see in step 3 that u is a solution of (19) in [0, 1].
2. Construction of solutions for 1 < t < 2. Consider now, for any measurable
function 0 < ~(t) < 1, the unique solution y, of the ODE

(22) Uy () = c1(t) + 2y(t)y,(t) for 1 <t <2, and y,(1) =0.

By comparison, we have 0 < yo(t) < y,(¢)
the solutions of (22) obtained with ~(¢) = 0,
[1,2]. Consider

g 1(t) for 1 < t < 2, where yg,y1 are
1. In particular, it follows that ¢, > 0 in

Our, Ou.
ot yv( ) ox
u"/('v 1) = u('v 1) in R?

in R x (1,2],

where w is the solution of (20). Again, this problem has a unique continuous viscosity
solution u., and setting ', (t) = y,(t) > 0 for 1 <t < 2, we obtain that v, defined by
vy (2,5 (t)) = uy(z,t) is the unique continuous viscosity solution of

Ovy _ |90y
ot | ox
vy(-,0) =u(-,1) inR.

in R x (0,T(2)],

Therefore, for all (x,t) € R x [1,2], we have

uy(z,t) = sup u(y,l)= if 2] <y, (1),
o |z —y[<y~ () 7 u(|z| — yy(¢),1) otherwise.

(Note that u(—x,t) = u(x,t) since ug is even and, since u(-,1) < 0, by the maximum
principle, we have u, <0 in R x [1,2].) It follows that, for all 1 <¢ < 2,

(23)  A{uy(1) >0} =0 and {uy( 1) = 0} = {uy (1) = 0} = [=y5 (1), y5 (D)].
3. There are several weak solutions of (19). Set, for 0 < ~v(t) < 1,
e (t) = c1(t) + 224 (1), Uy(z,t) = u(z,t) if (z,t) € R x[0,1],
cy(t) = c1(t) +29(t)y, (1), Uy(z,t) = uy(z,t) if (x,t) e R x [1,2].
Then, from steps 1 and 2, U, is the unique continuous viscosity solution of

s |0
(24) ot e (t) oz
Uy(-,0) =uo inR.

in R x (0, 2],

Taking x(-,t) = Y(£)L[_y, 1)y, (1)) for 1 <t <2, from (21) and (23), we have

L, (.n>01 < Xy(41) < Lm0}
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T

1

U, <0

U, <0

<0 >0

Fi1G. 1. Fattening phenomenon for the functions U, .

(see Figure 1). It follows that all the U,’s, for measurable 0 < ~(t) < 1, are all weak
solutions of (19), so we do not have uniqueness and the set of solutions is quite large.

Let us complete this counterexample by pointing out the following:

(i) As in [6], nonuniqueness comes from the fattening phenomenon for the front
which is due to the fact that ¢, in (24) changes its sign at ¢ = 1. It is even possible to
build an autonomous counterexample up to start with a front with several connected
components.

(ii) ¢g > 0, and therefore it also complements the results of section 5; indeed the
unique solution w of (11) has the same O-level-set as U; (obtained with v(t) = 1),
and, with the notation of Theorem 1.5, p™ = 1{y1(. >0} and p~ = Lyi(.¢)>0}. In
particular, for t > 1,

(v (1) 20} = {U'(-,1) > 0} = [=y1(t), 1 (1)]
and
{v=(-,t) >0} = {U(-,t) > 0} = 0.

Finally, we note that there are no strong solutions since (8) is obviously never satisfied.

(iii) ¢o = 1 does not satisfies (H1), but because of the finite speed of propagation
property, it is possible to keep the same solution on a large ball in space and for
t € (0,T) if we replace ¢y by a function with compact support in space such that
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co(z,t) = 1 for || < R with R large enough. In this way, it is possible for ¢y to
satisfy (H1).

4. Uniqueness results for weak solutions of (3). Uniqueness of weak so-
lutions of (3) is false in general, as shown in the counterexample of the previous
section for sign changing velocities ¢;. This is in particular related to the “fattening
phenomenon.” In [2] and [5] the authors proved that there is a unique “classical”
viscosity solution for (3) under the assumptions that the initial set {u(-,0) > 0} has
the “interior sphere property” and that c¢i(-,t) > |co(-,t)|r: for any ¢ > 0—a con-
dition which ensures that the velocity ¢ is nonnegative. By “classical” continuous
viscosity solutions we mean that ¢ — 1. >0y is continuous in L', which entails
that (z,t) — &(z,t) is continuous, and that (3) holds in the usual viscosity sense.

Here we prove Theorem 1.3. If the condition c¢i(-,t) > |co(-,¢)|r1 is satisfied,
then weak solutions are viscosity solutions. We also prove that the weak solution
is unique if we suppose, moreover, either that the initial condition has the interior
sphere property or that the strict inequality ¢;(-,t) > |co(-,¢)|: holds for any ¢ > 0.

Proof of Theorem 1.3. 1. Weak solutions are classical continuous viscosity solu-
tions. Let u be a weak solution, and let é be associated with u as in Definition 1.1.
Then, for any x € R and for almost all ¢ € [0, 7], we have

E(.I,t) > Cl('ra t) =+ Car(,t) * ]l{u(-,t)>0}(x) - Ca(7t) * ]l{u(-,t)EO}(x)
> a(@,t) = e (1)[0
> 6>0.

From [22, Theorem 4.2], there exists a constant 7 which depends on 7" such that (10)
implies

(25) —|u| = |Du| < =1 on RN x (0,T)

when we assume, moreover, that ¢ is continuous. In our case, where ¢ is not assumed
continuous in time, (10) follows from the L!-stability result, Theorem A.3, where we
approximate ¢ by a continuous function, and from the usual stability for L'-viscosity
subsolutions.

Let us note that from the proof of [5, Corollary 2.5] we have in the viscosity sense

(26) —|u(-,t)] — |Du(-t)| < —n on RY for every t € (0,T) .

Following [5, Corollary 2.5], we get that, for every ¢t € (0,T), the O-level-set of (-, t)
has a zero-Lebesgue measure. Then we deduce that

X(@,t) = Ly pysop(z) forae.z € RN and for all t € (0,7),
which (with (7)) entails that
e(x,t) = c1+ cox Lu(t)>0)

for any (x,t). Moreover, t — 1. >0} is also continuous in L', and then ¢ is
continuous. Therefore u is a classical viscosity solution of (3).

2. Uniqueness when ug is semiconvex (part (i) ). If we assume that (9) and (10)
hold and that ug is semiconvex, then weak solutions are viscosity solutions, and we can
apply the uniqueness result for viscosity solutions given in [5], namely Theorem 4.2
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(which remains true under our assumptions), which requires, in particular, semicon-
vexity of the velocity; see assumption (H2).

3. A Gronwall-type inequality (part (i)). From now on we assume that 6 > 0, and
we aim to prove that the solution to (3) is unique. Let ug, us be two solutions. We
set

pi = Ly, (. 1)>01 and Gi(z,t) =co*xpi + 1 fori=1,2.

We want to prove in a first step the following Gronwall-type inequality for any ¢
sufficiently small:

lp1(-t) — p2(-, 1) |11

(27) ¢
< Clper({ua(-,t) > 0}) + per({ua(-,t) > 0})]/0 p1(58) = p2(-; 8)| L1 ds,

where C'is a constant depending on the constants of the problem, where per({u;(-,t) >
0}) is the HV 1 measure of the set d{u;(-,t) > 0}) (for i = 1,2).
We have

(28) |p1(st) = p2 (D) < LY ({—aw S (1) < 03) + LY ({~ar S wa(-,1) <0}),
where £V is the Lebesgue measure in RY and

(29) ap = sup |(u1 —u2)(+ 8)|oo for any ¢t € (0,7).
s€0,t]

In order to estimate the right-hand side of inequality (28), as in the proof of [5,
Theorem 4.2], we need a lower-gradient bound as well as a semiconvexity property for
u1 and ug. We already know from step 1 that ¢; is continuous for i = 1, 2.

Let us start to estimate the right-hand side of (28). From the “stability estimates”
on the solutions with respect to variations of the velocity (see [5, Lemma 2.2]), we
have

t
(30) o < |Du0|ooeLt/ 161 — 8)(-, 8)|oods
0

where L = Loy + L;. Therefore

t
(31) ap < my |Duo\ooe“/ l(p1 — p2) (-, 8)|p1ds .
0

where the constant my is given in (H2). In particular, since the p;(-,¢) are continuous
in L' and equal at time t = 0 for i = 1,2, we have o/t — 0 as t — 0T,

From now on, we mimic the proof of [5, Proposition 4.5]. Using the lower-gradient
bound (25) for u;(-,t) combined with the increase principle (see [5, Lemma 2.3]), we
obtain for a; < 1/2 that

{—as <u(-,t) <0} C {us(-,t) > 0} + (2a¢/1)B(0,1)

for ¢ = 1,2. From the interior ball regularization lemma (Lemma 2.3), the set
{u;(-,t) > 0} satisfies for ¢ € (0,T) the interior ball property of radius r, = nt/Cj.
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Applying [2, Lemmas 2.5 and 2.6], we obtain for oy = 2ay/n that
LY ({=ar <ui( 1) <0}) < LY (({uil-t) = 0} + 03 B(0, 1)\ {ui(-, 1) > 0})

g;.(L+Z)N—1paqmmwzon
2N04t
< 2 per({ui( 1) 2 0})

(using (1 +a)¥ —1 < aN(1+a)N~! for a > 0) for t € [0,7], where 0 < 7 < T is
defined by

(32) Tsup{t>0:at<gand2§§it§1}.
Putting together (31), (28), and the previous inequality proves (27).

4. Uniqueness when 6 > 0 (part (i)). We now complete the uniqueness proof
under the assumption ¢ > 0. For this we first show that p; = pa in [0, 7]. In order to
apply the Gronwall lemma to the L!-estimate (27) obtained in step 3, it is enough to
prove that the functions ¢ — per({u;(-,) > 0}) belong to L*. For this, let us set

wi(x) =nf{t >0 : u;(z,t) >0} .

Since u; solves the eikonal equation (u;): = ¢;(x,t)|Du;|, from classical representation
formulae, we have

Therefore
wi(z) =inf{t >0 : Jy(), |[9(s)| < c(y(s),s), 0 <s <t
uo(y(0)) = 0 and y(t) = z}.

Applying the dynamic programming principle, since ¢; > ¢ > 0, we obtain that
w; is Lipschitz continuous and is a viscosity solution of the autonomous equation
¢i(z,w;(z))|Dw;(x)] = 1. Note that {u;(-,t) > 0} = {w; < ¢}. In particular, by
Theorem 2.1(i), {w; <t} C B(0, Ry + (My + M;)T) is bounded for any ¢. From the
coarea formula, we have

[ pertusts) = 0pds = [ per(fu < s)yas
0 0

:/ |Duwj()|dz,
{wi<t}

which is finite since w; is Lipschitz continuous. Therefore we have proved that
t — per({u;(+,t) > 0}) belongs to L([0,7]), which entails from the Gronwall lemma
that p; = po in [0, 7] since p1(-,0) = pa(-,0). Hence ¢ = ¢z and u; = ug in [0, 7].
From the definition of oy and 7 (see (29) and (32)), necessarily 7 = T. It completes
the proof. ]



58 G. BARLES, P. CARDALIAGUET, O. LEY, AND R. MONNEAU

5. Nonnegative kernel cy and Slepéev formulation for the nonlocal
term. In this section, we deal with nonnegative kernels ¢y > 0. In this monotone
framework, inclusion principles for evolving sets and comparison for solutions to the
dislocation equation are expected (see Cardaliaguet [11] for related results). We start
by studying the right level-set equation using a Slepcev formulation with the con-
volution term using all the level-sets {u(:,t) > u(z,t)} instead of only one level-set
{u(-,t) > 0}. This choice is motivated by the good stability properties of the Slepcev
formulation.

The equation we are concerned with is

(33) % =" [u)(z,t)|Du| in RY x (0,T),
u(-,0) = ug in RY,

where the nonlocal velocity is

ct [u](xa t) = (xv t) + CO(" t) * ]l{u(~,t)2u(x,t)}(x)
(34)

C1 (33, t) + /N Co(l‘ - % t)]l{u(,t)ZU(m,t)}(Z)dz
R

and the additional velocity ¢; has no particular sign.
We denote

c [u](xat) = Cl(xat) =+ /N CO(:L' - Zvt)]l-{u(',t)>u(m,t)}(Z)dz‘
R

We recall the notion of viscosity solutions for (33) as it appears in [28].

DEFINITION 5.1 (Slepéev viscosity solutions). An upper semicontinuous function
u: RN x [0,7] — R is a viscosity subsolution of (33) if, for any p € C*(RYN x [0,T)),
for any mazimum point (T,t) of u — ¢, if t > 0, then

%f@,z) < ctul(z, B)[ Dep(, D)

and u(z,0) < wug(x) if t = 0.

A lower semicontinuous function u : RN x [0, T] — R is a viscosity supersolution
of (33) if, for any ¢ € CYHRYN x [0,T)), for any minimum point (z,t) of u — ¢, if
t >0, then

% @0 > = [ul(@ DD (7 1)
and uw(Z,0) > up(z) if t = 0.

A locally bounded function is a viscosity solution of (33) if its upper semicontinu-
ous envelope is a subsolution and its lower semicontinuous envelope is a supersolution
of (33).

Note that for the supersolution, we require the viscosity inequality with ¢~ instead
of ¢*. It is the definition providing the expected stability results (see [28]).

THEOREM 5.2 (comparison principle). Assume (HO') and that the kernels co >
0 and ¢ satisfy (HL). Let u (respectively, v) be a bounded upper semicontinuous

subsolution (respectively, a bounded lower semicontinuous supersolution) of (33). Then
u<wvin RN x[0,T].
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Remark 5.1. We could deal with second-order terms in (33) (for instance we can
add the mean curvature to the velocity (1)). See Forcadel [17] and Srour [29] for
related results.

Before giving the proof of Theorem 5.2, let us note the following consequence.

Proof of Theorem 1.4. The uniqueness of a continuous viscosity solution to (33)
is an immediate consequence of Theorem 5.2. Then existence is proved by Perron’s
method using classical arguments (see, for instance, [16, Theorem 1.2]), so we skip
the details. O

Proof of Theorem 5.2. 1. The test function. Since u — v is a bounded upper
semicontinuous function, for any €,n,a > 0 and K = 2(Lg 4+ L1) > 0, the supremum

2
Moo= s w(e, 1) — (1) — <t (Y0 4 oo+ aly?) — e
T e ®N)2x[0,7] g?

is finite and achieved at a point (Z,,?). Classical arguments show that

liminf M., o = sup {u—v}
ema—0 RY x[0,T]

and that

(35) calz[,alg? < M,
where Moo = |t|oo + [V]oo-

2. Viscosity inequalities when t > 0. Writing the viscosity inequalities for the
subsolution u and the supersolution v, we obtain

- 12
-9 _ i o 1 -
(36) 10 (2 alol 4 alg) 40 < i@ 0lp+ 0l - Ll Dl - g

where = 254z — §) /€2, @, = 2¢Xtaz, and g, = 2¢Xag. We point out a difficulty
in obtaining this inequality: in general, one gets it by doubling the time variable first
and then by passing to the limit in the time penalization. This is not straightforward
here because of the dependence with respect to time of the nonlocal terms. But the
stability arguments of the Slepcev formulation take care of this difficulty.

3. Difference between {u(-,t) > u(Z,t)} and {v(-,t) > v(y,t)}. We have

(37) {u(-, 1) Z u(@, )} < {v(-, 1) > v(y, D)} VE,

where & = {u(-,1) > u(z, 1)} N {v(-,1) < v(y,t)}. If z € &, then u(z,t) — v(y,t) <
u(x,t) —v(z,t). But from the definition of M, , q,

u(x,t) —v(z, 1) — X 2a|2> — nt
|z —gI*

< (e ) = o(g ) — o (55 alof + algl) - .

It follows that

1, _ _ Iff—17|2
RN x> > =(|z]* + |7]?) + .
& C {x IS || > 2(|96| 191°) 2002
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4. Upper bound for c¢*[u](Z,t). We have

(38) c+[u](i'7 {) = / Co(f -z, {)]l{u(_)g)Zu(,—;’g)}(z)dz +c1 (.’E, f)
RN
< /N(Co(i —2z,t) = co(y — 2,0)) L {u(. ) >u(zp} (2)d2
R

+/N Co(:lj - Zaﬂl{u(,t_)Zu(i,t_)}(Z)dZ +cl(j>£)'
R

Using that ¢g > 0 and (37), we obtain

/ co(J — 2, )L ju( p>u(zpy (2)dz < / co(y — z,t)dz.
RN {v(-,t)>v(g,t) }UE

From (38), we get
(39) cﬂu](:f,ﬂ é C_[’U}(g,f) +Il +IZ + cl(faﬂ - Cl(gaav
where
I = /N(Co(ff — Z,@ — Co(ﬂ — 275))]1{u(,,g)2u(i7f)}(2)d2
R

and

Igz/co(y—z,ﬂdz.
£

5. Estimate of 71 using (H1). We have

cO<:z—z7t>—cO<g—z,t>=/0 Dyco((1 = N — 2) + A& - 2), (& — §)dA.

It follows that
1
Tl < [ [ 1Dseolt =@ = 2) + Az~ 2, Dlle - pldd:
R 0

< |Dgco(-,t) 1]z — 7
(40) < Lo|7 — 9|

6. Estimate of the right-hand side of inequality (36). Noticing that |p||z — y| =
2Ktz — 77| /2 and using (40), (39), and (H1), we have

ul(z,0)[p + G| — ¢~ [](5, 0)|p — gy
< (e W@, t) + T + Ip + 1 (2, 1) — 1 (9, 1)) [P+ G| — ¢ [v](5,1) 1P — Gyl
< | )@, )| 1@ + @yl + (Lo + L1)|Z — GlP + Gu| + La|p + G|
—12

_ T —
< (Mo + Mi)(1G| + |ay]) + 2¢™ (Lo +L1)|Tyl

— f_ 1
Heo+ Ll = gl + 72 (jad + 27222 ).



EXISTENCE AND UNIQUENESS FOR DISLOCATION EQUATIONS 61

Since |y, |Gy| — 0 as @ — 0 (see (35)) and Z, is bounded by |co(+, )| < Lo, there
exists a modulus m.(a) — 0 as o — 0 such that (36) becomes

g T —
Ke&t < = gl* +a|x|2+a|y|2)+n

< ma(a) +2(Lo + e I T o7, il

Recalling that we chose K > 2(Lg + L1), we finally obtain

(41) 0<n<mela)+2y KT IE Y]
5

7. Limit when a — 0. First, suppose that

(42)

It follows that |Z — §| — 0 as @ — 0. Passing to the limit in (41), we obtain a
contradiction. Therefore, (42) cannot hold, and, up to extracting a subsequence,
there exists 6 > 0 such that
[z -y
o2

(43) >6>0 for a> 0 small enough.

From (41) and (35), we get

|z — g 2eKTM?
(44) n < limsup 27, e |2 5 7l <= lim sup Zo.
a—0 £ € a—0

To obtain a contradiction, it suffices to show that limsup,_,Z2 = 0.
8. Convergence of Is to 0 when o — 0. By a change of variable, we have

1'2:/‘S co(y — 2 ﬂdz<[co(z,ﬂdz,

5

where

. O T O e/l
— N . 2 2 2
e={ac® o gl > gllaf + )+ A |

Since |co(+, )|z < Lo, to prove that Zy — 0, it suffices to show that £ € RN\ B(0, R,,)
with R, — +oc. From (43), if z € £, then

1 1 6
2S olellal & =712 — 152 + 2
j2f? 2 —2allg] + 512 - 515 + o

5
> 2lzl|5| = |7l|Z — 7] + —
> —2|z[|ly| - |gl|lz — 9| + %

1
> %(6—2(02+20|x\)\/&),

since by (35), there exists C' > 0 such that |Z|, |y] < C/+/a and |z — | < C. It follows
that

:c|>\lﬁ< C+\/02+5/2 C%f) i= Ro — +o0.
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9. End of the proof. Finally, for every ¢, if & = «, is small enough, the supremum
M. , o is necessarily achieved for ¢ = 0. It follows that

|z — g |z — g

M, .0 <u(Z,0) —v(7,0) — < uo(Z,0) — uo(y,0) —

g2 g2

Since wg is uniformly continuous, for all p > 0, there exists C, > 0 such that

|z — gl Coe’
g2 = 4

Ms,n,a <p+ Cp|f - ﬂ| -

Passing to the limits ¢ — 0 and then p,a,n — 0, we obtain that sup{u — v} <
0. O

Now we turn to the connections with discontinuous solutions and weak solutions,
which are closely connected. To do so, if u is the unique continuous solution of (33)
given by Theorem 1.4, we recall that we use the notation

pT =10, P = Lusoy, and cfp](z,t) = co(-t) * p(-, ) () + ca (2, 1),

Proof of Theorem 1.5. 1. Claim: Under the assumptions of Theorem 1.5, the
functions p* and p~ are L'-viscosity solutions of the equation

(15) { pi = clpl| Dpl in RN x [0,T)

p(J?,O) = ]l{’U«OZO} m RN .

We consider two sequences of smooth nondecreasing functions (¥ )a, (¥%)a, taking
values in [0, 1], such that, for any s € R,

Va(s) < Lzs0y(s) < Lipzoy(s) < ¥%(s),

and such that, as @ — 0, Yo T L{zso0), ¥ | Liz>0y-
We first remark that u satisfies, in the sense of Definition 5.1,

up < c[®(u(-,t) —u(z,t))]|Du| in RN x (0,T),
we > elpalu(t) — u(e, )] Dul in RN x (0,T)

since w is a continuous solution of (33), ¢ [u](z,t) < c[v®(u(-,t) — u(z,t))], and
¢ [u](z,t) > c[tha(u(-,t) — u(z,t))]. The point for doing that is that the functions
c[w®*(u(-t) — u(z, b)), c[tba(u(-,t) — u(x,t))] are now continuous in x and ¢.

Then we show that pT, p~ satisfy the same inequalities, the functions c[¢)*(u(-,t)—
u(z,t))], c[tba(u(-, t) —u(z,t))] being considered as fixed functions (in other words, we
forget that they depend on u). In fact, we just provide the proof in detail for pT, the
one for p~ being analogous. Following the proof of [6], we set

1
ue(x, t) = 3 (1 + tanh (efl(u(z,t) + 61/2))> .
Noticing that u. = ¢-(u) for an increasing function ¢., we have that the function u,

still satisfies the two above inequalities. It is easy to see that

pt =limsup u. and (p). = liminf, u. ,
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and the half-relaxed limits method indeed shows that
(pF)7 < e[ (u(-,t) —u(z, )| D(pT)*| in RN x (0,T),
((p)a)e = cltpa(ul-,t) — u(z,)][D(p*).] in RY x (0,T).

The next step consists of remarking that the viscosity sub- and supersolution
inequalities for pT are obviously satisfied in the complementary of d{u > 0} since p*
is locally constant there, and therefore it is a classical solution of the problem. The
only nontrivial viscosity sub- and supersolution inequalities we have to check are at
points (z,t) € 0{u > 0}, i.e., such that u(x,t) = 0 since u is continuous. For such
points, as a — 0,

e[ (u(- t) — w(z,1)] = clp (@, t) = c[(p")"](=, 1)

since pT is upper semicontinuous, and
c[ta(ul- 1) —u(z,1))] — clp”](z,1).
The stability result for equations with an L'-dependence in time yields the inequalities
(0F)i < cl(p™)UD(p)*| in RY x (0,7),
(46) ((65))e = clp7]ID(pT)s| in RY x (0,T).

The second inequality is weaker than the one we claim: to obtain ¢[(p™),] instead
of ¢[p~], we have to play with the different level-sets of u: for 8 > 0 small, we set
pg = l{u>—p}- Since u is a solution of (33) and 14,5 := ¥o(- + B) is nondecreasing,
then 9, g(u) is a (continuous) supersolution of

(Ya,6(w)e 2 ¢ [Ya,5(w)][Da,s(u)]  in RY x (0,T).

By stability we get, as a — 0,

((pg))e = [(p)]ID(pf)«l in RY x (0, 7).

But, for (x,t) € 0{u > —f},
(A7) Tl t) = el ) (o) (@:1) = cl(pf)] (2, 8) = lp™](w,8).

It follows that (pz,r)* is a supersolution of the eikonal equation with c[p™](x,t) (as
before, the only nontrivial inequalities we have to check are on d{u > —f}, and they
are true because of (47)). Letting 3 tend to 0 and using that (p™). = liminf, (p'ﬁ")*,
we obtain the expected inequality (even something better since (46) holds actually
with ¢[p*](z,t)). In particular, we get that pT is a solution of

18) { pr=clpt|Dp| RN x[0,7),

p(,0) = Liyy>0p in RV,

The proof of the claim is complete.

2. The functions v* are weak solutions of (3). Let us start with the “+” case. We
first remark that the existence and uniqueness of v™ follows from the standard theory
for equations with an L!-dependence in time (see Appendix A).
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To prove that v is a weak solution of (3), it remains to prove that (7) holds. It
is sufficient to show that

(49) {v*(,t) > 0} € {u(,t) = 0} € {v™(-,t) > 0} .
We use again the functions v, ¥® introduced above. We remark that
Vo) < pt(2,0) < 9p*(ug) in RV .

Moreover, v and pT are solutions of the same equation, namely (48) with ¢[p™],
which is considered as a fixed function, and so are 1, (v™) and ¥*(v") because the
equation is geometric. Therefore, a standard comparison result implies

ba(Wh) < (pF) < pt = (pT) < w(wh) inRY x[0,7).

Letting « tend to 0, these inequalities imply (49).
We can prove the symmetric result for v, the only difference being that inclusion
(49) has to be replaced by

(50) {v7 (1) > 0} < {u(-,t) > 0} < {o7 (1) > 0} .

3. Claim: If v is a weak solution of (3), then 1y, >0y 5 an L'-subsolution of
(45). From Proposition 3.1 and since ¢y > 0, v satisfies in the L!-sense

(51) vy < e[y n>0y]| Dol in RY x [0,7) .

By similar arguments as we used above, the function 1y, >0} satisfies the same
inequality which gives the result.

4. The function p™ is the mazimal L'-subsolution of (45). Let w be an L'-(upper
semicontinuous) subsolution of (45). First we have w < 1in RY x [0, T') by comparison
with the constant supersolution 1 for the equation with c[w] fixed. By considering
max(w,0) we may assume that 0 < w < 1in RN x [0,7). By similar arguments as
we already used in step 1, we can show that 1y, >0} is also an L'-subsolution of
(45); thus we can assume that w is a characteristic function.

Then we remark that w is also a subsolution of (33): indeed, again, the only
nontrivial viscosity inequalities are on the boundary of the set {w = 1}, and if (z,t)
is such a point, we have w(z,t) = 1 because w is upper semicontinuous and w =
Liw(. ) >w(z,t)}- Since u is a solution of the geometric equation (33), ¥*(u) is still a
solution which satisfies ¥ (u)(x,0) > 1{yy>01 = w(z,0) in RY. By Theorem 5.2 we
obtain

w < p*(u) inRY x[0,7).

Letting « tend to 0 provides w < pT, which proves that pT is the maximal subsolution
of (45).

5. The function vt is the mazimal weak solution of (3). Let v be a weak solution
of (3). From steps 3 and 4, we get Lg,(..»>01 < pT (-, t) in RN x [0,7), and (51) implies

v < c[pT]|Dv| in RY x[0,T).

Therefore v is a subsolution of (12), and by a standard comparison result, this leads
to v <ot in RY x [0,T), which proves the result.
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6. We have {vT(-,t) > 0} = {u(-,t) > 0} and {v=(-,t) > 0} = {u(:,t) > 0}. From
step 5, we get L+ >0y < pT(,t) = 1y(.,ty>03- The conclusion follows for vt using
(49). The inclusion for v~ uses symmetric arguments.

7. Uniqueness when {u(-,t) = 0} has Lebesgue measure 0. If LN ({u(-,t) = 0}) = 0,
then c[p™] = ¢[p~]. Hence v = v~ is the unique weak solution of (3), and it is
obviously a classical one. 0

Appendix A. A stability result for eikonal equations with L!-depen-
dence in time. The aim of this appendix is to provide a self-contained presentation
of a stability result for viscosity solutions of eikonal equations with L'-dependences
in time which handles the case of weak convergence of the equations instead of the
classical strong L'-convergence. This stability result is a particular case of a general
stability result proved by Barles in [4].

For T' > 0, we are interested in solutions of the following equation:

(52) % = ¢&(z,t)|Dv| in RN x (0,T),
v(,0) =ug in RV,

where the velocity ¢ : RY x (0,T) — R is defined for almost every ¢ € (0,7). We also
assume that ¢ satisfies the following.

(H3) The function ¢ is continuous with respect to z € RY and measurable in ¢.
For all z,y € RY and almost all t € [0, 7],

e(a, 1)l <M and |e(x,t) — e(y, t)] < L]z —y.

Let us underline that we do not assume any continuity in time of ¢. We recall the
following (under assumption (HO)).

DEFINITION A.1 (L!-viscosity solutions). An upper semicontinuous (respectively,
lower semicontinuous) function v on RN x [0,T] is an L'-viscosity subsolution (re-
spectively, supersolution) of (52) if

v(0,-) <wug (respectively, v(0,-) > ug)

and if for every (wo,to) € RN x [0,T], b € LY(0,T), ¢ € C*RY x (0,T)), and
continuous function G : RN x (0,T) x RN — R such that
(i) the function

() — v(z. 1) — / b(s)ds — ol t)

has a local mazimum (respectively, minimum) at (zo,to) over RN x (0,T) and such
that

(ii) for almost every t € (0,T) in some neighborhood of to and for every (z,p) in
some neighborhood of (xo,po) with po = V(zo,to), we have

E(l’, t)|p| - b(t) < G(‘Tv t7p) (respectively, E(l‘, t)|p| - b(t) > G(l’, t7p))7

then

0
6;750 (z0,t0) < G(z0,t0,P0) (7‘651)60152'1}61%

0
af(mmfo) > G(%Jo#’o)) .
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Finally, we say that a locally bounded function v defined on RY x [0,T] is an L'-
viscosity solution of (52) if its upper semicontinuous (respectively, lower semicontin-
uous) envelope is an L'-viscosity subsolution (respectively, supersolution,).

Let us recall that viscosity solutions in the L'-sense were introduced in Ishii’s
paper [20]. We refer the reader to Nunziante [25, 26] and Bourgoing [7, 8] for a
complete presentation of the theory.

Then we have the following result.

THEOREM A.2 (existence and uniqueness). For any T > 0, under assumptions
(HO) and (H3), there exists a unique L'-viscosity solution to (52).

Finally, let us consider the solutions v¢ to the following equation:

ov®
(53) ot
ve(-,0) =ug in RV,

=& (z,t)|Dv?| in RN x (0,7),

Then we have the following.

THEOREM A.3 (L'-stability [4]). Under assumption (HO), let us assume that the
velocity ¢ satisfies (H3) (with some constants M, L independent of € ). Let us consider
the L-viscosity solution v¢ to (53). Assume that v¢ converges locally uniformly to a
function v and, for all x € RN,

¢ ¢

(54) / ¢ (z, s)ds —>/ c(x, s)ds locally uniformly in (0,T).
0 0

Then v is a L*-viscosity solution of (52).

Remark A.1. Theorem A.3 is stated as in [4], but note that, under (H3), assump-
tion (54) is automatically satisfied as soon as the convergence is merely pointwise.

Indeed, since

t t t
/Es(x,s)ds /Ee(x,s)ds—/ ¢ (z, s)ds
0 0 0

from Ascoli’s theorem, the convergence is uniform.

< MT and < Mt -1,

Appendix B. Interior ball regularization (proof of Lemma 2.3). The
proof of this result can be adapted from those of Cannarsa and Frankowska [10] or
[2] (see also [9] for related perimeter estimates for general equations). For the sake
of completeness, we give a proof close to the one of [10] (this latter holds for much
more general, but time-independent, dynamics). The unique (and small) contribution
of this part amounts to explaining how this proof can be simplified in the particular
case of dynamics of the form (55) and to point out that the time dependence is not
an issue for the results of [10] to hold.

We first prove that the reachable set for controlled dynamics of the form

(55) @(t) = c(z(t),t)ult), we L>([0,T], B(0,1)),
enjoys the interior ball property for positive time. We assume that ¢ : [0, 7] x RY — R

satisfies, for any z,y € RY and t € [0, T],

(i)  cis Borel measurable,
differentiable with respect to the space variable for a.e. time,

(i) le(x,t) — ey, t)] < Lalz —yl,
(iif)  [Dac(z,t) = Dacy, 1) < Nifz —yl,
(iv) My > e(x,t) > 6 >0,
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where L, N; > 0 and M;,6 > 0 are given constants. Let Ky C RY be the initial set.
We define the reachable set R(t) from Ky for (55) at time ¢ by

R(t) = {z(t) , =(-) solution to (55) with z(0) € Ko}.

It is known that R(t) is a closed subset of RY. Let yo be an extremal solution on the
time interval [0, 7], i.e., a solution of (55) such that

Yo(0) € Ko and yo(T) € OR(T).

From the Pontryagin maximum principle for extremal trajectories (see, for instance,
[13]), there is some adjoint function po : [0,7] — RY\{0} such that (yo,po) is a
solution to

in(t) = clon(t). ) 22

—Po(t) = Dac(yo(t), 1)[po(t)]-
Since the system is positively homogeneous with respect to p, we can assume, without
loss of generality, that |po(T)| = 1, and we set 8y := po(T).
Let P be the matrix-valued solution to

P(0) = L0 (D, ctun(t). 0] Pl
P(T) = Id.

A straightforward computation shows that P*(¢)po(t) = 0y for any ¢ € [0, 7).
Let us fix some parameter v > 0 to be chosen later, § € B(0,1) and let us set, for
all ¢ € [0, 7],

Yo(t) = yo(t) — vtP(t)(0o — 0).

Our aim is to show that yy is a solution to (55). Indeed we have

2
iol? = |e(um, )22 ~ VP60 ) =3 L% Dec P8y~ 0)

P(6y — 9)>

D
—M%N—m%w<%
po

+d%m2<@MW%M%ﬁ<m,meW%@>
|P0| |P0|

2
42| Py — 0) + t“Z—O‘ch*P(GO —9)
0
C(yO, t)

<lelyo, t)|* — 2v (6,00 — 0)  (because P*py = )

Po
+c*(yo, t) — (Yo, 1) — (Da(c?) (Yo, ), 50 — yo) + 7> M6y — 6
I}

< le(ye, t)[? —’meo — 0> + M{|yo — yol|* + > M| — 0)?

I}
< le(ye, t)? —7m|90 -0 + ¥*M'|6y — 0],



68 G. BARLES, P. CARDALIAGUET, O. LEY, AND R. MONNEAU

with M{ = L2 + M; Ny, and where M and M’ depend only on T, L1, Ny, M; because
|po(t)| is bounded from below by a constant depending only on T, L;. Hence, for
~ sufficiently small, yg is a solution of (55) starting from y0(0) € K¢ and therefore
yo(T) € R(T).

Finally, R(T) contains all the yg(T) for § € B(0,1), i.e., the ball centered at
yo(T) —yT6y and of radius vT (since P(T) = Id).

We apply the previous result with ¢ = ¢; and Ky = {v(+,0) > 0}. Then {v(-,t) >
0} =R(¢t) for all t > 0.

We end with a remark: in the statement of Lemma 2.3, ¢; is assumed to be
continuous in time. As we have seen, it is not necessary; ¢; can be merely measurable
in time up to considering the L!-solution v of (13), as recalled in Appendix A. d
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REFINABLE FUNCTIONS AND CASCADE ALGORITHMS IN
WEIGHTED SPACES WITH HOLDER CONTINUOUS MASKS*

BIN HANT

Abstract. Refinable functions and cascade algorithms play a fundamental role in wavelet anal-
ysis, which is useful in many applications. In this paper we shall study several properties of re-
finable functions, cascade algorithms, and wavelets, associated with Hélder continuous masks, in
the weighted subspaces La , ~(R) of La(R), where 1 < p < oo, v > 0 and f € L2 (R) means
1£ 02y By = Il Sz 1711 (4 2mk) 2 /Ay < 00. In particular, [|fl| 1, , @) = [ Fe7"![l1, @) and
111z 000 = I Zpez £+ 27rk)|2||1L/i<T). For a mask @ € CB(T) with 8> 0 and 4(0) = 1 (that
is, @ is a Holder continuous mask with Holder exponent (), we prove that the cascade algorithm
associated with the mask & converges in the space L3 o0,0(R) if and only if v2(a) > 0, where the
quantity v2(a) will be defined in this paper and plays an important role in our study of refinable
functions and cascade algorithms with Holder continuous masks. In particular, if the shifts of a
refinable function ¢, satisfying QB(Q) = G¢, are stable in L>(R), then we must have vo2(a) > 0, and
therefore the cascade algorithm associated with mask & converges in the space L2 o.0(R). Based
on this result, we are able to settle several problems on refinable functions, cascade algorithms, and
wavelets associated with masks having infinitely many nonzero Fourier coefficients. As an application
of the characterization of the convergence of a cascade algorithm in the space L2 o,0(R), we are able
to show that for a mask & having exponential decay of order r» > 0, the cascade algorithm associated
with mask @ converges in the weighted space L2 1,~(R) for 0 < v < 2r if and only if v2(a) > 0.
Consequently, if a mask a has exponential decay of order » > 0 and v2(a) > 0, then its standard
refinable function ¢, defined by ¢(¢) := ;-’O:l a(277¢), must have exponential decay of order 27 in
L>(R); that is, ”¢H2Lg,1,.,(R) = fRW(z)\th'I‘ dr < oo for all 0 < v < 2r. As another applica-

tion of the characterization of the convergence of a cascade algorithm in the space L2 o,0(R), we
completely characterize biorthogonal wavelets and Riesz wavelets in L2(R), which are derived from
refinable functions and whose involved wavelet filters in the frequency domain are Holder continuous.
We shall also investigate some basic properties of the quantity v2(a) and discuss how to calculate
and estimate vo(d). Examples using fractional splines and the Butterworth filters will be given to
illustrate the results in this paper.

Key words. refinable functions, cascade algorithms, Holder continuous masks, masks having
infinitely many nonzero Fourier coefficients, transition operator, weighted Lo spaces, biorthogonal
wavelets, Riesz wavelets, exponential decay
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1. Introduction and motivation. A wavelet system is generally derived from
a refinable function via a multiresolution analysis (MRA). We say that ¢ is a refinable
function if it satisfies the refinement equation:

(1.1) 6(26) = a(€)p()  ae EER,

where a is a 2m-periodic function, called the mask (or filter) for ¢, and the Fourier
transform is defined to be f(€) := [, f(z)e™ ¢ dx for f € L1(R).
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For a 2m-periodic function G, we say that a has exponential decay of order r if a
is the restriction of a 2m-periodic function a(z) on the real line Im(z) = 0 such that
a(z) is holomorphic in the strip {z € C : |Im(z)| < r}, where Im(z) denotes the
imaginary part of the complex number z. Write a(§) = 3., are™ " in terms of its
Fourier series. It is easy to check that a has exponential decay of order r if and only
if for every 0 < 7 < r, there is a positive constant C, such that |ax| < Cﬂ,e_'”k‘ for
all k € Z. A particular family of masks with exponential decay consists of rational
masks that can be written in the form of b(€)/&(€) for some 2r-periodic trigonometric
polynomials b and ¢ such that é(¢) # 0 for all £ € R. For example, the well-known
Butterworth filters are rational masks [5, 11, 18, 25].

Masks with infinitely many nonzero Fourier coefficients, or equivalently, filters
with infinite support, are called infinite impulse response (IIR) filters in electrical
engineering. Due to some desirable properties, IIR filters, including masks with expo-
nential decay and masks for bandlimited wavelets [7] and fractional splines [27], are of
interest in some applications and have been extensively designed for various purposes
in the area of digital signal processing in electrical engineering [3, 5, 18, 25, 27]. In
contrast to the case of trigonometric polynomial masks whose various mathematical
properties have been extensively studied and more or less well understood in the lit-
erature (see [1, 4, 6, 7, 8, 10, 15, 19, 26, 28] and the references therein), there are
still several unsolved questions related to refinable functions and wavelets with masks
having infinitely many nonzero Fourier coefficients. For example, Daubechies and
Huang in [9] showed that if the standard refinable function ¢, defined by

(1.2) o) = [Ja7¢, ¢eRr,
j=1

lies in L1 (R) with a mask & having an absolutely summable sequence of Fourier
coefficients, and if ¢ has exponential decay, then the mask a must have exponential
decay. But to the best of our knowledge, there are very few results on the converse
direction, and it is widely believed that for a mask a with exponential decay, its
standard refinable function ¢ in (1.2) should also have exponential decay in certain
spaces in some sense. This is one of our motivations to study refinable functions and
cascade algorithms, associated with masks having infinitely many nonzero Fourier
coefficients, in some weighted subspaces of La(R).

Before proceeding further, let us introduce some definitions and notation. Let
T := R/[2nZ] and L,(T) denote the linear space of all 2r-periodic measurable func-
tions f : R +— C such that 27r||f||ip(T) = " |f(x)|Pde < oo for 1 < p < oo and
lfllz.(r) denotes its essential upper bound. For v > 0 and 1 < p < oo, throughout
the paper, the space Lo, ~(R) denotes the subspace of all f € Ly(R) such that

1/2
<
Lp(T)

)

(1.3) 12y 3= || [T, 17|
where the bracket product [20] is defined to be
(1.4) [£,91(6) ==Y f(§+2nk)g(€+27k),  E€R, f,g€ Ly(R).

kEZ

It is easy to verify that [f, g] € Lo(T) for f,g € Lo(R) and Lo p (R) is a Banach
space. In particular, by Plancherel’s theorem, we have

I,y = NE 11y = /]R £ (@) 21! da
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Therefore, Lo (R) is a weighted subspace of Ly(R), and it is a natural candidate
of subspaces to measure the exponential decay of a function in Lo(R). Note that
Lo 0(R) = La(R).

We say that the shifts of a function f are stable in Lo(R) if there exists a positive
constant C such that C~1 < [f, f](€) < C for almost every £ € R. It is well known that
stability plays an important role in wavelet analysis [3, 4, 7]. If the shifts of a function
[ are stable in Ly(R), then it is obvious that f € L ,0(R), since || f|lz, . ,®) =

I, £l ||1L/j(T) < 00. On the other hand, we shall see in Proposition 6.1 that Ls 1 (R) C
L3 c0,0(R) for any v > 0. In particular, all compactly supported functions in Lo (R)
are included in Lg o o(R). Therefore, the space Lg o o(R) is a large enough subspace
of Ly(R) and includes most interesting functions in wavelet analysis. In this paper,
we are particularly interested in the subspaces L o 0(R) and Lo 1 (R) for v > 0.

In the following, let us introduce a basic quantity vo(a), which plays a critical
role in our study of refinable functions, cascade algorithms, and wavelets with masks
having infinitely many nonzero Fourier coefficients. For 2m-periodic functions a and
f, the transition operator Ty is defined to be

(15)  [TafIE) = la€/2)Pf(€/2) +la(¢/2+ m)Pf(E/2+m),  E€R.
For 7 € R and 1 < p < oo, we define a quantity

~ . n . T\ 1/n
w6) e ) = imsup T3 (Jsin(/2) )|

n—oo

Now we define the quantity v2(a) in this paper as follows:
(1.7) vs(@) = —[log, p(a)]/2
where
(1.8) p(a) == inf{p,(a,00) : |a(- 4 7)|*/|sin(-/2)|” € Loo(T) and 7 > 0}.

When d is a 2m-periodic trigonometric polynomial, the quantity v(a) in (1.7) agrees
with the one in [13] and can be calculated by finding the spectral radius of an as-
sociated finite matrix generated by a. See section 4 for details on calculating and
estimating the quantity v2(a). The quantity vo(a) in (1.7), whose definition appears
to be a little bit technical in its nature, plays a very important role in investigating
many problems in wavelet analysis. See [13] for applications and the importance of
v2(a) in wavelet analysis with 27-periodic trigonometric polynomial masks a.

We say that f belongs to the Hélder class CP(T) with 3 > 0 if f is a 27-periodic
continuous function such that f € C™(T) and there exists a positive constant C
satisfying | f(™ (z) — f™ (y)| < Clz — y|?~" for all z,y € T, where n is the largest
integer such that n < 8 and f(™ denotes the nth derivative of f. Throughout the
paper, we say that & is a Hélder continuous mask if & € CP(T) for some 8 > 0 and
a(0) = 1. That a is a Holder continuous mask is a very natural and weak condition
to guarantee that as the Fourier transform of the standard refinable function ¢ with
mask @, the function ¢, which is defined through the infinite product in (1.2), is well
defined.

In section 2, we shall present a necessary and sufficient condition in Theorem 2.1
for the convergence of a cascade algorithm in the space La o0 o(R). Theorem 2.1 plays
a central role in our study of refinable functions with exponential decay in Lo(R) and
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of MRA Riesz wavelet bases in Lo (R). More precisely, we prove in Theorem 2.1 that
for amask @ € C?(T) with a(0) = 1 and 8 > 0 (that is, G is a Holder continuous mask),
the cascade algorithm associated with mask G converges in the space La o o(R) if and
only if v5(a) > 0. As a direct consequence of Theorem 2.1, we show in Corollary 2.2
that if the refinement equation q@(?) = d(;AS has a solution ¢ such that the shifts of ¢
are stable in Lo(R), then we must have v5(a) > 0, and therefore the cascade algorithm
associated with mask @ converges in the space La o0 0(R).

Cascade algorithms in I (R) and other spaces with 27-periodic trigonometric poly-
nomial masks have been extensively studied in the literature. To cite only a few
references here, we refer the reader to [1, 4, 6, 7, 8, 10, 15, 19, 22, 26, 28] and the
references therein, where the property of the masks being 27-periodic trigonometric
polynomials plays a critical role. The study of cascade algorithms and refinable func-
tions with Holder continuous masks in this paper is not a trivial generalization of the
known results in the literature, as we shall see in sections 4-6.

As an application of Theorem 2.1, we are able to prove in Theorem 2.3 that for a
mask a having exponential decay of order r > 0, the cascade algorithm associated with
the mask a converges in the space Ly ,(R) for 0 < v < 2r if and only if vs(a) > 0.
Consequently, the standard refinable function ¢ associated with mask @ in (1.2) must
have exponential decay of order 2r, namely,

(1.9) 61,0 = [ I6@Peldo <00 Vo< <o

An MRA wavelet function v is obtained from a refinable function ¢ with mask a
via
(1.10) 0(26) =b()d),  E€R,

for some 27-periodic measurable function b. We say that 1 generates a Riesz wavelet
basis in Ly(R) if span{v; . := 27/24p(27 - —k) : j,k € Z} is dense in Ly(R) and there
exists a positive constant C' such that

2

(1.11) CTY D leinl <D0 eintin <CY D ejn

JEL kEZ JEL kEZ L2 (R) JEL kEZ

2

for all finitely supported sequences {c; 1} xez. MRA Riesz wavelet bases in Lo (R) are
of interest in some applications [2, 5, 17, 21, 24]. A natural and important question
here is when ¢ generates a Riesz wavelet basis in La(R). MRA Riesz wavelet bases
with compact support have been investigated in [5, 14, 16, 17, 21, 24], where some
necessary and sufficient conditions have been obtained for trigonometric polynomial
masks. Most approaches in these papers rely largely on an interesting result of Cohen
and Daubechies in [5] saying that for a mask @ with exponential decay, the transition
operator Tj acting on some weighted subspaces of ¢5(Z) is a compact operator. Built
on this interesting result of [5], a characterization of Riesz wavelets with trigonometric
polynomial masks is obtained in [16] (also cf. [5]) in terms of the spectrum of Tj.
However, the approach in [5, 16, 24] seems difficult, if not impossible, to be generalized
to masks without exponential decay, since the compactness of the operator T; may
be lost.

In order to study biorthogonal wavelets and Riesz wavelets with Holder contin-
uous masks, using a quite different approach in this paper, as another application
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of Theorem 2.1, we shall prove in Theorem 3.2 that for a,b € C?(T) with 8 > 0,
assuming that the shifts of the standard refinable function ¢ with mask a are stable
in Ly(R), then # in (1.10) generates a Riesz wavelet basis in Lo(R) if and only if (i)
b(0) = 0 and d(€) := a(&)b(€ + m) — a(€ + m)b(€) # 0 for all € € R; (ii) v(a) > 0 and

va(a) > 0, where a(€) := b(€ + ) /d(€). Moreover, in the case that a is a 27-periodic
trigonometric polynomial, we prove that the shifts of ¢ € Ly(R) must be stable in
Lo(R) if ¢ generates a Riesz wavelet basis in Ly(R). Even for the case that both a
and b are 2m-periodic trigonometric polynomials, the mask ais generally not a 27-
periodic trigonometric polynomial, and consequently refinable functions with masks
being nontrigonometric polynomials will naturally appear in our study of MRA Riesz
wavelet bases in Lo (R). This is another motivation for us to study refinable functions,
cascade algorithms, and wavelets with masks having infinitely many nonzero Fourier
coefficients.

To illustrate the results in this paper, we shall apply the results in sections 2
and 3 to a family of Hélder continuous masks ag, s, 3, and |a3, g, 3|, where

272ﬁ1(1 + e*i5)251
(| cos(£/2)[202 + | Sin(f/2)|252)63 7

In fact, the masks for the B-splines correspond to the case aj, g, 3, With B2 = 1
and 23; € N. The masks for various types of fractional splines in [27] correspond
to the case a3, g, 3, Or |ag, 3,.8,] with 8o = 1. The classical Butterworth filters in
[5, 11, 18, 25] correspond to the case |ag, g, 3,| with 33 = 1 and 81 = B2 € N. To
illustrate the main results in sections 2 and 3, we shall study the convergence of
cascade algorithms and MRA Riesz wavelet bases associated with the masks given in
(1.12).

Since the quantity v5(a@) plays a very important role in our study of refinable
functions, cascade algorithms, and wavelets with Holder continuous masks, we shall
investigate in section 4 some basic properties of the quantity vo(a) and discuss how
to calculate and estimate the quantity vo(a) for a mask @ being a general Lebesgue
measurable 27-periodic function. In section 4, we shall generalize a well-known result
on v5(a), whose proof in the general case of Holder continuous masks is nontrivial
and will be presented in the last section of this paper. The general discussion on the
quantity vo(a) in section 4 is of interest in its own right, and the results in section 4
may be useful elsewhere.

For simplicity of presentation and readability of this paper, the proofs of The-
orems 2.1 and 2.3 in section 2, which are a little bit technical in their nature, will
be postponed to sections 5 and 6, respectively. The results in this paper can be
nontrivially generalized to high dimensions and multiwavelets, which we shall discuss
elsewhere.

(1.12) ap, g5 (€) = B1, B2, 83 > 0.

2. Convergence of cascade algorithms in subspaces of Ly(R). In this
section, we shall present the main results on the convergence of cascade algorithms in
the subspaces L o,0(R) and L1 ,(R). For simplicity of presentation, the proofs of
the main results in this section will be postponed to sections 5 and 6. To illustrate
the results in this section, we shall apply these results to the masks in (1.12), which
include the Butterworth filters in [25] and the masks for fractional splines in [27] as
special cases.

For a quotient function f/g, throughout the paper, we use the convention that

(f/9)(€) is equal to f(£)/g(€) if g(&) # 0, 1if f(£) = g(&§) =0, or 00 if g(£) = 0 but
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f(&) # 0. We say that a function f € La(R) is admissible with respect to a if there
exists a positive number 7 > 0 such that

(2.1) [a(-/2)f(-/2) = f.a(-/2)f(-/2) = f1/|sin(-/2)|” € Loo(T).

Note that all compactly supported functions in Ly (R) belong to Lo 1 ~(R) for all v > 0.
For every f € Lo ~(R) with 4 > 0 such that f(2rk) = 0 for all k € Z\{0}, we shall
show in Proposition 6.2 that f is admissible with respect to @ for any & € C%(T) with
a(0) =1, a(r) =0, and 8 > 0.

For 0 < 3 < 1, we say that f belongs to the Lipschitz class A?(T) if there is a
positive constant C' such that |f(z) — f(y)| < Clz — y|? for all z,y € T.

Now we have the following result on the convergence of cascade algorithms in the
space L o,0(R), which plays a central role in this paper and whose proof will be given
in section 5.

THEOREM 2.1. Let @ € CP(T) with a(0) = 1 and B > 0 (that is, @ is a Hélder
continuous mask). Then the following are equivalent:

(i) a(r) = 0, and for every admissible function f € La o 0(R) with respect to
a, {fn}22 is a Cauchy sequence in Lo o o(R), where the functions f, are
defined by

n

(22)  Ful€) = al€/2)Ta1(€/2) = f27"¢) H 277¢), €eRneN.

(ii) For one admissible function f € Lg s ,0(R) with respect to G such that the
shifts of f are stable, {fn}52, is a Cauchy sequence in La o o(R).
(iii) For every T > 0, pr(G,00) < 1, where p,(a,o0) is defined in (1.6).
(iv) va(a) > 0; that is, p(a) < 1, where va(a) and p(a) are defined in (1.7) and
(1.8), respectively.
(v) For at least one 7 > 0, p,(a,00) < 1 and |a(- + 7)|?/|sin(-/2)|” € Loo(T).
Let ¢ denote the standard refinable function associated with the mask a in (1.2). If
va(a) > 0, then ¢ belongs to the Lipschitz class A™™LP)(R), [§, ¢] € A™n(LA)(T),
and for any 0 < v < v9(d),

(2.3) (6,0l =D (1+ |- +2mk|*)"|6(- + 27k) > € C(T).

kEZ

In fact, by a more complicated argument, we could show in Theorem 2.1 that
¢ € CP(R) and [¢, ] € CP(T), which we shall address elsewhere. According to the
proof of Theorem 2.1 in section 5, (ii) implies v5(a) > 0 without the admissibility
condition on f; that is, if {f,}52; is a Cauchy sequence in Ly o o(R) for a function
f € La oo o(R) with stability, then vo(a) > 0. We say that the cascade algorithm
associated with a mask a converges in a given function space if for every admissible
function f in that space with respect to @, the sequence {f,}22; defined in (2.2) is a
Cauchy sequence in that space.

As a direct consequence of Theorem 2.1, we have the following corollary.

COROLLARY 2.2. Let a € CP(T) with a(0) = 1 and 3 > 0. Suppose that ¢ is a
(not necessarily the standard) refinable function such that (;3(2{) = d(f)g{)(f) ae. £ eER
and the shifts of ¢ are stable in Ly(R). Then ve(a) > 0 and the cascade algorithm
associated with mask & must converge in the space La o 0(R).

Proof. Since the shifts of ¢ are btable in Ly(R), we have [¢, ¢] € Loo(T), and so
¢ € Lo ooo(R). Since a(-/2)d(-/2) — ¢ = 0, ¢ is an admissible function in Ly o o(R)
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with respect to a. So, for f = ¢, (ii) of Theorem 2.1 holds since f,, = ¢ for all n € N.
Now by Theorem 2.1, va(a) > 0. d

For a mask with exponential decay, using Theorem 2.1, we characterize the con-
vergence of a cascade algorithm with an exponentially decaying mask in the spaces
Ly p ~(R) in the following result, whose proof will be given in section 6.

THEOREM 2.3. Let a be a mask such that a(0) = 1 and G has exponential decay
of order r for some r > 0. Then the following are equivalent:

(i) a(m) = 0, and for every 0 < ~ < 2r and every admissible function f €

L3 1 ~(R) with respect to a, {fn}oe, is a Cauchy sequence in Ly 1 (R), where
fn are defined in (2.2).

(ii) a(m) =0, and for every 0 < v < 2r, every 1 < p < 0o, and every admissible
function f € Loy (R) with respect to a, {fn}se, is a Cauchy sequence in
Lo pn(R).

(iii) a(w) = 0, and for some 0 < v < 2r, some 1 < p < 0o, and every admissible
function f € Lo, (R) with respect to a, {fn}o2, is a Cauchy sequence in
Lap~(R).

(iv) For some 0 < v < 2r, some 1 < p < oo, and one admissible function
f € Lo p~(R) with respect to G such that the shifts of f are stable in La(R),
the sequence {f,}o is a Cauchy sequence in L p (R).

(v) ra(a) > 0.

In particular, if v2(a) > 0 and & has exponential decay of order r, then the standard
refinable function ¢ with mask a in (1.2) must have exponential decay of order 2r;
that is, (1.9) holds.

In the following, we shall apply the above results to the masks in (1.12), which
include both the classical Butterworth filters in [25] and the masks for the fractional
splines in [27] as special cases.

Ezample 2.4. Let a = ag, g, 3, Or @ = |aj, s, 6|, where the masks a3, g, g, are
defined in (1.12). By Proposition 4.2, it is easy to check that ¢ € C%(T) for some
B > 0. Denote

B(€) = (| cos(€/2)[*% + |sin(¢/2)|*%)%.
Then |a(€)| = 27251 |1 4 e~ %|2P1 / B(€). By calculation, it is easy to deduce that
(2.4)  min(1,2'772) < |cos(€/2)[%2 + | sin(€/2)[*"* < max(1,2'7%2)  VEER.
Consequently, we have B(g) > min(1, 2(1_ﬁ2)ﬁ3) for all £ € R and s, 83 > 0. R
For 0 < 3 < 1, by Theorem 4.1 and Lemma 4.3, it follows from B(¢) >
min(1,2(0=72)0) = 1 that

p(@) = pag, (@,00) = po(2721 /B, 00) < po(27%1, 00) = 217401,

since for a constant ¢, T*1 = 2"|c|?", and therefore
. 1
polc, 00) = limsup [ T2 1]|3" ) = 2|e]?.

n—oo

For B > 1, by Theorem 4.1 and Lemma 4.3, it follows from B(ﬁ) > 2(1-62)0s
that

p(&) = pap, (a,00) = p0(2_261/B7OO) < p0(2—2[31—(1—/32)/33’ OO) — 91-461-2(1-f2)Ps
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Therefore, for

(25) 615 ﬂ?v 63 >0 Sa’tiSfying /6)1 > 1/4 + max(O, (62 - 1)/63/2)7

we have p(a) < 1; that is, v2(a) > 0. By Theorem 2.1, the cascade algorithm associ-
ated with mask @ converges in the space L o ,0(R).

The classical Butterworth filters in [25] correspond to the case 83 = 1 and 81 =
B2 € N. The condition in (2.5) holds for all 85 = 1 and 1 = (2 € N, that is, holds
for all Butterworth filters.

For the fractional splines in [27], since B2 = 1, the condition in (2.5) becomes
81 > 1/4. Note that when B2 = 1, the standard refinable function ¢ associated
with mask @ in (1.2) satisfies |¢(2€)| = |(sin&)/€|2P1. Clearly, if 0 < 3; < 1/4, then
¢ & Ly(R). So, the condition in (2.5), that is, B, > 1/4, is sharp for the case of
fractional splines in [27].

Now we consider the case that G has exponential decay; that is, a(&) = as, s, 5, (€)
with 28; € N and 2 € N. In this case, by the definition of the masks aj, g, g, in
(1.12), it is easy to see that a can be extended into a holomorphic function on some
strip {z € C : |Im(z)| < r} for some r > 0 depending only on J2. So, & has
exponential decay of order r. Now by Theorem 2.3, if (2.5) holds with 24; € N and
B2 € N, then the cascade algorithm associated with mask a converges in the spaces
Ls,~(R) for all 0 < v < 2r and the standard refinable function ¢ associated with
mask @ must have exponential decay of order 2r in Lo (R).

3. Characterization of MRA biorthogonal wavelets and Riesz wavelets.
In this section, using Theorem 2.1, we shall study MRA biorthogonal wavelets and
Riesz wavelets with Holder continuous masks.

_Let us first recall the definition of biorthogonal wavelets in [6]. For two functions
P, € La(R), we say that (i,1)) generates a pair of biorthogonal wavelet bases in
Ly(R) if each of ¢ and 1) generates a Riesz wavelet basis in Ly(R) and the following
biorthogonality relation holds:

(3.1) (W) s i ar) = / V(@) w(x)de = 8;_jdp_yy Vi kK €L,
R

where ;) = 2j/2w(2j - —k) and 6 denotes the Dirac sequence such that 69 = 1
and 6 = 0 for all Kk # 0. Compactly supported biorthogonal wavelets have been
investigated in [4, 6, 7, 12] and other papers.

As an application of Theorem 2.1, we have the following result on biorthogonal
wavelets with Holder continuous masks.

THEOREM 3.1. Let a,a € CP(T) with a(0) = a(0) = 1 and 8 > 0. Define two

refinable functions ngS and ¢~> associated with masks a and a by
(3.2) 56 :=[Ja7¢) ad o) =[[ae 7, ¢cek.
j=1 j=1

Then the follow}'ng are equivalent: X
(i) [Ezg,gzg], [6,0] € Loo(T) and [, d] = 1; or equivalently, the shifts of both ¢ and

¢ are stable in Ly(R) and the biorthogonality relation holds:

63 (0dt—h) = [ @i —Rdi=5  VEel
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(i) va(a) > 0, va(a) > 0, and a is a dual mask of G, where we say that a is a
dual mask of a if

(3.4) a(&)a(€) +a(§ +ma(€ +m) = 1.

Let 13,13 € CP(T) such that b(0) = b(0) = 0. Define two wavelet functions ¢ and v by

(3.5) D(E) = BE/2)(E/2) and (€)== b(E/2)p(E/2).
If ua(a) > 0, va(a) > 0, and
= = T
a(§) a€+m| ja@) al+m)| 1 0
. Ls@ e+ i) e sm) o 1)

then (1, v) generates a pair of biorthogonal wavelet bases in Lg(R)

 Proof. Suppose that (i) holds. By 1 = |[d, ] < [$, ][, 6], we have [$,¢] >
||[g$,g5]||£1 () and [0, 9] > ||[¢AS7QAS]H21 (r)- Therefore, the shifts of ¢ and ¢ are stable
in Ly(R). By Corollary 2.2, we have v5(d) > 0 and vo(a) > 0. Now by [0, qﬂ =1, it

follows directly from the refinement equations ¢(2¢) = a(€)(€) and (;5(25 )= a(é )qz~5(§ )
that

(6, 31(26) = a(©)a(€) (6, $1(€) + (€ + ma(€ + m)[e, BI(E + )
= a()a(€) + al€ + m)a(¢ + ).

So, @ is a dual mask of a. Therefore, (1)=(ii).
To prove (ii)=(i), since v3(a) > 0 and vo(a) > 0, by Theorem 2.1, we see that (i) of
Theorem 2.1 holds for both & and a. Moreover, by (2.3), we have [¢, ¢], [, ¢] € Loo(T).
Take f := X[—nx], the characteristic function of the interval [—m,7]. By (i) of
Theorem 2.1, we have a(r) = a(r) = 0. Since a,a € C?(T) and a(0) = a(0) = 1, it is
easy to directly verify that f is an admissible function in Lg o 0(R) with respect to
both G and a. Define

Fnl€) = ﬁ and fn( = ﬁfz - neN.

Then by (i) of Theorem 2.1, both {f,}2%, and {f,}> 1 are Cauchy sequences in

L3 o,0(R). Note that lim,_, fn(f) = $(&) and limy, o0 fr(€) = (;S(f) So, we must
have

nh_)H;Oan_QSHLz,oo,o(R) :nh_{goufn _¢||L2m0 =0.

Since [f, f] = 1 and the discrete biorthogonality relation in (3.4) holds, it is easy
to show by induction that [ﬁ, fn] =1 for all n € N. Consequently, we must have

[, (;:5] = 1. Therefore, (ii)=(i).
If vy(@) > 0, va(a) > 0, and (3.6) holds, then all the conditions in (ii) hold. So,

&, (Z] = 1. Now it follows from (3.6) that [¢, ¢] =0, [, (b] =0, and [¢), w] =1. Bya
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standard argument on MRA [4, 6], we deduce that (3.1) holds. Since ¢(0) = 5(0) =1

and both ¢ and ¢ are continuous, by the standard argument on MRA, we see that
both {¢, x : j,k € Z} and {¢; : j, k € Z} are dense in Ly(R). To show that both ¢
and 15 generate Riesz wavelet bases in La(R), we need to show that ¢ and QZJ satisfy
(1.11). By the biorthogonality relation in (3.1), it suffices to show that the right-hand
inequality in (1.11) holds for both t and v [4], which is equivalent to showing that
there exists a positive constant C' such that

(37) D D R+ (8PS CIFIP ¥ f € La(R).
JEL keZ
Since v5(a) > 0 and ug( ) > 0, by Theorem 2.1, we have [, ¢, [q’) ¢] Loo(T)

for 0 < v < min(v2(a),v2(a)). Using Fourier transform and the Parseval’s identity,

by P(€) = b(€/2)$(€/2), we have

o Y =2 [ @, )P de

keZ

<o [P, d©P de

—Tr

<2t [ ORI, JE ] 16 (6 ds

—T

<N Bl 2 / B PLF@ ), F@ )] (€) de

—T

o b(2=i-1€)2 .
16 hleco [ p g FOF de

Note that b(0) = Z(O) =0 and l;,g € CP(T) with 3 > 0. Consequently, we see that
(3.7) holds with

. b(27)|*
=168l | X 7y
JEZ Loo (R)

- b(27 )2
Gl |2 T <
JEZ Loo(R)

Therefore, (v, 15) generates a pair of biorthogonal wavelet bases in Lo (R). d

As an application of Theorems 2.1 and 3.1, we characterize MRA Riesz wavelet
bases in L(R) in the following result, which improves and generalizes [14, Theorem 6]
and [16, Theorem 1.1] by taking a different approach.

THEOREM 3.2. Let a,b € CP(T) with a(0) = 1 and 3 > 0. Define ¢ and 1 by

(3.8) o(€) :=Hd(2‘j£) and (&) ==b(£/2)d(¢/2),  EE€R.
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Then the shifts of ¢ are stable in La(R) and ¢ generates a Riesz wavelet basis in
Lo(R) if and only if

(1) 5(0) = 0 and d(€) := a(€)b(& + ) — (¢ + m)(E) # 0 for all & € R,

(ii) va(a) > 0 and vo(a) > 0, where a(€) := b(& + ) /d(€).

In the case that a is a 2w-periodic trigonometric polynomial, then the shifts of ¢ €
Ly(R) must be stable in La(R) if ¢ generates a Riesz wavelet basis in La(R).

Proof. Suppose that (i) and (ii) hold. Define b(¢) := —a(é + )/d(€). Since
a,b e CP(T) and d(£) # 0 for all £ € R, it is evident that a,b € C?(T). By vy(a) > 0
and Theorem 2.1, a(r) = 0. Since a(0) = 1 and b(0) = 0, we must have a(0) =1
and a(m) = 0. Moreover, it is easy to check that (3.6) holds. Define ¢ and ¢ as
n (3.2) and (3.5). Now it follows from Theorem 3.1 that (¢,1)) generates a pair of
biorthogonal wavelet bases in Ly(R). In particular, we conclude that i) generates a
Riesz wavelet basis in La(R).

Conversely, suppose that the shifts of ¢ are stable in Lo (R) and 1) generates a Riesz
wavelet basis in Lo(IR). Since the shifts of ¢ are stable in Lo (R), by Corollary 2.2, we
have v5(a) > 0 and a(7r) = 0. Since 1) is continuous and ¢ generates a Riesz wavelet
basis in Ly(R), we must have ¢)(0) = 0, and therefore b(0) = 0 by $(0) = 1. So,

a(0) = b(w)/d(0) = 1. By [14, Lemma 1], we see that (i) must hold and there exists a

) =
function ¢ € Ly(R) such that the shifts of ¢ are stable in Ly(R ) and ¢(2§) = a(f)(b(f)
Since @ € C?(T) and a(0) = 1, by Corollary 2.2, we have v5(a) > 0. Therefore, both
(i) and (ii) hold.

Suppose that a is a 2w-periodic trigonometric polynomial and the shifts of ¢ €
L2(R) are not stable in Ly(R). Since ¢ is compactly supported, by [19, Theorem 5.3],
there exists a compactly supported refinable function n € Ly(R) with stable shifts
in Ly(R ) such that 7(2¢) = é(&)7(€) for some 2m-periodic trigonometric polynomial
¢, and ¢(§) = 0(&)7H(&) for some 27m-periodic trigonometric polynomial §. Note that
16,01(6) = [06) P2, 7)(€) and a(€) = O(2E)(€)/6(¢). Since the shifts of the com-
pactly supported function ¢ are not stable in Ly (R), there is £y € R\[27Z] such that
0(&) = 0.

Since ¥(2¢) = b(€)B(€) = b(€)O(£)A(€) and the shifts of 7 are stable in Ly(R), if
1) generates a Riesz wavelet basis in Lo(R), by what has been proved, then we must
have

0 # d(€) := e()b(E + m)O(E + ) — &€ + m)b(E)0(E) = w
(8:9) (26)

VEeR

d(&)

and v5(&) > 0, v2(a) > 0, where a(€) := b(& + m)0(€ + m)/d(€).

By (3.9), we conclude that if £ € R is a zero of #, then 2¢ must also be a zero of
6. Since (&) = 0, we now see that §(27¢y) = 0 for all j € NU {0}. By the definition
of d(¢) in (3.9), for all j € NU {0}, we have

d(27€0) 1= &(27€0)b(27€0 + m)0(27 & + ) — &(20€0 + m)b(27€0)0(27&0)

= &(2760)b(27€ + m)0(27 &0 + 7).
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Now by the definition of a, we deduce that

b(2ig +mM0(26+m) 1
e(2160)b(20€0 + m)0(20€0 + 1) E(20)

a(2&) = v j e NU {0},

from which we see that

o 1
310 q 2‘7 S —— V N
(3.10) jl;[o a(2?¢o) H;‘L:O Te) ne

Since the shifts of n are stable, there exists kg € Z such that /(& + 27kg) # 0. Since
€0 & 2n7Z, we have & + 2mko # 0, and therefore lim,, . 7(2"(&o + 27ko)) = 0 by
n € L1(R) N Ly(R). Now by (3.10), we have

1 1

o c@0)| | IT5=o &2/ (6o + 2mho))

[T a2¢)
=0

_ G +2rk)l
(271 (€0 + 27ko))|

as n — oo, which is a contradiction to [14, Lemma 1] (also see (5.19)), since a € C%(T).
Therefore, the shifts of ¢ € Lo(R) must be stable in Ly (R). O

To illustrate the results in this section, we consider MRA Riesz wavelet bases in
L2(R) using the masks in (1.12). The following result generalizes [17, Theorem 2.2)
for the case of B-splines.

THEOREM 3.3. Let a = ag, 5, 3, 0r @ = |ap, g, 5|, where the masks ag, g, 5, are
defined in (1.12). Let ¢ denote the standard refinable function associated with mask
a in (1.2) and define a wavelet function 1 by

(3.11) $(26) == e al€ +m)p(6), E€R

Then the shifts of ¢ are stable in Lo(R) and the wavelet function i generates a Riesz
wavelet basis in Ly(R), provided that (1, B2, 03 > 0 satisfy

(3.12) B1 > 1/44(B2—1|B5/2, (B2—1)B3 > —1/2 or p1>1, (B2—1)B3 < —1/2.

Proof. Let b(€) := e~ %a(€ + m). Then 1(26) = b(€)¢(€). Clearly, a,b € C%(T)
for some > 0 and b(0) = 0. By calculation, we have

|cos(§/2)[* + [sin(/2)[*"
(Icos(e/2)[22 + |sin(g/2)[202) >

d(&) = e (|a(©)? + |a(€ + m)[?) = e~ ET

So, d(€) # 0 for all £ € R, and (i) of Theorem 3.2 holds.
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By calculation, we have

a(&)] = [b(& +m)/d(€)] = 2721 + e~ PPre(g),
where

(| cos(&/2)[2%2 + |Sin(§/2)‘2ﬁ2)ﬁ3

A= eos(e2) + sim(/2)

Now it follows from the inequalities in (2.4) that

max(1,2(152)8s)
min(1,21-261)

0< 6(5) < €3y ,Bo,B3 = vVEeR.

If (3.12) holds, then (2.5) must be true, and therefore, by Example 2.4, we have
v2(a) > 0. By Theorem 4.1 and Lemma 4.3, if (3.12) holds, then we have

2 2 ~26)

p(@) = pag, (@,00) = po(2771¢,00) < po(2 ) = 2!

2
CpB1,B2,83) X |0317ﬁ2,63‘ <1,

since the last inequality combined with (2.5) is equivalent to (3.12). Now by The-
orem 3.2, the shifts of ¢ are stable in Lo(R), and the function ¢ generates a Riesz
wavelet basis in Ly (R). |

For the fractional splines in [27], we have 82 = 1, and the condition in (3.12)
becomes B; > 1/4. As discussed in Example 2.4, the standard refinable function
associated with mask @ and f2 = 1 does not belong to Lo(R) for 0 < 87 < 1/4. So,
Theorem 3.3 is sharp for all the fractional splines in [27].

For the classical Butterworth filters, we have 03 = 1 and 81 = (2 € N. Now
the condition in (3.12) becomes ;1 > 1/2. Therefore, Theorem 3.3 holds for all the
classical Butterworth filters in [25].

4. Some properties and estimate of the quantity v2(&). In this section,
we shall investigate some properties of the quantity v2(a) in (1.7) and discuss how
to estimate the quantity vo(a). Some results in this section will be needed in our
study of refinable functions, cascade algorithms, and wavelets with Holder continuous
masks. The results in this section for the general case of Lebesgue measurable masks
are also of interest in their own right and may be useful elsewhere.

The following result generalizes a well-known result for a univariate 2m-periodic
trigonometric polynomial @ and a positive integer 7 in the wavelet literature. The
proof of the following result for the general case of Holder continuous masks is non-
trivial and will be presented in section 7.

THEOREM 4.1. Let a be a 2r-periodic measurable function such that |a|> € CP(T)
with |a(0)2 £ 0 and 8> 0. If |a(&)|? = |1+ e %27 |A(€)|? a.e. € € R for some T >0
such that A € Loo(T), then
1/n
7 sin(-/2)) |

[sin(-/2) 7

p2r(d7 OO) oo

(4.1) Loo(T)

. n 1/n . 1/n
Jim (T3 ) = inf T3 -

As in (1.7), we define a similar quantity as follows:
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(42) V2(£‘7p) = —[10g2 p(d,p)]/Q, 1< P < 00,
where the quantity p(a,p), using p.(a,p) in (1.6), is defined to be

(4.3) pla,p) := inf{p,(a,p) : |a(-+7)[*/|sin(-/2)|” € Loo(T) and 7 > 0}.

Clearly, v2(a) = v2(a,00) and p(a) = p(a,o00). For a 2r-periodic trigonometric
polynomial a, we can write a(§) = (1 + e"f)TA(Af) for some nonnegative integer 7
and some 27-periodic trigonometric polynomial A with A(w) # 0. Write |A(¢)? =
ZkK:iK cre” "¢ Tt is known [7, 13, 15] that v2(a,p) = v2(a) = —1/2—log, \/p, where
p is the spectral radius of the square matrix (coj—k)—K<jk<K-

In the following, we shall investigate the mutual relations among the quantities
va (G, p).

PROPOSITION 4.2. The following statements hold:

(1) For0< 71 <1, |sin(-/2)|” € C™(T) and |cos(-/2)|” € C™(T).

(2) For a 2mw-periodic measurable function ¢ and 0 < 11 < 7o,

(4 4) Pz (d,p) < pny (&7p) < pn (&7 Q) and V2<&v q) < VQ(a7p)

V1<p<qg<oo.
(3) If a € CP(T) with a(0) = 1 and B > 0, then the condition
(4.5) lim inf || 73" (| sin(-/2)|" ), r) =0  for some T >0

implies a(m) = 0. In particular, (4.5) holds if va(a,p) > 0 for some 1 < p <
00.

Proof. Tt is easy to prove that 1 —2” < (1—z)" forall0 <7< land 0 <z < 1.
Consequently, we have

[[sin(z/2)|" — [sin(y/2)]] < |sin(z/2) - sin(y/2)|” < |z — y|".

So, |sin(-/2)|” € C™(T), and it follows that |cos(-/2)|” € C"(T). So, (1) holds.
Since 0 < 71 < 7o, it is evident that |sin(£/2)|™ < |sin(£/2)|™ for all £ € R.
Therefore,

T3 (Jsin(-/2)|™) < T (Isin(-/2)[™) -

Now the claim in (4.4) follows directly from the above inequality and the fact that
Nz, <l llz,cm for all 1 < p < g < oo. So, (2) holds.

To prove (3), we denote ®(€) := [[;2; |a(277€)[?. Since a € CP(T) with a(0) =

and § > 0, ® is well defined and is continuous with ®(0) = 1. Suppose that

1
a(m) # 0. Then there exist 0 < ¢ < 7/2 and a positive constant C' such that
la(€ + m)|?|sin(é/2 + m/2)|” = C and C < ®(¢) < 1/C for all £ € (—2¢,2¢). By the
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definition of Ty, we deduce that

2 2m
/0 (T3 (Isin(-/2)[T)](€) d§:2”/ [sin(€/2)|a(§)*la(2)” - a(2"~1¢)|* de

0

T+E
220 [ fsin(e/D (O Pla(ze) a2 de

—€

T+e
>2"C a(28)?- - - |a(2"E)| d¢

m™—E

—2e
3 2e (I)(Qn_lf)
n—1
2 ¢ —2e Q)(g) dg

Hence,
lim inf || 72"(| sin(-/2)|")|| 2, (m) = (zw)—102/ (&) d¢ > 0,
n—oo R

since ® > 0 is continuous and ®(0) = 1. This is a contradiction to our assumption in
(4.5). So, we must have a(r) = 0. If vo(a,p) > 0, then v2(a,1) > va(a,p) > 0, and
therefore (4.5) holds. ad

The following result will be needed later in this section.

LEMMA 4.3. Let a and ¢ be 2m-periodic measurable functions such that |a(§)| <
|¢(&)| for almost every & € R. Then

(4.6) pr(a,p) < pr(é,p) and wve(é,p) < vala,p) V1i<p<oo,7eR.
Proof. To prove (4.6), since |a(&)|? < |é(£)]?, it is obvious that
0 < [T (Isin(-/2)[7)](€) < [T (Isin(-/2)[)](€)  ae E€R.
Therefore, || T2 (|sin(-/2)[")llz, () < T2 (|sin(-/2)|")|lz, Ty, which implies the first
part of (4.6).
If |é(- 4+ 7)|?/| sin(-/2)|” € Loo(T) for some 7, then we also have
ja(-+m)*/|sin(-/2)|” € Loo(T)

since |a(€)] < |é(&)]. Now by the definition of vo(a,p) in (4.2) and the first part of
(4.6), it is easy to see that v2(é,p) < v2(a,p). O

For a particular family of masks, the following result reveals the mutual relations
among the quantities v5(a, p) for different 1 < p < 0.
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LemMMA 4.4. Let a be a 2m-periodic measurable function such that |a(§)| = |1 +
e:l§|T|A(§)| for some T > 0 and some 27m-periodic trigonometric polynomial A with
A(0) #0. Then

~ . n . (1 1/n 2 . n4nl/n
( ) pQT(a7p) = nh—>ngo HTd (l Sln('/2)|2 )HLP(T) = pO(Av OO) = Helg ||TA1HL/OO(']I‘)
4.7 "

Vi<p< oo
In particular, va(a,p) = e(a) = VQ(A) for all 1 < p < oo. That is, ve(a,p) is
independent of p.

Proof. Let N be an integer such that N > 7. Define ¢(§) := (1 +e )N A(¢). By
calculation, it follows from |a(£)|? = 227| cos(£/2)[27|A(€)|? that

[Ta(F()sin(-/2)*7)] (&) = |a(€/2)?| sin(€/4) 7 f(£/2)
+la(€/2 +m) | sin(€/4 + 7/2)|*7 f(€/2 + )
= | sin(¢/2)PT[A(/2)P (£/2) + |A€/2 + m)PF(€/2 + 7))
= |sin(€/2)*7[T4 £1(6).

That is, when |a(€)|? = 227|cos(£/2)[27|A(€)|?, for any 27-periodic function f, by
induction, we have

(4.8) (T3 (f()sin(-/2)]P)] (€) = |sin(¢/2)*T[T; f1(€),  neN.
Setting f =1 in (4.8), we have
(4.9) (73 (| sin(-/2)*7)](€) = | sin(€/2)[T[T31)(€) < [T31)(8).

Note that 2N — 27 > 0. Similarly, by |¢(¢)|? = 22V 27| cos(£/2) N ~27|a(€)|?, setting
f(€) = |sin(£/2)]?" and replacing 7 by N — 7 in (4.8), we have

(72 (| sin(-/2)PM)](€) = [sin(&/2)*N7*7[T7 (| sin(-/2)]*)](€)
< T3 (| sin(-/2)[PT)] ()

Thus, it follows from (4.9) and (4.10) that

(4.10)

T2 (s10*Y (- /2) |, 0m) < NTE(sin(-/2) P, emy) < 1T, cmy

< I3 ooy

(4.11)

Since both |¢|?> and sin?" (-/2) are 2m-periodic trigonometric polynomials, by induc-
tion, it is known [4, 7, 15] that {77 (sin*"V(-/2))}%, spans a finite dimensional space
and in fact the degrees of all trigonometric polynomials 77 (sin*"(-/2)) are uniformly
bounded. Therefore, there exists a positive constant C, independent of all n, such
that

OIT2 (sin® (-/2) | oo ry < ITE (si0*Y(-/2) |,y V1I<p<ooneN
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Hence, we conclude from the above inequality and (4.11) that for 1 < p < o0

CY T (sin®N (/21" gy < N7 (sin-/2)PN ey < ITEU"
(4.12)
Vn e N.

Since é(€) = (14 e )N A(€) and A(0) # 0, by Theorem 4.1, we have

~ . mny . 1/n . 1/n 1/n
pan(@,00) = lim T2 (sin®N (/27 ) = i T2 " p) = inf T2 " .

Now (4.7) follows directly from (4.12).

Since A is a 27-periodic trigonometric polynomial, we can write A(€) = (1 +
e % )kB(g) for some nonnegative integer k and some 27-periodic trigonometric poly-
nomial B such that B(w) # 0. So, |a(£)| = |1+ e %[¥+7|B(€)|. Now by the definition
of v5(a,p) and Theorem 4.1, it follows from (4.7) that

vo(a,p) := —[logy partar (@, p)]/2 = —[logy po(B,0)]/2

—[logy pa(4, 00)]/2 = va(A).

Therefore, v5(a,p) = v2(A) for all 1 < p < co. o R
In the following, we shall discuss how to approximate the quantity po(A, c0).

PROPOSITION 4.5. LetA,AAj € Loo(T), j € N such that lim; o ||;1;—A||LM(T) =
0. Then

(4.13) limsuppo(;l;, 00) < po(4, o).

j—o0
If in addition |A(€)| < \;1;(5)| for almost every £ € R and for all j € N, then

(4.14) ]lgn pO(Aj, 00) = po(A, o).

Proof. By Proposition 7.1, po(A,00) = infhen ||T"1||L (r)- Therefore, for any
e > 0, there exists a positive integer N such that ||TN1||1/N ) < po(A,00) + ¢. Now
by lim;_, ||AJ AHLOC(T = 0, there exists a positive integer J such that

HTAl”L (T) <PO(A,OO)—|-€ VizJ
Consequently, by Proposition 7.1, we deduce that

e . n 1/n N .
po(Aj,00) = rILIelfI;I”TAZIHL T S ”T 1||L T < pO(A ) te¢ Vijzd

Hence, we have lim SUD; 00 po(;l\ 00) < po(A,00) 4 . Taking ¢ — 0, we conclude
that (4.13) holds. If |A| < |4;], then by Lemma 4.3, po(A,0) < po(A;,00) for all

j € N. Therefore, po(A,00) < liminf; . pO(A 00). Now it follows from (4.13) that
(4.14) holds. d
As a consequence of Proposition 4.5, we have the following corollary.
COROLLARY 4.6. Let A € CP(T) with A(0) # 0, A(w) # 0, and § > 0. Suppose
that there is a sequence {A;}jeN in CP(T) such that lim;_ HA A||L ) =0, and
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JA(8)] < |:4;(§)| for all £ € R and j € N. For 7 > 0 and a 2w-periodic trigono-
metric polynomial &é with ¢0) # 0, let a(€) == (1 + e )7&(€)A(€) and a@j(€) =
(1 +e‘i5)76(§)1/4;(§). Then lim;_, oo v2(@;) = v2(a) and vo(a;) < v2(a) for all j € N.

Proof. Write ¢(€) = (1+e~%)*B(€) for some nonnegative integer k and some 27-
periodic trigonometric polynomial B with B(r) # 0. Since A(7) # 0 and lim;_ o ||;l;—
AHLOO(T) =0, by 1/4; € OA(T), we have A;(ﬂ') # 0 for sufficiently large j. Now by
Theorem 4.1 and Proposition 4.5, we have

p(@,00) = pak-2r(d,00) = po(AB, 00) = lim po(A; B, )

J—00

= ]li)nolo p2k+2‘r(a/\j7 OO) = hm p(a‘/.\% OO)

J—0o0

It follows from the definition of v5(a) that vo(a) = lim;_o v2(a;). Now by |a(§)| <
|@; (€)], it follows from Lemma 4.3 that v2(@;) < v2(a). d

PROPOSITION 4.7. Let G and a;, j € N, be 2m-periodic measurable functions such
that

(1.15) Jim @/l = T 8/l = 1
where by convention (a;/a)(€) is equal to a;(§)/a(€) if a(€) #0, 1 if a(€) = a;(§) =0,
or +oo if a(€) =0 but a;(§) #0. Then
j—oo
Moreover, if vo(aj;,p) = va(a;) for all j € N, then v(a,p) = va(a ) In partzcular if a
mask a has exponentml decay, then vo(a,p) = vo(a) for all 1 < p <
Proof. Denote é; = @;/a. By convention and (4.15), 0 < |&;(§ )| < oo for almost

every £ € R, and it is easy to check that a;(§) = ¢;(§)a(§) and a(§) = a;(§)/¢;(§) for
almost every ¢ € R. For 7 > 0, we now have

11/ G172 o (T3 ([ sin(-/2)[M)(E) < [T (| sin(-/2)|7)](€)
< NG ey (T3 (| sin(-/2)7)] ©)-
Consequently, we have
11/ T2 sin-/2) )12 %) < T2 (1 sin(-/2) )12

~ n . i 1l/n
< NG o 173 (I sin(-/2)| )IILC,(T)-
Hence, we deduce that
417) 11/G1172 (zyp-(@,p) < pr(@3,p) < |G 17mypr(@p)  VjieEN1<p< oo

By our assumption in (4.15), we have lim; . |1/ 2 (1) = imj—oo IG5l 2o (1) = 1.
Now by the definition of v»(a) and (4.17), we must have lim;_,o v2(aj,p) = v2(a,p)
forall 1 < p < oo.
If vo(aj,p) = v2(aj), then va(a, p) = limj o0 12(a;,p) = limj_ o v2(a;) = v2(a).
If & has exponential decay, then we can write a(&) = &(€)A(€), where ¢ is a 27-
periodic trigonometric polynomial and A has exponential decay satisfying /1(5) #0
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for all £ € R. Now it is easy to see that there is a sequence {ﬁ:}?’;l of 2w-periodic
trigonometric polynomials such that lim;_ |‘;1;/A||Lx('ﬂ‘) =lim;_ o HA/EHL
1. Taking @; (&) := 6(5)21;(5), then (4.15) holds, and by Lemma 4.4, v»(a;, p) = VQ(
for all 1 < p € oo and j € N. By what has been proved, we have vs(a,p)
lim; o0 va(a@;, p) = limj o0 12(a;) = va(a). O

In passing, we mention that the quantity defined in [14, equation (2.16)] cor-
responds to v2(a,1) in (4.2) of this paper. For a mask with exponential decay, by
Proposition 4.7, the quantity v5(a) in [14, equation (2.16)] agrees with the one in
this paper. However, it is not clear whether v5(a,p) = vo(a) for all 1 < p < oo if
a € CP(T) for some 3 > 0.

IIV ||

5. Proof of Theorem 2.1. Since a(0) = 1 and a € C%(T) with 3 > 0, we see
that ¢ in (1.2) is well defined and ¢ is continuous. If {f, }°° , is a Cauchy sequence in
L3 o 0(R) and lim, o f(?’"f) =1 for almost every £ € R, by q@(f) = lim,, ﬁ({)
for almost every & € R, then we must have ¢ € Lg oo 0(R) and lim, oo || frn —
Olla . o() = 0.

We shall prove in the order that (i)=-(ii)=(iii)=(iv) =(v)=-(ii) and (iii)=(i).
Note that a € C?(T) implies & € C™1LA)(T). So, without loss of generality, we
replace 8 by min(1,3). That is, we assume 0 < 8 < 1, and the following proof
depends only on the fact that @ € C*(T) for a small number o > 0.

We show (i)=-(ii) by constructing an admissible function 1 in L + o(R) such that
the shifts of n are stable in Ly(R) and 7 is compactly supported; such an admissible
initial function n will be used in several places in this proof. Since (,Z; is a continuous
function with $(0) = 1, there exists 0 < & < 7 such that 1/2 < |$(€)| < 3/2 for all
|¢] < e. Define a function 7 by

<

©) if |¢] < e,
d(—e)(3m +26)/(3m — 2¢) if —37w/2 <€ < —¢,
é(g)(?ﬂ —28)/(3m — 2¢) if e < €< 3m/2,

0

otherwise.

(5.1) (&) =

Note that 7(¢) — a(£/2)7(€/2) = 0 for all [¢] < e. By the assumption a(7) = 0 in (i)
and @ € C8(T), we see that |a(- + 7)|?/| sin(- /2)\25 € Loo(T). Since 7 is supported
inside [—37/2,37/2], now we can easily verify that 7 is an admissible function in
L3 «,0(R) with respect to &, since the condition in (2.1) holds with 7 = 28 > 0. By
the definition of 7, we have 1/32 < [1), 7] < 9/2. Therefore, the shifts of i are stable
in Lo(R). Taking f = n, it follows directly from (i) that (ii) holds.

Now we prove (ii)=-(iii) without the condition that the initial function f is ad-
missible. By the definition of f,, in (2.2) and induction, we deduce that

2" -1 n

(5.2) [ Fal(© = Y T 1277 (¢ + 20k)P[f, F127" (€ + 27k)) = (T21F,

k=0 j=1

).

Since the shifts of f are stable in Ly(R) and {f,}72, is a Cauchy sequence in
L3 ,0(R), there exists a positive constant C; such that

1fnllZ, . o) = Ifns falllwemy < Ch
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for all n € N and 1/Cy < [f, f](€) < C4 for almost every £ € R. Now it follows from
(5.2) that

0 < [T21](€) < CLTECTY)(E) < CUTLLE, F)(E) = Chlfn, fa)(€) < C2.
That is, we have
(5.3) 1721 my <C7 VneNuU{0}.

Since @ € CA(T), we have |a|?> € CP(T), and there exists a positive constant Cy such
that

(5.4) llaf* = la(- = B[,z < Coh® Y h>0.

Now we are going to extend an interesting idea in [23] to show that T7'g, n € N, are
equicontinuous if g € C™(T) for some 7 > 0. For g € Lo(T), we denote

(5.5) wn (& h) = [T79)(€) — [T3'gl( —h)[,  §€R,h>0,neNU{0}.
Setting
Cs3 := max(C?,2'PCtCy /(1 — 27P)) < 0,
we show that (5.3) and (5.4) imply that
1A~ wnin (Bl Lo (my < Cs (2‘"5||(2‘"h)‘5wk(~72‘”h)l\Lm<ﬂr> + HTafgIILDO(T))
(5.6) Vh>0, ksne NU{0},g € Loo(T).
By the definition of Tj, we have
(T3 9)(§)—[T5'g)(€ — h)
=la(¢/2)* (T3 9l(€/2) — [T 9l (€/2 — h/2))
+la(g/2+m) (T3 g)(€/2 +m) — [T g)(¢/2 + 7 — h/2))
+(la€/2))” —la(¢/2 — h/2)1?) (T3~ 91(6/2 — h/2)
+(la¢/2+m)1* = |a(€/2 +m — h/2)]°) [T}~ g)(€/2 + 7 — h/2).
It follows from (5.4) that
wa(€h) < |a(€/2)Pwn-1(£/2,1/2) +a(€/2 + ) Pwn-1(£/2 + 7, h/2)
+20:(h/2)° | T3 gl poc )
= [Tawn—1(-,h/2))(€) + 2P Coh” I T3 gl L (.-

Consequently, by induction on n, we deduce from the above inequality that for all
k,n € NU{0},

Wn+k (57 h) < [Tgbwk('7 2_nh)](£)

(5.7) n B .
+ 205h° ZTJBHTSHC Y9l T2 11||Lo<,(1r)-

Jj=1
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In fact, (5.7) clearly holds for n = 0 and all k € NU{0}. Suppose that (5.7) holds for
n and all k € NU{0}. Then by induction hypothesis we have

Wn+1+k (67 h) < [Tf?warl(W 2_nh)](5)

+205h7 Y 2T gl |1 T -
j=1

Note that we proved in the inequality above (5.7) that
wWi1(6,27"h) < [Tawn (27" R)](€) + 27 Co (27" 0)P || T g e )-
Applying the operator T} on both sides of the above inequality, we deduce that
Twi1 (§,27"h) < [T (27 7" 0))(€) + 2P Co (27" 1) |1 T g e () [ T3 1](6)-

Combining all the above inequalities together, we see that (5.7) holds for n + 1 and
all k € NU{0}. So, by induction, (5.7) holds for all k,n € NU {0}.
By (5.3), we have

n+k—j n—j
T2l Loy < N3 UL 1759l Loy < CEITE Gl 1o ()

and
|1 T5wr (5 27" W)l Loy < NT3 U Loy lwre (5 27" W) |2 ) < CF llwne (-, 27" R) | Lo (-
Therefore, we deduce from (5.7) that
on sk (s D) | Loy < CFllwk (27" B) | o () + 2CFCohP | TR gl oy Y 2777
j=1
< Cs (Jwp (27" W) po (ry + RO T2 gl po (1)) -

That is, (5.6) has been proved. In particular, for any 7 > 0, we take g(§) = |sin(£/2)|"
and v := min(f8,7) > 0. By Proposition 4.2, ¢ € C¥(T). It is evident that
17290 ory = llglleocry = 1. By g € C”(T), there exists a positive constant Cy
such that

(5.8) (27"h) " "wo(§,27"h) = (27"h) 7 "[g() — g(€ —27"h)| < Ci.

Since 0 < v < 3, we see that (5.4) holds with 3 being replaced by v (now the constant
C5 in (5.4) may be different). That is, for all k,n € NU{0} and h > 0, (5.6) becomes

([ o O] e
(5.9)
< (2717 (27 ) iy + TGy

Setting £ = 0 in (5.9), we deduce that
(5.10) A wn (- h)|lpo(m) < C3(27™Cy+1) < C3(Cy+1) < o0 V' h>0,n€N.
By the definition of w, (&, k) in (5.5), this is equivalent to saying that

[T3'91(61) — [T 91(62)] < C3(Ca+ 1|61 —&"  VneNG &L eR



REFINABLE FUNCTIONS AND CASCADE ALGORITHMS 91

Note that a is continuous and [|T2'g|lr_ (1) < || T2 IHLOO(T)HQHLM < C%. So, the
sequence {T7'g}22; is bounded and equicontinuous in C(T). By the Arzela—Ascoli
theorem, there is a subsequence {7, g}?°; converging to go € C(T) as k — oo; that
is,

(511) Jimn |72 ~ goclom) = 0.

Since all T} g > 0, we must have go, > 0. Now we show that if (ii) holds, then we
must have g, = 0. Define

9u(€) = g(27E)[Fa (€)1 = [sin(2 ™ 7"€)[7|fu ()2
= [sin(2717")|"|f(27"€) \2H|a

By induction, we observe that [g,, gn] = T2*([f, f]g) for all n € N. Since [f, f] > 1/C1,
we conclude that

[7391(€) < TR ([f, fla)(€) = Cilgn, 9u)(6)-

Therefore,

27 27 P
(5.12) / T2g)(€) dé < Cy / (9. 90)(€) d€ = C / (26 [T (6 de.

By g(§) = Isin(§/2)[" and 7 > 0, we have lim, .o g(27"¢) = ¢(0) = 0. Since
a € CP(T) with a(0) = 1, we have lim,, .o, [Tj_; |a(277€)|* = |6(€)2. Observing that

<9279 fal€)] = g(27mO)|f(27€) |2H|a

<IfIL,. o (R H a277¢)P?

we see that lim,_..c g(27"€)|F,(€)]2 = 0 for almost every ¢ € R.
Since {fn}ne, is a Cauchy sequence in L o o(R), the sequence {f,}52; must
also be a Cauchy sequence in La(R) by || fllz,®) < [|fl|Ls. o o(r)- Consequently,

27

Jim [P dg = lim [ (Fa, Fal(§) d€

exists and is finite. Now by 0 < g(2_”£)\ﬁ(§)|2 < |ﬁ(£)\2 and the generalized
Lebesgue dominated convergence theorem, we conclude that

hm/ ) [Jal©)|? de = /hmgz ") Fa€) 2 dé = /Odf—O

Hence, by (5.12), we get

27

(5.13) lim [TFg](§)dE = 0.

n—00
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Now it follows from (5.11) and (5.13) that

2m 27
| ast@de = tim [ g @ —o
0 =0 Jo
Since goo > 0, we must have go, = 0. That is, (5.11) becomes
(5.14) Tim ([T g1l = 0.
Setting k = ng in (5.9), by (5.10), we deduce that
1R wngn, (s ) o (my < C3(27™C3(Ca+ 1) + [T gl oo (1))

So, when n and k are large enough, by (5.14) and v > 0, setting N = n+ny, we must
have

h'wn(&h) <777 VYEER A>O.
In particular, setting £ = 0 or —h in the above inequality, we have
[T g)(h) = [T g)O)| < 7 [ VheR.

By (5.13) and Proposition 4.2, we see that a(r) = 0. Since g(0) = a(w) = 0, by
induction, one can verify that [T}'g](0) = 0 for all n € N. Therefore, it follows from
the above inequality that

(TN g](h) [T g)(h)

Tsin(h/2) S (m/2)" G <27V<1  Vhe|-ma\{0}.

In order to show that (ii)=-(iii), by Proposition 4.2, it suffices to show p,(a,o0) < 1
for sufficiently small 7 > 0. Since @ € C?(T) with 3 > 0, we must have |a(- +
m)|?/|sin(-/2)|?# € Loo(T). So, for any 0 < 7 < 3, by v = min(3,7), we have v = T,
and by Theorem 4.1, we must have

~ . 1/n 1/N —v
pr(@,00) = ;Lngl\[Tébgl/gllLL(T) <X gl/gll,_my <27V < L.

So, (iii) holds for all 0 < 7 < (3, and therefore (iii) holds for all 7 > 0. Hence,
(ii) = (i)

By (iii) and Proposition 4.2, we have a(m) = 0. So, it follows from a € C#(T)
that |a(-+m)|?/|sin(-/2)|?? € Loo(T). Now it is straightforward to see that (iii)=(iv),
since p(a) < p2p(a, 00) < 1.

By the definition of p(a), (iv) implies that p,(a, c0) <
Lo (T) for some 7 > 0. On the other hand, since a(0)
[T21)(0) > |a(0)]™ = 1, we must have po(a,oc0) > 1.
(iv)=(v).

Now we show that (v)=-(ii). By (v) and Proposition 4.2, a(w) = 0 and |a(- +
7)|2/|sin(-/2)|” € Loo(T). Let /) be defined in (5.1). Then n € Ly o o(R) and the
shifts of n are stable in Lo(R). Consequently, it is easy to directly verify that

(5.15) H = a(-/2)(-/2) = 0, a(-/2)7(-/2) = 4] /| sin(-/2)[" € Loo(T).

So, 1 is an admissible function in Lg o o(R) with respect to a such that the shifts of n
are stable in Lo(R). Taking f = n and defining f,, as in (2.2), we show that {f,}5%
is a Cauchy sequence in Lg o o(R).

1and |a(-+)|?/|sin(-/2)|" €
= 1 and a is continuous, by
Therefore, 7 > 0, and so
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Note that
(5:16)  |Fari(©) = Fa(®) = la2 ") f27 e = f ol [T lae o)l
Consequently, we have
Foet = Fus Fort = F)(8) = [T (/2 (/2) = f.a(/2 (/2 = ] () Ve,
By (5.15), we have
[a(-/2)f(-/2) = J.a(/2)f(-/2) = 1(§) = H(©)g(&)

and H € Lo (T), where g(&) :=|sin(§/2)|”. Hence, we have

(5.17) I fnsr—FulZ, @) = WlFfnsr—Fu Forr = Full Lery S HH | L) 1 T3 9l Lo cr)-

By our assumption in (v), we have p,(a,00) < 1, and therefore, for any p such that
pr(G,00) < p < 1, there exists a positive constant C' such that ||77 g1 () < Cp" for
all n € N. Now it follows from (5.17) that

(518) ||.fn+1 - f’ﬂHLz,oo 0 R) ||HH1/2 Cl/Qpn/Q Vne N7

which yields, by 0 < p < 1, that {f,}22, is a Cauchy sequence in Ly o o(R). So,
(v)=(ii).

Finally, we show that (ili)=(i). Let f be an admissible function in Lg o o(R)
with respect to @ such that (2.1) holds for some 7 > 0. By Proposition 4.2 and (iii),
we have a(r) = 0. Now by a@ € C?(T), we must have |a(-+7)|?/|sin(-/2)|?? € Loo(T).
Replacing 7 by min(r,23), we see that (2.1) still holds and |a(- + m)|?/|sin(-/2)|” €
L (T). By our assumption in (iii) and 7 > 0, we have p, (G, 00) < 1. Now by the same
proof for showing (v)=-(ii), we see that {f,}>2, is a Cauchy sequence in Ls o o(R).
Therefore, (iii)=-(i).

Now we prove the rest of Theorem 2.1. Since v3(a) > 0, we must have a(w) = 0,
and (5.3) holds. Consequently,

(5.19) H 279 < T2 m) SCF YneNEER.

Since @ € CA(T) and since we assumed 0 < 8 < 1, there exists a positive constant C
such that |a(¢;) — a(&)| < C|é; — &P for all &1, & € R. We deduce that

|6(&1) — d(&2)| = Z [H 27%¢,) 1 277¢) —a(2%)) | [ a ‘&)
i=1 Lk=1 e=j+1
Z 1:[ a2 )| x |a277&) —a V&) x| [ a2 %)
Pl putet e=jt1

< C120227jﬂ\51 — &P <6 - &lfcie/(1-277).

j=1
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So, ¢ € AP(R). Let / be defined in (5.1). Take f = n and define f, as in (2.2).
Since vo(a) > 0, {fn}22, is a Cauchy sequence in Lj o o(R). In particular, by
limp, oo f(€) = ¢(€), we have ¢ € Lo o o(R) and limy—co || fn — 8ll1, . o) = O.
By induction, we have [ﬁ,ﬁ] =T [f, f} Note that [ﬁ,ﬁ] is continuous. Now
define g := [f}, 7]. By the definition of 7 in (5.1) and ¢ € CP(R), it is easy to check
that g € C8(T). Consequently, taking k = 0 in (5.6), wee see that a similar result as
in (5.10) holds; that is, there exists a positive constant C5 such that

(5:20) b0 |Fon ol = (P Tl =), = h P lwna )l <5 Wh>0,

where w,, is defined in (5.5) and we used the fact [ﬁ,ﬁ] = T2[f,f] = Tg. Since
litty oo [fn = @l Lo, o®) = 0, we deduce that lim oo [[fu, fu] = [6,dlllcer) = 0.
Now it follows from (5.20) that ¢, ¢] — [¢, ¢](- — h)|lc(r) < Csh? for all h > 0. So,
[#,¢] € AX(T).

Now we prove (2.3). Since 0 < v < v5(a), by the definition of v5(d), there exists
7 > 0 such that p,(G,00) < 272 and |a(- + 7)[?/|sin(-/2)|” € Loo(T). Let /) be
defined in (5.1). Take f = n and define f,, as in (2.2). As in the proof of (v)=-(ii), we
see that (5.18) holds for p,(a,00) < p < 272", Denote g,, := fni1 — fn and

(9, 9]0 (€) := D lgn(€ + 20k) P(1 + [€ + 27k|?)", € € [-m,7].

kEZ

Since f =7 is supported inside [—37/2, —¢] U [e, 37 /2], it follows from (5.16) that g,
is supported inside [—3w2", —e2™] U [¢2", 372"]. Therefore, for £ € [—m, 7], it follows
from (5.18) that

(g gnlu(©) = D lgn(€+27k)P(1 + [€ + 2mk[*)”
|é4-2mk|<L3m2n

< (1+ (3722 |gn(€ + 2nk)|?

kEZ
= (1 + (37T2n)2)y||fn+1 - an%Q,oo,O(R) g 06(22Vp)n7
where Cg := 18"72"C||[h, h]| 1 () < oo. Since [gn,gn] is continuous, we conclude
that
(5.21) [Ins gnlu(§) < 06(22Vp)n VneN, ¢e|[—mmn].

Since v5(a) > 0, we have ¢ =1+ > o0 ((fat1 — fn) in Lo oo o(R) with fo := 7. Since
all qAS,?% and g,,n € N, are continuous and g, is supported inside [—372", —2"| U
2", 3w2"], we must have (&) = A(€) + 3207, g (€) for all € € R, where the series is
in fact a finite sum for any ¢ in any bounded set. Therefore, for all £ € [—27, 27| and
N > 3, we have

o0 1/2 -
< Z (14 € + 2mk|?)” |p(€ + 27rk:)2> < Z (g, gl /2 (€)
[kl=N+1 n=log,(N/3)

00
< Cé/2 Z (2up1/2)n < 05/2(N/3)10g2(2uP1/2)/(1 . 21/,01/2).
n=log, (N/3)
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Since 2¥p!/? < 1, we have log,(2”p'/?) < 0, and therefore limNﬁoo(N/S)logﬂzyplﬂ) =
0. Hence, the series Y n__ n (1 + |€ 4+ 27k|2)*|$(€ + 27k)|? is uniformly convergent as
N — oo for all € € [~27,27x]. Since ¢ is continuous, we conclude that [, ¢], € C(T).
That is, (2.3) holds. ad
For a mask @ € CP (T) with 8 > 0, a more complicated argument can be used to
show a stronger statement that ¢ € C?(R) and [¢, ¢] € CP(T), instead of the result
¢ € Amin(LB)(R) and [¢, ¢] € A™n(18)(T) stated in Theorem 2.1. We shall address
this technical issue elsewhere.

6. Proof of Theorem 2.3. Before we present the proof of Theorem 2.3, we
need the two following auxiliary results.
PROPOSITION 6.1. Let f € Lo ,(R) with v2 > 0. Then for 0 < y1 < 72,

[ Fl€+i¢) =Y 1f € +iOP < Copra I fll50, )

(6.1) kez
v€ € R7 C S [_71,71}7
where
Z e 2|kl <00
keZ Loo(R)

for v > 0. If in addition f(27k) = 0 for all k € Z, then f = h — h(- — 1) and
h € Ly, (R) for all 0 < v < 72, where h:= >~ f(- — k).

Proof. Since f € La 1 4,(R), by the Cauchy-Schwarz inequality, for 0 < v1 < 7,
we have

2
/1 <Zf(x— )‘eﬁlx k|> dx<C Z|f |2 272 |z —k| dr
(6.2) 0

keZ 0 kez

= CvaH%Q,lm(R)»

where 7 := 75 —; > 0. Using the Fourier series of [f, f] and f(& +i¢) = 6/47(5), for
any fixed ¢ € [—v1,71] and almost every £ € R, we deduce from (6.2) that

£ +10) = | S e [ e o) fla ) da
kEZ

<X [ @I+ 1) e
keZ

2
1
- /0 (Z |f(z+ k)|€C|X|Hk> dz < CyllfIIL,, ., )

kEZ

Since f is continuous, it follows from the above inequality that (6.1) holds for all
EeR.
If f(2mk) = 0 for all k € Z, then we have ), _, f(- — k) = 0. From the definition

of h, we see that f = h — h(-—1) and h = —Zkffoo (- — k). We now verify
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that h € La 1., for all 0 < 3 < 2. Take 41 such that v3 < 71 < 72. Then by
h = Z?;o f(- — k), we have

S lh(a — )= <SS fla - - ksl
j=0

§=0 k=0
[e) k
= Z |f(z — k)|e"/1|75—’€|e—%|®—k| Z evslz—il
k=0 §=0
For z € [0,1], by 73 <71 < 72 and k > 0, we have
k k
Y2+273
—71lz—k| vslz—jl < g=m(k=1) w@+) ¢ C7 7
e Ze <e Ze ge%_l.fc.

Jj=0 Jj=0

Therefore, we deduce that
> (=)l <N T f@— k)l Mz e o,1].
3=0 k=0

Similarly, using h = — Z,::lfoo f(- = k), we have

-1

-1
S b - ilenE T <0 S - Rl e o).

j=—o0 it
Hence,
Z |h(z — j)|€73|z7j| < CZ |f(x— k)‘e'\/lll‘fkl.
ez kez

By (6.2), we conclude that

2
1 1
||h\|%211%(R) :/0 Z|h(x—j)e"¥3\x—k\|2d$ </0 <Z|h(x—j)e“’3|w_]|> dr

JEL JEZ

2
1
< C/O (Z |f(z — k)|e%|wk|> dr < CChyn | F13,, 0

keZ
So, h € La 1,4, (R) for all 0 < 3 < 75. Thiigompletes the proof. d
It follows from (6.1) and f(£ +i¢) = e f(€) that for any 1 < p, ¢ < oo,
||f||2L2,p,71 ® S Hf||%2,oc,71 ®) S Cv2771||f\\%2,1,72(1k) < Cvrv1|\f||2L2,q,72 ®)
VO<y <72

Consequently, L 4 1, (R) € Lg p , (R) for all 1 < p,g < oo and 0 < 71 < 72.
Now we have the following result on admissible functions in a cascade algorithm.
PROPOSITION 6.2. Let f € Lo (R) for some v > 0 such that f satisfies

(6.4) ferk)=0  Vkez\{o.
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Then f is admissible with respect to a for any a € C?(T) with a(0) = 1, a(r) = 0,
and 3> 0. N . R R

Proof. Let f1:= f(2-+27) and fo := f — f(Z) Then f1, fo € La1,4/2(R) and
fl(27rk) = fg(?ﬂk) = 0 for all ¥ € Z. By Proposition 6.1, f; = hy — hy(- — 1) and
fa = ho — ha(- — 1) for some hy,hy € Lo, (R) with 0 < 71 < /2. Therefore, we
have

(65)  [f1. i)(€) = 11— e P, h](€) and  [fo, fo](€) = |1 — e *ha, 2] (€).

Since @ € C4(T) with a(0) = 1 and a(m) = 0, there exists a positive constant C' such
that

(6.6) a(€) —1<Cll—e P and |a(E+7)|<Cll—e P  VEER.
Now it follows from (6.5) and (6.6) that

a(e/2 + 2nk) f(£/2 + 27k) — f(& + 4nk)|?

23

kez
< 2la(€/2) — 11211, f1(6/2) + 2L f2, F21(6/2)
<2071 — e 2P (|| Folllee (1) + 2% 2'6||[h27h2]||L m)-

keZ —~
[a(¢/2) — 1)f(€/2 + 27k) + fa(€/2 + 27k) |

Similarly, by f(& + 2m + 47k) = f1(¢/2 + 27k), we have

S lale/2 + m + 2mk) f(€/2 + 7 + 2mk) — f(€ + 27 + 4nk)|?
kEZ

< 20a€/2+m’[f, fl€/2+m) + 21, Ail(€/2)
<2021 = e 2PP([F, flllwiry + 227221, Pl oy )

Letting Cy := 8C2(||[f, flll 1o () + H[E,E]HL )+ ||[h2,h2]||L (1)) < 00, combining
the above two inequalities, for almost every ¢ E [ m, 7], we have

[a(-/2)f(/2) = f.a(-/2)F(-/2) = F1(6) < C1l1 — /2% < 29C) | sin(€/2) .

Therefore, (2.1) holds with 7 =238 > 0. 0

Proof of Theorem 2.3. By (6.3), it is easy to see that (i)=-(ii). (ii)=-(iii) is obvious.
To show that (iii)=(iv), we take f = max(0,1—|-|). It is easy to check that f satisfies
the condition in (6.4) and the shifts of f are stable. By a(7) = 0 and Proposition 6.2,
f € Lap~(R) is admissible with respect to @. Therefore, (iii)=(iv).

If (iv) holds, by Proposition 6.1 or (6.3), f € L2« 0(R) and f is admissible with
respect to G. Now it follows from (iv) and (6.3) that {f,}52; is a Cauchy sequence
in Ly ,0(R). Therefore, (ii) of Theorem 2.1 holds, and consequently v5(a) > 0. So,
(iv)=(v).

To complete the proof, we have to show that (v)=(i), which is the major part
of this proof. By Proposition 4.2, vo(G) > 0 implies a(7) = 0. So, we can write
a(€) = (14+e7%)A(€), where A also has exponential decay of order r. By Theorems 2.1
and 4.1, it follows from vy(d) > 0 and a(€) = (1+e~€)A(€) that inf,ey ||T”1||1/" =
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po(A,00) = pa(@,00) < 1. Therefore, there exist 0 < p < 1 and N € N such that

||T1§VIH1L/;V(T) < p < 1. Since A has exponential decay of order r, the operator [Tg 1](¢)

in (1.5) is well defined for € € Ty, := {z € C : |Im(2)| < 2r}. Since A is a 27-periodic
continuous function on the strip I',., there exists 43 > 0 such that

(6.7) ||[T£V1](- +il)lrom <PV <1 V¢ [-y,ml

Take m to be the smallest nonnegative integer such that 2'~™r < ;. For each
n = N +m, we can uniquely write n = Nk + j, where j € {m,m+1,... m+ N —1}
and k € N. So, for every ¢ € [—7v,7] and 0 < v < 2r, by (6.7) and the extended
definition of T'; in (1.5), we have [277(| < 27™y < 2!"™r < 71 and

NTFUC + i Loy = ITETY*UC + Ol Lo or)
< H[Tgl](' + i)l TG+ 277 1L ()
<N+ Lo mp™ < Crp”,
where
Cri=p" " Nsup ([T + i) Lowiry : G=m,....m+ N =1, € [-7,7]} < .
That is, we have
(6.8) ITEUC + il e < C1p"™ V=2 N+m,C€[-7,9]

Denote F'(€) = a(€/2)f(£/2) - f(€). Since f is admissible with respect to @
and F € Ly ,(R), we must have F(2rk) = 0 for all k € Z. By Proposition 6.1,

F(f) = (1- e_lf)iz(g) for some h € Ly ,/2(R). Denote g, := f/n: — }; with
g:=go:=fi — f. Then g(¢) = F(£). Therefore, by Proposition 6.1, we conclude that

[9,9](€) = [F, F)(€) = |1 — e |2[h, h](£) < Ca|1 — e

VeEeT, :={z€C : [Im(z)| < 72},

(6.9)

where v, 1= y/4 > 0, Cy := Cv/4||h|\L2‘m/2(R) < 00, and C, /4 is defined in Proposi-
tion 6.1.

By the definition of f,, and by induction on n, for n > ng := 1 — logy(y2/r), we
have that g,(§) = g(27"¢) [[j-, a(277¢) for £ € Ty, and gy, is holomorphic on Iy,
since 27Ty, C T, for all n > ny. Now by induction, it follows from (6.9) that

(6.10) (9, 9)(€) = (T7[9, 91)(€) < Co(T3 (11— e7"[*))(€), € €Ty

By a(€) = (1+¢ €)A(©), we have [a(©)[? = 22| cos(§/D[2IA(E)[2. So, (4.8) holds with
7 = 1. So, we deduce that

[T(11 = e )€ = 1 — e *PITR1(E) < (1 +e*)?[T31)(€), € €Tan
Consequently, since 0 < v < 2r, it follows from (6.8) and (6.10) that

6.1) [9n> gn] (€) < Co(1+ € )?([T71](£)] < C1C(1 4 €*7)?p" < Csp™
6.11
Vn 2 ni, |Im(§)| < v
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where C3 := C1C5(1 + €*")? < oo and ny; = max(ng, N +m). Note that g, (- + i() is
the Fourier transform of ¢ (f,41 — fn). For ¢ € [~7,7], we have

27| (fatr = fu)eS 1o = lgn( +iONZ, @) = 27 [gns gn] (- + 0|2y (m)

< 27|[gn> gl (- + Q) L oo (1) -

Now by the definition of the space Ls 1 ,(R), it follows from the above inequality and
(6.11) that

[ fr41 — fn||%2,m(n@) = [[(fn+1 — fn) 67‘ ||L2(R) 2C3p" V'n = no.

Consequently, {f,}52, is a Cauchy sequence in Ly ,(R). So, (v)=-(i).
Now we show that ¢ has exponential decay of order 2r. Since ¢(€) := [[Z, a(277%¢)

and & has exponential decay of order r with a(0) = 1, we see that é can be extended
into a holomorphic function in the strip I'g,.. If v5(a) > 0, for every 0 < v < 2r,
by (i) and lim, . ﬁ(g) = $(&) for all £ € R (here we additionally assumed that
lime_,o f (&) = 1, which is satisfied by many initial admissible functions), we see that
limy, oo || fn = @Iz, ) = 0 and hence ¢ € La; ~(R). Therefore, ¢ € Ly ,(R) for
all 0 < v < 2r. That is, (1.9) holds. O

7. Proof of Theorem 4.1. Before we present a proof of Theorem 4.1, we need
the following result.

PrOPOSITION 7.1. Let a and f be 2mw-periodic measurable functions. Assume
that f(€) > 0 for almost every & € R and [T f]/f € Loo(T) for all n > ng, where
ng € N. Then

(7.0)  Timsup (727111 oy = T WS/ T1 D oy = i TS A0 iy

Proof. Denote p := inf,>p, ||[T2 f ]/f||1/n Then p < oo by [T:° f]/f € Loo(T).

Loo(T)"
Since for all n > ng, ||[T7'f ]/f||1/n > p, we have
(72) tim inf |73 1/ 11,/ ) > -

For any € > 0, there exists m € N such that m > ng and H[Tg”f}/leL/;n(T) <p+e
Since f(&) > 0 for almost every ¢ € R, we deduce that

(7.3) [T A1) < NTE A/ Fllewm F€) S FE)(p+)™ ae LR

For each n > 2m, we can uniquely write n = mN + j, where N € N and j €
{m,m+1,...,2m — 1}. Therefore, by (7.3),

(T3 f1(€) = [T{(TV NIE) < (p+ )™ N T F1(6).

Since f(£) > 0 for almost every £ € R, the above inequality yields that

(17 £1(€) mn (T3 11(6)

e ST

<C(p+e)” a.e £ ER,

where

C:= max{(p—|—5)_jH[Tgf]/f||Loo(T) sj=my. . 2m— 1} < oo.
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Thus, ||[T"f]/f||1/” < CY"(p+¢) for all n = 2m. Consequently,
hm 15up ||[T”f]/fHLOO(T) (p+e)

Taking ¢ — 0, we have limsup,,_, ||[T"f]/f||1/n < p. By (7.2), (7.1) holds. g

Proof of Theorem 4.1. Without loss of generahty, we can assume that la(0)> = 1;
otherwise, we consider a/|a(0)|. By |a(£)|? = 2%7|cos(&/2)[27|A(€)[?, (4.8) holds.
Setting f = 1 in (4.8), we have

(7.4) (T3 (Isin(-/2)[*7)] (€) = |sin(&/2)[*T[T31](€) VneNae. £ €R.
Since | sin(¢/2)[>” < 1, it follows from (7.4) that

175 (I sin(-/2) P ) by < N5 L)
for all n € N. Consequently, by A € Lo (T) and Proposition 7.1, we conclude that
1||1/TL

hm sup 1T

(7.5)  p:= p2-(a,00) := limsup || T2 (| sin(-/2)[*") Hl/n 1) S

On the other hand, by (7.4), we have
(T3 (Isin(-/2) 7)) (&)

By the definition of Tj; and g,, we have
|a(§/2+m)

9n(6) = |A(E/2)Pgn-1(6/2) + (75~ (| sin(-/2)P7))(/2 + ).

| sin(£/2)[?7
Since 7 > 0, for almost every £ € [—m, 7], we have
ja(¢/2 +m)?/|sin(€/2))*" = |AE/2 +m)* /| cos(€/) P < 27| All L cr)
from which we see that
9n(€) < 1AE/2)Pgn—1(6/2) + 27| All Loy 1T ([ sin(-/2)P7) | )
a.e. & € [—m, .

By induction on n and gg = 1, we deduce from the above inequality that for almost
every £ € [—m,n| and all n € N,

o <[[l1Ae
j=1
(7.7)
R n—1 ) n—j—1 )
+ 27| Al ey DT (sin-/2)P ) ey T[] TAQ@TFOP.
Jj=1 k=1

Since |a|? € CA(T) and |a(0)|?> = 1, we define

=[[la@ 9P,  ¢er
j=1
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Then @ is continuous and ®(0) = 1. Thus, there exists 0 < eg < 7 such that
1/2 < ®(&) < 3/2 for all € € [—ep,e0]. By

ja(&)[* = 2°7| cos(€/2)PTA(E) P,

for n > logy(m/ep) and £ € [—m, 7], we have

j];[llfx(r 2_ S“;fn 5/2 H|
_psin(1g) r @(e) <‘2-1—"§ 2 9 (¢)
sn€/2) | e S| gm | 1

27N B| L (a2 0T

Therefore, we have
(7.8) H 272 <027 Ve e [-m, 7]

with C} = 21_2771'2TH<I>||LN([,7TJ]) < 00. Since H?Zl |a(279¢)|> = ®(£)/®(27€) and
1/2 < ®(&) < 3/2 for € € [—eg, €0, we have

[sin(2™ )P [T la2 )7

Jj=1

= [[Isin@7" ") Pre()/@(27")

|73 (Isin(-/2)P7) | o ) =

Lo ([=m,7])

[PRTR
> | sin(271"e0) |2 ®(g0) /P(27 "e0)
> 3-lg—2r 2rg=2mn,
By the definition of p, it follows from the above inequality that p > 2727. By (7.8)

and the definition of p in (7.5), for any € > 0, there exists a positive constant C' with
C > (Cy such that

n

[T1A@™)P

j=1

< C2—27’n < C(p+ E)n
Loo ([=m,m])

and
T3 (Isin(-/2) )|l (r) < Clp+e)" VneN.

Now it follows from (7.7) and the above inequalities that
lgnllzery = l9nll Lo (=7ia)) < Clp+)" + 2T||1‘A1\|Loc(1r)02”(ﬂ +e)"
from which we deduce that limsup,,_, ||gn||1L/:(,ﬂ,) < p+e. Taking e — 0, by the

definition of g, in (7.6), we conclude that
n+q 1l . 1/n
hmsupHT 1HL/”(T = limsup ”g"”L/OO(T) <p

So, by Proposition 7.1, the proof is completed by the above inequality and
(7.5). d
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PROPAGATION THROUGH GENERIC LEVEL CROSSINGS:
A SURFACE HOPPING SEMIGROUP*

CLOTILDE FERMANIAN KAMMERER' AND CAROLINE LASSER}

Abstract. We construct a surface hopping semigroup, which asymptotically describes nuclear
propagation through crossings of electron energy levels. The underlying time-dependent Schrodinger
equation has a matrix-valued potential, whose eigenvalue surfaces have a generic intersection of codi-
mension two, three, or five in Hagedorn’s classification. Using microlocal normal forms reminiscent
of the Landau—Zener problem, we prove convergence to the true solution with an error of the order
51/8, where ¢ is the semiclassical parameter. We present numerical experiments for an algorithmic
realization of the semigroup illustrating the convergence of the algorithm.

Key words. time-dependent Schrodinger system, eigenvalue crossing, microlocal normal form,
surface hopping
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1. Introduction. In the framework of time-dependent Born—Oppenheimer ap-
proximation, the dynamics of molecules can approximately be reduced to matrix-
valued Schrodinger equations on the nucleonic configuration space,

ie0° (q,) = (-%Aq + V(q)) ¥ (q,1), (q.t) € R xR,
¥(q,0) = ¥§(q);

(1.1)

see, for example, [12, 19]. The linear Schrédinger equation (1.1) has a unique global
solution ¥° € C(R, L?(R%,CY)) for all square-integrable initial data ¥5. The param-
eter ¢ > 0 is small and causes a highly oscillatory behavior of the solution in space
and time. It can be thought of as the square root of the ratio of electronic mass and
the average mass of the nuclei. Moreover, the solution itself does not have any direct
physical interpretation. It is the position density |1°(g,t)|? which gives the probabil-
ity of finding the nuclei in the configuration ¢ € R? at time t. We are interested in an
asymptotic description for the time evolution of quadratic quantities like the position
density with the following properties. First, it shall be effective in the sense that
it unfolds characteristic dynamical properties. Second, it shall be explicit enough,
such that it allows an algorithmic realization. Third, the resulting algorithm shall be
applicable on high-dimensional nucleonic configuration spaces R%, d > 1.

Hagedorn rigorously derived and classified Schrodinger systems for molecular
propagation through electron energy level crossings of minimal multiplicity [13]. He
obtained potentials of the form

Vig) =v(q)Id + Vi (6(q)), €€{2,3,3,5},

*Received by the editors March 30, 2007; accepted for publication (in revised form) December 3,
2007; published electronically April 2, 2008.
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where v(q) € C*(R%,R) is a smooth real-valued function, Id is the identity matrix in
C2%2 or C**4, and q — ¢(q) is a smooth vector-valued function with ¢(q) € R?, R?,
or R®. The matrices V; are given by

(12) v2<¢>=(¢1 ¢2), vg<¢>=(¢¢1 nr,

p2 —P1 2 — 103 —¢1
( o1 P2 + i3 ) 0
¢2 — ig3 —¢1
1.3 Vs = ,
(1.3) 3(0) . ( " ¢2—i¢3>
P2 + i3 —¢1
(et
(14)  Vi(o) = o

1 —id2  —d3 —ids _
<¢3 —ips 1+ i ) %o 1d

For these four matrices, the eigenvalues are +|¢|. Therefore, the eigenvalues of V(q)
are v(q)+|¢(q)|, and ¢* € R? is a point of crossing eigenvalues if and only if ¢(¢*) = 0.
We shall say that this crossing is generic if

d¢ is of maximal rank on {¢ = 0},

i.e., of rank 2 for £ = 2, of rank 3 for £ = 3,3, and of rank 5 for £ = 5. This
explains why these crossings are usually referred to as codimension two, three, and
five crossings and enlightens the choice of the index ¢ we have made. Hagedorn’s
codimension one crossings are not considered here, since they violate the above rank
condition and also show a different dynamical behavior than systems with crossings
of higher codimension. We set

N@)=N@)=2, N@B3)=NG)=4,

so that the potential V(g), the wave function ©°(g,t), and the differential d¢(q)
belong to CNOXNW@ N and R¥*?, respectively. For £ = 3’ we set R®" = R3. The
orthogonal eigenprojectors

1*(q) = 3 (Id £ |p(q)| "' Vi(¢(q)))

of the matrix V(g) have a conical singularity at points of crossing eigenvalues ¢*;
that is, VIIT(q) = O(|¢ — ¢*|7!) as ¢ — ¢*. This motivates the notion of conical
intersections, by which especially codimension two crossings are frequently referred
to.

Eigenvalue crossings are ubiquitous in the quantum mechanical description of
polyatomic molecules, that is, molecules with more than two nuclei. The collection
[4] provides an exposition of this active area of research in theoretical chemistry. As
for a prominent example of an ultrafast isomerization on the femtosecond time scale,
a codimension two crossing of energy levels explains the effectiveness of the first step
of vision, the cis-trans isomerization of retinal in rhodopsin; see also [14] and section 3
below for related numerical experiments.

The analysis of scalar Schrodinger equations teaches us that the direct study
of the time evolution of quadratic quantities like the position density [¢°(q,t)|? is
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impossible. The oscillations of ¥°(g, t) have to be taken into account, and one has to
work in the space of positions and momenta (g, p), the phase space Rg X Rg. Therefore,
one studies the Wigner function of 1°(g,t) in a suitable e-dependent scaling, which
resolves the highly oscillatory features of the solution,

We (4= (¢))(q,p) = (27r)_d/ Pe (q - %v,t) QY (q + %U,t) et UP du.
Rd

It plays the role of a generalized probability density on phase space. For square-

integrable wave functions ¢, the Wigner function W¢(v) is a square-integrable func-

tion on phase space with values in the space of hermitian matrices. One recovers the

position density by

[¥(q)|* = tr y We(¥)(q,p) dp.

Besides, the action of the Wigner function against compactly supported smooth test
functions a € C2°(R24, CNO*N®)) is simply expressed in terms of the semiclassical
pseudodifferential operator with symbol a, which is defined by

op.(@)(a) = ) [ a(bla+0).p) e () dudp
RQ
for ¢ € L?(R4,CNV®). Indeed, we have

tr - We()(q,p)alq,p) dgdp = (op_(a)¥, V) r2ga cree) -

It is our aim to construct an asymptotic semigroup, which approximately prop-
agates the initial data’s Wigner function for all generic level crossings of Hagedorn’s
classification. Our approximation relies on a microlocal normal form for operators
with eigenvalue crossings, which has been derived in [1, 2, 6]. Roughly speaking, near
a crossing point the Schrodinger operator

—ied; — 5 A, + V(q)

is equivalent to the normal form

—icd; + Vit 0. (|do(@)p| 2 mi(a. p)o(a)) )

where (g, p) denotes the orthogonal projection onto the hyperplane normal to the
vector dé(q)p € RY. In the case £ = 2, this resembles the LandauZener system

. toy
zs%zﬁ(t) = ( > P(t), ~ >0,
v —t
for which the probability that a solution starting at time ¢ = —oo in the one eigenspace

will have passed over to the other eigenspace at time ¢ = 400, which has explicitly
been computed by Landau [16] and Zener [21] in the 1930s. This famous Landau-
Zener transition rate reads as
_T 2)
exp( 87 )
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and in [8] it is proven that the rate still gives the correct asymptotics if v is re-
placed by a bounded operator. Our semigroup combines effective transitions between
eigenspaces close to points of crossing eigenvalues on the one hand with classical
transport in the adiabatic regime on the other hand. More precisely, the V-diagonal
components TIEWe(y5)II* of the initial Wigner function are transported along the
Hamiltonian curves of the eigenvalues of the Schrédinger operator’s symbol

Ipl> + v(q) = |6(q)].

Whenever one of the trajectories (¢*(t), p*(t)) attains a local minimal gap between
the eigenvalues, there is an effective nonadiabatic transfer of weight according to the

e-dependent transition rate
2
exp| T Imela: )o@
e |do(g)pl

Since the rate is negligibly small, when the eigenvalue gap is larger than /¢, the
nonadiabatic transfer of weight is effectively performed at times ¢t* with

t +— |¢(¢F(t))| has a local minimum in t = ¢t* and |p(¢=(t*))| < Rye

for some fixed R > 0. Our main result is that this dynamical description yields
approximate solutions with an error of order €!/8 when choosing R = ¢~1/8. Moreover,
it is explicit enough for an algorithmic realization, whose performance on a model
for retinal in rhodopsin is studied here as well. The algorithm is a mathematical
counterpart to the popular surface hopping algorithms of chemical physics introduced
by Tully and Preston in [20].

Quantum dynamical descriptions in terms of classical transport as described
above, that is, in the spirit of an Egorov theorem, are well established and have
been given for Wigner functions, for example, in [10, 11]: for Schrédinger systems
they hold to leading order in e, until classical trajectories come close to a point of
crossing eigenvalues. Then, as already mentioned, the adiabatic approximation is no
longer valid, and there are leading order nonadiabatic transitions between the levels
(the energy propagated on one level to the crossing may pass partially or completely
on the other level). This phenomenon has been precisely analyzed in the case of Gaus-
sian wave packet propagation by Hagedorn [13] for all generic electron level crossings.
For initial data, which are less specific than Gaussian wave packets, the evolution of
appropriate two-scale Wigner measures has been studied. These measures are weak
limits of the Wigner function and incorporate information on concentration effects
close to trajectories, which touch points of crossing eigenvalues, with respect to the
second scale y/e. These Wigner measures have been analyzed for a linear codimension
two crossing in [7], for general two-level systems in [8], and for all of Hagedorn’s mod-
els in [5]. In [18], the results of [7] have been lifted to a leading order approximation
of the Wigner function. Here, we aim at approximating the Wigner function for all
generic crossings, while additionally proving a convergence rate.

We will proceed as follows. Section 2 constructs the surface hopping semigroup,
states the main result, that is, the validity of our approximation with an error of
order £1/8 and discusses the strategy of the proof. In section 3, numerical results are
presented for an algorithmic realization of the semigroup applied to a retinal model.
In section 4, the proof for propagation away from the crossing is carried out, while
the microlocal normal form yields the correct nonadiabatic transition rates, as proven
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in section 5. In section 6, the main result is extended to observables, which are
more pertinent for the crossings with degenerate eigenvalues (¢ = 3',5). Finally, the
appendix summarizes basic facts of Weyl calculus.

2. Main result. Propagation through level crossings can be approximated by
a proper combination of classical transport and nonadiabatic transitions. For this,
we study the underlying classical flows and combine them with effective nonadiabatic
transitions to an asymptotic semigroup.

2.1. Transport and transitions. We consider the classical flows
®L'R* - R* . @3 (q0.po) = (¢ (8).p7(1))

associated with the Hamiltonian curves of %[p|> + v(q) £ |¢(q)|. These curves are
solutions to the Hamiltonian systems

{qi(t) PE(t), P <>:7w< (1) F 1o g+ (1) )
q(0) = qo, p*(0) =

We consider only initial phase space points (qo, pg) € R?? such that for ¢ > 0

(2.1) B(gE(t) =0 = do(q™(t))p*(t) # 0.

This condition guarantees that classical trajectories arrive transversally at the crossing
set and have a unique smooth continuation through this singularity; see Proposition 1
in [5].

For a large class of test functions and under suitable restrictions on the time
interval, the classical flows are enough for approximating the dynamics up to an error
of order ¢. Indeed, one considers observables a € C2°(R24, CN(O*N(®)) guch that

(2.2) a=a " +a 1", a* € C*(R*\ {¢ = 0},C).

For ¢ = 2,3, the eigenspaces are one-dimensional, and these observables focus on
the V-diagonal elements of the Wigner matrix, where V-diagonal means diagonal
with respect to the decomposition of CN®) by the eigenprojectors II*(q) and II~ (q).
For ¢ = 3,5, however, the eigenspaces are two-dimensional, and observables of the
form (2.2) are not enough to completely resolve all dynamical features within the
eigenspaces. We will address this issue in section 6.

For all times ¢ € [0,7], such that the classical trajectories ®! arriving on the
support of a have not passed the crossing set {¢ = 0}, the action of the Wigner
function on a = a*II* obeys

[ W) (4 T @)a* (g p) dadp

— tr /RM (HiWE(wS)Hi o ‘I)f)(q,p) ai(q7p) dgdp = O(E)

as € — 0. Such Egorov-type descriptions hold, until classical trajectories come close
to a crossing point (¢,p) € {¢ = 0} and leading order nonadiabatic transitions oc-
cur. These transitions depend on how the solution ¢°(t) concentrates on the ingoing
trajectories with respect to the scale /. For the linear codimension two crossing
with ¢(q) = ¢, ¢ € R?, the two-scale Wigner measure’s description of [7] is lifted



108 CLOTILDE FERMANIAN KAMMERER AND CAROLINE LASSER

to an approximation of the Wigner function in [18]. This linear model has specific
features; see also [9]. In particular, all classical trajectories which meet the crossing
are included in the set {g A p = 0}, where ¢ Ap := qap1 — q1p2 for ¢,p € R?. The idea
of [18] is to propagate the V-diagonal parts of the initial Wigner function along the
classical trajectories and to apply the e-dependent transition coefficient

T * A * |2
Tin(a™,p") = exp(—sqh)*z') :
as soon as the trajectories reach their minimal distance from the crossing set, which
is easy to check since ¢ -p = 0 at such a point. Theorem 3.2 in [18] proves that under
suitable conditions on the initial data this e-dependent propagation is correct in the
limit ¢ — 0. We construct here an extension, which covers the general situation
described above, and give a convergence proof including a convergence rate. Our
approach draws from the understanding of the nonadiabatic mechanism as developed
in [5].

2.2. A surface hopping semigroup. Let R > 0. In the general case, the
crucial points in phase space are those where the classical trajectories attain a local
minimal gap between the two eigenvalues. These points fulfill the condition

% (le (¢ (®)[*) = 2do (¢ (1) (1) - 6 (1) =0,

and one performs an effective nonadiabatic transfer of weight, whenever a trajectory
passes the set

Se.r = {(a,p) € R* [ [6(q)] < RV, do(q)p - ¢(q) =0} .

The microlocal normal form, which will be given later in Theorem 5.2, suggests the
transition rate

Ts(q*’p*) = exp (W ’n—f(q*,p*)(b(q*)ﬁ) ,

e |do(q*)p*]

where 7;(¢*,p*) is the orthogonal projection from the Euclidean space R’ into the
hyperplane normal to the vector dé(¢*)p* € RY. Since d¢(¢*(t))pT(t) does not vanish
when the considered trajectories arrive at the crossing set {¢ = 0}, it is also nonzero
when arriving at the jump manifold S. g if Ry/e is small enough. Besides, for ¢ = 2,
one has

| me(a,p)é(a) | = 6(a) A 55045 |,

and we recover the transition coefficient T}, (¢*, p*) for ¢(q) = q, ¢ € R%
We attach the labels —1 and +1 to phase space. For points (gq,p,j) € Rid =
R24 x {—1,+1}, we consider trajectories

T(%p’j) : [0, 400) — Rid,

E?

which combine deterministic classical transport and random jumps between the lev-

els at the manifold S, r. More precisely, we set ’];(gép’j)(t) = (<I>§ (q,p),j) as long as

®(q,p) & Se,r- Whenever the deterministic flow ®%(q,p) hits the manifold S; r at
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a point (¢*,p*), a random jump from j to —j occurs with probability T¢(¢*,p*).
For points (g,p,j) generating classical trajectories, which either violate the non-
degeneracy condition (2.1) or do not leave the set S. g, there is either no transport
or no jump at all. Since the trajectories which touch the crossing set arrive there
transversally, each path

(@.p.5) — TG (1)

has a finite number of jumps and remains in a bounded region of R3¢ within a bounded
time interval [0,7]. Away from the jump manifold S, p x {—1,+1} each path is
smooth. Hence, the random trajectories define a time-dependent Markov process
with state space R2?. The associated transition function P. r(p,q,j;t,T') describes
the probability of being at time ¢ in the measurable set I' C R%¢ having started in
(¢,p, 7). Tts action on bounded measurable scalar functions f : R3¢ — C defines a
semigroup (LY g)i>0 by

(€L )@, J) = / F@,6.k) Peoglas psji t, (e, €, R)).
R2dx {—1,41}

For introducing the semigroup’s action on Wigner functions, we use the following space
of continuous V-diagonal test functions satisfying T¢-dependent boundary conditions
at the jump manifold.
DEFINITION 2.1. A continuous function a € Co(R?*\ S, g, CNO*N©)) belongs to
the space Cc g if it has the following properties:
i. a=atOt +a 1~ with a* € C.(R?*?\ S. g, C).
ii. The function f, : (R**\ S, g) x {-1,+1} — C,

fa(qap7+):a+(Qap)7 fa(Qap7_):a7(Q7p)a
satisfies for all (¢,p,j) € Se,p x {—1,+1}
Jim fa(q+6p,p +6(=Vo(g) = j "dg(9)8(9)/16(a)]). 5)

= Jim (7" fa)(q+ 6p.p+ 6(=V(g) + j do(q)p(a)/16(a)]); —4)
= Jim (1 =T%)fa)(q + 8p,p + 8(=Vv(q) = j do(q)p(a)/16()]); 7)-

For test functions a € C. g, the action of (L, p)i>o is naturally given by

(‘CE‘,R a‘) (qvp) = (L:Z,Rfa) (qapv +1) H+ (q) + (’Ci,Rfa) (q7pa _1) - (Q)

By construction, the semigroup leaves C. g invariant, and duality allows us to define
its action on Wigner functions. More precisely, let W€ (1)) be the Wigner function of
some wave function 1) € L2(R?, CN(®). Then, LL W= (¢) acts on a € Cc g by

(‘CZ,RVV‘;s (¢)7 a’) =tr 2a WE ('(/J) (q7 p) (‘CE,R a’) (qv p) dq dpa
R
defining a locally integrable function on phase space. We finally choose an e-dependent

hopping range R(g) = e~'/® and set

(ﬁi)tzo = (EZ,R(E))I‘,ZO-
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2.3. Assumptions and main result. Let ¢°(¢) be the solution of the Schré-
dinger equation (1.1) with initial datum 5. We now state the precise assumptions, un-
der which the action of the semigroup (£%);>0 on the initial Wigner function W¢(¢5)
approximates the V-diagonal components of We (= (¢)).

(A0) V € C®(R4, CNOXN)) is of subquadratic growth and of the form

Vig) =v(g)Id+ Vi (o(q)), €€{2,3,3,5},

where the matrices V;(¢(q)) have been defined in (1.2), (1.3), and (1.4). We
assume the eigenvalue crossings to be generic in the sense that d¢ is of max-
imal rank on the crossing set {¢ = 0}.

(A1) (¥§)e>0 is a bounded family in L? (R4, CNV()) associated with RanII*,

I %5 L2 ga cveny = O(™), L > 1/8.

We suppose that the initial data are localized away from the crossing {¢ = 0};
i.e., for all b € C2°(R?¢, CNOXNE)) with supp(b) C {|¢| < Ry/E}, R=¢e"1/8,

» We(§)(q,p) b(g,p) dgdp = O(™), B2 >1/8.

We also assume localization away from the set

{(a0:p0) € R* | 3t > 0: ¢(¢*(t)) = 0, dg(¢™* (8))p™ (1) = 0},

which contains the points issuing classical trajectories, which arrive at the
crossing without a unique continuation through it.

(A2) The test function a € C® (RQd,(CN(Z)XN(@) has its support at a distance
larger than R+/e with R = e~1/8 from the crossing; that is,

supp(a) N {(q,p) ER* | |¢(q)| < RVE} =0, R=e"'5

and

a(g,p) = a™ (g, (¢) +a (¢, p)I7(q),  (g.p) € R*,

with scalar-valued a* € C°(R?4, C).

(A3) Within the time interval [0,T7], each of the plus-trajectories arriving at the
support of at at time T has performed at most one jump, generating minus-
trajectories arriving at the support of a~, which have not jumped at all.

Alternatively, assumptions (A1) and (A3) could also require that the initial data
are associated with RanlII~™ and that each of the minus-trajectories arriving at the
support of ¢~ at time T has performed at most one jump, generating plus-trajectories
arriving at the support of a™, which have not jumped at all.

THEOREM 2.2. Let the potential V', the initial data (V§)e>0, the observable a,
and the time interval [0,T] fulfill assumptions (A0), (A1), (A2), and (A3). Let x €
C([0,T),R). Then, there exist positive constants C,eqg > 0 such that for all 0 < e <
o the solution ¢ (t) of the Schridinger equation (1.1) satisfies

(2.3)

[ X (7 (0) — LW (o) (0. p) . ) dadp] < O

Before entering the proof, we add some remarks. First, if one allows initial
data in assumption (Al) with (1,02 > 0, then the result holds with convergence
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rate e™in(B1,02,1/8) - Qecond, pointwise convergence holds on time intervals without
nonadiabatic jumps, that is, when the solution has passed by the jump manifold; see
also [18]. However, for pointwise convergence only the limit behavior without conver-
gence rate can be deduced, since the constants C' and €y depend on the cut-off function
x and its derivatives in a way that possible oscillations in time are not controlled. Fi-
nally, in section 6 an extension of the approximation for the cases £ = 3’5 with
degenerate eigenvalues is given. There, assumption (A2) is generalized to observables
a which commute with V, that is, a = IITallt + I all~.

2.4. Strategy of the proof. For notational convenience, we suppose (; =
B2 = 1/2. Otherwise, one has to add O(¢!/8) in all the estimates. We work with the
semigroup (LY z)>o and prove convergence with an error of order

O(1/(R*Vz)) + O(R*Ve) + O(1/R?) + O(VEe | Inel)

as € — 0 and R — 400, which gives the claimed rate when choosing R = ¢~1/8. We
distinguish between regions of large and small eigenvalue gap, that is, between sets
{|¢| > C R\/e} with C = 1,1 on the one hand and {|¢| < R\/z} on the other hand.
For a large gap we prove classical transport with an error of size O(1/(R%\/2)) +
O(1/R?) + O(y/2). Close to the crossing set, proving the relevance of nonadiabatic
transitions, we use a microlocal normal form, which reduces the Schrédinger equation
to a Landau—Zener-type problem with explicitly computable transition rates. There,
we introduce an error of order O(R3\/g) + O(1/R?) 4+ O(y/2|Ine|) + O(1/(R5\/2)).
The combination of both errors will then yield the final estimate of Theorem 2.2.

PROPOSITION 2.3. Let c € C*(R24,C), and let b € C>(R*, C) with Vb compactly
supported. If there exist C > 0 and sg > 0 such that

Wr e [—s0 0] : L (supp(c)) < {|é] > C RVE},
then for all x € C°(R,R) and for all s € [t — so,t + so]

" / x(t) g, p) b( 42 T ()W (4% (1)) (g, p) dg dp

= tr /RMH x(t) ela p) b(592 ) (TEW# (44 (5)) I 0 ©57+) (g, p) dg dp

+0 () + 0 () + O(V2).

Proposition 2.3 will be proved in section 4. To use it for the main proof, we need
to specify which points of supp(a™) arrive close to the crossing. We denote the sets
of trajectories arriving at (respectively, arising from) the crossing set {¢ = 0} by

M= = {@L (q,p) € R* | 4 (q,p) & {6 = 0},3t0 <t:2L(q,p) € {¢ = 0}},
MEo = (D (q,p) € R* | D(q,p) & {9 = 0},3t0 > t: ®2(q,p) € {¢ = 0}} .

The sets M+/°ut are smooth submanifolds of R2¢. By construction of the semigroup,
all phase space points generating backward trajectories passing through the zone of
small gap {|¢| < Ry/€} and performing a jump are contained in a neighborhood Q*
of the intersection of the support of a® with M*0ut,

Some of the random trajectories reaching Q*F touch the crossing set. We consider
one of them, which arrives at time ty at (go,po) with ¢(qo) = 0, de(qo)po # O,
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and choose the associated point (qo, to, Po, 7o) in the phase space of space-time, where
To = f% Ipo|? —v(qo) is the energy coordinate. The normal form theorems [1, 2, 6] give
neighborhoods of these points, on which the Schrédinger equation (1.1) microlocally
reduces to a Landau—Zener-type problem

—ie0sv° = Vi(5, 2 + 7. (2,())v° + O(e™).

These model problems have explicitly computable transition rates in the scattering
regime; see [7, 8]. The compact subset of {|¢| < Ry/e}, which is touched by the
backward trajectories coming from QF, can be covered by finitely many of these
neighborhoods projected to R2¢, and without loss of generality we assume that one
of them suffices.

Moreover, for each point in QF being reached by a random trajectory at time ¢
there are positive numbers 0 < tfﬂE < tii7 such that at time ¢t — tii and t — tfi the
trajectories are contained in an annulus {C1/c < |¢| < Cav/e} with Cy,Cy > 0 and
have performed their only jump within the interval ]t — t ¢ — tfi[, whose length is
denoted by 6,? = tii — tfi. These quantities are well defined, since the trajectories are
transverse to the crossing set. Choosing C, = % and Cy = R, QF can be covered
by finitely many open sets, such that each of these sets can be associated with such
points of time tijE and t;t. Without loss of generality, we assume that one of them is
enough. Then, we have by Proposition 2.3 with C' = %

o / X(t) a* (g,p) T () W= (4 (1)) (q, p) dg dp dt

=tr /de+1 x(t) a®(q,p) (HiW& (vt —tf)) M+ o ‘I’ffi) (¢,p) dgdpdt

+0(1/(R*Ve)) + O(1/R?) + O(Ve).
+
Then, we perform a cut-off of the symbol a* o @z . We consider a smooth com-
pactly supported function xo € C>°(R? R) such that xo(u) = 1 on {|u| < 1} and
xo(u) = 0 for {Ju| > 2}. We write

tj:
(ai o] )(q,p) = a%o(a.p) + a7 4(a,p),

abolap) = (a* 0 0L ) (@.n) (1- x0(52)).

@i (@ p) = (a* 0 8 )(a.0) xo(52)

Since the trajectories, which pass within the time interval Jt — ¢, ¢ — ¢°[ through the
support of a%o, do not jump, Proposition 2.3 with C' =1 is enough to deal with the
Born-Oppenheimer part. The analysis of the Landau—Zener part, however, involves
nonadiabatic transitions. For points (¢,p) € supp(ai,) we have |¢(q)| < 2Rz
Hence, not all of the trajectories passing through the support of a%z jump. Never-
theless, we argue as if all of them did. Indeed, the transition coefficients generated
by these added jumps are exponentially small with respect to €, since they occur for
points (¢,p) with [¢(q)| > Ry/e.

PROPOSITION 2.4. Let 0 < tfi < tii be such that at t — tii and t — tfi all random
trajectories arriving at time t in QF are contained in {§\/§ < |¢| < RVE} and have
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performed their only jump within the interval |t — tii,t — t;t[ of length 6 = tii — tfi.
Then, for all x € C°(]0,T],R)

tr /]de+1 X(8) We (0% (1)) (g, p) a7 4 (g, p)TT* (q) dg dpdt

- ~/]R?d+1 X WE @8 (t = 65))(a,p) (ﬁi;afz)(qm) " (q)dgdpdt

(2.4) +O(1/R?*) 4+ O(R*V¢) + O(Ve|Ine|) + O(1/(R*\/E)).

One observes that in the right-hand side of (2.4) only the plus-projector IT+
appears. This comes from the fact that at time ¢ — tii the contribution on the minus-
mode is of order O(1/(R%\/2)) + O(1/R?) + O(y/2), which is due to Proposition 2.3
and the initial data being associated only with RanII*. Finally, again the classical
transport result of Proposition 2.3 relates the right-hand side of (2.4) with the initial
data, and the proof of our main result, Theorem 2.2, is complete.

3. Numerical experiments. Before giving the detailed proof, we present nu-
merical experiments illustrating the theoretical convergence result and the effective-
ness of the algorithm. We consider a two-level Schrodinger equation with codimension
two crossing in two space dimensions, which models the photoisomerization of retinal
in thodopsin. This conformational change is considered as the first step of vision. In
[14], computations with the model Hamiltonian

Lo (1 = cos AT
—20?2 — LO2 4 Lua? 4 (2 ol #) )

Az Ey —iWi(1 = cosy) + ka

have qualitatively reproduced spectroscopic information of the molecule. The two

effective coordinates (¢, z) €] — Z, 3F] x R consist of the reaction coordinate ¢ and a
collective coordinate x. The parameters are m~! = 4.84-10~%, E; = 2.48, W, = 3.6,

Wy =1.09, w=A=0.19, and k = 0.1 (all in eV, i = 1); see note 18 in [14]. Setting
€

7

one obtains a rescaled Hamiltonian —%Aq + V(q) with potential

e=m /2 = 0.022, q = ¢, qo = T,

%WO(I —COSql) 142 )

V(g) =1 s (
(q) = 5(Bq2) 01q2 Ey — Wi (1 = cosqz) + azqe

whose parameters (aq, az) = g(m, A) = (2, 3.8) and 8 = w/e = 8.6 are of order one
with respect to e. Fixing these values of (a1, as) and (8, we run a series of experiments
for varying values of the semiclassical parameter ¢ and hopping ranges R,

e € {0.0005,0.001,0.005,0.01,0.015, 0.02, 0.022, 0.03}, Re{1,2,3},

in the following set-up. We consider normalized Gaussian initial data associated with
the plus-level, that is,

¥5(q) = (em) 2 exp(—lg — g§> + Lpo - (g —q5)) v (q),
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TABLE 1

The table shows final level populations and particle numbers as well as the accuracy of the
reference solver. The population of the upper level |[TIT4%(t)||? at the final time T = T\/€ is com-
puted by the reference solver, a pseudospectral Strang splitting scheme, and illustrates leading order
nonadiabatic transitions for all test cases. Depending on the hopping range R, the final particle
numbers of the surface hopping algorithm vary between 3000 and 30000. The reference accuracy is
the difference in L?-norm of the final wave function computed with full and half resolution. For all
computations it is less than 10~4.

5 0.0005 0.001  0.005 0.01 0.015 0.02 0.022 0.03
INSEHOIE 0.499 0.576 0.792 0.378 0.263 0.276 0.276 0.239

f particles, R =1 5396 5229 3730 3548 3316 3274 3482 3292
f particles, R = 2 6650 6353 4732 4766 4801 5569 6106 8281
f particles, R = 3 7392 6881 5809 6155 7119 10536 12581 34485
Ref. accuracy -10° 3.44 2.89 7.57 2.56 2.47 2.45 2.47 2.63

where vT () is a normalized eigenvector of V' (g) for the eigenvalue v(q)+ |¢(q)|, which
depends smoothly on ¢. The initial center in position space

a5 = (1.63 — 44/, 0.5V/¢)

is chosen left of the two crossing points (v, 0), (1, 0), where v, are the two solutions
of cosp = 1—2E; /(Wo+ W) for p €] — Z,3%], that is, 11 ~ 1.63 and v, ~ 4.65. The
initial momentum center and the time interval,

po = (1,0), 0,7 = [0, 7\6]7

are chosen such that the wave function passes only the left crossing point (y1,0) once
without returning to it again. The upper level populations |[IIT4°(¢)||? at the final
time T = T4/e, which are given in Table 1, confirm that the experimental set-up
produces leading order nonadiabatic transitions.

The numerical realization of the surface hopping semigroup (Eé R)t>0 is the same
as for the simulations of models with a linear isotropic potential matrix presented in
[17], up to adding the Ry/e-dependent jump criterion

t+— |¢(g(t))] has a local minimum in ¢t = ¢t* and |¢(¢= (t*))| < Rv/z.

The initial sampling is performed on 16 x 16 grids in position and momentum space,
and the classical transport is discretized by the explicit Runge-Kutta method of
Dormand and Prince DOPRI45. For comparison, we have also solved the Schrédinger
equation (1.1) by a numerically converged pseudospectral Strang splitting scheme.
The solutions obtained with a 1024 x 512 space grid on the computational domain
[1.63 — 8y/2,1.63 + 16,/2] x [—6+/¢,64/2] and with 10* time steps are regarded as a
reference, since they differ in L2-norm from the corresponding solution with a fourth
of the grid points and half the time steps by less than 10~%; see Table 1. We have
computed the following quadratic quantities of the wave function at final time T =
7\/e: the level populations ||[TI*¢°(¢)||? and the expectation values of position and
momentum on each level,

(T ()0 (g, 1), aIT= (@) (g, 1)), (T (@) (g, 1), —ieVIT= (q)¢ (g, 1)).

We note that the reference solver restricts the length of the time interval to 7./, since
the dynamics can be resolved only as long as the solution stays well localized in the
computational domain, while for the fixed number of 1024 x 512 grid points the size
of the computational domain affects the numerical accuracy.
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Comparing the outcome of the two algorithms, we find all errors within and below
the corridor [£/€,51/€] (see Figure 1), which is better than the proven convergence
rate £'/8. Moreover, the errors increase monotonically when increasing the semi-
classical parameter; however, when entering the range € > 0.01 we observe different
dependencies. The level populations’ error starts decreasing, while the error of the
momentum expectation oscillates. We have no mathematical explanation for these
observations and can make only an educated guess. The good convergence rate might
be caused by the localization properties of the initial Gaussian wave packet combined
with the short length of the time interval. Indeed, the error terms O(1/R?) and
O(1/(R5/2)) in the approximation by classical transport in Proposition 2.3 might be
negligible in this case as well as the contribution O(1/R?) in Proposition 2.4, which
is due to localization in energy. The tendencies for a large semiclassical parameter,
however, are clearly beyond the reach of our asymptotic analysis.

Table 1 shows that an increase of the hopping range R increases the number of
final particles, that is, the number of jumps within the overall time interval. We
obtain particle numbers around 3000 and 30000 for R = 1 and R = 3, respectively,
resulting in half a minute and 5 minutes computing time for our implementation of the
algorithm in MATLAB 7.0 on a 3GHz Pentium 4 computer. However, an enlarged
hopping range need not improve the accuracy of the approximation. The plots in
Figure 1 mostly display smaller errors for larger R, but the level populations in the
physical relevant range of € = 0.022 have the most accurate computation for R = 2.

Summarizing, the numerical experiments are consistent with the theoretical re-
sult, but also present a better convergence rate and tendencies in the range of a larger
semiclassical parameter, which seem to be unexplainable by our asymptotic analy-
sis. A systematic comparison with the well-established surface hopping algorithms of
chemical physics is in progress.

4. Propagation outside the crossing zone. We now begin proving our main
result. The first step is to establish the validity of the classical transport approxima-
tion in the zone of large eigenvalue gap {|¢| > C R/c}.

Proof of Proposition 2.3. Our aim is to prove

e [ {xOcla.mb(592) 7+ b + vla) £ 1000} T @W (07 () (0.) dadp

=0(#) +0(7z) + O(VE),

since then classical transport follows immediately. The key argument is the estimation
of the action of the commutator

. 2
K=z {X(t)ope (C(q’p)b(g(i\q/)g) Hi(‘l)) , —ie0y — 5 Ay + V(q)}
on the solution of the Schrodinger equation (1.1). Indeed, observing that
(K'l/)€7 wE)Lz(Rd+1) == 0,

we are going to prove

(KdJE,’l/JE)Lz(RdH) = O(%) + O(R%\/E) + O(ﬁ)

+ (op. ({x(®ela. b (52) .7+ bl + v(e) £ 16(9) } I () ¥7, v°)

L2(Rd+1)
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Fic. 1.  Double logarithmic plots of the absolute error, when comparing the outcome
of the surface hopping algorithm with a numerically converged pseudospectral splitting scheme.
The semiclassical parameter € varies in the set {0.0005,0.001,0.005,0.01,0.015,0.02,0.022,0.03}.
The dashed, dashed-dotted, and solid lines refer to a hopping range R = 1,2,3, respec-
tively. The three plots show the error of the level population ||TIT(q)v¥%(q,t)||?, of the
position expectation wvalue (I11(q)v°(q,t),ql1T(q)¥°(q,t)), and of the momentum ezpectation
(I~ (g)¢° (g, t), —ieVqII~ (@)¢° (g, t)) at the final time T = Ty/e. All errors lie in and below the
corridor defined by the two functions € — 51/ and € — %\/E, which are represented by dotted lines.
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where op, also denotes Weyl quantized operators acting on space-time variables. We
use the scaling operator

(4.1) T: L, (R — L, (R™Y), (T)(t,q) = e (¢, v/Zq)
and write
T*KT = L [op; (x(D)e(VEq, VEp)b( 52 ) I (VEq)) | —icd: — 58, +V(VE0)| -

We have to deal carefully with the €, R dependence of the symbol in the left-hand
side of the commutator. For all multi-indices a € N¢,

D (1% (q)) = O(|o(q)] ).

Since |¢(¢q)| > C Ry/e on the support of b g(g,p) := c(q,p)b(;’;(\q/)g), we have

(42) D ((beal)(VEg, VER) = O1). D (b o) (VEq, VEp) = O(E/)
for a € NY. By the symbolic calculus of Lemma A .2,
2 [opy ((be,r1T7) (g, Vep)) Lopy (51pI7)] = 1 opy({(be.rT1¥) (Ve Vep) , 51p1%})
= +op; ({b=,r(V2q, Vep), 5IpI*}T* (VEq)) — + opy (ro(VEg, VED))

where
d
(4.3) ro(Veq, Vep) = be.r(Vzq, VD) Z Vep; (94,11%)(Veg).

Moreover, in view of [[I*, V] = 0 and (4.2),

2 [opy ((be.rIT7) (VEq, VeD)) , V(VEq)] = 55z op1 ({ (b= 1) (vVEq, Vep), V(VEQ)})
— 51z op1 ({V(VEq), (b 11F)(VEq, VEp)}) + O(e).
Working on the Poisson brackets involving V = v + Vi(¢), we first observe that
{0, RIT5, V(@) } = {Vi(), be rITT | =TT {be g, V(@) } — {Ve(9), be,r} T
Using that V(¢) = |¢|(IIT — I17) and 9y, 1T = 1% (9y, IIF) + (9, IIF)ITE, we get

d
{bs,RHiv W(d))} - {Vg((ls), bs,RHi} = :l:2{b6,R7 |¢|}Hi +2 |¢| Z (6pjbs,R) aqu:I:
j=1

and set

d
(44) r1(Veq,Vep) = Lo (\[Q)|Z , (be.r(VEQ, VEp)) Oy, (15 (Veq))

d

0 2000V, V)t (452) (0,,11%)(vzq)-
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Now, collecting all the different pieces, we have
K = op. ({x(1)be,r(a:p) , 7+ 31p|* + v(q) £ |6(q)|} T*(q))

+op. (x(t)ro(q, p)) + op.(x(t)r1(g; p)) + O(e).

Hence, our claim follows from the analysis of r¢ and ry, which is carried out in
Lemma 4.1. 0

LEMMA 4.1. Let ¥ solve the Schridinger equation (1.1). For the matriz-valued
functions rog and r1 defined in (4.3) and (4.4), respectively, one has

(0b. (X(1)70(4,P)) ¥, ) pagsss, = O(/E) + O(1/B) + O(1/(RO)),
(ope (x(t)r1(gq:p)) ¥°, 7/15)L2(Rd+1) =0(Ve) + O(l/Rz)'

Proof. Both functions have off-diagonal matrix structure; that is, ro(g,p) and
r1(q, p) do not commute with V'(¢). However, since r; contains an additional factor |¢|,
it is less singular than 7, in the sense that for o € N% and (g, p) with |¢(v/2q)| > CR\/z

D3 (ro(vVq, vep)) = O(R™II71e™4/2), D (r(VEq, Vep)) = O(R™1*).

We begin with r;. We write r; = II7r{IIT 4+ IIT7 11~ and work successively with
each part. Thus, without loss of generality, we suppose that II"mIIT = r{. The
strategy is to reuse the Schrédinger equation, since

ry=T"mIl" = ﬁ[’”lave(@] = ﬁ[rlaTJr 3>+ V1.

With the scaling operator T' defined in (4.1), we obtain

op. (x(t)r1(,9)) = T"0y ([ 52%5 r1(VEa, VED), 27 + 5lpf? + V(vE0)|) T.

Then, by the symbolic calculus of Lemma A.2,

oy (|52 8%; 71 (VEa, VEp), e + 5Ip* + V(vEq)] )

= [ops (2% 11(VEa. VER) ) cop1 (67 + 5pI2 + V(VEa)) | + 0py (rat, Vg, VEp).
where

ra(t, Vg, VEp) = (871 (VEg, VEP) + e3P 11 (VEq, VEP) + x(t)7a(VEg, vEp)
with

P (Ve VEp) = 3 { e m (Vea. VER) . 5ol + V(VED) |
2 {5101+ V(VED)  qppe i (VEa Vap) )

The term 75(1/€q, /€p) contains the commutator of second derivatives in p of the
symbol |¢(v/2q)| 71 71(\/2q, v/€p) with second derivatives of V(1/gq) and a linear com-
bination of derivatives in (g,p) of order greater than or equal to three. Hence, by
Lemma A.2

op. (x(t)72(q,p)) = O(eve) + O(e/R*) in L(L*(R4Y)).
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It remains to study 7;. Since derivatives in p of 1 (1/€q, /€p) generate powers of /g,
the bracket with V(y/eq) gives

op: (x(t) { sty (Ve van), V(VEQ) }) = O(F ) in LR,

For the bracket with £[p|* one has
{mﬁ(ﬁ% \@p) s %\p|2}

€ d .
= gtz VEP- Va (ri(Vea, Vep) + § HGIEED 1 (Veg, Vep).

Both terms give a contribution of order O(1/R?), but since they are not purely off-
diagonal, the preceding commutator argument cannot be reiterated. Hence,

’

op. (X()71(4,0)) = O() +O(% ), op. (g5 mla.p)) = O(F)
in £(L?(R4*1)), and we have proven one part of the lemma.

In the case of the more singular symbol rg, the previous strategy results in an
error of size

1/Ryz (O(eve) + O(e/R*) + O(v/R) + O(1/R?))
= 0(Ve) + O(1/R?) + O(1/ (R’ /).

However, the special form of 7 allows us to ameliorate the term of order O(1/(R3/€)),
which stems from the Poisson bracket with %|p|2. Indeed, we observe that

p- VI (q) = g500m Ve(6(a)) , [Ve(6(a)), Ve(dd(g)p)]] -

Therefore, the bracket with £|p|? in the 7 term writes as

{ etz b VEa, VD) [V (V20), Vildo (o)) 5inl)
= e [Vi(6(VEa)), Ge(VEg, Vep))]

for some matrix-valued function G, with
Dg(G-(Veq, Vep)) = 0(1),  Dy(Ge(vzg,vep)) = O(e)/?)
for all @ € N?. We then set
73(Veq, Vep) = prozaw Ve(@(Veq), Ge(veq, Vep)]
— — [t G- (Ve Vap) . 7+ 1ol + V(vEq)
and obtain
(0. (x(1)73(a:P) %, ¥°) L2 (masr)

= (T*Opl ( [% Ge(vVeq,vep), em + 5lpl* + V(\/Eq)D Ty* w)

L2 (Ra+1)
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= 2 (Top, ({ 5297 G-(Vea. Vap) e + bl + V(VEQ } ) Tue , v°)

L2(Rd+1)

- (T opl({sw P+ V(VED) s 5 Ge(VEa, Vap) }) T, vF) |

2(Rd+1)
+ (T Opl(r4(\[Q7 \[p))Tws ws)Lz (RA+1)

where 74(\/2q, v/ep) contains the commutator of second order derivatives in p of
ex(t)]o(vzq)|~* Ge(v/2q, v/ep) with second derivatives of V(1/q) and a linear com-
bination of higher order derivatives in (g, p). Hence, op,(74(qv/€, pve)) = O(e/R?) in
L(L?(R4*+1)). Since the Poisson brackets give a contribution of order O(1/(R?\/2)) +
O(1/R*), the other part of the lemma is proven, too. |

5. Transitions near the crossing. The microlocal normal form used for prov-
ing Proposition 2.4 holds locally near some point (qo, to, po, 7o) € R??*2 of the phase
space of space-time, which is a crossing point in the sense that ¢(go) = 0 and
70+ v(q0) + 5Ipol* = 0.

5.1. Localization in energy. For localization in energy, we consider a cut-off
function § € C2°(R), 0 < 6 < 1, with 6(z) = 1 for |z| < L and 6(z) = 0 for |z| > 1.
We set

A (g, p,7) =7+ v(q) + |p|* £ |6 (q)|

and crucially use the following lemma for suitably reformulating Proposition 2.4.
LemMA 5.1 Let ¢ € C2(R*H.C). If co r(t, g, p) = c(t,q.p, ¢(a)/(RVE)) is
supported in {|¢| > £\/c}, then

tr We (4 () (g, p)ce,r(t, ¢, p)ITF (q)dgdpdt = O(4z) + O(Ve)

R2d+1

+ (op (cert 0, )0 (22 ) T () w7, %)

L2(Rd+1) ’
Proof. Writing 1 — 6(u) = u G(u) with G € C*°(R), we have
A (ap.7) 1\t A% (@.p.7)
1= 0227 = 2o nE (0 )G ().

We now argue as in section 4, using the estimates on IIT and A*(g,p, 7)II*(q) =
II*(g) (7 + 1|p|* + V(¢)). The symbolic calculus of Lemma A.2 yields in £(L?(R?T1))

op. (cerltqp) (1 -0 (2L ) ) I (@) = O(VE) +O(7h)

+
+ 7z 0. (e,r(t,0.9)G (AL ) 1% (q) ) op. (7 + S1pl + V(@) -

Indeed, the derivatives of the projectors are less harmful than in section 4, since they
are divided only by 1/ and not by . Since )¢ solves the equation, we obtain

(op. (ceun(t.a.p) (1 - 0(222 ) ) 1% (q) ) ¥, 0¥) —0() +OWE). O

L2(Rd+1)




PROPAGATION THROUGH GENERIC LEVEL CROSSINGS 121

By Lemma 5.1, we introduce the energy cut-off on both sides of equality (2.4),
adding an error of order O(1/R?) 4+ O(y/€). Then, the left-hand side reads

[ XOW W O) a0 (0.0) T (dadpdt = O(7) + O

+ (op. (az(0.0)x(0) 0 (P2 ) 1¥(9)) v 0

L2(RA+1)
Using the notation
f(;t(Qaphj) = 1{j::|:1}(.7) aj(qvp)’ (qapaj) € Rid7

for a V-diagonal matrix-valued symbol a, the action of the semigroup on afz can be
written as

+ +
(L2 mat )@, p) I (q) = (L2 o fE (g, p, +) T (q).

Then, the right-hand side of (2.4) is

t /R+ X(t+ 8E) WE e (1)) (0, p) (£ pat,) (g, p) T (q) dg dpt

= (ove (x(t + 80 0 (X822 ) (L2 ik o, )T (@) 0, °)

L2(Rd+l)
1
+0(3=) + O(Ve),

and the proof of Proposition 2.4 reduces to showing that

(op- (a7 (@ px(00 (X422 ) 1¥(q) ) w* , )

L2(Rd+1)

= (ov. (e + 8)0 (X LLD) (L2120, ) TTH(@)) 07, 0°)

L2(Rd+1)
(5.1) +0(2) + O(R*VE) + O(V7| 1ng|)+o(R+ﬁ).
For points (q,t,p,7,j) € R?*2 x {£1}, we consider random trajectories
Q—ES%t,p,T,j) [0, +00) — (R2d+2 x {+1})
with ’Z;(}’t’p’m)(r) = (¢(r),r +t,p(r),7,j) as long as (¢/(r),p’(r)) € Se,r and a

jump from j to —j with probability T¢(¢*, p*), whenever (¢’(r),p’(r)) hits S r at a
point (¢*,p*). We keep the notation (L] p),>o for the associated semigroup and set

+ T
(5.2) ¢ pla.t.p.7) = a4 (a.0) x(1) 0 (27,

Since 7 +— A(¢*(r),p*(r),7) is a constant function, and since within [t — #;, ¢ — #]
all involved random trajectories perform a jump, we have

5} Tepr t
(LIRS D@t p,m+) =x(t+6t)9(%fg)) (L2 pfd )(ap,+),

— + T + —
(‘Cng CE,R)(Q)tpa T, +) = X(t +6t)0(%\’/%)) (‘CS)R aLz)(qap7+)-
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With this notation, (5.1) and, consequently, Proposition 2.4 are equivalent to

(op- (£ rla:t.p () ) 0, )

L2(Rd+1)

= (o, (€55 a4 (@) 7, 0°)

L2(Ra+1)
(5.3) +O(1/R?) 4+ O(R3*\/2) + O(Ve|Ine|) + O(1/(R5\/E)).

+
We emphasize that the symbols c: r and ngR fcis . are compactly supported inside
the annulus {£./z < |¢| < R\/e} at a distance of order R/z of J¥°U!, where

J:I:,in/out — {(q,t,p, 7_) c R2d+2 | (q7p) c ]W:i:,in/out7 T—I—U(q) + %|p‘2 + ‘(b(q” _ 0}

denote the submanifolds, which consist of all Hamiltonian trajectories entering (re-
spectively, leaving) the crossing set.

5.2. The normal form. Let us first recall some basic facts about canonical
transforms and Fourier integral operators. The phase space T*R*! = R4+l x Rd+1
is a symplectic space, once endowed with the symplectic form w = dr A dt + dp A dg.
A canonical transform s : T*R4*t! — T*R9+! is a change of coordinates, which
preserves the symplectic form. With a canonical transform &, one associates a unitary
operator U : L?(R%*1) — L2(R¥*+!) such that for all a € C3°(R?4+2, CNOXN ()

U*op, (a) U = op,(ac k) + O(?)

as bounded operators on L?(R¥*1); see, for example, section 2.2 in [7]. The operator U
is a Fourier integral operator. The last equality extends to symbols of the form

bE’R(q’ t’p’ T) = b(q7 t7p> T, f}({?/}?)

with b € C2°(R243 CNOXN©) and f € C>°(R?%, R) according to

(5.4) U*op, (be,r) U = op.(be r o k) + O(Ve).

The proof of this statement follows the proof of Lemma 2 in [7]: one uses symbolic
calculus for the commutator of a usual semiclassical pseudodifferential operator and
a two-scale one of the form op,(be r), hence the gain of \/e.

We shall crucially use the following microlocal normal form result, which for
codimension two and three crossings is proven in [1, 2], however, without the explicit
equations (5.6)—(5.9). These equations, including the normal form for codimension
five crossings, are provided in Theorem 1 and Proposition 4 of [6].

THEOREM 5.2 (see [6]). We consider py = (qo,to,Po,To = —v(q0) — 3|po|®) such
that ¢(qo) = 0, dé(qo)po # 0, and d¢ is of mazimal rank near qo. Then, there exists a
local canonical transform k from a meighborhood of py into some neighborhood 2 of 0,

K (q7t7p7 T) = (2357<70)7 H(pO) =0.

There exist a Fourier integral operator U associated with x~' and an invertible matriz-
valued symbol A. = Ag + €Ay + 2Ag + -+ such that v° = U*op.(A:) " *° satisfies
for all p € C°(Q,R)

(5:5) 0P () ope (=0 + Vi (8,2 + (2, () v° = O(e™)
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in L2(R4TY), where z = (Z,2') € R* with 2 € R*~! and . = 7-(z,() is a vector-valued
symbol ve = vo + ey1 +2y2 + - -- € REL with

Ye =0 for £=2, Ye = O(|2|?) for £ > 2.

Z € R! contains the coordinates of the vector |d¢(q)p|~**m¢(q, p)d(q) in an or-
thonormal basis of the hyperplane normal to dg(q)p up to O(|¢(q)|?), while

s = —|dp(q)p| 2 GALE - $(g) + O(s + 0% + |7]),
(5.6)
o =1de(q)p| ™ (7 + p* + v(q)) + O(s* + o2 + |2%).

Moreover,

(5.7) JE"={cFs=0,2=0,5<0}, JEU={o+5=02=0,s>0},
and there exists v € {—1,4+1} such that for all p = (q,t,p, ) with k(p) = (2,8,(,0)
(58)  Al(o) (r + LpP + V(@) Ao(p) =7 (—0 + Vals, 2 +70(2. )

(5.9) A(p)Ve(eamstey ) Aole) = v Vi 0. ) + O/ + 52 + 2.

We denote by

I1*(z,5,() = % <Id F m‘/g(s,é + ’YO(%O)) )

M (2,8,C.0) = =0 F /s + |2 +0(2, Q)2

the spectral projectors and the eigenvalues of —o + Vi(s, 2 + 70(2,{)). Due to the
relation JEn/out C {—o 7 \/s2+ |Z[2 = 0, = 0}, the labeling of II* coincides on
JEn/out with the one for II+.

PROPOSITION 5.3. There exist functions k* such that if k(q,t,p,7) = (2,5,(,0),
the projectors TI* and 1% are related by

(5.10) I%(2,5,¢,0) = (kX AII* Ag) (¢,t,p,7) on BF = {A¥ =0}.

If S ={¢(q) =0, 7+1|p|*+v(q) = 0}, then klg =kig=e#0and (e AjAo)s = Ids.
Moreover, on ¥* N {0 < |¢| < RV},

(5.11) T (2, 5,¢,0) = e(AGTT Ao)(q,t,p, 7) + O(RVE).
Proof. For convenience, we set
P=71+ %|p|2 + V(Q)a -ZS =—0+ W(sv zZ+ ’Y(](Za C))

By (5.8), the use of determinants gives Xt U X~ = s~ 1({ T = 0} U {A~ = 0}).
Considering the equations of J*#/°ut the only possibility is

o =kt (M =0}).
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Therefore, for p € ¥ we have

YP(r(p) = y(A\"IT7)(k(p)) = (A5PAo)(p) = (A~ AT Ag)(p)-

The same argument for ¥~ gives (5.10).
The fact k:"g = kl_s comes from the precise analysis of the Hamiltonian vector

fields associated with the eigenvalues A*. Let p € S. We find in [6, section 5] that if
H(p) = lim Hy:(22(q,p)), H'(p) = lim Hys(®%(q,p)),
then there exists a nonzero function e such that
H =¢e(0s +0,), H =¢(0s—9,) on S.

Since A* = 0 and A* = 0 on S, we have k"g = kl_s = e. Next, we consider the limit

of the projectors IT* along outgoing trajectories,

IE(p) = lim 1T (% (q,p)) = 3 (Id?w(%)) :

a—0~

Then, (5.10) gives on S
eAjAg = eAj (I +T15) Ag = (ITF + 117 ) ok = Td.

Finally, let p € ©*. By relation (5.8), we have for any vector w € CN®) that
w € Ker P(r(p)) if and only if Ao(p)w € Ker P(p). Moreover, Ker P(p) = Ran I+ (p)
and Ker P(k(p)) = RanII™(x(p)). We therefore obtain

Ran IT* (k(p)) = Ran (Ag I+ 4g)(p).
Since /€Ay is unitary on S, we have
(Ag I Ag)*(p) = (A 'TIF Ag)(p) + O(RVE)

for p € St N {|¢| < Ry/E}. Since the two projectors It (k(p)) and (Ag Tt Ag)(p)
have the same range, while one of them is orthogonal and the other orthogonal up to
O(R+/e), they coincide up to O(R+/€). The same argument holds for p € ¥, and we
have proven relation (5.11). ad

As the next step towards proving the claimed identity (5.3), we perform the
canonical change of coordinates for arriving at the microlocal normal form.

PROPOSITION 5.4. Let cgi,R € C(R%4+2 C) be the functions defined in (5.2) and
v® = U*op.(A.) 1. Denote

(5.12) T= (%) = exp(—Z|]?).
Then, there exist functions b+ € C*(R%4+2 C) and 81i € R, such that b*(z,s,(,n)

and b*(z, sli + s,¢,n) are compactly supported in {s > 0} and {s < 0}, respectively,
and satisfy

(op- (e nla.t . TIIT (@) ¥ (0, 1), ¥ (0,1))

L2
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— + zZ
= (op. (b (2:5,C. 552) ) (2 9). 032, 9) ), + O(RVE),

(op- (L2 FE (@, tp. 7, DT (@) 00 1), 4% (a0, 1)

L
= (op. (1= T2 @* (25 + 57, 7)) vi(z9), 08 (2,9)) |+ ORIV,

(op. (e pla-t.p. I (@) ¥¥ (0.8 0% (01))

2

= (ops (b_ (z7 s, ¢, Riﬁ)) vi(z,s),v5(z, s))L2 + O(RVe),

(op: (L2 fe. (@, tp. 7 O (@) 05 (0 1), 6% (0, 1)

L2

= (ops (ff(g) b~ (z, s+ s7,¢, %ﬁ)) vi(z,s),vi(z, s)) L + O(R3*\/e).

Proof. We prove only the first two equalities, since one deals similarly with the
other two. By symbolic calculus and the transformation property (5.4), the canonical
transform x~! of Theorem 5.2 acts as

(op. (e pla:t.p. I (@) ) v (0, 8), 0% (0,1)) |

2

= (opE (((CIRA3H+A0) o n_l)(z7s,§,0)) v°(z, ), vs(z,s)) , O(Ve).

L

The compactly supported function c: RO k1 is localized near JT°“!, that is, near

{oc+s=0,2=0,s>0}. The relation (5.11) between the projectors gives a function
b € C*(R24+2+¢ C) compactly supported in {s > 0} such that

(X pASTIT Ag) 0 £71) (2, 5,C, 0)

z At (z,s,¢,0 T
= b(2,5,¢.0, 752, 2RO ) T (2,5,0) + O(RVE)

= be,r(2,5,C, o)1 (2, 5,C) + O(RVE)

as functions in C2°(R??+2, C). Hence, we obtain

(op (e nlat.p, I (@) ¥5(a,1) . ¥°(a1))

Lo
= (0p: (berz,5. G I (2,5.0) ) v¥(2:5) L 0°(2,9)) |+ O(RVE).
For |Z| = O(R+/e) we have

fit(z,5,¢) = (8 1(21) +O(RVE) in {s> 0},

(5.13) it (z,8,¢) = (151 8) +O(RVE) in {s <0},
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and therefore

(op5 (bs r(z,s,¢, ) (2,8 C)) “(z,8), vs(z,s))
= (op, (be,r(2,5,¢,0)) v5(2, 5) , v5(2,5)) 12 + O(RVE).

We now remove the o-dependence of the symbol. Taylor expanding around o =
—/82+ |2+ 70(2, ()[?, we write

L2

bE,R(Za S, C?U) =b (Z7 S, Ca _\/52 + ‘2 + 70(‘27 <)|27 Riﬁa O)

2 zZ AT (z,s,0
\[)\ (S’Z’U’C)G( ’Sacao—viR\fg?L R’\[’ E7q)>
with G S Cc (R Z,C). Since

A (2,8,¢,0)I (2,5,¢) = 1T (2,5,0) (0 — Vils, 2 +70(2,C))

and since v¢ solves the Landau—Zener-type problem (5.5), an argument analogous to
the proof of Lemma 5.1 yields

(0. (ber(2,5,C,0)) v5(2,5) , v5(2,5)) 12 = O(32) + O(Ve)

+ (op)3 <b(z,s,(, —V/82 + 12+ 70(2, 0%, R%,O)) v5(z,5), v5(z, s))L2 .
Setting b7 (2,s,(,n) = b(z,s,¢, —s,7,0), we obtain

(op- (e nlat.p, I (@) ¥ (0,) . ¥°(a1))

L2

= (ops( (2 s, ¢, Rf)) v5(z, 8) , v%(z,s))L2 + O(RVe) + O( ).

Next, we focus on the second claimed identity, which contains nonadiabatic tran-
sitions. We have

(op. ((£2afE e tp.m I (@) 50 1) , ¥7(a.1))

L
= (op. (((£2Rf AT A) (7 (2:5,C,0),4) ) 0 (2,8) » 0(2,9)) |+ O(V2).
Let 7 (2 (r),s7(r), C*(r),o" (r)) be the Hamiltonian trajectory of
£ = 0N = Hdevo(z Q)(F +70(2,.0)) (8% + 12 +70(=, Q1) 72,
§=0,AT =1
{ = =0.X" = ="d.(Z + 02, ) +20(2 Q) (s + |2+ 0(=, Q) )72,
&= -0\ = —s(s* + |2 +70(2,Q) )2

with (2(0), s(0)
if sT(r.) = O]
(

,¢(0 )a (0)) = (2,s,(,0) = k(gq,t,p, 7). A trajectory jumps for r = r,
#(q)|?) = O(R2%¢). Then, o (r,) = O(R?¢) as well. Since

L (str)+0T(r) =0(z*) on Jt ={oc+s=0,2=0,s> 0},
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and since |Z| = O(R+/€) on the support of our symbol, we have
2t (r) =2+ O(RBSS/Z), sT(r)y=s+r,
(H(r) =C+O(RVe), oT(r)=—sT(r) + O(R%).

These asymptotics together with conservation of energy along Hamiltonian flows yield

zt(r ~'*'z"'r,s"'r,'*"r,a'*'r
(7 (), 5¥(1), (1), 07 (1), 2y, MO O 1 o)

= b(z7 s+nr¢ —(s+71), Rf/g, :w%if/g‘ﬂ) + O(Rye).
Jumps occur for |¢(q)| < Ry/e, that is, for
217 = [dé(@)p|~me(a, 0)o(q)|* + O(le(a)I)
= [de(a)p| " me(a, p)o(a)|” + O(RY/?).
Therefore, the transition rate 7(q, p) reads in the new coordinates as
T%(g,p) = exp(~Z|de(a)p| ' |me(q, P)(0))
= exp(—Z|2) + O(R*VE) = T° () + O(R*V2),
and there exists s{ € R such that

((ﬁngfctR)ASH—’_Ao) (K_l(zv S, Cv 0)7 +)

_ Te (s + £y 5 M(zs.60)) [+ 3

= (1 -T (z)) b(z,s—i—sl ,C—(s+s7), R—\/g,Ri\/g) I (z,5,¢) + O(R*Ve).
By the asymptotics (5.13) of II* above {s < 0}, we then get
(op- (((£2afe AT A) (7 (2,5,C,0),4) ) 07 (2,8) » v7(228)) | = O(RIVE)

TE (= z A (z,8,¢,0
+ (op5 ((1 — TE(z))b<z, s+ sf, ¢,—(s+ sli), e %)) vi(z,8),vi(z, s))L2 .
As before, we remove the o-dependence of the symbol and obtain

(ope ((£2asE g, tpm, A (@) ¥¥(a1) , 47 (a.1))

L2
= (opg ((1 - fa(z))b+ (z,s +s7,¢, Ri\/g)) vi(z,8), vi(zys))m + O(R3Ve). O

5.3. The transitions. It remains to analyze v® = U*op_(A- 1)y for proving
the equality of each pair in Proposition 5.4 up to an error of O(1/R?) + O(R3\/2) +
O(ye|Ilne|)+0O(1/(R5/2)), concluding the proof of our main result. We consider the
solution u® of

1d e
(5.14) e = < sld e

1> g . £
JEG* 51d> U =0 = Ys=0)
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where G is one of the operators

G2 = Tz (Rf) Z, Gi=¢ (W) (Zy +iZ),

. ( . )<21+i22 Z3+z'Z4)
ST VEP\RE) zivizy - iz,

with Z = op.(Z + 7:(2,¢)) and ¢ € C°(R*",R). In all three cases, G is a bounded
operator on L?(R%) with ||G|| = O(R), and we have

=]z sy = O().

The following Landau—Zener-type formula is given in Proposition 7 of [8], up to the
explicit error terms.

PROPOSITION 5.5. Let u® be the solution of (5.14). There exist vector-valued
functions of = (a5,a5), w® = (W§,ws) € L*(R4,CNO) such that for any func-
tion x € C®({x € R | |z| < R?},R) the families (x(GG*)a5)es0, (X(G*G)a5)e>o0,
(X(GGH)wS)es0, (X(G*G)wS)eso are bounded in L2(R?, C) and satisfy

F GG*

ki(2) + O(R* V),

S

(GG ) (2, 8) = (GG )i/ )| =

S G*G

S

MGG (z8) = X(GTG)e /N 57 k5(2) + O(RPVE)

in L?(R%, C), where kS = a5 and k§ = w5 for s <0 and s > 0, respectively, j € {1,2}.
Moreover,

(5.15) (wﬁ) _ ( a(GGY) —b(GG*)G) <a§>
’ w$ b(G*G)G*  a(G*Q) as
with
a(h) =e ™2 b(\) = BTN 2mmVAD(1 43 sinh ().

Proof. Lemma 7 in [8] is the crucial step in the proof of Proposition 7 for which
we have to check that the leading order error estimate is indeed O(R?/€). For this,
we turn to the explicit calculations in the proof of Lemma 11 in [7] and study the two
integrals

Ay = s 1Fin"/2g—is?/2 / )2(\/5— - Z) ‘\/5— \/ 4~ %
R

in? o —is — %
By = 't/ / (1= X(y)) e~ 5" A+ =2V |y in* /2y,
R

in?/2

eiz
- dz,
V2-5z

where ¥ € C°(R,R) is a function with 0 < ¥ < 1, Y(y) = 0 for |y| > v/2/2, and
X(y) =1 for |y| < v2/4. The phase function y — —3(1 + y? — 2v/2y) of By has the
stationary point y = v/2, and Taylor expansion of y  In|y| around y = v/2 yields

By = me—iﬂ'/42i7]2/481'712/262'52/2 + 0(7728_2),
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while integration by parts gives
Ag=0(n*s™1)

as 7,8 — o0o0. Since the asymptotics of the other relevant integrals can be ob-
tained analogously, the claimed error estimates follow by setting s = 0(5*1/ 2) and
n = O(R). O

For implementing these Landau—Zener asymptotics, we need the following addi-
tional relations, which are literally contained in the proofs of Lemmas 8 and 9 in
[8].

LEMMA 5.6. For any x € C°(R,R) and b € C(R?*HNO-1 C), we have

‘ 2

(L) = X(G6) +0(vB) = X(G" ) + O(V2),

G*G

+i%s Fis

S

Ve

S

Ve

0p5<b(z,§, #)) :0p6<b(z,§, #)) + O(ve| Inel).

Now, we are ready to conclude the proof of Theorem 2.2. We discuss only the first
pair of terms in Proposition 5.4, since the other pair can be dealt with analogously.
We set

I;R = (ops (bJr (Z,S,C, RL\/E)) u%(z,s),ué(z,s))m ,
IE,R = <0p€((1 — ZN“E(Z))b+ (z, s+st,¢, ﬁ)) ui(z, s),ui(z, s))LQ.

By Lemma 5.6 and Proposition 5.5, we have

1 = (op (0% (2.5, 752 ) MG G5 (2, 8). X(G G (2,5) ) +O(V7)

) 2 _Z-G;G
= | op. (b+ (z, 5, ¢, ﬁ)) e i NG w5 (z)
L2

+O(R*\/?)

= (op- (07 (= 5. ¢ mz) ) 30, 45(2) ), + O(R?VE) + O(Va| el

_iG*c
s

Ve

= (op: (5% (225 + 57.¢. 752 ) w5 (2),05(2)) , + O(BAVE) + O(vE| Ine)

because si = O(R+/2) and analogously

12 = (op. (1= T=(2)) 6" (2,5 + 51 . ¢ 752 ) ) @i (), 0i(2)) |

+O(R*V/e) + O(Ve|Inel).

By the scattering identity (5.15), we have w§ = b(G*G)G* a5 + a(G*G)aj and
1 = (o0 (0% (25 + 57, ¢, 577 ) ) GG G)G 05 (2) + alG*G)a5(2))

b(E" GG ai() + a(GG)a5(2)) |+ O(R*VE) + O(vE| Ine]).
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Since the wave function 1°(gq, t) is of order O(1/R?)+O(\/g) +O(1/(R®/€)) near the
set J7"m ={o+s5=0,2=0,s <0}, we have

(vg(o )> = OP¢ (ﬁf(z, S, C)) ve(2,8) + O(RV/2)

Z, 8

= O(1/R?) + O(RVz) + O(1/(R° V)

as functions in L? (R41) localized near J ™. The preceding arguments expressing
Il p and I?  in terms of o and w® then yield

a(G*G)as(z) = O(1/R?) + O(RAVE) + O(ve| ne]) + O(1/(R*VE))
near J ", and hence

1L = (op (0% (2 + 516, 72 ) ) WG G)G a5 (), (G G) G ai (2)) |

+0(4%) + O(R2VE) + O(Ve| Ine) + O(R;ﬁ).
Lemma 5.6 together with the relations G*b(GG*) = b(G*G)G* and
AP =1—e™

implies
GH(G*G) op, (b+ (z s+st,¢ W)) b(G*G)G ol ()
— GB(G*G)b(G*G)G* op, (b+ (z s+st,C, W)) af(z) + O(V7)
— GG*H(GGHH(GG*) op, (b+ (z s+ st,¢, W)) as(2) + O(v/3)
(516) = (1=T*(2)op. (b* (2.5 +57.C 552 ) ) ai(2) + O(VE)
and finally

Il g =12z + O(1/R?) + O(R*V2) + O(Ve|Ine|) + O(1/(R®VE)).

6. Eigenvalues of multiplicity two. We have assumed that the matrix-valued
observable @ is V-diagonal in the sense that a = a™IIT + ¢~ I~ with scalar-valued
functions a*. The more natural assumption, that a commutes with V,

a=I"allt + I all™,

does not change the situation in the case ¢ = 2, 3 but enlarges the class of observables
for £ = 3',5. For observables of this form, one has to modify the Markov process to
account for a polarization effect. The state space requires an additional component
w € C*, and when the deterministic flow <I>§ (¢,p) hits the jump manifold S; g in
a point (¢*,p*) a more general branching occurs. The state (¢*,p*,j,w) changes
with probability T¢(q*, p*) to (¢*,p*, —j,w) and with probability 1 — T°(¢*,p*) to
(¢*,p*,3,R(q*,p*)w), where

_ me(q,p)(a)
R(q,p) = w(hﬁ(q,pw(q)l) )
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This phenomenon is also described in Theorem 1 of [5] for two-scale Wigner measures.
Our main result, Theorem 2.2, for the propagation of Wigner functions still applies
for the semigroup, which incorporates polarization.

Proof of Theorem 2.2 for a = I Tallt + II~all~ if £ = 3',5. Let us first prove
classical transport. We set AT = ITtTall* and focus on the + mode. We extensively
use IIT A+t = ATIIT = AT. The strategy is similar to the one of section 4, and we
have to focus on the Poisson brackets

AT (@.p), 7+ 3P +v(@) + Ve(d(@)} = 3{7 + 3lpI* + v(a) + Vi(¢(a)), AT (q,)}-
We set u(q,p,7) = 7+ 1[p[* + v(q) and write
{AT p} = ITH{AT, p}ITF + AT{ITY, p} + {117, u} A™.
We observe that
ro = AT{II, p} + {ITF, p} AT = —AT(V IIT - p) — (V,IIT - p)A*
can be treated as in section 4. Indeed, since AT commutes with V;(¢#), one has for

any matrix G that A*[Vi(), G] = [Ve(6), A*Cl, [Vi(@), GIA* = [Vi(6), GA*], and
consequently

ro = — g [Ve(®), [Ve(@), ATVe(dop)]] — qrips [Va(@), [Va(@), Ve(dgp)AT]]

= — [+ Vi), 5 [Ve(0), A Vadom)] | = |1+ Val@), 175 [Vel9), Vildap) 4]

The most harmful of the arising terms contains the brackets with %\p|2, that is,

Fo = — {411, i [Val@). A*Vildap)] | — {31p%, b [Vil@), V(dop) A*] |

Since the term containing the derivatives of V;(¢) vanishes,

_4|;5‘3 [‘/g(d¢p),A+Vg(d¢pﬂ - 4|;5|3 [Vg(dd)p),Vg(d(bp)AJj =0,

there is a matrix-valued function G, with suitable bounds on its derivatives, such
that 79 = |¢|=* [Vi(¢), Ge], and hence the other arguments of Lemma 4.1 apply for
the analysis of rg.

For the brackets with the matrix part, we write

AT Vi(9)} — 5{Vi(9), AT} = I {AT, [g[}IIT + || ({AT,1IF} — {IIF, A7 }).
The second part,
r o= |¢| ({AT, I} — {IIT, AT}) = |¢| (V, AT - V IIT 4+ V, IITV,AT),

is off-diagonal with respect to V, since V,A" = [ITV,AT = V,ATII*, [IT1T = 0,
and IV, I+ = 0 imply

II* (V,A" -V IIT + V,IITV,AT) II* = 0.

Hence, Lemma 4.1 applies.
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The importance of R(q,p) for the nonadiabatic transitions becomes clear, when
recasting (5.16) in the previous section as

<g C(T;*)b(G*G)ops(b+<z,s+sf,C,Rf/g))b(G*G)(C(;* g) (O‘fo(z))
=V (0, %)(G*G)% b(G*G) op, <b+ (z,s +s7,¢, #))

xb(G GGG V7 (0, ) (O‘i('z)) +O(R)

=(1-T(2)V; (07 é) opg(b‘|r (z,s +57,¢, Ri\/g)) Ve (0’ I%:I) ( éz>> + O0(Ve)

and observing that the normal form transformation relates V;(0, 2/|2|) and R(q,p) by
identity (5.9) of Theorem 5.2. 0

Appendix A. Weyl calculus. For the convenience of the reader, we formulate
the key technical lemma of the calculus of Weyl quantized pseudodifferential operators.

DEFINITION A.1. A smooth matriz-valued function a € C>®(R%d,CN*N) is of
subquadratic growth if for all || + |3| > 2 there exists Co 3 > 0 such that

|0808alloe < Ca

LEMMA A.2. Let a € C°(R*,CN*N) and let b € C>®°(R??,CVN*N) be of sub-
quadratic growth. Then, for all ¢ € C* (R, CN)

opy(a)op; (b)Y = (opy (ab) + 5;0p; ({a,b}) + opy(c) + opy (1)) ¢,
with {a,b} = 0padyb — 0qa0pb the Poisson bracket, ¢ a linear combination of
0q;.p; 0 0g; p, b, 83], a 5‘; b, 82_7, a (’9;, b,
and r € C*°(R??,CN*N) such that

Ni(r):= Sup [|0500r]oc < Cr S (Nm(D?a) Ny (D))
o] +[8| <k mtm/=k

for all k € N.

For a proof of this classical lemma, the reader can refer to [15] or to [3]. The
theorem of Calderon and Vaillancourt implies that op,(r) is a bounded operator on
L*(R%,CV).
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Abstract. We consider a hyperbolic system of three conservation laws in one space variable.
The system is a model for fluid flow allowing phase transitions; in this case the state variables are
the specific volume, the velocity, and the mass density fraction of the vapor in the fluid. For a class
of initial data having large total variation we prove the global existence of solutions to the Cauchy
problem.
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1. Introduction. We consider a model for the one-dimensional flow of an invis-
cid fluid capable of undergoing phase transitions. Both liquid and vapor phases are
possible, as well as mixtures of them. In Lagrangian coordinates the model is

Vg — Uy =0,
(1.1) up +p(v, Nz =0,
>\t = 0

Here t > 0 and = € R; moreover, v > 0 is the specific volume, u the velocity, and
A the mass density fraction of vapor in the fluid. Then A € [0, 1], with A = 0 char-
acterizing the liquid and A = 1 the vapor phase; the intermediate values of A model
the mixtures of the two pure phases. The pressure is denoted by p = p(v, A); under
natural assumptions the system is strictly hyperbolic.

This model is a simplified version of a model proposed by Fan [13], where also
viscous and relaxation terms were taken into account. The model is isothermal (see
(2.1) below); in the presence of phase transitions this physical assumption is mean-
ingful for retrograde fluids. A study of the Riemann problem for a 2 x 2 relaxation
approximation of (1.1) has been done in [10]. We focus here on the global existence
of solutions to the Cauchy problem for (1.1), namely, for initial data

(v,u, A\)(0,2) = (vo(x),uo(x),)\o(m))

having finite total variation. This problem is motivated by the study of more complete
models, where (1.1) is supplemented by source terms.

The problem of the global existence of solutions to strictly hyperbolic system of
conservation laws has been studied for a long time; see [9, 11, 24, 25, 26] for general
information. If the initial data have small total variation, then the Glimm theorem
[14] applies; we refer the reader again to [9] for the analogous results obtained by a
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wave-front tracking algorithm as well as for uniqueness and continuous dependence of
the solutions on the initial data.

Some special systems allow, however, initial data with large total variation. For
the system of isothermal gasdynamics Nishida [19] proved that it is sufficient that
the variation TV (v,,u,) of the initial data is finite in order to have globally defined
solutions. This result was extended by Nishida and Smoller [20] to any pressure law
p=k/v7, v > 1, provided that (v — 1)TV (v,,u,) is small; related results are in [12].
For the full nonisentropic system of 3 x 3 gasdynamics, where p = kexp(”—l_%ls) Jv?Y
and s denotes the entropy, Liu [17, 16] proved the global existence of solutions if
(v = 1)TV(vo, po) is small and TV(s,) bounded. Temple [27] and Peng [21] obtained
similar results. All these papers use the Glimm scheme. Analogous results making use
of a wave-front tracking scheme have been given recently by Asakura [4, 5]; we point
out that the use of wave-front tracking schemes in case of data with large variation is
far from being trivial, and a deep analysis of the wave interactions is required. Very
general results can be proved for systems with coinciding shock and rarefaction curves
[8]; however, system (1.1) is not of this type.

In comparison with the above systems of gasdynamics, in (1.1) we keep a ~y-law
for the pressure with v = 1 but add a dependence of p on A: we then take p = a(\)/v
for a suitable function a. System (1.1) has close connections to a system introduced
by Benzoni-Gavage [6] and studied by Peng [22]; it seems, however, that the proof
in [22] is not complete. A comparison of these models is done in subsection 3.1. We
mention that the method of compensated compactness has also been applied to (1.1)
(see [15, 7] and [18, sections 12.3 and 16]) but for different pressure laws.

In this paper we prove by a wave-front tracking scheme the global existence of
solutions to (1.1) for a wide class of initial data with large total variation. We first
introduce a weighted total variation (WTV) of a(),); this quantity arises in a natural
way in the problem and also has an analytical meaning, being the logarithmic variation
in the case of continuous functions. We prescribe a bound, on WTV (a(),)); for the
variation TV (v,,u,) there is not such a bound, but, roughly speaking, the larger
TV (vo, to) is, the smaller WTV (a(A,)) must be. An important point is that we give
explicit expressions for these bounds; then our results are qualitatively different from
some of those quoted above, where a generic smallness is required.

The plan of the paper is the following. The main result is stated in section 2,
Theorem 2.2. The Riemann problem is reviewed in section 3 together with related
results; proofs have been given in [2]. The definition of the algorithm is in section 4.
The core of the proof is section 5—where interactions are studied in detail—and
section 6—where we prove the convergence and consistence of the scheme. A careful
analysis is needed due to the presence of large waves.

The paper is completed by two appendices. In the first one we prove the main
result on the WTV. In the second we study the interaction of two shock waves to the
light of section 5; namely, we look for precise bounds of the damping coefficient that
controls the reflected wave produced in the interaction; we think that this analysis is
interesting on its own. Good reading!

2. Main results. We consider the system of conservation laws (1.1). The pres-
sure is given by

1) o3 = O,

where a is a smooth (C1) function defined on [0, 1] satisfying for every A € [0, 1]
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(2.2) a()\) > 0, a(\)>0;

see Figure 2.1. For instance a?(\) = ko + A(k1 — ko) for 0 < ko < k1. As a consequence
of (2.1) and (2.2) we have, for every (v, A) € (0, +00) x [0,1],

(23) p> 07 Do < Oa Doy > 07
(2.4) pA >0, Pux < 0.

Remark that assumptions (2.3) and (2.4) are analogous to those usually made on the
pressure in the full nonisentropic case [17], the entropy replacing A.

0<A<l1

v

FiG. 2.1. Pressure curves as functions of v.

We denote U = (v,u,\) € Q@ = (0,+00) x R x [0,1]. Under assumptions (2.1)
and (2.2) the system (1.1) is strictly hyperbolic in the whole © with eigenvalues
e1 = —/—pu(v,A), e2 = 0, e3 = /—py(v,A). We write ¢ = \/=p, = a(A)/v. The
eigenvectors associated with the eigenvalues e;, i = 1,2,3, are r; = (1,¢,0), ro =
(—px,0,py), r3 = (—1,¢,0). Because of the third inequality in (2.3) the eigenvalues
e1, ez are genuinely nonlinear with Ve; -r; = p,,/(2¢) > 0, i = 1, 3, while es is linearly
degenerate. Pairs of Riemann invariants are By = {u — a(\)logv, A}, Ra = {u,p},
R3 = {u+ a(N) logv, A}.

We denote by TV(f) the total variation of a function f. In the case f : R —
(0, +00) we define the weighted total variation of f by

(z7) = f(zj-1)]
(x5) + f(zj-1)

WTV(f) = 2supi |;

j=1

where the supremum is taken over all n > 1 and (n + 1)-tuples of points x; with
ZTo < X1 < +++ < . This variation is motivated by the definition (3.6) of strength for
the waves of the second family. If f is bounded and bounded away from zero, then

1 1

TV(f).

PROPOSITION 2.1. Consider f : R — (0,400); then
inf f
sup f
Moreover, if f € C(R), then WIV(f) =TV (log(f)).

(2.5) TV (log(f)) < WTV(f) < TV (log(f)) -
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The proof is deferred to Appendix A. In (2.5), in the inequality on the right, the
strict sign may occur if f is discontinuous; see Remark A.1.
We provide system (1.1) with initial data

(2.6) U(x,0) = Us(x) = (vo(), uo (), Ao())

for € R. Denote a,(x) = a (Ao()), po(x) = p (Vo(), Ao(x)); remark that inf a,(x) >
a(0) > 0. The main result of this paper now follows.

THEOREM 2.2. Assume (2.1), (2.2). Consider initial data (2.6) withv,(z) > v >0
for some constant v and 0 < A\,(xz) < 1. For every m > 0 and a suitable function
k(m) € (0,1/2) the following holds. If

(2.7) TV (log(p,)) + infla

(2.8) WTV(a,) < k(m),

TV (1) < 2(1 - QWTV(aO))m,

then the Cauchy problem (1.1), (2.6) has a weak entropic solution (v,u, X) defined for
t € [0,400). Moreover, the solution is valued in a compact set of Q, and there is a
constant C'(m) such that for every t € [0, +00)

(2.9) TV (v(t, ), u(t, ) < C(m).

The function k(m), whose expression is given in (6.22), deserves some comments.
The interaction of two waves «, o’ of the same family 7 = 1,3 produces a wave (3 of
the same family ¢ and a “reflected” wave é of the other family j (j = 1,3, j # ¢). For
a suitable definition of the strengths of the waves we prove that |§| < d-min{|«|, |o/|}
for a damping coefficient d < 1 depending on « and o'; see Lemma 5.6. The function
k above depends essentially on the supremum of such coefficients d; we prove that
k(0) = 1/2 and that k(m) decreases to 0 as m — +o0. In particular then WI'V(a,) <
1/2. The assumptions (2.7), (2.8) read as analogous to those in [20]: the larger m is,
the smaller k(m) is, and vice versa. The occurrence of a possible blow-up when the
bound on WTV(a,) does not hold is an interesting open problem.

The variation of A, appears both in condition (2.7), because of p,, and in (2.8).
Using the definition of the pressure, we can replace (2.7) by the slightly stronger
condition TV log(v,) + 2TV log(a,) + ——TV(u,) < 2(1 — 2WTV(a,))m or even

inf a,

2m+1

TV log(v,) + TV (u,) < 2m (1 - TV(log(ao))>

1
a(0)
by making use of (2.5). In particular if A, is constant, we recover the famous result
by Nishida [19].

Clearly A(t,xz) = Ao(z) for any ¢ because of the third equation in (1.1); this is
why only v and u appear in the estimate (2.9). In other words system (1.1) can be
rewritten as a p-system of two conservation laws with flux depending on x, namely,
for the pressure law p = p (v, A\o(7)) = a® (\o(7)) /v.

The proof of Theorem 2.2 makes use of a wave-front tracking scheme where we
exploit the special structure of system (1.1) by differentiating the treatment of 1- and
3-waves from that of 2-waves. Our algorithm is a natural extension of that in [3],
where the system for A\, constant is studied, in the presence of a relaxation term.

Here we consider a linear functional as in [3] that accounts for the strengths of
all 1- and 3-waves, with a weight & > 1 assigned to shock waves; a crucial point in
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the proof is the choice of £ as a function of m. This functional differs from that in
[19, 4], where £ is missing and only the variation of shocks is taken into account.
Moreover, motivated again by [3], we do not introduce a simplified Riemann solver
for interactions between 1- and 3-waves but only for interactions involving the 2-
contact discontinuities. The interaction potential then uniquely considers interactions
of 2-waves with 1- or 3-waves approaching it.

System (1.1) can be written in Eulerian coordinates. Denoting p = 1/v the density,
the pressure law becomes p = a?(\)p, and (1.1) turns into

Pt + (pu) e =0,
(2.10) (puw)e + (pu® +p(p,N)), =0,
(PNt + (pPAU)2 =0.

A global existence result of weak solutions for (2.10) holds by Theorem 2.2 because
of [28].

3. Preliminaries.

3.1. Comparison with other models. In [6] many models for diphasic flows
are proposed and studied. In a simple case (no source terms, the fluid in either a
dispersed or separated configuration) and keeping notation as in [6, page 35], they
can be written as

(piR)e + (prRiwr) =0,
(3.1) (PgRg)t + (pgRytig)s =0,
(mBRyu + pgRyug)e + (o Riui + pgRguy +p)a = 0.

Here the indexes [ and g stand for liquid and gas. Therefore p;, R;, u; are the liquid
density, phase fraction, and velocity, and analogously for the gas; clearly R; + R, = 1.
The pressure law is p = a?p, for a > 0 a constant. Equations (3.1) state the conser-
vation of mass of either phase and the total momentum.

A case studied in [6, page 44] is when u; = u, and p; is constant, say, equal to 1.
The unknown variables are then R;, u, pg, and it is assumed 0 < %; < 1 and p, > 0;

as a consequence 0 < Ry < 1. Under these conditions, and still writing p; instead of
Py Ry

1 for clarity, we define the concentration ¢ = R 0 and deduce the pressure law
p= azclf}%l . We obtain exactly the model of [22]:

(Rt + (Riu)e =0,
(3.2) (Ric)t + (Rycu), =0,

(Ri(1+c)u)s + (Rz(l + c)u? +p)m =0.

This system is strictly hyperbolic for ¢ > 0. Remark that the three eigenvalues of
(3.2) coincide with w at ¢ = 0, and if ¢ vanishes identically, then (3.2) reduces to the
pressureless gasdynamics system. System (3.2) is analogous to (2.10), but the pressure
laws are different. In fact the variables p and A of (2.10) write p = p;R; + pg Ry and
A= % = 1%, and then R, = 1—=Np, pg = p_%(l_/\). If we sum up the first
two equations in (3.2), we find the first equation in (2.10); the third (resp., second)
equation in (3.2) becomes the second (resp., third) equation in (2.10). The choice

p = a’p, for the pressure in (3.1) gives p = azm.
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Notice that the pressure vanishes in the presence of a pure liquid phase, and this
is the main difference with (2.1), (2.2).

We now compare (2.10) and (3.2) in Lagrangian coordinates. Consider for (3.2)
the change of coordinates y = R;dx — Rjudt based on the streamlines of the liquid

particles (because R; = p;R;) [22]. Denote w = R% —-1= %-‘j = i. Then for p = %
system (3.2) turns into

Wi — Uy =0,
(3-3) (T+c)u)y +p. =0,

Ct =0.

It is more interesting, however, to consider for system (3.2) the change y = (1 4+
¢)Ridx — (14 ¢)Rjudt = pdx — pudt into Lagrangian coordinates based on the stream-

lines of the full density p. Let w be as above and v = - = %. Then system (3.2)
2 _c¢

becomes system (1.1) with a*(\) = a*3& = a®A. As a consequence the pressure

law p(v,\) = a?(\)/v does not satisfy (2.2). This difficulty can be overcome as fol-

lows. Fix any 0 < a1 < as < a and consider for ¢; = # the invariant domain
k3

{(Ri,u,¢):0 < ¢1 < ¢ < ep} [22]. In this domain 0 < by < A < by < 1 for b; = a?/a®.

If we denote pu = b/\zj)ll’ then the function b(u) = a(A\) = a(by + (b2 — b1)p) makes the

pressure law p(v, A) = b?(u) /v, with u € [0, 1], satisfy both conditions in (2.2).

3.2. Wave curves and the Riemann problem. In this section we recall some
results about the wave curves for system (1.1) and the solution to the Riemann prob-
lem; see [2] for more details.

The shock-rarefaction curves through the point U, = (v,, uo, o) for (1.1) are

(34) @,(v,U,) = (v,0:(v,Us), Ao) 1=1,3,

1 (v,U,) = { U+ a(Xo) - (V—0,)/y/V0s, v < w,, shock,

Uo + a(Ao) log(v/v,), v >v,, rarefaction,
bs(0,U.,) o — a(X,) log(v/v,), v < v,, rarefaction,
3\0,Up) =
° Uo — a(AXo) - (V—105)/+/VVp, ¥ >1,, shock,
2\
(3.5) P\, U,) = (vo a2((>\ )),uo,)\> , A €0,1], contact discontinuity.
a o

The curves ®,, ®5, and P53 are plane curves: ®; and P3 lie on the plane A = A,
while ®5 on u = u,.

DEFINITION 3.1 (wave strengths). Under the notation (3.4), (3.5) we define the
strength &; of an i-wave as

(3.6) a%log(jo), sgzzm, = oz (12).

According to this definition, rarefaction waves have positive strengths and shock waves
have negative strengths. Given the initial datum A, = A\, (z), denote
a* — ay

(3.7) a* = ilelﬁa()\o(x)) ;G = ;Ielﬂga(ko(x)) , lale=— .
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Then [a]. < % < 1 and |ea] < 2[al. < 2. Tt is useful to also define the function
(see [22])

(3.8) he) = € ife>0,
' &= sinhe ife<0.

Then we have for i = 1,3
(3.9) Di(v,Up) = 1o + a(No) - 2h(g;) .

At last we consider the Riemann problem. This is the initial value problem for
(1.1) under the piecewise constant initial condition

(3.10) (v,u, A)(0,2) = { (ve, ue, Ae) = Us ?f z<0,
(Vpy up, Ap) =U,  ifz>0
for Uy and U, in Q. We denote a, = a(\,), p, = a2/v,., and similarly for ay, py.
PROPOSITION 3.2. Fiz any pair of states Uy, U, in §2; then the Riemann problem
(1.1), (3.10) has a unique Q-valued solution in the class of solutions consisting of
simple Laz waves. If €; is the strength of the i-wave, i = 1,2, 3, then

1 p
fB-a1=5 log (;) ) 2(ach(er) + arh(es)) = up — ug.

Moreover, let v > 0 be a fixred number. There exists a constant C7 > 0 depending on
v and a(X\) such that if vy, v,. > v, then

(3.11) |€1|+‘€2|+|€3| §01|U5—UT|.

For the proof, see [2]. One can easily find that

1

2min{as, a,} fur = el

1
(3.12) lea] + les| < 5[log(pr) —log(pe)| +

1

2min{ay, a,} fur = el -

1
< 5\ log(v,) — log(ve)| + |log(a,) — log(ar)| +

We remark that for any Riemann data (ve,ue, A¢), (vr, ur, Ar-), the A component of
the solution takes value A\, for x < 0 and A, for > 0. The fact that the interfaces
between different phases are connected by a stationary wave can then be interpreted
as a “kinetic condition” [1], analogous to Maxwell’s rule.

4. The approximate solution. In this section we define a wave-front track-
ing scheme [9] to build up piecewise constant approximate solutions to (1.1). More
precisely, we follow the algorithm introduced in [3].

First, we approximate the initial data. For any v € N we take a sequence (v¥, u’, \)
of piecewise constant functions with a finite number of jumps such that

(i) TVpL < TVp,, TVuY < TVu,, WIVa(Ny) < WTVa(A,), inf al > inf a,;
(ii) limg— oo (¥, ul, AY)(x) = limg—, — oo (Vo, o, Ao ) (T);
(ili) [[(vg,ug, Ag) = (Vo, Uo, Ao)[lLa < %>

o’ o’
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where pZ = a?(\Y)/v%. Second, we define the approximate Riemann solver. We in-
troduce positive parameters n = n,, p = p,; they control, respectively, the size of
rarefactions and the threshold when a simplified Riemann solver is used. Define also a
parameter § > 0 strictly larger than all possible speeds of wave fronts of both families
1 and 3. These parameters will be determined at the end of section 6.

e At time ¢ = 0 we solve the Riemann problems at each point of jump of
(v¥,ul, AY)(0+,-) as follows: shocks are not modified while rarefactions are
approximated by fans of waves, each of them having size less than n. More
precisely, a rarefaction of size ¢ is approximated by N = [¢/n]+1 waves whose
size is e /N < n; we set their speeds to be equal to the characteristic speed of
the state at the right.

Then (v, u, A) (¢, -) is defined until some wave fronts interact; by slightly chang-
ing the speed of some waves [9] we can assume that only two fronts interact
at a time.

e When two wave fronts of families either 1 or 3 interact we solve the Riemann
problem at the interaction point. If one of the incoming waves is a rarefaction,
after the interaction it is prolonged (if it still exists) as a single discontinuity
with speed equal to the characteristic speed of the state at the right. If a new
rarefaction is generated, we employ the Riemann solver described before and
divide it into a fan of waves having size less than 7.

e When a wave front of family either 1 or 3 interacts with a 2-wave we proceed
as follows. Let 6o be the size of the 2-wave and ¢ the size of the other wave.

— If |626] > p, we solve the Riemann problem as above, that is, with the
accurate Riemann solver.

— If |626| < p, we prolong the 1- or 3- wave with a wave of the same family
and size. Since the two waves do not commute, a nonphysical front is
introduced [9], with fixed speed § > 0. The size of a nonphysical wave
is set to be |u, — ug|, where ug, u, are the u components of the left
and right states of the wave. We call this solver the simplified Riemann
solver.

e When a nonphysical front interacts with a front of family 1, 2, or 3 (“phys-
ical”), we prolong the solution with a physical wave of the same size and a
nonphysical one, consequently computing the intermediate value.

We refer for the last two items to Proposition 5.12 below. Remark that two
nonphysical fronts cannot interact since they have the same constant speed 5. We
denote by AP the set of nonphysical waves.

5. Interactions. Fix the index v introduced in the previous section. We shall
prove in subsection 6.1 that the algorithm described above is defined for any ¢t > 0
and provides for any initial data (vY, u, AY) a piecewise constant approximate solution
(v”,u”, \) = (v,u, A), where we dropped for simplicity the index v. Here we study
the interaction of waves.

For K, > 0 and ¢t > 0 we define the functional L and the interaction potential
@, both referred to (v, u, \)(¢,-), by

L(t) =Y il + KnpLnp . Lop=Y_ hl,

i=1,3 YENP

(5.1) Qt) = > |y3[62] + > 162|171 -

~v3 at the left of 62 1 at the right of 62
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Remark that L takes into account only the strengths of both 1- and 3-waves and that
of nonphysical waves. For contact discontinuities we define

Lea=Y_ || =WTVa()y).

Finally, for £ > 1 and K > 0 we introduce

(5.2) L¢ = Z il + € Z [Yil + KnpLinp »
550 5o
(5.3) F=L:+ KQ.

For simplicity we omitted noting the dependence on K, in the functional L¢ and on
Krp, £, K in F; the choice of K, shall depend on that of K; see Proposition 5.12.

Observe that if A\, is constant, then @ = 0 and F' = L¢, whose variation was
analyzed in Lemma 3.2 of [3]. Hence we will assume from now on that

(5.4) Ay =WTV(a,) > 0.

By assumption (i) in section 4, one has L.q4 < A,.

In the following sections we analyze in detail the different types of interactions.
Recalling the definition of h, (3.8), and with the notation of Figure 5.1, we introduce
the following identities (see (3.1), (3.2) in [22]):

(5.5) ez3—e1=a3+ P — a1 — b,
(5.6) ach(e1) + arh(es) = agh(ar) + amh(as) + amh(B1) + arh(Fs) .

Formula (5.5) does not depend on A and follows easily by equating the specific volumes
v before and after the interaction time. By equating the velocities u we obtain (5.6).
These properties are a consequence of the definition (3.6) of the strengths for 1- and
3-waves and of (3.9).

a 02| Jag BN\ P2 /B,

Fic. 5.1. A general interaction pattern.

5.1. Interactions with a 2-wave. We first consider the interactions of 1- or
3-waves with a 2-wave; see Figure 5.2.

PROPOSITION 5.1 (see [2]). Denote by Ae, A, the side states of a 2-wave. The
interactions of 1- or 3-waves with the 2-wave give rise to the following pattern of
solutions:

Interaction Outcome

Ao < A\ Ao > A\,
2x 1R 1R+2+3R 1R+2+3S
2x 18 1S+2+3S 15+2+3R
3R x 2 1S+2+3R 1R+2+3R
35 x2 1R+2+43S 15+2+3S
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The next lemma is concerned instead with the strengths of waves involved in the
interaction above. The inequalities (5.8) improve the inequality (3.3) in [22] in the
special case of two interacting wave fronts, one of them being of the second fam-
ily. More precisely, under the notation of [22] we find a term 1/(a, + ay) instead of
1/ min{a,, as}. The proof differs from Peng’s. Our estimates are sharp: in some cases
(5.8) reduces to an identity.

€1 €2 €3 €1 €9 €3
Uy U, U, Uy
02 01 03 02

(a) (b)

F1G. 5.2. Interactions. (a) from the right; (b) from the left.
LEMMA 5.2 (see [2]). Assume that a 1-wave of strength 61 or a 3-wave of strength

83 interacts with a 2-wave of strength 63 = 2(a, — ag)/(a, + ag). Then the strengths
€; of the outgoing waves satisfy ea = 62 and

1
(5.7) lei — 6i = || < 3 62] - 6] < [a]«] 64

fori,7=1,3, i # j. Moreover,

|61] + [61][62] if 1 interacts,
(5.8) le1| + |es| < +
| 163] + [8s][62] if 3 interacts.
Here [z]y = max{z,0}, [z]- = max{—=z,0}, x € R. Remark that the colliding

1- or 3-wave does not change sign across the interaction. Moreover, the functional L
increases iff the incoming and the reflected waves are of the same type; this happens
when the colliding wave is moving toward a more liquid phase.
Now we prove that F' is decreasing for suitable K when an interaction with a
2-wave occurs. The potential @ is needed to balance the possible increase of L.
PROPOSITION 5.3. Assume A, < 2 and consider an interaction of a 1- or 3-wave
with a 2-wave, with the notation of Lemma 5.2. Then AQ < 0. If, moreover,

2
(5.9) E>1 and K> 5 _ng,
then
K
(5.10) §|5j\:§’|5i|—|5i|’ < §|AQ|7

and hence AF < 0.

Proof. We consider the interaction of a l-wave with a 2-wave; the symmetric
case follows in an analogous way. We use the notation as in Figure 5.2(a). We define
L,=L_+ Ljd7 Lcid, meaning right or left of the 2-wave under consideration.
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By assumption, one has
(5.11) Lea=L_j+ LY+ 62| = Liy + |62] < A, < 2.

Recall that €1 — 61 = €3 and by Proposition 5.1

(5.12) |€1| — ‘51| = |63‘ if 69 > 0,

(5.13) |€1| — ‘(51| = —|E3| if 69 < 0,

so that in particular |3 = ||e1| — [61]|. An estimate for AQ follows at once because
of (5.11):

1
AQ = —6261] + (|er| = [61]) Ly + |es| LY, < §|5251|(L§d —-2)

1
(5.14) < 5162611(40 —2) <0.

Hence, using (5.7), we get
K 1 K
(5.15) §\€3|+§AQS 2|5251{f+ 2(140—2)} <0

because of (5.9); this proves (5.10). Finally, by using (5.15) we get
(5.16) AF = AL + KAQ < {leg| +&ler — 61| + KAQ < 0. O

5.2. Interactions between 1- and 3-waves. Here we analyze the possible
interactions between 1- and 3-waves. T'wo situations may occur; see Figure 5.3: either
the waves belong to different families or they both belong to the same family. In this
last case, at least one of the waves must be a shock.

€1 €3 €1 €3
55 >< 61 a3 Z
(a) (b)

Fi1c. 5.3. Interactions of 1- and 3-waves.

LEMMA 5.4 (different families interacting). If a wave of the third family interacts
with a wave of the first family, they cross each other without changing their strength.

Proof. See also Lemma 3.1 in [3]. Using notation as in Figure 5.3(a) we have
g3 —e1 = 63 — 61 and h(e1) + h(ez) = h(61) + h(63). The uniqueness of solutions to
the Riemann problem implies €1 = 61, €3 = 83.

Remark that here AL = 0 = AQ and then AF =0 for all £ > 1 and K. O

LEMMA 5.5 (same family interacting: outcome). Assume that a wave ag of the
third family interacts with a wave B3 of the third family, giving rise to waves €1, €3.
Then

(i) a3 <0, f3<0=¢1 >0,e3 <0,
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(il) aszfs <0 = ¢e1 <O0.
An analogous result holds for interacting waves of the first family.
Proof. The proof can be done in a geometric way by observing the mutual positions
of the curves [19, 26]. A simple alternative proof by analytical arguments now follows.
We have

(5.17) €3 — €1 = ag + 3,
(5.18) h(El) + h(<€3) = h(Oé3) + h(ﬁg,) .
In case (i) these formulas read €1 — e3 = |ag| + [B3] > 0 and —h(e1) — h(e3) =

sinh(|as|) + sinh(|33]) > 0. If it were 3 > 0, then £; > 0 from the first equality and
g1 < 0 from the second, a contradiction. Therefore e5 < 0 so that e; +|e3| = |as|+ 53]
and —h(e1) + sinh(|es|) = sinh(|ag|) + sinh(|83]). Analogously, if it were 1 < 0, using
elementary inequalities we get 0 = sinh(|e1]) + sinh(Jas| + | 53] + |e1]) — sinh(|as]) —
sinh(|f3]) > 2sinh(|e1]), a contradiction again. Hence e; > 0.

In case (ii) assume ag < 0, B3 > 0; the other case is dealt with analogously
since (5.17), (5.18) are symmetric in as, B3. We have 3 — g1 = —|asz| + |F5] and
h(€1)+h(€3) = —sinh(|oz3|)—|—|63|; then [h(81)+61]+[h(83)—63} = |Oé3|—SiIlh(|Oé3|) < 0.
If e3 > 0, this last equality becomes h(e1) + €1 = |az| — sinh(]as|) < 0, which implies
€1 < 0.If g5 <0, then h(e;) + &1 = [|as| — sinh(|ag|)] — [Jez| — sinh(|es])]. If it were
g1 > 0, it would be |asz| < |es|, since the map © — z — sinhx is decreasing; but from
les| + |e1] = |as| — |B3] we would get that |e3] < |asz|, a contradiction. Hence in all
cases one has g1 < 0. n|

Now we give sharper estimates for the interaction of waves of the same family: we
prove that the strength of the reflected wave is bounded by the size of each incoming
wave, multiplied by a damping factor smaller than 1. This property will be crucial in
the next section, and it holds also for interactions with a 2-wave, with damping factor
[a].; see (5.7). In the case below, however, the coefficient depends on the strengths
of the incoming waves; this happens also when nonphysical waves are generated; see
Proposition 5.12. We assume that

(5.19) the strength of any interacting i-wave is less than m
' for some m >0 andi=1,3.

In the special case of interaction of waves of the same family producing two outgoing
shocks we give a more precise result in Appendix B.

LEMMA 5.6 (same family interacting). Consider the interaction of two waves of
the same family, of sizes a; and B;, i = 1,3, producing two outgoing waves €1, €3;
assume (5.19). Then the following hold.

(i) There exists a damping coefficient d = d(m), with 0 < d < 1, such that

(5.20) lej| < d(m) - min{las], [Bil},  J#4.

(i) If the incoming waves are both shocks, the resulting shock satisfies |e;| >
max{|a|, |B:|}. If the incoming waves have different signs, both the amount of shocks
and the amount of rarefactions of the ith family decrease across the interaction.

In any case

(5.21) el < faul + (85 -
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Proof. (i) To fix the ideas, assume i = 3. We have

(5.22) €3 —e1 = a3+ s,

(5.23) h(e1) + h(es) = h(as) + h(Bs),

and then

(5.24) h(e1) + h(e1 + az + B3) = h(as) + h(53) .

Remark that (5.24) is symmetric in ag, f3; from the implicit function theorem we find
that €1 = e1(as, 33) is C!. Using the notation &1 = 7, a3 = a, 33 = b, the identity
(5.24) rewrites as

(5.25) h(T) + h(T +a+b) — h(a) — h(b) =0,
with 7 = 7(a, b). One verifies that 7(a,0) = 7(0,b) = 0 and that

B (a) — B (1 +a+b) B(b) — I (T +a+D)

T O (T rath) T W) LR (T tath)

As a — 0, one has 7, — (1 — A/(b))/(1 + h'(D)); then |7,(0,b)| < 1, and it can be
bounded by a positive constant less than 1 that depends on m. The same argument
works for 7.

To complete the proof, we show that |7| < min{|al,|b|} in the nontrivial case
a # 0 # b. We argue by contradiction, using an argument of [23]. Suppose that
|7| > |a]; we can assume 7 > 0, since the case 7 < 0 can be proved by using the
equality (5.25) written in terms of G(t) = —h(—t). Since the function h is increasing
we have, for 7 > |al,

h(t) > h(a), h(T 4+ a+b) > h(b).

Moreover, one of the two inequalities is strict: if a < 0, the first; if a > 0, the second.
Hence we contradict (5.25).

(ii) From [3] we already know that AL = |e1| + |e3] — |ag| — |B3] < 0, and hence
(5.21).

If the incoming waves are both shocks, then (5.22) becomes

(5.26) les| + [e1] = |as| + [Bs] -

From (i) we have |e1| < |as|, |83] and hence the first part of (ii). On the other hand,
if agfB3 < 0, we have g1 < 0. We can assume ag < 0 < [3; hence (5.22) becomes
ez = |Bs| — |as| — |e1|. If e3 > 0, then |e3| < |B3]; if €3 < 0, using (i) again one finds
that |€3| < |Ot3|. O

Remark 5.7. The damping coefficient d(m) (see Figure 5.4) is given by

b
d(m) = max 7.'8((1’ )|b )
|e/=m min{]al, [b[}
where the function e(a, b) satisfies h(e) + h(e + a + b) — h(a) — h(b) = 0; see (5.24).
Hence d(m) increases with m and vanishes as m — 0 because quadratic interaction
estimates hold for m small.
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F1c. 5.4. The coefficient d(m).

Moreover, it is asymptotic to 1 for m large. Indeed, from the proof of Lemma 5.6

we have 7,(0,) = Trpp; then 7,(0,0) = 0if b > 0 and |r,(0,b)] = L <
Cospm—t if b < 0. Therefore |7,(0, )| < 20— for every b, and an analogous estimate

holds for |7,(0,a)|. Hence d(m) > 22227’2;} = ¢(m); we refer to Lemma B.1 for the
role of this quantity.

Remark 5.8. When a rarefaction interacts with a 1- or 3-wave, its size does not
increase. Indeed, the size does not change upon interactions with waves of the other
family by Lemma 5.4; if the rarefaction interacts with a shock of the same family, we
apply Lemma 5.6(ii). Remark, moreover, that by Lemma 5.5, when a rarefaction and
a shock of the same family interact, the reflected wave is never a rarefaction.

Remark 5.9. If two waves of the same family interact, the wave belonging to that
family can be missing, while the “reflected” wave is always present. This follows easily
from (5.22), (5.23).

PROPOSITION 5.10 (variation of F). Consider the interactions of any two wave
fronts of the same family, 1 or 3, and assume (5.4), (5.19). If

1 -1
2 1 - K
(5.27) <é< pi and < i

then ALg <0 and AF < 0.
Proof. Let two waves «;, (; interact, ¢ = 1,3, giving rise to waves €1, 3. We
consider i = 3, the other case being analogous. Using (5.21), we get

(5.28) AQ = (lea| — las| = 183]) Ly + le1] Loy < ler] Ly < a1l A,
Now we claim that
(5.29) AL¢ + |e1](€ —1) <0.

From this estimate it follows that AF = AL + KAQ < |e1](1 -+ KA,) < 0
because of (5.27). To prove our claim we consider the possible cases; we make use of
(5.22).

. Since AL =0, then

(5.30) ALe + (§ = 1)|er| = &(len] + les] — |as| — |B3]) < 0.
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SR, RS — SR|. Assume a3 < 0 < f3; then (5.29) reads (2§ — 1)|e1| + |es| —
|B3| — €]as| < 0. For later use we prove the stronger inequality

(5.31) §ler] + les| — |8s] — Elas| < 0.

Indeed, from Lemma 5.6(ii) we have |e3]| < |Fs], while £|e1| < |as]| from (5.20), (5.27);.
SR, RS — SS|. Assume az < 0 < f33; then (5.29) is (26 — 1)|e1| + &(|e3] —
las]) — |83] < 0. We prove also in this case the stronger inequality

(5.32) le1] + &(les] — las|) — |85] < 0.
Indeed, by (5.17) and again because of (5.20), (5.27);, one has
&ler] +€(lesl — las)) — B3] = €2ler| +&(lea| — [83]) — 5]
= (£ + 1)(Elex] = 18s]) < 0.

This proves the claim and concludes the proof. ]

Remark 5.11. From the above proof we see that AL < 0 for £ = 1. This was
a key point in [19], where, however, a different choice of strengths was made. In [3]
the inequality AL¢ < 0 was proved to hold also for 1 < § < ¢, for some &, > 1; the
condition (5.27); gives an estimate of such a threshold.

More precisely, in the first two cases of Proposition 5.10 we have AL¢ < 0 for
every & > 1. The third case is analyzed in detail in Lemma B.1; we prove there that

ALg <0 for any € > 1if ¢(m) < 1/2, while we need 1 < € < 5o if ¢(m) > 1/2.

5.3. Nonphysical waves. In this subsection we compute the strength of a non-
physical wave generated by an interaction and prove that it does not change in sub-
sequent interactions. We introduce the following notation: given U; = (vg, ug, A\¢) and
A, we define by

U[;kr = (I)Q()\Ta Ul) = (Arlvéaufa )\’I")

the state on the right of a 2-wave with left state Uy = (vg, ug, A\¢) and A = A, on the
right, where A,; = a®(\.)/a?()\;). See (3.5) and [2].

62 53

F1a. 5.5. Simplified Riemann solver.

PROPOSITION 5.12 (nonphysical waves). Consider Uy = (vg, ug, A¢). Let U, =
(Vr, Ur, Ar) be connected to U, by a 1-wave of size 61 and Uy = (vq, uq, A¢) be connected
to Uy by a 1-wave of size 61; see Figure 5.5(a). Assume (5.19).
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Then Uy, and U, differ only in the u component; if é2 denotes the size of the
2-wave, there exists a constant C, = Co(m) such that

(5.33) 1Ugr = Urll = [ug — ur| < Colbabn.

A similar result holds for the interaction of a 3-wave (see Figure 5.5(b)), again under
(5.19).

Moreover, the size of a nonphysical wave does not change in subsequent interac-
tions. For any K > 0 and K,, < K/C, at any interaction involving a nonphysical
wave we have

(5.34) AF <0,

with AF < 0 when a nonphysical wave is generated.
Proof. Recalling [2, Lemma 2], only the v component will be different after com-
mutation of the 1- and the 2-wave. We find that

ug — up = 2ash(61), upr — ug = 2a,h(61),

and hence

sinh 7
_ — _ . < . )
|ug — ur| = 2|lag — ar| - |h(61)] < |6261] 2a(1)og1naéxm p

Then (5.33) follows with C,(m) = 2a(1) - S2bm,

Next, assume that a nonphysical wave interacts with a 2-wave. Since the values
of u do not change across a 2-wave, the left and right values of u of the nonphysical
wave do not change across the interaction; hence the size does not change.

Assume then that a nonphysical wave interacts with a 1- or 3-wave of size 6. Since
A is constant, we refer only to the components v, u. Let (vg, us) and (ve,uq) be the
side states of the nonphysical wave before the interaction and (ve, ug), (vr, u,) be the
side states of the physical wave. After the interaction, let (0y, i) be the intermediate

state. One has
U — Ug = 2a(A)h(6) = Tp — ug,

and hence |ug — ue| = |u, — Gyl

At last, we consider the functional F. The potential ) is unaltered when non-
physical waves interact with other waves. The only cases in which L,, changes are
when a nonphysical wave arises. Assume that a 1- or a 3-wave of size § interacts with
a 2-wave of size 0o, producing a wave of the same size and a nonphysical wave. Then
AQ = —|b6b2] and AL¢ = KppALyp, < KppColdda|; hence AF = AL + KAQ <
|662|(KpnpCo — K), and then (5.34). 0

5.4. Decreasing of the functional F and control of the variations. We
first collect the previous results into a single proposition.

PROPOSITION 5.13 (local decreasing). Consider the interaction of any two waves
either of families 1, 2, 3 or nonphysical. Assume (5.19) for some m > 0; let C, =
Cy,(m) as in Proposition 5.12. Finally, let A, satisfy

1-d
5.35 0< A, <2——.
(5.35) <4 <25—
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If ¢, K, Ky satisfy

2—-A, 1 2¢ &E—1 K
. - K Kn T~
(5.36) 2—3A0<5<d’ A, N r<
then
(5.37) AF <0.

Proof. The condition on K comes from (5.9) and (5.27)3. The interval where
K lies is not empty if A, < % and & > 22:3‘:“0; together with (5.27); this gives the
assumption required on . In turn, it is possible to choose £ in such an interval if (5.35)
holds. Remark that 2% < %, so the previous condition on A, holds. Therefore the
assumptions of Propositions 5.3, 5.10, and 5.12 hold, and then (5.37) follows. O

PROPOSITION 5.14 (global decreasing). Let m > 0; assume (5.35), (5.36),

(5.38) L(0+) <

2 — 1

and that the approzimate solution U is defined in [0,T]. Then L(t) < m for any
t € (0,T); as a consequence, condition (5.19) holds for any 1- or 3-wave in U. Finally,
AF(t) <0 for all timest € [0,T].

Proof. Since L may change value only at the times of interaction, we use an
induction argument based on Proposition 5.13.

First, we have L(0+) < m because £ > 1 and (5.38). Now assume that L(7) < m
for all 0 < 7 < t. By Proposition 5.13 one has both AF(7) < 0 and AF(t) <0, so
that

F(t) < F(04) < EL(04) + KQ(O+).
Since Q(0+) < L(04+)L.q < L(0+)A,, and recalling (5.36)2, we get
(5.39) F(t) < LO0+) - (E+ KA, < L(0+)- (26 —1) < m,

again because of (5.38). Finally, since L(t) < L¢(t) < F(t) we arrive at the conclu-
sion. ad

Remark 5.15. From (5.38) we see that, in order to have L(t) < m, the smaller £
is, the larger the L(0+) can be chosen.

Remark 5.16. From Proposition 5.14 we deduce that v remains bounded away
from zero. Indeed, recalling (3.6), (3.5) and that v is constant across nonphysical
waves, we have

%TV(log v(t,-)) < L(t) + TV(loga,) < m+ TV(loga,) .

6. The convergence and the consistence of the algorithm. In this section
we prove Theorem 2.2. We first show that for fixed v the algorithm introduced in
section 4 gives an approximate solution defined for every ¢ > 0; more precisely, we
prove that at every time the number of interactions is bounded. Then we prove that
the total amount of nonphysical waves in each approximate solution is very small. The
convergence of a suitable subsequence is assured by Helly’s theorem; then consistence
follows.
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6.1. Control of the number of interactions. We prove first that the size of
the rarefactions in the scheme is small.
LEMMA 6.1. Consider a rarefaction of size €; then

(6.1) le] < ne%l )

Proof. We analyze all possible situations. When the rarefaction is generated, one
has 0 < ¢ < 1. When it interacts with a 1- or 3-wave, the size does not increase;
see Remark 5.8. By Proposition 5.12 the size does not change when interactions with
nonphysical waves occur.

The last case to be considered is when a rarefaction interacts with a 2-wave. In
this case the size may increase; however, a rarefaction can meet a fixed 2-wave only
once. Consider the case of a 1-rarefaction of size é1, as in Proposition 5.3, the other
being analogous. If 83 < 0, then the size decreases; see (5.13). If 83 > 0, by (5.12) we
have

1 1621
eal = o1+ ool < o] (1+ 510l < fnfe "%

Summarizing the three cases above, we get || < nelea/2 (or |e| < neket/2) for a 1-
rarefaction (resp., 3-rarefaction), where Lfd is the sum of the 2-waves at the right or
left of the rarefaction. Then (6.1) follows. 0

Next, we prove that the number of interactions remains bounded in finite time,
so that the approximate solution is well defined for all ¢ > 0. We first give a lemma.

LEMMA 6.2. Consider the wave-front tracking algorithm described in section 4,
under the assumptions of Proposition 5.14. Then

(i) the number of interactions involving a 2-wave and solved by the accurate
Riemann solver is finite;

(ii) the number of interactions where a new rarefaction of size € > n arises is
finite.

Proof. First consider (i) and refer to Proposition 5.3. Then, using (5.16), we have
AF < p(€+ K(A, — 2)/2) < 0, and hence F' decreases by a uniform positive quantity;
since it is nonincreasing, this can happen only a finite number of times.

Then consider (ii). After (i), it remains only to consider the case of two shocks of
the same family interacting.

Under the notation of the corresponding case in the proof of Proposition 5.10 we
have e =¢; > 1 and

AF <|e1|(1 -4+ KA,) <n(1l—-¢+ KA, <0

because of (5.36). Arguing similarly as in (i), this can happen only a finite number of
times. ]

Regarding (ii) in Lemma 6.2, recall that if £ > 7, then the new rarefaction must
be split into more than one wave. Therefore Lemma 6.2 can be rephrased by saying
that, except for finite interactions, the number of waves emitted in an interaction is
at most three, and this case occurs precisely when a nonphysical wave is generated;
moreover, in every interaction at most one wave per family is emitted.

In a schematic way, apart from a finite number of interactions, in our algorithm
the following hold (we will consider the set of nonphysical waves as a fourth family of
waves):
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(a) the interaction of an i-wave, i = 1,3, with a 2-wave is solved by a single

i-wave, a 2-wave, and a 4-wave;

(b) in the interaction of just 1- and/or 3-waves, there is at most one outgoing

wave of each family 1 and 3;
(c) the interaction of a i-wave, ¢ = 1,2,3, with a 4-wave is solved by an i-wave
and a 4-wave.
The next proposition extends the result of Lemma 2.5 in [3].

PRrROPOSITION 6.3. Consider the wave-front algorithm described in section 4 and

assume in the strip [0,T) x R the following:
for some a1 < as < 0 < by < by the waves of the first (resp., third)
family have speeds in the interval [a1,as] (resp., [b1,ba]).
Then the number of interactions in the region [0,T) x R is finite.

Proof. Assume by contradiction that in the region [0,7) x R there exists an in-
finite number of interactions. Unless we take a smaller T we can assume that the
number of interactions is finite in every strip [0,¢] x R, 0 < ¢ < T, and that T is
an accumulation point for the times of interaction. Because of the finite propagation
speed, the interaction points are also bounded in space.

Then there exists a bounded sequence (¢;,z;), 7 =1,2,..., of interaction points
such that

0<t;j <tjp1 <T forall j and (t;,z;) — (T,2)

for some Z. Denote J = {(¢;,x;):j =1,2,...} the set of all interaction points.

The situation described in items (a)—(c) above holds except in a finite number of
interactions; let 7 < T be the maximum time of these “exceptional” interactions. It
is not restrictive to assume that 7 <t; <7 for all j =1,2,....

Starting from a point of J, we “trace back” all the segments up to t = 0; we
repeat the procedure for all the points of J and call F the set of the “traced segments”
obtained in this way. In other words, a segment belongs to the set F iff it can be joined
forward in time to some point of J by a continuous path along the wave fronts. The
set F is not empty: for instance, two segments interacting at the point (t;,z;) belong
to F for any j = 1,2,...,. Observe the following dichotomy property of F which is
used just below:

two interacting waves either both belong to F or none of them does;
moreover, if at least one of the outgoing waves belong to F, then
both the incoming waves must belong to F.
We now partition all the interaction points of the algorithm that occur for times ¢ > 7
into the following sets:
e 7j: the interaction points where no ingoing wave belongs to F;
e 7;: the interaction points where both incoming waves belong to F and at
most one outgoing segment belongs to F;
e 7,: the interaction points where exactly two outgoing segments belong to F;
e 73: the interaction points where three outgoing waves all belong to F.
Because of the dichotomy property quoted above no outgoing wave in case Zy can
belong to F. On the contrary, both incoming waves in 7, Z, Z3 must belong to F.

Recall that we are considering times ¢t > 7. Therefore the maximum number
of emitted waves in an interaction is three, and this happens only in the situation
considered in Z3, that is, for interactions as in (a) above. The case of more than one
emitted wave per family cannot occur, and so the outgoing waves in Zs belong to
different families. By definition we have J NZy =, and so J C Z1 UZy UZ3.
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Let V(t) be the total number of wave fronts of the families 1, 2, and 3 that belong
to F at time ¢t. The functional V(¢) is nonincreasing, and it decreases at least by 1
across Z;. Then Z; is finite. As a consequence, all the interaction points of 7 belong
to Zo U T3, except at most a finite number. Let 7 € [7,T) be a time such that all
points in Z7 lie in ¢t < 7.

Let P = {z1,...,xnN, } be the set of points of the z-axis where a 2-wave is located.
We consider two cases and make use of [3, Lemma 2.5].

. In this case we can choose a time 71 < T such that after that time no
segment belonging to F crosses a 2-wave. Then all the points in J with t; > 7, belong
to IQ.

Take a point (t*,2*) € J with t* > 71, so that (t*,2*) € Zo. At (t*,z*) there
are two outgoing segments, both of them belonging to F; for ¢ > t* and ¢ close to t*
we define v(t) to be the segment on the left and ~,(¢) that on the right. When ~,(¢)
(resp., v-(t)) reaches an interaction point, we prolong it by the segment of F outgoing
from that point and located on the left (resp., on the right).

In this way we define recursively for any ¢ < T two paths: v,(¢) is made by
segments of the families 1 or 3, while ~,.(¢) is made by segments of the families 3 or 4.

We claim that the speeds of the two paths are strictly separated. Indeed, if ~,
starts following a 3-segment, then v, starts with a 1-segment and so will always follow
1-segments; therefore 44(t) < ag < 0 < by < 4,.(t). If v, starts following a 4-segment,
then it will always follow 4-segments; in this case 44(t) < by < § = 4,.(t).

Thus for ¢ = min{§ — by, by — a2} > 0 we have v,.(¢t) — ve(t) > c(t — t*) . Now set
p =c(T —t*) and choose t,, € (t*,T), with (t,,z,) € J, such that

P
2 b

(T = tn)(Jas| + 5) < 2.

(6.2) c(tn — t*) -

By definition of F, the points (t,,e(t)) and (t,,7-(t,)) can be joined forward in
time to points (¢, xp), resp., (tx, zx), of J, with h,k > n. Then

xp < ve(tn) + 8(th — tn), x> Y (tn) — lar|(te — tn) -
Thanks to (6.2), we get

wp — 2 > c(tn — ) — (Jar| + 8) (T — tn) > Z.
Since n can be taken arbitrarily large, the last inequality contradicts the convergence

of the sequence z;.

. Consider case (a) above. The possibility that the outgoing waves be-
longing to F are precisely one physical and one nonphysical wave may happen only
a finite number of times, since the functional V(¢) is nonincreasing. Therefore we can
assume that, for ¢ > 71, in case (a) the two outgoing physical waves belong to F.

Let (t*,2*) € J with t* > 71. As before we define for ¢ € [t*,T) two continuous
paths y,(t), v, (t) starting at (t*,z*) in the following way.

At (t*,2*) there are either two or three outgoing segments belonging to F; for
times t > t* and sufficiently close to t* we define ~y,(t) to be the segment on the left
and v, (t) the one on the right. When ~(¢) (v, (¢)) reaches an interaction point, it is
prolonged by the segment of F on the left (resp., on the right). Then the path ~,(t) is
made by segment of the families 1, 2, or 3, while v,.(¢) is made by segments of families
3 or 4; in fact the interaction of a 1-wave with a 2-wave always produces a 4-wave
(except in a finite number of cases).
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Now we prove that the speeds of the paths 7,(t), 7.-(t) are strictly separated.
Indeed, if ~,(t) starts following a 3-segment, then v, starts with either a 2- or a
1-segment and, by the remark at the beginning of this subcase, 4¢(t) < 0 < by < 4,.(t).
If 7, (t) starts following a 4-segment, then 4,(t) < by < § = 4,.(¢).

Finally, for ¢ = min{§ — by, b;} the same argument exploited in the other case
leads to a contradiction. ]

6.2. Control of the total size of nonphysical fronts. Assume as above
that the assumptions of Proposition 5.14 hold. We assign inductively to each wave
a a generation order ko as in [9, page 140]. This is done according to the following
procedure. First, at time ¢t = 0 each wave has order 1. Second, assume that two waves
« and [ interact at time ¢; if @ and § belong to different families, the outgoing waves
of those families keep the order of the incoming waves, and the other waves assume
order max{ky, kg} + 1; if o and [ belong to the same family, and the outgoing wave
of that family takes the order min{k,, ks}, and the other waves are assigned order
max{kq, kg} + 1.

When specialized to the current setting this has the following consequences:

e every 2-wave has order 1; when an i-wave, i = 1,3, of order k interacts with
a 2-wave, the outgoing i-wave has order k, and the other outgoing wave (of
the family j, j = 1,3, j # ¢, or a nonphysical wave) has order k + 1;

e in the interaction of a 1- with a 3-wave the waves cross without changing
order; in the interaction of two waves «a, (8 of the same family ¢ = 1,3, the
outgoing wave of the family ¢ takes order min{k,, ks}, and the wave of the
family j = 1,3, j # 4, has order max{kq, kg} + 1;

e when a nonphysical wave interacts with any other wave, both waves cross
without changing order; in particular a nonphysical wave keeps the order it
has been assigned when generated.

For ¢ > 0 not an interaction time and any k = 1,2, ... define (see (5.2), (5.1))

Vi) = W +€> I+ K > 1l

¥>0 ~<0 YENP
ky=k k~y=k k~y=k
Qi(t) = > v3][62] + > |62[71],
~3 at the left of &4 ~v1 at the right of s,
k73=k k’Yl=k

Fi(t) = Vi(t) + KQx(1),
and

Vi(t) = ZW(t), Qr(t) = ZQ@@) ; Fi(t) = Vi(t) + KQw(t).

>k 0>k

We remark that

F1(0+) = Le(04) + KQ(0+),  Fi(0+)=0  for k> 2.

Observe that if a nonphysical front interacts with another wave, the functionals above
do not change; the same holds for interactions between 3- and 1-waves. Then we focus
on interactions of waves of the same ¢ family, ¢ = 1,3 (as usual denote j = 1,3, j # i),
and on interactions between 1- or 3-waves with a 2-wave.
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For h € N, denote by Ij, the set of times ¢ when an interaction occurs between
two waves a and § of families 1 or 3 with max{k.,ks} = h; denote by Jj, the set
of interaction times t of a 1- or 3-wave of order h with a 2-wave. Finally, denote
Th=I1UJpand I =Uysq In, J=Ups1 In, T =1UJ.

In order to control the total size of nonphysical fronts we must strengthen the
assumptions (5.35), (5.36) required in Proposition 5.14. First, for any fixed m > 0,
instead of (5.35) we require the stronger condition

1—+d
6.3 0<A, < ——.
(6.3) 2—d
Then denote
L1+ KA . E+ KA, N KnpCo
(6.4) )\—T, )\Q—K(27A0)7€, u—max{)\J\g, e }

We need 0 < g < 1. From (5.36)3 we have K,,,C, < K; moreover, we have 0 < A <1

and Ay > 0 because of (5.36)2. At last Ay < 1 holds iff 1_6,4 < K this condition is

stronger than the left inequality in (5.36)s. Hence, instead of (5.36) we assume

1-A, 1 ¢
<éE< —, <K< )
1—24, ¢ Vd 1-A, Ao
Remark the new upper bound required on £. As in the proof of Proposition 5.13, the
interval where K varies is not empty if A, < % and ¢ > =A< In turn, we can find

£E—1 K
Knp<a.

(6.5)

1—24,
¢ satisfying (6.5); if (6.3) holds; remark that ;:g < 3. The last condition in (6.5)
coincides with that in (5.36).

Remark 6.4. Proposition 5.14 still holds under the stronger assumptions (6.3),
(6.5) under the same condition (5.38), because the inequality on the right-hand side
in (6.5)2 has not changed; see (5.39).

PROPOSITION 6.5. Fiz m > 0 and assume (6.3), (6.5). We have the following:

1.7 €Ty, h<k—2:then AF, = AF, =0.
2. T € Tp_1: then AF,_1 < 0, AFk =AF, > 0, and

(=1

k—2
(6.6 AR, <p ([AFkﬂ_ - [AFeh) .

3. 7€Th, h>k:if h=k, then AF, <O0; in any case AF, <0 and

N

(67) Y [AF[L_ < [Aﬁk]_
1

~
I

Proof. As we pointed out above, for 7 € I only interactions of waves of the same
family are taken into account; see Figure 6.1. Remark that by Proposition 5.14 we
have

k—1
(6.8) Y AF, + AF, <0,
=1

1. If h < k—2, no waves with order > k are involvegi, and then Aﬁ‘k =AF,=0.
2. Let h = k—1. First, consider 7 € I_1; then AV, = AV, > 0. We prove that
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€1,h+1 €30

an B

F1c. 6.1. Interactions of 3-waves; h > £ denote generation orders.

k—2
(6.9) [AVA], < < : (AVk ] ; [AV,] ) .
Indeed, from (5.30)—(5.32), we deduce that
) k—2
(6.10) E[AVR], + AVioy + ; AV, <0.
=1

If min{k,,kg} = k — 1, then AV, = 0 for £ = 1,...,k — 2 and (6.
E[AVi]+ + AVi—1 < 0; this implies AV,_; < 0 and hence [AVj]4 < (1/¢
that is, (6.9). Moreover, in this case, one easily finds that AQr_1 < 0,
(5.21).

If min{kq, kgt =€ < k — 2, then AVj_; < 0 and AQy_1 < 0, since no waves of
order k — 1 are present after the interaction. Therefore the estimate (6.10) becomes

10) becomes
)[AVk—l]—a
because of

g[AVk]+ —[AVi_4] + AV, <0.

If AV, > 0, we get (6.9). If AV, < 0, we check directly that £[AVi] — [AVi_1]_

€2?|e1] — |as| < 0 because of (5.20) and (6.5);. This completes the proof of (6.9).
From this proof we see also that AF,_1 = AVi_1 + KAQr_1 < 0, since both

terms in the sum are negative. Then we use (6.9) and 0 < AQy < A,AVj to get

(6.11) 0<AF, <(1+ KAO)[AVk]+ <A ( [AVi_4] Z [AV)] ) .
=1

We now prove that

E?‘

-2

(6.12) [AQk-1]_— ) [AQd]
1

~
Il

We have only to consider the case in which [AQ]+ > 0 for some ¢ < k — 2; but in
this case [AQg_1]- — ?;f[AQ[]J,. = LT (Jas| + |Bs] — |es]) > 0 because of (5.21).
Therefore (6.6) for 7 € I, follows from (6.11) and (6.12).
Second, assume 7T € Ji_1; we prove that

(6.13) [Aﬁkh < plAFa]

Indeed, if the reflected wave is a physical wave, then, under the notation of Proposi-
tion 5.3,

|5152\

616
AVioy <22l A < 58] + _18:%

|5162|A0 = (2 A )
2 2
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so that AFy 1 < [ — K(2 — A,)][6162|/2 < 0 because of (6.5). Then (6.13) follows
since AF, = AF;, > 0 and

AR, < ‘61262| (E+KA,) = |‘512‘52| [K(2— Ap) — €] Do < Mo[AFp_1] < p[AF_4] .

If the reflected wave is a nonphysical wave, we have, under the notation of Proposi-
tion 5.12,

0< AF, =AV, < Kan’o|662| R AVi_1 = 0, AQ}C,1 = —‘662|,
and then
Knpco
[AFk_ﬂ_ = K|662| s [AFkL_ S K [AFk_l]_ S /L[AFk_l]_ .

The estimate (6.13) is then completely proved. From (6.13) we get (6.6) since no 1-,
3-, or nonphysical waves of order < k — 2 are involved in the interaction.

3. Finally, let h > k. We first consider 7 € I,. If min{k,, kg} > k, then AV} =
AL¢ < 0and AF, = AF < 0. If min{kq, kg} < k—1, assume ko > k and kg < k—1;
then AV < €ler| — |as| < (éd — 1)|as| < 0 by (5.20) and (5.36);. Moreover, AQy, =
le1|L,; — |as| LY, < |e1|A, < dAo|as| again by (5.20). Then

AF, < [(E4+ KA)d —1]-|as],

and since, because of (6.5),

€+ KA)d—1< (26— 1d—1< <;a

we proved that AF}, < 0. Now from (6.8) we deduce that 25;11 AF, < [AF,]_. Since
at most one nonzero term is present in the first sum, (6.7) follows. If h = k, we are in
the same situation as in case 2, so we have AF} < 0.

Now assume 7 € J;,. Then AF), = AF < 0 and no 1-, 3-, or nonphysical waves
of order < k are present, so (6.7) holds. If h = k and the reflected wave is physical,
from the proof of Proposition 5.3 and (6.5) we find that

—1>d—1=—(1—\/&)2<0,

616
AF, = AV, + KAQ), < |1TQ|(§—2K+KAO) <0.
If h = k and the reflected wave is nonphysical, then AV, = 0, AQx < 0, and
AF, <0. 0

Summarizing, for 7 € 7 we have the following table:

Tih | <k—-2 k-1 k >k+1
AEI@ 0 + - +
AFy, 0 + — -

We write Fif (t) = S°__,[AFy(7)]+ for k > 2. For simplicity the time 7 in such sums
is omitted. -
LEMMA 6.6. Under the assumptions of Proposition 6.5 we have
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(6.14) Ff () < p(Le(0) + KQ(0) + Y AR,
Th,h>2
(6.15) Ffty<p|F 0+ Y (AR i, ZZAFg , k>3.
Th,h>k Ti—1 £=1

Proof. By Proposition 6.5 (see also the table above), the functional Fj, increases
at times 7 € 7;_1 and decreases at times 7 € 7y, while it does not have a given sign
at times 7 € 7p,, with h > k + 1.

First, by summing up (6.6) we obtain

k—2
(6.16) Ef<p Z (AFk 1 Z [AF) >
=1

Ti—1

for k > 2, where the last term in (6.16) is missing if k = 2.
Now recall that F(0) = L¢(0) + KQ(0); therefore

Fi(t) < Le(0) + KQ(0) = Y [AR] + Y [AR],

T Th, h>2

and then

(6.17) Y AR] <L)+ EQO)+ Y [AR], .

T Th, h>2

On the other hand, F}(0) = 0 for k > 2; from Proposition 6.5 we have

Fe(t) <) (AR, - SR+ > [AF],

Tr_1 Tr Th,h>k+1
Moreover,
STAR], = YT IAR], = ()
Tr_1 Tt
and then
(6.18) Y AR] <EFm+ Y (AR,
Tk, Th, h>k+1

From (6.16), (6.17), (6.18) we get (6.14), (6.15). O
PROPOSITION 6.7 (a contraction property). Under the assumptions of Proposi-
tion 6.5, for any t > 0 and k > 1 we have

(6.19) Vi(t) < Fi(t) < " - (Le(0) + KQ(0)) -

Proof. The estimate (6.19) holds for k = 1 because Fy(t) = F(t) < L¢(0)+ KQ(0).
Next, we prove by induction on k > 2 that for any ¢

(6.20) FF(6) < ¥ (Le(0) + KQ(0) + ) Z [AF],

T, h>k £=1
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Since by summing up (6.7) we obtain

k—1
(6.21) Fr(yz Y Y AR,

Th, h2k £=1

then (6.19) will follow from (6.20) for any k > 2 because of (6.21).
Formula (6.20) for k = 2 reduces to (6.14). Next, assume that (6.20) holds for
some k > 2. By (6.15) and the induction assumption

F;j+1() < u F]:_(t)wL Z AFk ZZ AF[

Th, h>k+1 Ty

k—1 k—1
W (L) + KQUO) +p | D DUIAR] + D> [AR], - Y Y (AR,

T, h>k £=1 Th, h>k+1 T =1

k
<P (Le(0) + KQO) +p Y D O[AR],

Th, h>k+1 6=1

Since p < 1, we get (6.20) for k + 1. 0
Remark 6.8. We now comment on the case A, = 0. In this case system (1.1)
reduces to the p-system with pressure law given by (2.1) for fixed A. According to
our front-tracking algorithm, stationary and nonphysical waves do not appear, and so
L.q = @ = 0; the algorithm reduces to the one introduced in [3]. Then Proposition 6.5
holds with V, and 1 /€ replacing F}, and u, respectively, and at last (6.19) reads
~ 1
Vi (t) < F
Next, we conclude that the total strength of all nonphysical waves is small by
proceeding as in [9, page 142]. Recall the notation in section 4. First, by Remark 5.16,
the sequence {v”} is uniformly bounded from above and away from 0; then the eigen-
values e; and ez are bounded, and this makes possible the choice of a suitable 5. We
have two more parameters 7, p to be chosen. Fix > 0 with the condition n =7, — 0
as ¥ — oo and estimate the total number of waves of order < k. We have

YoV + Y hie)

YENP YENP, ky<k

- Le(0).

< P71 (Le(0) + KQ(0)) + Co,p - [number of fronts of order < k] <

R =

by choosing k sufficiently large to have the first term < 1/(2v) and then choose p
small enough to have the second term < 1/(2v).

We now accomplish the proof of Theorem 2.2. First define
1—+/d

(6.22) h(m) = L=V
2 —\/d(m)

From the properties of the function d(m) stated in Remark 5.7 we see that k(0) = 1/2
and that k(m) is decreasing, tending to 0 for m — +oo. The assumption (2.8) implies
that (6.3) holds.
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Now, by hypotheses (2.7) it follows that we can choose £ such that
m
—TV
Sinfa, LV o) < 357
and that (6.5); holds. Hence, using (3.12) and (i) in section 4, we have

STV log(p) + < (1-24,)m

1
L(0+) < §TV log(po) + TV (u,) <

1 m
2inf a, 26 —1
so that the hypotheses (5.38) of Proposition 5.14 hold. Theorem 2.2 now follows along

the lines of [9, section 7.4].

Appendix A. The weighted total variation. In this appendix we prove
Proposition 2.1. Remark that the map d(a,b) = %
can easily prove.

We start with the proof of the inequality on the right in (2.5). It is enough to
prove that

is a distance on Ry, as one

") = fl)] | |
(A1) I ;Ilogf(:cj) —log f(;-1)] -

Jj=1

We claim that

2(t — 1)
. > >1
(A.2) logt > o fort > 1,

where the inequality is strict if ¢ > 1. To prove the claim it is sufficient to notice that
2
the function ¢(t) = logt — 2;;—} vanishes in 1 and ¢'(t) = % >0ift > 1.

We apply (A.2) to t = x/y for 0 < y < x and arguing by symmetry deduce that

2|z —y|

|logx — logy| > for every z,y > 0.

Then (A.1) follows. The proof of the inequality on the left in (2.5) is analogous,
starting from the inequality

1 2t —1)
A. Zlogt < fort > 1
(A.3) plogt < = ort >

with strict inequality if ¢ > 1.
Now assume that f € C(R). To show that WTV(f) = TV (log(f)), we have to
prove that the inequality

— | f(z)) = flzj-1)]
A4 TV (log(f)) < 2sup
(A4) (og(f) < 2sup 3 FER 7
holds for any [a,b] C R, the supremum being taken on the set of all partitions a =
To < 21 < -+ <z, = b, n € N. Consider any such partition; by the mean value
theorem and by the intermediate value theorem applied to f, we get

_ f(w5) = flai)l
G

_ fy) + fzi-0)

2f(n;) flxg) + flzj1)

llog (f(x;)) —log (f(;-1))|
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for some (; between f(x;) and f(z;_1) and n; € [xj_1,x;]. We exploit again the
continuity of f in [a,b]. On one hand, its image is compact; then min, 3 f = m > 0.
On the other hand, f is uniformly continuous in [a,b], so that for any € > 0 there
exists 6. > 0 such that |f(z) — f(y)| < e if |z —y| < é. for z,y € [a,b].

Now fix any € > 0; without loss of generality we can consider partitions of the
interval [a,b] of mesh less than 6.. Assume for instance f(x;_1) < f(z;); then from
the inequalities

flzg) = flzj—1) < e, flzj—1) < f(ny) < flx)
it follows that

flag) + flxja) _ 2f(xj-1) ¢ £
2f(n;) = T2 f(a0) =t

The inequality (A.4) follows by remarking that then for any partition of mesh less
than 6,

S £\ g N @) = fla;)|
Dl () ~log (/a2 < (1+5)2 2 Fan T T )

j—1)

The proof of Proposition 2.1 is complete.

Remark A.1. Observe that if TV (log(f)) < oo and f is discontinuous, then the
inequality on the right in (2.5) is strict, because of the strict inequality in (A.2).
For example, if f has a single jump and assumes the values ¢ > 0 and d > 0, then
WTV(f) =252 < [log e — logd| = TV (log(f)).

Remark, moreover, that WTV and TV are not equivalent, in the sense that there

does not exist a positive constant C such that C-TV (log(f)) < WTV(f). This follows
2(t—1)
11

from the fact that clearly the inequality C'logt < does not hold for every ¢ > 1.

Appendix B. Shock-rarefaction interactions. In this appendix we consider
a particular case of Lemma 5.6. Actually, this is the only case needed in order to
define a decreasing functional (see section 5); however, we needed further analysis for
the control and treatment of the nonphysical waves.

LEMMA B.1 (the case SR, RS — S5). Consider the interaction of a shock o
and a rarefaction B3; of the same family, i = 1,3, producing two outgoing shocks e1, €3.
Then there exists a smooth function B satisfying |o;| < B(e;) < min{sinh(|a;|), 2]o;|}
such that

(B.1) 0 < f; < Blay).

Moreover, assume

(B.2) || <m

for some m > 0 and denote ¢ = ¢(m) = %
L

waves and the reflected wave €5, j # i, j =
rarefaction as

}. Then both the variation of shock
3, are estimated by the interacting

(B.3) lex] + lea| — |au] < (2¢—=1) - |84,
(B.4) lejl <c- B
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Proof. We focus on the case i = 3, j = 1; see Figure 5.3(b). Therefore we consider
ag <0, 83 >0and e; <0, e3 <0. Then (5.5), (5.6) become

(B.5) le1] — les| = |8s] — |as],
(B.6) sinh(|e1]) + sinh(|es|) = sinh(Jas|) — |Bs] -

From the second equation |e1] < |as|, |e3] < |asg|, and |33| < sinh(|as|); using the first
equation and |ez| < |as|, we get |e1]| < |B3]. Therefore in conclusion

(B.7) le1] < min{[as], [Bs]}, les| <lasl, |3 <sinh(las|).
Step 1: notation. We set x = |Bs|, y = |e1], z = |ag], so that
(B.8) les| =y — x4 2;
see Figure B.1. Under this notation, (B.6) writes as
(B.9) F(z,y;z) =sinhy +sinh(y —z 4+ z) —sinhz 4+ 2 =0
forx >0,y>0,2>0,y—x+z>0. By (B.7), any solution of (B.9) satisfies
(B.10) y<z, y<x, x < sinh(z).

Step 2: the threshold. Observe that, despite the last inequality in (B.7), we may
well have |3] > |as|, that is, z > z. Consider in fact the limit case of £3 = 0: we have
y =x — z > 0 and sinh(y) = sinh(z) — z that give

sinh(z — z) = sinh(z) — =, x>z,

The last equality is the relation needed for (3, a3 in order to have that the shock
and rarefaction cancel out exactly, giving rise only to a wave of the opposite family.
Observe that the size of the rarefaction must be larger than the one of the shock.
Under the notation above, the threshold curve separating the case of the outgoing
waves 5153 from the case S1Rg3 is given by

(B.11) f(z,z) = sinh(z — z) —sinh(z) + 2 = 0.

Since fy = cosh(z —z) +1 > 0 and f(z,2) < 0, the implicit equation f(z,z) = 0
W > 0 for every z > 0;
the curve has for tangent at (0,0) the line z = x. Observe that x,(z) < 2z because

f(2z,2) = 2 > 0. In conclusion

is solved by & = z,(z) > z with 2/(z) =

(B.12) z < xo(2) < 2z;

see Figure B.2(a). This estimate and the third inequality in (B.7) prove (B.1) for
B(a;) = xo(|a;|). We can prove more than (B.12), that is,

(B.13) lixf (xo(2) —22)=0.

Indeed, we show that the inequality x,(z) > 2z — ¢ holds for large z and ¢ > 0 . This
follows from f(2z — ¢, 2) = sinh(z — ¢) —sinhz+2z —g¢~e*(e79—1) /2 — —o0 for
z — 0.
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y = |e1] y—x+z=|es]

z = |as]
Fic. B.1. Interactions.
z=la = =z
. |as] r==z v, Yy | Yy =cx
$1Ss, f<0 threshold = = z,(z) D..F>0
T =2z y(z; 2)
SiR3, f>0 D, F<0 y=x—z
z = |G| xo('z)/2 Z 1o(2) P

(a) (b)

FiG. B.2. (a) the threshold curve f(z,z) = sinh(z — z) — sinh(z) + z = 0; (b) the domain D,
and the function y = y(z; z).

Remark that the fact that €3 is a shock implies that
(B.14) f(z,z) = sinh(z — z) — sinh(z) + 2 < 0.
Step 3: the amount of shocks can increase. From (B.5) we have
(B.15) lex] + les| = |es| = 2lea| =[]

We now prove that the inequality |e1| + |e3] — |as| < 0, or equivalently |e1] < %\ﬁ3|,
does not hold if m is large.

The equation giving |e1| = y in terms of |J3] = z, for a given parameter |ag| = z,
is (B.9), to be considered in the domain

D, ={(z,y): 0 < <x,(2), y>max{0,z — z}} for z > 0,

where z,(z) satisfies (B.11); see Figure B.2(b). Since F,, = coshy+cosh(y—z+z) > 0,
the implicit equation (B.9) defines a function y = y(z;2z) with 0 < y(z;2) < =
and y(z;2) < z; see (B.10). Remark that F(x,z;z) = sinhz + 2 > 0. Moreover,
F(z,0; z) = sinh(z — ) —sinh z+z so that F(0,0; z) = 0; by F, = 1—cosh(z—z) < 0,
we deduce that F(z,0;z) < 0 if x > 0. By the implicit function theorem we have
y'(z;2) 20,

cosh(z) — 1
B.16 "(0;2) = ————— €[0,1),
(B.16) V07 = ST e
and y”(0;2) = —% < 0. The function % is increasing, and then for
cosh(m)—1,

z € [0,m] its maximum is this quantity is strictly larger than 1/2 if m >

cosh(m)+1?
log(3 + 2v/2). Thus in general the estimate y(z; 2) < /2 cannot hold.

Step 4: proof of the estimate. From (B.15) we see that |e1|+|es| — |as| < (2¢—1)-
|Bs| <= le1| < c-|Bs], that is, that (B.3) and (B.4) are equivalent; we shall prove
(B.4). To bypass the study of the function y(z; z) we define
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O(x;2,¢) = F (z,cx; z) = sinh(cx) + sinh (2 — (1 — ¢)x) — sinh z + .
If1/2 <c¢< 1, then z > (1 — ¢)x and ®(0;z,¢) =0,
O, (x;2,¢) =14 ccosh(ex) — (1 —¢)cosh (z — (1 —c)z) ,
(3 2,¢) = sinh(cx) 4 (1 — ¢)?sinh (z — (1 — ¢)z) > 0.
Therefore the function  — ®,(z; 2, ¢) is increasing, and then ®(x;z,¢) > 0 if

®,(0;2,¢) =(14¢)— (1 —¢)cosh(z) >0,

that is, if cosh(z) < 1£<; this is just (B.2). Then y(z;2) < cx for all z € (0,2,(2)),
and so (B.4) is proved. O

Remark B.2. From (B.16) we see that condition (B.2) is equivalent to the geo-
metric condition y'(0;2) = (coshz — 1)/(cosh z + 1) < ¢. Moreover, as we noticed in

the above proof, condition (B.2) is equivalent to

1+
1—-¢’

(B.17) cosh(|a;]) <

which, in turn, is equivalent to

1 c)?

(B.18) o] < log LV
1-c

From the definition of the strength, one has that |o;| = (1/2) log(vmaz/Vmin), Where

Umaz = Maxq{ve, U}, Umin = min{uvg, v}, vg, v, being, respectively, the left and right

values of v for the wave of size ;. Hence (B.18) is equivalent to

Umaz < (1+\/E)2
Umin ~  1—c¢

Remark B.3. In the proof above we showed that ALghocks = |€1] + |e3] — |as| =
2|e1| — |B3| may be positive, differently from Nishida’s paper, where it is always de-
creasing. This depends on the definition of the wave strengths, which was imposed to
us in order to have good estimates when dealing with interactions with the 2-waves.
In any case AL = ALs.hocks + ALrarcfau:tions < 0.

Remark B.4. Under the notation and assumptions of Lemma B.1 we verify that

(B.19) e < ¢ lag] .

This estimate, together with (B.4), allows us to obtain (in a special case) the analogue
of (5.20) with ¢ in place of d.

The proof makes use of a numerical computation. As in that lemma we consider
the case j = 1,4 = 3. Let z > 0 be fixed and 0 < = < z,(2). From the proof
of Lemma B.1 we deduce that y = y(z,2); for z fixed the function x — y(z,z) is
increasing. Then define

Y(2) = y(@o(2),2) = w0(2) — 2.
In order to prove (B.19) it is sufficient to prove that

1+
1—

o

Y(z) <cz if cosh(z) <

o
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Remark that from (B.13) we know that Y (z)/z — 1 for z — +oo; however, the
constraint (B.17) implies that z is bounded. The inequality Y (z) < cz is equivalent
to z,(2) — 2z < ¢z, i.e., 2,(2) < (14 ¢)z. Therefore we need to prove that

(B.20) ¢(z,¢) =sinh(cz) —sinh(z) + (1+¢)z >0 if  cosh(z) <

Notice that cosh(z) < 12¢ means 0 < z < 2. for z. = log(12¢ + /(15¢)2 — 1).

Formula (B.20) is shown to hold true by numerical computations. Remark, however,
that

¢'(z,¢) = ccosh(cz) — cosh(z) + 1 + ¢,
#"(z,¢) = ¢? sinh(cz) — sinh(z) < 0,

so ¢'(0,¢) = 2¢, ¢(-,¢) is concave, lim,_, . ¢(z,¢) = —oo, and @(-,¢) has a single
point of maximum; at last ¢’(z.) = ¢ (cosh(cz.) — cosh(z.)) < 0. This concludes the
proof of (B.19).

Remark that if ¢ = 1/2, then ¢(z,c) = sinh(z/2) — sinh z + 22. If z is such that
cosh z = 3, then sinh z = 21/2, sinh(z/2) = 1, z = log(3 + v/8), and (B.20) holds with
strict inequality.
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1. Introduction. In this paper we are concerned with the initial value problem
of the 2D (two-dimensional) dissipative quasi-geostrophic equation

00 +v-VO+|D|**0 =0
(QG)a 0 ’

9|t:0 =0 ’
where the scalar function 6 represents the potential temperature and the parameter
a € ]0,1]. The velocity v = (v!,v?) is determined by Riesz transforms of 6,

v = (—82|D|_19,61|D|_19) = (—Rz@,Rle), |D‘ =V —A.

In addition to its intrinsic mathematical importance, this equation serves as a 2D
model in geophysical fluid dynamics; for more details about the subject, see [6, 19].
This equation has been intensively investigated, and much attention is devoted
to the problem of global well-posedness. For the subcritical case (« > %) the theory
seems to be in a satisfactory state. Indeed, global existence and uniqueness for arbi-
trary initial data are established in various function spaces (see, for example, [8, 20]).

However, the critical and supercritical cases, corresponding respectively to o = %
and a < %, are harder to deal with. In the supercritical case, we have until now

only global results for small initial data; see, for instance, [3, 5, 12, 13, 23, 24]. For
the critical case, Constantin, Cérdoba, and Wu showed in [7] the global existence in
Sobolev space H' under a smallness assumption of the L> norm of §°. Many other
relevant results can be found in [9, 14, 15, 17]. Very recently, Kiselev, Nazarov, and
Volberg proved in [16] global well-posedness for arbitrary periodic smooth initial data
by using an elegant argument of the modulus of continuity. In [2], Caffarelli and
Vasseur established the global regularity of weak solutions associated with L? initial
data.

The main goal of this work is to establish global well-posedness in the critical
case when initial data belong to the homogeneous critical Besov space Bgoyl(W): we
remove the periodic condition, and we weaken the initial regularity. Before giving our
main result let us first specify our notion of critical spaces. Let 6 be a solution of
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(QG)n and A > 0; then 0)(t,z) = 6(At, Ax) is also a solution. One class of scaling
invariant spaces is the homogeneous Besov spaces (Bﬁ/,” ), with p, r € [1, o0].

Our first main result reads as follows.

THEOREM 1.1. Let 6° € BQOJ; then there exists a unique global solution 6 to
(QG), such that

ZAS C(R-i-v Bgo,l) N Llloc(R-i-; Béo,l)'

The proof relies essentially on two facts: the first is the establishment of local
existence, which is the major part of this paper, and the derivation of some smoothing
effects of the solution, described in the next theorem. The second is the use of the
modulus of continuity, as used in [16]. We mention that the property allowing us
to remove the periodicity is the spatial decay of the solution. The key to our local
existence result is some new estimates for the following transport-diffusion equation:

00 +v-VO+|D|O = f,
(TD) 10 +v ) ID|6 = f
9\152029’

where v and f are given and € is the unknown scalar function. We now state our
second main result. B .
THEOREM 1.2. Let s € |—1,1[, 7,7 € [1, +oc] withr > 7, f € L], (Ry; Boag ),
and v be a divergence-free vector field belonging to LIIOC(R+;Lip(R2)). We consider a
smooth solution 0 of the transport-diffusion equation (TD); then there exists a constant

C depending only on s such that for everyt € Ry

9 < CeCJo IVe(D)liLecdr (1190 . )
0, i1 < Ce (P T

t 00,1

Additionally, if v = V+|D|~10, then we have for all s > 1

t
T I—— CeC I (VO eIV oe)ar (9o

tPoo,1

s, + 11y s)

We use for the proof a new approach based on Lagrangian coordinates combined
with paradifferential calculus and a new commutator estimate. This idea has been
recently used by the second author in [11, 12].

The rest of the paper is structured as follows. In section 2 we review some basic
results of Littlewood—Paley theory, and we give some useful lemmas. Section 3 deals
with a new commutator estimate which is needed for the proof of Theorem 1.2, done
in section 4. Theorem 1.1 is proved in section 5.

2. Preliminaries. Throughout the paper, C stands for a constant which may
be different in each occurrence. We shall sometimes use the notation A < B instead
of A< CB, and A =~ B means that A < B and B < A. We denote by F f the Fourier
transform of f and by [n] the whole part of 7.

One starts with recalling a traditional result that will be frequently used.

LEMMA 2.1 (Bernstein). Let f € LP(R?), with 1 <p < oo and 0 < r < R. Then
there exists a constant C' > 0 such that Vk € N and A > 0 we have

supp Ff C B(0,\r) = sup [0 f||pa < CEAF2G=3)| £l 1o,
|Bl=k

supp Ff C C(0,Ar, AR) = C™*A¥|[f||Lo < sup [|07f|| e < CEA*| f o
|8l=k
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These estimates hold true if we replace the derivation 8% by |D|Pl.

To define Besov spaces we need to recall the homogeneous Littlewood—Paley de-
composition based on a dyadic unity partition. Let ¢ be a smooth function supported
in the ring C := {¢ € R?, 3 < |¢] < 8} and such that

Z@(Q_qg) =1 for &#0.

qEZ

Now, for u € S’ we set

VgeZ, Aqu=¢(2 D)u and Squ = Z Aju.

Jj<q-1
We have the formal decomposition

u = ZAqu Yu € S'(R?)/P[R?],
qEZ

where P[R?] is the set of polynomials (see [18]). Moreover, the Littlewood—Paley
decomposition satisfies the property of almost orthogonality:

(1) AgAgu=0 if |[k—gq|>2, and Ap(Se—1uldqu)=0 if |k—gq|>5.

We recall now the definition of Besov spaces. Letting (p,m) € [1,+o0]?, s € R, and
ue S, we set

lull sy = (2 18gulles) s Bpi={ue S| lullg  <oof

e For s < 2 (or s < 2 if m = 1), we then define B;,m as the completion of B;m
for |-l 5,

. IfkeNand%+k—1§s< %—i—k(ors:%—i—kifm:l),thenB;m is
defined as the subset of distributions u € &’ such that 9°u € B;;ff whenever

8] = k.
Another characterization of the homogeneous Besov spaces that will be needed
later is the following; see, for instance, [21]. For s € ]0,1[, p,m € [1, 0]

o) (Aﬂw‘ﬁgﬂ”ﬂ$9*~wmh7

with the usual modification if m = co.

In our next study we require two kinds of coupled space-time Besov spaces. The
first one is defined in the following manner: for 7" > 0 and m > 1, we denote by
L}B;m the set of all tempered distributions u satisfying

< 00.
Ly

. —— qs
lullg g, = || (27 80ul0), |

The second mixed space is z}BS which is the set of tempered distributions

p.m
satisfying

lullzy 5, = (2" NAqulliper ), < ox.
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We can define in the same way the spaces LBy, and E’:}B;,m. The following em-

beddings are a direct consequence of Minkowski’s inequality.
Let se R, r>1, and (p, m) € [1, 00]?; then we have

(3) LrTB;’m — Z;B;’m if m>r and
LyBS,, — LyBS,, it r>m.

The next lemma will be useful.
PROPOSITION 2.2. The following results hold true:
[ ]

. . 5—2(l7i
By = Bpimy ™7 for p<p1 and m <mjy.

e Let D] := V—A and o € R; then the operator |D|? is an isomorphism from
Bs,, to B0

o Lety €10,1[, 51, s2 € R such that s1 < sg and u € B;}OO N B;foo; then
”uHB;iﬁr(lfv)w S Hu”;;lw ||u||}953w

e Fors >0, B;)m N L is an algebra.
We now recall some commutator estimates (see [4, 10] and the references therein).
LEMMA 2.3. Letp,r € [1,00],1 = 1+L p1 < 1,py <1, andv be a divergence-free
vector field of R?. Assume in addition that

p1+p2 +2min{l,2/p} >0 and p1+2/p>0.

Then we have

2 _
S g o Sl STl
qEZ ) LBy, Ly By

Moreover, we have for s € | —1,1]

> 20%|[Ag, v Vul|, S IV0llzeflul g
q€Z

If v = V1|D| 71, then the above estimate holds true for s > 1 if we replace |Vvl| Lo
by Vo]l + [ Vull =

The following result is due to Vishik [22].

LEMMA 2.4. Let f be a function in the Schwartz class and ¥ a diffeomorphism
preserving Lebesque measure; then ¥ p € [1,4+00] and V j,q € Z,

1A;(Agf 0 ¥)||Lr < C277 4|V 0D oo | Ag £ Lo,
with
€(4,q) = sign(j — q).

The following result is proved in [9].
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ProproSITION 2.5. Let v be a smooth divergence-free vector field and f be a
smooth function. We assume that 6 is a smooth solution of the equation

00 +v-VO+kDP**0=f, with x>0 and a€]0,1].

Then for p € [1,4+00] we have

10z < 1100)]| o + / 1£()]| odr.

We can find a proof of the next proposition in [12].
PROPOSITION 2.6. Let C be a ring and o € Ry. There exists a positive constant
C' such that, for any p € [1;400], for any pair (t,\) of positive real numbers, we have

supp Fu C AC = |le 7P| 1 < C’efolMaHuHLp.

3. Commutator estimate. The main result of this section is the following
estimate that will play a crucial role for the proof of Theorem 1.2.

PRrROPOSITION 3.1. Let v be a divergence-free vector field belonging to L%OC(RJF;
Lip(R?)). For q € Z we denote by 1, the flow of the regularized vector field Sy—1v.
Then for f € B! and for q € Z we have

IIDI(Asf 0 4) = (IDIAGF) 0 W[ oo < CeTVOVED2Y A f v

where V(t) = ||Vl g1 Lo rey and C is an absolute constant.
Proof. We set f, := Ay f, and then it is obvious that

ID|(f4 0 %q) — (IDIf,) 0¥ = IDIZ{(ID|% f,) 09y} — {IDIZ(ID|% f,)} 0 ¢,
+ DI {ID|2 (fy 0%q)